
DG-08868-001 _v06 | March 2022

Best Practices for DGX

Best Practices

Best Practices for DGX DG-08868-001 _v06 | ii

Table of Contents

Chapter 1. Overview..1

Chapter 2. Storage..2
2.1. Internal Storage (NFS Cache).. 2

2.1.1. NFS Cache for Deep Learning.. 2

2.1.2. RAID-0... 3

2.1.3. DGX Internal Storage... 3

2.1.4. Monitoring the RAID Array...4

2.2. External Storage... 6

2.2.1. NFS Storage... 7

2.2.2. Distributed Filesystems... 9

2.2.3. Scaling Out Recommendations... 9

Chapter 3. Authenticating Users..11
3.1. Local...11

3.2. NIS Vs NIS+... 11

3.3. LDAP.. 12

3.4. Active Directory... 12

Chapter 4. Time Synchronization... 13
4.1. Ubuntu 16.04... 13

Chapter 5. Monitoring...14
5.2. Using ctop For Monitoring..16

5.3. Monitoring A Specific DGX Using nvidia-smi...17

Chapter 6. Managing Resources.. 18
6.1. Example: SLURM.. 19

6.1.1. Simple GPU Scheduling With Exclusive Node Access... 19

6.1.2. Scheduling Resources At the Per-GPU Level.. 20

6.2. Example: Univa Grid Engine...21

6.3. Example: IBM Spectrum LSF...21

6.4. Example: Altair PBS Pro.. 21

Chapter 7. Provisioning and Cluster Management..22
7.1. Example: Bright Computing Cluster..22

Chapter 8. Networking... 23
8.1. DGX-1 Networking...23

8.1.1. DGX-1 InfiniBand Networking..24

8.1.2. DGX-1 Ethernet Networking.. 25

Best Practices for DGX DG-08868-001 _v06 | iii

8.1.3. DGX-1 Bonded NICs... 26

8.2. DGX-2 Networking...27

Chapter 9. SSH Tunneling.. 28

Chapter 10. Head Node.. 30

Chapter 11. DGX-2 KVM Networking... 31
11.1. Introduction..31

11.1.1. Network Configuration Options... 31

11.1.2. Acronyms...32

11.2. Virtual Networking.. 32

11.2.1. Default Configuration... 32

11.2.2. Using Static IP.. 34

11.2.3. Binding the Virtual Network to a Specific Physical NIC...35

11.3. Bridged Networking.. 36

11.3.1. Introduction... 36

11.3.2. Using DHCP.. 36

11.3.3. Using Static IP.. 37

11.4. Bridged Networking with Bonding... 38

11.4.1. Introduction... 38

11.4.2. Using DHCP.. 38

11.4.3. Using Static IP.. 39

11.5. MacVTap...40

11.5.1. Introduction... 40

11.5.2. Macvtap Modes... 41

11.5.3. How to Change the Macvtap and Physical NIC Configuration..................................... 44

11.5.4. How to Configure the Guest VM Using privateIP..45

11.6. SR-IOV..45

11.6.1. Introduction... 45

11.6.2. Device Configuration.. 47

11.6.3. Generic Configuration.. 47

11.6.4. Using DHCP.. 48

11.6.5. Using Static IP.. 49

11.7. Getting the Guest VM IP Address.. 49

11.8. Improving Network Performance...50

11.8.1. Jumbo Frames..50

11.8.2. Multi-Queue Support.. 51

11.8.3. QOS.. 53

11.9. References...53

Best Practices for DGX DG-08868-001 _v06 | iv

Chapter 12. DGX-2 KVM Performance Tuning...55
12.1. Background..55

12.2. CPU Tuning..57

12.2.1. vCPU Pinning.. 57

12.2.2. How to Disable vCPU Pinning... 59

12.2.3. Core Affinity Optimization.. 59

12.3. Memory tuning.. 62

12.3.1. Huge Pages Support.. 62

12.3.1.1. How to set up Huge Pages at Runtime.. 63

12.3.1.2. How to set up Huge Pages only for boot..64

12.3.1.3. How to disable Huge Pages in the Host...65

12.4. NUMA Tuning.. 65

12.4.1. Automatic NUMA Balancing.. 66

12.4.2. Enabling NUMA Tuning..66

12.4.2.1. Setting Up NUMA Tuning.. 66

12.4.2.2. Effects of Enabling NUMA Tuning.. 67

12.5. Emulatorpin... 67

12.6. I/O tuning... 68

12.6.1. Using Multiple-queues with Logical Volumes.. 68

12.6.1.1. I/O Threads...69

12.6.1.2. How to Set up I/O Tuning..69

12.6.2. NVMe Drives as PCI-Passthrough Devices...70

12.6.2.1. How to Set Up PCI-Passthrough for NVME Drives.. 70

12.6.2.2. How to Revert PCI-Passthrough of NVMe Drives.. 71

12.6.3. Physical Drive Passthrough...72

12.6.3.1. How to Set Up Drive Passthrough.. 73

12.6.3.2. How to Revert Drive Passthrough.. 73

12.6.4. Drive Partition Passthrough.. 74

12.6.4.1. How to Set Up Drive Partition Passthrough...76

12.6.4.2. How to Revert Drive Partition Passthrough... 78

Best Practices for DGX DG-08868-001 _v06 | 1

Chapter 1. Overview

NVIDIA has created the DGX family as appliances to make administration and operation as
simple as possible. However, like any computational resource it still requires administration.
This section discusses some of the best practices around configuring and administering a
single DGX or several DGX appliances.

There is also some discussion about how to plan for external storage, networking, and other
configuration aspects for the DGX, focusing on DGX-2, DGX-1, and DGX Station (the DGX
"family").

For detailed information about implementation, see:

‣ DGX-2 User Guide

‣ DGX-1 User Guide

‣ DGX Station User Guide

https://docs.nvidia.com/dgx/dgx2-user-guide/index.html
https://docs.nvidia.com/dgx/dgx1-user-guide/index.html
https://docs.nvidia.com/dgx/dgx-station-user-guide/index.html

Best Practices for DGX DG-08868-001 _v06 | 2

Chapter 2. Storage

For deep learning to be effective and to take full advantage of the DGX family, the various
aspects of the system have to be balanced. This includes storage and I/O. This is particularly
important for feeding data to the GPUs to keep them busy and dramatically reduce run times
for models. This section presents some best practices for storage within and outside of the
DGX-2, DGX-1, or DGX Station. It also talks about storage considerations as the number of DGX
units are scaled out, primarily the DGX-1 and DGX-2.

2.1. Internal Storage (NFS Cache)
The first storage consideration is storage within the DGX itself. The focus of the internal
storage, outside of the OS drive, is performance.

2.1.1. NFS Cache for Deep Learning
Deep Learning I/O patterns typically consist of multiple iterations of reading the training data.
The first epoch of training reads the data that is used to start training the model. Subsequent
passes through the data can avoid rereading the data from NFS if adequate local caching is
provided on the node. If you can estimate the maximum size of your data, you can architect
your system to provide enough cache so that the data only needs to be read once during
any training job. A set of very fast SSD disks can provide an inexpensive and scalable way of
providing adequate caching for your applications. The DGX family NFS read cache was created
for precisely this purpose, offering roughly 5, 7, and 30+ TB of fast local cache on DGX Station,
DGX-1, and DGX-2, respectively.

For training the best possible model, the input data is randomized. This adds some additional
statistical noise to the training and also keeps the model from being “overfit” on the training
data (in other words, trained very well on the training data but doesn’t do well on the validation
data). Randomizing the order of the data for training puts pressure on the data access. The I/O
pattern becomes random oriented rather than streaming oriented. The DGX family NFS cache
is SSD-based with a very high level of random IOPs performance.

The benefit of adequate caching is that your external filesystem does not have to provide
maximum performance during a cold start (the first epoch), since this first pass through the
data is only a small part of the overall training time. For example, typical training sessions
can iterate over the data 100 times. If we assume a 5x slower read access time during the first

Storage

Best Practices for DGX DG-08868-001 _v06 | 3

cold start iteration vs the remaining iterations with cached access, then the total run time of
training increases by the following amount.

‣ 5x slower shared storage 1st iteration + 99 local cached storage iterations

‣ > 4% increase in runtime over 100 iterations

Even if your external file system cannot sustain peak training IO performance, it has only a
small impact on overall training time. This should be considered when creating your storage
system to allow you to develop the most cost-effective storage systems for your workloads.

For either the DGX Station or the DGX-1 you cannot put additional drives into the system
without voiding your warranty. For the DGX-2, you can add additional 8 U.2 NVMe drives to
those already in the system.

2.1.2. RAID-0
The internal SSD drives are configured as RAID-0 array, formatted with ext4, and mounted
as a file system. This is then used as an NFS read cache to cache data reads. Recall that its
number one focus is performance.

RAID-0 stripes the contents of each file across all disks in the RAID group. but doesn’t
perform any mirroring or parity checks. This reduces the availability of the RAID group but it
also improves its performance and capacity. The capacity of a RAID-0 group is the sum of the
capacities of the drives in the set.

The performance of a RAID-0 group, which results in improved throughput of read and write
operations to any file, is the number of drives multiplied by their performance. As an example,
if the drives are capable of a sequential read throughput of 550 MB/s and you have three drives
in the RAID group, then the theoretical sequential throughput is 3 x 550MB/s = 1650 MB/s.

2.1.3. DGX Internal Storage
The DGX-2 has 8 or 16 3.84 TB NVMe drives that are managed by the OS using mdadm (software
RAID). On systems with 8 NVMe drives, you can add an additional 8.

The DGX-1 has a total five 1.92TB SSDs. These are plugged into the LSI controller (hardware
RAID). In the DGX-1, there are a total of five or six 1.92TB SSDs. These are plugged into the LSI
controller. Two RAID arrays are configured:

‣ Either a single-drive RAID-0 or a dual-drive RAID-1 array for the OS, and a

‣ Four-drive RAID-0 array to be used as read cache for NFS file systems. The Storage
Command Line Tool (StorCLI) is used by the LSI card.

Note: You cannot put additional cache drives into the DGX-1 without voiding your warranty.

The DGX Station has three 1.92 TB SSDs in a RAID-0 group. The Linux software RAID tool,
mdadm, is used to manage and monitor the RAID-0 group.

Note: You cannot put additional cache drives into the DGX Station without voiding your
warranty.

https://en.wikipedia.org/wiki/Ext4

Storage

Best Practices for DGX DG-08868-001 _v06 | 4

2.1.4. Monitoring the RAID Array
This section explains how to use mdadm to monitor the RAID array in DGX-2 and DGX Station
systems.

The RAID-0 group is created and managed by Linux software, mdadm. mdadm is also referred
to as “software RAID” because all of the common RAID functions are carried out by the host
CPUs and the host OS instead of a dedicated RAID controller processor. Linux software RAID
configurations can include anything presented to the Linux kernel as a block device. Examples
include whole hard drives (for example, /dev/sda), and their partitions (for example, /dev/
sda1).

Of particular importance is that since version 3.7 of the Linux kernel mainline, mdadm supports
TRIM operations for the underlying solid-state drives (SSDs), for linear, RAID 0, RAID 1, RAID 5
and RAID 10 layouts. TRIM is very important because it helps with garbage collection on SSDs.
This reduces write amplification and reduces the wear on the drive.

There are some very simple commands using mdadm that you can use for monitoring the
status of the RAID array. The first thing you should do is find the mount point for the RAID
group. You can do this by simply running the command mount -a. Look through the output for
mdadm-created devices with naming format /dev/md*.
mount
sysfs on /sys type sysfs (rw,nosuid,nodev,noexec,relatime)
proc on /proc type proc (rw,nosuid,nodev,noexec,relatime)
…
/dev/md0 on /raid type ext4 (rw,relatime,discard,stripe=384,data=ordered)
/dev/sdb1 on /boot/efi type vfat
 (rw,relatime,fmask=0077,dmask=0077,codepage=437,iocharset=iso8859-1,shortname=mixed,errors=remount-
ro)
...

This /dev/md0 is a RAID-0 array that acts as a read cache for NFS file systems.

One of the first commands that can be run is to check the status of the RAID group. The
command is simple, cat /proc/mdstat.
cat /proc/mdstat
Personalities : [raid0] [linear] [multipath] [raid1] [raid6] [raid5] [raid4] [raid10]
md0 : active raid0 sde[2] sdd[1] sdc[0]
 5625729024 blocks super 1.2 512k chunks

unused devices: <none>

This is a command to read the mdstat file in the /proc filesystem. The output looks compact
but there is a great deal of information in that output. The first line of output is a list of the
possible ways to use mdadm in this version of Linux.

The next lines of output will present some details on each md device. In this case, the DGX
Station only has one RAID group, /dev/md0. The output for /dev/md0 means that it is an active
RAID-0 group. It has three devices:

‣ sdc

‣ sdd

‣ sde

https://en.wikipedia.org/wiki/Mdadm
https://en.wikipedia.org/wiki/Trim_(computing)
https://en.wikipedia.org/wiki/Write_amplification

Storage

Best Practices for DGX DG-08868-001 _v06 | 5

It also lists the number of blocks in the device, the version of the super block (1.2), and the
chunk size (512k). This is the size that is written to each device when mdadm breaks up a file.
This information would be repeated for each md device (if there are more than one).

Another option you can use with mdadm is to examine/query the individual block devices in the
RAID group and examine/query the RAID groups themselves. A simple example from a DGX
Station is below. The command queries the RAID group.
mdadm --query /dev/md0
/dev/md0: 5365.11GiB raid0 3 devices, 0 spares. Use mdadm --detail for more detail.

Notice that there are 3 devices with a total capacity of 5,365.11 GiB (this is different than
GB). If this were a RAID level that supported redundancy rather than focusing on maximizing
performance, you could allocate drives as 'spares' in case an active one failed. Because the
DGX use RAID-0 across all available cache drives, there are no spares.

Next is an example of querying a block device that is part of a RAID group.
mdadm --query /dev/sdc
/dev/sdc: is not an md array
/dev/sdc: device 0 in 3 device active raid0 /dev/md0. Use mdadm --examine for more detail.

The query informs you that the drive is not a RAID group but is part of a RAID group (/dev/
md0). It also advises to examine the RAID group using the “examine” (-E) option.

Querying the block devices and the RAID group itself, you can put together how the block
devices are part of the RAID group. Also notice that the commands are run by the root user (or
something with root privileges).

To get even more detail about the md RAID group, you can use the --examine option. It prints
the md superblock (if present) from a block device that could be an group component.
mdadm --examine /dev/sdc
/dev/sdc:
 Magic : a92b4efc
 Version : 1.2
 Feature Map : 0x0
 Array UUID : 1feabd66:ec5037af:9a40a569:d7023bc5
 Name : demouser-DGX-Station:0 (local to host demouser-DGX-Station)
 Creation Time : Wed Mar 14 16:01:24 2018
 Raid Level : raid0
 Raid Devices : 3

 Avail Dev Size : 3750486704 (1788.37 GiB 1920.25 GB)
 Data Offset : 262144 sectors
 Super Offset : 8 sectors
 Unused Space : before=262056 sectors, after=0 sectors
 State : clean
 Device UUID : 482e0074:35289a95:7d15e226:fe5cbf30

 Update Time : Wed Mar 14 16:01:24 2018
 Bad Block Log : 512 entries available at offset 72 sectors
 Checksum : ee25db67 - correct
 Events : 0

 Chunk Size : 512K

 Device Role : Active device 0
 Array State : AAA ('A' == active, '.' == missing, 'R' == replacing)

It provides information about the RAID array (group) including things such as:

‣ Creation time

‣ UUID of the array (RAID group)

Storage

Best Practices for DGX DG-08868-001 _v06 | 6

‣ RAID level (this is RAID-0)

‣ Number of RAID devices

‣ Size of the device both in Gib and GB (they are different)

‣ The state of the device (clean)

‣ Number of active devices in RAID array (3)

‣ The role of the device (if is device 0 in the raid array)

‣ The checksum and if it is correct

‣ Lists the number of events on the array

Another way to get just about the same information but some extra detail, is to use the --
detail option with the raid array as below.
mdadm --detail /dev/md0
/dev/md0:
 Version : 1.2
 Creation Time : Wed Mar 14 16:01:24 2018
 Raid Level : raid0
 Array Size : 5625729024 (5365.11 GiB 5760.75 GB)
 Raid Devices : 3
 Total Devices : 3
 Persistence : Superblock is persistent

 Update Time : Wed Mar 14 16:01:24 2018
 State : clean
 Active Devices : 3
Working Devices : 3
 Failed Devices : 0
 Spare Devices : 0

 Chunk Size : 512K

 Name : demouser-DGX-Station:0 (local to host demouser-DGX-Station)
 UUID : 1feabd66:ec5037af:9a40a569:d7023bc5
 Events : 0

 Number Major Minor RaidDevice State
 0 8 32 0 active sync /dev/sdc
 1 8 48 1 active sync /dev/sdd
 2 8 64 2 active sync /dev/sde

2.2. External Storage
As an organization scales out their GPU enabled data center, there are many shared storage
technologies which pair well with GPU applications. Since the performance of a GPU enabled
server is so much greater than a traditional CPU server, special care needs to be taken to
ensure the performance of your storage system is not a bottleneck to your workflow.

Different data types require different considerations for efficient access from filesystems. For
example:

‣ Running parallel HPC applications may require the storage technology to support multiple
processes accessing the same files simultaneously.

Storage

Best Practices for DGX DG-08868-001 _v06 | 7

‣ To support accelerated analytics, storage technologies often need to support many threads
with quick access to small pieces of data.

‣ For vision based deep learning, accessing images or video used in classification, object
detection or segmentation may require high streaming bandwidth, fast random access, or
fast memory mapped (mmap()) performance.

‣ For other deep learning techniques, such as recurrent networks, working with text or
speech can require any combination of fast bandwidth with random and small files.

HPC workloads typically drive high simultaneous multi-system write performance and benefit
greatly from traditional scalable parallel file system solutions. You can size HPC storage and
network performance to meet the increased dense compute needs of GPU servers. It is not
uncommon to see per-node performance increases from between 10-40x for a 4 GPU system
vs a CPU system for many HPC applications.

Data Analytics workloads, similar to HPC, drive high simultaneous access, but are more read
focused than HPC. Again, it is important to size Data Analytics storage to match the dense
compute performance of GPU servers. As you adopt accelerated analytics technologies such
as GPU-enabled in-memory databases, make sure that you can populate the database from
your data warehousing solution quickly to minimize startup time when you change database
schemas. This may require a network with 10 Gbe for greater performance. To support clients
at this rate, you may have to revisit your data warehouse architecture to identify and eliminate
bottlenecks.

