
Driver Persistence
Release r560

NVIDIA Corporation

Nov 12, 2024

Contents

1 Overview 3
1.1 Windows . 3
1.2 Linux . 4

2 Data Persistence 5
2.1 GPU Initialization Lifecycle . 5
2.2 Kernel Driver Lifecycle . 5
2.3 GPU Board Lifecycle . 6

3 Background 7

4 Persistence Mode (Legacy) 9
4.1 Supported Environments . 9

5 Persistence Daemon 11
5.1 Supported Environments . 11
5.2 Implementation Details . 11
5.3 Permissions and Security . 12
5.4 Usage . 13
5.5 Installation Caveats . 13
5.6 Customer Visibility . 14

6 Notices 15
6.1 Trademarks . 16

i

ii

Driver Persistence, Release r560

Driver Persistence

Any interactions with NVIDIA GPUs require that an instance of the kernel mode driver be running. This
driver may be persistent in some environments and transient in others. This document describes the
default driver behavior and options for modifying that behavior.

Contents 1

Driver Persistence, Release r560

2 Contents

Chapter 1. Overview

The NVIDIA kernel mode driver must be running and connected to a target GPU device before any user
interactionswith that device can take place. The driver behavior differs depending on theOS. Generally,
if the kernel mode driver is not already running or connected to a target GPU, the invocation of any
program that attempts to interact with that GPU will transparently cause the driver to load and/or
initialize the GPU. When all GPU clients terminate the driver will then deinitialize the GPU. Driver load
behavior is important for end users in two ways:

▶ Application start latency

Applications that trigger GPU initilization may incur a short (order of 1-3 second)
startup cost per GPU due to ECC scrubbing behavior. If the GPU is already initialized
this scrubbing does not take place.

▶ Preservation of driver state

If the driver deinitializes a GPU some non-persistent state associated with that GPU will be lost
and revert back to defaults the next time the GPU is initialized. Refer to Data Persistence. To
avoid this, the GPU should be kept initialized.

Default driver behavior differs between operating systems:

1.1. Windows

OnWindows the kernel mode driver is loaded atWindows startup and kept loaded until Windows shut-
down. Consequently Windows users can mostly ignore the driver persistence implications described
in this document.

Note: Driver reload events, or example due to TDR or new driver installation, will result in reset of
non-persistent state.

3

Driver Persistence, Release r560

1.2. Linux

Under Linux systems where X runs by default on the target GPU, the kernel mode driver will generally
be initalized and kept alive frommachine startup to shutdown, courtesy of the X process. On headless
systems or situations where no long-lived X-like clientmaintains a handle to the target GPU, the kernel
mode driver will initilize and deinitialize the target GPU each time a target GPU application starts and
stops. In HPC environments this situation is quite common. Since it is often desireable to keep the
GPU initialized in these cases, NVIDIA provides two options for changing driver behavior: Persistence
Mode (Legacy) and the Persistence Daemon.

4 Chapter 1. Overview

Chapter 2. Data Persistence

Different classes of driver state have different lifetime durations. It can be important to understand
the differences, as this can affect the behavior of GPU management features like clock settings, ECC
mode, and so on. Generally, driver state falls into the following categories. This is not intended to be
an exhaustive list, but will cover common cases:

2.1. GPU Initialization Lifecycle

State of this type lasts from the time the driver initializes a GPU until the time the GPU is unititialized.
This is the narrowest lifecycle, as the kernel driver itself is still loaded and may be managing other
GPUs. The GPU typically initializes a GPU if a client application tries to access the GPU. The GPU is
typically deinitialized after the last client exits.

State:

▶ Compute Mode, Accounting Mode, Persistence Mode

▶ Application Clocks, Application Clocks Permission Settings

▶ SW-Based Power Capping Limit

▶ Volatile ECC errors, Pending Retired Pages

2.2. Kernel Driver Lifecycle

State of this type lasts from the time the driver loads until the time the driver unloads (or example,
rmmod). In most environments this is the entire machine boot cycle. Exceptions include GPU reset
events and driver installs.

State:

▶ Accounting process data

5

Driver Persistence, Release r560

2.3. GPU Board Lifecycle

State of this type lasts across boot cycles, as it is stored in the board’s persistent inforom. In some
cases such state can be explicitly cleared, but in general this state is deemed to be persistent for the
entire life of the board – or until next changed by the user.

