
NVIDIA VALIDATION SUITE

v2.0 | June 2020

Best Practices and User Guide

www.nvidia.com
NVIDIA Validation Suite v2.0 | ii

TABLE OF CONTENTS

Chapter 1. Overview.. 1
1.1. NVVS Goals...1
1.2. Beyond the Scope of the NVIDIA Validation Suite... 2
1.3. Dependencies.. 2
1.4. Supported Products...2

Chapter 2. Using NVVS.. 3
2.1. Command line options... 3
2.2. Usage Examples... 4
2.3. Configuration file... 5
2.4. Global parameters..6
2.5. GPU parameters...7
2.6. Test Parameters... 8

Chapter 3. Overview of Plugins... 10
3.1. Deployment Plugin.. 10
3.2. Hardware Disagnostic Plugin.. 11
3.3. PCIe - GPU Bandwidth Plugin... 13
3.4. Memory Bandwidth Plugin... 19
3.5. SM Stress Plugin... 21
3.6. Targeted Stress Plugin.. 23
3.7. Power Plugin... 27

Chapter 4. Test Output..30
4.1. JSON Output... 30

www.nvidia.com
NVIDIA Validation Suite v2.0 | 1

Chapter 1.
OVERVIEW

The NVIDIA Validation Suite (NVVS) is the system administrator and cluster manager's
tool for detecting and troubleshooting common problems affecting NVIDIA® Tesla™

GPUs in a high performance computing environments. NVVS focuses on software and
system configuration issues, diagnostics, topological concerns, and relative performance.

1.1. NVVS Goals
The NVIDIA Validation Suite is designed to:

 1. Provide a system-level tool, in production environments, to assess cluster readiness
levels before a workload is deployed.

 2. Facilitate multiple run modes:

‣ Interactive via an administrator or user in plain text.
‣ Scripted via another tool with easily parseable output.

 3. Provide multiple test timeframes to facilitate different preparedness or failure
conditions:

‣ Quick tests to use as a readiness metric
‣ Medium tests to use as an epilogue on failure
‣ Long tests to be run by an administrator as post-mortem

 4. Integrate the following concepts into a single tool to discover deployment, system
software and hardware configuration issues, basic diagnostics, integration issues,
and relative system performance.

‣ Deployment and Software Issues

‣ NVML library access and versioning
‣ CUDA library access and versioning
‣ Software conflicts

‣ Hardware Issues and Diagnostics

‣ Pending Page Retirements
‣ PCIe interface checks
‣ NVLink interface checks

Overview

www.nvidia.com
NVIDIA Validation Suite v2.0 | 2

‣ Framebuffer and memory checks
‣ Compute engine checks

‣ Integration Issues

‣ PCIe replay counter checks
‣ Topological limitations
‣ Permissions, driver, and cgroups checks
‣ Basic power and thermal constraint checks

‣ Stress Checks

‣ Power and thermal stress
‣ Throughput stress
‣ Constant relative system performance
‣ Maximum relative system performance
‣ Memory Bandwidth

 5. Provide troubleshooting help
 6. Easily integrate into Cluster Scheduler and Cluster Management applications
 7. Reduce downtime and failed GPU jobs

1.2. Beyond the Scope of the NVIDIA Validation
Suite
NVVS is not designed to:

 1. Provide comprehensive hardware diagnostics
 2. Actively fix problems
 3. Replace the field diagnosis tools. Please refer to http://docs.nvidia.com/deploy/hw-

field-diag/index.html for that process.
 4. Facilitate any RMA process. Please refer to http://docs.nvidia.com/deploy/rma-

process/index.html for those procedures.

1.3. Dependencies
‣ NVVS requires a NVIDIA Linux driver to be installed. Both the standard display

driver and Tesla Recommended Driver will work. You can obtain a driver from
http://www.nvidia.com/object/unix.html.

‣ NVVS requires the standard C++ runtime library with GLIBCXX of at least version
3.4.5 or greater.

1.4. Supported Products
The NVIDIA Validation Suite supports Tesla GPUs running on 64-bit Linux (bare metal)
operating systems. NVIDIA® Tesla™ Line:

‣ All Kepler, Maxwell, Pascal, and Volta architecture GPUs

http://docs.nvidia.com/deploy/hw-field-diag/index.html
http://docs.nvidia.com/deploy/hw-field-diag/index.html
http://docs.nvidia.com/deploy/rma-process/index.html
http://docs.nvidia.com/deploy/rma-process/index.html
http://www.nvidia.com/object/unix.html

www.nvidia.com
NVIDIA Validation Suite v2.0 | 3

Chapter 2.
USING NVVS

The various command line options of NVVS are designed to control general execution
parameters, whereas detailed changes to execution behavior are contained within the
configuration files detailed in the next chapter.

2.1. Command line options
The various options for NVVS are as follows:

Short option Long option Description

--statspath Write the plugin statistics to
a given path rather than the
current directory.

-a --appendLog When generating a debug logfile,
do not overwrite the contents of
a current log. Used in conjuction
with the -d and -l options.

-c --config Specify the configuration file to
be used. The default is /etc/
nvidia-validation-suite/
nvvs.conf

--configless Run NVVS in a configless mode.
Executes a "long" test on all
supported GPUs.