Deep learning is a fast evolving computational paradigm and it is important to know what
your requirements are in the near and long term to properly architect a storage system.
The ImageNet database is often used as a reference when benchmarking deep learning
frameworks and networks. The resolution of the images in ImageNet are 256x256. However, it
is more common to find images at 1080p or 4k. Images in 1080p resolution are 30 times larger
than those in ImageNet. Images in 4k resolution are 4 times larger than that (120X the size of
ImageNet images). Uncompressed images are 5-10 times larger than compressed images.
If your data cannot be compressed for some reason, for example if you are using a custom
image formats, the bandwidth requirements increase dramatically.

For AI-Driven Storage, it is suggested that you make use of deep learning framework features
that build databases and archives versus accessing small files directly; reading and writing
many small files will reduce performance on the network and local file systems. Storing files
in formats such as HDF5, LMDB or TFRecord can reduce metadata access to the filesystem
helping performance. However, these formats can lead to their own challenges with additional
memory overhead or requiring support for fast mmap() performance. All this means that you
should plan to be able to read data at 150-200 MB/s per GPU for files at 1080p resolution.
Consider more if you are working with 4k or uncompressed files.

2.2.1. NFS Storage
NFS can provide a good starting point for AI workloads on small GPU server configurations
with properly sized storage and network bandwidth. NFS based solutions can scale well
for larger deployments, but be aware of possible single node and aggregate bandwidth
requirements and make sure that matches your vendor of choice. As you scale your data
center to need more than 10 GB/s or your data center grows to hundreds or thousands of
nodes, other technologies may be more efficient and scale better.

https://developer.nvidia.com/hpc-application-performance
http://www.image-net.org/

Storage

Best Practices for DGX DG-08868-001 _v06 | 8

Generally, it is a good idea to start with NFS using one or more of the Gigabit Ethernet
connections on the DGX family. After this is configured, it is recommended that you run your
applications and check if IO performance is a bottleneck. Typically, NFS over 10Gb/s Ethernet
provides up to 1.25 GB/s of IO throughput for large block sizes. If, in your testing, you see
NFS performance that is significantly lower than this, check the network between the NFS
server and a DGX server to make sure there are no bottlenecks (for example, a 1 GigE network
connection somewhere, a misconfigured NFS server, or a smaller MTU somewhere in the
network).

There are a number of online articles, such as this one, that list some suggestions for tuning
NFS performance on both the client and the server. For example:

‣ Increasing Read, Write buffer sizes

‣ TCP optimizations including larger buffer sizes

‣ Increasing the MTU size to 9000

‣ Sync vs. Async

‣ NFS Server options

‣ Increasing the number of NFS server daemons

‣ Increasing the amount of NFS server memory

Linux is very flexible and by default most distributions are conservative about their choice of IO
buffer sizes since the amount of memory on the client system is unknown. A quick example is
increasing the size of the read buffers on the DGX (the NFS client). This can be achieved with
the following system parameters:

‣ net.core.rmem_max=67108864

‣ net.core.rmem_default=67108864

‣ net.core.optmem_max=67108864

The values after the variable are example values (they are in bytes). You can change these
values on the NFS client and the NFS server, and then run experiments to determine if the IO
performance improves.

The previous examples are for the kernel read buffer values. You can also do the same thing
for the write buffers where you use wmem instead rmem.

You can also tune the TCP parameters in the NFS client to make them larger. For example,
you could change the net.ipv4.tcp_rmem=”4096 87380 33554432” system parameter.

This changes the TCP buffer size, for iPv4, to 4,096 bytes as a minimum, 87,380 bytes as the
default, and 33,554,432 bytes as the maximum.

If you can control the NFS server, one suggestion is to increases the number of NFS daemons
on the server.

One way to determine whether more NFS threads helps performance is to check the data in
/proc/net/rpc/nfs entry for the load on the NFS daemons. The output line that starts with
th lists the number of threads, and the last 10 numbers are a histogram of the number of
seconds the first 10% of threads were busy, the second 10%, and so on.

http://www.admin-magazine.com/HPC/Articles/Useful-NFS-Options-for-Tuning-and-Management

Storage

Best Practices for DGX DG-08868-001 _v06 | 9

Ideally, you want the last two numbers to be zero or close to zero, indicating that the threads
are busy and you are not "wasting" any threads. If the last two numbers are fairly high, you
should add NFS daemons, because the NFS server has become the bottleneck. If the last two,
three, or four numbers are zero, then some threads are probably not being used.

One other option, while a little more complex, can prove to be useful if the IO pattern becomes
more write intensive. If you are not getting the IO performance you need, change the mount
behavior on the NFS clients from “sync” to “async”.

CAUTION: By default, NFS file systems are mounted as “sync” which means the NFS client is
told the data is on the NFS server after it has actually been written to the storage indicating the
data is safe. Some systems will respond that the data is safe if it has made it to the write buffer
on the NFS server and not the actual storage.

Switching from “sync” to “async” means that the NFS server responds to the NFS client that
the data has been received when the data is in the NFS buffers on the server (in other words,
in memory). The data hasn’t actually been written to the storage yet, it’s still in memory.
Typically, writing to the storage is much slower than writing to memory, so write performance
with “async” is much faster than with “sync”. However, if, for some reason, the NFS server
goes down before the data in memory is written to the storage, then the data is lost.

If you try using “async” on the NFS client (in other words, the DGX system), ensure that the
data on the NFS server is replicated somewhere else so that if the server goes down, there is
always a copy of the original data. The reason is if the NFS clients are using “async” and the
NFS server goes down, data that is in memory on the NFS server will be lost and cannot be
recovered.

NFS “async” mode is very useful for write IO, both streaming (sequential) and random IO. It is
also very useful for “scratch” file systems where data is stored temporarily (in other words,
not permanent storage or storage that is not replicated or backed up).

If you find that the IO performance is not what you expected and your applications are
spending a great deal of time waiting for data, then you can also connect NFS to the DGX
system over InfiniBand using IPoIB (IP over IB). This is part of the DGX family software stack
and can be easily configured. The main point is that the NFS server should be InfiniBand
attached as well as the NFS clients. This can greatly improve IO performance.

2.2.2. Distributed Filesystems
Distributed filesystems such as EXAScaler, GRIDScaler, Ceph, Lustre, MapR-FS, General
Parallel File System, Weka.io, and Gluster can provide features like improved aggregate IO
performance, scalability, and/or reliability (fault tolerance). These filesystems are supported
by their respective providers unless otherwise noted.

2.2.3. Scaling Out Recommendations
Based on the general IO patterns of deep learning frameworks (see External Storage), below
are suggestions for storage needs based on the use case. These are suggestions only and are
to be viewed as general guidelines.

https://www.ddn.com/products/lustre-file-system-exascaler/
https://www.ddn.com/products/parallel-file-system-gridscaler/
https://ceph.com/
http://lustre.org/
https://mapr.com/products/mapr-fs/
https://www.ibm.com/support/knowledgecenter/en/SSFKCN/gpfs_welcome.html
https://www.ibm.com/support/knowledgecenter/en/SSFKCN/gpfs_welcome.html
https://www.weka.io/products/
https://www.gluster.org/

Storage

Best Practices for DGX DG-08868-001 _v06 | 10

Table 1. Scaling out suggestions and guidelines

Use Case
Adequate Read
Cache?

Network Type
Recommended

Network File System
Options

Data Analytics NA 10 GbE Object-Storage, NFS, or
other system with good
multithreaded read and
small file performance

HPC NA 10/40/100 GbE,
InfiniBand

NFS or HPC targeted
filesystem with support
for large numbers of
clients and fast single-
node performance

DL, 256x256 images yes 10 GbE NFS or storage with
good small file support

DL, 1080p images yes 10/40 GbE, InfiniBand High-end NFS, HPC
filesystem or storage
with fast streaming
performance

DL, 4k images yes 40 GbE, InfiniBand HPC file system, high-
end NFS or storage
with fast streaming
performance capable of
3+ GB/s per node

DL, uncompressed
Images

yes InfiniBand, 40/100 GbE HPC filesystem, high-
end NFS or storage
with fast streaming
performance capable of
3+ GB/s per node

DL, Datasets that are
not cached

no InfiniBand, 10/40/100
GbE

Same as above,
aggregate storage
performance must
scale to meet the
all applications
simultaneously

As always, it is best to understand your own applications’ requirements to architect the
optimal storage system.

Lastly, this discussion has focused only on performance needs. Reliability, resiliency and
manageability are as important as the performance characteristics. When choosing between
different solutions that meet your performance needs, make sure that you have considered all
aspects of running a storage system and the needs of your organization to select the solution
that will provide the maximum overall value.

Best Practices for DGX DG-08868-001 _v06 | 11

Chapter 3. Authenticating Users

To make the DGX useful, users need to be added to the system in some fashion so they can be
authenticated to use the system. Generally, this is referred to as user authentication. There are
several different ways this can be accomplished, however, each method has its own pros and
cons.

3.1. Local
The first way is to create users directly on the DGX system using the useradd command.
Let’s assume you want to add a user dgxuser. You would first add the user via the following
command.
$ useradd -m -s /bin/bash dgxuser

Where -s refers to the default shell for the user and -m creates the user’s home directory.
After creating the user you need to add them to the docker group on the DGX.
$ sudo usermod -aG docker dgxuser

This adds the user dgxuser to the group docker. Any user that runs Docker containers has to
be a member of this group.

Using authentication on the DGX is simple but not without its issues. First, there have been
occasions when an OS upgrade on the DGX requires the reformatting of all the drives in the
appliance. If this happens, you first must make sure all user data is copied somewhere off
the DGX-1 before the upgrade. Second, you will have to recreate the users and add them
to the docker group and copy their home data back to the DGX. This adds work and time to
upgrading the system.

Important: While the 2x 960GB NVME SSDs on the DGX-2, meant for the OS partition, are in
RAID-1 configuration, there is no RAID-1 on the OS drive for the DGX-1 and DGX Station. Hence,
if the OS drive fails on the DGX-1 or the DGX Station, you will lose all the users and everything
in the /home directories. Therefore, it is highly recommended that you backup the pertinent
files on the DGX system as well as /home for the users.

3.2. NIS Vs NIS+
Another authentication option is to use NIS or NIS+. In this case, the DGX would be a client in
the NIS/NIS+ configuration. As with using local authentication as previously discussed, there

https://en.wikipedia.org/wiki/Network_Information_Service

Authenticating Users

Best Practices for DGX DG-08868-001 _v06 | 12

is the possibility that the OS drive in the DGX could be overwritten during an upgrade (not all
upgrades reformat the drives, but it’s possible). This means that the administrator may have to
reinstall the NIS configuration on the DGX.

Also, remember that the DGX-1 and DGX Station have a single OS drive. If this drive fails, the
administrator will have to re-configure the NIS/NIS+ configuration, therefore, backups are
encouraged; even for DGX-2 systems, which do have 2x OS drives in a RAID-1 configuration.

Note: It is possible that if, in the unlikely event that technical support for the DGX is needed, the
NVIDIA engineers may require the administrator to disconnect from the NIS/NIS+ server.

3.3. LDAP
A third option for authentication is LDAP (Lightweight Directory Access Protocol). It has
become very popular in the clustering world, particularly for Linux. You can configure LDAP on
the DGX for user information and authentication from an LDAP server. However, as with NIS,
there are possible repercussions.

CAUTION:

‣ The first is that the OS drive is a single drive on the DGX-1 and DGX Station. If the drive
fails, you will have to rebuild the LDAP configuration (backups are highly recommended).

‣ The second is that, as previously mentioned, if, in the unlikely event of needing tech
support, you may be asked to disconnect the DGX system from the LDAP server so that the
system can be triaged.

3.4. Active Directory
One other option for user authentication is connecting the DGX system to an Active Directory
(AD) server. This may require the system administrator to install some extra tools into the
DGX. This means that this approach should also include the two cautions that were repeated
before where the single OS drive may be reformatted for an upgrade or that it may fail (again,
backups are highly recommended). It also means that in the unlikely case of needing to involve
NVIDIA technical support, you may be asked to take the system off the AD network and remove
any added software (this is unlikely but possible).

https://en.wikipedia.org/wiki/Lightweight_Directory_Access_Protocol

Best Practices for DGX DG-08868-001 _v06 | 13

Chapter 4. Time Synchronization

Time synchronization is very important for clusters of systems including storage. It is
especially true for MPI (Message Passing Interface) applications such as those in the HPC
world. Without time synchronization, you can get wrong answers or your application can fail.
Therefore, it is a good idea to sync the DGX-2, DGX-1, or DGX Station time.

4.1. Ubuntu 16.04
If you are using Ubuntu 16.04 as the base for your DGX OS image, realize that it uses systemd
instead of init, so the process of configuring NTP (network time protocol) is a little different
than using Ubuntu 14.04. If you are unsure on how to accomplish this, below are some basic
instructions.

For more information, you can:

‣ Run the following commands:
$ man timedatectl command
$ man systemd-timesyncd.service

‣ Read the timesyncd.conf article.

Here is an outline of the steps you should follow:

 1. Edit the /etc/systemd/timesyncd.conf file and set NTP and other options. For more
information, see the timesyncd.conf article.

 2. Run as root the following command:
$ timedatectl set-ntp true

 3. Check that timesyncd is enabled and run the following command:
$ systemctl status systemd-timesyncd.service

 4. Ensure timesyncd is enabled. If timesyncd is not enabled, run the following command.
$ systemctl enable systemd-timesyncd.service && systemctl start systemd-
timesyncd.service

You can also check via timedatectl that you configured the correct timezone and other
basic options.

https://www.freedesktop.org/software/systemd/man/timesyncd.conf.html
https://www.freedesktop.org/software/systemd/man/timesyncd.conf.html

Best Practices for DGX DG-08868-001 _v06 | 14

Chapter 5. Monitoring

Being able to monitor your systems is the first step in being able to manage them. NVIDIA
provides some very useful command line tools that can be used specifically for monitoring the
GPUs.

5.1. DCGM
NVIDIA Data Center GPU Manager™ (DCGM) simplifies GPU administration in the data center.
It improves resource reliability and uptime, automates administrative tasks, and helps drive
overall infrastructure efficiency. It can perform the following tasks with very low overhead on
the appliance.

‣ Active health monitoring

‣ Diagnostics

‣ System validation

‣ Policies

‣ Power and clock management

‣ Group configuration and accounting

The DCGM Toolkit comes with a User Guide that explains how to use the command-line
tool called dcgmi, as well as an API Guide (there is no GUI with DCGM). In addition to the
command-line tool, DCGM also comes with headers and libraries for writing your own tools in
Python or C.

Rather than treat each GPU as a separate resource, DCGM allows you to group them and then
apply policies or tuning options to the group. This also includes being able to run diagnostics
on the group.

There are several best practices for using DCGM with the DGX appliances. The first is that the
command line tool can run diagnostics on the GPUs. You could create a simple cron job on
the DGX to check the GPUs and store the results either into a simple flat file or into a simple
database.

There are three levels of diagnostics that can be run starting with level 1.

‣ Level 1 runs in just a few seconds.

http://www.nvidia.com/object/data-center-gpu-manager.html

Monitoring

Best Practices for DGX DG-08868-001 _v06 | 15

‣ Level 3 takes about 4 minutes to run. An example of the output from running a level 3
diagnostic is below.

Figure 1. Levels of diagnostics

It is fairly easy to parse this output looking for Error in the output. You can easily send an
email or raise some other alert if an Error is discovered.

A second best practice for utilizing DCGM is if you have a resource manager (in other words,
a job scheduler) installed. Before the user’s job is run, the resource manager can usually
perform what is termed a prologue. That is, any system calls before the user’s job is executed.
This is a good place to run a quick diagnostic and also use DCGM to start gathering statistics
on the job. Below is an example of statistics gathering for a particular job:

Monitoring

Best Practices for DGX DG-08868-001 _v06 | 16

Figure 2. Statistics gathering

When the user’s job is complete, the resource manager can run something called an epilogue.
This is a place where the system can run some system calls for doing such things as cleaning
up the environment or summarizing the results of the run including the GPU stats as from the
above command. Consult the user’s guide to learn more about stats with DCGM.

If you create a set of prologue and epilogue scripts that run diagnostics you might want to
consider storing the results in a flat file or a simple database. This allows you to keep a history
of the diagnostics of the GPUs so you can pinpoint any issues (if there are any).

A third way to effectively use DCGM is to combine it with a parallel shell tool such as pdsh.
With a parallel shell you can run the same command across all of the nodes in a cluster or a
specific subset of nodes. You can use it to run dcgmi to run diagnostics across several DGX
appliances or a combination of DGX appliances and non-GPU enabled systems. You can easily
capture this output and store it in a flat file or a database. Then you can parse the output and
create warnings or emails based on the output.

Having all of this diagnostic output is also an excellent source of information for creating
reports regarding topics such as utilization.

For more information about DCGM, see NVIDIA Data Center GPU Manager Simplifies Cluster
Administration.

5.2. Using ctop For Monitoring

http://www.linuxpromagazine.com/Issues/2014/166/Parallel-Shells
https://github.com/grondo/pdsh
https://devblogs.nvidia.com/parallelforall/nvidia-data-center-gpu-manager-cluster-administration/
https://devblogs.nvidia.com/parallelforall/nvidia-data-center-gpu-manager-cluster-administration/

Monitoring

Best Practices for DGX DG-08868-001 _v06 | 17

Containers can make monitoring a little more challenging than the classic system monitoring.
One of the classic tools used by system administrators is top. By default, top displays the load
on the system as well as the ordered list of processes on the system.

There is a top-like tool for Docker containers and runC, named ctop. It lists real-time metrics
for more than one container and is easy to install and update the resource usage for the
running containers.

ATTENTION: ctop runs on a single DGX-1 system only. Most likely you will have to log into the
specific node and run ctop. A best practice is to use tmux and create a pane for ctop for each
DGX appliance if the number of systems is fairly small (approximately less than 10).

5.3. Monitoring A Specific DGX Using
nvidia-smi

As previously discussed, DCGM is a great tool for monitoring GPUs across multiple nodes.
Sometimes, a system administrator may want to monitor a specific DGX system in real-time.
An easy way to do this is to login into the DGX and run nvidia-smi in conjunction with the
watch command.

For example, you could run the command watch -n 1 nvidia-smi that runs the nvidia-
smi command every second (-n 1 means to run the command with 1 second intervals). You
could also add the -d option to watch so that it highlights changes or differences since the last
time it was run. This allows you to easily see what has changed.

