.. Copyright (c) 2022-2025, NVIDIA CORPORATION & AFFILIATES. All rights reserved. See LICENSE for license information. Installation ============ Prerequisites ------------- .. |driver link| replace:: NVIDIA Driver .. _driver link: https://www.nvidia.com/drivers 1. Linux x86_64 2. `CUDA 12.1+ (12.8+ for Blackwell support) `__ 3. |driver link|_ supporting CUDA 12.1 or later. 4. `cuDNN 9.3 `__ or later. If the CUDA Toolkit headers are not available at runtime in a standard installation path, e.g. within `CUDA_HOME`, set `NVTE_CUDA_INCLUDE_PATH` in the environment. Transformer Engine in NGC Containers ------------------------------------ Transformer Engine library is preinstalled in the PyTorch container in versions 22.09 and later on `NVIDIA GPU Cloud `_. pip - from PyPI ----------------------- Transformer Engine can be directly installed from `our PyPI `_, e.g. .. code-block:: bash pip3 install --no-build-isolation transformer_engine[pytorch] To obtain the necessary Python bindings for Transformer Engine, the frameworks needed must be explicitly specified as extra dependencies in a comma-separated list (e.g. [jax,pytorch]). Transformer Engine ships wheels for the core library. Source distributions are shipped for the JAX and PyTorch extensions. pip - from GitHub ----------------------- Additional Prerequisites ^^^^^^^^^^^^^^^^^^^^^^^^ 1. [For PyTorch support] `PyTorch `__ with GPU support. 2. [For JAX support] `JAX `__ with GPU support, version >= 0.4.7. Installation (stable release) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ Execute the following command to install the latest stable version of Transformer Engine: .. code-block:: bash pip3 install --no-build-isolation git+https://github.com/NVIDIA/TransformerEngine.git@stable This will automatically detect if any supported deep learning frameworks are installed and build Transformer Engine support for them. To explicitly specify frameworks, set the environment variable `NVTE_FRAMEWORK` to a comma-separated list (e.g. `NVTE_FRAMEWORK=jax,pytorch`). Installation (development build) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ .. warning:: While the development build of Transformer Engine could contain new features not available in the official build yet, it is not supported and so its usage is not recommended for general use. Execute the following command to install the latest development build of Transformer Engine: .. code-block:: bash pip3 install --no-build-isolation git+https://github.com/NVIDIA/TransformerEngine.git@main This will automatically detect if any supported deep learning frameworks are installed and build Transformer Engine support for them. To explicitly specify frameworks, set the environment variable `NVTE_FRAMEWORK` to a comma-separated list (e.g. `NVTE_FRAMEWORK=jax,pytorch`). To only build the framework-agnostic C++ API, set `NVTE_FRAMEWORK=none`. In order to install a specific PR, execute (after changing NNN to the PR number): .. code-block:: bash pip3 install --no-build-isolation git+https://github.com/NVIDIA/TransformerEngine.git@refs/pull/NNN/merge Installation (from source) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ Execute the following commands to install Transformer Engine from source: .. code-block:: bash # Clone repository, checkout stable branch, clone submodules git clone --branch stable --recursive https://github.com/NVIDIA/TransformerEngine.git cd TransformerEngine export NVTE_FRAMEWORK=pytorch # Optionally set framework pip3 install --no-build-isolation . # Build and install If the Git repository has already been cloned, make sure to also clone the submodules: .. code-block:: bash git submodule update --init --recursive Extra dependencies for testing can be installed by setting the "test" option: .. code-block:: bash pip3 install --no-build-isolation .[test] To build the C++ extensions with debug symbols, e.g. with the `-g` flag: .. code-block:: bash pip3 install --no-build-isolation . --global-option=--debug .. include:: ../README.rst :start-after: troubleshooting-begin-marker-do-not-remove :end-before: troubleshooting-end-marker-do-not-remove