-d --debugLevel Specify the debug level for the
output log. The range is 0 to 5
with 5 being the most verbose.
Used in conjunction with the -l
flag.

-g --listGpus List the GPUs available and exit.
This will only list GPUs that are
supported by NVVS.

-i --indexes Comma separated list of indexes
to run NVVS on.

Using NVVS

www.nvidia.com
NVIDIA Validation Suite v2.0 | 4

Short option Long option Description

-j --jsonOutput Instructs nvvs to format the
output as JSON.

-l --debugLogFile Specify the logfile for debug
information. This will produce an
encrypted log file intended to be
returned to NVIDIA for post-run
analysis after an error.

--quiet No console output given. See logs
and return code for errors.

-p --pluginpath Specify a custom path for the
NVVS plugins.

-s --scriptable Produce output in a colon-
separated, more script-friendly
and parseable format.

--specifiedtest Run a specific test in a configless
mode. Multiple word tests should
be in quotes, and if more than
one test is specified it should be
comma-separated.

--parameters Specify test parameters
via the command-line. For
example: --parameters "sm
stress.test_duration=300" would
set the test duration for the SM
Stress test to 300 seconds.

--statsonfail Output statistic logs only if a test
failure is encountered.

-t --listTests List the tests available to be
executed through NVVS and exit.
This will list only the readily
loadable tests given the current
path and library conditions.

-v --verbose Enable verbose reporting.

--version Displays the version information
and exits.

-h --help Display usage information and
exit.

2.2. Usage Examples
To display the list of GPUs available on the system.

user@hostname
$ nvvs -g

NVIDIA Validation Suite (version 352.00)

Supported GPUs available:
 [0000:01:00.0] -- Tesla K40c
 [0000:05:00.0] -- Tesla K20c

Using NVVS

www.nvidia.com
NVIDIA Validation Suite v2.0 | 5

 [0000:06:00.0] -- Tesla K20c

An example "quick" test (explained later) using a custom configuration file.

user@hostname
$ nvvs -c Tesla_K40c_quick.conf

NVIDIA Validation Suite (version 352.00)

 Software
 Blacklist ... PASS
 NVML Library PASS
 CUDA Main Library PASS
 CUDA Toolkit Libraries PASS
 Permissions and OS-related Blocks PASS
 Persistence Mode PASS
 Environmental Variables PASS

To output an encrypted debug file at the highest debug level to send to NVIDIA for
analysis after a problem.

user@hostname
$ nvvs -c Tesla_K40c_medium.conf -d 5 -l debug.log

NVIDIA Validation Suite (version 352.00)

 Software
 Blacklist ... PASS
 NVML Library PASS
 CUDA Main Library PASS
 CUDA Toolkit Libraries PASS
 Permissions and OS-related Blocks PASS
 Persistence Mode PASS
 Environmental Variables PASS
 Hardware
 Memory GPU0 PASS
 Integration
 PCIe .. FAIL
 *** GPU 0 is running at PCI link width 8X, which is below the minimum
 allowed link width of 16X (parameter:
min_pci_width)"

The output file, debug.log would then be returned to NVIDIA.

2.3. Configuration file
The NVVS configuration file is a YAML-formatted (e.g. human-readable JSON) text file
with three main stanzas controlling the various tests and their execution.

The general format of a configuration file consists of:

%YAML 1.2

globals:
 key1: value
 key2: value

test_suite_name:

http://www.yaml.org

Using NVVS

www.nvidia.com
NVIDIA Validation Suite v2.0 | 6

- test_class_name1:
 test_name1:
 key1: value
 key2: value
 subtests:
 subtest_name1:
 key1: value
 key2: value
 test_name2:
 key1: value
 key2: value
-test_class_name2:
 test_name3:
 key1: value
 key2: value

gpus:
- gpuset: name
 properties:
 key1: value
 key2: value
 tests:
 name: test_suite_name

There are three distinct sections: globals, test_suite_name, and gpus each with its own
subsection of parameters and as is with any YAML document, indentation is important
thus if errors are generated from your own configuration files please refer to this
example for indentation reference.

2.4. Global parameters
Keyword Value Type Description

logfile String The prefix for all detailed test
data able to be used for post-
processing.

logfile_type String Can be json, text, or binary. Used
in conjunction with the logfile
global parameter. Default is JSON.

scriptable Boolean Accepts true, or false. Produces
a script-friendly, colon-separated
output and is identical to the -s
command line parameter.

serial_override Boolean Accepts true, or false. Some tests
are designed to run in parallel
if multiple GPUs are given.
This parameter overrides that
behavior serializing execution
across all tests.

require_persistence_mode Boolean Accepts true, or false.
Persistence mode is a prerequisite
for some tests, this global
overrides that requirement and
should only be used if it is not
possible to activate persistence
mode on your system.

Using NVVS

www.nvidia.com
NVIDIA Validation Suite v2.0 | 7

2.5. GPU parameters
The gpus stanza may consist of one or more gpusets which will each match zero or more
GPUs on the system based on their properties(a match of zero will produce an error).