Just like ctop, you can use nvidia-smi and watch in a pane in a tmux terminal to keep an eye
on a relatively small number of DGX servers.

https://linux.die.net/man/1/top
https://github.com/bcicen/ctop
https://github.com/tmux/tmux/wiki
https://linux.die.net/man/1/watch

Best Practices for DGX DG-08868-001 _v06 | 18

Chapter 6. Managing Resources

One of the common questions from DGX customers is how can they effectively share the
DGX system between users without any inadvertent problems or data exchange. The generic
phrase for this is resource management; the tools are called resource managers. They can
also be called schedulers or job schedulers. These terms are often used interchangeably.

Everything on the DGX system can be viewed as a resource. This includes memory, CPUs,
GPUs, and even storage. Users submit a request to the resource manager with their
requirements and the resource manager assigns the resources to the user if they are
available and not being used. Otherwise, the resource manager puts the request in a queue
to wait for the resources to become available. When the resources are available, the resource
manager assigns the resources to the user request. This request is known as a "job".

A resource manager provides functionality to act on jobs such as starting, canceling, or
monitoring them . It manages a queue of jobs for a single cluster of resources, each job
using a subset of computing resources. It also monitors resource configuration and health,
launching jobs to a single FIFO queue.

A job scheduler ties together multiple resource managers into one integrated domain,
managing jobs across all machines in the domain. It implements policy mechanisms to
achieve efficient utilization of resources,manages software licenses, and collects and reports
resource usage statistics.

Some tools that started as resource managers have graduated to include job scheduler
features, making the terms largely synonymous.

Resource managers and job schedulers have been around for a long time and are extensively
used in the HPC world. The end of this section will include examples of how to run solutions
such as SLURM, Univa Grid Engine, IBM Spectrum LSF, and Altair PBS Pro. If you haven’t used
these tools before, you should perform some simple experiments first to understand how they
work. For example, take a single server and install the software, then try running some simple
jobs using the cores on the server. Expand as desired and add more nodes to the cluster.

The following subsections discuss how to install and use a job scheduler on a DGX system.
For DGX systems, NVIDIA supports deploying the Slurm or Kubernetes resource managers
through the use of DeepOps. DeepOps is a modular collection of ansible scripts which
automate the deployment of Kubernetes, Slurm, or a hybrid combination of the two, along with
monitoring services and other ancillary functionality to help manage systems.

ATTENTION: DGX systems do not come pre-installed with job schedulers, although NPN
(NVIDIA Partner Network) partners may elect to install a job scheduler as part of the larger

https://slurm.schedmd.com/
http://www.univa.com/products/
https://www.ibm.com/us-en/marketplace/hpc-workload-management
http://pbspro.org/

Managing Resources

Best Practices for DGX DG-08868-001 _v06 | 19

deployment service. NVIDIA Support may request disabling or removing the job scheduler
software for debugging purposes. They may also ask for a factory image to be installed.
Without these changes, NVIDIA Support will not be able to continue with debugging process.

6.1. Example: SLURM
Slurm is a batch scheduler often used in HPC environments, but is simple to install and
flexible in configuration, so has seen wide adoption in a variety of areas. The following are
suggested methods for installing SLURM.

‣ Using Bright Cluster Manager

Refer also to the Bright Cluster Manager 9.1 Administrator Manual, section 7.5
"Configuring and Running Individual Workload Managers".

‣ Using DeepOps

DeepOps is a modular collection of ansible scripts which automate the deployment of
Kubernetes, Slurm, or a hybrid combination of the two across. To install Slurm with
DeepOps, follow the steps in the Slurm Deployment Guide.

Refer also to the technical blog Deploying Rich Cluster API on DGX for Multi-User Sharing

‣ Using SLURM Native GPU Support

SLURM has native GPU support in > v19.05, which can be installed by following the Slurm
Administrator Guide.

After Slurm is installed and configured on a DGX-2, DGX-1, or DGX Station, the next step is to
plan how to use the DGX system. The first, and by far the easiest, configuration is to assume
that a user gets exclusive access to the entire node. In this case the user gets the entire DGX
system, i.e. access to all GPUs and CPU cores. No other users can use the resources while
the first user is using them.

The second way, is to make the GPUs a consumable resource. The user will then ask for the
number of GPUs they need ranging from 1 to 8 for the DGX-1 and 1 to 16 for the DGX-2.

At a high level, there are two basic options for configuring SLURM with GPUs and DGX
systems. The first is to use what is called exclusive mode access and the second allows each
GPU to be scheduled independently of the others.

6.1.1. Simple GPU Scheduling With Exclusive Node
Access

If there is no interest in allowing simultaneous multiple jobs per compute node, then Slurm
might not need to be aware of the GPUs in the system and the configuration can be greatly
simplified.

One way of scheduling GPUs without making use of GRES (Generic REsource Scheduling) is to
create partitions or queues for logical groups of GPUs. For example, grouping nodes with V100
GPUs into a V100 partition would result in something like the following:
$ sinfo -s
PARTITION AVAIL TIMELIMIT NODES(A/I/O/T) NODELIST

https://kb.brightcomputing.com/knowledge-base/how-should-i-set-up-slurm-on-a-dgx-cluster/
https://support.brightcomputing.com/manuals/9.1/admin-manual.pdf
https://github.com/NVIDIA/deepops
https://github.com/NVIDIA/deepops/tree/master/docs/slurm-cluster
https://developer.nvidia.com/blog/deploying-rich-cluster-api-on-dgx-for-multi-user-sharing/
https://slurm.schedmd.com/quickstart_admin.html
https://slurm.schedmd.com/quickstart_admin.html

Managing Resources

Best Practices for DGX DG-08868-001 _v06 | 20

v100 up infinite 4/9/3/16 node[212-213,215-218,220-229]

The corresponding partition configuration via the SLURM configuration file, slurm.conf,
would be something like the following:
NodeName=node[212-213,215-218,220-229]
PartitionName=v100 Default=NO DefaultTime=01:00:00 State=UP
 Nodes=node[212-213,215-218,220-229]

If a user requests a node from the v100 partition, then they would have access to all of the
resources in that node, and other users would not. This is what is called exclusive access.

This approach can be advantageous if there is concern that sharing resources might result
in performance issues on the node or if there are concerns about overloading the node
resources. For example, in the case of a DGX-1, if multiple users might overwhelm the 8TB
NFS read cache, exclusive mode shouldbe considered. Or if the concern is that users may
use all of the physical memory causing page swapping with a corresponding reduction in
performance, then exclusive mode might be useful.

6.1.2. Scheduling Resources At the Per-GPU Level
A second option for using SLURM, is to treat the GPUs like a consumable resource and allow
users to request them in integer units (i.e. 1, 2, 3, etc.). SLURM can be made aware of GPUs
as a consumable resource to allow jobs to request any number of GPUs. This feature requires
job accounting to be enabled first; for more info, see Accounting and Resource Limits. A very
quick overview is below.

The SLURM configuration file, slurm.conf, needs parameters set to enable cgroups for
resource management and GPU resource scheduling. An example is the following:
General
ProctrackType=proctrack/cgroup
TaskPlugin=task/cgroup

Scheduling
SelectType=select/cons_res
SelectTypeParameters=CR_Core_Memory

Logging and Accounting
AccountingStorageTRES=gres/gpu
DebugFlags=CPU_Bind,gres # show detailed information in Slurm logs about GPU
 binding and affinity
JobAcctGatherType=jobacct_gather/cgroup

The partition information in slurm.conf defines the available GPUs for each resource. Here is
an example:
Partitions
GresTypes=gpu
NodeName=slurm-node-0[0-1] Gres=gpu:2 CPUs=10 Sockets=1 CoresPerSocket=10 ThreadsPerCore=1
 RealMemory=30000 State=UNKNOWN
PartitionName=compute Nodes=ALL Default=YES MaxTime=48:00:00 DefaultTime=04:00:00 MaxNodes=2
 State=UP DefMemPerCPU=3000

The way that resource management is enforced is through cgroups. The cgroups
configuration require a separate configuration file, cgroup.conf, such as the following:
CgroupAutomount=yes
CgroupReleaseAgentDir="/etc/slurm/cgroup"

ConstrainCores=yes
ConstrainDevices=yes
ConstrainRAMSpace=yes

https://slurm.schedmd.com/accounting.html
https://en.wikipedia.org/wiki/Cgroups

Managing Resources

Best Practices for DGX DG-08868-001 _v06 | 21

#TaskAffinity=yes

To schedule GPU resources requires a configuration file to define the available GPUs and their
CPU affinity. An example configuration file, gres.conf, is below:
Name=gpu File=/dev/nvidia0 CPUs=0-4
Name=gpu File=/dev/nvidia1 CPUs=5-9

To run a job utilizing GPU resources requires using the --gres flag with the srun command.
For example, to run a job requiring a single GPU the following srun command can be used.
$ srun --gres=gpu:1 nvidia-smi

You also may want to restrict memory usage on shared nodes so that a user doesn’t cause
swapping with other user or system processes. A convenient way to do this is with memory
cgroups.

Using memory cgroups can be used to restrict jobs to allocated memory resources requires
setting kernel parameters. On Ubuntu systems this is configurable via the file /etc/default/
grub.
GRUB_CMDLINE_LINUX="cgroup_enable=memory swapaccount=1"

6.2. Example: Univa Grid Engine
See the document Using NVIDIA® DGX™ Systems with Univa Grid Engine

6.3. Example: IBM Spectrum LSF
See the knowledge base article Using IBM Spectrum LSF with NVIDIA DGX Systems

6.4. Example: Altair PBS Pro
See the following site for a link to the technical whitepaper: Altair PBS Professional Support
on NVIDIA DGX Systems

http://www.univa.com/resources/files/Using-Univa-Grid-Engine-with-NVIDIA-DGX-systems.pdf
http://ibm.biz/LSF_GPU_on_DGX
https://www.altair.com/resource/detail/9590
https://www.altair.com/resource/detail/9590

Best Practices for DGX DG-08868-001 _v06 | 22

Chapter 7. Provisioning and Cluster
Management

Cluster management tools go beyond resource managers and job schedulers, managing the
state of each node in an entire cluster. They typically include mechanisms to provision the
nodes in the cluster (install the operating system image, firmware, and drivers), deploy a job
scheduler, monitor and manage hardware, configure user access, and make modifications to
the software stack.

Provisioning and cluster management of DGX Systems may be bootstrapped with DeepOps.
DeepOps is open source and highly modular. It has defaults which can be configured to
meet organizational needs and incorporates best practices for deploying GPU-accelerated
Kubernetes and Slurm.

Alternatively, Bright Cluster Manager deploys complete DGX PODs over bare metal and
manages them effectively. It provides management for the entire DGX POD, including the
hardware, operating system, and users. It even manages the Data Analytics software, NGC,
Bright Data Science, Kubernetes, Docker and Singularity Containers. With Bright Cluster
Manager, a system administrator can quickly stand up DGX PODs and keep them running
reliably throughout their life cycle—all with the ease and elegance of a fully-featured,
enterprise-grade cluster manager.

7.1. Example: Bright Computing Cluster
See the knowledge base article How do I add NVIDIA DGX nodes to a Bright cluster using the
official Ubuntu DGX software stack?

https://github.com/NVIDIA/deepops
https://kb.brightcomputing.com/faq/index.php?action=artikel&cat=27&id=473&artlang=en
https://kb.brightcomputing.com/faq/index.php?action=artikel&cat=27&id=473&artlang=en

Best Practices for DGX DG-08868-001 _v06 | 23

Chapter 8. Networking

Networking DGX appliances is an important topic because of the need to provide data to the
GPUs for processing. GPUs are remarkably faster than CPUs for many tasks, particularly
deep learning. Therefore, the network principles used for connecting CPU servers may not be
sufficient for DGX appliances. This is particularly important as the number of DGX appliances
grows over time.

8.1. DGX-1 Networking
To understand best practices for networking the DGX-1 and for planning for future growth, it
is best to start with a brief review of the DGX-1 appliance itself. Recall that the DGX-1 comes
with four EDR InfiniBand cards (100 Gb/s each) and two 10Gb/s Ethernet cards (copper).
These networking interfaces can be used for connecting the DGX-1 to the network for both
communications and storage.

Figure 3. Networking interfaces

Notice that every two GPUs are connected to a single PCIe switch that is on the system board.
The switch also connects to an InfiniBand (IB) network card. To reduce latency and improve
throughput, and network traffic from these two GPUs should go to the associated IB card. This
is why there are four IB cards in the DGX-1 appliance.

Networking

Best Practices for DGX DG-08868-001 _v06 | 24

8.1.1. DGX-1 InfiniBand Networking
If you want to use the InfiniBand (IB) network to connect DGX appliances, theoretically, you
only have to use one of the IB cards. However, this will push data traffic over the QPI link
between the CPUs, which is a very slow link for GPU traffic (i.e. it becomes a bottleneck). A
better solution would be to use two IB cards, one connected to each CPU. This could be IB0
and IB2, or IB1 and IB3, or IB0 and IB3, or IB1 and IB2. This would greatly reduce the traffic
that has to traverse the QPI link. The best performance is always going to be using all four of
the IB links to an IB switch.

The best approach for using IB links to connect all four IB cards to an IB fabric. This will
result in the best performance (full bisectional bandwidth and lowest latency) if you are using
multiple DGX appliances for training.

Typically, the smallest IB switch comes with 36-ports. This means a single IB switch could
accommodate nine (9) DGX-1 appliances using all four IB cards. This allows 400 Gb/s of
bandwidth from the DGX-1 to the switch.

If your applications do not need the bandwidth between DGX-1 appliances, you can use two IB
connections per DGX-1 as mentioned previously. This allows you to connect up to 18 DGX-1
appliances to a single 36-port IB switch.

Note: It is not recommended to use only a single IB card, but if for some reason that is the
configuration, then you can connect up to 36 DGX-1 appliances to a single switch.

For larger numbers of DGX-1 appliances, you will likely have to use two levels of switching.
The classic HPC configuration is to use 36-port IB switches for the first level (sometimes
called leaf switches) and connect them to a single large core switch, which is sometimes
called a director class switch. The largest director class InfiniBand switch has 648 ports. You
can use more than one core switch but the configuration will get rather complex. If this is
something you are considering, please contact your NVIDIA sales team for a discussion.

For two tiers of switching, if all four IB cards per DGX-1 appliance are used to connect to a 36-
port switch, and there is no over-subscription, the largest number of DGX-1 appliances per
switch is 4. This is 4 ports from each DGX-1 into the switch for a total of 16. Then, there are 16
uplinks from the leaf switch to the core switch (the director class switch). A total of 40x 36-port
leaf switches can be connected to the 648-port core switch (648/16). This results in 160 DGX-1
appliances being connected with full bi-sectional bandwidth.

You can also use what is termed over-subscription in designing the IB network. Over-
subscription means that the bandwidth from an uplink is less than the bandwidth coming into
the unit (in other words, poorer bandwidth performance). If we use 2:1 over-subscription from
the DGX-1 appliances to the first level of switches (36-port leaf switches), then each DGX-1
appliance is only using two IB cards to connect to the switches. This results in less bandwidth
than if we used all four cards and also higher latency.

If we keep the network bandwidth from the leaf switches to the core directory switch as 1:1
(in other words, no over-subscription, full bi-sectional bandwidth), then we can put nine (9)
DGX-1 appliances into a single leaf switch (a total of 18 ports into the leaf switch from the DGX
appliances and 18 uplink ports to the core switch). The result is that a total of 36 leaf switches

Networking

Best Practices for DGX DG-08868-001 _v06 | 25

can be connected to the core switch. This allows a grand total of 324 DGX-1 appliances to be
connected together.

You can tailor the IB network even further by using over-subscription from the leaf switches
to the core switch. This can be done using four IB connections to a leaf switch from each
DGX appliance and then doing 2:1 over-subscription to the core switch or even using two IB
connections to the leaf switches and then 2:1 over-subscription to the core switch. These
designs are left up to the user to determine but if this is something you want to consider,
please contact your NVIDIA sales team for a discussion.

Another important aspect of InfiniBand networking is the Subnet Manager (SM). The SM simply
manages the IB network. There is one SM that manages the IB fabric at any one time but you
can have other SM’s running and ready to take over if the first SM crashes. Choosing how
many SM’s to run and where to run them can have a major impact on the design of the cluster.

The first decision to make is where you want to run the SM’s. They can be run on the IB
switches if you desire. This is called hardware SM since it runs on the switch hardware. The
advantage of this is that you do not need any other servers which could also run the SM.
Running the SM on a node is called a software SM. A disadvantage to running a hardware SM
is that if the IB traffic is large, the SM could have a difficult time. For lots of IB traffic and for
larger networks, it is a best practice to use a software SM on a dedicated server.

The second decision to make is how many SM’s you want to run. At a minimum, you will have
to run one SM. The least expensive solution is to run a single hardware SM. This will work fine
for small clusters of DGX-1 appliances (perhaps 2-4). As the number of units grow, you will
want to consider running two SM’s at the same time to get HA (High Availability) capability. The
reason you want HA is that more users are on the cluster and having it go down has a larger
impact than just a small number of appliances.

As the number of appliances grow, consider running the SM’s on dedicated servers (software
SM). You will also want to run at least two SM’s for the cluster. Ideally, this means two
dedicated servers for the SM’s, but there may be a better solution that solves some other
problems; a head node.

8.1.2. DGX-1 Ethernet Networking
Each DGX-1 system comes with two 10Gb/s NICs. These can be used to connect the systems
to the local network for a variety of functions such as logins and storage traffic. As a starting
point, it is recommended to push NFS traffic over these NICs to the DGX-1. You should monitor
the impact of IO on the performance of your models in this configuration.

If you need to go to more than one level of Ethernet switching to connect all of the DGX-1
units and the storage, be careful of how you configure the network. More than likely, you will
have to enable the spanning tree protocol to prevent loops in the network. The spanning tree
protocol can impact network performance, therefore, you could see a decrease in application
performance.

The InfiniBand NICs that come with the DGX-1 can also be used as Ethernet NICs running
TCP. The ports on the cards are QSFP28 so you can plug them into a compatible Ethernet
network or a compatible InfiniBand network. You will have to add some software to the
appliance and change the networking but you can use the NICs as 100GigE Ethernet cards.

For more information, see Switch InfiniBand and Ethernet in DGX-1.

https://community.mellanox.com/docs/DOC-2616
https://docs.nvidia.com/dgx/dgx1-user-guide/configuring-managing-dgx1.html#infiniband-port-changing

Networking

Best Practices for DGX DG-08868-001 _v06 | 26

8.1.3. DGX-1 Bonded NICs
The DGX-1 provides two 10GbE ports. Out of the factory these two ports are not bonded but
they can be bonded if desired. In particular, VLAN Tagged, Bonded NICs across the two 10 GbE
cards can be accomplished.

Before bonding the NICs together, ensure you are familiar with the following:

‣ Ensure your network team is involved because you will need to choose a bonding mode for
the NICs.

