

NVIDIA DGX SuperPOD

Administration Guide
Featuring NVIDIA DGX H100 and DGX A100 Systems

 DU-10263-001 v5

 BCM 3.23.05

 June 2023

NVIDIA DGX SuperPOD Administration Guide DU-10263-001 v5 | ii

Contents

1. NVIDIA DGX SuperPOD Overview .. 1
1.1 System Design .. 1
1.2 Management Servers ... 3

2. Cluster Management .. 4
2.1 Concepts ... 4

2.1.1 Devices ... 4
2.1.2 Software Images .. 5
2.1.3 Node Categories ... 6
2.1.4 Node Groups .. 7
2.1.5 Roles .. 7

2.2 Authentication .. 8
2.2.1 Changing Administrative Passwords .. 8
2.2.2 ssh Logins .. 9
2.2.3 Certificates .. 10
2.2.4 Profiles .. 11

2.3 Base View GUI ... 11
2.3.1 Cluster Management GUI Service .. 11
2.3.2 Navigating the Cluster with Base View ... 13

2.4 Cluster Management Shell ... 16
2.4.1 Invoking cmsh ... 16
2.4.2 Levels, Modes, Help, and Commands Syntax in cmsh 20
2.4.3 Working with Objects ... 24
2.4.4 Advanced cmsh Features .. 36

3. Cluster Management Daemon ... 49
3.1 Controlling CMDaemon ... 49
3.2 Configuring CMDaemon ... 51

3.2.1 CMDaemon Versions .. 51
3.3 Configuring CMDaemon Logging ... 51

3.3.1 CMDaemon Logging Configuration Global Debug Mode 52
3.3.2 CMDaemon Subsystem Logging Configuration Debug Mode 52

3.4 Configuration File Modification and the FrozenFile Directive 53
3.5 Configuration File Precedence .. 54

4. User Management ... 55
4.1 Managing Users and Groups with Base View .. 55
4.2 Managing Users and Groups with cmsh .. 57

4.2.1 Adding a User ... 57

NVIDIA DGX SuperPOD Administration Guide DU-10263-001 v5 | iii

4.2.2 Saving the Modified State .. 58
4.2.3 Editing Properties of Users and Groups ... 59
4.2.4 Reverting to the Unmodified State ... 62
4.2.5 Removing a User ... 63

4.3 LDAP ... 63
4.4 Tokens and Profiles ... 63

4.4.1 Modifying Profiles .. 65
4.4.2 Creation of Custom Certificates with Profiles ... 66
4.4.3 Logging the Actions Of CMDaemon Users ... 70
4.4.4 Compute Node LDAP PEM and Key Creation ... 70

5. Managing Slurm ... 71
5.1 Introduction .. 71
5.2 Checking Node Status .. 72
5.3 Showing Detailed Node Information .. 74
5.4 Draining a Node ... 74
5.5 Updating Slurm Configuration .. 75
5.6 Slurm Prolog and Epilog ... 75

5.6.1 Details of Prolog and Epilog Scripts ... 75
5.6.2 Workload Manager Configuration For Prolog and Epilog Scripts 77

5.7 Listing Slurm Jobs in the Queue .. 77
5.8 Canceling a Slurm Job .. 78
5.9 Managing the Parameters on a Job ... 78

5.9.1 Additional Resources ... 79

6. Monitoring Cluster Devices ... 80
6.1 Basic Monitoring Example and Action ... 81

6.1.1 Synopsis Of Basic Monitoring Example .. 81
6.1.2 Setting Up the Pieces ... 82
6.1.3 Using the Basic Monitoring Example ... 82

6.2 Monitoring Concepts and Definitions .. 86
6.2.1 Measurables .. 86
6.2.2 Health Check .. 90
6.2.3 Trigger ... 92
6.2.4 Action ... 92
6.2.5 Severity ... 93
6.2.6 AlertLevel .. 93
6.2.7 Flapping .. 94
6.2.8 Data Producer .. 94
6.2.9 Main Monitoring Interfaces of Base View .. 96

6.3 Monitoring Visualization with Base View .. 97
6.3.1 The Monitoring Window .. 97

NVIDIA DGX SuperPOD Administration Guide DU-10263-001 v5 | iv

7. Managing High-Speed Fabrics ... 100
7.1 Verifying that UFM is Running .. 101

8. System Health Checks and Debugging .. 102
8.1 Collecting Log Files .. 103

8.1.1 Log Subsystems .. 103
8.1.2 Increasing Log Verbosity ... 103
8.1.3 Global Debug Mode .. 104
8.1.4 LOGPREFIX .. 104

9. Provisioning Nodes ... 105
9.1 Role Setup with cmsh .. 106
9.2 Role Setup with Base View .. 107
9.3 Housekeeping ... 109

9.3.1 Provisioning Node Selection .. 109
9.3.2 Limiting Provisioning Tasks .. 109
9.3.3 Provisioning Tasks Deferral and Failure .. 110
9.3.4 Role Change Notification ... 110
9.3.5 Role Draining and Undraining Nodes .. 111
9.3.6 Provisioning Node Update Safeguards ... 111

10. Product Security .. 114

11. Backups ... 115
11.1 Cluster Installation Backup ... 115
11.2 Local Database and Data Backups and Restoration .. 116

11.2.1 Database Corruption and Repairs ... 116
11.2.2 Restoring from Local Backup .. 117
11.2.3 Cloning Databases ... 117
11.2.4 Cloning Extra Databases ... 117

NVIDIA DGX SuperPOD DU-10263-001 v5 | 1

1. NVIDIA DGX SuperPOD Overview

The NVIDIA DGX SuperPOD™ is a multi-user system designed to run large AI and HPC
applications efficiently. Although a DGX SuperPOD is composed of many different
components, it should be thought of as an entity that can manage simultaneous use by
many users, provide advanced access controls for queuing, and schedule resources fairly
to ensure maximum performance. It also provides the tools for collaboration between
users and security controls to protect data and limit interaction between users where
necessary. The management tools are designed to treat the multiple components as a
single system. For more details about the physical architecture, refer to the NVIDIA DGX
SuperPOD Reference Architecture.

This document discusses the range of features and tasks that are supported on the
DGX SuperPOD. The constituent elements that make up a DGX SuperPOD, both in
hardware and software, support a superset of features compared to the DGX SuperPOD
solution. Contact the NVIDIA Technical Account Manager (TAM) if clarification is needed
on what functionality is supported by the DGX SuperPOD product.

1.1 System Design
A logical depiction of the DGX SuperPOD is shown in Figure 1.

Figure 1. DGX SuperPOD logical design

NVIDIA DGX SuperPOD Administration Guide DU-10263-001 v5 | 2

Table 1 describes the components shown in Figure 1.

Table 1. Component descriptions

DGX SuperPOD Component Description

Jump box/entry point The Jump Box/Entry Point is the gateway into the DGX SuperPOD
intended to provide a single entry-point into the cluster and additional
security when required. It is not actually a part of the DGX SuperPOD,
but of the corporate IT environment. This function is defined and
provided by local IT requirements.

Compute nodes The compute nodes are where the user work gets done on the system.
Each compute node is an individual DGX server

Management nodes The management nodes provide the services necessary to support
operation and monitoring of the DGX SuperPOD. Services, configured
in high availability (HA) mode where needed, provide the highest
system availability. See Table 2 for details of each node and its
function.

High-speed storage High-speed storage provides shared storage to all nodes in the DGX
SuperPOD. This is where datasets, checkpoints, and other large files
should be stored. High-speed storage typically holds large datasets
that are being actively operated on by the DGX SuperPOD jobs. Data on
the high-speed storage is a subset of all data housed in a data lake
outside of the DGX SuperPOD.

Shared storage Shared storage on a network file system (NFS) is allocated for user
home directories as well for cluster services.

InfiniBand fabric—compute The Compute InfiniBand Fabric is the high-speed network fabric
connecting all compute nodes together to allow high-bandwidth and
low-latency communication between the compute nodes.

InfiniBand fabric—storage The Storage InfiniBand Fabric is the high-speed network fabric
dedicated for storage traffic. Storage traffic is dedicated to its own
fabric to remove interference with the node-to-node application traffic
that can degrade overall performance.

In-band network fabric The In-band Network Fabric provides fast Ethernet connectivity
between all nodes in the DGX SuperPOD. The In-band fabric is used for
TCP/IP-based communication and services.

Out-of-band network fabric The out-of-band Ethernet network is used for system management
using the BMC and provides connectivity to manage all networking
equipment.

NVIDIA DGX SuperPOD Administration Guide DU-10263-001 v5 | 3

1.2 Management Servers
Table 2 details the function and services running on the management servers.

Table 2. DGX SuperPOD management servers

Server Function Services

Head Node

Head nodes serve various functions:

> Provisioning: centrally store and deploy OS images of the compute and other
various services. This ensures that there is a single authoritative source defining
what should be on each node, and a way to re-provision if the node needs to be
reimaged.

> Workload management: resource management and orchestration services that
organize the resources and coordinate the scheduling of user jobs across the
cluster.

> Metrics: system monitoring and reporting that gather all telemetry from each of
the nodes. The data can be explored and analyzed through web services so better
insight to the system can be studied and reported.

Login Entry point to the DGX SuperPOD for users. CPU only node that is a Slurm client and
has filesystems mounted to support development, job submission, job monitoring,
and file management. Multiple nodes are included for redundancy and supporting
user workloads. These hosts can also be used for container caching.

UFM Appliance NVIDIA Unified Fabric Manager (UFM) for both storage and compute.

NVIDIA DGX SuperPOD DU-10263-001 v5 | 4

2. Cluster Management

This chapter introduces cluster management with NVIDIA Base Command Manager
(BCM). A cluster running the cluster manager exports a cluster management interface to
the outside world, which can be used by any application designed to communicate with
the cluster.

2.1 Concepts
In this section, some concepts central to cluster management with the cluster manager
are introduced.

2.1.1 Devices
A device in the cluster manager infrastructure represents components of a cluster. A
device can be any of the following types:

> Head node

> Physical node

> Chassis

> Ethernet switch

> InfiniBand switch

> Power Distribution unit

> Generic device

A device can have several properties (such as rack position, hostname, and switch port)
which can be set to configure the device. Using the cluster manager, operations (for
example, power on) may be performed on a device. The property changes and operations
that can be performed on a device depend on the type of device. For example, it is
possible to mount a new filesystem to a node, but not to an Ethernet switch.

Every device that is managed by the cluster manager has a device state associated with
it. Table 3 describes the most important states for devices. All have state tracking
enabled.

NVIDIA DGX SuperPOD Administration Guide DU-10263-001 v5 | 5

Table 3. Cluster manager device states

Device status Device is Monitored by BCM?

[UP] UP monitored

[DOWN] DOWN monitored

[CLOSED] (UP) UP mostly ignored

[CLOSED] (DOWN) DOWN mostly ignored

These and other states are described in more detail in Section 5.5 of the Bright Cluster
Manager Administrator Manual.

[DOWN] and [CLOSED] (DOWN) states have an important difference. In the case of
[DOWN], the device is down, but is typically intended to be available, and thus typically
indicates a failure. In the case of [CLOSED] (DOWN), the device is down, but is intended
to be unavailable, and typically indicates that the administrator deliberately brought the
device down and would like the device to be ignored.

2.1.2 Software Images
A software image is a blueprint for the contents of the local filesystems on a compute
node. In practice, a software image is a directory on the head node containing a full
Linux filesystem.

In the DGX SuperPOD, all nodes managed by (meaning all management and DGX nodes)
share the same base operating system (OS), with the DGX nodes including the
customizations of DGX Base OS.

When a non-compute node boots, the node provisioning system sets up the node with
the software image associated with that node category (Section 2.1.3). Often this is a
copy of the default software image, called default-image. DGX nodes are provisioned
with a copy of the DGX OS image, identified by the dgx- prefix in the image name.

After the node is fully booted, it is possible to instruct the node to re-synchronize its
local filesystems with the software image. This procedure can be used to distribute
changes to the software image without rebooting nodes.

It is also possible to lock a software image so that no node is able to pick up the image
until the software image is unlocked.

Software images can be changed using regular Linux tools and commands (such as apt
and chroot). More details on making changes to software images and doing image
package management can be found in Chapter 11 of the Bright Cluster Manage
Administrator Manual.

NVIDIA DGX SuperPOD Administration Guide DU-10263-001 v5 | 6

2.1.3 Node Categories
The collection of settings in the cluster manager that can apply to a node is called the
configuration of the node. The administrator usually configures nodes using the Base
View or cmsh front-end tools, and the configurations are managed internally with a
database.

A node category is a group of compute nodes that share the same configuration. Node
categories bring efficiency, enabling an administrator to:

> Configure a large group of nodes concurrently. For example, to set up a group of
nodes with a particular disk layout.

> Operate on a large group of nodes concurrently. For example, to conduct a reboot on
an entire category.

The default node categories for BCM installed on a DGX SuperPOD are shown in Table 4.

Table 4. Default node categories

System Type Node Category Description

login slogin login-image

compute dgxnodes dgxos-image

others default default-image

The default category can be changed by accessing the base object of partition mode
and setting the value of defaultcategory to another, existing, category. System types
other than login or compute are automatically placed in the default node category.

Nodes are typically divided into categories based upon its hardware specifications or the
task that it is to perform. Whether or not nodes should be placed in a separate category
depends on whether the configuration—for example: monitoring setup, disk layout, role
assignment—for these nodes differs from the rest of the nodes.

A node inherits values from the category that it is in. Each value is treated as the
default property value for a node and can be overruled by specifying the node property
value for a particular node.

One configuration property value of a node category is its software image. However,
there is no requirement for a one-to-one correspondence between node categories and
software images. Multiple node categories may use the same software image, and
conversely, one variable image—it is variable because it can be changed by the node
setting—may be used in the same node category.

Software images can have their parameters overruled by the category settings. By
default, however, the category settings that can overrule the software image
parameters are unset.

NVIDIA DGX SuperPOD Administration Guide DU-10263-001 v5 | 7

2.1.4 Node Groups
A node group consists of nodes that have been grouped together for convenience. The
default node group assignments for BCM on a DGX SuperPOD are shown in Table 5.

Table 5. Default node group assignments

Node Group Members

su1 dgx001..dgx020

su2 dgx021..dgx040

login slogin1, slogin2

Node groups can consist of any mix of all kinds of nodes, irrespective of whether they
are head nodes or compute nodes, and irrespective of what category they are in. A node
may be in zero or more node groups at one time. That is, a node may belong to many
node groups.

Node groups are used for carrying out operations on an entire group of nodes at a time.
Because the nodes inside a node group do not necessarily share the same configuration,
configuration changes cannot be conducted using node groups.

One important use for node groups is in the nodegroups property of the provisioning
role configuration where a list of node groups that can configure node provisions is
specified.

2.1.5 Roles
A role is a task that can be performed by a node. By assigning a certain role to a node, an
administrator activates the functionality that the role represents on this node. For
example, a node can be turned into provisioning node, or can be turned into a storage
node, by assigning the corresponding roles to the node.

Roles can be assigned to individual nodes or to node categories. Once assigned, a role is
implicitly assigned to all nodes inside the category.

A configuration overlay is a group of roles that can be assigned to designated groups of
nodes within a cluster. This enables configuration of many configuration parameters in
various combinations of nodes.

Some roles allow parameters to be set that influence the behavior of the role. For
example, the Slurm client role (which turns a node into a Slurm client) uses parameters
to control how the node is configured within Slurm in terms of queues and the number
of GPUs.

When a role has been assigned to a node category with a certain set of parameters, it is
possible to override those parameters. This can be done by reassigning the role to the
individual node with a different set of parameters. Roles that have been thus assigned
override roles that have been assigned to a node category.

NVIDIA DGX SuperPOD Administration Guide DU-10263-001 v5 | 8

Roles have a priority setting associated with them. Roles assigned at category level have
a fixed priority of 250, while roles assigned at node level have a fixed priority of 750. The
configuration overlay priority is variable but is set to 500 by default. For example, roles
assigned at the node level override roles assigned at the category level. Roles assigned
at the node level also override roles assigned by the default configuration overlay.

A role can be imported from another entity, such as a role, a category, or a configuration
overlay. Examples of role assignment are given in Sections 5.2.2 and 5.2.3 of the Bright
Cluster Manager Administration Manual.

2.2 Authentication

2.2.1 Changing Administrative Passwords

Note: How to setup or change regular user passwords is discussed in Chapter 4.

The cm-change-passwd command is used to administer these:

1. Head node: allows a root login to the head node.

2. Software images: allows a root login to a compute node running with that image and
is stored in the image file.

3. Node installer: allows a root login to the node when the node-installer, a stripped-
down operating system (OS), is running. The node-installer stage prepares the node
for the final OS when the node is booting up. See Section 5.4 of the Bright Cluster
Manager Administrator Manual for more information about the node-installer.

4. MySQL: allows a root login to the MySQL server used by.

It has a dialog prompting the administrator on which of them, if any, should be changed.
[root©headnode ~]# cm-change-passwd

With this utility you can easily change the following passwords:

 * root password of head node

 * root password of slave images

 * root password of node-installer

 * root password of mysql

Note: if this cluster has a high-availability setup with 2 head

 nodes, be sure to run this script on both head nodes.

Change password for root on head node? [y/N]: y

Changing password for root on head node.

Changing password for user root.

New password:

Retype new password:

passwd: all authentication tokens updated successfully.

Change password for root in default-image [y/N]: y Changing password for root in default-image.

Changing password for user root. New password:

Retype new password:

NVIDIA DGX SuperPOD Administration Guide DU-10263-001 v5 | 9

passwd: all authentication tokens updated successfully.

Change password for root in node-installer? [y/N]: y

Changing password for root in node-installer.

Changing password for user root. New password:

Retype new password:

passwd: all authentication tokens updated successfully.

Change password for MYSQL root user? [y/N]: y

Changing password for MYSQL root user.

Old password:

New password:

Re-enter new password:

For an HA configuration, the passwords are copied over automatically to the other head
node when a change is made to the root password of the software image. This allows a
root login to a regular node running with that image.

For the remaining password cases (head root password, MySQL root password, and
node-installer root password), the passwords are best “copied” to the other head node
by rerunning the script on that head node.

Also, for software images passwords used by the compute nodes: the new password
that is set for a compute node only works on the node after the image on the node itself
has been updated, with, for example, the imageupdate command. Alternatively, the new
password can be made to work on the node by rebooting the node to pick up the new
image.

The LDAP root password is a random string set during installation. Changing this is not
done using cm-change-password. It can be changed as explained in Appendix I of the
Bright Cluster Manager Administrator Manual.

If the administrator has stored the password to the cluster in the Base View front-end,
then the password should be modified there too (Figure 2).

2.2.2 ssh Logins
The standard system login root password of the head node, the software image, and the
node-installer, can be set using the cm-change-passwd command (2.2.1).

In contrast, ssh logins from the head node to the compute nodes are set by default to
be passwordless:

> For non-root users, an ssh passwordless login works if the /home directory that
contains the authorized keys for these users is mounted. The /home directory is
mounted by default on the head node as well as on the compute node, so that by
default a passwordless login works from the head node to the compute nodes, as
well as from the compute nodes to the head node.

NVIDIA DGX SuperPOD Administration Guide DU-10263-001 v5 | 10

> For the root user, an ssh passwordless login should always work from the head node
to the compute nodes since the authorized keys are stored in /root. Logins from the
compute node to the head node are configured by default to request a password, as
a security consideration.

Users can be restricted from ssh logins:

> On compute nodes using the usernodelogin or User node login settings.
> On the head node by modifying the sshd configuration. For example, to allow only

root logins, the value of AllowUsers can be set in /etc/ssh/sshd_config to root.
See the sshd_config man page for more information.

2.2.3 Certificates

2.2.3.1 PEM Certificates and CMDaemon Front-end
Authentication

While nodes in the cluster accept ordinary ssh logins, the cluster manager accepts
public key authentication using X509v3 certificates. Public key authentication using
X509v3 certificates means that the user authenticating to the cluster manager must
present their public certificate, and in addition must have access to the private key that
corresponds to the certificate.

The cluster manager uses the PEM format for certificates. In this format, the certificate
and private key are stored as plain text in two separate PEM-encoded files, ending in
.pem and .key.

2.2.3.2 Using cmsh and Authenticating to CMDaemon
By default, one administrator certificate is created for root for the cmsh front-end to
interact with the cluster manager. The certificate and corresponding private key are
thus found on a newly installed cluster manager cluster on the head node at:

> /root/.cm/admin.pem

> /root/.cm/admin.key

The cmsh front-end, when accessing the certificate and key pair as user root, uses this
pair by default, so that prompting for authentication is then not a security requirement.
The logic that is followed to access the certificate and key by default is explained in
detail in 4.4.2.6.

2.2.3.3 Using Base View and Authenticating to the Cluster
Manager

When an administrator uses the Base View front-end, a login to the cluster is conducted
with username password authentication (Figure 2) unless the authentication has already
been stored in the browser, or unless certificate-based authentication is used.

NVIDIA DGX SuperPOD Administration Guide DU-10263-001 v5 | 11

> Certificate-based authentication can be carried out using a PKCS#12 certificate file.
This can be generated from the PEM format certificates. For example, for the root
user, an openssl command that can be used to generate the admin.pfx file is:
openssl pkcs12 -export -in ~/.cm/admin.pem -inkey ~/.cm/admin.key -out ~/.cm/admin.pfx

> In Chrome, the IMPORT wizard at chrome://settings/certificates can be used to
save the file into the browser.

> For Firefox, the equivalent clickpath is
about:preferences#privacy>Certificates>View
Certificates>Your>Certificates>Import.

The browser can then access the Base View front-end without a username/password
combination.

If the administrator certificate and key are replaced, then any other certificates signed
by the original administrator certificate must be generated again using the replacement,
because otherwise they will no longer function.

Certificate generation in general, including the generation and use of non-administrator
certificates, is described in greater detail in 4.4.

2.2.4 Profiles
Certificates that authenticate to CMDaemon contain a profile.

A profile determines which cluster management operations that the certificate holder
may perform. The administrator certificate is created with the admin profile, which is a
built-in profile that enables all cluster management operations to be performed. In this
sense, it is like the root account on unix systems. Other certificates may be created with
different profiles giving certificate owners access to a predefined subset of the cluster
management functionality (4.4).

2.3 Base View GUI
This section introduces the basics of the Base View, which is the web application
front-end to the cluster manager.

Base View is supported to run on the latest two publicly available desktop versions of
Firefox, Google Chrome, Edge, and Safari at the time of release of BCM.

Browsers that run on mobile devices are not supported.

2.3.1 Cluster Management GUI Service
In the DGX SuperPOD, the GUI interface is provided as a web service on port 8081 from
the head node to the browser. Its direct URL takes the form:

https://<host name or IP address>:8081/base-view

The cluster manager package that provides the service is base-view.

NVIDIA DGX SuperPOD Administration Guide DU-10263-001 v5 | 12

2.3.1.1 Base View Login Window
Figure 2 shows the login dialog window for Base View. Use this window to administer
that Base View service on the cluster. At the time of DGX SuperPOD deployment, at
least one login is available: the root user, with the password selected during DGX
SuperPOD installation (often documented on the Site Survey before installation).

Figure 2. Base View login

NVIDIA DGX SuperPOD Administration Guide DU-10263-001 v5 | 13

2.3.1.2 Base View Default Display on Connection
By default, an overview window is displayed (Figure 3). It shows the Occupation rate,
memory used, CPU cycles used, node statuses, and other cluster details.

It corresponds to clickpath Cluster>Partition base.

Figure 3. Cluster overview

2.3.2 Navigating the Cluster with Base View
Aspects of the cluster can be managed by administrators using Base View (Figure 3).

The resource tree, displayed on the left side of the window, consists of available cluster
usage concepts such as Provisioning, Grouping, HPC, Cloud, and Containers. It also has a
cluster-centric approach to miscellaneous system concepts such as hardware devices
Devices, non-hardware resources such as Identity Management, and Networking.

Selecting a resource opens a window that allows parameters related to the resource to
be viewed and managed.

As an example, the Cluster resource can be selected. This opens the Partition base
window, which is a representation of the cluster instance.

The tabs within the Partition base window are mapped out in Figure 4 and described
next.

NVIDIA DGX SuperPOD Administration Guide DU-10263-001 v5 | 14

Figure 4. Cluster navigation within the Partition base window

NVIDIA DGX SuperPOD Administration Guide DU-10263-001 v5 | 15

2.3.2.1 Settings
The Settings tab has several global cluster properties and property groups. These are
loosely grouped as follows:

> Buttons for jumping to various operational settings.
> Cluster name, administrator e-mail, partition name.
> Node basename, node digits.
> Name servers, time servers.
> Search domains, relay host.
> Externally visible IP, Provisioning node auto update timeout.
> Default burn configuration.
> External network, management network.
> Default category: sets the default category.
> Sign installer certificates.
> Notes.

2.3.2.2 Other Tab Information
Information about other tabs is shown in Table 6.

Table 6. Additional tab information

Tab Description

System information Shows the main hardware specifications of the node (CPU, memory, BIOS),
along with the OS version that it runs.

Version Information Shows version information for important cluster software components, such
as the CMDaemon database version, and the cluster manager version and builds.

Run Command Allows a specified command to be run on a selected node of the cluster.

Fabrics Displays the topology and switches for the fabrics used.

Rack View Displays a view of the rack as defined by node allocations made by the
administrator to racks and chassis.