GPUs are matched based on the following criteria with their configuration file keywords
in parenthesis:

‣ Name of the GPU, i.e. Tesla K40c (name)
‣ Brand of the GPU, i.e. Tesla (brand)
‣ A comma separated list of indexes (index)
‣ The GPU UUID (uuid)
‣ or the PCIe Bus ID (busid)

The matching rules are based off of exclusion. First, the list of supported GPUs is taken
and if no properties tag is given then all GPUs will be used in the test. Because a UUID
or PCIe Bus ID can only match a single GPU, if those properties are given then only that
GPU will be used if found. The remaining properties, index, brand, and name work in
an "AND" fashion such that, if specified, the result must match at least one GPU on the
system for a test to be performed.

For example, if name is set to "Tesla K40c" and index is set to "0" NVVS will error if
index 0 is not a Tesla K40c. By specifying both brand and index a user may limit a test to
specific "Tesla" cards for example. In this version of NVVS, all matching GPUs must be
homogeneous.

The second identifier for a gpuset is tests. This parameter specifies either the suite of tests
that a user wishes to run or the test itself.

At present the following suites are available:

‣ Quick -- meant as a pre-run sanity check to ensure that the GPUs are ready for a job.
Currently runs the Deployment tests described in the next chapter.

‣ Medium -- meant as a quick, post-error check to make sure that nothing very
obvious such as ECC enablement or double-bit errors have occurred on a GPU.
Currently runs the Deployment, Memory/Hardware, and PCIe/Bandwidth tests. The
Hardware tests are meant to be relatively short to find obvious issues.

‣ Long -- meant as a more extensive check to find potential power and/or performance
problems within a cluster. Currently runs an extensive test that involves
Deployment, Memory/Hardware, PCI/Bandwidth, Power, Stress, and Memory
Bandwidth. The Hardware tests will run in a longer-term iterative mode that are
meant to try and capture transient failures as well as obvious issues.

An individual test can also be specified. Currently the keywords are: Memory, Diagnostic,
Targeted Stress, Targeted Power, PCIe, SM Stress, and Memory Bandwidth. Please see the
"custom" section in the next subchapter to configure and tweak the parameters when
this method is used.

Using NVVS

www.nvidia.com
NVIDIA Validation Suite v2.0 | 8

2.6. Test Parameters
The format of the NVVS configuration file is designed for extensibility. Each test suite
above can be customized in a number of ways described in detail in the following
chapter for each test. Individual tests belong to a specific class of functionality which,
when wanting to customize specific parameters, must also be specified.

The classes and the respective tests they perform are as follows:

Class name Tests Brief description

Software Deployment Checks for various runtime
libraries, persistence mode,
permissions, environmental
variables, and blacklisted
drivers.

Hardware Diagnostic Execute a series of hardware
diagnostics meant to exercise
a GPU or GPUs to their factory
specified limits.

Integration PCIe Test host to GPU, GPU to host,
and P2P (if possible) bandwidth.
P2P between GPUs occurs over
NvLink (if possible) or PCIe.

Targeted Stress Sustain a specific targeted stress
level for a given amount of time.

Targeted Power Sustain a specific targeted power
level for a given amount of time.

SM Stress Sustain a workload on the
Streaming Multiprocessors (SMs)
of the GPU for a given amount of
time.

Stress

Memory Bandwidth Verify that a certain memory
bandwidth can be achieved on
the framebuffer of the GPU.

Some tests also have subtests that can be enabled by using the subtests keyword and then
hierarchically adding the subtest parameters desired beneath. An example would be the
PCIe Bandwidth test which may have a section that looks similar to this:

long:
- integration:
 pcie:
 test_unpinned: false
 subtests:
 h2d_d2h_single_pinned:
 min_bandwidth: 20
 min_pci_width: 16

Using NVVS

www.nvidia.com
NVIDIA Validation Suite v2.0 | 9

When only a specific test is given in the GPU set portion of the configuration file, both
the suite and class of the test are custom. For example:

%YAML 1.2

globals:
 logfile: nvvs.log

custom:
- custom:
 targeted stress:
 test_duration: 60

gpus:
- gpuset: all_K40c
 properties:
 name: Tesla K40c
 tests:
 - name: targeted stress

www.nvidia.com
NVIDIA Validation Suite v2.0 | 10

Chapter 3.
OVERVIEW OF PLUGINS

The NVIDIA Validation Suite consists of a series of plugins that are each designed to
accomplish a different goal.

3.1. Deployment Plugin
The deployment plugin's purpose is to verify the compute environment is ready to run
Cuda applications and is able to load the NVML library.

Preconditions

‣ LD_LIBRARY_PATH must include the path to the cuda libraries, which for version
X.Y of Cuda is normally /usr/local/cuda-X.Y/lib64, which can be set by running
export LD_LIBRARY_PATH=/usr/local/cuda-X.Y/lib64

‣ The linux nouveau driver must not be running, and should be blacklisted since it
will conflict with the nvidia driver

Configuration Parameters

None at this time.

Stat Outputs

None at this time.

Failure

The plugin will fail if:

‣ The corresponding device nodes for the target GPU(s) are being blocked by the
operating system (e.g. cgroups) or exist without r/w permissions for the current
user.