‣ Ensure you have a working network connection to pull down the VLAN packages. To do so,
first setup a basic, single NIC network (no VLAN/bonding) connection and download the
appropriate packages. Then, reconfigure the switch for LACP/VLANs.

Tip: Since the networking goes up and down throughout this process, it's easier to work from a
remote console.

The process below walks through the steps of an example for bonding the two NICs together.

 1. Edit the /etc/network/interfaces file to setup an interface on a standard network so
that we can access required packages.
auto em1
 iface em1 inet static
 address 10.253.0.50
 netmask 255.255.255.0
 network 10.253.0.0
 gateway 10.253.0.1
 dns-nameservers 8.8.8.8

 2. Bring up the updated interface.
sudo ifdown em1 && sudo ifup em1

 3. Pull down the required bonding and VLAN packages.
sudo apt-get install vlan
sudo apt-get install ifenslave

 4. Shut down the networking.
sudo stop networking

 5. Add the following lines to /etc/modules to load appropriate drivers.
sudo echo "8021q" >> /etc/modules
sudo echo "bonding" >> /etc/modules

 6. Load the drivers.
sudo modprobe 8021q
sudo modprobe bonding

 7. Reconfigure your /etc/network/interfaces file. There are some configuration
parameters that will be customer network dependent and you will want to work with one of
your network engineers.

The following example creates a bonded network over em1/em2 with IP 172.16.1.11 and
VLAN ID 430. You specify the VLAN ID in the NIC name (bond0.###). Also notice that this
example uses a bond-mode of 4. Which mode you use is up to you and your situation.
auto lo
iface lo inet loopback

Networking

Best Practices for DGX DG-08868-001 _v06 | 27

The following 3 sections create the bond (bond0) and associated network ports (em1,
 em2)
auto bond0
iface bond0 inet manual
bond-mode 4
bond-miimon 100
bond-slaves em1 em2

auto em1
iface em1 inet manual
bond-master bond0
bond-primary em1

auto em2
iface em2 inet manual
bond-master bond0

This section creates a VLAN on top of the bond. The naming format is device.vlan_id
auto bond0.430
iface bond0.430 inet static
address 172.16.1.11
netmask 255.255.255.0
gateway 172.16.1.254
dns-nameservers 172.16.1.254
dns-search company.net
vlan-raw-device bond0

 8. Restart the networking.
sudo start networking

 9. Bring up the bonded interfaces.
ifup bond0

 10.Engage your network engineers to re-configure LACP and VLANs on switch.
 11.Test the configuration.

8.2. DGX-2 Networking
Because there are more network devices in the DGX-2 relative to the DGX-1 and DGX Station,
and they can be used in different ways, to learn more about DGX-2 networking, see the DGX-2
User Guide.

https://docs.nvidia.com/dgx/dgx2-user-guide/index.html
https://docs.nvidia.com/dgx/dgx2-user-guide/index.html

Best Practices for DGX DG-08868-001 _v06 | 28

Chapter 9. SSH Tunneling

Some environments are not configured or limit access (firewall or otherwise) to computer
nodes within an intranet. They are also very useful for running Jupyter notebooks inside
containers when working remotely. When running a container with a service or application
exposed on a port, such as , remote access must be enabled on the remote system to that port
on the DGX system. The following steps use PuTTY to create SSH tunnel from a remote system
into the DGX system. If you are using an SSH utility, one can set up tunneling via the -L option.

Note: A PuTTY SSH tunnel session must be up, logged in, and running for tunnel to function.
SSH tunnels are commonly used for the following applications (with listed port numbers).

Table 2. Commonly used applications for SSH tunnels

Application Port Notes
5000 If multiple users, each selects

own port

VNC Viewer 5901, 6901 5901 for VNC app, 6901 for web
app

To create an SSH Tunnel session with PuTTY, perform the following steps:

 1. Run the PuTTY application.
 2. In the Host Name field, enter the host name you want to connect to.
 3. In the Saved Sessions section, enter a name to save the session under and click Save.
 4. Click Category > Connection, click + next to SSH to expand the section.
 5. Click Tunnels for Tunnel configuration.
 6. Add the port for forwarding.

 a). In the Source Port section, enter 5000, which is the port you need to forward for .
 7. In the Destination section, enter localhost:5000 for the local port that you will connect

to.
 8. Click Add to save the added Tunnel.
 9. In the Category section, click Session.
 10.In the Saved Sessions section, click the name you previously created, then click Save to

save the added Tunnels.

SSH Tunneling

Best Practices for DGX DG-08868-001 _v06 | 29

To use PuTTY with tunnels, perform the following steps:

 1. Run the PuTTY application.
 2. In the Saved Sessions section, select the Save Session that you created.
 3. Click Load.
 4. Click Open to start session and login. The SSH tunnel is created and you can connect to a

remote system via tunnel. As an example, for , you can start a web browser and connect to
http://localhost:5000.

Best Practices for DGX DG-08868-001 _v06 | 30

Chapter 10. Head Node

A head node is a very useful server within a cluster. Typically, it runs the cluster management
software, the resource manager, and any monitoring tools that are used. For smaller clusters,
it is also used as a login node for users to create and submit jobs.

For clusters of any size that include the DGX-2, DGX-1, or even a group of DGX Stations, a head
node can be very helpful. It allows the DGX systems to focus solely on computing rather than
any interactive logins or post-processing that users may be doing. As the number of nodes in a
cluster increases, it is recommended to use a head node.

It is recommended to size the head node for things such as:

‣ Interactive user logins

‣ Resource management (running a job scheduler)

‣ Graphical pre-processing and post-processing

‣ Consider a GPU in the head node for visualization

‣ Cluster monitoring

‣ Cluster management

Since the head node becomes an important part of the operation of the cluster, consider using
RAID-1 for the OS drive in the head node as well as redundant power supplies. This can help
improve the uptime of the head node.

For smaller clusters, you can also use the head node as an NFS server by adding storage and
more memory to the head node and NFS export the storage to the cluster clients. For larger
clusters, it is recommended to have dedicated storage, either NFS or a parallel file system.

For InfiniBand networks, the head node can also be used for running the software SM. If you
want some HA for the SM, run the primary SM on the head node and use an SM on the IB
switch as a secondary SM (hardware SM).

As the cluster grows, it is recommended to consider splitting the login and data processing
functions from the head node to one or more dedicated login nodes. This is also true as the
number of users grows. You can run the primary SM on the head node and other SM’s on the
login nodes. You could even use the hardware SM’s on the switches as backups.

Best Practices for DGX DG-08868-001 _v06 | 31

Chapter 11. DGX-2 KVM Networking

11.1. Introduction
The NVIDIA DGX-2 system supports GPU multi-tenancy through the NVIDIA Kernal-based
Virtual Machine solution (based on the Linux Kernel Virtual Machine (https://www.linux-
kvm.org). This allows different users to run concurrent deep learning jobs using multiple
virtual machines (guest GPU VMs) within a single DGX-2 System.

This chapter describes the standard and most commonly used network configurations
for KVM-based guest GPU VMs running on the NVIDIA® DGX-2™ server. All the network
configurations described in this document are based on Netplan - the preferred network
configuration method for Ubuntu 18.04-based systems such as the DGX-2 server.

11.1.1. Network Configuration Options
The two common network configurations are "Virtual Network" and "Shared Physical Device".
The former is identical across all Linux distributions and available out-of-the-box. The latter
needs distribution-specific manual configuration.

The type of network configuration suitable for any deployment depends on the following
factors:

‣ Whether the guest VM needs to be accessible by users outside of the DGX-2 KVM host

‣ Type of network services hosted by the guest VM

‣ Number of available public IPv4 and IPv6 addresses

‣ What kind of security is required for the guest VM

‣ The throughput and latency requirements of the guest VM

The rest of this document describes the following network configurations in detail.

‣ Virtual Network

‣ Bridged Network

‣ SR-IOV

https://www.linux-kvm.org
https://www.linux-kvm.org

DGX-2 KVM Networking

Best Practices for DGX DG-08868-001 _v06 | 32

11.1.2. Acronyms
‣ KVM - Linux Kernel based Virtual Machine

‣ NAT - Network Address Translation

‣ DHCP - Dynamic Host Configuration Protocol

‣ SR-IOV - Single Root IO Virtualization

‣ QOS - Quality of Service

‣ MTU - Maximum Transmission Unit

11.2. Virtual Networking
Libvirt virtual networking uses the concept of a virtual network switch, also known as
Usermode Networking. A virtual network switch is a software construct that operates on a
physical server host to which guest VMs connect. By default, it operates in NAT mode. The
network traffic for a guest VM is directed through this switch, and consequently all guest VMs
will use the Host IP address of the connected Physical NIC interface when communicating
with the external world.

11.2.1. Default Configuration
The Linux host physical server represents a virtual network switch as a network interface.
When the libvirtd daemon (libvirtd) is first installed and started, the default network interface
representing the virtual network switch is virbr0.

By default, an instance of the dnsmasq server is automatically configured and started by libvirt
for each virtual network switch that needs it. It is responsible for running a DHCP server (to
decide which IP address to lease to each VM) and a DNS server (to respond to queries from
VMs).

In the default virtual network switch configuration, the guest OS will get an IP address in the
192.168.122.0/24 address space and the host OS will be reachable at 192.168.122.1. You should
be able to SSH into the host OS (at 192.168.122.1) from inside the guest OS and use SCP to
copy files back and forth.

In the default configuration, the guest OS will have access to network services but will not
itself be visible to other machines on the network. For example, the guest VM will be able to
browse the web, but will not be able to host an accessible web server.

You can create additional virtual networks using the steps described in the latter part of
this section except you must use a different range of DHCP IP addresses. For example,
192.168.123.0/24.

DGX-2 KVM Networking

Best Practices for DGX DG-08868-001 _v06 | 33

The following are limitations of the Virtual Network Configuration when used in NAT mode.

‣ Guest VMs do not communicate with an external network through a unique address.

‣ Guest VMs communicate with an external network through the Host IP address of the
connected Physical NIC interface.

When used in NAT mode, you may encounter certain restrictions (such as connection
timeouts) due to the number of active connections per Host/IP address, especially if all
guest VMs are communicating with the same server at the same time. It also depends on the
features and restrictions enforced on the server side.
net/http: request canceled while waiting for connection(Client.Timeout exceeded
 while awaiting headers)

If the default configuration is suitable for your purposes, no other configuration is required.

A couple of advance virtual network configurations can be used for better network
performance. Refer to Improving Network Performance for more details.

Verifying the Host Configuration

Every standard libvirt installation provides NAT-based connectivity to virtual machines out of
the box. This is referred to as the 'default virtual network'. Verify that it is available with the
virsh net-list --all command.
$ virsh net-list --all
Name State Autostart

default active yes

If the default network is missing, the following example XML configuration file can be reloaded
and activated.
$ virsh net-dumpxml default
<network>
 <name>default</name>
 <uuid>92d49672-3020-40a1-90f5-73fe07216122</uuid>
 <forward mode='nat'>
 <nat>

DGX-2 KVM Networking

Best Practices for DGX DG-08868-001 _v06 | 34

 <port start='1024' end='65535'/>
 </nat>
 </forward>
 <bridge name='virbr0' stp='on' delay='0'/>
 <mac address='52:54:00:40:cc:23'/>
 <ip address='192.168.122.1' netmask='255.255.255.0'>
 <dhcp>
 <range start='192.168.122.2' end='192.168.122.254'/>
 </dhcp>
 </ip>
</network>

In the above XML contents, “default” is the name of the virtual network, and “virbr0” is the
name of the virtual network switch.
$ virsh net-define /etc/libvirt/qemu/networks/default.xml
The default network is defined from /etc/libvirt/qemu/networks/default.xml

Mark the default network to automatically start:
$ virsh net-autostart default
Network default marked as autostarted

Start the default network:
$ virsh net-start defaultNetwork default started

Once the libvirt default virtual network is running, you will see a virtual network switch device.
This device does not have any physical interfaces added, since it uses NAT and IP forwarding
to connect to the outside world. This virtual network switch will just use whatever Physical NIC
interface that is being used by Host. Do not add new interfaces.
$ brctl show
bridge name bridge id STP enabled interfaces
virbr0 8000.000000000000 yes

Once the host configuration is complete, a guest can be connected to the virtual network
based on its name or bridge. To connect a guest VM to using virtual bridge name “virbr0”, the
following XML can be used in the virsh configuration for the guest VM:
<interface type='bridge'>
 <source bridge='virbr0'/>
 <model type='virtio'/>
</interface>

11.2.2. Using Static IP
You can reserve and allocate static IP addresses for the specific guest VMs from the default
DHCP range (192.168.122.2 - 192.168.122.254) of the virtual network switch. Also, you should
exclude those reserved/assigned static IP addresses from the DHCP ranges.

Configurations Made from the Host

To use static IP addressing, check the Mac address of the guest VM.
$ virsh edit 1gpu-vm-1g0
<domain type='kvm' id='3'>
 <name>1gpu-vm-1g0</name>
 <uuid>c40f6b9d-ea15-45b0-ac42-83801eef73d4</uuid>
 ……..
 <interface type='bridge'>
 <mac address='52:54:00:e1:28:3e'/>
 <source bridge='virbr0'/>
 <model type='virtio'/>
 <address type='pci' domain='0x0000' bus='0x01' slot='0x00' function='0x0'/>
 </interface>

DGX-2 KVM Networking

Best Practices for DGX DG-08868-001 _v06 | 35

 ….
</domain>
$ virsh net-edit default
<network>
 <name>default</name>
 <uuid>92d49672-3020-40a1-90f5-73fe07216122</uuid>
 <forward mode='nat'>
 <nat>
 <port start='1024' end='65535'/>
 </nat>
 </forward>
 <bridge name='virbr0' stp='on' delay='0'/>
 <mac address='52:54:00:40:cc:23'/>
 <ip address='192.168.122.1' netmask='255.255.255.0'>
 <dhcp>
 <range start='192.168.122.100' end='192.168.122.254'/>
 <host mac='52:54:00:e1:28:3e' ip='192.168.122.45'/>
 </dhcp>
 </ip>
</network>
$ virsh net-destroy default
$ virsh net-start default

Start/restart the guest VM after updating the “default” virtual network with the guest Mac
address.
$ virsh net-dhcp-leases default
Expiry Time MAC address Protocol IP address Hostname Client
 ID or DUID
--
2018-08-29 13:18:58 52:54:00:e1:28:3e ipv4 192.168.122.45/24 1gpu-vm-1g0

11.2.3. Binding the Virtual Network to a Specific
Physical NIC

KVM will use virtual network switch as the default networking configuration for all guest
VMs and it will operate in NAT mode. The network traffic for a guest is directed through this
switch, and consequently all guests will use one of the Host Physical NIC interface while
communicating with the external world. By default, it is not bound to any specific physical
NIC interface but you can restrict the virtual network switch to use a specific physical NIC
interface; for example, you can limit the virtual network to use enp6s0 only.
$ virsh net-edit default
<network>
 <name>default</name>
 <uuid>92d49672-3020-40a1-90f5-73fe07216122</uuid>
 <forward dev='enp6s0' mode='nat' />
 <bridge name='virbr0' stp='on' delay='0'/>
 <mac address='52:54:00:40:cc:23'/>
 <ip address='192.168.122.1' netmask='255.255.255.0'>
 <dhcp>
 <range start='192.168.122.2' end='192.168.122.254'/>
 </dhcp>
 </ip>
</network>
$ virsh net-destroy default
$ virsh net-start default

Start/restart the guest after updating “default” virtual network configuration.

DGX-2 KVM Networking

Best Practices for DGX DG-08868-001 _v06 | 36

11.3. Bridged Networking

11.3.1. Introduction
A bridged network shares a real Ethernet device with KVM guest VMs. When using Bridged
mode, all the guest virtual machines appear within the same subnet as the host physical
machine. All other physical machines on the same physical network are aware of, and can
access, the virtual machines. Bridging operates on Layer 2 of the OSI networking model.

Each guest VM can bind directly to any available IPv4 or IPv6 addresses on the LAN, just like a
physical server. Bridging offers the best performance with the least complication out of all the
libvirt network types. A bridge is only possible when there are enough IP addresses to allocate
one per guest VM. This is not a problem for IPv6, as hosting providers usually provide many
free IPv6 addresses. However, extra IPv4 addresses are rarely free.

11.3.2. Using DHCP
Configuration from the Host
$ sudo vi /etc/netplan/01-netcfg.yaml
This file describes the network interfaces available on your system
For more information, see netplan(5).
network:
 version: 2
 renderer: networkd
 ethernets:
 enp134s0f0:
 dhcp4: yes
 bridges:
 br0:
 dhcp4: yes

DGX-2 KVM Networking

Best Practices for DGX DG-08868-001 _v06 | 37

 interfaces: [enp134s0f0]

Note: Use the Host NIC interface (Ex: enp134s0f0) that is connected on your system.

$ sudo netplan apply

Guest VM Configuration

Once the host configuration is complete, a guest can be connected to the bridged network
based on its name. To connect a guest to the 'br0' network, the following XML can be used for
the guest:
$ virsh edit <VM name or ID>
<interface type='bridge'>
 <source bridge=br0/>
 <model type='virtio'/></interface>

Refer to Getting the Guest VM IP Address for instructions on how to determine the guest VM IP
address.

11.3.3. Using Static IP
Host Configuration
$ sudo vi /etc/netplan/01-netcfg.yaml
This file describes the network interfaces available on your system
For more information, see netplan(5).
network:
 version: 2
 renderer: networkd
 ethernets:
 enp134s0f0:
 dhcp4: no
 bridges:
 br0:
 dhcp4: no
 addresses: [10.33.14.17/24]
 gateway4: 10.33.14.1
 nameservers:
 search: [nvidia.com]
 addresses: [172.16.200.26, 172.17.188.26]
 interfaces: [enp134s0f0]

Note: Use the Host NIC interface (Ex: enp134s0f0) that you have connected to your network.
Consult your network administrator for the actual IP addresses of your guest VM.

$ sudo netplan apply

Guest VM Configuration

Once the host configuration is complete, a guest VM can be connected to the bridged network
based on its name. To connect a guest VM to the 'br0' network, the following XML can be used
for the guest VM:
$ virsh edit <VM name or ID>
<interface type='bridge'>
 <source bridge=br0/>
 <model type='virtio'/>
</interface>

Refer to Getting the Guest VM IP Address for instructions on how to determine the guest VM IP
address.