State:

▶ ECC Mode, Aggregate ECC errors, Retired Pages

▶ GPU Operation Mode, Driver Model

6 Chapter 2. Data Persistence

Chapter 3. Background

The NVIDIA GPU driver has historically followed Unix design philosophies by only initializing software
and hardware state when the user has configured the system to do so. Traditionally, this configuration
was done via the X Server and the GPUs were only initialized when the X Server (on behalf of the user)
requested that they be enabled. This is very important for the ability to reconfigure the GPUs without
a reboot (for example, changing SLI mode or bus settings, especially in the AGP days).

More recently, this has proven to be a problem within compute-only environments, where X is not
used and the GPUs are accessed via transient instantiations of the CUDA library. This results in the
GPU state being initialized and deinitialized more often than the user truly wants and leads to long
load times for each CUDA job, on the order of seconds.

NVIDIA previously provided PersistenceMode to solve this issue. This is a kernel-level solution that can
be configured using nvidia-smi. This approach would prevent the kernel module from fully unload-
ing software and hardware state when no user software was using the GPU. However, this approach
creates subtle interaction problems with the rest of the system that have mademaintenance difficult.

The purpose of the NVIDIA Persistence Daemon is to replace this kernel-level solution with a more
robust user-space solution. This enables compute-only environments to more closely resemble the
historically typical graphics environments that the NVIDIA GPU driver was designed around.

7

Driver Persistence, Release r560

8 Chapter 3. Background

Chapter 4. Persistence Mode (Legacy)

Persistence Mode is the term for a user-settable driver property that keeps a target GPU initialized
even when no clients are connected to it. This solution is near end-of-life and will be eventually dep-
recated in favor of the Persistence Daemon.

Persistence mode can be set using nvidia-smi or programmaticaly via the NVML API.

To enable persistence mode using nvidia-smi (as root):

nvidia-smi -i <target gpu> -pm ENABLED
Enabled persistence mode for GPU <target gpu>.
All done.

To view current persistence mode using nvidia-smi:

nvidia-smi -i <target gpu> - q
==============NVSMI LOG==============

Timestamp : ----
Driver Version : ----

Attached GPUs : ----
GPU 0000:01:00.0

Product Name : ----
Display Mode : ----
Display Active : ----
Persistence Mode : Enabled
Accounting Mode : ----
...

4.1. Supported Environments

▶ Drivers: All shipping driver versions

▶ OSes: All standard driver-supported Linux platforms

▶ GPUs: All shipping Data Center, Quadro and GRID products

9

Driver Persistence, Release r560

10 Chapter 4. Persistence Mode (Legacy)

Chapter 5. Persistence Daemon

NVIDIA is providing a user-space daemon on Linux to support persistence of driver state across CUDA
job runs. The daemon approach provides a more elegant and robust solution to this problem than
persistence mode.

NVIDIA will support both solutions for the near future, but will focus all future development and bug
fixes on the daemon.

The daemon is installed in ∕usr∕bin, while sample installation and init scripts are included with the
driver in the documentation directory. The scripts are provided as a guide for installing the daemon
to run on system startup for some common init systems; they may require some changes for certain
distributions, due to the wide variety of init system configurations.

NVIDIA encourages customers to shift to this daemon approach at their earliest availability.

5.1. Supported Environments

▶ Drivers: R319 and higher

▶ OSes: All standard driver-supported Linux platforms

▶ GPUs: All shipping Data Center, Quadro and GRID products

5.2. Implementation Details

On Linux systems running the NVIDIA GPU driver, clients attach a GPU by opening its device file. Con-
versely, the GPU is detached by closing the device file. The GPU state remains loaded in the driver
whenever one or more clients have the device file open. Once all clients have closed the device file,
the GPU state will be unloaded unless persistence mode is enabled.

To simulate graphics environments without incurring the overhead of user-space graphics drivers, we
have implemented the NVIDIA Persistence Daemon, which essentially runs in the background and
sleeps with the device files open. The daemon uses libnvidia-cfg to open and close the correct de-
vice files based on its PCI bus address, and provides an RPC interface to control the persistence mode
of each GPU individually. Thus, while the daemon holds the device files open, at least one client, the
daemon, has the GPU attached and the driver will not unload the GPU state. Once the daemon starts
running, it remains in the background until it is killed, even if persistence mode is disabled for all de-
vices.

11

Driver Persistence, Release r560

Because of the nature of the solution, the daemon can be used as a drop-in replacement for what we
are now calling “legacy persistence mode” as implemented in the NVIDIA kernel-mode driver. NVIDIA
SMI has been updated in driver version 319 to use the daemon’s RPC interface to set the persistence
mode using the daemon if the daemon is running, and will fall back to setting the legacy persistence
mode in the kernel-mode driver if the daemon is not running. This is all handled transparently by
NVIDIA SMI, so there should be no change in how persistence mode is configured. Eventually, the
legacy persistence mode will be deprecated and removed in favor of the NVIDIA Persistence Daemon,
once it has achieved wide adoption in the relevant use cases.