‣ The NVML library libnvidia-ml.so cannot be loaded
‣ The Cuda runtime libraries cannot be loaded

Overview of Plugins

www.nvidia.com
NVIDIA Validation Suite v2.0 | 11

‣ The nouveau driver is found to be loaded
‣ Any pages are pending retirement on the target GPU(s)
‣ Any other graphics processes are running on the target GPU(s) while the plugin

runs

3.2. Hardware Disagnostic Plugin
The HW Diagnostic Plugin is designed to identify HW failures on GPU silicon and
board-level components, extending out to the PCIE and NVLINK interfaces. It is not
intended to identify HW or system level issues beyond the NVIDIA-provided HW. Nor
is it intended to identify SW level issues above the HW, e.g. in the NVIDIA driver stack.
The plugin runs a series of tests that target GPU computational correctness, GDDR/HBM
memory resiliency, GPU and SRAM high power operation, SM stress and NVLINK/PCIE
correctness. The plugin can run with several combinations of tests corresponding to
medium and long NVVS operational modes. This plugin will take about three minutes
to execute.

The plugin produces a simple pass/fail output. A failing output means that a potential
HW issue has been found. However, the NVVS HW Diagnostic Plugin is not by itself a
justification for GPU RMA. Any failure in the plugin should be followed by execution
of the full NVIDIA Field Diagnostic after the machine has been taken offline. Only a
failure of the Field Diagnostic tool constitutes grounds for RMA. Since the NVVS HW
Diagnostic Plugin is a functional subset of the Field Diagnostic a failure in the plugin is a
strong indicator of a future Field Diagnostic failure.

Preconditions

‣ No other GPU processes can be running.

Configuration Parameters

Parameter Name Type Default Value Range Description

test_duration Float 180.0 30.0 - 3600.0 How long the

performance test

should run for

in seconds. It is

recommended to

set this to at least

30 seconds to make

sure you actually

get some stress

from the test.

use_doubles Boolean False True or False If set to true,

tells the test to

use double-point

Overview of Plugins

www.nvidia.com
NVIDIA Validation Suite v2.0 | 12

Parameter Name Type Default Value Range Description

precision in its

calculations. By

default, it is false

and the test will

use floating point

precision.

temperature_max Float 100.0 30.0 - 120.0 The maximum

temperature in C

that the card is

allowed to reach

during the test.

Use nvidia-smi -q

to see the normal

temperature limits

of your device.

Stat Outputs

Stat Name Stat Scope Type Description

power_usage GPU Time series Float Per second power
usage of each GPU in
watts. Note that for
multi-GPU boards,
each GPU gets a
fraction of the power
budget of the board.

graphics_clock GPU Time series Float Per second clock rate
of each GPU in MHZ

memory_clock GPU Time series Float Per second clock rate
of the GPU’s memory
in MHZ

nvml_events GPU Time series Int64 Any events that
were read with
nvmlEventSetWait -
including single or
double bit errors or
XID errors - during the
test.

Overview of Plugins

www.nvidia.com
NVIDIA Validation Suite v2.0 | 13

Stat Name Stat Scope Type Description

power_violation GPU Time series Float Percentage of time
this GPU was violating
power constraints.

gpu_temperature GPU Time series Float Per second
temperature of the
GPU in degrees C

thermal_violation GPU Time series Float Percentage of time
this GPU was violating
thermal constraints.

perf_gflops GPU Time Series Float The per second
reading of average
gflops since the test
began.

Failure

The plugin will fail if:

‣ The corresponding device nodes for the target GPU(s) are being blocked by the
operating system (e.g. cgroups) or exist without r/w permissions for the current
user.

‣ Other GPU processes are running
‣ A hardware issue has been detected. This is not an RMA actionable failure but rather an

indication that more investigation is required.
‣ The temperature reaches unacceptable levels during the test.
‣ If GPU double bit ECC errors occur or the configured amount of SBE errors occur.
‣ If a critical XID occurs

3.3. PCIe - GPU Bandwidth Plugin
The GPU bandwidth plugin's purpose is to measure the bandwidth and latency to and
from the GPUs and the host.

Preconditions

None

Sub Tests

The plugin consists of several self-tests that each measure a different aspect of
bandwidth or latency. Each subtest has either a pinned/unpinned pair or a p2p enabled/

Overview of Plugins

www.nvidia.com
NVIDIA Validation Suite v2.0 | 14

p2p disabled pair of identical tests. Pinned/unpinned tests use either pinned or
unpinned memory when copying data between the host and the GPUs.

This plugin will use NvLink to communicate between GPUs when possible. Otherwise,
communication between GPUs will occur over PCIe

Each sub test is represented with a tag that is used both for specifying configuration
parameters for the sub test and for outputting stats for the sub test. P2p enabled/p2p
disabled tests enable or disable GPUs on the same card talking to each other directly
rather than through the PCIe bus.