DGX-2 KVM Networking

Best Practices for DGX DG-08868-001 _v06 | 38

11.4. Bridged Networking with Bonding

11.4.1. Introduction
Network bonding refers to the combining of multiple physical network interfaces on one host
for redundancy and/or increased throughput. Redundancy is the key factor: we want to protect
our virtualized environment from loss of service due to failure of a single physical link. This
network bonding is the same as Linux network bonding. The bond is added to a bridge and
then guest virtual machines are added onto the bridge, similar to bridged mode as discussed
in Bridged Networking. However, the bonding driver has several modes of operation, and only
a few of these modes work with a bridge where virtual guest machines are in use.

There are three key modes of network bonding:

‣ Active-Passive: there is one NIC active while another NIC is asleep. If the active NIC goes
down, another NIC becomes active.

‣ Link Aggregation: aggregated NICs act as one NIC which results in a higher throughput.

‣ Load Balanced: the network traffic is equally balanced over the NICs of the machine.

The following section explains the bonding configuration based on IEEE 802.3 link aggregation.
This mode is also known as a Dynamic Link Aggregation mode that creates aggregation
groups having the same speed. It requires a switch that supports IEEE 802.3ad Dynamic Link
aggregation.

11.4.2. Using DHCP
Configuration from the Host

DGX-2 KVM Networking

Best Practices for DGX DG-08868-001 _v06 | 39

$ sudo vi /etc/netplan/01-netcfg.yaml
This file describes the network interfaces available on your system
For more information, see netplan(5).
network:
 version: 2
 renderer: networkd
 ethernets:
 bond-ports:
 dhcp4: no
 match:
 name: enp134*
 bonds:
 bond0:
 dhcp4: no
 interfaces: [bond-ports]
 parameters:
 mode: 802.3ad
 bridges:
 br0:
 dhcp4: yes
 interfaces: [bond0]

Note: Use the Host NIC interface (Ex: enp134*) based on what is connected on your system.

$ sudo netplan apply

Guest VM Configuration

Once the host configuration is complete, a guest can be connected to the bridged network
based on its name. To connect a guest to the 'br0' network, the following XML can be used in
the guest:
$ virsh edit <VM name or ID>
<interface type='bridge'>
 <source bridge=br0/>
 <model type='virtio'/>
</interface>

Refer to Getting the Guest VM IP Address for instructions on how to determine the guest VM IP
address.

11.4.3. Using Static IP
Host Configuration
$ sudo vi /etc/netplan/01-netcfg.yaml
This file describes the network interfaces available on your system
For more information, see netplan(5).
network:
 version: 2
 renderer: networkd
 ethernets:
 bond-ports:
 dhcp4: no
 match:
 name: enp134*
 bonds:
 bond0:
 dhcp4: no
 interfaces: [bond-ports]
 parameters:
 mode: 802.3ad

DGX-2 KVM Networking

Best Practices for DGX DG-08868-001 _v06 | 40

 bridges:
 br0:
 addresses: [10.33.14.17/24]
 gateway4: 10.33.14.1
 nameservers:
 search: [nvidia.com]
 addresses: [172.16.200.26, 172.17.188.26]
 interfaces: [bond0]

Note: Use the Host NIC interface (Ex: enp134*) based on what is connected on your system.

$ sudo netplan apply

Guest VM Configuration

Once the host configuration is complete, a guest can be connected to the bridged network
based on its name. To connect a guest to the 'br0' network, the following XML can be used in
the guest:
$ virsh edit <VM name or ID>
<interface type='bridge'>
 <source bridge=br0/>
 <model type='virtio'/>
</interface>

Refer to Getting the Guest VM IP Address for instructions on how to determine the guest VM IP
address.

11.5. MacVTap

11.5.1. Introduction
As an alternative to the default NAT connection, you can use the macvtap driver to attach
the guest's NIC directly to a specified physical interface of the host machine. Macvtap is a
Linux device driver, based upon the combination of Macvlan and a network Terminal Access
Point (TAP)(descriptions below), that allows for the creation of virtual (tap-like) interfaces.
Each virtual network interface is assigned its own MAC and IP address, then attached to the
physical interface (also known as the lower interface),

‣ Macvlan - Linux kernel driver that makes it possible to create virtual network interfaces
that can be attached to the physical network adapter (aka the lower interface).

‣ TAP - A software-only interface that allows user space programs to read and write via TAP
device files (/dev/tapN).

A key difference between using a bridge and using macvtap is that macvtap connects directly
to the network interface in the KVM host. This direct connection effectively shortens the
code path by bypassing much of the code and components in the KVM host associated
with connecting to and using a software bridge. This shorter code path usually improves
throughput and reduces latencies to external systems.

DGX-2 KVM Networking

Best Practices for DGX DG-08868-001 _v06 | 41

11.5.2. Macvtap Modes
There are four modes of operation that control how the endpoints communicate with each
other - VEPA, Bridge, Private, and Passthrough.

VEPA

Virtual Ethernet Port Aggregator (VEPA) is typically the default mode. Data flows from one
endpoint down through the source device in the KVM host out to the external switch. If the
switch supports hairpin mode, the data is sent back to the source device in the KVM host and
from there sent to the destination endpoint.

DGX-2 KVM Networking

Best Practices for DGX DG-08868-001 _v06 | 42

Bridge

In bridged mode, all endpoints are connected directly to each other. Two endpoints that are
both in bridge mode can exchange frames directly, without the round trip through the external
bridge. This is the most useful mode for setups with classic switches, and when inter-guest
communication is performance critical.

Private

All packets are sent to the external switch and are delivered to a target guest on the same
host machine only if they are sent through an external router or gateway. The packets are then
sent back to the host. Private mode can be used to prevent individual guests on the single host
from communicating with each other.

DGX-2 KVM Networking

Best Practices for DGX DG-08868-001 _v06 | 43

Passthrough

This feature attaches a physical interface device or a SR-IOV Virtual Function (VF) directly to
a guest without losing the migration capability. All packets are sent directly to the designated
network device. Note that a single network device can only be passed through to a single
guest, as a network device cannot be shared between guests in passthrough mode.

Without a switch that supports hairpin mode, KVM guests configured to use VEPA mode
will work the same as bridge mode, and will not be able to communicate directly with the
KVM host using the KVM host interface. This limitation can be overcome if the KVM host has
multiple interfaces using different ethernet segments (subnets).

MacVTap Modes VM<->VM VM<->External
VM<->HOST<-
>VM Comment

Vepa YES/NO YES YES/NO YES only if
External Switch
supports hairpin
mode

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/virtualization_administration_guide/chap-Guest_virtual_machine_device_configuration#sect-PCI_devices-PCI_passthrough

DGX-2 KVM Networking

Best Practices for DGX DG-08868-001 _v06 | 44

MacVTap Modes VM<->VM VM<->External
VM<->HOST<-
>VM Comment

Bridge YES YES NO Recommended
configuration.

In this
configuration
the host cannot
connect with VMs.

Private NO YES NO External switch
without hairpin
mode

Pass-through YES YES YES? SR-IOV and Non-
SRIOV NICs

11.5.3. How to Change the Macvtap and Physical NIC
Configuration

By default, DGX systems in KVM guests are configured to use a macvtap network in “Bridge”
mode. Use the following commands to change the physical NIC and macvtap mode.

 1. Edit macvtap-net.
$ virsh net-edit macvtap-net<network>
 <name>macvtap-net</name>
 <uuid>8b403750-2ad5-49df-8a7b-26b10053429d</uuid>
 <forward dev='<device-interface>' mode='<macvtap-mode>'
 <interface dev='<device-interface>'/>
 </forward>
</network>

Where

<device-interface> is the name of the network port, such as enp1s0f0.

<macvtap-mode> is the mode you want to set.

‣ bridge = Bridge mode

‣ private = Private mode

‣ vepa = VEPA mode

‣ passthrough = passthrough mode

 2. Restart macvtap-net with the following commands.
$ virsh net-destroy macvtap-net
$ virsh net-start macvtap-net

https://wiki.libvirt.org/page/TroubleshootMacvtapHostFail
https://wiki.libvirt.org/page/TroubleshootMacvtapHostFail
https://wiki.libvirt.org/page/TroubleshootMacvtapHostFail
https://wiki.libvirt.org/page/TroubleshootMacvtapHostFail
https://wiki.libvirt.org/page/TroubleshootMacvtapHostFail

DGX-2 KVM Networking

Best Practices for DGX DG-08868-001 _v06 | 45

11.5.4. How to Configure the Guest VM Using
privateIP

If macvtap is configured in "Bridge" mode but you need Host-to-VM network connectivity, you
can configure a privateIP network for the VM as follows.

‣ Configuring privateIP when creating new guest VMs

Specify --privateIP when creating the VM so that the second virtual network interface
will be added based on private-net network for Host-to-VM connectivity.

‣ Configuring privateIP for existing guest VMs

 1. Edit the VM (virsh edit <vm-name>) and add the following line to the <devices>
section:
<interface type='network'>
 <source network='private-net'/>
 <model type='virtio'/>
</interface>

 2. Shutdown and restart the VM.
$ virsh shutdown <vm-name>
$ virsh start <vm-name>

11.6. SR-IOV

11.6.1. Introduction
The SR-IOV technology is a hardware-based virtualization solution that improves both
performance and scalability. The SR-IOV standard enables efficient sharing of PCIe
(Peripheral Component Interconnect) Express devices among virtual machines and is
implemented in the hardware to achieve I/O performance which is comparable to native
performance. The SR-IOV specification defines a new standard wherein the new devices that
are created will enable the virtual machine to be directly connected to the I/O device.

The SR-IOV specification is defined and maintained by PCI-SIG at http://www.pcisig.com.

A single I/O resource can be shared by many virtual machines. The shared devices will
provide dedicated resources and also utilize shared common resources. In this way, each
virtual machine will have access to unique resources. Therefore, a PCIe device, such as an
Ethernet Port, that is SR-IOV enabled with appropriate hardware and OS support can appear
as multiple, separate physical devices, each with its own configuration space.

The following figure illustrates the SR-IOV technology for PCIe hardware.

http://www.pcisig.com

DGX-2 KVM Networking

Best Practices for DGX DG-08868-001 _v06 | 46

Two new function types in SR-IOV are:

Physical Function (PF)

A PCI Function that supports the SR-IOV capabilities as defined in SR-IOV specification. A
PF contains the SR-IOV capability structure and is used to manage the SR-IOV functionality.
PFs are fully-featured PCIe functions that can be discovered, managed, and manipulated like
any other PCIe device. PFs have full configuration resources and can be used to configure or
control the PCIe device.

Virtual Function (VF)

A Virtual Function is a function that is associated with a Physical Function. A VF is a
lightweight PCIe function that shares one or more physical resources with the Physical
Function and with other VFs that are associated with the same PF. VFs are only allowed to
have configuration resources for its own behavior.

An SR-IOV device can have hundreds of Virtual Functions (VFs) associating with a Physical
Function (PF). The creation of VFs can be dynamically controlled by the PF through registers
designed to turn on the SR-IOV capability. By default, the SR-IOV capability is turned off, and
the PF behaves as traditional PCIe device.

The following are the advantages and disadvantages of SR-IOV.

‣ Advantages

‣ Performance – Direct access to hardware from virtual machines environment and
benefits include:

‣ Lower CPU utilization

‣ Lower network latency

‣ Higher network throughput

‣ Cost Reduction - Capital and operational expenditure savings include:

DGX-2 KVM Networking

Best Practices for DGX DG-08868-001 _v06 | 47

‣ Power savings

‣ Reduced adapter count

‣ Less cabling

‣ Fewer switch ports

‣ Disadvantages

‣ Guest VM Migration - Harder to migrate guest from one physical server to another

There are several proposals being used or implemented in the industry and each has
its own merit/demerits.

11.6.2. Device Configuration
SR-IOV and VFs are not enabled by default in all devices. For example, the dual port 100GbE
Mellanox card in the DGX-2 doesn’t have VFs enabled by default. Follow the instructions in
section 5 of the Mellanox SR-IOV NIC Configuration guide to enable the SR-IOV and the desired
number of functions in firmware.

11.6.3. Generic Configuration
Use the following steps to enable SR-IOV in KVM host, as it will define a pool of virtual function
(VF) devices associated with a physical NIC and automatically assign VF device to each guest
from the pool to VF BDFs.
Configuration from the Host

 1. Define a network for a pool of VFs.
 2. Read the supported number of VFs.

$ cat /sys/class/net/enp134s0f0/device/sriov_totalvfs63

 3. Enable the required number of VFs (Ex: 16).
$ sudo echo 16 > /sys/class/net/enp134s0f0/device/sriov_numvfs

 4. Create a new SR-IOV network.
Generate an XML file with text similar to the following example.
$ sudo vi /etc/libvirt/qemu/networks/iovnet0.xml
<network>
 <name>iovnet0</name>
 <forward mode='hostdev' managed='yes'>
 <pf dev='enp134s0f0'/>
 </forward>
 </network>

Note: Note: Change the value of pf dev to the ethdev (Ex: enp134s0f0) corresponding to you
SR-IOV device’s physical function.

 5. Execute the following commands
$ virsh net-define /etc/libvirt/qemu/networks/iovnet0.xml
$ virsh net-autostart iovnet0
$ virsh net-start iovnet0

Guest VM Configuration

http://www.mellanox.com/pdf/prod_software/Ubuntu_18_04_Inbox_Driver_User_Manual.pdf

DGX-2 KVM Networking

Best Practices for DGX DG-08868-001 _v06 | 48

After the defining and starting SR-IOV (iovnet0) network, modify the guest XML definition to
specify the network.
$ virsh edit <VM name or ID>
<interface type='network'> <source network='iovnet0'/> </interface>

When the guest VM starts, a VF is automatically assigned to the guest VM. If the guest VM
is already running, you need to restart it.

Guest VM Configuration

After the defining and starting SR-IOV (iovnet0) network, modify the guest XML definition to
specify the network.

$ virsh edit <VM name or ID>
<interface type='network'>
 <source network='iovnet0'/>
</interface>

When the guest VM starts, a VF is automatically assigned to the guest VM. If the guest VM is
already running, you need to restart it.

11.6.4. Using DHCP
Configuration from the Host
$ sudo vi /etc/netplan/01-netcfg.yaml
This file describes the network interfaces available on your system
For more information, see netplan(5).
network:
 version: 2
 renderer: networkd
 ethernets:
 enp134s0f0:
 dhcp4: yes

Note: Use the Host NIC interface (Ex: enp134s0f0) based on what is connected on your system.

$ sudo netplan apply

Guest VM Configuration
$ sudo vi /etc/netplan/01-netcfg.yaml
This file describes the network interfaces available on your system
For more information, see netplan(5).
network:
 version: 2
 renderer: networkd
 ethernets:
 enp8s0:
 dhcp4: yes

Note: Use the guest VM NIC interface (Ex: enp8s0) by checking “ifconfig -a” output.

$ sudo netplan apply

Refer to Getting the Guest VM IP Address for instructions on how to determine the guest VM IP
address.

DGX-2 KVM Networking

Best Practices for DGX DG-08868-001 _v06 | 49

11.6.5. Using Static IP
Configuration from the Host
$ sudo vi /etc/netplan/01-netcfg.yaml
This file describes the network interfaces available on your system
For more information, see netplan(5).
network:
 version: 2
 renderer: networkd
 ethernets:
 enp134s0f0:
 dhcp4: no
 addresses: [10.33.14.17/24]
 gateway4: 10.33.14.1
 nameservers:
 search: [nvidia.com]
 addresses: [172.16.200.26, 172.17.188.26]

Note: Use Host NIC interface (Ex: enp134s0f0) based on what is being connected on your
system.

$ sudo netplan apply

Guest VM Configuration
$ sudo vi /etc/netplan/01-netcfg.yaml
This file describes the network interfaces available on your system
For more information, see netplan(5).
network:
 version: 2
 renderer: networkd
 ethernets:
 enp8s0:
 dhcp4: no
 addresses: [10.33.14.18/24]
 gateway4: 10.33.14.1
 nameservers:
 search: [nvidia.com]
 addresses: [172.16.200.26, 172.17.188.26]

Note: Use guest VM NIC interface (Ex: enp8s0) by checking “ifconfig -a” output.

$ sudo netplan apply

Refer to Getting the Guest VM IP Address for instructions on how to determine the guest VM IP
address.

11.7. Getting the Guest VM IP Address
If you are using Bridged and SR-IOV network configurations, use the following steps to
determine the guest VM IP address from the Host.

Install and configure QEMU Guest Agent to retrieve the guest VM IP address. The QEMU guest
agent runs inside the guest VM and allows the host machine to issue commands to the guest

https://wiki.libvirt.org/page/Qemu_guest_agent

DGX-2 KVM Networking

Best Practices for DGX DG-08868-001 _v06 | 50

VM operating system using libvirt. The guest VM operating system then responds to those
commands asynchronously.

Note: Note: It is only safe to rely on the guest agent when run by trusted guests. An untrusted
guest may maliciously ignore or abuse the guest agent protocol, and although built-in
safeguards exist to prevent a denial of service attack on the host, the host requires guest co-
operation for operations to run as expected.

Configuration from the Host

Add the following lines to guest VM XML file under <devices> using
$ virsh edit <VM name or ID>
 <channel type='unix'>
 <target type='virtio' name='org.qemu.guest_agent.0'/>
 </channel>

Guest VM Configuration
$ sudo apt-get install qemu-guest-agent
$ virsh shutdown <VM name or ID>
$ virsh start <VM name or ID>

After these steps, run the following command in the Host to check a specific guest VM IP
address.
$ virsh domifaddr <VM name or ID> --source agent
Name MAC address Protocol Address

 lo 00:00:00:00:00:00 ipv4 127.0.0.1/8
 - - ipv6 ::1/128
 enp1s0 52:54:00:b2:d9:a7 ipv4 10.33.14.18/24
 - - ipv6 fe80::5054:ff:feb2:d9a7/64
 docker0 02:42:3e:48:87:61 ipv4 172.17.0.1/16

11.8. Improving Network Performance
This section describes some ways to improve network performance.

11.8.1. Jumbo Frames
A jumbo frame is an Ethernet frame with a payload greater than the standard maximum
transmission unit (MTU) of 1,500 bytes. Jumbo frames are used on local area networks
that support at least 1 Gbps and can be as large as 9,000 bytes. Enabling jumbo frames can
improve network performance by making data transmissions more efficient. The CPUs on
Switches and Routers can only process one frame at a time. By putting a larger payload into
each frame, the CPUs have fewer frames to process. Jumbo frames should be enabled only if
each link in the network path, including servers and endpoints, is configured to enable jumbo
frames at the same MTU. Otherwise, performance may decrease as incompatible devices
drop frames or fragment them; the latter which can task the CPU with higher processing
requirements.