NVIDIA DGX SuperPOD Administration Guide DU-10263-001 v5 | 16

2.4 Cluster Management Shell
This section introduces the basics of the cluster management shell, cmsh. This is the
command-line interface (CLI) to cluster management. Because cmsh and Base View give
access to the same cluster management functionality.

The cmsh front-end allows commands to be run with it and can be used in batch mode.
Although cmsh commands often use constructs familiar to programmers, it is designed
for managing the cluster efficiently rather than for trying to be a good or complete
programming language. For programming cluster management, use Python bindings
instead of using cmsh in batch mode.

Usually, cmsh is invoked from an interactive session (for example, through ssh) on the
head node, but it can also be used to manage the cluster from outside.

2.4.1 Invoking cmsh
From the head node, cmsh can be invoked as follows:
[root©dgxsuperpod ~]# cmsh

\[dgxsuperpod]%

By default, it connects to the IP address of the local management network interface
using the default cluster manager port. If it fails to connect as in the preceding example,
but a connection takes place using cmsh localhost, then the management interface is
most probably not up. In that case, bringing the management interface up allows cmsh
to connect to CMDaemon.

Running cmsh without arguments starts an interactive cluster management session. To
go back to the unix shell, enter quit or ctrl-d:
[dgxsuperpod]% quit

[root©dgxsuperpod ~]#

2.4.1.1 Batch Mode and Piping in cmsh
The -c flag allows cmsh to be used in batch mode. Commands may be separated using
semicolons:
[root©dgxsuperpod ~]# cmsh -c "main showprofile; device status apc01" admin

apc01 [UP]

[root©dgxsuperpod ~]#

Alternatively, commands can be piped to cmsh:
[root©dgxsuperpod ~]# echo device status I cmsh

device status

apc01 [UP]

dgxsuperpod [UP]

dgx001 [UP]

dgx002[UP]

switch01[UP]

NVIDIA DGX SuperPOD Administration Guide DU-10263-001 v5 | 17

2.4.1.2 Dotfiles and /etc/cmshrc File for cmsh
In a similar way to unix shells, cmsh sources dotfiles, if they exist, upon start-up in both
batch and interactive mode. In the following list of dotfiles, a setting in the file that is in
the shorter path will override a setting in the file with the longer path:

> ∼/.cm/cmsh/.cmshrc
> ∼/.cm/.cmshrc
> ∼/.cmshrc

If there is no dotfile for the user and the file /etc/cmshrc exists, it is sourced, and its
settings used. If /etc/cmshrc exists, its settings are used, but the values can be
overridden by user dotfiles, which is standard Unix behavior.

2.4.1.3 Defining Command Aliases in cmsh
Sourcing settings is convenient when defining command aliases. Command aliases can
be used to abbreviate longer commands. For example, putting the following in .cmshrc
would allow lv to be used as an alias for device list virtualnode:
alias lv device list virtualnode

Besides defining aliases in dotfiles, aliases in cmsh can also be created with the alias
command. The preceding example can be run within cmsh to create the lv alias. Running
the alias command within cmsh lists the existing aliases.

Aliases can be exported from within cmsh together with other cmsh dot settings with
the help of the export command:
[dgxsuperpod]% export > /root/mydotsettings

The dot settings can be taken into cmsh by running the run command from within cmsh:
[dgxsuperpod]% run /root/mydotsettings

2.4.1.4 Built-in Aliases in cmsh
The following aliases are built-ins and are not defined in any .cmshrc or cmshrc files:
[headnode]% alias

alias - goto -

alias .. exit

alias / home

alias ? help

alias ds device status

alias ls list

The meanings are:

> goto -: go to previous directory level of cmsh

> exit: go up a directory level or leave cmsh if already at top level.

> home: go to the top-level directory.

> help: show help text for current level.

> device status: show status of devices that can be accessed in device mode.
> list: list state for all modes.

NVIDIA DGX SuperPOD Administration Guide DU-10263-001 v5 | 18

2.4.1.5 Automatic Aliases in cmsh
A cmsh script is a file that has a sequence of cmsh commands that run within a cmsh
session.

The directory .cm/cmsh/ can have a cmsh script placed in it with a .cmsh suffix and an
arbitrary prefix. The prefix then automatically becomes an alias in cmsh.

In the following example:

> The file tablelist.cmsh provides the alias tablelist, to list devices using the |
symbol as a delimiter.

> The file dfh.cmsh provides the alias dfh to conduct the Linux shell command df -h.
[root©dgxsuperpod ~]# cat /root/.cm/cmsh/tablelist.cmsh

list -d "|"

[root©dgxsuperpod ~]# cat /root/.cm/cmsh/dfh.cmsh

!df -h

[root©dgxsuperpod ~]# cmsh

[dgxsuperpod]% device

[dgxsuperpod->device]% alias | egrep ‘(tablelist|dfh)’

alias dfh run /root/.cm/cmsh/dfh.cmsh

alias tablelist run /root/.cm/cmsh/tablelist.cmsh

[dgxsuperpod->device]% list

Type Hostname (key) MAC Category Ip

---------------------- ---------------- ------------------ ---------------- ---------------

HeadNode dgxsuperpod FA:16:3E:B4:39:DB 10.141.255.254

PhysicalNode dgx001 FA:16:3E:D5:87:71 default 10.141.0.1

PhysicalNode dgx002 FA:16:3E:BE:05:FE default 10.141.0.2

[dgxsuperpod->device]% tablelist

Type |Hostname (key) |MAC |Category |Ip

----------------------|----------------|------------------|----------------|---------------

HeadNode |dgxsuperpod |FA:16:3E:B4:39:DB | |10.141.255.254

PhysicalNode |dgx001 |FA:16:3E:D5:87:71 |default |10.141.0.1

PhysicalNode |dgx002 |FA:16:3E:BE:05:FE |default |10.141.0.2

[dgxsuperpod->device]% dfh

Filesystem Size Used Avail Use% Mounted on

devtmpfs 1.8G 0 1.8G 0% /dev

tmpfs 1.9G 0 1.9G 0% /dev/shm

tmpfs 1.9G 33M 1.8G 2% /run

tmpfs 1.9G 0 1.9G 0% /sys/fs/cgroup

/dev/vdb1 25G 17G 8.7G 66% /

tmpfs 374M 0 374M 0% /run/user/0

The cmsh session does not need restarting for the alias to become active.

NVIDIA DGX SuperPOD Administration Guide DU-10263-001 v5 | 19

2.4.1.6 Default Arguments in cmsh Scripts
In a cmsh script, the parameters $1, $2, and so on, can be used to pass arguments. If the
argument being passed is blank, then the values the parameters take also remain blank.
However, if the parameter format has a suffix of the form -<value>, then <value> is
the default value that the parameter takes if the argument being passed is blank.
[root©dgxsuperpod ~]# cat .cm/cmsh/encrypt-node-disk.cmsh home

device use ${1-dgx001}

set disksetup /root/my-encrypted-node-disk.xml set revision ${2-test}

commit

The script can be run without an argument (a blank value for the argument), in which
case it takes on the default value of dgx001 for the parameter:
[root©dgxsuperpod ~]# cmsh [dgxsuperpod]% encrypt-node-disk

[dgxsuperpod->device[dgx001]]%

The script can be run with an argument (dgx002 here), in which case it takes on the
passed value of dgx002 for the parameter:
[root©dgxsuperpod ~]# cmsh

[dgxsuperpod]% encrypt-node-disk dgx002

[dgxsuperpod->device[dgx002]]%

2.4.1.7 cmsh Options
The options usage information is shown with cmsh –h:
Usage:

cmsh [options] [hostname[:port]] cmsh [options] -c <command>

cmsh [options] -f <filename>

Options:

--help|-h

 Display this help

--noconnect|-u

 Start unconnected

--controlflag| -z

 ETX in non-interactive mode

--color <yes/no>

 Define usage of colors

--spool <directory>

 Alternative /var/spool/cmd

--tty| -t

 Pretend a TTY is available

--noredirect| -r

 Do not follow redirects

--norc| -n

 Do not load cmshrc file on start-up

--noquitconfirmation| -Q

 Do not ask for quit confirmation

--echo| -x

 Echo all commands

--quit|-q

 Exit immediately after error

--disablemultiline|-m

NVIDIA DGX SuperPOD Administration Guide DU-10263-001 v5 | 20

 Disable multiline support

--hide-events

 Hide all events by default

--disable-events

 Disable all events by default

Arguments:

hostname

 The hostname or IP to connect to

command

 A list of cmsh commands to execute

filename

 A file which contains a list of cmsh commands to execute

Examples:

cmsh run in interactive mode

cmsh -c device status run the device status command and exit

cmsh --hide-events -c device status run the device status command and exit, without

showing any events that arrive during this time cmsh -f some.file -q -x run and echo the

commands from some.file, exit

There is also a man page for cmsh(8), which is a bit more extensive than the help text. It
does not however cover the modes and interactive behavior.

2.4.2 Levels, Modes, Help, and Commands Syntax
in cmsh

The top-level of cmsh is the level that cmsh is in when entered without any options.

To avoid overloading a user with commands, cluster management functionality has been
grouped and placed in separate cmsh mode levels. Mode levels and associated objects for
a level make up a hierarchy available below the top level.

There is an object-oriented terminology associated with managing using this hierarchy.
To perform cluster management functions, the administrator descends through cmsh
into the appropriate mode and object and conducts actions relevant to the mode or
object.

For example, within user mode, an object representing a user instance, userthree, might
be added or removed. Within the object userthree, the administrator can manage its
properties. The properties can be data such as a password password123, or a home
directory /home/userthree.

Typing help at the top level of cmsh shows the top-level commands.
alias Set aliases

category Enter category mode

cert Enter cert mode

cloud Enter cloud mode

cmjob Enter cmjob mode

color Manage console text color settings

configuration overlay Enter configuration overlay mode

connect Connect to cluster

delimiter Display/set delimiter

device Enter device mode

NVIDIA DGX SuperPOD Administration Guide DU-10263-001 v5 | 21

disconnect Disconnect from cluster

edgesight...................... Enter edgesight mode

etcd Enter etcd mode

events Manage events

exit Exit from current object or mode

export Display list of aliases current list formats

fspart Enter fspart mode

group Enter group mode

groupingsyntax Manage the default grouping syntax

help Display this help

hierarchy Enter hierarchy mode

history Display command history

keyvaluestore Enter keyvaluestore mode

kubernetes Enter kubernetes mode

list List state for all modes

main Enter main mode

modified List modified objects

monitoring Enter monitoring mode

network Enter network mode

nodegroup Enter nodegroup mode

partition Enter partition mode

process Enter process mode

profile Enter profile mode

quit Quit shell

quitconfirmation Manage the status of quit confirmation

rack Enter rack mode

refresh Refresh all modes

run Execute cmsh commands from specified file

session Enter session mode

softwareimage Enter softwareimage mode

task Enter task mode

time Measure time of executing command

unalias Unset aliases

unmanagednodeconfiguration Enter unmanagednodeconfiguration mode

user Enter user mode

watch Execute a command periodically, showing output

wlm Enter wlm mode

All levels inside cmsh provide these top-level commands. Passing a command as an
argument to help gets details for it:
[myheadnode]% help run

Name: run - Execute all commands in the given file(s)

Usage: run [OPTIONS] <filename> [<filename2> …]

Options: -x, --echo

 Echo all commands

 -q, --quit

 Exit immediately after error

[myheadnode]%

NVIDIA DGX SuperPOD Administration Guide DU-10263-001 v5 | 22

In the general case, invoking help at any mode level or within an object, without an
argument, provides two lists:

1. Under the title of Top: a list of top-level commands.

2. Under the title of the level it was invoked at: a list of commands that may be used at
that level.

For example, entering session mode and then typing in help displays, firstly, output with
a title of Top, and secondly, output with a title of session:
[myheadnode]% session

[myheadnode->session]% help

============================ Top =============================

alias Set aliases

category Enter category mode

ceph Enter ceph mode

...

========================== session ===========================

id Display current session id

killsession Kill a session

list Provide overview of active sessions

[myheadnode->session]%

2.4.2.1 Navigation Through Modes and Objects in cmsh
The major modes tree is shown in Appendix M.1 of the Bright Cluster Manager
Administrator Manual.

The following notes can help the cluster administrator in navigating the cmsh shell:
> To enter a mode, a user enters the mode name at the cmsh prompt. The prompt

changes to indicate that cmsh is in the requested mode, and commands for that
mode can then be run.

> To use an object within a mode, the use command is used with the object name. In
other words, a mode is entered, and an object within that mode is used. When an
object is used, the prompt changes to display that the object within the mode is now
being used, and that commands are applied for that object.

> The exit command is used to leave a mode and go back up a level. Similarly, if an
object is in use, the exit command exits the object. At the top level, exit has the
same effect as the quit command, that is, the user leaves cmsh and returns to the
unix shell. The string .. is an alias for exit.

> The home command, which is aliased to /, takes the user from any mode depth to the
top level.

> The path command at any mode depth displays a string that can be used as a path to
the current mode and object, in a form that is convenient for copying and pasting
into cmsh. The string can be used in many ways. For example, an alias can be defined
in .cmshrc (2.4.1.2).

NVIDIA DGX SuperPOD Administration Guide DU-10263-001 v5 | 23

In the following example, the path command is used to print out a string. This string
makes it easy to construct a bash shell command to run a list from the correct place
within cmsh:
[headnode->configurationoverlay[slurm-client]->roles[slurmclient]]% list

Name (key)

slurmclient

[headnode->configurationoverlay[slurm-client]->roles[slurmclient]]% path

home;configurationoverlay;use "slurm-client";roles;use slurmclient;

Pasting the string into a bash shell, using the cmsh command with the -c option, and
appending the list command to the string, replicates the session output of the list
command:
[headnode ~]# cmsh -c configurationoverlay;use "slurm-client";roles;use slurmclient; list

Name (key)

slurmclient

The following example shows that the path command can also be used inside the cmsh
session itself for convenience:
[headnode]% device

[headnode->device]% list

Type Hostname (key) MAC Category Ip Network Status

------------- ------------- ----------------- -------- ------------- ----------- ------

EthernetSwitch switch01 00:00:00:00:00:00 10.141.0.50 internalnet [UP]

HeadNode headnode 00:0C:29:5D:55:46 10.141.255.254 internalnet [UP]

PhysicalNode dgx001 00:0C:29:7A:41:78 default 10.141.0.1 internalnet [UP]

PhysicalNode dgx002 00:0C:29:CC:4F:79 default 10.141.0.2 internalnet [UP]

[headnode->device]% exit

[headnode]% device

[headnode->device]% use dgx001

[headnode->device[dgx001]]% path

home;device;use dgx001;

[headnode->device[dgx001]]% home

[headnode]% home;device;use dgx001 #copy-pasted from path output earlier

[headnode->device[dgx001]]%

A command can also be executed in a mode without staying within that mode. This is
done by specifying the mode before the command that is to be executed within that
node. Most commands also accept arguments after the command. Multiple commands
can be executed in one line by separating commands with semicolons.

A cmsh input line has the following syntax:
<mode> <cmd> <arg> . . . <arg>; . . . ; <mode> <cmd> <arg> . . . <arg>

Where <mode> and <arg> are optional.1

1 A more precise synopsis is:
[<mode>] <cmd> [<arg> ...] [; ... ; [<mode>] <cmd> [<arg> ...]]

NVIDIA DGX SuperPOD Administration Guide DU-10263-001 v5 | 24

[headnode->network]% device status headnode; list

headnode [UP]

Name (key) Type Netmask bits Base address Domain name Ipv6

------------- --------- ------------- ------------- -------------------- ----

externalnet External 16 192.168.1.0 userdomain.com no

globalnet Global 0 0.0.0.0 cm.cluster

internalnet Internal 16 10.141.0.0 eth.cluster

[headnode->network]%

In the preceding example, while in network mode, the status command is executed in
device mode on the host name of the head node, making it display the status of the
head node. The list command on the same line after the semicolon still runs in network
mode, as expected, and not in device mode, and so displays a list of networks.

Inserting a semicolon makes a difference, in that the mode is entered, so that the list
displays a list of nodes:
[headnode->network]% device; status headnode; list

headnode [UP]

Type Hostname (key) MAC Category Ip Network Status

------------- --------------- ------------------ --------- -------------- ----------- ------

HeadNode headnode FA:16:3E:C8:06:D1 10.141.255.254 internalnet [UP]

PhysicalNode dgx001 F A:16:3E:A2:9C:87 default 10.141.0.1 internalnet [UP]

[headnode->device]%

2.4.3 Working with Objects
Modes in cmsh work with associated groupings of data called objects. For instance,
device mode works with device objects, and network mode works with network objects.

The commands used to deal with objects have similar behavior in all modes. Not all the
commands exist in every mode, and not all the commands function with an explicit
object (Table 7).

Table 7. Command and objects

Command Description
use Use the specified object. That is: Make the specified object the current object
add Create the object and use it
assign Assign a new object
unassign Unassign an object
clear Clear the values of the object
clone Clone the object and use it
commit Commit local changes, done to an object, to CMDaemon
refresh Undo local changes done to the object
list List all objects at current level
sort Sort the order of display for the list command
format Set formatting preferences for list output
foreach Execute a set of commands on several objects

NVIDIA DGX SuperPOD Administration Guide DU-10263-001 v5 | 25

show Display all properties of the object
swap Swap (exchange) the names of two objects
get Display specified property of the object
set Set a specified property of the object
clear Set default value for a specified property of the object.
append Append a value to a property of the object, for a multi-valued property
removefrom Remove a value from a specific property of the object, for a multi-valued property
modified List objects with uncommitted local changes
usedby List objects that depend on the object
validate Do a validation check on the properties of the object
exit Exit from the current object or mode level

Working with objects with these commands is demonstrated with several examples in
this section.

2.4.3.1 use and exit

[dgxsuperpod->device]% use dgx001

[dgxsuperpod->device[dgx001]]% status

dgx001 [UP]

[dgxsuperpod->device[dgx001]]% exit

[dgxsuperpod->device]%

In the preceding example, use dgx001 issued from within device mode makes dgx001
the current object. The prompt changes accordingly. The status command, without an
argument, then returns status information just for dgx001, because making an object
the current object makes subsequent commands within that mode level apply only to
that object. Finally, the exit command exits the current object level.

2.4.3.2 add, commit, and remove

The commands introduced in this section have many implicit concepts associated with
them. So an illustrative session is first presented as an example. What happens in the
session is then explained to familiarize the reader with the commands and associated
concepts.
[dgxsuperpod->device]% add physicalnode dgx100 10.141.0.100 [dgxsuperpod->device*[dgx100*]]%

commit

[dgxsuperpod->device[dgx100]]% category add test-category [dgxsuperpod->category*[test-

category*]]% commit

[dgxsuperpod->category[test-category]]% remove test-category

[dgxsuperpod->category*]% commit

Successfully removed 1 Categories

Successfully committed 0 Categories

[dgxsuperpod->category]% device remove dgx100

[dgxsuperpod->category]% device

[dgxsuperpod->device*]% commit

Successfully removed 1 Devices Successfully committed 0 Devices [dgxsuperpod->device]%

NVIDIA DGX SuperPOD Administration Guide DU-10263-001 v5 | 26

add: this command creates an object within its associated mode, and in cmsh the prompt
drops into the object level just created. Thus, at the start in the preceding example,
within device mode, a new object, named dgx100, is added. For this object, properties
such as the type (physicalnode) and IP address (10.141.0.100) can be set. The node
object level ([dgx100*]) is automatically dropped into from device mode when the add
command is executed. After execution, the state achieved is that the object has been
created with some properties. However, it is still in a temporary, modified state, and not
yet persistent.

Asterisk tags in the prompt are a useful reminder of a modified state, with each asterisk
indicating a tagged object that has an unsaved, modified property. In this case, the
unsaved properties are the IP address setting, the node name, and the node type.

The add command—syntax notes:

In most modes the add command takes only one argument, namely the name of the
object that is to be created. However, in device mode, an extra object-type, in this case
physicalnode, is also required as argument, and an optional extra IP argument may also
be specified. The response to help add while in device mode gives details:
[myheadnode->device]% help add

Name:

add - Create a new device of the given type with specified hostname. The IP address may also be

set.

Usage:

add <type> <hostname> [IP address]

Arguments:

type

chassis, genericdevice, gpuunit, litenode, cloudnode, physicalnode, headnode,

powerdistributionunit, racksensor, ethernetswitch, ibswitch, myrinetswitch

commit: this command is a further step that saves any changes made after executing a
command. In this case, in the second line, it saves the dgx100 object with its properties.
The asterisk tag disappears for the prompt if settings for that mode level and below
have been saved.

The top-level modes, such as the category mode, can be accessed directly from within
this level if the mode is stated before the command. So, stating the mode category
before running the add command allows the specified category test-category to be
added. Again, the test-category object level within category mode is automatically
dropped into when the add command is executed.

commit -w|--wait: the commit command by default does not wait for a state change to
complete. This means that the prompt becomes available right away. This means that it
is not obvious that the change has taken place, which causes problems if scripting with
cmsh for cloning a software image (2.1.2). The -w|--wait option to the commit command
works around this issue by waiting for any associated background task, such as the
cloning of a software image, to be completed before making the prompt available.
	

NVIDIA DGX SuperPOD Administration Guide DU-10263-001 v5 | 27

remove: this command removes a specified object within its associated mode. On
successful execution, if the prompt is at the object level, then the prompt moves one
level up. The removal is not conducted yet; it is only a proposed removal. This is indicated
by the asterisk tag, which remains visible until the commit command is executed, and the
test-category removal is saved. The remove command can also remove an object in a
non-local mode if the non-local mode is associated with the command. This is illustrated
in the example where, from within category mode, the device mode is declared before
running the remove command for dgx100. The proposed removal is configured without
being made permanent, but in this case no asterisk tag shows up in the category mode,
because the change is in device mode. To drop into device mode, the mode command
“device” is executed. An asterisk tag appears to remind the administrator that there is
still an uncommitted change (the node that is to be removed) for the mode. The commit
command would remove the object whichever mode it is in—the non-existence of the
asterisk tag does not change the effectiveness of commit.

remove -d|--data: the remove command by default removes an object, and not the
represented data. An example is if, in softwareimage mode, a software image is removed
with the remove (without options) command. As far as the cluster manager is concerned,
the image is removed after running commit. However the data in the directory for that
software image is not removed. The -d| --data option to the remove command arranges
removal of the data in the directory for the specified image, as well as removal of its
associated object.

remove -a|--all: the remove command by default does not remove software image
revisions. The -a| --all option to the remove command also removes all software
image revisions.

2.4.3.3 clone, modified, and swap
The node object dgx100 that was created in the previous example, can be cloned to
dgx101 as follows:
[dgxsuperpod->device]% clone dgx100 dgx101

Warning: The Ethernet switch settings were not cloned, and have to be set manually

[dgxsuperpod->device*[dgx101*]]% exit

[dgxsuperpod->device*]% modified

State Type Name

------ ------------------------ -----------------------------------

+ Device dgx101

[dgxsuperpod->device*]% commit

[dgxsuperpod->device]%

[dgxsuperpod->device]% remove dgx100

[dgxsuperpod->device*]% commit

[dgxsuperpod->device]%

The modified command is used to check what objects have uncommitted changes, and
the new object dgx101 that is seen to be modified, is saved with a commit. The device
dgx100 is then removed by using the remove command. A commit executes the removal.

The modified command corresponds to the functionality of the Unsaved entities icon
Figure 11.

NVIDIA DGX SuperPOD Administration Guide DU-10263-001 v5 | 28

The + entry in the State column in the output of the modified command in the
preceding example indicates that the object is a newly added one, but not yet
committed. Similarly, a ~ entry indicates an object that is to be removed on committing,
while a blank entry indicates that the object has been modified without an addition or
removal involved.

Cloning an object is a convenient method of duplicating a fully configured object. When
duplicating a device object, cmsh will attempt to automatically assign a new IP address
using several heuristics. In the preceding example, dgx101 is assigned IP address
10.141.0.101.

The attempt is a best-effort and does not guarantee a properly configured object. The
cluster administrator should therefore inspect the result.

Sometimes an object may have been misnamed, or physically swapped. For example,
dgx001 exchanged physically with dgx002 in the rack, or the hardware device eth0 is
misnamed by the kernel and should be eth1. In that case it can be convenient to swap
their names using the cluster manager front-end rather than change the physical device
or adjust kernel configurations. This is equivalent to exchanging all the attributes from
one name to the other.

For example, if the two interfaces on the head node must have their names exchanged,
it can be done as follows:
[dgxsuperpod->device]% use dgxsuperpod

[dgxsuperpod->device[dgxsuperpod]]% interfaces

[dgxsuperpod->device[dgxsuperpod]->interfaces]% list

Type Network device name IP Network

------------ -------------------- ---------------- --------------

physical eth0 [dhcp] 10.150.4.46 externalnet

physical eth1 [prov] 10.141.255.254 internalnet

[headnode->device[dgxsuperpod]->interfaces]% swap eth0 eth1; commit [headnode-

>device[dgxsuperpod]->interfaces]% list

Type Network device name IP Network

------------ -------------------- ---------------- --------------

physical eth0 [prov] 10.141.255.254 internalnet

physical eth1 [dhcp] 10.150.4.46 externalnet

[dgxsuperpod->device[dgxsuperpod]->interfaces]% exit; exit

NVIDIA DGX SuperPOD Administration Guide DU-10263-001 v5 | 29

2.4.3.4 get, set, and refresh
The get command is used to retrieve a specified property from an object, and set is used
to set it:
[dgxsuperpod->device]% use dgx101

[dgxsuperpod->device[dgx101]]% get category test-category

[dgxsuperpod->device[dgx101]]% set category default [dgxsuperpod->device*[dgx101*]]% get

category default

[dgxsuperpod->device*[dgx101*]]% modified

State Type Name

------ ------------------------ -------------------------------

 Device dgx101

[dgxsuperpod->device*[dgx101*]]% refresh

[dgxsuperpod->device[dgx101]]% modified

 No modified objects of type device

[dgxsuperpod->device[dgx101]]% get category test-category

[dgxsuperpod->device[dgx101]]%

Here, the category property of the dgx101 object is retrieved by using the get command.
The property is then changed using the set command. Using get confirms that the value
of the property has changed, and the modified command reconfirms that dgx101 has
local uncommitted changes.