Sub Test Tag

Pinned/Unpinned

P2P Enabled/P2P Disabled Description

h2d_d2h_single_pinned Pinned Device <-> Host Bandwidth, one

GPU at a time

h2d_d2h_single_unpinned Unpinned Device <-> Host Bandwidth, one

GPU at a time

h2d_d2h_concurrent_pinned Pinned Device <-> Host Bandwidth, all

GPUs concurrently

h2d_d2h_concurrent_unpinned Unpinned Device <-> Host Bandwidth, all

GPUs concurrently

h2d_d2h_latency_pinned Pinned Device <-> Host Latency, one GPU

at a time

h2d_d2h_latency_unpinned Unpinned Device <-> Host Latency, one GPU

at a time

p2p_bw_p2p_enabled P2P Enabled Device <-> Device bandwidth one

GPU pair at a time

p2p_bw_p2p_disabled P2P Disabled Device <-> Device bandwidth one

GPU pair at a time

p2p_bw_concurrent_p2p_enabled P2P Enabled Device <-> Device bandwidth,

concurrently, focusing on

bandwidth between GPUs

between GPUs likely to be

directly connected to each

other -> for each (index / 2) and

(index / 2)+1

p2p_bw_concurrent_p2p_disabled P2P Disabled Device <-> Device bandwidth,

concurrently, focusing on

bandwidth between GPUs

Overview of Plugins

www.nvidia.com
NVIDIA Validation Suite v2.0 | 15

Sub Test Tag

Pinned/Unpinned

P2P Enabled/P2P Disabled Description

between GPUs likely to be

directly connected to each

other -> for each (index / 2) and

(index / 2)+1

1d_exch_bw_p2p_enabled P2P Enabled Device <-> Device bandwidth,

concurrently, focusing on

bandwidth between gpus, every

GPU either sending to the gpu

with the index higher than itself

(l2r) or to the gpu with the index

lower than itself (r2l)

1d_exch_bw_p2p_disabled P2P Disabled Device <-> Device bandwidth,

concurrently, focusing on

bandwidth between gpus, every

GPU either sending to the gpu

with the index higher than itself

(l2r) or to the gpu with the index

lower than itself (r2l)

p2p_latency_p2p_enabled P2P Enabled Device <-> Device Latency, one

GPU pair at a time

p2p_latency_p2p_disabled P2P Disabled Device <-> Device Latency, one

GPU pair at a time

Configuration Parameters- Global

Parameter Name Type Default Value Range Description

test_pinned Bool True True/False Include subtests

that test using

pinned memory.

test_unpinned Bool True True/False Include subtests

that test using

unpinned memory.

test_p2p_on Bool True True/False Include subtests

that require peer

to peer (P2P)

memory transfers

Overview of Plugins

www.nvidia.com
NVIDIA Validation Suite v2.0 | 16

Parameter Name Type Default Value Range Description

between cards to

occur.

test_p2p_off Bool True True/False Include subtests

that do not require

peer to peer (P2P)

memory transfers

between cards to

occur.

max_pcie_replays Float 80.0 1.0 - 1000000.0 Maximum number

of PCIe replays to

allow per GPU for

the duration of

this plugin. This

is based on an

expected replay

rate <8 per minute

for PCIe Gen 3.0,

assuming this

plugin will run for

less than a minute

and allowing 10x

as many replays

before failure.

Configuration Parameters- Sub Test

Parameter Name Default (Range) Affected Sub Tests Description

min_bandwidth Null

(0.0 - 100.0)

h2d_d2h_single_pinned,

h2d_d2h_single_unpinned,

h2d_d2h_concurrent_pinned,

h2d_d2h_concurrent_unpinned

Minimum bandwidth in GB/s that

must be reached for this sub-test

to pass.

max_latency 100,000.0

(0.0 - 1,000,000.0)

h2d_d2h_latency_pinned,

h2d_d2h_latency_unpinned

Latency in microseconds that

cannot be exceeded for this sub-

test to pass.

min_pci_generation 1.0

(1.0 - 3.0)

h2d_d2h_single_pinned,

h2d_d2h_single_unpinned

Minimum allowed PCI generation

that the GPU must be at or

exceed for this sub-test to pass.

min_pci_width 1.0

h2d_d2h_single_pinned,

h2d_d2h_single_unpinned

Minimum allowed PCI width that

the GPU must be at or exceed

Overview of Plugins

www.nvidia.com
NVIDIA Validation Suite v2.0 | 17

Parameter Name Default (Range) Affected Sub Tests Description

(1.0 - 16.0) for this sub-test to pass. For

example, 16x = 16.0.

Stat Outputs - Global

Stat Name Stat Scope Type Description

pcie_replay_count GPU Float The per second
reading of PCIe
replays that have
occurred since the
start of the GPU
Bandwidth plugin.

Stat Outputs -Sub Test

Stats for the GPU Bandwidth test are also output on a test by test basis, using the sub
test name as the group name key. The following stats sections are organized by sub test.

h2d_d2h_single_pinned/h2d_d2h_single_unpinned

Stat Name Type Description

N_h2d Float Average bandwidth from host to

device for device N

N_d2h Float Average bandwidth from device

to host for device N

N_bidir Float Average bandwidth from device

to host and host to device at the

same time for device N

h2d_d2h_concurrent_pinned/h2d_d2h_concurrent_unpinned

Stat Name Type Description

N_h2d Float Average bandwidth from host to

device for device N

N_d2h Float Average bandwidth from device

to host for device N

N_bidir Float Average bandwidth from device

to host and host to device at the

same time for device N

Overview of Plugins

www.nvidia.com
NVIDIA Validation Suite v2.0 | 18

Stat Name Type Description

sum_bidir Float Sum of the average bandwidth

from device to host and host to

device for all devices.

sum_h2d Float Sum of the average bandwidth

from host to device for all

devices.

sum_d2h Float Sum of the average bandwidth

from device to host for all

devices.

h2d_d2h_latency_pinned/h2d_d2h_latency_unpinned

Stat Name Type Description

N_h2d Float Average latency from host to

device for device N

N_d2h Float Average latency from device to

host for device N

N_bidir Float Average latency from device to

host and host to device at the

same time for device N

p2p_bw_p2p_enabled/p2p_bw_p2p_disabled

Stat Name Type Description

N_M_onedir Float Average bandwidth from device

N to device M, copying one

direction at a time.