In the case of a libvirt-managed network (one with forward mode of NAT, Route), this will
be the MTU assigned to the bridge device (virbr0) when libvirt creates it, and thereafter also

https://searchnetworking.techtarget.com/definition/Gigabit-Ethernet

DGX-2 KVM Networking

Best Practices for DGX DG-08868-001 _v06 | 51

assigned to all tap devices created to connect guest interfaces. If MTU is unspecified, the
default setting for the type of device being used is assumed and it is usually set to 1500 bytes.

We can enable jumbo frame configuration for the default virtual network switch using the
following commands. All guest virtual network interfaces will inherit jumbo frame or MTU of
9000 Bytes configuration.
$ virsh net-edit default
<network>
 <name>default</name>
 <uuid>a47b420d-608e-499a-96e4-e75fc45e60c4</uuid>
 <forward mode='nat'/>
 <bridge name='virbr0' stp='on' delay='0'/>
 <mtu size='9000'/>
 <mac address='52:54:00:f2:e3:2a'/>
 <ip address='192.168.122.1' netmask='255.255.255.0'>
 <dhcp>
 <range start='192.168.122.2' end='192.168.122.254'/>
 </dhcp>
 </ip>
</network>
$ virsh net-destroy default
$ virsh net-start default

11.8.2. Multi-Queue Support
This section describes multi-queue and, for KVM packages prior to dgx-kvm-image-4-0-3,
provides instructions for enabling multi-queue. Starting with dgx-kvm-image-4-0-3, multi-
queue is enabled by default.

The KVM guest VM will use virtio-net driver when it is using network interface based on Virtual
Network Switch either in NAT or Bridged mode. By default, this virtio-net driver will use one
pair of TX and RX queues and this can limit the guest network performance, even though it
may be configured to use multiple vCPUs and their network interface is bound to 10/100G Host
Physical NIC. Multi-queue support in virtio-net driver will

‣ Enable packet send/receive processing to scale with the number of available virtual CPUs
in a guest

‣ Alow each guest virtual CPU to have its own separate TX and RX queue and interrupts that
can be used without influencing other virtual CPUs.

‣ Provide better application scalability and improved network performance in many cases.

Multi-queue virtio-net provides the greatest performance benefit when:

‣ Traffic packets are relatively large.

‣ The guest is active on many connections at the same time, with traffic running between
guests, guest to host, or guest to an external system.

‣ The number of queues is equal to the number of vCPUs. This is because multi-queue
support optimizes RX interrupt affinity and TX queue selection in order to make a specific
queue private to a specific vCPU.

DGX-2 KVM Networking

Best Practices for DGX DG-08868-001 _v06 | 52

Note: Multi-queue virtio-net works well for incoming traffic, but can occasionally hurt
performance for outgoing traffic. Enabling multi-queue virtio-net increases the total
throughput, and in parallel increases CPU consumption.

To use multi-queue virtio-net, enable support in the guest by adding the following to the guest
XML configuration (where the value of N is from 1 to 256, as the kernel supports up to 256
queues for a multi-queue tap device). For the best results, match the number of queues with
number of vCPU cores configured on the VM.

Note: This is not needed with KVM image dgx-kvm-image-4-0-3 or later.

$ virsh edit <VM name or ID>
<interface type='bridge'>
 <source bridge='virbr0'/>
 <model type='virtio'/>
 <driver name='vhost' queues='N'/
</interface>

When running a virtual machine with N virtio-net queues in the guest VM, you can check the
number of enabled queues using
$ ethtool -L <interface>
$ /sys/class/net/<interface>/queues

You can change the number of enabled queues (where the value of M is from 1 to N):

DGX-2 KVM Networking

Best Practices for DGX DG-08868-001 _v06 | 53

$ ethtool -L <interface> combined M

Note: When using multi-queue, it is recommended to change the max_files variable in the /etc/
libvirt/qemu.conf file to 2048. The default limit of 1024 can be insufficient for multi-queue and
cause guests to be unable to start when multi-queue is configured.

This is enabled by default on DGX-2 guest VMs for the current release of KVM SW.

11.8.3. QOS
By default, Virtual Network Switch will treat the network traffic from all guests equally and
process them order in which it receive the packets. Virtual machine network quality of service
is a feature that allows limiting both the inbound and outbound traffic of individual virtual
network interface controllers or guests.

Virtual machine network quality of service settings allow you to configure bandwidth limits for
both inbound and outbound traffic on three distinct levels.

‣ Average: The average speed of inbound or outbound traffic. Specifies the desired average
bit rate for the interface being shaped (in kilobytes/second).

‣ Peak: The speed of inbound or outbound traffic during peak times. Optional attribute which
specifies the maximum rate at which the bridge can send data (in kilobytes/second). Note
the limitation of implementation: this attribute in the outbound element is ignored (as
Linux ingress filters don't know it yet).

‣ Burst: The speed of inbound or outbound traffic during bursts. This is an optional attribute
which specifies the number of kilobytes that can be transmitted in a single burst at peak
speed.

The libvirt domain specification includes this functionality already. You can specify separate
settings for incoming and outgoing traffic. When you open the XML file of your virtual
machine, find the block with interface type tag. Try to add the following.
$ virsh edit <VM name or ID>
<bandwidth>
 <inbound average='NNN' peak='NNN' burst='NNN'/>
 <outbound average='NNN' peak='NNN' burst='NNN'/>
</bandwidth>

Where NNN is desired speed in KBS and it can be different for inbound/outbound and also,
average/peak/burst can have different values.

This is not enabled by default on DGX-2 guest VMs for the current release of KVM SW.

11.9. References
‣ Ubuntu KVM Networking

‣ Ubuntu Network Bonding

‣ Libvirt Networking

‣ Libvirt Networking Handbook

‣ Multi-Queue Virtio Net

https://help.ubuntu.com/community/KVM/Networking
https://cli.pignat.org/server-18.04-network-bond.html
https://wiki.libvirt.org/page/Networking
https://jamielinux.com/docs/libvirt-networking-handbook/index.html
http://www.linux-kvm.org/page/Multiqueue

DGX-2 KVM Networking

Best Practices for DGX DG-08868-001 _v06 | 54

‣ Virtual Network QOS

‣ Redhat Virtualization Tuning and Optimization Guide

‣ PCI SIG SR IOV Primer

‣ Mellanox SR-IOV NIC Configuration

https://libvirt.org/formatnetwork.html#elementQoS
http://www.mellanox.com/pdf/prod_software/Ubuntu_18_04_Inbox_Driver_User_Manual.pdf

Best Practices for DGX DG-08868-001 _v06 | 55

Chapter 12. DGX-2 KVM Performance
Tuning

NVIDIA DGX-2 virtualization supports guest GPU VMs as described in the KVM chapter of
the NVIDIA DGX-2 System User Guide. The guest VMs are statically resourced with the
default number of resources such as vCPUs, GPUs, and memory. The default values take
into consideration PCIe topology, CPU affinity, and NVLink topology to provide optimal
performance.

These default settings can be overridden to provide additional performance optimizations. This
chapter discusses these performance optimizations.

12.1. Background
Guest GPU VMs run as simple user-space Linux processes in the KVM Host while vCPUs are
POSIX threads running in the Host. The Linux kernel running on the KVM Host uses a built-
in scheduler to handle these processes and threads. The default settings provide generic
functionality, but you may need to apply some level of performance tuning to achieve better
performance. Since performance settings aren’t generic enough to accommodate every
application’s needs, you should treat performance tuning as an iterative process - change
a setting, run tests, then evaluate results, repeating the process until you achieve optimal
performance for the particular application or set of applications. Use bare-metal values as a
baseline of what can be achieved, then compare guest VM results to that of the bare-metal as
you work towards improving the results.

Performance Tuning Using the Paravirtualized Drivers

The diagram below shows the I/O flow between the hypervisor and guests.

DGX-2 KVM Performance Tuning

Best Practices for DGX DG-08868-001 _v06 | 56

The DGX-2 KVM uses the following paravirtualized drivers (virtio) to help improve the DGX-2
KVM performance.

‣ virtio-net: The virtio-net driver supports virtual network devices.

‣ virtio-blk: The virtio-blk driver supportes virtual block devices (OS drive, Data drive).

‣ virtio-balloon: The virtio memory balloon driver manages guest memory.

‣ virtio-console: The virtio-console drivers manage data flow between the guest and KVM
host

You can use change the default settings of these drivers to improve performance.

This chapter describes the following areas of performance tuning.

‣ CPU tuning

‣ Memory tuning using huge pages

‣ NUMA tuning

‣ I/O tuning

DGX-2 KVM Performance Tuning

Best Practices for DGX DG-08868-001 _v06 | 57

12.2. CPU Tuning
Although KVM supports overcommitting virtualized CPUs, the DGX-2 implementation limits
vCPUs to a 1:1 match of the number of hyperthreads available. As previously mentioned,
vCPUs are actually POSIX threads in the KVM host; they are subject to the scheduler running
on the DGX-2 system’s policy which assigns equal priority to each vCPU.

To achieve optimal performance, the software pins vCPUs to hyperthreads as described in the
following section. Since vCPUs run as user-space tasks on the host operating system, pinning
increases cache efficiency.

Note: While you can override the default number of vCPUs provided and over-commit the
vCPUs, this is not recommended as the effects this would have on performance are not
defined.

12.2.1. vCPU Pinning
The NVIDIA DGX-2 system is a NUMA-aware system; by pinning vCPUs to hyperthreaded
physical CPU cores, applications can increase the CPU cache hit ratio and reduce the number
of costly context switches. Another advantage of vCPU pinning is applications can avoid slow
memory access to remote NUMA Nodes since all vCPUs are pinned to a single NUMA node.
With vCPU pinning, large performance improvements can be obtained with no known negative
side effects.

By default, DGX-2 guest GPU VMs support vCPU pinning and no extra steps are needed. The
default vCPU pinning is based on DGX-2’s NUMA topology.

How to verify if vCPU pinning is enabled

The outputs below show vCPU pinning: enabled in the first VM and disabled in the second.
When vCPU pinning is enabled, the ‘virsh vcpuinfo’ CPU Affinity output shows a 'y' for the
pinned vCPU and '-' for all other hyperthreaded physical CPU cores. When vCPU pinning is
disabled, the 'virsh vcpuinfo' CPU Affinity output shows a 'y' for all hyperthreaded physical
CPU cores.

Obtain the ID numbers for the VMs on the system.

lab@xpl-dvt-64:~$ virsh list
 Id Name State
--
 14 dgx2vm-labThu1726-8g0-7 running
 15 dgx2vm-labThu1733 running

In this example there are two VM IDs - 14 and 15. The following output shows that VM #14 has
vCPU pinning enabled as indicated by each CPU Affinity line containing a single 'y'.

lab@xpl-dvt-64:~$ virsh vcpuinfo 14
VCPU: 0
CPU: 0

DGX-2 KVM Performance Tuning

Best Practices for DGX DG-08868-001 _v06 | 58

State: running
CPU time: 54.9s
CPU Affinity: y---
VCPU: 1
CPU: 1
State: running
CPU time: 6.8s
CPU Affinity: -y--
VCPU: 2
CPU: 2
State: running
CPU time: 8.3s
CPU Affinity: --y---
VCPU: 3
CPU: 3
State: running
CPU time: 3.5s
CPU Affinity: ---y--
VCPU: 4
CPU: 4
State: running
CPU time: 7.6s
CPU Affinity: ----y---

...

VCPU: 22
CPU: 22
State: running
CPU time: 2.6s
CPU Affinity: ----------------------y-------------------------
VCPU: 23
CPU: 48
State: running
CPU time: 2.9s
CPU Affinity: --
y---
VCPU: 24
CPU: 49
State: running
CPU time: 2.5s
CPU Affinity: ---
y--

...

VCPU: 44
CPU: 69
State: running
CPU time: 4.6s
CPU Affinity:

y--------------------------
VCPU: 45
CPU: 70
State: running
CPU time: 5.6s
CPU Affinity:
 --
y-------------------------

The following example shows vCPU pinning is disabled on VM #15 as indicated by each CPU
Affinity all filled with y’s.

lab@xpl-dvt-64:~$ virsh vcpuinfo 15
VCPU: 0
CPU: 5
State: running

DGX-2 KVM Performance Tuning

Best Practices for DGX DG-08868-001 _v06 | 59

CPU time: 11.0s
CPU Affinity:
 yy
VCPU: 1
CPU: 11
State: running
CPU time: 9.2s
CPU Affinity:
 yy
lab@xpl-dvt-64:~$

Verify that there is only a single ‘y’ on each “CPU Affinity:” line. For a VM without vCPU pinning,
there are multiple ‘y’s on the affinity line.

12.2.2. How to Disable vCPU Pinning
vCPU pinning is always enabled by default on DGX-2 KVMs. The following describes how to
disable vCPU pinning.

 1. Launch a GPU VM.
 2. Shut the VM down using ‘virsh shutdown’.
 3. Edit the VM XML file using ‘virsh edit <vm-name>’.
 4. Remove vCPU pin entries.

The following example shows the vCPU entries in the XML file for a 2-GPU VM. These are
the lines that need to be removed to disable vCPU pinning.
lab@dgx2~$ virsh edit 2gpu-vm-2g0-1

 <vcpupin vcpu='0' cpuset='0'/>
 <vcpupin vcpu='1' cpuset='1'/>
 <vcpupin vcpu='2' cpuset='2'/>
 <vcpupin vcpu='3' cpuset='3'/>
 <vcpupin vcpu='4' cpuset='4'/>
 <vcpupin vcpu='5' cpuset='5'/>
 <vcpupin vcpu='6' cpuset='48'/>
 <vcpupin vcpu='7' cpuset='49'/>
 <vcpupin vcpu='8' cpuset='50'/>
 <vcpupin vcpu='9' cpuset='51'/>
 <vcpupin vcpu='10' cpuset='52'/>

 5. Restart the VM using ‘virsh start <vm-name>’

12.2.3. Core Affinity Optimization
The NVIDIA DGX-2 system has hyperthreading enabled, which means the Linux kernel displays
two threads (or pCPUs) for each physical core. Guest VMS will need to pin their vCPUs to
the matching physical CPU id values. These physical CPUs, or threads, will not be used
to schedule jobs from other guests, provided the other guests pin their vCPUs to different
pCPUs.

Benefits of Core Affinity Optimization

The benefits of core affinity optimization are twofold. First, cores are not split across guests,
so cache utilization of the cores improve. This is because the L1/L2 caches of a core are not
shared across guests. Second, the guest VM’s conception of cores and threads perfectly

DGX-2 KVM Performance Tuning

Best Practices for DGX DG-08868-001 _v06 | 60

matches real cores and threads - allowing the OS task scheduler to schedule jobs on the
underlying processors more efficiently. Core affinity, in a nutshell, is about pinning guest
vCPUs to host pCPUs in a way that matches the guest VM’s notion of cores and threads onto
actual pCPU cores and threads.

Core Affinity Optimization on the NVIDIA DGX-2

The NVIDIA DGX-2 uses dual Intel CPUs (2 sockets), each with 24 cores/48 threads, for a total
of 48 cores/96 threads with hyperthreading enabled. The kernel enumerates the pCPUs across
both sockers before enumerating the thread siblings.

‣ On the Intel system’s first socket: pCPUs are numbered 0 - 23.

‣ On the Intel system's second socket: pCPUs as numbered 24 - 47.

‣ On the Intel system’s first socket: Thread siblings are numbered 48 - 71.

These form thread pairs with the pCPUs first enumerated on the first socket - (0, 48), (1,
49), (2, 50).....(23, 71), each pair sharing a common core.

‣ On the Intel system’s second socket: Thread siblings are numbered 72 - 95.

These form thread pairs with the pCPUs first enumerated on the second socket - (24, 72),
(25, 73), (26, 74).....(47, 95), each pair sharing a common core.

The relationship between which threads share a core can be read from the sysfs file: /
sys/devices/system/cpu/cpuX/topology/thread_siblings_list, where X is the pCPU
number enumerated by the host kernel.

For performance reasons, it is best not to split threads in a common core across guest VMs.
Since pCPUs sharing a core also share L1/L2 caches, processes running on different guests
will compete for the same cache resources on such a split-core scenario, potentially affecting
performance. In addition, the guest VMs' view of hyperthreading needs to map to the actual
physical threads sharing a core.

For optimal performance, allocate an even number of vCPUs to each KVM guest.

When the guest kernel schedules jobs, it will assume each successive pair of vCPUs belong
to the same physical core - as you can see, this is indeed the case when the domain XML file
specifies the CPU pinning in the above way.

When creating guests on a DGX system, depending on the actual number of cores per socket
(e.g. DGX-2 has 24 cores per socket, for a total of 96 threads), the actual mapping will need to
be adjusted.

Enabling Core Affinity Optimization

 1. Create the guest VM using nvidia-vm.

 2. Shut down the VM.

 3. Edit the VM's XML file located at /etc/libvirt/qemu/.

DGX-2 KVM Performance Tuning

Best Practices for DGX DG-08868-001 _v06 | 61

Make a backup of the XML file before making any modification so that the original setting
can be easily restored if needed.

Edit the file according to the GPU size of the VM as well as the number of sockets used as
described in the following sections.

 4. Start the guest using the virsh start command.

1-GPU VMs

It is best not to attempt to use core affinity optimization for guest VMs using one GPU as it
uses an odd number of vCPUs.

Currently, nvidia-vm allocates an odd number of CPUs to each single-GPU guest VM. For
maximum benefits of hyperthread scheduling, the guest should have an even number of
vCPUs. While it is possible to enable core affinity optimization for such VMs by editing the
domain XML file to add or remove vCPUs from the guest, doing so may conflict with other
nvidia-vm operations such as the pCPUs allocated to other guests.

2, 4, or 8 GPU VMs

For 2, 4, or 8-GPU VMs, core affinity can be enabled by editing the <cputune> element in the
domain XML file -

‣ Specify that only one socket is used.
<cpu>
...
<topology sockets='1' cores='23' threads='2'/>

‣ Pin each vCPU to a pCPU according to the numbering outlined in the previous section.

16-GPU VMs

The change is similar for a 16-GPU guest VM. Core affinity can be enabled by editing the
<cputune> element in the domain XML file -

‣ Specify that two sockets are used.
<cpu>
...
<topology sockets='2' cores='23' threads='2'/>

‣ Pin each vCPU to a pCPU according to the numbering outlined in the previous section.

When editing the domain XML file, be sure to take into account both sockets.

Example of Enabling Core Affinity Optimization on a 2-GPU VM

Ten vCPUs are allocated to a 2-GPU VM.

After shutting down the VM, edit the VM's XML file located at /etc/libvirt/qemu/.

‣ Specify the vCPU pinning.

