TensorRT Overview

The core of NVIDIA® TensorRT™ is a C++ library that facilitates high-performance inference on NVIDIA graphics processing units (GPUs). TensorRT takes a trained network, which consists of a network definition and a set of trained parameters, and produces a highly optimized runtime engine which performs inference for that network.

TensorRT provides API's via C++ and Python that help to express deep learning models via the Network Definition API or load a pre-defined model via the parsers that allows TensorRT to optimize and run them on an NVIDIA GPU. TensorRT applies graph optimizations, layer fusion, among other optimizations, while also finding the fastest implementation of that model leveraging a diverse collection of highly optimized kernels. TensorRT also supplies a runtime that you can use to execute this network on all of NVIDIA’s GPU’s from the Kepler generation onwards.

TensorRT also includes optional high speed mixed precision capabilities introduced in the Tegra X1, and extended with:
  • NVIDIA® Ampere GPU architecture
  • NVIDIA® Turing™ GPU architecture
  • NVIDIA® Volta™ GPU architecture
  • NVIDIA® Pascal™ GPU architecture