N_M_bidir Float Average bandwidth from device

N to device M, copying both

directions at the same time.

p2p_bw_concurrent_p2p_enabled/p2p_bw_concurrent_p2p_disabled

Stat Name Type Description

l2r_N_M Float Average bandwidth from device

N to device M

r2l_N_M Float Average bandwidth from device

M to device N

Overview of Plugins

www.nvidia.com
NVIDIA Validation Suite v2.0 | 19

Stat Name Type Description

bidir_N_M Float Average bandwidth from

device M to device N, copying

concurrently

r2l_sum Float Sum of average bandwidth for all

right (M) to left (N) copies

r2l_sum Float Sum of average bidirectional

bandwidth for all right (M) to left

(N) and left to right copies copies

1d_exch_bw_p2p_enabled/1d_exch_bw_p2p_disabled

Stat Name Type Description

l2r_N Float Average bandwidth from device

N to device N+1

r2l_N Float Average bandwidth from device

N to device N-1

l2r_sum Float Sum of all l2r average bandwidth

stats

r2l_sum Float Sum of all l2r average bandwidth

stats

p2p_latency_p2p_enabled/p2p_latency_p2p_disabled

Stat Name Type Description

N_M Float Average latency from device N to

device M

Failure

The plugin will fail if:

‣ The latency exceeds the configured threshold for relevant tests.
‣ The bandwidth cannot exceed the configured threshold for relevant tests.
‣ If the number of PCIe retransmits exceeds a user-provided threshold.

3.4. Memory Bandwidth Plugin
The purpose of the Memory Bandwidth plugin is to validate that the bandwidth of the
framebuffer of the GPU is above a preconfigured threshold.

Overview of Plugins

www.nvidia.com
NVIDIA Validation Suite v2.0 | 20

Preconditions

This plugin only runs on GV100 GPUs at this time.

Configuration Parameters

Parameter Name Type Default Value Range Description

minimum_bandwidth Float Differs per GPU 1.0 - 1000000.0 Minimum
framebuffer
bandwidth
threshold that
must be achieved
in order to pass
this test in MB/
sec.

Stat Outputs

Stat Name Stat Scope Type Description

power_usage GPU Time series Float Per second power
usage of each GPU in
watts. Note that for
multi-GPU boards,
each GPU gets a
fraction of the power
budget of the board.

memory_clock GPU Time series Float Per second clock rate
of the GPU’s memory
in MHZ

nvml_events GPU Time series Int64 Any events that
were read with
nvmlEventSetWait
during the test and
the timestamp it was
read it.

Failure

The plugin will fail if:

‣ the minimum bandwidth specified in minimum_bandwidth cannot be achieved.
‣ If GPU double bit ECC errors occur or the configured amount of SBE errors occur.
‣ If a critical XID occurs

Overview of Plugins

www.nvidia.com
NVIDIA Validation Suite v2.0 | 21

3.5. SM Stress Plugin
The SM performance plugin’s purpose is to bring the Streaming Multiprocessors (SMs)
of the target GPU(s) to a target performance level in gigaflops by doing large matrix
multiplications using cublas. Unlike the Targeted Stress plugin, the SM stress plugin
does not copy the source arrays to the GPU before every matrix multiplication. This
allows the SM performance plugin's performance to not be capped by device to host
bandwidth. The plugin calculates how many matrix operations per second are necessary
to achieve the configured performance target and fails if it cannot achieve that target.

This plugin should be used to watch for thermal, power and related anomalies while the
target GPU(s) are under realistic load conditions. By setting the appropriate parameters
a user can ensure that all GPUs in a node or cluster reach desired performance levels.
Further analysis of the generated stats can also show variations in the required power,
clocks or temperatures to reach these targets, and thus highlight GPUs or nodes that are
operating less efficiently.

Preconditions

None

Configuration Parameters

Parameter Name Type Default Value Range Description

test_duration Float 90.0 30.0 - 3600.0 How long the

performance test

should run for

in seconds. It is

recommended to

set this to at least

30 seconds for

performance to

stabilize.

temperature_max Float Null 30.0 - 120.0 The maximum

temperature in C

the card is allowed

to reach during the

test. Note that this

check is disabled

by default. Use

nvidia-smi -q to

see the normal

Overview of Plugins

www.nvidia.com
NVIDIA Validation Suite v2.0 | 22

Parameter Name Type Default Value Range Description

temperature limits

of your device.

target_stress Float Null SKU dependent The maximum

relative

performance each

card will attempt

to achieve.