Example of pinning to the pCPUs on the first socket.
<cputune>
 <vcpupin vcpu='0' cpuset='0'/>
 <vcpupin vcpu='1' cpuset='48'/>

DGX-2 KVM Performance Tuning

Best Practices for DGX DG-08868-001 _v06 | 62

 <vcpupin vcpu='2' cpuset='1'/>
 <vcpupin vcpu='3' cpuset='49'/>
 <vcpupin vcpu='4' cpuset='2'/>
 <vcpupin vcpu='5' cpuset='50'/>
 <vcpupin vcpu='6' cpuset='3'/>
 <vcpupin vcpu='7' cpuset='51'/>
 <vcpupin vcpu='8' cpuset='4'/>
 <vcpupin vcpu='9' cpuset='52'/>

Example of pinning to the pCPUs on the second socket.
<cputune>
 <vcpupin vcpu='0' cpuset='24'/>
 <vcpupin vcpu='1' cpuset='72'/>
 <vcpupin vcpu='2' cpuset='25'/>
 <vcpupin vcpu='3' cpuset='73'/>
 <vcpupin vcpu='4' cpuset='26'/>
 <vcpupin vcpu='5' cpuset='74'/>
 <vcpupin vcpu='6' cpuset='27'/>
 <vcpupin vcpu='7' cpuset='75'/>
 <vcpupin vcpu='8' cpuset='28'/>
 <vcpupin vcpu='9' cpuset='76'/>

‣ Specify that only one socket is used.
<topology sockets='1' cores='23' threads='2'/>

Disabling Core Affinity

To disable core affinity for a running guest,

 1. Stop the guest VM.

 2. Restore the original XML file, or remove the above modifications from the updated XML
file.

 3. Restart the guest VM.

.

12.3. Memory tuning
By default, DGX-2 guest VMs receive host memory allocation based on the number of GPUs
assigned to the guest. This static allocation can always be overridden by editing the guest VM
template.

12.3.1. Huge Pages Support
The NVIDIA DGX-2 KVM host and guest OS supports huge pages which help improve memory
management performance.

The Linux kernel manages memory in page-granularity with the default size of 4 KB. The Linux
kernel also supports larger page sizes of 2 MB to 1 GB. These are called huge pages. Huge
pages significantly improve performance by increasing CPU cache hits against the Translation
LookAside Buffer (TLB).

DGX-2 KVM Performance Tuning

Best Practices for DGX DG-08868-001 _v06 | 63

All pages are managed by a Memory Management Unit (MMU) built into the CPU. You could
use 2MB pages with systems that have many GBs of memory, and 1GB pages with systems
that have TBs of memory (such as the NVIDIA DGX-2).

Note: When requesting 1GB huge pages, the Linux kernel may limit how many can be
allocated.

Huge pages can be configured and used using one of the following methods.

‣ Transparent Huge Pages (THP)

THP supports mulitple configurations. In the default Linux configuration, the Linux kernel
attempts to allocate THP huge pages automatically. No special configuration is required.

‣ Persistent Huge Pages (Huge TLB)

Using Huge TLB requires special configuration. See below for details.

The rest of this section describes how to enable huge pages using Persistent Huge Pages
(HugeTLB) during both run-time and boot-time.

12.3.1.1. How to set up Huge Pages at Runtime
Enabling huge pages results in performance improvements when the OS boots. For normal
running of guest VMs, enable huge pages only when the workload and sizes are known,
plannable, and rarely changed.
The example below shows how to set up a 16-GPU VM to use 2MB huge pages.

 1. Stop the 16-GPU VM.
$ virsh list
 Id Name State
--
 4 dgx2vm-labMon1906-16g0-15 running
$ virsh shutdown dgx2vm-labMon1906-16g0-15

 2. Set up huge pages on this VM using 2MB huge pages.
 a). View how much RAM the VM is using.

$ virsh edit dgx2vm-labMon1906-16g0-15
 <memory unit='KiB'>1516912640</memory>
 <currentMemory unit='KiB'>1516912640</currentMemory>

 b). Convert this memory value to 2 MB units by dividing by 2024.
This results in 740680 2MB huge pages.

 c). Set up the VM to use 740680 2MB huge pages.
$ echo 740680 | sudo tee /etc/sysctl.conf
$ sudo sysctl vm.nr_hugepages=740680

 d). Verify the changes are in place:
$ cat /proc/meminfo | grep -i huge
AnonHugePages: 0 kB
ShmemHugePages: 0 kB
HugePages_Total: 740680
HugePages_Free: 740680
HugePages_Rsvd: 0
HugePages_Surp: 0
Hugepagesize: 2048 kB

https://www.kernel.org/doc/Documentation/vm/transhuge.txt
https://www.kernel.org/doc/Documentation/vm/hugetlbpage.txt

DGX-2 KVM Performance Tuning

Best Practices for DGX DG-08868-001 _v06 | 64

 3. Restart libvirtd for the above changes to take effect.
$ sudo systemctl restart libvirtd

 4. Modify the guest VM.
$ virsh edit dgx2vm-labMon1906-16g0-15

Add the following lines to the beginning of the XML file.
<domain type='kvm'>
 <name>dgx2vm-labMon1906-16g0-15</name>
 <uuid>0c9296c6-2d8f-4712-8883-dac654e6bc69</uuid>
 <memory unit='KiB'>1516912640</memory>
 <memoryBacking>
 <hugepages/>
 </memoryBacking>
 <currentMemory unit='KiB'>1516912640</currentMemory>

 5. Restart the GPU VM
$ time virsh start dgx2vm-labMon1906-16g0-15
Domain dgx2vm-labMon1906-16g0-15 started
real5m32.559s
user0m0.016s
sys0m0.010s

12.3.1.2. How to set up Huge Pages only for boot
To allocate different sizes of huge pages at boot time, modify GRUB in the DGX Host OS image,
specifying the number of huge pages.
This example allocates 1 GB huge pages for a 16-GPU VM.

 1. Shut down the guest VM.
$ virsh shutdown dgx2vm-labMon1906-16g0-1

 2. Calculate the maximum number of 1 GB huge pages required for a 16-GPU VM.
 a). Determine the amount of memory allocated or used by the 16-GPU VM.

$ virsh edit dgx2vm-labMon1906-16g0-15

Example output:
<domain type='kvm'>
 <name>dgx2vm-labMon1906-16g0-15</name>
 <uuid>0c9296c6-2d8f-4712-8883-dac654e6bc69</uuid>
 <memory unit='KiB'>1516912640</memory>

In this example, 1516912640 KB (1,517 GB) of memory is allocated to the VM.
 b). Calculate the required number of 1 GB huge pages using the formula:

Number of 1 GB huge pages = (memory allocated (KB))/(1024*1024)
Using the example, 1516912640/(1024*1024)=1446, so 1446 huge pages are needed,
1 GB each.

 3. Set the number of huge pages to allocate at boot time.

Edit /etc/default/grub and change the following line to specify the number of huge
pages to be allocated at boot for the 16-GPU VM
GRUB_CMDLINE_LINUX=""

Example:
GRUB_CMDLINE_LINUX=”default_hugepagesz=1G hugepages=1446”

 4. After modifying GRUB, run the following command for the changes to take effect.
$ sudo update-grub

DGX-2 KVM Performance Tuning

Best Practices for DGX DG-08868-001 _v06 | 65

 5. Reboot the KVM host.
$ sudo reboot

 6. Modify the guest VM.
$ virsh edit dgx2vm-labMon1906-16g0-15

 a). Add the following lines to the XML file
<memoryBacking>
 <hugepages/>
</memoryBacking>

 b). Add the following lines to the beginning of the XML file.
<domain type='kvm'>
 <name>dgx2vm-labMon1906-16g0-15</name>
 <uuid>0c9296c6-2d8f-4712-8883-dac654e6bc69</uuid>
 <memory unit='KiB'>1516912640</memory>
 <memoryBacking>
 <hugepages/>
 </memoryBacking>
 <currentMemory unit='KiB'>1516912640</currentMemory>

 7. Restart the guest VM.
$ time virsh start dgx2vm-labMon1906-16g0-15
Domain dgx2vm-labMon1906-16g0-15 started
real5m32.559s
user0m0.016s
sys0m0.010s

12.3.1.3. How to disable Huge Pages in the Host
 1. Stop any running Guests.
 2. Disable Huge Pages support

$ echo 0 | sudo tee /etc/sysctl.conf
$ sudo sysctl vm.nr_hugepages=0

 3. Restart libvirtd.
$ sudo systemctl restart libvirtd

 4. Before you restart the VM, ensure you remove the Hugepage entry from the XML file.
$ sudo virsh edit dgx2vm-labMon1906-16g0-15
<memoryBacking>
 <hugepages/>
</memoryBacking>

 5. Save the file and restart your VM.

Note: The effect on boot time will not be significant as most of the time is spent allocating
RAM for the guest. Hence, no numbers are published here.

12.4. NUMA Tuning
Non-Uniform Memory Access (NUMA) allows system memory to be divided into zones (nodes).
NUMA nodes are allocated to particular CPUs or sockets. In contrast to the traditional
monolithic memory approach where each CPU/core can access all the memory regardless of
its locality, usually resulting in larger latencies, NUMA-bound processes can access memory

DGX-2 KVM Performance Tuning

Best Practices for DGX DG-08868-001 _v06 | 66

that is local to the CPU they are being executed on. In most cases, this is much faster than the
memory connected to the remote CPUs on the system.

DGX-2 divides its memory to be equally accessible by its Skylake processors (nodes) using
the NUMA architecture. This means that a particular set of Skylake processor has identical
access latency to the local subset of system RAM. For virtualized environments, a few tweaks
are needed to get the maximum performance out of the NUMA architectures.

12.4.1. Automatic NUMA Balancing
If the threads scheduled by an application are accessing memory on the same NUMA node,
the performance of the application will be generally better. Automatic NUMA balancing
moves tasks (which can be threads or processes) closer to the memory they are accessing. It
also moves application data to memory closer to the tasks that reference it. This is all done
automatically by the kernel when automatic NUMA balancing is active.
Automatic NUMA balancing uses a number of algorithms and data structures which are only
active and allocated if automatic NUMA balancing is active on the system.
Automatic NUMA balancing is enabled by default on DGX-2 systems and it improves the
performance of applications. There are no side effects of enabling NUMA balancing.

 1. To check and enable automatic NUMA balancing, enter the following.
cat /proc/sys/kernel/numa_balancing

This should return 1.
 2. If 1 is not returned, then enter the following.

echo 1 > /proc/sys/kernel/numa_balancing

12.4.2. Enabling NUMA Tuning
DGX-2 node shows that it supports a total of 2 nodes (by running virsh capabilities). For a 16-
GPU VM that supports up to 1.5TB memory, split the memory evenly into two cells such that
each cell gets memory locality.

12.4.2.1. Setting Up NUMA Tuning
To set up NUMA tuning,

 1. Stop the 16-GPU VM.
$ virsh list
 Id Name State
--
 2 dgx2vm-labFri2209-16g0-15 running

$ virsh shutdown 2
Domain 2 is being shutdown

 2. Edit the XML file by adding lines as indicated.
$ virsh edit dgx2vm-labFri2209-16g0-15
<cpu>
<numa>
 <cell id="0" cpus="0-45" memory="758456320" unit="KiB"/> <cell
 id="1" cpus="46-91" memory="758456320" unit="KiB"/>
</numa>
</cpu>

DGX-2 KVM Performance Tuning

Best Practices for DGX DG-08868-001 _v06 | 67

This defines two vNUMA nodes, each with 739 GiB of memory, and that cores 0-45 have
low latency access to one of the 739GB sets, while 46-91 have low latency access to
the other set. Applications that can be optimized for NUMA will be able to take this into
account so that they try to limit the number of remote memory accesses they make.

 3. Once the vNUMA cells are defined, use the numatune element to assign the physical
NUMA node from which these cells will allocate memory.
<numatune>
 <memnode cellid="0" mode="strict" nodeset="0"/>
 <memnode cellid="1" mode="strict" nodeset="1"/>
</numatune>

 4. Restart the VM.
$ virsh start dgx2vm-labFri2209-16g0-15
Domain dgx2vm-labFri2209-16g0-15started

12.4.2.2. Effects of Enabling NUMA Tuning
There are no side effects of enabling NUMA tuning. Enabling NUMA tuning has shown
performance improvements with 16-GPU VMs but largely varies upon the workload and
application.

Adding NUMA elements is also recommended for smaller VMs to ensure memory is allocated
from their associated physical NUMA node. The following examples show a 1-GPU VM on
physical node 0:
<cpu>
 ...
 <numa> <cell id='0' memory='10485760' unit='KiB' cpus='0-4' /> </numa></
cpu>
...
<numatune>
 <memnode cellid="0" mode="strict" nodeset="0"/>
</numatune>

and a 1-GPU VM on physical node 1:
<cpu>
 ...
 <numa> <cell id='0' memory='10485760' unit='KiB' cpus='0-4' /> </numa></
cpu>
...
<numatune>
 <memnode cellid="0" mode="strict" nodeset="1"/>
</numatune>

12.5. Emulatorpin
The guest VM runs as process in the KVM Host. The process itself can run on any of the
cores on the DGX-2. This Linux quest VM process (emulator) can also be pinned to run on
some physical CPUs. If not pinned, the emulator is by default utilizing all the physical CPUs
regardless of the NUMA affinity of the VM.

By using the optional emulatorpin element, you can achieve pinning the “emulator” to physical
CPUs. The current recommendation is to pin the emulator to the free physical CPUs on the
same CPU socket utilized by the VM. Pinning the emulator to the same CPU socket as the VM
removes NUMA hops and QPI messages. Here is an example of how to do this for a 1-GPU VM:

DGX-2 KVM Performance Tuning

Best Practices for DGX DG-08868-001 _v06 | 68

<cputune>
...
<emulatorpin cpuset='50,53,56,59,62,65,68,71'/>
</cputune>

12.6. I/O tuning

12.6.1. Using Multiple-queues with Logical Volumes
By default, each VM gets a data drive that is created using file-based storage, and a QCOW2-
based logical volume is created.
$ nvidia-vm create --domain testme --gpu-count 8 --gpu-index 8
testme-8g8-15: create start mac: 52:54:00:d8:ec:20 ip: 192.168.122.26

$ virsh dumpxml testme-8g8-15

<snip> ..
 <disk type='file' device='disk'>
 <driver name='qemu' type='vmdk'/>
 <source file='/raid/dgx-kvm/vol-testme-8g8-15'/>
 <backingStore/>
 <target dev='vdb' bus='virtio'/>
 <alias name='virtio-disk1'/>
 <address type='pci' domain='0x0000' bus='0x03' slot='0x00' function='0x0'/>
 </disk>
<snip> ..
Login VM machine
nvidia@testme-8g8-15:~$ lsblk
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
vda 252:0 0 50G 0 disk
└─vda1 252:1 0 50G 0 part /
vdb 252:16 0 13.9T 0 disk
└─vdb1 252:17 0 13.9T 0 part /raid
nvidia@testme-8g8-15:~$

Data drive performance is not optimal, but you can set up the following features (not enabled
by default) to improve data drive performance.

‣ Use the ‘raw’ drive type instead of QCOW2

‣ QEMU Copy on Write version 2.0 (QCOW2) decouples physical storage layer from virtual
layer by adding a mapping between logical and physical blocks. Each logical block is
mapped to its physical offset.

‣ RAW format uses no formatting and directly maps I/O written to the same offset in the
backing file, thus providing the best performance.

‣ Disable caching

‣ The host page cache is bypassed and I/O occurs directly between the hypervisor user
space buffers and the backing store. It is equivalent to direct access to the Host’s
drives.

‣ CONS: Disabling cache may affect data integrity.

‣ Enable multiple queues

‣ Multiple queues provide improved storage performance and scalability in the virtio-
blk driver. It enables each virtual CPU to have a separate queue and interrupt to use

DGX-2 KVM Performance Tuning

Best Practices for DGX DG-08868-001 _v06 | 69

without affecting other vCPUs. Ideally, the number of queues should be fewer than the
total number of vCPUs belonging to a group, and the closest power of 2 number. For
example, for a 92-vCPU VM, the ideal setting is 64.

Enabling these three has shown huge data drive performance gains.

12.6.1.1. I/O Threads
I/O threads are dedicated event loop threads. The threads allow disk devices to perform block
I/O requests in order to improve scalability, especially on an SMP host/guest. This is a QEMU-
only option and can be specified via an XML file schema in the following two ways.

‣ iothreads

This optional element defines the number of IOThreads to be assigned to the domain for
use by supported target storage devices.
<domain>
 ... <iothreads>4</iothreads>
 ...
</domain>

‣ iothreadids

The optional iothreadids element provides the capability to specifically define the
IOThread ID's for the domain.These are sequentially numbered starting from 1 through
the number of iothreads defined for the domain. The id attribute is used to define the
IOThread ID and is a positive integer greater than 0.
<domain>
 ... <iothreadids>
 <iothread id="2"/>
 <iothread id="4"/>
 <iothread id="6"/>
 <iothread id="8"/>
 </iothreadids>
 ...
</domain>

12.6.1.2. How to Set up I/O Tuning
In the domain XML file, make following changes:

Add "<iothreads>46</iothreads>" line.

‣ 8-GPU VM is typically launched with 46 vCPUs

‣ Change this number to match number of vCPUs for your xGPU VM

Change <driver> tag for the /raid to "<driver name='qemu' type='raw' cache='none' io='native'
queues='32'/>"

‣ The number of queues may not exceed the total number of vCPUs available

Example

 1. Shut down the VM and then edit the XML file.
$ virsh list
 Id Name State
--

DGX-2 KVM Performance Tuning

Best Practices for DGX DG-08868-001 _v06 | 70

 1 testme-8g8-15 running
$ virsh shutdown testme-8g8-15
Domain testme-8g8-15 is being shutdown
$ virsh edit testme-8g8-15
<domain type='kvm'>
 <name>testme-8g8-15</name>
 <uuid>056f1635-d510-4d06-9e05-879e46479c08</uuid>
<iothreads>46</iothreads>
<snip> ..
 <disk type='file' device='disk'>
 <driver name='qemu' type=qcow2 cache='none' io='native' queues='32'/>
 <source file='/raid/dgx-kvm/vol-testme-8g8-15'/>
 <target dev='vdb' bus='virtio'/>
 <address type='pci' domain='0x0000' bus='0x03' slot='0x00' function='0x0'/>
 </disk>
<snip> ..

 2. Save the XML file and restart your VM.
$ virsh start testme-8g8-15

Running standard filesystem performance test tools (such as fio) on a data drive shows a 3x to
4x performance boost.

12.6.2. NVMe Drives as PCI-Passthrough Devices
By default, the DGX-2 guest GPU VMs support two drives when launched.

‣ OS Drive: /dev/vda (50 GB fixed in size)

‣ Data Drive: /dev/vdb (size varies depending on the number of GPUs in the VM, from 1.9 TB
to 27 TB)

The OS drive and the data drive are a logical volume on the Host’s NVMe drive, and as such,
may not deliver the best performance. To improve performance, you can use PCI-passthrough
to expose all the physical NVMe drives inside the VM.