5.3. Permissions and Security

TheNVIDIAPersistenceDaemonprovides amore robust implementation of persistencemode on Linux,
since it simply mimics an external client of the GPU but does not actually use the GPU for any work.
In this way, it causes the NVIDIA GPU driver to operate within the assumptions of its original design.

Once the daemon is running, there is minimal overhead for keeping persistence mode enabled. The
daemon will simply sleep waiting for a command.

The daemon does not require super-user privileges to run – however, it does require super-user privi-
leges to set up some runtime data in ∕var∕run. The daemon allows for two mechanisms to run as a
user without super-user privileges:

▶ An administrator (or script run with super-user privileges) may create the ∕var∕run∕
nvidia-persistenced directory and chown it to the user the daemon will run as. The dae-
mon can then be run as the intended user using su or similar. In this case, the ∕var∕run∕
nvidia-persistenced directory will not be removed when the daemon is killed.

▶ The daemonmay be started with super-user privileges and use the --user option. This will force
the daemon to drop its super-user privileges as soon as possible after creating the ∕var∕run∕
nvidia-persistenced directory and run as the specified user. Note that with this mechanism,
the daemon may not be able to remove the ∕var∕run∕nvidia-persistenced directory when
it is killed, since the user may not have write permissions to ∕var∕run.

Note that in both cases, the daemon may not be able to remove its runtime data directory when it is
killed, so this task should typically be handled by the init script or service for the daemon.

The daemon may also be run with perpetual super-user privileges by simply omitting the --user op-
tion, but this is not recommended and is not necessary for functionality.

The daemon also provides a --verbose option, which increases its logging output to syslog for de-
bugging purposes.

The source code for the daemon is also available under the MIT license, to allow for second- and third-
party security auditing.

12 Chapter 5. Persistence Daemon

Driver Persistence, Release r560

5.4. Usage

To run the NVIDIA Persistence Daemon, simply run (as root):

nvidia-persistenced --user foo

After doing a minimal amount of setup tasks that require super-user privileges, the daemon will drop
super-user privileges and run as user ‘foo’.

You may use NVIDIA SMI to change the persistence mode setting. For example, to disable persistence
mode on all GPUs, simply run (again, as root):

nvidia-smi -pm 0

Refer to the nvidia-persistenced(1) man page, which is installed by the NVIDIA GPU driver in-
staller, or the output of:

% nvidia-persistenced --help

for detailed usage information.

Refer to the next section for details about installing the daemon to always run on system startup.

5.5. Installation Caveats

The reason why we cannot immediately deprecate the legacy persistence mode and switch transpar-
ently to the NVIDIA Persistence Daemon is because at this time, we cannot guarantee that the NVIDIA
Persistence Daemon will be running. This would be a feature regression as persistence mode might
not be available out-of- the-box.

The NVIDIA Persistence Daemon ships with the NVIDIA Linux GPU driver starting in driver version 319
and is installed by the installer as ∕usr∕bin∕nvidia-persistenced. Ideally, the daemonwould start
on system initialization according to the Linux distribution’s init system, transparently to the user, and
exit on system shutdown. Unfortunately, there is no single standard for installing an application to
start on system initialization on Linux, so we cannot reliably do so on the wide range of systems the
NVIDIA GPU driver supports.

Therefore, we want to encourage individual distributions, who typically re-package the NVIDIA GPU
driver for installation via their package manager, to install the NVIDIA Persistence Daemon to start on
system initialization, which is a nearly trivial task once the init system is known. To this end, we are
providing sample “init scripts” in the driver package to aid in this installation. These scripts attempt
to cover three of the most prevalent init systems found in Linux distributions today: SystemV, sys-
temd, and Upstart. The sample scripts also come with an installer script that attempts to detect the
init system and install the appropriate script for the user. The sample scripts and installer script are
installed to ∕usr∕share∕doc∕NVIDIA_GLX-1.0∕sample∕nvidia-persistenced-init.tar.bz2
by the NVIDIA GPU driver installer. They are not unpacked or run by the driver installer since we cannot
guarantee that they will work correctly on all supported systems out-of-the-box.

By default, the installer scripts attempt to create a new system user for the daemon to run as, and the
sample init scripts demonstrate the second option described in Permissions and Security for running
the daemon without super-user privileges.