Stat Outputs

Stat Name Stat Scope Type Description

power_usage GPU Time series Float Per second power
usage of each GPU in
watts. Note that for
multi-GPU boards,
each GPU gets a
fraction of the power
budget of the board.

graphics_clock GPU Time series Float Per second clock rate
of each GPU in MHZ

memory_clock GPU Time series Float Per second clock rate
of the GPU’s memory
in MHZ

nvml_events GPU Time series Int64 Any events that
were read with
nvmlEventSetWait -
including single or
double bit errors or
XID errors - during the
test.

power_violation GPU Time series Float Percentage of time
this GPU was violating
power constraints.

gpu_temperature GPU Time series Float Per second
temperature of the
GPU in degrees C

perf_gflops GPU Time series Float The per second
reading of average

Overview of Plugins

www.nvidia.com
NVIDIA Validation Suite v2.0 | 23

Stat Name Stat Scope Type Description

gflops since the test
began.

flops_per_op GPU Float Flops (floating point
operations) per
operation queued to
the GPU stream. One
operation is one call
to cublasSgemm or
cublasDgemm

bytes_copied_per_op GPU Float How many bytes are
copied to + from the
GPU per operation

num_cuda_streams GPU Float How many cuda
streams were used
per gpu to queue
operations to the
GPUs

try_ops_per_sec GPU Float Calculated number of
ops/second necessary
to achieve target
gigaflops

Failure

The plugin will fail if:

‣ The GPU temperature exceeds a user-provided threshold.
‣ If thermal violation counters increase
‣ If the target performance level cannot be reached
‣ If GPU double bit ECC errors occur or the configured amount of SBE errors occur.
‣ If a critical XID occurs

3.6. Targeted Stress Plugin
The Targeted Stress plugin’s purpose is to bring the GPU to a target performance level in
gigaflops by doing large matrix multiplications using cublas. The plugin calculates how
many matrix operations per second are necessary to achieve the configured performance
target and fails if it cannot achieve that target.

This plugin should be used to watch for thermal, power and related anomalies while the
target GPU(s) are under realistic load conditions. By setting the appropriate parameters

Overview of Plugins

www.nvidia.com
NVIDIA Validation Suite v2.0 | 24

a user can ensure that all GPUs in a node or cluster reach desired performance levels.
Further analysis of the generated stats can also show variations in the required power,
clocks or temperatures to reach these targets, and thus highlight GPUs or nodes that are
operating less efficiently.

Preconditions

None

Configuration Parameters

Parameter Name Type Default Value Range Description

test_duration Float 120.0 30.0 - 3600.0 How long the

Targeted Stress

test should run

for in seconds. It

is recommended

to set this to at

least 30 seconds

for performance to

stabilize.

temperature_max Float Null 30.0 - 120.0 The maximum

temperature in C

the card is allowed

to reach during the

test. Note that this

check is disabled

by default. Use

nvidia-smi -q to

see the normal

temperature limits

of your device.

target_stress Float Null SKU dependent The maximum

relative stress each

card will attempt

to achieve.

max_pcie_replays Float 160.0 1.0 - 1000000.0 Maximum number

of PCIe replays

to allow per GPU

for the duration

of this plugin.

This is based

on an expected

Overview of Plugins

www.nvidia.com
NVIDIA Validation Suite v2.0 | 25

Parameter Name Type Default Value Range Description

replay rate <8 per

minute for PCIe

Gen 3.0, assuming

this plugin will

run for 2 minutes

(configurable)

and allowing 10x

as many replays

before failure.

Stat Outputs

Stat Name Stat Scope Type Description

power_usage GPU Time series Float Per second power
usage of each GPU in
watts. Note that for
multi-GPU boards,
each GPU gets a
fraction of the power
budget of the board.

graphics_clock GPU Time series Float Per second clock rate
of each GPU in MHZ

memory_clock GPU Time series Float Per second clock rate
of the GPU’s memory
in MHZ

nvml_events GPU Time series Int64 Any events that
were read with
nvmlEventSetWait
during the test and
the timestamp it was
read it.

power_violation GPU Time series Float Percentage of time
this GPU was violating
power constraints.

gpu_temperature GPU Time series Float Per second
temperature of the
GPU in degrees C

perf_gflops GPU Time series Float The per second
reading of average

Overview of Plugins

www.nvidia.com
NVIDIA Validation Suite v2.0 | 26

Stat Name Stat Scope Type Description

gflops since the test
began.

flops_per_op GPU Float Flops (floating point
operations) per
operation queued to
the GPU stream. One
operation is one call
to cublasSgemm or
cublasDgemm

bytes_copied_per_op GPU Float How many bytes are
copied to + from the
GPU per operation

num_cuda_streams GPU Float How many cuda
streams were used
per gpu to queue
operations to the
GPUs

try_ops_per_sec GPU Float Calculated number of
ops/second necessary
to achieve target
gigaflops

pcie_replay_count GPU Float The per second
reading of PCIe
replays that have
occurred since the
start of the Targeted
Stress plugin.