The refresh command undoes the changes made and corresponds to the Revert button
in Base View when viewing Unsaved entities (Figure 11). The modified command then
confirms that no local changes exist. Finally, the get command reconfirms that no local
change took place.

Among the possible values a property can take on are strings and Booleans:

A string can be set as a revision label for any object:
[dgxsuperpod->device[dgx101]]% set revision "changed on 10th May"

[dgxsuperpod->device*[dgx101*]]% get revision

[dgxsuperpod->device*[dgx101*]]% changed on 10th May 2011

This can be useful when using shell scripts with an input text to label and track revisions
when sending commands to cmsh. How to send commands from the shell to cmsh is
introduced in 2.4.1.

For Booleans, the values yes, 1, on and true are equivalent to each other, as are their
opposites no, 0, off and false. These values are case-insensitive.

2.4.3.5 clear
[dgxsuperpod->device]% set dgx101 mac 00:11:22:33:44:55

[dgxsuperpod->device*]% get dgx101 mac

00:11:22:33:44:55

[dgxsuperpod->device*]% clear dgx101 mac

[dgxsuperpod->device*]% get dgx101 mac

00:00:00:00:00:00

[dgxsuperpod->device*]%

The get and set commands are used to view and set the MAC address of dgx101 without
running the use command to make dgx101 the current object. The clear command then

NVIDIA DGX SuperPOD Administration Guide DU-10263-001 v5 | 30

unsets the value of the property. The result of clear depends on the type of the
property that it acts on. In the case of string properties, the empty string is assigned,
whereas for MAC addresses the special value 00:00:00:00:00:00 is assigned.

2.4.3.6 list, format, and sort

The list command is used to list objects in a mode. The command has many options.
The ones that are valid for the current mode can be viewed by running help list.
The -f|--format option is available in all modes and takes a format string as argument.
The string specifies what properties are printed for each object, and how many
characters are used to display each property in the output line. In the following example,
a list of objects is requested for device mode, displaying the hostname, switchports, and
ip properties for each device object.
[headnode->device]% list -f hostname:14,switchports:15,ip

hostname (key) switchports ip

-------------- --------------- --------------------

apc01 10.142.254.1

headnode switch01:46 10.142.255.254

dgx001 switch01:47 10.142.0.1

dgx002 switch01:45 10.142.0.2

switch01 10.142.253.1

[headnode->device]%

Running the list command with no argument uses the current format string for the
mode. Running the format command without arguments displays the current format
string, and displays all available properties including a description of each property:
[headnode->device]% format

Current list printing format:

type:22, hostname:[16-32], mac:18, category:[16-32], ip:15, network:[14-32], status:[16-32]

Valid fields:

activation : Date on which node was defined

additionalhostnames: List of additional hostnames that should resolve to the interfaces IP

address

allownetworkingrestart : Allow node to update ifcfg files and restart networking

banks : Number of banks

...

The print specification of the format command uses the delimiter: to separate the
parameter and the value for the width of the parameter column. For example, a width of
ten can be set with:
[headnode->device]% format hostname:10

[headnode->device]% list

hostname (

apc01

headnode

dgx001

dgx002

switch01

NVIDIA DGX SuperPOD Administration Guide DU-10263-001 v5 | 31

A range of widths can be set, from a minimum to a maximum, using square brackets. A
single minimum width possible is chosen from the range that fits all the characters of
the column. If the number of characters in the column exceeds the maximum, then the
maximum value is chosen. For example:
[headnode->device]% format hostname:[10-14]

[headnode->device]% list

hostname (key)

apc01

headnode

dgx001

dgx002

switch01

The parameters to be viewed can be chosen from a list of valid fields by running the
format command without any options, as shown earlier.

The format command can take as an argument a string that is made up of multiple
parameters in a comma-separated list. Each parameter takes a colon-delimited width
specification.
[headnode->device]% format hostname:[10-14],switchports:14,ip:20

[headnode->device]% list

hostname (key) switchports ip

-------------- -------------- --------------------

apc01 10.142.254.1

headnode switch01:46 10.142.255.254

dgx001 switch01:47 10.142.0.1

dgx002 switch01:45 10.142.0.2

switch01 10.142.253.1

The output of the format command without arguments shows the current list printing
format string, with spaces.

In general, the string used in the format command can be set with enclosing quotes ("):
[headnode->device]% format "hostname:[16-32], network:[14-32], status:[16-32]"

Or with the spaces removed:
[headnode->device]% format hostname:[16-32],network:[14-32],status:[16-32]

The default parameter settings can be restored with the -r|--reset option:
[headnode->device]% format -r

[headnode->device]% format I head -3

Current list printing format:

type:22, hostname:[16-32], mac:18, category:[16-32], ip:15, network:[14-32], status:[16-32]

[headnode->device]%

NVIDIA DGX SuperPOD Administration Guide DU-10263-001 v5 | 32

The sort command sorts output in alphabetical order for specified parameters when the
list command is run. The sort is done according to the precedence of the parameters
passed to the sort command:
[headnode->device]% sort type mac

[headnode->device]% list -f type:15,hostname:15,mac

type hostname (key) mac

--------------- --------------- --------------------

HeadNode headnode 08:0A:27:BA:B9:43

PhysicalNode dgx002 00:00:00:00:00:00

PhysicalNode log001 52:54:00:DE:E3:6B

[headnode->device]% sort type hostname

[headnode->device]% list -f type:15,hostname:15,mac

type hostname (key) mac

--------------- --------------- --------------------

HeadNode headnode 08:0A:27:BA:B9:43

PhysicalNode log001 52:54:00:DE:E3:6B

PhysicalNode dgx002 00:00:00:00:00:00

[headnode->device]% sort mac hostname

[headnode->device]% list -f type:15,hostname:15,mac

type hostname (key) mac

--------------- --------------- --------------------

PhysicalNode dgx002 00:00:00:00:00:00

HeadNode headnode 08:0A:27:BA:B9:43

PhysicalNode log001 52:54:00:DE:E3:6B

The preceding sort commands can alternatively be specified with the -s|--sort option
to the list command:
[headnode->device]% list -f type:15,hostname:15,mac --sort type,mac

[headnode->device]% list -f type:15,hostname:15,mac --sort type,hostname

[headnode->device]% list -f type:15,hostname:15,mac --sort mac,hostname

2.4.3.7 append and removefrom

When dealing with a property of an object that can take more than one value at a time—
a list of values—the append and removefrom commands can be used to respectively
append to and remove elements from the list. If more than one element is appended,
they should be space-separated. The set command may also be used to assign a new list
immediately, overwriting the existing list. In the following example, values are appended
and removed from the powerdistributionunits properties of device dgx001.

NVIDIA DGX SuperPOD Administration Guide DU-10263-001 v5 | 33

The powerdistributionunits properties represent the list of ports on power
distribution units that a particular device is connected to. This information is relevant
when power operations are performed on a node.
[dgxsuperpod->device]% use dgx001

[dgxsuperpod->device[dgx001]]% get powerdistributionunits

apc01:1

[...device[dgx001]]% append powerdistributionunits apc01:5

[...device*[dgx001*]]% get powerdistributionunits

apc01:1 apc01:5

[...device*[dgx001*]]% append powerdistributionunits apc01:6

[...device*[dgx001*]]% get powerdistributionunits

apc01:1 apc01:5 apc01:6

[...device*[dgx001*]]% removefrom powerdistributionunits apc01:5 [...device*[dgx001*]]% get

powerdistributionunits

apc01:1 apc01:6

[...device*[dgx001*]]% set powerdistributionunits apc01:1 apc 01:02 [...device*[dgx001*]]% get

powerdistributionunits

apc01:1 apc01:2

Chapter 4 of the Bright Cluster Manager Administrator Manual has more information on
power settings and operations.

2.4.3.8 usedby
Removing a specific object is only possible if other objects do not have references to it.
To help the administrator discover a list of objects that depend on (“use”) the specified
object, the usedby command may be used. In the following example, objects depending
on device apc01 are requested. The usedby property of powerdistributionunits
indicates that device objects dgx001 and dgx002 contain references to (“use”) the object
apc01. In addition, the apc01 device is itself displayed as being in the up state, indicating
a dependency of apc01 on itself. If the device is to be removed, then the two references
to it first must be removed, and the device then must be brought to the CLOSED state by
using the close command.
[dgxsuperpod->device]% usedby apc01

Device used by the following:

Type Name Parameter

---------------- ---------- ----------------------

Device apc01 Device is up

Device dgx001 powerDistributionUnits

Device dgx002 powerDistributionUnits

[dgxsuperpod->device]%

NVIDIA DGX SuperPOD Administration Guide DU-10263-001 v5 | 34

2.4.3.9 validate
Whenever committing changes to an object, the cluster management infrastructure
checks the object to be committed for consistency. If one or more consistency
requirements are not met, then cmsh reports the violations that must be resolved before
the changes are committed. The validate command allows an object to be checked for
consistency without committing local changes.
[dgxsuperpod->device]% use dgx001

[dgxsuperpod->device[dgx001]]% clear category

[dgxsuperpod->device*[dgx001*]]% commit

Code Field Message

----- ------------------------ ---------------------------

1 category The category should be set

[dgxsuperpod->device*[dgx001*]]% set category default

[dgxsuperpod->device*[dgx001*]]% validate

All good

[dgxsuperpod->device*[dgx001*]]% commit

[dgxsuperpod->device[dgx001]]%

2.4.3.10 show
The show command is used to show the parameters and values of a specific object. For
example, for the object dgx001, the attributes displayed are:
[dgxsuperpod->device[dgx001]]% show

Parameter Value

--------------------------------------- ------------------------------------

Activation Thu, 03 Aug 2017 15:57:42 CEST

BMC Settings <submode>

Block devices cleared on next boot

Category default

...

Data node no

Default gateway 10.141.255.254 (network: internalnet)

...

Software image default-image

Static routes <0 in submode>

...

2.4.3.11 assign and unassign
The assign and unassign commands are analogous to add and remove. The difference
between assign and add from the system administrator point of view is that assign sets
an object with settable properties from a choice of existing names, whereas add sets an
object with settable properties that include the name that is to be given. This makes
assign suited for cases where multiple versions of a specific object choice cannot be
used.

NVIDIA DGX SuperPOD Administration Guide DU-10263-001 v5 | 35

For example:
> If a node is going to be configured to run with particular Slurm settings, the node can

be assigned an slurmclient role with the assign command. The node cannot be
assigned another slurmclient role with other Slurm settings at the same time. Only
the settings within the assigned Slurm client role can be changed.

> If a node is to be configured to run with added interfaces eth3 and eth4, then the
node can have both physical interfaces added to it with the add command.

The only place where the assign command is currently used within cmsh is within the
roles submode, available under category mode, configurationoverlay mode, or device
mode. Within roles, assign is used for assigning roles objects to give properties
associated with that role to the category, configuration overlay, or device.

2.4.3.12 import
The import command is an advanced command that works within a role. It is used to
clone roles between entities.

A node inherits all roles from the category and configuration overlay it is a part of.
[root©headnode ~]# cmsh

[headnode]% device roles dgx001

[headnode->device[dgx001]->roles]% list

Name (key)

[category:default] cgroupsupervisor

[category:default] slurmclient

If there is a small change to the default roles to be made, only for dgx001, in slurmclient,
then the role can be imported from a category or overlay. Importing the role duplicates
the object and assigns the duplicate value to dgx001.

This differs from simply assigning a slurmclient role to dgx001, because importing
provides the values from the category or overlay, whereas assigning provides unset
values.

After running import, just as for assign, changes to the role made at dgx001 level stay
at that node level, and changes made to the category-level or overlay-level slurmclient
role are not automatically inherited by the dgx001 slurmclient role.
[headnode->device[dgx001]->roles]% import<TAB><TAB>

cephmds cloudgateway elasticsearch

...and other available roles including slurmclient...

[headnode->device[dgx001]->roles]% import --overlay slurm-client slurmclient

[headnode->device*[dgx001*]->roles*]% list

Name (key)

[category:default] cgroupsupervisor

slurmclient

[headnode->device*[dgx001*]->roles*]% set slurmclient queues dgx1q

[headnode->device*[dgx001*]->roles*]% commit

NVIDIA DGX SuperPOD Administration Guide DU-10263-001 v5 | 36

The preceding shows that a list of roles is prompted for using tab-completion after
having typed import, and that the settings from the configuration overlay level are
brought into dgx001 for the slurmclient role. The slurmclient values at node level then
override any of the overlay-level or category level-settings, as suggested by the new list
output. The Slurm client settings are then the same for dgx001 as the settings at the
overlay level. The only change made is that a special queue, dgx1q, is configured just for
dgx001.

The import command in roles mode can duplicate any role between any two entities.
Options can be used to import from a category (-c|--category), a node (-n|--node), or
an overlay (-o|--overlay), as indicated by its help text (help import).

2.4.4 Advanced cmsh Features
This section describes some advanced features of cmsh.

2.4.4.1 CLI Editing
CLI editing and history features from the readline library are available. http://tiswww.
case.edu/php/chet/readline/rluserman.html provides a full list of key-bindings.

For users who are familiar with the bash shell running with readline, probably the most
useful and familiar features provided by readline within cmsh are:

> Tab-completion of commands and arguments.
> Being able to select earlier commands from the command history using <ctrl>-r or

using the up- and down-arrow keys.

2.4.4.2 history and timestamps
The history command within cmsh explicitly displays the cmsh command history as a list.

The --timestamps|-t option to the history command displays the command history
with timestamps.
[headnode->device[dgx001]]% history | tail -3

use dgx001

history

history | tail -3

[headnode->device[dgx001]]% history -t | tail -3

Thu Dec 3 15:15:18 2015 history

Thu Dec 3 15:15:43 2015 history | tail -3

Thu Dec 3 15:15:49 2015 history -t | tail -3

This history is saved in the file .cm/.cmshhistory in the cmsh user’s directory. The
timestamps in the file are in unix epoch time format and can be converted to
human-friendly format with the standard date utility.
[root@dgxsuperpod ~]# tail -2 .cm/.cmshhistory 1615412046

device list

[root@dgxsuperpod ~]# date -d ©1615412046

Wed Mar 10 22:34:06 CET 2021

NVIDIA DGX SuperPOD Administration Guide DU-10263-001 v5 | 37

2.4.4.3 Mixing cmsh and Unix Shell Commands
It is often useful for an administrator to be able to execute unix shell commands while
conducting cluster management tasks. The cluster manager shell, cmsh, therefore allows
users to execute commands in a subshell if the command is prefixed with a ! character:
[dgxsuperpod]% !hostname -f

dgxsuperpod.cm.cluster

[dgxsuperpod]%

Executing the ! command by itself will start an interactive login subshell. By exiting the
subshell, the user will return to the cmsh prompt.

Besides simply executing commands from within cmsh, the output of OS shell commands
can also be used within cmsh. This is done by using the legacy-style “backtick syntax”
available in most unix shells.
[dgxsuperpod]% device use `hostname`

[dgxsuperpod->device[dgxsuperpod]]% status

dgxsuperpod [UP]

[dgxsuperpod->device[dgxsuperpod]]%

2.4.4.4 Output Redirection
Like unix shells, cmsh also supports output redirection to the shell through common
operators such as >, >>, and |.
[dgxsuperpod]% device list > devices

[dgxsuperpod]% device status >> devices

[dgxsuperpod]% device list | grep dgx001

Type Hostname (key) MAC (key) Category

-------------- -------------- ------------------- ----------

PhysicalNode dgx001 00:E0:81:2E:F7:96 default

2.4.4.5 Input Redirection
Input redirection with cmsh is possible. As is usual, the input can be a string or a file. For
example, for a file runthis with some commands stored in it:
[root©dgxsuperpod ~]# cat runthis

device

get dgx001 ip

The commands can be run with the redirection operator as:
[root©dgxsuperpod ~]# cmsh < runthis

device

get dgx001 ip

10.141.0.1

Running the file with the -f option avoids echoing the commands:
[root©dgxsuperpod ~]# cmsh -f runthis

10.141.0.1

NVIDIA DGX SuperPOD Administration Guide DU-10263-001 v5 | 38

2.4.4.6 ssh
The ssh command is run from within the device mode of cmsh. If an ssh session is
launched from within cmsh, then it clears the screen and is connected to the specified
node. Exiting from the ssh session returns the user back to the cmsh launch point.
[headnode]% device ssh dgx001

<screen is cleared>

<some MOTD text and login information is displayed>

[root©dgx001 ~]# exit

Connection to dgx001 closed.

[headnode]% device use headnode

[headnode->device[headnode]]% #now let us connect to the head node from the head node object

[headnode->device[headnode]]% ssh

<screen is cleared>

<some MOTD text and login information is displayed>

[root©headnode ~]# exit

logout

Connection to headnode closed.

[headnode->device[headnode]]%

An alternative to running ssh within cmsh is to launch it in a subshell anywhere from
within cmsh, by using !ssh.

2.4.4.7 time
The time command within cmsh is a simplified version of the standard unix time
command.

The time command takes as its argument a second command that is to be executed
within cmsh. On execution of the time command, the second command is executed.
After execution of the time command is complete, the time the second command took
to execute is displayed.
[headnode->device]% time ds dgx001

dgx001 [UP]

time: 0.108s

2.4.4.8 watch
The watch command within cmsh is a simplified version of the standard unix watch
command.

The watch command takes as its argument a second command that is to be executed
within cmsh. On execution of the watch command, the second command is executed
every two seconds by default, and the output of that second command is displayed.

NVIDIA DGX SuperPOD Administration Guide DU-10263-001 v5 | 39

The repeat interval of the watch command can be set with the --interval|-n option.
A running watch command can be interrupted with a <Ctrl>-c.
[headnode->device]% watch newnodes

screen clears

Every 2.0s: newnodes Thu Dec 3 13:01:45 2015

No new nodes currently available.

[headnode->device]% watch -n 3 status -n dgx001,dgx002

screen clears

Every 3.0s: status -n dgx001,dgx002 Thu Jun 30 17:53:21 2016

dgx001[UP]

dgx002[UP]

2.4.4.9 foreach
It is frequently convenient to be able to execute a cmsh command on several objects in
parallel. The foreach command is available in several cmsh modes for this purpose. A
foreach command takes a list of space-separated object names (the keys of the object)
and a list of commands that must be enclosed by parentheses. The foreach command
will then iterate through the objects, executing the list of commands on the iterated
object each iteration.

Basic syntax for the foreach command:

foreach <object1> <object2> · · · (<command1>; <command2> · · ·)

[dgxsuperpod->device]% foreach dgx001 dgx002 (get hostname; status)

dgx001

dgx001 [UP]

dgx002

dgx002 [UP]

[dgxsuperpod->device]%

With the foreach command, it is possible to perform set commands on groups of
objects simultaneously, or to perform an operation on a group of objects. The range
command (2.4.4.12) provides an alternative to it in many cases.

Advanced options for the foreach command: the foreach command advanced options
can be viewed from the help page:
[root©headnode ~]# cmsh -c "device help foreach"

The options can be classed as: grouping options (list, type), adding options, conditional
options, and looping options.

-n|--nodes, -g| --group, -c| --category, -r| --rack, -h| --chassis,
-e| --overlay,-l| --role, -m| --image, -u| --union, -i| --intersection

-t| --type chassis| genericdevice| gpuunit| litenode| cloudnode| node|
physicalnode| headnode| powerdistributionunit| racksensor|
ethernetswitch| ibswitch| myrinetswitch| unmanagednode

There are two forms of grouping options shown in the preceding text. The first form
uses a list of the objects being grouped, while the second form uses the type of the
objects being grouped. These options become available according to the cmsh mode
used.

NVIDIA DGX SuperPOD Administration Guide DU-10263-001 v5 | 40

In the device mode of cmsh, for example, the foreach command has many grouping
options available. If objects are specified with a grouping option, then the specified
objects can be looped over.

For example, with the list form, the –-category|-c option takes a node category
argument (or several categories), while the –-node|-n option takes a node-list argument.
Node-lists (2.4.4.10) can also use the following, more elaborate, syntax:

<node>,. . .,<node>,<node>..<node>:
[demo->device]% foreach -c default (status)

dgx001 [DOWN]

dgx002 [DOWN]

[demo->device]% foreach -g rack8 (status)

...

[demo->device]% foreach -n dgx001,dgx008..dgx016,dgx032 (status)

...

[demo->device]%

With the type form, using the -t|--type option, the literal value to this option must be
one of node, cloudnode, virtualnode, and so on.

If multiple grouping options are used, then the union operation takes place by default.

Both grouping option forms are often used in commands other than foreach for node
selection.

clone -o|--clone: this option allows the cloning (2.4.3.3) of objects in a loop. In the
following example, from device mode, dgx001 is used as the base object from which
other nodes from dgx022 up to dgx024 are cloned:
[headnode->device]% foreach --clone dgx001 -n dgx022..dgx024 () [headnode->device*]% list |

grep node

Type Hostname (key) Ip

------------ -------------- -----------

PhysicalNode dgx001 10.141.0.1

PhysicalNode dgx022 10.141.0.22

PhysicalNode dgx023 10.141.0.23

PhysicalNode dgx024 10.141.0.24

[headnode->device*]% commit

The cloned objects are placeholder schematics and settings, with different values for
some of the settings, such as IP addresses, decided by heuristics. It is not the software
disk image of dgx001 that is duplicated by object cloning to the other nodes by this
action at this time.

clone -a|--add :this option creates the device for a specified device type if it does not
exist. Valid types are shown in the help output, and include physicalnode, headnode, and
ibswitch.

NVIDIA DGX SuperPOD Administration Guide DU-10263-001 v5 | 41

Conditional options: -s|--status, -q|--quitonunknown

The –-status|-s option allows nodes to be filtered by the device status (2.1.1).
[headnode->device]% foreach -n dgx001..dgx004 --status UP (get IP)

10.141.0.1

10.141.0.3

Since the --status option is also a grouping option, the union operation applies to it by
default too, when more than one grouping option is being run.

The –-quitonunknown|-q option allows the foreach loop to exit when an unknown
command is detected.

Looping options: *, --verbose|-v

The wildcard character * with foreach implies all the objects that the list command
lists for that mode. It is used without grouping options:
[myheadnode->device]% foreach * (get ip; status)

10.141.253.1

switch01 [DOWN]

10.141.255.254

myheadnode [UP]

10.141.0.1

dgx001 [CLOSED]

10.141.0.2

dgx002 [CLOSED]

[myheadnode->device]%

Another example that lists all the nodes per category, by running the listnodes
command within category mode:
[headnode->category]% foreach * (get name; listnodes)

default

Type Hostname MAC Category Ip Network Status

------------- --------- ------------------ --------- ---------- ------------ --------

PhysicalNode dgx001 FA:16:3E:79:4B:77 default 10.141.0.1 internalnet [UP]

PhysicalNode dgx002 FA:16:3E:41:9E:A8 default 10.141.0.2 internalnet [UP]

PhysicalNode dgx003 FA:16:3E:C0:1F:E1 default 10.141.0.3 internalnet [UP]

The –-verbose|-v option displays the loop headers during a running loop with
timestamps, which can help in debugging.

2.4.4.10 Node List Syntax
Node list specifications, as used in the foreach specification and elsewhere, can be of
several types. Here are some examples:

> adhoc (with a comma, or a space):

example: dgx001,dgx003,dgx005,dgx006

> sequential (with two dots or square brackets):

example: dgx001..dgx004

or equivalently: dgx00[1-4]

which is: dgx001,dgx002,dgx003,dgx004

NVIDIA DGX SuperPOD Administration Guide DU-10263-001 v5 | 42

> sequential extended expansion (only for square brackets):

example: node[001-002]s[001-005]

which is:
dgx001s001,dgx001s002,dgx001s003,dgx001s004,dgx001s005,\
dgx002s001,dgx002s002,dgx002s003,dgx002s004,dgx002s005

> rack-based:

This is intended to hint which rack a node is located in. Thus:

example: r[1-2]n[01-03]

which is: r1n01,r1n02,r1n03,r2n01,r2n02,r2n03

This might hint at two racks, r1 and r2, with three nodes each.

example: rack[1-2]dgx0[1-3]

which is: rack1dgx01,rack1dgx02,rack1dgx03,rack2dgx01,rack2dgx02,rack2dgx03

Like the previous one, but for nodes that were named more verbosely.