5.4. Usage 13

Driver Persistence, Release r560

5.6. Customer Visibility

The daemon is visible to end customers, as it will typically require some sort of manual installation
into the init system. However, after initial installation steps are taken, the daemon should operate
transparently in the background, with NVIDIA SMI handling the necessary switching to determine if
the daemon persistencemode can be used. Ideally, the eventual deprecation and removal of the legacy
persistence mode will be transparent to customers using the daemon.

14 Chapter 5. Persistence Daemon

Chapter 6. Notices

This document is provided for information purposes only and shall not be regarded as a warranty of a
certain functionality, condition, or quality of a product. NVIDIA Corporation (“NVIDIA”) makes no repre-
sentations or warranties, expressed or implied, as to the accuracy or completeness of the information
contained in this document and assumes no responsibility for any errors contained herein. NVIDIA shall
have no liability for the consequences or use of such information or for any infringement of patents
or other rights of third parties that may result from its use. This document is not a commitment to
develop, release, or deliver any Material (defined below), code, or functionality.

NVIDIA reserves the right to make corrections, modifications, enhancements, improvements, and any
other changes to this document, at any time without notice.

Customer should obtain the latest relevant information before placing orders and should verify that
such information is current and complete.

NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the
time of order acknowledgement, unless otherwise agreed in an individual sales agreement signed by
authorized representatives of NVIDIA and customer (“Terms of Sale”). NVIDIA hereby expressly objects
to applying any customer general terms and conditions with regards to the purchase of the NVIDIA
product referenced in this document. No contractual obligations are formed either directly or indirectly
by this document.

NVIDIA products are not designed, authorized, or warranted to be suitable for use in medical, military,
aircraft, space, or life support equipment, nor in applicationswhere failure ormalfunction of theNVIDIA
product can reasonably be expected to result in personal injury, death, or property or environmental
damage. NVIDIA accepts no liability for inclusion and/or use of NVIDIA products in such equipment or
applications and therefore such inclusion and/or use is at customer’s own risk.

NVIDIAmakes no representation or warranty that products based on this document will be suitable for
any specified use. Testing of all parameters of each product is not necessarily performed by NVIDIA.
It is customer’s sole responsibility to evaluate and determine the applicability of any information con-
tained in this document, ensure the product is suitable and fit for the application planned by customer,
and perform the necessary testing for the application in order to avoid a default of the application or
the product. Weaknesses in customer’s product designs may affect the quality and reliability of the
NVIDIA product andmay result in additional or different conditions and/or requirements beyond those
contained in this document. NVIDIA accepts no liability related to any default, damage, costs, or prob-
lem which may be based on or attributable to: (i) the use of the NVIDIA product in any manner that is
contrary to this document or (ii) customer product designs.

No license, either expressed or implied, is granted under any NVIDIA patent right, copyright, or other
NVIDIA intellectual property right under this document. Information published by NVIDIA regarding
third-party products or services does not constitute a license from NVIDIA to use such products or
services or a warranty or endorsement thereof. Use of such information may require a license from a
third party under the patents or other intellectual property rights of the third party, or a license from
NVIDIA under the patents or other intellectual property rights of NVIDIA.

15

Driver Persistence, Release r560

Reproduction of information in this document is permissible only if approved in advance by NVIDIA
in writing, reproduced without alteration and in full compliance with all applicable export laws and
regulations, and accompanied by all associated conditions, limitations, and notices.

THIS DOCUMENTANDALLNVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS,
DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE
BEING PROVIDED “AS IS.” NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR
OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WAR-
RANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE.
TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENTWILL NVIDIA BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CON-
SEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARIS-
ING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF NVIDIA HAS BEEN ADVISED OF THE POSSIBILITY
OF SUCHDAMAGES. Notwithstanding any damages that customermight incur for any reasonwhatso-
ever, NVIDIA’s aggregate and cumulative liability towards customer for the products described herein
shall be limited in accordance with the Terms of Sale for the product.

6.1. Trademarks

NVIDIA and the NVIDIA logo are trademarks or registered trademarks of NVIDIA Corporation in the
U.S. and other countries. Other company and product names may be trademarks of the respective
companies with which they are associated.

Copyright

©2013-2024, NVIDIA Corporation & affiliates. All rights reserved

16 Chapter 6. Notices

	Overview
	Windows
	Linux

	Data Persistence
	GPU Initialization Lifecycle
	Kernel Driver Lifecycle
	GPU Board Lifecycle

	Background
	Persistence Mode (Legacy)
	Supported Environments

	Persistence Daemon
	Supported Environments
	Implementation Details
	Permissions and Security
	Usage
	Installation Caveats
	Customer Visibility

	Notices
	Trademarks