Failure

The plugin will fail if:

‣ The GPU temperature exceeds a user-provided threshold.
‣ If temperature violation counters increase
‣ If the target stress level cannot be reached
‣ If GPU double bit ECC errors occur or the configured amount of SBE errors occur.
‣ If the number of PCIe retransmits exceeds a user-provided threshold.
‣ A crtical XID occurs

Overview of Plugins

www.nvidia.com
NVIDIA Validation Suite v2.0 | 27

3.7. Power Plugin
The purpose of the power plugin is to bring the GPUs to a preconfigured power level
in watts by gradually increasing the compute load on the GPUs until the desired power
level is achieved. This verifies that the GPUs can sustain a power level for a reasonable
amount of time without problems like thermal violations arising.

Preconditions

None

Configuration Parameters

Parameter Name Type Default Value Range Description

test_duration Float 120.0 30.0 - 3600.0 How long the
performance test
should run for
in seconds. It is
recommended
to set this to at
least 60 seconds
for performance
to stabilize.

temperature_max Float Null 30.0 - 120.0 The maximum
temperature
in C the card is
allowed to reach
during the test.
Note that this
check is disabled
by default. Use
nvidia-smi -q to
see the normal
temperature
limits of your
device.

target_power Float Differs per GPU Differs per GPU.
Defaults to TDP -
1 watt.

What power
level in wattage
we should try
to maintain.
If this is set to
greater than the

Overview of Plugins

www.nvidia.com
NVIDIA Validation Suite v2.0 | 28

Parameter Name Type Default Value Range Description

enforced power
limit of the GPU,
then we will try
to power cap the
device

Stat Outputs

Stat Name Stat Scope Type Description

power_usage GPU Time series Float Per second power
usage of each GPU in
watts. Note that for
multi-GPU boards,
each GPU gets a
fraction of the power
budget of the board.

graphics_clock GPU Time series Float Per second clock rate
of each GPU in MHZ

memory_clock GPU Time series Float Per second clock rate
of the GPU’s memory
in MHZ

nvml_events GPU Time series Int64 Any events that
were read with
nvmlEventSetWait
during the test and
the timestamp it was
read it.

power_violation GPU Time series Float Percentage of time
this GPU was violating
power constraints.

gpu_temperature GPU Time series Float Per second
temperature of the
GPU in degrees C

Failure

The plugin will fail if:

‣ The GPU temperature exceeds a user-provided threshold.
‣ If temperature violation counters increase

Overview of Plugins

www.nvidia.com
NVIDIA Validation Suite v2.0 | 29

‣ If the target performance level cannot be reached
‣ If GPU double bit ECC errors occur or the configured amount of SBE errors occur.
‣ If a critical XID occurs

www.nvidia.com
NVIDIA Validation Suite v2.0 | 30

Chapter 4.
TEST OUTPUT

The output of tests can be collected by setting the "logfile" global parameter which
represents the prefix for the detailed outputs produced by each test. The default type
of output is JSON but text and binary outputs are available as well. The latter two are
meant more for parsing and direct reading by custom consumers respectively so this
portion of the document will focus on the JSON output.

4.1. JSON Output
The JSON output format is keyed based off of the "stats" keys given in each test
overview from Chapter 3. These standard JSON files can be processed in any number
of ways but two example Python scripts have been provided to aid in visualization in
the default installation directory.. The first is a JSON to comma-separated value script
(json2csv.py) which can be used to import key values in to a graphing spreadsheet.
Proper usage would be:

user@hostname
$ python json2csv.py -i stats_targeted_performance.json -o stats.csv -k
 gpu_temperature,power_usage

Also provided is an example Python script that uses the pygal library to generate readily
viewable scalar vector graphics charts (json2svg.py), able to be opened in any browser.
Proper usage would be:

user@hostname
$ python json2svg.py -i stats_targeted_performance.json -o stats.svg -k
 gpu_temperature,power_usage

http://pygal.org

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS,
DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY,
"MATERIALS") ARE BEING PROVIDED "AS IS." NVIDIA MAKES NO WARRANTIES,
EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE
MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF
NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR
PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA
Corporation assumes no responsibility for the consequences of use of such
information or for any infringement of patents or other rights of third parties
that may result from its use. No license is granted by implication of otherwise
under any patent rights of NVIDIA Corporation. Specifications mentioned in this
publication are subject to change without notice. This publication supersedes and
replaces all other information previously supplied. NVIDIA Corporation products
are not authorized as critical components in life support devices or systems
without express written approval of NVIDIA Corporation.

NVIDIA and the NVIDIA logo are trademarks or registered trademarks of NVIDIA
Corporation in the U.S. and other countries. Other company and product names
may be trademarks of the respective companies with which they are associated.

© 2014-2020 NVIDIA Corporation. All rights reserved.

www.nvidia.com

	Table of Contents
	Overview
	1.1. NVVS Goals
	1.2. Beyond the Scope of the NVIDIA Validation Suite
	1.3. Dependencies
	1.4. Supported Products

	Using NVVS
	2.1. Command line options
	2.2. Usage Examples
	2.3. Configuration file
	2.4. Global parameters
	2.5. GPU parameters
	2.6. Test Parameters

	Overview of Plugins
	3.1. Deployment Plugin
	3.2. Hardware Disagnostic Plugin
	3.3. PCIe - GPU Bandwidth Plugin
	3.4. Memory Bandwidth Plugin
	3.5. SM Stress Plugin
	3.6. Targeted Stress Plugin
	3.7. Power Plugin

	Test Output
	4.1. JSON Output