> sequential exclusion (negation):

example: dgx001..dgx005,-dgx002..dgx003

which is: dgx001,dgx004,dgx005

> sequential stride (every <stride> steps):

example: dgx00[1..7:2]

which is: dgx001,dgx003,dgx005,dgx007

> mixed list:

The square brackets and the two dots input specification cannot be used at the
same time in one argument. Other than this, specifications can be mixed:

example: r1n001..r1n003,r2n003

which is: r1n001,r1n002,r1n003,r2n003

example: r2n003,r[3-5]n0[01-03]

which is: r2n003,r3n001,r3n002,r3n003,r4n001,r4n002,\
r4n003,r5n001,r5n002,r5n003

example: node[001-100],-node[004-100:4]

which is: every node in the 100 nodes, except for every fourth node.

> path to file that contains a list of nodes:

example: ~/some/filepath/<file with list of nodes>

The caret sign is a special character in cmsh for node list specifications. It indicates
the string that follows is a file path that is to be read.

NVIDIA DGX SuperPOD Administration Guide DU-10263-001 v5 | 43

2.4.4.11 groupingsyntax
groupingsyntax refers to usage of dots and square brackets. In other words, it is the
syntax of how a grouping is marked so that it is accepted as a list. The list that is
specified in this manner can be for input or output purposes.

The groupingsyntax command sets the grouping syntax using the following options:
> bracket: the square brackets specification.
> dot: the two dots specification.
> auto: the default. Setting auto means that:

• Either the dot or the bracket specifications are accepted as input.

• The dot specification is used for output.

The chosen groupingsyntax option can be made persistent by adding it to the .cmshrc
dotfiles, or to /etc/cmshrc (2.4.1).
[root©headnode ~]# cat .cm/cmsh/.cmshrc

groupingsyntax auto

2.4.4.12 range
The range command provides an interactive option to conduct basic foreach commands
over a grouping of nodes. When the grouping option has been chosen, the cmsh prompt
indicates the chosen range within braces ({}).
[headnode->device]% range -n dgx0[01-24]

[headnode->device{-n dgx001..024}]%

In the preceding example, commands applied at device level will be applied to the range
of 24 node objects.

Continuing the preceding session—if a category can be selected with the -c option. If
the default category just has three nodes, then output displayed could look like:
[headnode->device{-n dgx001..024}]% range -c default

[headnode->device{-c default}]% ds

dgx001 [UP] state flapping

dgx002 [UP]

dgx003 [UP]

Values can be set at device mode level for the selected grouping.
[headnode->device{-c default}]% get revision

[headnode->device{-c default}]% set revision test

[headnode->device{-c default}]% get revision

test test test

NVIDIA DGX SuperPOD Administration Guide DU-10263-001 v5 | 44

Values can also be set within a submode. However, staying in the submode for a full
interaction is not possible. The settings must be done by entering the submode using a
semicolon (new command statement continuation on same line) syntax, as follows:
[headnode->device{-c default}]% roles; assign pbsproclient; commit

The range command can be regarded as a modal way to carry out an implicit foreach on the

grouping object. Many administrators should find it easier than a foreach:

[headnode->device{-c default}]% get ip

10.141.0.1

10.141.0.2

10.141.0.3

[headnode->device{-c default}]% ..

[headnode->device]% foreach -c default (get ip)

10.141.0.1

10.141.0.2

10.141.0.3

Commands can be run inside a range. However, running a pexec command inside a range
is typically not the intention of the cluster administrator, even though it can be done:
[headnode->device]% range -n node[001-100]

[headnode->device{-n node[001-100]]]% pexec -n node[001-100] hostname

The preceding starts 100 pexec commands, each running on each of the 100 nodes.

Further options to the range command can be seen with the help text for the command
(output truncated):
[root©headnode ~]# cmsh -c "device help range"

Name: range - Set a range of several devices to execute future commands on

Usage: range [OPTIONS] * (command)

range [OPTIONS] <device> [<device> ...] (command)

Options: --show Show the current range

--clear Clear the range

-v, --verbose Show header before each element

...

2.4.4.13 bookmark
A bookmark can be:

> Set with the bookmark command.
> Reached using the goto command.

A bookmark is set with arguments to the bookmark command within cmsh as follows:

> The user can set the current location as a bookmark:

• By using no argument. This is the same as setting no name for it.

• By using an arbitrary argument. This is the same as setting an arbitrary name for
it.

> Apart from any user-defined bookmark names, cmsh automatically sets the special
name: “-”. This is always the previous location in the cmsh hierarchy that the user has
just come from.

NVIDIA DGX SuperPOD Administration Guide DU-10263-001 v5 | 45

All bookmarks that have been set can be listed with the -l|--list option.

Reaching a bookmark: a bookmark can be reached with the goto command. The goto
command can take the following as arguments: a blank (no argument), any arbitrary
bookmark name, or “-”. The bookmark corresponding to the chosen argument is then
reached.

The - bookmark does not need to be preceded by a goto.
[dgxsuperpod]% device use dgx001

[dgxsuperpod->device[dgx001]]% bookmark

[dgxsuperpod->device[dgx001]]% bookmark -l

Name Bookmark

---------------- ------------------------

 home;device;use dgx001;

- home;

[dgxsuperpod->device[dgx001]]% home

[dgxsuperpod]% goto

[dgxsuperpod->device[dgx001]]% goto -

[dgxsuperpod]% goto

[dgxsuperpod->device[dgx001]]% bookmark dn1

[dgxsuperpod->device[dgx001]]% goto -

[dgxsuperpod]% goto dn1

[dgxsuperpod->device[dgx001]]%

Saving bookmarks, and making them persistent: bookmarks can be saved to a file, such
as mysaved, with the -s|--save option, as follows:
[dgxsuperpod]% bookmark -s mysaved

Bookmarks can be made persistent by setting .cmshrc files (2.4.1.2) to load a previously
saved bookmarks file whenever a new cmsh session is started. The bookmark command
loads a saved bookmark file using the -x|--load option.
[rootheadnode ~]# cat .cm/cmsh/.cmshrc

bookmark -x mysaved

2.4.4.14 rename
Nodes can be renamed globally from within partition mode, in the Node basename field
associated with the prefix of the node in Base View or in cmsh.

However, a more fine-grained batch renaming is also possible with the rename command,
and typically avoids having to resort to scripting mechanisms. Using rename is best
illustrated by examples:

The examples begin with using the default basename of node and default node digits
(padded suffix number length) of 3.

A simple rename that is a prefix change, can then be conducted as:
[headnode->device]% rename dgx001..dgx003 test

Renamed: dgx001 to test1

Renamed: dgx002 to test2

Renamed: dgx003 to test3

NVIDIA DGX SuperPOD Administration Guide DU-10263-001 v5 | 46

The rename starts up its own numbering from 1, independent of the original numbering.
The change is committed using the commit command.

Zero-padding occurs if the number of nodes is sufficiently large to need it. For example,
if ten nodes are renamed:
[headnode->device]% rename node[001-010] test

Renamed: dgx001 to test01

Renamed: dgx002 to test02

...

Renamed: dgx009 to test09

Renamed: dgx010 to test10

Then two digits are used for each number suffix, to match the size of the last number.

String formatting can be used to specify the number of digits in the padded number
field:
[headnode->device]% rename node[001-003] test%04d

Renamed: dgx001 to test0001

Renamed: dgx002 to test0002

Renamed: dgx003 to test0003

The target names can conveniently be specified exactly. It requires an exact name
mapping. That is, it assumes the source list size and target list size match:
[headnode->device]% rename node[001-005] test0[1,2,5-7]

Renamed: dgx001 to test01

Renamed: dgx002 to test02

Renamed: dgx003 to test05

Renamed: dgx004 to test06

Renamed: dgx005 to test07

The hostnames are sorted alphabetically before they are applied, with some exceptions
based on the listing method used.

A --dry-run option can be used to show how the devices will be renamed. Alternatively,
the refresh command can clear a proposed set of changes before a commit command
commits the change, although the refresh would also remove other pending changes.

Exact name mapping could be used to allocate individual servers to several people:
[root©headnode ~]# cmsh

[headnode]% device

[headnode->device]% rename node[001-004] userone, usertwo, userthree, userfour

Renamed: dgx001 to userone

Renamed: dgx002 to usertwo

Renamed: dgx003 to userthree

Renamed: dgx004 to userfour

[headnode->device]% commit

NVIDIA DGX SuperPOD Administration Guide DU-10263-001 v5 | 47

Skipping by several nodes is possible using a colon (:). An example might be to skip by
two so that twin servers can be segregated into left/right.
[root©headnode ~]# cmsh

[headnode]% device

[headnode->device]% rename node[001-100:2] left[001-050]

Renamed: dgx001 to left001

Renamed: dgx003 to left002

...

Renamed: dgx097 to left049

Renamed: dgx099 to left050

[headnode->device]% rename node[002-100:2] right[001-050]

Renamed: dgx002 to right001

Renamed: dgx004 to right002

...

Renamed: dgx098 to right049

Renamed: dgx100 to right050

[headnode->device]% commit

2.4.4.15 Using CMDaemon Environment Variables in Scripts
Within device mode, the environment command shows the CMDaemon environment
variables that can be passed to scripts for a particular device.
[dgxsuperpod->device]% environment dgx001

Key Value

-- ----------------------------------

CMD_ACTIVE_MASTER_IP 10.141.255.254

CMD_CATEGORY default

CMD_CLUSTERNAME dgxsuperpod

CMD_DEVICE_TYPE ComputeNode

CMD_ENVIRONMENT_CACHE_EPOCH_MILLISECONDS 1615465821582

...

The environment variables can be prepared for use in Bash scripts with the -—export|-e
option:
[dgxsuperpod->device]% environment -e dgx001

export CMD_ENVIRONMENT_CACHE_UPDATES=4

export CMD_CATEGORY=default

export CMD_SOFTWAREIMAGE=default-image

export CMD_DEVICE_TYPE=ComputeNode

export CMD_ROLES=

export CMD_FSMOUNT__SLASH_home_FILESYSTEM=nfs

...

NVIDIA DGX SuperPOD Administration Guide DU-10263-001 v5 | 48

2.4.4.16 Converting Tables to JSON with cmsh
A list of table entries can be converted to a JSON representation by using the delimiter
specification option -d {}.

By default, the indentation value used is 2. Other values can be set by putting the value
inside the braces.
[headnode->device]% list -f hostname,ip,mac,status

hostname (key) ip mac status

-------------------- -------------------- -------------------- --------------------

dgx001 10.141.0.1 FA:16:3E:95:80:9F [UP]

headnode 10.141.255.254 FA:16:3E:D3:56:E0 [UP]

[headnode->device]% color off; list -f hostname,ip,mac,status -d

[

"hostname (key)": "headnode", "ip": "10.141.255.254",

"mac": "FA:16:3E:D3:56:E0",

"status": "[UP]"

"hostname (key)": "dgx001",

"ip": "10.141.0.1",

"mac": "FA:16:3E:95:80:9F",

"status": "[UP]"

]

[headnode->device]%

The color off setting is needed to remove the default console coloring. If the command
is to run from the bash shell, the same output can be achieved with:
[root©headnode ~]# cmsh --color=no -c "device; list -f hostname,ip,mac,status -d {}"

NVIDIA DGX SuperPOD Administration Guide DU-10263-001 v5 | 49

3. Cluster Management Daemon

The cluster management daemon or CMDaemon is a server process that runs on all nodes
of the DGX SuperPOD (including the head node. CMDaemons work together to make the
cluster manageable. When applications such as cmsh and Base View communicate with
the cluster, they are interacting with the CMDaemon running on the head node. Cluster
management applications never communicate directly with CMDaemons running on
non-head nodes.

The CMDaemon application starts running on any node automatically when it boots, and
the application continues running until the node shuts down. Should CMDaemon be
stopped manually for whatever reason, its cluster management functionality becomes
unavailable, making it hard for administrators to manage the cluster. However, even with
the daemon stopped, the cluster remains fully usable for running computational jobs
using a workload manager.

The only route of communication with the CMDaemon is through TCP port 8081. CMDaemon
accepts only SSL connections, thereby ensuring all communications are encrypted.
Authentication is also managed in the SSL layer using client-side X509v3 certificates
(2.2).

On the head node, the CMDaemon uses a MySQL database server to store all its internal
data. Raw monitoring data, on the other hand, is stored as binary data outside of the
MySQL database.

3.1 Controlling CMDaemon
It may be useful to shut down or restart CMDaemon. For instance, a restart may be
necessary to activate changes when the CMDaemon configuration file is modified.
CMDaemon operation can be controlled through the following init script arguments to
service cmd.

NVIDIA DGX SuperPOD Administration Guide DU-10263-001 v5 | 50

cmdaemonctl command arguments are shown in Table 8.

Table 8. cmdaemonctl command arguments

Argument Description
stop Stop the CMDaemon
start Start the CMDaemon
reload Reload configuration of the CMDaemon
force-reload Force reload configuration of the CMDaemon
restart Restart the CMDaemon
try-restart Try to restart the CMDaemon, but only if it is running
status report Whether CMDaemon is running
full-status∗ Report detailed statistics about CMDaemon
upgrade∗ Update database schema after version upgrade (expert only)
debugon∗ Enable debug logging (expert only)
debugoff∗ Disable debug logging (expert only)
logconf∗ Reload log configuration

* arguments that work with cmdeamonctl as well as with the service command

Restarting the CMDaemon on the head node of a cluster:
[root©dgxsuperpod ~]# service cmd restart

 Redirecting to /bin/systemctl restart cmd.service

[root©dgxsuperpod ~]#

Viewing the resources used by CMDaemon, and other useful information:
[root©headnode etc]# service cmd status

CMDaemon version 2.1 is running (active) Running locally
Current Time: Fri, 29 Jan 2021 01:48:28 CET
Startup Time: Thu, 28 Jan 2021 15:45:17 CET Uptime: 10h 3m
CPU Usage: 66.8112u 50.5393s (0.3%)
Memory Usage: 172MB
Sessions Since Startup: 29 Active Sessions: 7
Number of occupied worker-threads: 7 Number of free worker-threads: 14
Connections handled: 2397
Requests processed: 6850 Total read: 1.98MB
Total written: 170MB
Average request rate: 11.4requests/m Average bandwidth usage: 4KB/s
Restarting the CMDaemon on a sequence of compute nodes dgx001 to dgx040:
[root©dgxsuperpod ~]# pdsh -w dgx00[1-9],dgx0[1-3][0-9],dgx040 service cmd restart

This uses pdsh, the parallel shell command.

NVIDIA DGX SuperPOD Administration Guide DU-10263-001 v5 | 51

3.2 Configuring CMDaemon
Many cluster configuration changes can be done by modifying the CMDaemon
configuration file. For the head node, the file is located at:
/cm/local/apps/cmd/etc/cmd.conf

For compute nodes, it is located inside of the software image that the node uses.

Appendix C of the Bright Cluster Manager Administrator Manual describes the supported
configuration file directives and how they can be used. Normally there is no need to
modify the default settings.

After modifying the configuration file, the CMDaemon must be restarted to activate the
changes.

3.2.1 CMDaemon Versions
For debugging an issue, knowing the version of CMDaemon that is in use on the cluster
can be helpful. The cmdaemonversions command runs within the device mode of cmsh. It
lists the CMDaemon version running on the nodes of the cluster.
[headnode->device]% cmdaemonversions

Hostname Version index Version hash

---------------- ------------- ------------

headnode 146,965 e6f593b676

dgx001 146,965 e6f593b676

dgx002 146,965 e6f593b676

A higher version index value indicates a more recent CMDaemon version.

The --join option is a formatting option that gathers versions with the same option:
[headnode->device]% cmdaemonversions --join

Version index Version hash Count Hostnames

------------- ------------ ------------ -------------------------

146,965 e6f593b676 3 headnode,dgx001..dgx002

3.3 Configuring CMDaemon Logging
CMDaemon generates log messages in /var/log/cmdaemon from specific internal
subsystems, such as workload management, service management, monitoring, and
certs. By default, none of those subsystems generate detailed (debug-level) messages,
as that would make the log file grow rapidly.

NVIDIA DGX SuperPOD Administration Guide DU-10263-001 v5 | 52

3.3.1 CMDaemon Logging Configuration Global
Debug Mode

A global debug mode can be enabled in CMDaemon using cmdaemonctl:
[root©headnode ~]# cmdaemonctl -h cmdaemonctl [OPTIONS…] COMMAND ...

Query or send control commands to the cluster manager daemon.

-h --help Show this help Commands:

debugon Turn on CMDaemon debug

debugoff Turn off CMDaemon debug

...

[root©headnode ~]# cmdaemonctl debugon CMDaemon debug level on

Stopping debug level logs from running for too long by executing cmdaemonctl
debugoff is a good idea, especially for production clusters. This is important to prevent
swamping the cluster with unfeasibly large logs.

3.3.2 CMDaemon Subsystem Logging
Configuration Debug Mode

CMDaemon subsystems can generate debug logs separately per subsystem, including by
severity level. This can be done by modifying the logging configuration file at:
/cm/local/apps/cmd/etc/logging.cmd.conf

Within this file, a section with a title of #Available Subsystems lists the available
subsystems that can be monitored. These subsystems include MON (for monitoring), DB
(for database), HA (for high availability), CERTS (for certificates), CEPH (for Ceph), and so
on.

3.3.2.1 CMDaemon Subsystem Logging Configuration
Severity Levels

In addition to the debug setting, other severity levels are info, warning, error, and all.

Further details on setting subsystem options are given within the logging.cmd.conf file.

For example, to set CMDaemon log output for Monitoring, at a severity level of warning,
the file contents for the section severity might look like:
Severity {

 warning: MON

}

NVIDIA DGX SuperPOD Administration Guide DU-10263-001 v5 | 53

3.3.2.2 CMDaemon Subsystem Logging Configuration
Deployment

The new logging configuration can be reloaded from the file by restarting CMDaemon:
[root©headnode etc]# service cmd restart

Or by reloading the logging configuration:
[root©headnode etc]# service cmd logconf

3.4 Configuration File Modification and
the FrozenFile Directive

As part of its tasks, the CMDaemon modifies several system configuration files. Some
configuration files are completely replaced, while other configuration files only have
some sections modified. Appendix A of the Bright Cluster Manager Administrator Manual
lists all system configuration files that are modified.

A file that has been generated entirely by the CMDaemon contains a header:
This file was automatically generated by cmd. Do not edit manually!

Such a file will be entirely overwritten, unless the FrozenFile configuration file directive
is used to keep it frozen.

Sections of files that have been generated by the CMDaemon will read as follows:
This section of this file was automatically generated by cmd.

Do not edit manually!

BEGIN AUTOGENERATED SECTION -- DO NOT REMOVE

...

END AUTOGENERATED SECTION -- DO NOT REMOVE

Such a file has only the auto-generated sections entirely overwritten, unless the
FrozenFile configuration file directive is used to keep these sections frozen.

The FrozenFile configuration file directive in cmd.conf is set as in this example:
FrozenFile = { "/etc/dhcpd.conf", "/etc/postfix/main.cf" }

If the generated file or section of a file has a manually modified part, and when not using
FrozenFile, then during overwriting an event is generated, and the manually modified
configuration file is backed up to:
/var/spool/cmd/saved-config-files

Using FrozenFile can be regarded as a configuration technique, and one of various
possible configuration techniques.

NVIDIA DGX SuperPOD Administration Guide DU-10263-001 v5 | 54

3.5 Configuration File Precedence
While the cluster manager changes as little as possible of the standard distributions
that it manages, there can sometimes be unavoidable issues. Sometimes a standard
distribution utility or service generates a configuration file that conflicts with what the
configuration file generated by the cluster manager conducts.

In such a case the configuration file generated by the cluster manager must be given
precedence, and the generation of a configuration file from the standard distribution
should be avoided. Sometimes using a fully or partially frozen configuration file (3.4)
allows a workaround. Otherwise, the functionality of the cluster manager version usually
allows the required configuration function to be implemented.

Details on the configuration files installed and updated by the package management
system are further discussed in Appendix A of the Bright Cluster Manager Administrator
Manual.

NVIDIA DGX SuperPOD Administration Guide DU-10263-001 v5 | 55

4. User Management

Users and groups for the DGX SuperPOD are presented to the administrator in a single
system paradigm. That is, if the administrator manages them with the cluster manager,
then the changes are automatically shared across the cluster (the single system).

The cluster manager runs its own LDAP service to manage users, rather than using unix
user and group files. In other words, users and groups are managed by the centralizing
LDAP database server running on the head node, and not through entries in
/etc/passwd or /etc/group files.

4.1 Managing Users and Groups with
Base View

Within Base View:

> Users can be managed through clickpath Identity Management>Users.

> Groups can be managed using clickpath Identity Management>Groups.

For users (Figure 5) the LDAP entries for regular users are displayed. These entries are
editable, and each user can then be managed in further detail.

Figure 5. Base View User Management

NVIDIA DGX SuperPOD Administration Guide DU-10263-001 v5 | 56

There is one user on a newly installed cluster manager: cmsupport. This user has no
password set by default, which means no logins to this account are allowed by default.
The cluster manager uses cmsupport to run various diagnostics utilities, so it should not
be removed, and the default contents of its home directory should also not be removed.

The + ADD button allows users to be added using a User parameters window (Figure 6).
The changes in parameter values can be committed using the SAVE button in the User
parameter window.

Figure 6. Base View User Management: Add

When saving an addition or modification:

> User and group ID numbers are automatically assigned from UID and GID 1000
onward.

> A home directory is created, and a login shell is set. Users with unset passwords
cannot log in. Group management in Base View is conducted using clickpath
Identity Management>Groups.

Clickable LDAP object entries for regular groups then show up, like the user entries
already covered. Management of these entries is done with the same functions as for
user management.

NVIDIA DGX SuperPOD Administration Guide DU-10263-001 v5 | 57

4.2 Managing Users and Groups with
cmsh

User management tasks as conducted by Base View can also be done with cmsh.

A cmsh session is run here to cover the functions corresponding to the user
management functions of Base View.

Note: For the remainder of the document a command executed at # prompt would be run
on the linux shell, and a command run executed on % prompt is run inside cmsh.

These functions are run from within the user mode of cmsh.
[root©headnode ~]# cmsh
[headnode]% user
[headnode->user%

4.2.1 Adding a User
This corresponds to the functionality of the + Add button operation in Base View.

In user mode, the process of adding a user userone to the LDAP directory is started with
the add command.
[headnode->user% add userone

[headnode->user*[userone*]]%

cmsh drops into the user object just added, and the prompt shows the username to
reflect this. Going into the user object would otherwise be done manually by entering
user userone at the user mode level.

Asterisks in the prompt are reminders of a modified state, with each asterisk indicating
that there is an unsaved, modified property at that asterisk’s level.

The modified command displays a list of modified objects that have not yet been
committed.
[headnode->user*[userone*]]% modified

State Type Name

------ ----------------------- ---------------

+ User userone

This corresponds to what is displayed by the Unsaved entities icon in the top-right
corner of the Base View standard display.

NVIDIA DGX SuperPOD Administration Guide DU-10263-001 v5 | 58

Running show at this point reveals a username entry, but empty fields for the other
properties of userone. So, the account in preparation, while it is modified, is not yet
ready for use.
[headnode->user*[userone*]]% show

Parameter Value

------------------------------ --------------------------

Accounts

Managees

Name userone

Primary group

Revision

Secondary

4.2.2 Saving the Modified State
This corresponds to the functionality of the SAVE button operation in 4.1.

User userone that was added in 4.2.1 now exists as a proposed modification but has not
yet been committed to the LDAP database.

Running the commit command now at the userone prompt stores the modified state at
the user userone object level:
[bright92->user*[userone*]]% commit

[bright92->user[userone]]% show

Parameter Value

------------------------------ ---------------------------

Accounts

Managees

Name userone

Primary group userone

Revision

Secondary groups

ID 1001

Common name userone

Surname userone

Group ID 1001

Login shell /bin/bash

Home directory /home/userone

Password *********

Email

Profile

Create cmjob certificate no

Write ssh proxy config no

Shadow min 0

Shadow max 999999

Shadow warning 7

Inactive 0

Last change 2023/1/12

Expiration date 2038/1/1

Project manager <submode>

Notes <0B>

NVIDIA DGX SuperPOD Administration Guide DU-10263-001 v5 | 59

If, however, commit was to be run at the user mode level without dropping into the
userone object level, instead of just that modified user, all modified users would be
committed.

When the commit is done, all the empty fields for the user are automatically filled in with
defaults. Also, as a security precaution, if an empty field (that is, a “not set”) password
entry is committed, then a login to the account is not allowed. So, in the example, the
account for user userone exists at this stage, but still cannot be logged into until the
password is set. Editing passwords and other properties is covered in 4.2.3.

The default permissions for file and directories under the home directory of the user are
defined by the umask settings in /etc/login.defs, as would be expected if the
administrator were to use the standard useradd command. Setting a path for the
homedirectory parameter for a user sets a default home directory path. By default the
path is /home/<username> for a user <username>. If homedirectory is unset, then the
default is determined by the HomeRoot directive.

4.2.3 Editing Properties of Users and Groups
This corresponds to the functionality of the Edit operation in 4.1.

In 4.2.2, a user account userone was made, with an unset password as one of its
properties. Logins to accounts with an unset password are refused. The password
therefore must be set if the account is to function.

4.2.3.1 Editing Users with set and clear
The tool used to set user and group properties is the set command. Typing set and then
either using tab to see the possible completions, or following it up with the enter key,
suggests several parameters that can be set, one of which is password.
[headnode->user[userone]]% set

Name:

set - Set specific user property

Usage:

set [user] <parameter> <value> [<value> ...] (type 1)

set [user] <parameter] [file] (type 2)

Arguments:

User

 name of the user, omit if current is set

Parameters: (type 1)

commonname Full name (e.g. Donald Duck)

createcmjobcertificate Create a certificate with the cloudjob profile for cmjob

email................ email

expirationdate Date on which the user login will be disabled

groupid Base group of this user

homedirectory Home directory

id User ID number

inactive Number of days of inactivity allowed for the user

loginshell Login shell

name User login (e.g. donald)

password Password

NVIDIA DGX SuperPOD Administration Guide DU-10263-001 v5 | 60

profile Profile for Authorization

projectmanager Project manager

revision Entity revision

shadowmax Maximum number of days for which the user password remains valid.

shadowmin Minimum number of days required between password changes

shadowwarning Number of days of advance warning given to the user before the user

password expires surname

Surname (e.g. Duck) writesshproxyconfig . Write ssh proxy config

Parameters: (type 2)

notes Administrator notes

[headnode->user[userone]]%

Continuing the session from the end of 4.2.2, the password can be set at the user
context prompt like this:
[headnode->user[Userone]]% set password seteca5tr0n0my

[headnode->user*[userone*]]% commit

[headnode->user[Userone]]%

The account userone is now ready for use.

The converse of the set command is the clear command, which clears properties.
[headnode->user[Userone]]% clear password; commit

Setting a password in cmsh is also possible by setting the LDAP hash (the encrypted
storage format) that is generated from the password within cmsh. When setting
passwords in cmsh, a string starting with {MD5}, {CRYPT}, or {SSHA} is the hash of the
password.
[root©headnode ~]# #first create the LDAP salted SHA-1 hash of the password:
[root©headnode ~]# /cm/local/apps/openldap/sbin/slappasswd -h {SSHA} -s seteca5tr0n0my

[root©headnode ~]# {SSHA}sViD+lfSTtlIy0MuGwPGfGd5XKHgEm5d
[root©headnode ~]# cmsh [headnode]% user use userone
[headnode->user[userone]]% set password
enter new password: #here and in the next line {SSHA}sViD+lfSTtlIy0MuGwPGfGd5XKHgEm5d is typed

in
retype new password:
[headnode->user[userone]]% commit
[headnode->user[userone]]% !ssh userone©dgx001 #now will test the password that generated

the hash
userone©dgx001 s password: #here seteca5tr0n0my is typed in
Creating ECDSA key for ssh
[userone©node001 ~]$ #successfully logged in with the password associated with the hash

Managing passwords in cmsh by direct LDAP hash entry should not be done.

NVIDIA DGX SuperPOD Administration Guide DU-10263-001 v5 | 61

4.2.3.2 Editing Groups with append and removefrom

While the preceding commands set and clear also work with groups, there are two other
commands available which suit the special nature of groups. These supplementary
commands are append and removefrom. They are used to add extra users to and remove
extra users from a group.

For example, it may be useful to have a printer group so that several users can share
access to a printer. For the sake of this example (continuing the session from where it
was left off in the preceding), usertwo and userthree are now added to the LDAP
directory, along with a group printer:
[headnode->user[userone]]% add usertwo; add userthree

[headnode->user*[userthree*]]% exit; group; add printer

[headnode->group*[printer*]]% commit

[headnode->group[printer]]% exit; exit; user

[headnode->user*]%

In the previous example, semicolons are used to chain commands together on the same
line.

The context switch that takes place in the preceding session should be noted. The
context of user userone was eventually replaced by the context of group printer. As a
result, the group printer is committed, but the users usertwo and userthree are not
yet committed, which is shown by the asterisk at the user mode level.

To add users to a group, the append command is used. A list of users userone, usertwo,
and userthree can be added to the group printer like this:
[headnode->user*]% commit

Successfully committed 2 Users

[headnode->user]% group use printer

[headnode->group[printer]]% append members userone usertwo userthree; commit [headnode-

>group[printer]]% show

Parameter Value

------------------------ --------------------------

ID 1002

Revision

Name printer

Members userone,usertwo,userthree

To remove users from a group, the removefrom command is used. A list of specific users,
for example, usertwo and userthree, can be removed from a group like this:
[headnode->group[printer]]% removefrom members usertwo userthree; commit

[headnode->group[printer]]% show

Parameter Value

------------------------ --------------------------

ID 1002

Revision

Name printer

Members userone

NVIDIA DGX SuperPOD Administration Guide DU-10263-001 v5 | 62

The clear command can also be used to clear members—but it also clears all the extras
from the group:
[headnode->group[printer]]% clear members [headnode->group*[printer*]]% show

Parameter Value

------------------------ --------------------------

ID 1002

Revision

Name printer

Members

The commit command is intentionally left out at this point in the session to illustrate how
reversion is used in the next section.

4.2.4 Reverting to the Unmodified State
This corresponds roughly to the functionality of the Revert operation in 4.1.

This section continues from the state of the session at the end of 4.2.3. There, the state
of group printers was cleared so that the extra added members were removed. This
state (the state with no group members showing) was however not yet committed.

The refresh command reverts an uncommitted object back to the last committed state.

This happens at the level of the object that it is using. For example, the object that is
being handled here is the properties of the group object printer. Running revert at a
higher-level prompt—say, in the group mode level—would revert everything at that level
and below. So, to affect only the properties of the group object printer, the refresh
command is used at the group object printer level prompt. It then reverts the
properties of group object printer back to their last committed state, and does not
affect other objects:
[headnode->group*[printer*]]% refresh [headnode->group[printer]]% show

Parameter Value

------------------------ --------------------------

ID 1002

Revision

Name printer

Members userone

Here, the user userone reappears because they were stored in the last save. Also,
because only the group object printer has been committed, the asterisk indicates the
existence of other uncommitted, modified objects.

NVIDIA DGX SuperPOD Administration Guide DU-10263-001 v5 | 63

4.2.5 Removing a User
Removing a user using cmsh corresponds roughly to the functionality of the Delete
operation in 4.1.

The remove command removes a user or group. The -d|--data flag added to the end of
the username removes the user’s home directory as well. For example, within user mode,
the command remove user userone -d; commit removes user userone, along with
their home directory.

Continuing the session at the end of 4.2.4 from where it was left off, as follows, shows
this result:
[headnode->group[printer]]% user use userone

[headnode->user[userone]]% remove -d; commit

Successfully removed 1 Users

Successfully committed 0 Users

[headnode->user]% !ls -d /home/*| grep userone #no userone left behind

[headnode->user]%

4.3 LDAP
LDAP services are internal to DGX SuperPOD and provided by head node. If the cluster
manager is set to high availability configuration, with LDAP running internally on head
nodes, LDAP services are provided from both the active and the passive node. The high-
availability setting ensures that CMDaemon takes care of any changes needed in the
slapd.conf file when a head node changes state from passive to active or vice versa and
ensures that the active head node propagates its LDAP database changes to the passive
node using a syncprov/syncrepl configuration in slapd.conf.

4.4 Tokens and Profiles
Access to Base View and cmsh is based on user certificates.

Tokens can be assigned by the administrator to users so that users can conduct some of
the operations that the administrator does with Base View or cmsh. Every cluster
management operation requires that each user, including the administrator, has the
relevant tokens in their profile for the operation. DGX SuperPOD configurations default
to having the root user of the head node assigned the admin profile.

The tokens for a user are grouped into a profile, and such a profile is typically given a
name by the administrator according to the assigned capabilities. For example, the
profile might be called readmonitoringonly if it allows the user to read the monitoring
data only, or it may be called powerhandler if the user is only allowed to carry out power
operations. Each profile thus consists of a set of tokens, typically relevant to the name
of the profile, and is typically assigned to several users. The profile is stored as part of
the authentication certificate that is generated for running authentication operations to
the cluster manager for the certificate owner.

NVIDIA DGX SuperPOD Administration Guide DU-10263-001 v5 | 64

Profiles are handled with the profiles mode of cmsh, or from the Profiles window,
accessible using clickpath Identity Management>Profiles.

Table 9 shows the preconfigured profiles that are available from cmsh.

Table 9. Preconfigured profiles in cmsh

Profile name Default Tasks Allowed nonuser?
admin all tasks no
cloudjob cloud job submission yes
cmhealth health-related prejob tasks yes
cmpam the cluster manager PAM tasks yes
litenode CMDaemon Lite tasks yes
monitoringpush pushing raw monitoring data to CMDaemon through a JSON

POST (page 404 of the Bright Cluster Manager Developer
Manual)

yes

node node-related tasks, for example by the node-installer yes
portal user portal viewing no
power device power yes
readonly view-only no

The last column in the preceding table indicates whether the preconfigured profile is a
nonuser profile or not. With cmsh this can be used to see profiles, with a command such
as:
[root©headnode ~]# cmsh -c "profile; foreach * (get name; get nonuser)" | paste - -

> Most of the preconfigured profiles are nonuser profiles. Such a profile is used by
cluster manager clients and should not be modified by the cluster administrator.

> The preconfigured profiles that are not nonuser profiles are admin, readonly, and
portal. These can be modified by the cluster administrator and used for human
users.

The cluster manager services that use the available preconfigured profiles can be viewed
in cmsh with the list command in profile mode.

The tokens, and other properties of a particular profile can be seen within profile mode
as follows:
[headnode->profile]% show readonly

Parameter Value

----------- --

Name readonly

Non user no

Revision

Services CMDevice CMNet CMPart CMMon CMJob CMAuth CMServ CMUser CMSession CMMain CMGui CMP+

Tokens GET_DEVICE_TOKEN GET_CATEGORY_TOKEN GET_NODEGROUP_TOKEN POWER_STATUS_TOKEN GET_DE+

NVIDIA DGX SuperPOD Administration Guide DU-10263-001 v5 | 65

For screens that are not wide enough to view the parameter values, the values can also
be listed.
[headnode->profile]% get readonly tokens

GET_DEVICE_TOKEN

GET_CATEGORY_TOKEN

GET_NODEGROUP_TOKEN

…

A profile can be set with cmsh for a user within user mode as follows:
[root©headnode ~]# cmsh

[headnode]% user use conner

[headnode->user[conner]]% get profile

[headnode->user[conner]]% set profile readonly; commit

Only a subset of the predefined profiles are available to users. The ones that are made
available to users are readonly, admin, and portal.

4.4.1 Modifying Profiles
A profile can be modified by adding or removing appropriate tokens to it. For example,
the readonly group by default has access to the burn status and burn log results.
Removing the appropriate tokens stops users in that group from seeing these results.

In cmsh the removal can be done from within profile mode as follows:
[root©headnode ~]# cmsh

[headnode]% profile use readonly

[...[readonly]]% removefrom tokens burn_status_token get_burn_log_token

[headnode]%->profile*[readonly*]]% commit

Tab-completion after typing in removefrom tokens helps in filling in the tokens that can
be removed. In Base View (Figure 7), the same removal action can be conducted using
clickpath Identity Management>Profiles>readonly>Edit>Tokens.

Figure 7. Base View profile token management

NVIDIA DGX SuperPOD Administration Guide DU-10263-001 v5 | 66

Maximize the window in the resulting display. Run a search for burn to show the relevant
tokens, BURN_STATUS_TOKEN and GET_BURN_LOG_TOKEN, as well as the device subgroup
they are in. The ticks can be removed from the BURN_STATUS_TOKEN and
GET_BURN_LOG_TOKEN checkboxes, and the changed settings can then be saved.

4.4.2 Creation of Custom Certificates with Profiles
Custom profiles can be created to include a custom collection of capabilities in cmsh and
Base View. Cloning of profiles is also possible from cmsh.

A certificate file, with an associated expiry date, can be created based on a profile.
Access to Base View and cmsh is based on user certificates. The time of expiry for a
certificate cannot be extended after creation. An entirely new certificate is required
after expiry of the previous one.

All certificates that have been generated by the cluster are noted by CMDaemon.

The creation of custom certificates is described starting in 4.4.2.4. After creating such a
certificate, the openssl utility can be used to examine its structure and properties. Key
values in the following example are the expiry date (30 days from the time of
generation), the common name (democert), the key size (2048), profile properties
(readonly), and system login name (userfour), for such a certificate:
[root©headnode]# openssl x509 -in userfourfile.pem -text -noout

Data:

 ...

 Not After : Sep 21 13:18:27 2014 GMT

Subject: ... CN=democert

 Public-Key: (2048 bit)

...

X509v3 extensions:

 1.3.6.1.4.4324.1:

 ..readonly

 1.3.6.1.4.4324.2:

 ..userfour

[root©headnode]#

However, using the openssl utility for managing certificates is inconvenient. The cluster
manager provides more convenient ways to do so, as described next.

NVIDIA DGX SuperPOD Administration Guide DU-10263-001 v5 | 67

4.4.2.1 Listing Certificates with cmsh
Within the cert mode of cmsh, the listcertificates command lists all cluster
certificates and their properties:
[root©headnode ~]# cmsh

[headnode]% cert

[headnode-> cert]% listcertificates

Serial Revoked Time left Profile System log in Name

------ -------- ------------ ---------------- ---------------- --------------------

1 No 5214w 1d admin root Administrator

2 No 5214w 1d cmhealth CMHealth

3 No 5214w 1d cmhealth CMHealth

4 No 5214w 1d power Slurm

5 No 5214w 1d bootstrap CertificateRequest

6 No 5214w 1d cmpam CMPam

7 No 5214w 1d portal WebPortal

...

4.4.2.2 Listing Certificates with Base View
The Base View equivalent for listing certificates is through clickpath Identity
Management>Certificates (Figure 8).

Figure 8. Base View Certificates list window

NVIDIA DGX SuperPOD Administration Guide DU-10263-001 v5 | 68

4.4.2.3 Node Certificates
In the certificates list, node certificates that are generated by the node-installer for each
node for CMDaemon use are listed. These are entries that look like:
[headnode-> cert]% listcertificates

Serial Revoked Time left Profile System log in Name

------ -------- ------------ ---------------- ---------------- ------------------------------

...

10 No 5214w 1d node fa-16-3e-74-24-dc

11 No 5214w 1d node fa-16-3e-57-2c-8e

12 No 5214w 1d node fa-16-3e-b6-c7-4a

13 No 5214w 1d node fa-16-3e-bd-cd-05

14 No 5214w 1d node fa-16-3e-0d-ab-ea

...

4.4.2.4 Creating a Custom Certificate
Custom certificates are also listed in the certificates list.

Unlike node certificates, which are normally system-generated, custom certificates are
typically generated by a user with the appropriate tokens in their profile, such as root
with the admin profile. Such a user can create a certificate containing a specified profile,
as discussed in the next section, by using:

> cmsh: with the createcertificate operation from within cert mode.

> Base View: using clickpath Identity Management>Users>Edit>Profile to set the
Profile.

4.4.2.5 Creating a New Certificate for cmsh Users
Creating a new certificate in cmsh is done from cert mode using the createcertificate
command, which has the following help text:
[headnode->cert]% help createcertificate Name:

createcertificate - Create a new certificate

Usage:

 createcertificate <key-length> <common-name> <organization> <organizational-unit> <locality>

<state> <country> <profile> <sys-login> <days> <key-file> <cert-file>

Arguments:

 key-file

 Path to key file that will be generated

 cert-file

 Path to pem file that will be generated

Accordingly, as an example, a certificate file with a readonly profile set to expire in 30
days, to be run with the privileges of user userfour, can be created with:
[headnode->cert]% createcertificate 2048 democert a b c d ef readonly userfour 30

/home/userfour /userfourfile.key /home/userfour/userfourfile.pem

Thu Jan 5 15:13:01 2023 [notice] headnode: New certificate request with ID: 16

[headnode->cert]% createcertificate 2048 democert a b c d ef readonly pe er 30 /home/userfour

/userfourfile.key /home/userfour/userfourfile.pem

Certificate key written to file: /home/userfour/userfourfile.key

Certificate pem written to file: /home/userfour/userfourfile.pem	

NVIDIA DGX SuperPOD Administration Guide DU-10263-001 v5 | 69

The certificate list would show it as something like:
[headnode-> cert]% listcertificates

Serial Revoked Time left Profile System log in Name

------ -------- ------------ ---------------- ---------------- ------------------------------

...

23 No 4w 1d readonly userfour democert

Setting the ownership of the new custom certificate: The certificates are owned by the
owner generating them, so they are root-owned if root was running cmsh. This means
that user userfour cannot use them until ownership is changed to that user.

[root©headnode ~]# cd /home/userfour [root©headnode surefour]# ls -l userfourfile.*

-rw------- 1 root root 1704 Aug 22 06:18 userfourfile.key

-rw------- 1 root root 1107 Aug 22 06:18 userfourfile.pem [root©headnode userfour]# chown

userfour:userfour userfourfile.*

Other users must have the certificate ownership changed to their own usernames.

4.4.2.6 Associating Users with Paths to a New Custom
Certificate

Users associated with such a certificate can then conduct cmdaemon tasks that have a
readonly profile, and CMDaemon sees such users as being user userfour.

Two ways of being associated with the certificate are:
1. The paths to the pem and key files can be set with the -i and -k options respectively

of cmsh. For example, in the home directory of userfour, for the files generated in
the preceding session, cmsh can be launched with these keys with:
[surefour©head node ~] cmsh -i userfourfile.pem -k userfourfile.key

[headnode]% quit

2. If the -i and -k options are not used, then cmsh searches for default keys. The
default keys for cmsh are under these paths under $HOME, in the following order of
priority:

a. .cm/admin.{pem,key}

b. .cm/cert.{pem,key}

4.4.2.7 Creating a Custom Certificate for Base View Users
As in the case of cmsh, a Base View user having a sufficiently privileged tokens profile,
such as the admin profile, can create a certificate and key file for themselves or another
user. This is done by associating a value for the Profile from the Add or Edit dialog for
the user (Figure 5).

The certificate files, cert.pem and cert.key, are then automatically placed in the
following paths and names, under $HOME for the user:

> .cm/admin.{pem,key}

> .cm/cert.{pem,key}

NVIDIA DGX SuperPOD Administration Guide DU-10263-001 v5 | 70

Users that authenticate with their username and password when running Base View use
this certificate for their Base View clients and are then restricted to the set of tasks
allowed by their associated profile.

4.4.3 Logging the Actions Of CMDaemon Users
The following directives allow control over the logging of CMDaemon user actions:

> CMDaemonAudit: enables logging.

> CMDaemonAuditorFile: sets log location.

> DisableAuditorForProfiles: disables logging for profiles.

Details on these directives are given in Appendix C of the Bright Cluster Manager
Administrator Manual.

4.4.3.1 Creation of Certificates for Nodes with
cm-component-certificate

The cm-component-certificate utility can be used to generate or update SSL
certificates for components of services. The cluster administrator is not expected to use
this utility because the cluster manager manages the certificates without bothering the
administrator about it during normal operations. If the utility is to be used, then it should
be used with caution, to avoid failure in the components that use these certificates.

One of the SSL client components for which this utility works is LDAP.

Options include setting a new CA and creating a new certificate or key for nodes.

4.4.4 Compute Node LDAP PEM and Key Creation
If a compute node that was provisioned has a lost or corrupted LDAP key or certificate,
then replacements for these can be made with:
[root©headnode ~]# cm-component-certificate -n dgx001

Sending request to recreate certificates for 1 node to cmd on headnode

[(38654705666, 1)] 1 0 0

1 certificates were successfully recreated Done.

The ldap.{pem,key} files are automatically placed on dgx001, by default at the location
specified by the CMDaemon LDAPCertificate and LDAPPrivateKey directives.

The files /cm/node-installer/certificates/<dgx001-mac>/ldap.{pem,key} should be
removed on the head node.

The nslcd, sssd, and ldap daemons should be restarted on dgx001, or more simply it can
be rebooted if it is not in use. The reboot replaces the ldap.{pem,key} files on the head
node with the newly generated ones.

NVIDIA DGX SuperPOD Administration Guide DU-10263-001 v5 | 71

5. Managing Slurm

5.1 Introduction
Workload management is the submission and control of work on the system. Slurm is
the workload management system used on the DGX SuperPOD. It is an open-source job
scheduling system for Linux clusters, most frequently used for high-performance
computing (HPC) applications. This section will cover some of the basics to get started
using Slurm as a user on the DGX SuperPOD. More advanced information about Slurm
usage can be found in the Slurm documentation.

The basic flow of a workload management system is the user submits a job to the queue.
A job is a collection of work to be executed. What gets submitted is a command, either
defined by a shell script or a binary. Shell scripts are the most common because a job
often consists of many different commands.

The system will take all the jobs submitted that are not yet running, look at the state of
the system, and then map those jobs to the available resources. This workflow allows
users to manage their work within large groups and the system will find the optimal way
to order the jobs to maximize system utilization or other metrics that can be configured
by the system administrators.

Key Slurm terms are detailed in Table 10.

Table 10. Slurm key terms

Term Definition

job A unit of work that can be scheduled on the cluster. Each job requests a particular number
of compute nodes and may be started by Slurm after the requested number of nodes is
reached.

batch job Submitted to the cluster with a job script, which is an executable such as a bash script.
Slurm will wait for the requested number of nodes to be available and will then allocate
those nodes to the job and run the script on the first node in the group. The commands in
the script are then responsible for running the user workload across the nodes in the
allocation. A batch job can be submitted using the sbatch command. When a job is
submitted with sbatch, the command will return immediately and place the job in the queue.

interactive
job

Submitted to the cluster and requests a pseudo-terminal, so that a user can work on the
cluster interactively without having to write a script. Interactive jobs can be submitted by
using the srun command with the --pty flag. When you submit a job interactively, the srun
command will block until the requested nodes are available, and then provide an interactive
terminal to the user.

Slurm
controller

The server that is responsible for keeping track of all the servers in the cluster, accepting
job submissions, and scheduling work on the cluster. The controller runs a slurmctld
daemon for managing work on the cluster, and a slurmdbd daemon for keeping track of the
job accounting database.

NVIDIA DGX SuperPOD Administration Guide DU-10263-001 v5 | 72

compute
node

A compute node, or just node, is an individual server that runs jobs in the cluster. For
example, a single DGX A100 system is a Slurm node. Each node runs a slurmd daemon that
manages jobs running on that node.

login node A server that regular users SSH to submit work to the cluster. The login node does not run
either a slurmd or slurmctld daemon but has the Slurm tools installed so that users can
query job information and submit work.

partition A logical group of compute nodes in Slurm. Each compute node may belong to more than
one partition. Jobs are submitted to run in a particular partition and will use nodes from that
group.

queue The list of jobs that are either currently running, or which are waiting to be allocated nodes
to run on. If resources are available when a job is submitted, it will run immediately. If there
are not sufficient resources to run a job, it will be placed in the queue and wait until
resources are available.

5.2 Checking Node Status
Use the sinfo command to check the status of all the nodes on the cluster.
dgxa100@pg-login-mgmt001:~$ sinfo

PARTITION AVAIL TIMELIMIT NODES STATE NODELIST

debug up 1-00:00:00 1 drain* dgx049

debug up 1-00:00:00 1 drain dgx017

debug up 1-00:00:00 4 alloc dgx[070,081,090,097]

batch* up 1-00:00:00 96 alloc dgx[001-012,018-048,050-069,091,098-129]

batch* up 1-00:00:00 38 idle dgx[013-016,071-080,082-089,092-096,130-140]

su01 up 1-00:00:00 15 alloc dgx[001-012,018-020]

su01 up 1-00:00:00 4 idle dgx[013-016]

su02 up 1-00:00:00 20 alloc dgx[021-040]

su03 up 1-00:00:00 19 alloc dgx[041-048,050-060]

su04 up 1-00:00:00 9 alloc dgx[061-069]

su04 up 1-00:00:00 10 idle dgx[071-080]

su05 up 1-00:00:00 4 alloc dgx[091,098-100]

su05 up 1-00:00:00 13 idle dgx[082-089,092-096]

su06 up 1-00:00:00 20 alloc dgx[101-120]

su07 up 1-00:00:00 9 alloc dgx[121-129]

su07 up 1-00:00:00 11 idle dgx[130-140]	

NVIDIA DGX SuperPOD Administration Guide DU-10263-001 v5 | 73

sinfo lists all the partitions in the cluster, and then groups each list of nodes by its
status. Status descriptions are in Table 11.

Table 11. sinfo status descriptions

Status Description

idle Nodes are online, not currently running a job, and available to run a job

alloc Nodes are online and allocated to a running job

drain Nodes are online, but they have been marked as “drain” to prevent jobs from running on them.
This might be because they failed a health check, or because an administrator manually
marked them to drain so the administrator could do maintenance.

drng Nodes are “draining”: they have been marked to drain, but still have a job running on them.
When that job completes, no further jobs will run on them.

down Nodes are not online and Slurm cannot contact them

boot Nodes are being rebooted by Slurm

sinfo can be restricted to showing information about a particular partition using the -p
option:
dgxa100@pg-login-mgmt001:~$ sinfo -p batch

PARTITION AVAIL TIMELIMIT NODES STATE NODELIST

batch* up 1-00:00:00 32 alloc dgx[098-129]

batch* up 1-00:00:00 102 idle dgx[001-016,018-048,050-069,071-080,082-089,091-

096,130-140]

It can also display only the nodes that are down or drained and show the reason that
they are in that state by using the -R option:
dgxa100@pg-login-mgmt001:~$ sinfo -R

REASON USER TIMESTAMP NODELIST

crashing on boot root 2020-12-04T10:33:15 dgx049

NHC: check_hw_ib: N root 2020-12-04T10:32:42 dgx017

The sinfo -R command only shows a few characters of the reason for the failure. To see
longer details about the reason, run the following command:
dgxa100@pg-login-mgmt001:~$ scontrol show node dgx017 | grep Reason

 Reason=NHC: check_hw_ib: No IB port mlx5_4:1 is ACTIVE (LinkUp 40 Gb/sec). [root@2020-12-

04T10:32:42]

NVIDIA DGX SuperPOD Administration Guide DU-10263-001 v5 | 74

5.3 Showing Detailed Node Information
Detailed information about a Slurm node is shown by using the scontrol command:
dgxa100@pg-login-mgmt001:~$ scontrol show node dgx017

NodeName=dgx017 Arch=x86_64 CoresPerSocket=64

 CPUAlloc=0 CPUTot=256 CPULoad=1.78

 AvailableFeatures=(null)

 ActiveFeatures=(null)

 Gres=gpu:8(S:0-1)

 NodeAddr=dgx017 NodeHostName=dgx017 Version=20.02.4

 OS=Linux 5.4.0-54-generic #60-Ubuntu SMP Fri Nov 6 10:37:59 UTC 2020

 RealMemory=1031000 AllocMem=0 FreeMem=1017487 Sockets=2 Boards=1

 State=DOWN+DRAIN ThreadsPerCore=2 TmpDisk=0 Weight=1 Owner=N/A MCS_label=N/A

 Partitions=debug

 BootTime=2020-12-05T19:26:50 SlurmdStartTime=2020-12-05T19:30:32

 CfgTRES=cpu=256,mem=1031000M,billing=256

 AllocTRES=

 CapWatts=n/a

 CurrentWatts=0 AveWatts=0

 ExtSensorsJoules=n/s ExtSensorsWatts=0 ExtSensorsTemp=n/s

 Reason=NHC: check_hw_ib: No IB port mlx5_4:1 is ACTIVE (LinkUp 40 Gb/sec). [root@2020-12-

04T10:32:42]

5.4 Draining a Node
Draining a node will prevent any further jobs from running on a node. A node should be
drained if it is unhealthy or for maintenance work that requires jobs not to be running.

Nodes can be drained by Slurm; by NHC; or manually by an administrator.

To manually drain a node:
[headnode01->device]% use dgx-001

[headnode01->device[dgx-001]]% drain

Engine Node Status Reason

---------------- ---------------- ---------------- --------------------

slurm-dgxsuperpod dgx-001 Drained Drained by CMDaemon

To un-drain a node that you want to run jobs on again:
[headnode01->device[dgx-001]]% undrain

Engine Node Status Reason

---------------- ---------------- ---------------- ----------------

slurm-dgxsuperpod dgx-001

NVIDIA DGX SuperPOD Administration Guide DU-10263-001 v5 | 75

5.5 Updating Slurm Configuration
Slurm is configured using cm-wlm-setup. This will set up slurm.conf file in
/cm/shared/apps/slurm/var/etc/slum. The file is shared to every node in the cluster
and will have the same contents on every node.

Most of the options of slurm.conf are outside the scope of this document. To read
about the available options for configuring Slurm, see the slurm.conf documentation.

Note: Since Slurm is being managed by BCM, any changes manually made to this file will
be overwritten. Changes should be made using Base View or cmsh.

5.6 Slurm Prolog and Epilog
The workload manager runs prolog scripts before job execution, and epilog scripts after
job execution. The purpose of these scripts can include:

> Checking if a node is ready before submitting a job execution that may use it.
> Preparing a node in some way to manage the job execution.
> Cleaning up resources after job execution has ended.

Although there are global prolog and epilog scripts, editing them should be avoided. The
scripts cannot be set using Base View or cmsh. Instead, the scripts must be placed by the
administrator in the software image, and the relevant nodes updated from the image.

5.6.1 Details of Prolog and Epilog Scripts
Even though it is not recommended, some administrators may nonetheless want to link
and edit the scripts directly for their own needs, outside of the Base View or cmsh
front-ends. A more detailed explanation of how the prolog scripts work follows.

When a Slurm is configured using cm-wlm-setup or the Base View setup wizard, it is
configured to run the generic prolog located in /cm/local/apps/cmd/scripts/prolog,
and the generic epilog located in /cm/local/apps/cmd/scripts/epilog. The generic
prolog and epilog scripts call a sequence of scripts for a particular workload manager in
special directories.

The directories have paths in the format:

> /cm/local/apps/slurm/var/prologs/

> /cm/local/apps/slurm/var/epilogs/

In these directories, scripts are stored with names that have suffixes and prefixes
associated with them that makes them run in special ways, as follows:

> Suffixes used in the prolog/epilog directory:
• -prejob script runs before all jobs.

• -cmjob script runs before job run in a cloud.
> Prefixes used in the prolog/epilog directory: 00- to 99-.

NVIDIA DGX SuperPOD Administration Guide DU-10263-001 v5 | 76

Number prefixes determine the order of script execution, with scripts with a lower
number running earlier.

The script names can therefore look like:

> 01-prolog-prejob

> 10-prolog-cmjob

Return values for the prolog/epilog scripts have these meanings:

> 0: the next script in the directory is run.
> A non-zero return value: no further scripts are executed from the prolog/epilog

directory.

Often, the script in a prolog/epilog directory is not a real script but a symlink, with the
symlink going to a real file located in a different directory. The general script is then able
to take care of what is expected of the symlink. The name of the symlink, and
destination file, usually hints at what the script is expected to do.

For example, if any health checks are marked to run as prejob checks during
cm-wlm-setup configuration, then each of the PBS workload manager variants use the
symlink 01-prolog-prejob within the prolog directory
/cm/local/apps/<workload manager>/var/prologs/. The symlink links to the script is
/cm/local/apps/cmd/scripts/prolog-prejob.

In this case, the script is expected to run before the job.
[root©headnode apps]# pwd

/cm/local/apps

[root©headnode apps]# ls -l *pbs*/var/prologs/ openpbs/var/prologs/:

total 0

lrwxrwxrwx 1 root root ... 01-prolog-prejob -> /cm/local/apps/cmd/scripts/prolog-prejob

pbspro/var/prologs/:

total 0

lrwxrwxrwx 1 root root ... 01-prolog-prejob -> /cm/local/apps/cmd/scripts/prolog-prejob

Epilog scripts (which run after a job run) have the location
/cm/local/apps/<workload manager>/var/epilogs/. Epilog script names follow the
same execution sequence pattern as prolog script names.

The 01-prolog-prejob symlink is created and removed by the cluster manager on each
compute node where prejob is enabled in the workload manager entity. Each such entity
provides an Enable Prejob parameter that affects the symlink existence:
[head->wlm[openpbs]]% get enableprejob yes

[head->wlm[openpbs]]%

This parameter is set to yes by cm-wlm-setup when at least one health check is selected
as a prejob one. If any healthcheck was configured as a prejob check before
cm-wlm-setup execution, and the administrator had a checkmark for that health check,
then the prejob is considered enabled.

NVIDIA DGX SuperPOD Administration Guide DU-10263-001 v5 | 77

5.6.2 Workload Manager Configuration For Prolog
and Epilog Scripts

The cluster manager configures generic prologs and epilogs during workload manager
setup with cm-wlm-setup. The administrator can configure prologs and epilogs using
appropriate parameters in the configuration of the workload managers, by creating the
symlinks in the local prologs and epilogs directories.

Generic prologs and epilogs are configured by default to run on job compute nodes (one
run per each node per job) for Slurm.

The following parameters for prologs and epilogs can be configured with cmsh or Base
View:

> Prolog Slurmctld: the fully qualified path of a program to execute before granting a
new job allocation. The program is executed on the same node where the slurm
server role is assigned. The path corresponds to the PrologSlurmctld parameter in
slurm.conf.

> Epilog Slurmctld: the fully qualified path of a program to execute upon
termination of a job allocation. The program is executed on the same node where the
slurm server role is assigned. Corresponds with the EpilogSlurmctld parameter in
slurm.conf.

> Prolog: the fully qualified path of a program to execute on job compute nodes before
granting a new job or step allocation. The program corresponds to the Prolog
parameter, and by default points to the generic prolog. This prolog runs on every
node of the job if the Prolog flags parameter contains the flag Alloc (the default
value), otherwise it is executed only on the first node of the job.

> Epilog: the fully qualified path of a program to execute on job compute nodes when
the job allocation is released.

5.7 Listing Slurm Jobs in the Queue
The jobs currently running on the cluster, or waiting in the queue to run, can be shown
using the squeue command:
dgxa100@pg-login-mgmt001:~$ squeue

 JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)

 25668 debug submit_h dgxa100 PD 0:00 1 (Priority)

 25669 debug submit_h dgxa100 PD 0:00 1 (Priority)

 25670 debug submit_h dgxa100 PD 0:00 1 (Priority)

 25592 debug submit_h dgxa100 R 1:13 1 dgx081

 25593 debug submit_h dgxa100 R 1:13 1 dgx090

 25594 debug submit_h dgxa100 R 1:13 1 dgx097

NVIDIA DGX SuperPOD Administration Guide DU-10263-001 v5 | 78

The fifth column of the squeue output is the job state (ST in the header):
> Jobs that are running with show in R state. The last column will list the nodes that

the job is running on.
> Jobs that are waiting to run will show in PD state, for pending. The last column will

show the reason that the job is not running yet. This may be some reason such as
Resources if there are not enough nodes available or Priority if the job is waiting in
line behind another job with higher priority.

See the squeue documentation for information about the available job states and ways
to filter the output.

5.8 Canceling a Slurm Job
Use the scancel command to cancel a Slurm job.
$ scancel <job-id>

If a running job is canceled, Slurm will send a SIGTERM signal to all the processes in the
job. If the job processes do not end within a certain number of seconds (30s by default,
configured with KillWait), then Slurm will send a SIGKILL signal.

If a pending job is canceled, Slurm will simply remove it from the queue.

5.9 Managing the Parameters on a Job
Each job has several configuration parameters associated with it, such as the time limit
or the partition it is running in. These parameters can be viewed with the following
command:
dgxa100@pg-login-mgmt001:~$ scontrol show job 25632

JobId=25632 JobName=submit_hpl_cuda11.0.sh

 UserId=dgxa100(13338) GroupId=dgxa100(13338) MCS_label=N/A

 Priority=44385 Nice=0 Account=compute-account QOS=normal

 JobState=PENDING Reason=Priority Dependency=(null)

 Requeue=1 Restarts=0 BatchFlag=1 Reboot=0 ExitCode=0:0

 RunTime=00:00:00 TimeLimit=02:00:00 TimeMin=N/A

 SubmitTime=2020-12-06T06:36:59 EligibleTime=2020-12-06T06:36:59

 AccrueTime=2020-12-06T06:36:59

 StartTime=2020-12-06T22:04:00 EndTime=2020-12-07T00:04:00 Deadline=N/A

 SuspendTime=None SecsPreSuspend=0 LastSchedEval=2020-12-06T08:04:40

 Partition=debug AllocNode:Sid=pg-login-mgmt001:1107071

 ReqNodeList=dgx081 ExcNodeList=(null)

 NodeList=(null) SchedNodeList=dgx081

 NumNodes=1-1 NumCPUs=8 NumTasks=8 CPUs/Task=1 ReqB:S:C:T=0:0:*:*

 TRES=cpu=8,node=1,billing=8

 Socks/Node=* NtasksPerN:B:S:C=8:0:*:1 CoreSpec=*

 MinCPUsNode=8 MinMemoryCPU=0 MinTmpDiskNode=0

 Features=(null) DelayBoot=00:00:00

 OverSubscribe=NO Contiguous=0 Licenses=(null) Network=(null)

 Command=/mnt/test/deepops/workloads/burn-in/submit_hpl_cuda11.0.sh

NVIDIA DGX SuperPOD Administration Guide DU-10263-001 v5 | 79

 WorkDir=/mnt/test/deepops/workloads/burn-in

 StdErr=/mnt/test/deepops/workloads/burn-

in/results/1node_dgxa100_20201206063703/1node_dgxa100_20201206063703-25632.out

 StdIn=/dev/null

 StdOut=/mnt/test/deepops/workloads/burn-

in/results/1node_dgxa100_20201206063703/1node_dgxa100_20201206063703-25632.out

 Power=

 TresPerNode=gpu:8

 MailUser=(null) MailType=NONE

Some of these parameters can be updated dynamically. For example, to extend the time
limit of a job that might not finish in the time allowed, use the scontrol update
command:
dgxa100@pg-login-mgmt001:~$ scontrol update job id=25632 timelimit=02:10:00

See the scontrol documentation for more information about viewing or modifying
Slurm configurations.

5.9.1 Additional Resources
Slurm provides many advanced features that can provide more fine-grained control over
job scheduling, system use, user and group accounting, and fairness of system use.

See these links for more information:

> SchedMD Slurm Quickstart Guide

> LLNL Slurm Quickstart Guide

NVIDIA DGX SuperPOD Administration Guide DU-10263-001 v5 | 80

6. Monitoring Cluster Devices

The cluster manager monitoring allows a cluster administrator to monitor anything that
can be monitored in the cluster. Much of the monitoring consists of predefined sampling
configurations. If there is anything that is not configured, but the data on which it is
based can be sampled, then monitoring can be configured for it too, by the
administrator.

The monitoring data can be viewed historically, as well as on demand. The historical
monitoring data can be stored raw, and optionally also as consolidated data—a way of
summarizing data.

The data can be handled raw and processed externally, or it can be visualized within Base
View in the form of customizable charts. Visualization helps the administrator spot
trends and abnormal behavior and is helpful in providing summary reports for managers.

Monitoring can be configured to set off alerts based on triggers, and predefined or
custom actions can be conducted automatically, depending on triggers. The triggers can
be customized according to user-defined conditional expressions.

Conducting such actions automatically after having set up triggers for them means that
the monitoring system can free the administrator from having to carry out these chores.

In this chapter, the monitoring system is explained with the following approach:
1. A basic example is first presented in which processes are run on a node. These

processes are monitored and trigger an action when a threshold is exceeded.

2. With this easy-to-understand example as a basic model, the various features and
associated functionality of the cluster manager monitoring system are then
described and discussed in further depth. These include visualization of data,
concepts, configuration, monitoring customization and cmsh use.

NVIDIA DGX SuperPOD Administration Guide DU-10263-001 v5 | 81

6.1 Basic Monitoring Example and Action
The example in this section is designed to present a basic illustration of what the
monitoring system is capable of handling. This example describes a structure around
which further details are fitted and filled in during the coverage in the rest of this
chapter.

6.1.1 Synopsis Of Basic Monitoring Example
In this example, a user is running an artificial CPU-intensive process on a head node that
is normally very lightly loaded. An administrator can monitor user mode CPU load usage
throughout the cluster and notices this usage spike. After getting the user to stop
wasting CPU cycles, the administrator may decide that putting a stop to such processes
automatically is a good idea. The administrator can set that up with an action that is
triggered when a high load is detected. The action that is taken after triggering, is to
stop the processes (Figure 9).

Figure 9. CPU-intensive processes started, detected, and stopped

NVIDIA DGX SuperPOD Administration Guide DU-10263-001 v5 | 82

6.1.2 Setting Up the Pieces

6.1.2.1 Running Artificial Loads
One way to simulate a user running CPU-intensive processes is to run several instances
of the standard unix utility, yes. The yes command sends out an endless number of lines
of y texts. It is typically used in scripts to answer dialog prompts for confirmation.

The administrator can run eight subshell processes in the background from the CLI on
the head node, with yes output sent to /dev/null:
for i in {1..8}; do (yes > /dev/null &); done

Running mpstat 2 shows usage statistics for each processor, updating every two
seconds. It shows that %user, which is user mode CPU usage percentage, is close to 90%
on an eight-core or less head node when the eight subshell processes are running.

6.1.2.2 Setting Up the Kill Action
To stop the artificial CPU-intensive yes processes, the killall yes command can be
used. The administrator can make it a part of a script killallyes:
#!/bin/bash killall yes

and make the script executable with a chmod 700 killallyes. For convenience, it may
be placed in the /cm/local/apps/cmd/scripts/actions directory where some other
action scripts also reside.

6.1.3 Using the Basic Monitoring Example
Now that the pieces are in place, the administrator can use Base View to add the
killallyesaction action to its action list, and then set up a trigger for the action.

6.1.3.1 Adding the Action to the Actions List
Clickpath Monitoring>Actions>Monitoring Actions>killprocess>Clone is used to
clone the structure of an existing action. The killprocess action is convenient because
it is expected to function in a similar way, so its options should not have to be modified
much. However, any action could be cloned, and the clone modified in appropriate
places.

The name of the cloned action is changed. That is, the administrator sets Name to
killallyesaction. The name of the file is arbitrary.

Script is set to the path /cm/local/apps/cmd/scripts/actions/killallyes, which is
where the script was placed earlier.

NVIDIA DGX SuperPOD Administration Guide DU-10263-001 v5 | 83

After saving, the killallyesaction action becomes part of the list of monitoring
actions (Figure 10).

Figure 10. Base View monitoring configuration: adding an action

6.1.3.2 Setting Up a Trigger Using CPUUser on the Login
Node

Clickpath Monitoring>Triggers>Failing health checks>Clone can be used to
configure a monitoring trigger by cloning an existing trigger. A trigger is a sample state
condition that runs an action. In this case, the sample state condition may be that the
metric (Section 6.2.1.8) CPUUser must not exceed 50. If it does, then an action
(killallyesaction) is run, which should kill the yes processes.

> CPUUser is a measure of the time spent in user mode CPU usage per second and is
measured in jiffy intervals per second.

> A jiffy interval is a somewhat arbitrary time interval that is predefined for kernel
developers per platform. It is the minimum amount of time that a process has access
to the CPU before the kernel can switch to another task.

> Unlike %user from the top command, a jiffy interval is not a percentage.

NVIDIA DGX SuperPOD Administration Guide DU-10263-001 v5 | 84

To configure the trigger attributes:
1. Goto the Monitoring Trigger list screen.

Clickpath Monitoring>Triggers>Failing health checks

2. Set a name for the trigger. The name is arbitrary. killallyestrigger is used in this
example.

3. Configure Enter actions so the trigger can run an action script if the sample state
crosses over into a state that meets the trigger condition.

4. Configure the condition under which the Enter actions action script is run. The
condition can be set by setting an expression in the expression subwindow.

For example, when CPUUser on the head node is above 50.

NVIDIA DGX SuperPOD Administration Guide DU-10263-001 v5 | 85

5. Set the name for the trigger. The name is arbitrary, and killallyestrigger is used
in this example.

6. Set the Name for the expression. Name is arbitrary, and killallyesregex is in this
example.

7. Set the entity. In this case, the entity being monitored is the head node. If the head
node is called headnode in this example, then headnode is the value set for entities.
An entity is often simply a device, but it can be any object that CMDaemon stores.

8. Set Measurables. In this case, CPUUser is used.

9. Set an operator and threshold. In this case GT, which is the greater than operator,
and 50 that is a significant amount of CPUUser time in jiffies/s, are set for Operator
and Value.

10. Enable the trigger to activate it.

After saving the configuration, the killallyesregex regular expression evaluates the
data being sampled for the trigger. If the expression is TRUE, then the trigger launches
the killallyesaction action.

6.1.3.3 The Result
In the preceding section, an action was added, and a trigger was set up with a
monitoring expression. With a default installation on a newly installed cluster, the
measurement of CPUUser is done every 120s (the period can be modified in the Data
Producer window of Base View, as seen in Figure 12.9 of the Bright Cluster Manager
Administrator Manual. The basic example configured with the defaults thus monitors if
CPUUser on the head node has crossed the bound of 50 jiffies/s every 120s.

If CPUUser is found to have entered—that is crossed over from below the value and gone
into the zone beyond 50 jiffies—then the killallyesregex regular expression notices
that. Then, the trigger it is configured for, killallyestrigger trigger, runs the
killallyesaction action, which runs the killallyes script. The killallyes script kills
all the running yes processes. Assuming the system is trivially loaded apart from these
yes processes, the CPUUser metric value then drops to below 50 jiffies.

To clarify what “found to have entered” means in the previous paragraph:

After an Enter trigger condition has been met for a sample, the first sample immediately
after that does not ever meet the Enter trigger condition, because an Enter threshold
crossing condition requires the previous sample to be below the threshold.

The second sample can only launch an action if the Enter trigger condition is met and if
the preceding sample is below the threshold.

Other non-yes CPU-intensive processes running on the head node can also trigger the
killallyes script. Since the script only kills yes processes, leaving any non-yes
processes alone, it would in such a case run unnecessarily. This is a deficiency due to the
contrived and simple nature of the basic example that is being illustrated here. In a
production case, the action script is expected to have a more sophisticated design.

NVIDIA DGX SuperPOD Administration Guide DU-10263-001 v5 | 86

The following sections in this chapter cover the concepts and features for the cluster
manager monitoring in greater detail.

6.2 Monitoring Concepts and Definitions
A discussion of the concepts of monitoring, along with definitions of terms used, is
appropriate at this point. The features of the monitoring system in the cluster manager
covered later in this chapter will then be understood more clearly.

6.2.1 Measurables
Measurables are measurements (sample values) that are obtained using data producers
(6.2.8) CMDaemon monitoring system. The measurements can be made for nodes, head
nodes, other devices, or other entities.

6.2.1.1 Types of Measurables
Measurables can be:

> enummetrics: measurements with a small number of states. The states can be
predefined, or user-defined. These are covered in 6.2.1.7.

> metrics: measurements with number values, and no data, as possible values. For
example, values such as: -13113143234.5, 24, 9234131299. These are covered in
6.2.1.8

> health checks: measurements with the states PASS, FAIL, and UNKNOWN as possible
states, and no data as another possible state, when none of the other states are set.
These are covered in 6.2.2.

6.2.1.2 no data and Measurables
If no measurements are carried out, but a sample value must be saved, then the sample
value is set to no data for a measurable. This is a defined value, not a null data value.
metrics and enummetrics can therefore also take the no data value.

6.2.1.3 Entities and Measurables
Normally, a device, or a category or some similar grouping is a convenient idea to keep in
mind as an entity, for concreteness.

The default entities in a new installation of the cluster manager are:

device category partition[base] software images

However, more generally, an entity can be an object from the following top-level modes
of cmsh:

category ceph cloud cmjob configuration overlay device edgesight etcd
fspart group jobqueue jobs kubernetes network nodegroup partition
profile rack softwareimage user

NVIDIA DGX SuperPOD Administration Guide DU-10263-001 v5 | 87

For example, a software image object that is to be provisioned to a node is an entity,
with some of the possible attributes of the entity being the name, kernel version,
creationtime, or locked attributes of the image:
[root©headnode ~]# cmsh -c "software image use default-image; show"

Parameter Value

-------------------------------- ---

Creation time Thu, 08 Jun 2017 18:15:13 CEST

Enable SOL no

Kernel modules <44 in submode> Kernel parameters

Kernel version 3.10.0-327.3.1.el7.x86_64

Locked no

Name default-image

...

Because measurements can be carried out on such a variety of entities, it means that
the monitoring and conditional actions that can be carried out on a cluster manager
cluster can be very diverse. This makes entities a powerful and versatile concept in the
cluster manager’s monitoring system for managing clusters.

6.2.1.4 Listing Measurables Used by an Entity
In cmsh, for an entity, such as a device within device mode, a list of the measurables
used by that device can be viewed with the measurables command.
[headnode->device]% measurables dgx001

Type Name Parameter Class Producer

------------ ------------------- ---------- --------- ---------------

Enum DeviceStatus Internal DeviceState

HealthCheck ManagedServicesOk Internal CMDaemonState

HealthCheck default gateway Network default gateway

HealthCheck diskspace Disk diskspace

HealthCheck dmesg OS dmesg

...

The subsets of these measurables can be listed with list enum (6.2.1.7), list metric
(6.2.1.8), and list healthcheck (6.2.2).

In Base View, the equivalent to listing the measurables can be conducted using clickpath
Monitoring>All Health Checks.

6.2.1.5 Listing Measurables from monitoring Mode
Similarly, under monitoring mode, within the measurable submode, the list of
measurable objects that can be used can be viewed with a list command:
[headnode->monitoring]% measurable list

Type Name (key) Parameter Class Producer

------------ ------------------- ---------- ---------------------------- ------------------

Enum DeviceStatus Internal DeviceState

HealthCheck ManagedServicesOk Internal CMDaemonState

HealthCheck Mon::Storage Internal/Monitoring/Storage MonitoringSystem

HealthCheck chrootprocess OS chrootprocess

HealthCheck cmsh Internal cmsh

...

NVIDIA DGX SuperPOD Administration Guide DU-10263-001 v5 | 88

The subsets of these measurables can be listed with list enum (6.2.1.7), list metric
(6.2.1.8), and list healthcheck (6.2.2).

In Base View, the equivalent to listing the measurables can be conducted through
clickpath Monitoring>Measurables and listing the subsets of the measurables is
possible using column filtering.

6.2.1.6 Viewing Parameters for a measurable in monitoring

Mode
Within the measurable submode, parameters for a particular measurable can be viewed
with the show command for that measurable.
[headnode->monitoring->measurable]% use devicestatus [headnode->monitoring-

>measurable[DeviceStatus]]% show

Parameter Value

-------------------------------- ----------------------

Class Internal

Consolidator none

Description The device status

Disabled no (DeviceState)

Maximal age 0s (DeviceState)

Maximal samples 4,096 (DeviceState)

Name DeviceStatus

Parameter

Producer DeviceState

Revision

Type Enum

6.2.1.7 Enummetrics
An enummetric is a measurable for an entity that can only take a limited set of values.
DeviceStatus is the only enummetric. This may change in future versions of the cluster
manager.

The full list of possible values for the enummetric DeviceStatus is:

up, down, closed, installing, installer_failed, installer_rebooting,
installer_callinginit, installer_unreachable, installer_burning,
burning, unknown, opening, going_down, pending, and no data.

The enummetrics available for use can be listed from within the measurable submode of
the monitoring mode:
[headnode->monitoring->measurable]% list enum

Type Name (key) Parameter Class Producer

------ ------------------------ ------------------- --------- -------------------

Enum DeviceStatus Internal DeviceState

[headnode->monitoring->measurable]%

The list of enummetrics that is configured by an entity, such as a device, can be viewed
with the enummetrics command for that entity:
[headnode->device]% enummetrics dgx001

Type Name Parameter Class Producer

NVIDIA DGX SuperPOD Administration Guide DU-10263-001 v5 | 89

------ ------------------------ ------------------- --------- -------------------

Enum DeviceStatus Internal DeviceState

[headnode->device]%

The states that the entity has been through can be viewed with the
dumpmonitoringdata command:
[headnode->device]% dumpmonitoringdata -99d now devicestatus dgx001

Timestamp Value Info

-------------------------- ----------- ----------

2017/07/03 16:07:00.001 down

2017/07/03 16:09:00.001 installing

2017/07/03 16:09:29.655 no data

2017/07/03 16:11:00 up

2017/07/12 16:05:00 up

The parameters of an enummetric such as devicestatus can be viewed and set from
monitoring mode, from within the measurable submode (6.2.1.6).

6.2.1.8 Metrics
A metric for an entity is typically a numeric value for an entity. The value can have units
associated with it.

In the example of 6.1, the metric value considered was CPUUser, measured at the default
regular time intervals of 120s.

The value can also be defined as no data. no data is substituted for a null value when
there is no response for a sample. no data is not a null value once it has been set. This
means that there are no null values stored for monitored data.

Other examples for metrics are:

> LoadOne (value is a number, for example: 1.23).
> WriteTime (value in ms/s, for example: 5 ms/s).
> MemoryFree (value in readable units, for example: 930 MiB, or 10.0 GiB).

A metric can be a built-in, which means it comes with the cluster manager as integrated
code within CMDaemon. This is based on c++ and is therefore much faster than the
alternative. The alternative is that a metric can be a standalone script, which means that
it typically can be modified more easily by an administrator with scripting skills.

The word metric is often used to mean the script or object associated with a metric as
well as a metric value. The context makes it clear that is meant.

Metrics in use can be viewed in cmsh using the list command from monitoring mode:
[headnode->monitoring]% measurable list metric

Type Name (key) Parameter Class Producer

------- ------------------------ -------------- ------------------ -------------

Metric AlertLevel count Internal AlertLevel

Metric AlertLevel maximum Internal AlertLevel

...

In Base View, the metrics can be viewed with clickpath Monitoring>Measurables and
then clicking on the filter widget to select Metric.

NVIDIA DGX SuperPOD Administration Guide DU-10263-001 v5 | 90

A list of metrics in use by an entity can be viewed in cmsh using the metrics command
for that entity.

For example, for the entity dgx001 in mode devices:

[headnode->devices]% metrics dgx001

Type Name Parameter Class Producer

------- ------------------------ -------------- --------- --------------

Metric AlertLevel count Internal AlertLevel

Metric AlertLevel maximum Internal AlertLevel

...

The parameters of a metric such as AlertLevel:count can be viewed and set from
monitoring mode, from within the measurable submode, just as for the other
measurables:
[headnode->monitoring->measurable]% use alert level:count

[headnode->monitoring->measurable[AlertLevel:count]]% show

Parameter Value

-------------------------------- ----------------------

Class Internal

Consolidator default

Cumulative no

Description Number of active triggers

Disabled no

Maximal age 0s

Maximal samples 0

Maximum 0

Minimum 0

Name AlertLevel

Parameter count

Producer AlertLevel

Revision

Type Metric

The equivalent Base View clickpath to edit the parameters is
Monitoring>Measurables>Edit.

6.2.2 Health Check
A health check value is a response to a check conducted on an entity. The response
indicates the health of the entity for that check.

For example, the ssh2node health check, which runs on the head node to check if the
SSH port 22 passwordless access to regular nodes is reachable.

A health check is run at a regular time interval, and can have the following possible
values:

> PASS: the health check succeeded. For example, if ssh2node is successful, which
suggests that an ssh connection to the node is fine.

> FAIL: the health check failed. For example, if ssh2node was rejected. This suggests
that the ssh connection to the node is failing.

NVIDIA DGX SuperPOD Administration Guide DU-10263-001 v5 | 91

> UNKNOWN: the health check had an unknown response. For example, if ssh2node has a
timeout, due to routing or other issues, it means that it is unknown whether the
connection is fine or failing. The administrator should investigate this further.

> no data: the health check did not run, so no data was obtained. For example, if
ssh2node is disabled for some time, then no data values were obtained during this
time. Since the health check is disabled, it means that no data cannot be recorded
during this time by ssh2node. However, because having a no data value in the
monitoring data for this situation is a good idea—explicitly knowing about having no
data is helpful for various reasons—then no data values can be set, by CMDaemon, for
samples that have no data.

Other examples of health checks are:

> diskspace: check if the hard drive still has enough space left on it.
> mounts: check mounts are accessible.
> mysql: check status and configuration of MySQL is correct.
> hpraid: check RAID and health status for certain HP RAID hardware

These and others can be seen in the directory:
/cm/local/apps/cmd/scripts/healthchecks

6.2.2.1 Health Checks
In Base View, the health checks that can be configured for all entities can be seen with
clickpath Monitoring>Measurables and then clicking on the filter widget to select Health
Check. Options can be set for each health check by clicking through using the Edit
button.

6.2.2.2 All Configured Health Checks
All configured healthchecks can be viewed using the clickpath Monitoring>All Health
Checks. The view can be filtered per column.

6.2.2.3 Configured Health Checks for an Entity
An overview can be seen for a particular entity <entity> using clickpath
Monitoring>Health status>entity>Show.

6.2.2.4 Severity Levels for Health Checks, and Overriding
Them

A health check has a settable severity (6.2.5) associated with its response defined in the
trigger options.

For standalone health checks, the severity level defined by the script overrides the value in the
trigger. For example, FAIL 40 or UNKNOWN 10, as is set in the hpraid health check
(/cm/local/apps/cmd/scripts/healthchecks/hpraid).

Severity values are processed for the AlertLevel metric (6.2.6) when the health check
runs.

NVIDIA DGX SuperPOD Administration Guide DU-10263-001 v5 | 92

6.2.2.5 Default Templates for Health Checks and Triggers
A health check can also launch an action based on any of the response values.

Monitoring triggers have the following default templates:

The severity level is one of the default parameters for the corresponding health checks.
These defaults can also be modified to allow an action to be launched when the trigger
runs, for example, sending an email notification whenever any health check fails.

With the default templates, the actions are by default set for all health checks. However,
specific actions that are launched for a particular measurable instead of for all health
checks can be configured. To do this, one of the templates can be cloned, the trigger can
be renamed, and an action can be set to launch from a trigger.

6.2.3 Trigger
A trigger is a threshold condition set for a sampled measurable. When a sample crosses
the threshold condition, it enters or leaves a zone that is demarcated by the threshold.

A trigger zone also has a settable severity (6.2.5) associated with it. This value is
processed for the AlertLevel metric (6.2.6) when an action is triggered by a threshold
event.

Triggers are discussed in 6.1.3.2.

6.2.4 Action
In the basic example of 6.1, the action script is the script added to the monitoring
system to kill all yes processes. The script runs when the condition is met that CPUUser
crosses 50 jiffies.

An action is a standalone script or a built-in command that is executed when a condition
is met and has exit code 0 on success. The condition that is met can be:

> A FAIL, PASS, UNKNOWN, or no data from a health check.
> A trigger condition. This can be a FAIL or PASS for conditional expressions.
> State flapping (6.2.7)

The actions that can be run are listed from within the action submode of the monitoring
mode.

[headnode->monitoring->action]% list

Type Name (key) Run on Action

----------- ---------------- ------- ---

Drain Drain Active Drain node from all WLM

Email Send e-mail Active Send e-mail

Event Event Active Send an event to users with connected client

ImageUpdate ImageUpdate Active Update the image on the node

PowerOff PowerOff Active Power off a device

PowerOn PowerOn Active Power on a device

PowerReset PowerReset Active Power reset a device

Reboot Reboot Node Reboot a node

NVIDIA DGX SuperPOD Administration Guide DU-10263-001 v5 | 93

Script killallyesaction Node /cm/local/apps/cmd/scripts/actions/killallyes

Script killprocess Node /cm/local/apps/cmd/scripts/actions/killprocess.pl

Script remount Node /cm/local/apps/cmd/scripts/actions/remount

Script testaction Node /cm/local/apps/cmd/scripts/actions/testaction

Shutdown Shutdown Node Shutdown a node

Undrain Undrain Active Undrain node from all WLM

The Base View equivalent is accessible using clickpath Monitoring>Actions.

Configuration of monitoring actions is discussed further in 6.1.3.1.

6.2.5 Severity
Severity is a positive integer value that the administrator assigns for a trigger. It takes
one of six suggested values (Table 12).

Table 12. Severity values

Value Name Icon Description
0 debug

Debug message

0 info

Informational message

10 notice

Normal, but significant, condition

20 warning

Warning conditions

30 error
 Error conditions

40 alert
 Action must be taken immediately

Severity levels are used in the AlertLevel metric (6.2.6). They can also be set by the
administrator in the return values of health check scripts (6.2.2).

By default, the severity value is 15 for a health check FAIL response, 10 for a health
check UNKNOWN response, and 0 for a health check PASS response (6.2.2).

6.2.6 AlertLevel
AlertLevel is a special metric. It is sampled and re-calculated when an event with an
associated Severity (6.2.5) occurs.

There are three types of AlertLevel metrics:

1. AlertLevel (count): the number of events that are at notice level and higher. This
metric alerts the administrator to the number of issues.

2. AlertLevel (max): the maximum severity of the latest value of all the events. This
metric alerts the administrator to the severity of the most important issue.

3. AlertLevel (sum): the sum of the latest severity values of all the events. This metric
alert the administrator to the overall severity of issues.

NVIDIA DGX SuperPOD Administration Guide DU-10263-001 v5 | 94

6.2.7 Flapping
Flapping, or State Flapping, is when a measurable trigger (6.2.3) that is detecting
changes, changes that are too frequent. That is, the measurable goes in and out of the
zone too many times over several samples.

In the basic example of 6.1, if the CPUUser metric crossed the threshold zone five times
within five minutes (the default values for flap detection), it would by default be
detected as flapping. A flapping alert would then be recorded in the event viewer, and a
flapping action could also be launched if configured to do so.

6.2.8 Data Producer
A data producer produces measurables. Sometimes it can be a group of measurables, as
in the measurables provided by a data producer that is being used:
[headnode->monitoring->measurable]% list -f name:25,producer:15 | grep ProcStat

BlockedProcesses ProcStat

CPUGuest ProcStat

CPUIdle ProcStat

CPUIrq ProcStat

CPUNice ProcStat

CPUSoftIrq ProcStat

CPUSteal ProcStat

CPUSystem ProcStat

CPUUser ProcStat

CPUWait ProcStat

CtxtSwitches ProcStat

Forks ProcStat

Interrupts ProcStat

RunningProcesses ProcStat

Sometimes it may just be one measurable, as provided by a used data producer:
[headnode->monitoring->measurable]% list -f name:25,producer:15 | grep ssh2node ssh2node

 ssh2node

It can even have no measurables, and just be an empty container for measurables that
are not in use yet.

In cmsh all data producers (used and unused) can be listed as follows:
[headnode->monitoring->setup]% list

The equivalent in Base View is using clickpath Monitoring>Data Producers.

NVIDIA DGX SuperPOD Administration Guide DU-10263-001 v5 | 95

The data producers configured for an entity, such as a head node headnode, can be listed
with the monitoringproducers command:
[headnode->device[headnode]]% monitoringproducers

Type Name Arguments Measurables Node execution filters

------------------ ----------------- ------------ ------------ --------------------

AlertLevel AlertLevel 3 / 231 <0 in submode>

CMDaemonState CMDaemonState 1 / 231 <0 in submode>

ClusterTotal ClusterTotal 18 / 231 <1 in submode>

Collection NFS 32 / 231 <0 in submode>

Collection sdt 0 / 231 <0 in submode>

DeviceState DeviceState 1 / 231 <1 in submode>

HealthCheckScript chrootprocess 1 / 231 <1 in submode>

HealthCheckScript cmsh 1 / 231 <1 in submode>

HealthCheckScript default gateway 1 / 231 <0 in submode>

HealthCheckScript diskspace 1 / 231 <0 in submode>

HealthCheckScript dmesg 1 / 231 <0 in submode>

HealthCheckScript exports 1 / 231 <0 in submode>

HealthCheckScript failedprejob 1 / 231 <1 in submode>

HealthCheckScript hardware-profile 0 / 231 <1 in submode>

HealthCheckScript ib 1 / 231 <0 in submode>

HealthCheckScript interfaces 1 / 231 <0 in submode>

HealthCheckScript ldap 1 / 231 <0 in submode>

HealthCheckScript lustre 1 / 231 <0 in submode>

HealthCheckScript mounts 1 / 231 <0 in submode>

HealthCheckScript mysql 1 / 231 <1 in submode>

HealthCheckScript ntp 1 / 231 <0 in submode>

HealthCheckScript oomkiller 1 / 231 <0 in submode>

HealthCheckScript opalinkhealth 1 / 231 <0 in submode>

HealthCheckScript rogueprocess 1 / 231 <1 in submode>

HealthCheckScript schedulers 1 / 231 <0 in submode>

HealthCheckScript smart 1 / 231 <0 in submode>

HealthCheckScript ssh2node 1 / 231 <1 in submode>

Job JobSampler 0 / 231 <1 in submode>

JobQueue JobQueueSampler 7 / 231 <1 in submode>

MonitoringSystem MonitoringSystem 36 / 231 <1 in submode>

ProcMemInfo ProcMemInfo 10 / 231 <0 in submode>

ProcMount ProcMounts 2 / 231 <0 in submode>

ProcNetDev ProcNetDev 18 / 231 <0 in submode>

ProcNetSnmp ProcNetSnmp 21 / 231 <0 in submode>

ProcPidStat ProcPidStat 5 / 231 <0 in submode>

ProcStat ProcStat 14 / 231 <0 in submode>

ProcVMStat ProcVMStat 6 / 231 <0 in submode>

Smart SmartDisk 0 / 231 <0 in submode>

SysBlockStat SysBlockStat 20 / 231 <0 in submode>

SysInfo SysInfo 5 / 231 <0 in submode>

UserCount UserCount 3 / 231 <1 in submode>

The displayed data producers are the ones configured for the entity, even if there are no
measurables used by the entity.

Data producer configuration in Base View is discussed further in Section 12.4.1 of the
Bright Cluster Manager Administrator Manual.

NVIDIA DGX SuperPOD Administration Guide DU-10263-001 v5 | 96

6.2.9 Main Monitoring Interfaces of Base View
Base View, besides having the default settings mode, has some other display modes and
logging view modes that can be selected using the 11 icons in the top-right corner of
the Base View standard display (Figure 11).

Figure 11. Base View top-right corner icons

The 11 icons are described from left to right next:

1. Toggle dark theme option allows the display of Base View to use a darker theme.
2. Search box allows resource to be searched for, with predictive text suggestions.

3. Settings mode is active when Base View first starts up.
The Settings mode has a navigation panel to the left of it, showing the resources of
the cluster as expandable items. One of the resources is Monitoring. This resource
should not be confused with the Bright View Monitoring mode, which is launched by
the next icon. The Monitoring resource is about configuring how items are
monitored and how their data values are collected.

4. The Monitoring mode allows visualization of the data values collected according to
the specifications of the Bright View Monitoring resource. The visualization allows
graphs to be configured.

5. The Accounting mode typically allows visualization of job resources used by users,
although it can be used to visualize job resources used by other aggregation entities.
This is helpful tracking resources consumed by users.

6. The Chargeback mode allows the monitoring of resources requested over a period for
jobs run by selected groups.

7. The Events icon allows logs of events to be viewed.
8. The Action results icon allows the logs of the results of actions to be viewed.
9. The Background tasks icon allows background tasks to be viewed.
10. The Unsaved entities icon allows unsaved entities to be viewed.

11. The Account handling icon allows account settings to be managed for the Base View
user.

NVIDIA DGX SuperPOD Administration Guide DU-10263-001 v5 | 97

6.3 Monitoring Visualization with Base
View

The Monitoring icon in the menu bar of Base View (Figure 11) launches an intuitive
visualization tool that is the main GUI tool for getting a feel of the system’s behavior
over periods of time. With this tool, the measurements and states of the system can be
viewed as resizable and overlayable graphs. The graphs can be zoomed in and out over a
particular time, the graphs can be laid out on top of each other, or the graphs can be laid
out as a giant grid. The graph scale settings can also be adjusted, stored, and recalled
for use the next time a session is started.

An alternative to Base View’s visualization tool is the CLI cmsh. This has the same
functionality in the sense that data values can be selected and studied according to
configurable parameters with it. The data values can even be plotted and displayed on
graphs with cmsh with the help of unix pipes and graphing utilities. However, the
strengths of monitoring with cmsh lie elsewhere: cmsh is more useful for scripting or for
examining pre-decided metrics and health checks rather than a quick visual check over
the system. This is because cmsh needs more familiarity with options and is designed for
text output instead of interactive graphs.

See Section 12.5 and Section 12.6 of the Base Command Manager Administrator Manual
for more information about monitoring with cmsh.

Visualization of monitoring graphs with Base View is now described.

6.3.1 The Monitoring Window
Selecting the Monitoring icon from the menu bar of Base View (Figure 11) launches a
monitoring window for visualizing data opens. By default, this displays blank plot
panels—graph axes with a time scale going back some time on the x-axis, and with no
y-axis measurable data values plotted.

The monitoring window for Base View is shown in Figure 12.

Figure 12. Base View monitoring window

NVIDIA DGX SuperPOD Administration Guide DU-10263-001 v5 | 98

6.3.1.1 Finding and Selecting the Measurable to be Plotted
To plot measurables, the entity that it belongs to should be selected from the navigation
menu on the left-hand side. Once that has been selected, a class for that measurable
can be chosen, and then the measurable itself can be selected. For example, to plot the
measurable CPUUser for a head node headnode, it can be selected from the navigation
clickpath Device>headnode>CPU>CPUUser.

Sometimes, finding a measurable is easier with the filter search box. Entering CPUUser
there shows all the measurables with that text (Figure 13). The search is
case-insensitive.

Figure 13. Base View monitoring filter search box

The filter search box can handle some simple regexes too, with .* and | taking their
usual meaning:

> dgx001.*cpuuserdgx001cpuuser

> (dgx001|dgx002).*cpuuserdgx002dgx001

The / (forward slash) allows filtering according to the data path. It corresponds to the
navigation depth in the tree hierarchy:
dgx001/cpu/cpu user

Searches for a measurable with a data path that matches dgx001/cpu/cpu user.

6.3.1.2 Plotting The Measurable
Once the measurable is selected, it can be drag-and-dropped into a plot panel. This
causes the data values to be plotted.

When a measurable is plotted into a panel, two graph plots are displayed. The smaller,
bottom plot represents the polled value as a bar chart. The larger, upper plot represents
an interpolated line graph.

NVIDIA DGX SuperPOD Administration Guide DU-10263-001 v5 | 99

Different kinds of interpolations can be set. To get a quick idea of the effect of different
kinds of interpolations, https://bl.ocks.org/mbostock/4342190 is an interactive overview
that shows how they work on a small set of values.

The time axes can be expanded or shrunk using the mouse wheel in the graphing area of
the plot panel. The resizing is centered around the position of the mouse pointer.

NVIDIA DGX SuperPOD Administration Guide DU-10263-001 v5 | 100

7. Managing High-Speed Fabrics

The high-speed InfiniBand fabrics are managed with NVIDIA Unified Fabric Manager
(UFM). UFM is a powerful platform for managing scale-out computing environments.
UFM enables data center operators to efficiently monitor and operate the entire fabric,
boost application performance, and maximize fabric resource utilization.

While other tools are device-oriented and involve manual processes, UFM automated and
application-centric approach bridges the gap between servers, applications, and fabric
elements, thus enabling administrators to manage and optimize from the smallest to the
largest and most performance-demanding clusters.

The dashboard for UFM is shown in Figure 14.

Figure 14. UFM Dashboard

NVIDIA DGX SuperPOD Administration Guide DU-10263-001 v5 | 101

7.1 Verifying that UFM is Running
Use the service ufmha status command to verify UFM is running:
ufm001# service ufmha status

ufmha status

==

Local Host

Server ufm001

Kernel 3.10.0-1127.19.1.el7.x86_64

IP Address 10.166.130.31

HA Interface bond0

DRBD Partition /dev/sda6

Heartbeat Master

Mysql Running

UFM Server Running

DRBD State Primary

DRBD Device State UpToDate

==

Remote Host

Server ufm002

Kernel 3.10.0-1127.19.1.el7.x86_64

IP Address 10.166.130.32

HA Interface bond0

DRBD Partition /dev/sda6

Heartbeat Slave

Mysql Stopped

UFM Server Stopped

DRBD State Secondary

DRBD Device State UpToDate

==

Virtual IP 10.166.130.58/24

Broadcast IP 10.166.130.255

==

Refer to https://support.mellanox.com/s/productdetails/a2v50000000XcP4AAK/ufm for the
full documentation.

NVIDIA DGX SuperPOD Administration Guide DU-10263-001 v5 | 102

8. System Health Checks and
Debugging

The key to successfully operating and managing a cluster is that all nodes are
configured identically for their function, and they operate consistently. When issues
arise, it becomes necessary to test systems to see if they are operating correctly.

If an issue is found, it should be removed from the batch partition for initial triage.

Unless the issue is obvious, follow the GPU System debugging guidelines process that is
at https://docs.nvidia.com/deploy/gpu-debug-guidelines/index.html

In addition, run tools specific to the DGX A100 systems. For health checks, this is the
NVIDIA System Management tool (nvsm).

It is also useful to develop a set of single-node and multi-node tests to help validate the
operation and performance of the DGX SuperPOD (Table 13). Often it is best to use your
own key applications for this purpose as those exercise the system in the way that is
most important to the users.

Table 13. DGX SuperPOD validation tools

Software Purpose Link

NCCL Fabric https://github.com/NVIDIA/nccl-tests

HPL Math intensive
applications with
network
communications

https://github.com/NVIDIA/deepops/tree/master/workloads/burn-
in

In addition, there are standard applications that can be used to validate both single- and
multi-node performance. When running the following tests, you should expect that
performance between runs of the same configuration on distinct parts of the system
should run in a similar time or at a similar performance level. Performance can vary
between run-to-run because of system configuration and existing job load. However,
over multiple runs on the same sets of hardware a difference is found, it can indicate an
issue with some component of that system.

NVIDIA DGX SuperPOD Administration Guide DU-10263-001 v5 | 103

8.1 Collecting Log Files
Important log files include:

1. /var/log/cmdaemon (the most important one—CMDaemon log file).

2. /var/log/node-installer (node-installer log file).

3. /var/spool/cmd/<slave-node-name>.rsync (provisioning logs).

8.1.1 Log Subsystems
Each logging message is emitted as part of a subsystem which is defined on a per-
translation unit basis. Example subsystems include CONFIG, MIC, GPU, CLOUD, PROV,
SERVICE, WLM, DB, USER, JSON, HADOOP, and CMD (can be found in logger.h).

Example log output /var/log/cmdaemon:
Mar 30 03:38:02 headnodeName cmd: [CLOUD] DevDbg:

Mar 30 03:38:02 headnodeName cmd: [CMD] Debug: [programrunner.cpp:797]

ProgramRunner: /cm/local/apps/cmd/scripts/cloudproviders/openstack/openstackcommands.py [DONE]

0 0

 Mar 30 03:38:02 headnodeName cmd: [CMD] Warning: [magicmanager.cpp:1797] This

is a warning.

The subsystem enclosed in [], followed by the log type (debug, warning, info, error),
the location in the source code (present only in -D _DEBUG compiles), and followed by the
log message.

8.1.2 Increasing Log Verbosity
Verbosity of individual subsystems can be changed using the
/cm/local/apps/cmd/etc/logging.cmd.conf config file. After modifying
logging.cmd.conf one must either restart CMDaemon or run service cmd logconf to
reload the logging config file.

The default settings in this file are as follows:
 Severity {

 info: *

 warning: *

 debug:

 error: *

 }

Which means that messages from all subsystems in all verbosity levels (except "debug")
are always logged. Modifying logging.cmd.conf is useful when focusing on developing
futures for only specific subsystems, as it can be used to quiet down logs from the
remaining subsystems and focus only on essentials.

NVIDIA DGX SuperPOD Administration Guide DU-10263-001 v5 | 104

That is, all log messages from the CLOUD subsystem can be enabled, while only allowing
WARNING and ERROR messages from all other remaining subsystems.
Severity {

 info: CLOUD

 warning: *

 debug: CLOUD

 error: *

 }

One can also use logging.cmd.conf to optionally enable logging of ThreadIDs,
subsystem names, and microsecond-resolutions in the timestamps.

8.1.3 Global Debug Mode
One can toggle the so called global debug mode by means of service cmd
debug{on|off} or by means of starting cmd with -d flags. In this mode, the custom
settings from logging.cmd.conf are ignored and instead all log messages from all
subsystems are always logged in maximum verbosity. Global debug mode is equivalent
to using the following logging.cmd.conf:
 Severity {

 info: *

 warning: *

 debug: *

 error: *

 }

8.1.4 LOGPREFIX
Use the LOGPREFIX("DeviceManager")macro to prepend all subsequent
log{i,d,dd,e,w}() calls with an additional text, for example:
 Manager::someFun() {

 LOGPREFIX("SomeFunction:");

 logdd("entered function");

 ...

 logdd("left function");

 }

Will result in the following logs:
"SomeFunction: entered function"

"SomeFunction: left function"

NVIDIA DGX SuperPOD Administration Guide DU-10263-001 v5 | 105

9. Provisioning Nodes

The action of transferring the software image to the nodes is called node provisioning
and is done by special nodes called the provisioning nodes. More complex clusters can
have several provisioning nodes configured by the administrator, thereby distributing
network traffic loads when many nodes are booting.

Creating provisioning nodes is done by assigning a provisioning role to a node or category
of nodes. Similar to how the head node always has a boot role, the head node also always
has a provisioning role.

A provisioning node keeps a copy of all the images it provisions on its local drive, in the
same directory as where the head node keeps such images. The local drive of a
provisioning node must therefore have enough space available for these images, which
may require changes in its disk layout.

Table 14 shows provisioning role parameters.

Table 14. Provisioning role parameters

Parameter Description

allImages The following values decide what images that the provisioning node provides:

Onlocaldisk all images on the local disk, regardless of any other parameters set

Onsharedstorage all images on the shared storage, regardless of any other parameters set

no (the default) only images listed in the localimages or sharedimages parameters

localimages A list of software images on the local disk that the provisioning node accesses
and provides. The list is used only if allImages is “no”

sharedimages A list of software images on the shared storage that the provisioning node
accesses and provides. The list is used only if allImages is “no”

Provisioning slots The maximum number of nodes that can be provisioned in parallel by the
provisioning node. The optimum number depends on the infrastructure. The
default value is 10, which is safe for typical cluster setups. Setting it lower may
sometimes be needed to prevent network and disk overload.

Nodegroups A list of node groups (2.1.4). If set, the provisioning node only provisions nodes
in the listed groups. Conversely, nodes in one of these groups can only be
provisioned by provisioning nodes that have that group set. Nodes without a
group, or nodes in a group not listed in nodegroups, can only be provisioned by
provisioning nodes that have no nodegroups values set. By default, the
nodegroups list is unset in the provisioning nodes. The nodegroups setting is
typically used to set up a convenient hierarchy of provisioning, for example
based on grouping by rack and by groups of racks.

NVIDIA DGX SuperPOD Administration Guide DU-10263-001 v5 | 106

9.1 Role Setup with cmsh
In the following cmsh example, the administrator creates a new category called misc. The
default category default already exists in a newly installed cluster.

The administrator then assigns the role called provisioning, from the list of available
assignable roles to nodes in the misc category. After the assign command has been
typed in, but before entering the command, tab-completion prompting can be used to
list all the possible roles. Assignment creates an association between the role and the
category. When the assign command runs, the shell drops into the level representing
the provisioning role.

If the role called provisioning were already assigned, then the use provisioning
command would drop the shell into the provisioning role, without creating the
association between the role and the category.

Once the shell is within the role level, the role properties can be edited.

For example, the nodes in the misc category assigned the provisioning role can have
default-image set as the image that they provision to other nodes, and have 20 set as
the maximum number of other nodes to be provisioned simultaneously (some text is
elided in the following example):
[headnode]% category add misc [headnode->category*[misc*]]% roles

[headnode->category*[misc*]->roles]% assign provisioning [headnode...*]-

>roles*[provisioning*]]% set allimages no [headnode...*]->roles*[provisioning*]]% set

localimages default-image [headnode...*]->roles*[provisioning*]]% set provisioningslots 20

[headnode...*]->roles*[provisioning*]]% show

Parameter Value

--------------------------------- ---------------------------------

All Images no

Include revisions of local images yes

Local images default-image

Name provisioning

Nodegroups

Provisioning associations <0 internally used> Revision

Shared images

Type ProvisioningRole

Provisioning slots 20

[headnode->category*[misc*]->roles*[provisioning*]]% commit

[headnode->category[misc]->roles[provisioning]]

Assigning a provisioning role can also be done for an individual node instead, if using a
category is deemed overkill:
[headnode]% device use dgx001 [headnode->device[dgx001]]% roles

[headnode->device[dgx001]->roles]% assign provisioning

[headnode->device*[dgx001*]->roles*[provisioning*]]%

...

A role change configures a provisioning node but does not directly update the
provisioning node with images. After conducting a role change, the cluster manager runs
the updateprovisioners command described in 9.3 automatically, so that regular
images are propagated to the provisioners.

NVIDIA DGX SuperPOD Administration Guide DU-10263-001 v5 | 107

The propagation can be done by provisioners themselves if they have up-to-date images.
CMDaemon tracks the provisioning nodes role changes, as well as which provisioning
nodes have up-to-date images available, so that provisioning node configurations and
compute node images propagate efficiently. Thus, for example, image update requests
by provisioning nodes take priority over provisioning update requests from compute
nodes.

Other assignable provisional roles include monitoring, storage, and failover.

9.2 Role Setup with Base View
The provisioning configuration outlined in cmsh mode (9.1) can be done using Base View.

A misc category can be added using clickpath
Grouping>Categories>Add>Settings<name>.

Within the Settings tab, the node category should be given a name misc (Figure 15) and
saved.

Figure 15. Base View: Adding a misc category

NVIDIA DGX SuperPOD Administration Guide DU-10263-001 v5 | 108

The Roles window can then be opened from within the JUMP TO section of the settings
pane. To add a role, select the + Add button in the Roles window. A scrollable list of
available roles is then displayed (Figure 16).

Figure 16. Base View: Setting a provisioning role

After selecting a role, navigating using the Back buttons to the Settings menu, and
select the Save button.

The role has properties that can be edited (Figure 17).

Figure 17. Base View: Configuring a Provisioning Role

NVIDIA DGX SuperPOD Administration Guide DU-10263-001 v5 | 109

For example:
> The Provisioning slots setting decides how many images can be supplied

simultaneously from the provisioning node.
> The All images setting decides if the role provides all images.
> The Local images setting decides what images the provisioning node supplies from

local storage.
> The Shared images setting decides what images that the provisioning node supplies

shared storage.

The images offered by the provisioning role should not be confused with the software
image setting of the misc category itself, which is the image the provisioning node
requests for itself from the category.

9.3 Housekeeping
The head node does housekeeping tasks for the entire provisioning system. Provisioning
is done on request for all non-head nodes on a first-come, first-serve basis. Since
provisioning nodes themselves, too, must be provisioned, it means that to cold boot an
entire cluster up quickest, the head node should be booted and be up first, followed by
provisioning nodes, and finally by all other non-head nodes. Following this start-up
sequence ensures that all provisioning services are available when the other non-head
nodes are started up.

Some aspects of provisioning housekeeping are discussed next.

9.3.1 Provisioning Node Selection
When a node requests provisioning, the head node allocates the task to a provisioning
node. If there are several provisioning nodes that can provide the image required, then
the task is allocated to the provisioning node with the lowest number of already-started
provisioning tasks.

9.3.2 Limiting Provisioning Tasks
Besides limiting how much simultaneous provisioning per provisioning node is allowed
with Provisioning slots (9), the head node also limits how many simultaneous
provisioning tasks are allowed to run on the entire cluster. This is set using the
MaxNumberOfProvisioningThreads directive in the head node’s CMDaemon configuration
file, /etc/cmd.conf, as described in Appendix C of the Bright Cluster Manager
Administrator Manual.

NVIDIA DGX SuperPOD Administration Guide DU-10263-001 v5 | 110

9.3.3 Provisioning Tasks Deferral and Failure
A provisioning request is deferred if the head node is not able to immediately allocate a
provisioning node for the task. Whenever an ongoing provisioning task has finished, the
head node tries to re-allocate deferred requests.

A provisioning request fails if an image is not transferred. Five retry attempts at
provisioning the image are made in case a provisioning request fails.

A provisioning node that loses connectivity while carrying out requests, will have the
provisioning requests fail after 180 seconds from the time that connectivity was lost.

9.3.4 Role Change Notification
The updateprovisioners command can be accessed from the softwareimage mode in
cmsh. It can also be accessed from Base View, using clickpath
Provisioning>Provisioning requests>Update provisioning nodes.

In the examples in 9.1, changes were made to provisioning role attributes for an
individual node as well as for a category of nodes. This automatically ran the
updateprovisioners command.

The updateprovisioners command runs automatically if CMDaemon is involved during
software image changes or during a provisioning request. If on the other hand, the
software image is changed outside of the CMDaemon front-ends, for example by an
administrator adding a file by copying it into place from the bash prompt, then
updateprovisioners should be run manually to update the provisioners.

In any case, if it is not run manually, it is scheduled to run every midnight by default.

When the default updateprovisioners is invoked manually, the provisioning system
waits for all running provisioning tasks to end, and then updates all images located on
any provisioning nodes by using the images on the head node. It also re-initializes its
internal state with the updated provisioning role properties, i.e. keeps track of what
nodes are provisioning nodes.

The default updateprovisioners command, run with no options, updates all images. If
run from cmsh with a specified image as an option, then the command only does the
updates for that image. A provisioning node undergoing an image update does not
provision other nodes until the update is completed.
[headnode]% software image updateprovisioners Provisioning nodes will be updated in the

background.

Sun Dec 12 13:45:09 2010 headnode: Starting update of software image(s)\ provisioning node(s).

(user initiated).

[headnode]% software image updateprovisioners

[headnode]%

Sun Dec 12 13:45:41 2010 headnode: Updating image default-image on provisioning node dgx001.

[headnode]%

Sun Dec 12 13:46:00 2010 headnode: Updating image default-image on provisioning node dgx001

completed.

Sun Dec 12 13:46:00 2010 headnode: Provisioning node dgx001 was updated Sun Dec 12 13:46:00

2010 headnode: Finished updating software image(s) \ on provisioning node(s).

NVIDIA DGX SuperPOD Administration Guide DU-10263-001 v5 | 111

9.3.5 Role Draining and Undraining Nodes
The drain and undrain commands to control provisioning nodes are accessible from
within the softwareimage mode of cmsh.

If a node is put into a drain state, all active provisioning requests continue until they are
completed. However, the node is not assigned any further pending requests until the
node is put back into an undrain state.
[headnode->software image]% drain -n master Nodes drained

[headnode->software image]% provisioningstatus Provisioning subsystem status

Pending request: dgx001, dgx002 Provisioning node status:

+ headnode

Slots: 1 / 10

State: draining

Active nodes: dgx003

Up to date images: default-image [headnode->software image]% provisioningstatus Provisioning

subsystem status

Pending request: dgx001, dgx002 Provisioning node status:

+ headnode

Slots: 0 / 10

State: drained

Active nodes: none

Up to date images: default-image

Use the --role provisioning option to drain all nodes in parallel. All pending requests
then remain in the queue until the nodes are undrained again.
[headnode->software image]% drain --role provisioning

...Time passes. Pending

requests stay in the queue. Then admin undrains it...

[headnode->software image]% undrain --role provisioning

9.3.6 Provisioning Node Update Safeguards

The updateprovisioners command is subject to safeguards that prevent it running too
frequently. The minimum period between provisioning updates can be adjusted with the
parameter provisioningnodeautoupdatetimeout, which has a default value of 300s.

Exceeding the timeout does not by itself trigger an update to the provisioning node.

When the head node receives a provisioning request, it checks if the last update of the
provisioning nodes is more than the timeout period. If true, then an update is triggered
to the provisioning node. The update is disabled if the timeout is set to zero (false).

The parameter can be accessed and set within cmsh from partition mode:

[root©brght92]# cmsh [headnode]% partition use base

[headnode->partition[base]]% get provisioningnodeautoupdatetimeout

[headnode->partition[base]]% 300

[headnode->partition[base]]% set provisioningnodeautoupdatetimeout 0

[headnode->partition*[base*]]% commit

Within Base View, the parameter is accessible through clickpath
Cluster>Partition[base]>Provisioning Node Auto Update Timeout.

NVIDIA DGX SuperPOD Administration Guide DU-10263-001 v5 | 112

To prevent provisioning an image to the nodes, it can be locked. The provisioning request
is then deferred until the image is again unlocked.

9.3.6.1 Synchronization of fspart Subdirectories to
Provisioning Nodes

In the cluster manager, an fspart is a subdirectory, and it is a filesystem part that can
be synced during provisioning.

The fsparts can be listed with:
[root©headnode]# cmsh [headnode]% fspart [headnode->fspartJ] list

Path (key) Type Image

------------------------------ --------------- ------------------------

/cm/images/default-image image default-image

/cm/images/default-image/boot boot default-image:boot

/cm/node-installer node-installer

/cm/shared cm-shared

/tftpboot tftpboot

/var/spool/cmd/monitoring monitoring

The updateprovisioners command is used to update image fsparts to all nodes with a
provisioning role.

The trigger command is used to update non-image fsparts to off-premises nodes,
such as cloud directors and edge directors. The directors have a provisioning role for the
nodes that they direct.

All the non-image types can be updated with the --all option:
[headnode->fspart]% trigger --all

The command help trigger in fspart mode gives further details.

The info command shows the architecture, OS, and the number of inotify watchers
that track rsyncs in the fspart subdirectory.
[headnode->fspart]% info

Path Architecture OS Inotify watchers

------------------------------ ---------------- ---------------- ----------------

/cm/images/default-image x86_64 ubuntu2004 0

/cm/images/default-image/boot - - 0

/cm/node-installer x86_64 ubuntu2004 0

/cm/shared x86_64 ubuntu2004 0

/tftpboot - - 0

/var/spool/cmd/monitoring - - 0

[headnode->fspart]% info -s Path (!#with size, takes longer)

Path Architecture OS Inotify watchers Size

---------------------------- ---------------- ---------------- ---------------- -------------

/cm/images/default-image x86_64 ubuntu2004 0 4.2 GiB

/cm/images/default-image/boot - - 0 179 MiB

/cm/node-installer x86_64 ubuntu2004 0 2.45 GiB

/cm/shared x86_64 ubuntu2004 0 2.49 GiB

/tftpboot - - 0 3.3 MiB

/var/spool/cmd/monitoring - - 0 1.02 GiB	

NVIDIA DGX SuperPOD Administration Guide DU-10263-001 v5 | 113

The locked, lock, and unlock commands:

> The locked command lists fsparts that are prevented from syncing.
[headnode->fspart]% locked No locked fsparts

> The lock command prevents a specific fspart from syncing.
[headnode->fspart]% lock /var/spool/cmd/monitoring [headnode->fspart]% locked

/var/spool/cmd/monitoring

> The unlock command unlocks a specific locked fspart again.
[headnode->fspart]% unlock /var/spool/cmd/monitoring [headnode->fspart]% locked

No locked fsparts

Access to excludelistsnippets

The properties of excludelistsnippets for a specific fspart can be accessed from the
excludelistsnippets submode:
[headnode->fspart]% excludelistsnippets /tftpboot

[headnode->fspart[/tftpboot]->exclude list snippets]% list

Name (key) Lines Disabled Mode sync Mode full Mode update Mode grab Mode grab new

------------ ------- -------- --------- --------- ----------- --------- -------------

Default 2 no yes yes yes no no

[headnode->fspart[/tftpboot]->exclude list snippets]% show default

Parameter Value

----------------------------- --

Lines 2

Name Default

Revision

Exclude list # no need for rescue on nodes with a boot role,/rescue,/rescue/*

Disabled no

No new files no

Mode sync yes

Mode full yes

Mode update yes

Mode grab no

Mode grab new no

[headnode->fspart[/tftpboot]->exclude list snippets]% get default exclude list

no need for rescue on nodes with a boot role

/rescue

/rescue/*

NVIDIA DGX SuperPOD Administration Guide DU-10263-001 v5 | 114

10. Product Security

NVIDIA takes security concerns seriously and works to quickly evaluate and address
them. Once a security concern is reported, NVIDIA commits the appropriate resources to
analyze, validate, and provide corrective actions to address the issue.

For information on NVIDIA product security goto:

https://www.nvidia.com/en-us/security/

NVIDIA DGX SuperPOD Administration Guide DU-10263-001 v5 | 115

11. Backups

11.1 Cluster Installation Backup
The cluster manager does not include facilities to create backups of a cluster
installation. The cluster administrator is responsible for deciding on the best way to back
up the cluster, out of the many possible choices.

A backup method is strongly recommended and checking that restoration from backup
works is also strongly recommended.

One option that may be appropriate for some cases is simply cloning the head node. A
clone can be created by PXE booting the new head node and following the procedure in
Section 17.4.8 of the Bright Cluster Manual Administrator Manual.

When setting up a backup mechanism, include the full filesystem of the head node (i.e.
including all software images). Unless the compute node hard drives are used to store
important data, it is not necessary to back them up.

If no backup infrastructure is already in place at the cluster site, the following open
source (GPL) software packages may be used to maintain regular backups.

> Bacula requires ports 9101-9103 to be accessible on the head node. Including the
following lines in the Shorewall rules file for the head node allows access by those
ports from an IP address of 93.184.216.34 on the external network:
• ACCEPT net:93.184.216.34 fw tcp 9101

• ACCEPT net:93.184.216.34 fw tcp 9102

• ACCEPT net:93.184.216.34 fw tcp 9103

The Shorewall service should then be restarted to enforce the added rules.

> rsnapshot. rsnapshot allows periodic incremental filesystem snapshots to be written
to a local or remote filesystem. Despite its simplicity, it can be a very effective tool to
maintain frequent backups of a system. More information is available at
http://www.rsnapshot.org.

NVIDIA DGX SuperPOD Administration Guide DU-10263-001 v5 | 116

11.2 Local Database and Data Backups
and Restoration

The CMDaemon database is stored in the MySQL cmdaemon database and contains most of
the stored settings of the cluster.

Monitoring data values are stored as binaries in the filesystem, under
/var/spool/cmd/monitoring.

The administrator is expected to run a regular backup mechanism for the cluster to
allow restores of all files from a recent snapshot. As an additional, separate,
convenience:

> For the CMDaemon database, the entire database is also backed up nightly on the
cluster file system itself (“local rotating backup”) for the last seven days.

> For the monitoring data, the raw data records are not backed up locally, since these
can get very large. However, the configuration of the monitoring data, which is
stored in the CMDaemon database, is backed up for the last seven days too.

11.2.1 Database Corruption and Repairs
A corrupted MySQL database is often caused by an improper shutdown of the node. To
deal with this, when starting up, MySQL checks itself for corrupted tables, and tries to
repair any such by itself. Detected corruption causes an event notice to be sent to cmsh
or Base View.

When there is database corruption, InfoMessages in the /var/log/cmdaemon log may
mention:

> Unexpected eof found in association with a table in the database.
> can't find file when referring to an entire missing table.
> locked tables.
> error numbers from table handlers.
> Error while executing a command.

If a basic repair is to be conducted on a database, CMDaemon should first be stopped.
[root©headnode ~]# service cmd stop

[root©headnode ~]# myisamchk --recover /var/lib/mysql/mysql/user.MYI

[root©headnode ~]# service cmd start

If basic repair fails, more extreme repair options—man myisamchk(1) suggests what—
can then be tried out.

NVIDIA DGX SuperPOD Administration Guide DU-10263-001 v5 | 117

If CMDaemon is unable to start up due to a corrupted database, messages in the
/var/log/cmdaemon file might show something like:
Oct 11 15:48:19 headnode CMDaemon: Info: Initialize cmdaemon database

Oct 11 15:48:19 headnode CMDaemon: Info: Attempt to set provisioning Network (280374976710700)

not an element of networks

Oct 11 15:48:19 headnode CMDaemon: Fatal: Database corruption! Load Master Node with key:

280374976782569

Oct 11 15:48:20 headnode CMDaemon: Info: Sending reconnect command to all nodes which were up

before master went down ...

Oct 11 15:48:26 headnode CMDaemon: Info: Reconnect command processed.

Here it is the CMDaemon Database corruption message that the administrator should be
aware of, and which suggests database repairs are required for the CMDaemon database.
The severity of the corruption, in this case not even allowing CMDaemon to start up, may
mean that a restoration from backup is needed. How to restore from backup is covered
next.

11.2.2 Restoring from Local Backup
If the MySQL database repair tools of the previous section do not fix the problem, then
for a failover configuration, the dbreclone option should normally provide a CMDaemon
and Slurm database that is current. The dbreclone option does not clone the monitoring
database.

11.2.3 Cloning Databases
The cm-clone-monitoring-db.sh helper script that comes with CMDaemon can be used
to clone the monitoring database.

11.2.4 Cloning Extra Databases
The file /cm/local/apps/cluster-tools/ha/conf/extradbclone.xml. template can be
used as a template to create a file extradbclone.xml in the same directory. The
extradbclone.xml file can then be used to define additional databases to be cloned.
Running the /cm/local/apps/cmd/scripts/cm-update-mycnf script then updates
/etc/my.cnf. The database can then be cloned with this new MySQL configuration by
running cmha dbreclone <passive> where <passive> is the hostname of the passive
head node.

If the head node is not part of a failover configuration, then a restoration from local
backup can be done. The local backup directory is /var/spool/cmd/backup, with
contents that look like:
[root©headnode ~]# cd /var/spool/cmd/backup/

[root©headnode backup]# ls -l

total 280

...

-rw------- 1 root root 33804 Oct 10 04:02 backup-Mon.sql.gz

-rw------- 1 root root 33805 Oct 9 04:02 backup-Sun.sql.gz

...

NVIDIA DGX SuperPOD Administration Guide DU-10263-001 v5 | 118

The CMDaemon database snapshots are stored as backup-<day of week>.sql.gz In the
example, the latest backup available in the listing for CMDaemon turns out to be
backup-Tue.sql.gz.

The latest backup can then be ungzipped and piped into the MySQL database for the
user cmdaemon. The password, <password>, can be retrieved from
/cm/local/apps/cmd/etc/cmd.conf, where it is configured in the DBPass directive
(Appendix C of the Bright Cluster Manager Administrator Manual).
gunzip backup-Tue.sql.gz

service cmd stop #(just to make sure)

mysql -ucmdaemon -p<password> cmdaemon < backup-Tue.sql

Running service cmd start should have CMDaemon running again, this time with a
restored database from the time the snapshot was taken. That means that any changes
that were done to the cluster manager after the time the snapshot was taken are no
longer implemented.

Monitoring data values are not kept in a database, but in files.

NVIDIA Corporation | 2788 San Tomas Expressway, Santa Clara, CA 95051

http://www.nvidia.com

Notice

This document is provided for information purposes only and shall not be regarded as a warranty of a certain functionality, condition, or quality of a
product. NVIDIA Corporation (“NVIDIA”) makes no representations or warranties, expressed or implied, as to the accuracy or completeness of the
information contained in this document and assumes no responsibility for any errors contained herein. NVIDIA shall have no liability for the
consequences or use of such information or for any infringement of patents or other rights of third parties that may result from its use. This document
is not a commitment to develop, release, or deliver any Material (defined below), code, or functionality.

NVIDIA reserves the right to make corrections, modifications, enhancements, improvements, and any other changes to this document, at any time
without notice.

Customer should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the time of order acknowledgment, unless otherwise
agreed in an individual sales agreement signed by authorized representatives of NVIDIA and customer (“Terms of Sale”). NVIDIA hereby expressly objects
to applying any customer general terms and conditions regarding the purchase of the NVIDIA product referenced in this document. No contractual
obligations are formed either directly or indirectly by this document.

No license, either expressed or implied, is granted under any NVIDIA patent right, copyright, or other NVIDIA intellectual property right under this
document. Information published by NVIDIA regarding third-party products or services does not constitute a license from NVIDIA to use such products
or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual
property rights of the third party, or a license from NVIDIA under the patents or other intellectual property rights of NVIDIA.

Reproduction of information in this document is permissible only if approved in advance by NVIDIA in writing, reproduced without alteration and in full
compliance with all applicable export laws and regulations, and accompanied by all associated conditions, limitations, and notices.

THIS DOCUMENT AND ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS
(TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR
OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY,
AND FITNESS FOR A PARTICULAR PURPOSE. TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL NVIDIA BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND
REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF NVIDIA HAS BEEN ADVISED OF THE POSSIBILITY
OF SUCH DAMAGES. Notwithstanding any damages that customer might incur for any reason whatsoever, NVIDIA’s aggregate and cumulative liability
towards customer for the products described herein shall be limited in accordance with the Terms of Sale for the product.

Trademarks

NVIDIA, the NVIDIA logo, NVIDIA Base Command, NVIDIA DGX, and NVIDIA DGX SuperPOD are trademarks and/or registered trademarks of NVIDIA
Corporation in the U.S. and other countries. Other company and product names may be trademarks of the respective companies with which they are
associated.

Copyright

© 2023 NVIDIA Corporation. All rights reserved.