This section describes how to pass through the NVMe SSDs to a 16-GPU guest VM using PCI-
passthrough.

12.6.2.1. How to Set Up PCI-Passthrough for NVME Drives
Perform the following on the KVM host.

 1. Stop the running RAID-0 on the KVM Host.
$ sudo cat /proc/mdstat
Personalities : [raid1] [raid0] [linear] [multipath] [raid6] [raid5] [raid4]
 [raid10]
md1 : active raid0 nvme2n1[2] nvme9n1[0] nvme4n1[3] nvme8n1[5] nvme3n1[4]
 nvme5n1[7] nvme7n1[1] nvme6n1[6]
 30004846592 blocks super 1.2 512k chunks
md0 : active raid1 nvme0n1p2[0] nvme1n1p2[1]
 937034752 blocks super 1.2 [2/2] [UU]
 bitmap: 1/7 pages [4KB], 65536KB chunk
unused devices: <none>
$ sudo umount /raid
$ sudo mdadm --stop /dev/md1
mdadm: stopped /dev/md1

 2. Pass NVMe devices to the guest.

DGX-2 KVM Performance Tuning

Best Practices for DGX DG-08868-001 _v06 | 71

For each PCI Bus:Device:Function of NVMe devices, create an XML file by running this
script:
#! /bin/bash
lspci | awk '{dev=0} /Micron/ {dev="nvme"} {
 if (dev!=0) { gsub(":.*","",$1); printf("%s %s\n", dev, $1); }}' | \
while read DEV PCID; do
echo "<hostdev mode='subsystem' type='pci' managed='yes'> <source> <address
 domain='0x0000' bus='0x${PCID}' slot='0x0' function='0x0'/> </source> </
hostdev>" > hw-${DEV}-${PCID}.xml;
done

This creates the following files
$ ls hw*
hw-nvme-2e.xml hw-nvme-2f.xml hw-nvme-51.xml hw-nvme-52.xml hw-nvme-b1.xml
 hw-nvme-b2.xml hw-nvme-da.xml hw-nvme-db.xml

The following is an example of one of the files.
$ cat hw-nvme-2f.xml
<hostdev mode='subsystem' type='pci' managed='yes'> <source> <address
 domain='0x0000' bus='0x2f' slot='0x0' function='0x0'/> </source> </hostdev>
.

 3. Pass one of these devices to the Guest VM as NVMe Passthrough
 a). Create a GPU Guest VM without a data drive.

$ nvidia-vm create --domain nvme-passthrough --gpu-index 0 --gpu-count 16
nvme-passthrough-16g0-15: create start mac: 52:54:00:46:f3:34 ip:
 192.168.122.91
$ virsh list -all
 Id Name State
--
 1 nvme-passthrough-16g0-15 running

 b). Pass an NVMe drive to the VM.
$ virsh attach-device nvme-passthrough-16g0-15 hw-nvme-2e.xml --live
Device attached successfully

 c). Verify the NVMe device inside the VM.
$ virsh console nvme-passthrough-16g0-15
nvidia@nvme-passthrough-16g0-15:~$ lsblk
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
vda 252:0 0 50G 0 disk
└─vda1 252:1 0 50G 0 part /
nvme0n1 259:0 0 3.5T 0 disk
nvidia@nvme-passthrough-16g0-15:~$

There are no side effects of doing NVMe passthrough. Enabling NVMe passthrough has shown
vast performance improvements with GPU VMs with various workloads and applications.

12.6.2.2. How to Revert PCI-Passthrough of NVMe Drives
These steps describe how to undo previous changes and are performed from the KVM Host.

 1. Destroy the VM
$ sudo nvidia-vm delete --domain nvme-passthrough-16g0-15 --force

 2. Recreate RAID-0 on the KVM Host
$ sudo mdadm --create --verbose /dev/md1 --level=0 --raid-devices=8 /dev/nvme2n1 /dev/
nvme3n1 /dev/nvme4n1 /dev/nvme5n1 /dev/nvme6n1 /dev/nvme7n1 /dev/nvme8n1 /dev/nvme9n1

mdadm: Defaulting to version 1.2 metadata

DGX-2 KVM Performance Tuning

Best Practices for DGX DG-08868-001 _v06 | 72

mdadm: array /dev/md1 started.
$ sudo mkfs.ext4 /dev/md1
mke2fs 1.44.1 (24-Mar-2018)
Discarding device blocks: done
Creating filesystem with 7501211648 4k blocks and 468826112 inodes
Filesystem UUID: 0e1d6cb6-020e-47d3-80a1-d2c93b259ff7
Superblock backups stored on blocks:
32768, 98304, 163840, 229376, 294912, 819200, 884736, 1605632, 2654208,
4096000, 7962624, 11239424, 20480000, 23887872, 71663616, 78675968,
102400000, 214990848, 512000000, 550731776, 644972544, 1934917632,
2560000000, 3855122432, 5804752896
Allocating group tables: done
Writing inode tables: done
Creating journal (262144 blocks): done
Writing superblocks and filesystem accounting information: done

 3. Mount RAID-0 inside the KVM Host.
$ sudo mount /dev/md1 /raid
$ sudo mdadm --detail --scan | sudo tee -a /etc/mdadm/mdadm.conf
ARRAY /dev/md/0 metadata=1.2 name=dgx-18-04:0
 UUID=1740dd3f:6c26bdc1:c6ed2395:690d0707
ARRAY /dev/md1 metadata=1.2 name=xpl-dvt-34:1
 UUID=dfa7e422:430a396b:89fc4b74:9a5d8c3c

Note: Make sure these entries show up in /etc/mdadm/mdadm.confand that they replace
any previously existing entries.

After replacing the entries in /etc/dmadm/mdadm.conf; ensure that only the two lines
from above show up. For example,
$ grep ARRAY /etc/mdadm/mdadm.conf
ARRAY /dev/md/0 metadata=1.2 name=dgx-18-04:0
 UUID=1740dd3f:6c26bdc1:c6ed2395:690d0707
ARRAY /dev/md1 metadata=1.2 name=xpl-dvt-34:1
 UUID=dfa7e422:430a396b:89fc4b74:9a5d8c3c

12.6.3. Physical Drive Passthrough
This section explains how to pass through a drive to a GPU Guest VM.

Preliminary Steps

Be sure to perform the following before setting up passthrough for the physical drive.

 1. Ensure mdadm raid isn’t running on NVMe drives.
$ sudo ls /dev/md*
/dev/md0

/dev/md:
0

 2. If you also see “md1”, stop it.
$ sudo umount /raid
$ sudo mdadm --stop /dev/md1
mdadm: stopped /dev/md1

 3. Create a large partition using parted.
$ sudo parted /dev/nvme4n1
GNU Parted 3.2
Using /dev/nvme4n1
Welcome to GNU Parted! Type 'help' to view a list of commands.

DGX-2 KVM Performance Tuning

Best Practices for DGX DG-08868-001 _v06 | 73

(parted) p
Error: /dev/nvme4n1: unrecognised disk label
Model: NVMe Device (nvme)
Disk /dev/nvme4n1: 3841GB
Sector size (logical/physical): 512B/512B
Partition Table: unknown
Disk Flags:
(parted) mklabel gpt
(parted) unit GB
(parted) mkpart 1 0 3841
(parted) quit

12.6.3.1. How to Set Up Drive Passthrough
 1. Put a filesystem on a drive’s partition (here nvme4n1 is used)

$ sudo mkfs.ext4 /dev/nvme4n1p1
mke2fs 1.44.1 (24-Mar-2018)
Discarding device blocks: done
Creating filesystem with 937684224 4k blocks and 234422272 inodes
Filesystem UUID: d3853f33-5241-478f-8a06-5010db70543d
Superblock backups stored on blocks:
32768, 98304, 163840, 229376, 294912, 819200, 884736, 1605632, 2654208,
4096000, 7962624, 11239424, 20480000, 23887872, 71663616, 78675968,
102400000, 214990848, 512000000, 550731776, 644972544
Allocating group tables: done
Writing inode tables: done
Creating journal (262144 blocks): done
Writing superblocks and filesystem accounting information: done

 2. Launch a GPU VM, shut it down and pass no Data Drive
$ nvidia-vm create --domain disk-passthrough --gpu-count 1 --gpu-index 8 --volGB 0
WARNING: Host Data volume not setup, no VM data volume will be created
disk-passthrough-1g8: create start mac: 52:54:00:50:c3:95 ip: 192.168.122.198

 3. Add these lines to XML
$ virsh shutdown disk-passthrough-1g8
$ virsh edit disk-passthrough-1g8
 <disk type='block' device='disk'>
 <driver name='qemu' type='raw'/>
 <source dev='/dev/nvme4n1'/>
 <target dev='vdb' bus='virtio'/>
 </disk>

 4. Save and restart Guest VM
$ virsh start disk-passthrough-1g8

 5. Verify that drive shows up inside the Guest VM:
$ virsh console disk-passthrough-1g8
nvidia@disk-passthrough-1g8:~$ lsblk
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
vda 252:0 0 50G 0 disk
└─vda1 252:1 0 50G 0 part /
vdb 252:16 0 3.5T 0 disk
└─vdb1 252:17 0 3.5T 0 part /raid

12.6.3.2. How to Revert Drive Passthrough
These steps explain how to undo the previous changes to set up drive passthough. Perform
these steps on the KVM Host.

 1. Destroy the VM.

DGX-2 KVM Performance Tuning

Best Practices for DGX DG-08868-001 _v06 | 74

$ sudo nvidia-vm delete --domain disk-passthrough-1g8 --force

 2. Recreate RAID-0 on the KVM host.
$ sudo mdadm --create --verbose /dev/md1 --level=0 --raid-devices=8 /dev/nvme2n1 /dev/
nvme3n1 /dev/nvme4n1 /dev/nvme5n1 /dev/nvme6n1 /dev/nvme7n1 /dev/nvme8n1 /dev/nvme9n1

mdadm: Defaulting to version 1.2 metadata
mdadm: array /dev/md0 started.

$ sudo mkfs.ext4 /dev/md1
mke2fs 1.44.1 (24-Mar-2018)
Discarding device blocks: done
Creating filesystem with 7501211648 4k blocks and 468826112 inodes
Filesystem UUID: 0e1d6cb6-020e-47d3-80a1-d2c93b259ff7
Superblock backups stored on blocks:
32768, 98304, 163840, 229376, 294912, 819200, 884736, 1605632, 2654208,
4096000, 7962624, 11239424, 20480000, 23887872, 71663616, 78675968,
102400000, 214990848, 512000000, 550731776, 644972544, 1934917632, 2560000000,
 3855122432, 5804752896
Allocating group tables: done
Writing inode tables: done
Creating journal (262144 blocks): done
Writing superblocks and filesystem accounting information: done

 3. Mount RAID-0 inside the KVM Host
$ sudo mount /dev/md1 /raid
$ sudo mdadm --detail --scan | sudo tee -a /etc/mdadm/mdadm.conf
ARRAY /dev/md/0 metadata=1.2 name=dgx-18-04:0
UUID=1740dd3f:6c26bdc1:c6ed2395:690d0707
ARRAY /dev/md1 metadata=1.2 name=xpl-dvt-34:1
UUID=dfa7e422:430a396b:89fc4b74:9a5d8c3c

Note: Make sure these entries show up in /etc/mdadm/mdadm.conf and replace existing
ones. After replacing the entries in /etc/dmadm/mdadm.conf; ensure only the two lines
from above appear.
$ grep ARRAY /etc/mdadm/mdadm.conf
 ARRAY /dev/md/0 metadata=1.2 name=dgx-18-04:0
 UUID=1740dd3f:6c26bdc1:c6ed2395:690d0707
 ARRAY /dev/md1 metadata=1.2 name=xpl-dvt-34:1
 UUID=dfa7e422:430a396b:89fc4b74:9a5d8c3c

12.6.4. Drive Partition Passthrough
If there are not enough drives to support the number of VMs that need to be created, you can
create multiple partitions on a disk and then pass through each partition to the VMs. This
section explains how to pass a drive partition to a guest VM.

 1. Stop RAID on /dev/md1, see the previous sections for an example.
 2. Create two drive partitions (here nvme5n1 is used) using fdisk.

$ fdisk /dev/nvme5n1
Welcome to fdisk (util-linux 2.31.1).
Changes will remain in memory only, until you decide to write them.
Be careful before using the write command.
The size of this disk is 3.5 TiB (3840755982336 bytes). DOS partition table
 format cannot be used on drives for volumes larger than 2199023255040 bytes for
 512-byte sectors. Use GUID partition table format (GPT).
Command (m for help): d
Selected partition 1
Partition 1 has been deleted.
Command (m for help): n

DGX-2 KVM Performance Tuning

Best Practices for DGX DG-08868-001 _v06 | 75

Partition type
 p primary (0 primary, 0 extended, 4 free)
 e extended (container for logical partitions)
Select (default p): p
Partition number (1-4, default 1):
First sector (2048-4294967295, default 2048):
Last sector, +sectors or +size{K,M,G,T,P} (2048-4294967294, default 4294967294):
 2147485695
Created a new partition 1 of type 'Linux' and of size 1 TiB.
Command (m for help): n
Partition type
 p primary (1 primary, 0 extended, 3 free)
 e extended (container for logical partitions)
Select (default p): p
Partition number (2-4, default 2):
First sector (2147485696-4294967295, default 2147485696):
Last sector, +sectors or +size{K,M,G,T,P} (2147485696-4294967294, default
 4294967294):
Created a new partition 2 of type 'Linux' and of size 1024 GiB.
Command (m for help): wq
The partition table has been altered.
Calling ioctl() to re-read partition table.
Syncing disks.

 3. Verify that the two partitions exist.
$ sudo fdisk -l /dev/nvme5n1
Disk /dev/nvme5n1: 3.5 TiB, 3840755982336 bytes, 7501476528 sectors
Units: sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disklabel type: dos
Disk identifier: 0xb1dc316c
Device Boot Start End Sectors Size Id Type
/dev/nvme5n1p1 2048 2147485695 2147483648 1T 83 Linux
/dev/nvme5n1p2 2147485696 4294967294 2147481599 1024G 83 Linux
$ lsblk
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
sr0 11:0 1 1024M 0 rom
nvme0n1 259:0 0 894.3G 0 disk
├─nvme0n1p1 259:1 0 512M 0 part /boot/efi
└─nvme0n1p2 259:2 0 893.8G 0 part
 └─md0 9:0 0 893.6G 0 raid1 /
nvme1n1 259:3 0 894.3G 0 disk
├─nvme1n1p1 259:4 0 512M 0 part
└─nvme1n1p2 259:5 0 893.8G 0 part
 └─md0 9:0 0 893.6G 0 raid1 /
nvme3n1 259:6 0 3.5T 0 disk
nvme4n1 259:7 0 3.5T 0 disk
nvme5n1 259:9 0 3.5T 0 disk
├─nvme5n1p1 259:8 0 1T 0 part
└─nvme5n1p2 259:17 0 1024G 0 part
nvme6n1 259:10 0 3.5T 0 disk
nvme2n1 259:11 0 3.5T 0 disk
nvme9n1 259:12 0 3.5T 0 disk
nvme8n1 259:13 0 3.5T 0 disk
nvme7n1 259:14 0 3.5T 0 disk

The example shows two partitions, with the intent of passing the 2nd partition to a guest
VM.

 4. Put a filesystem on a drive’s partition (here nvme5n1p1 is used).
$ mkfs.ext4 /dev/nvme5n1p1
mke2fs 1.44.1 (24-Mar-2018)
Discarding device blocks: done
Creating filesystem with 268435456 4k blocks and 67108864 inodes
Filesystem UUID: 7fa91b82-51db-4953-87d5-4364958951e5

DGX-2 KVM Performance Tuning

Best Practices for DGX DG-08868-001 _v06 | 76

Superblock backups stored on blocks:
32768, 98304, 163840, 229376, 294912, 819200, 884736, 1605632, 2654208,
4096000, 7962624, 11239424, 20480000, 23887872, 71663616, 78675968,
102400000, 214990848
Allocating group tables: done
Writing inode tables: done
Creating journal (262144 blocks): done
Writing superblocks and filesystem accounting information: done

 5. Figure out the path to disk partition by UUID.
$ ls -l /dev/disk/by-partuuid/ | grep 5n1p1
lrwxrwxrwx 1 root root 15 Sep 26 08:35 b1dc316c-01 -> ../../nvme5n1p1

 6. Launch a GPU VM, shut it down and pass no data drive.
$ nvidia-vm create --domain disk-passthrough --gpu-count 1 --gpu-index 9 --volGB
 0
WARNING: Host Data volume not setup, no VM data volume will be created
disk-passthrough-1g9: create start mac: 52:54:00:96:6c:38 ip: 192.168.122.140

 7. Capture how many devices are visible in the VM first.
nvidia@disk-passthrough-1g9:~$ lsblk
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
vda 252:0 0 50G 0 disk
└─vda1 252:1 0 50G 0 part /
nvidia@disk-passthrough-1g9:~$
$ virsh shutdown disk-passthrough-1g9

 8. Add these lines to XML next to existing <disk> entry
$ virsh edit disk-passthrough-1g9
 <disk type='block' device='disk'>
 <driver name='qemu' type='raw'/>
 <source dev='/dev/disk/by-partuuid/b1dc316c-01'/>
 <target dev='vdb' bus='virtio'/>
 </disk>

Note: Make sure the UUID matches that from the previous steps

.
 9. Save and restart the guest VM.

$ virsh start disk-passthrough-1g9

 10.Verify that drive shows up inside the guest VM.
$ virsh console disk-passthrough-1g9
nvidia@disk-passthrough-1g8:~$ lsblk
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
vda 252:0 0 50G 0 disk
└─vda1 252:1 0 50G 0 part /
vdb 252:16 0 1024G 0 disk
└─vdb1 252:17 0 1024G 0 part /raid

12.6.4.1. How to Set Up Drive Partition Passthrough
How to pass a Drive partition to a GPU Guest VM.

 1. Stop RAID on /dev/md1.
See previous sections for an example.

 2. Create two drive partition (here nvme5n1 is used) using fdisk.
$ fdisk /dev/nvme5n1
Welcome to fdisk (util-linux 2.31.1).

DGX-2 KVM Performance Tuning

Best Practices for DGX DG-08868-001 _v06 | 77

Changes will remain in memory only, until you decide to write them.
Be careful before using the write command.
The size of this disk is 3.5 TiB (3840755982336 bytes). DOS partition table
 format cannot be used on drives for volumes larger than 2199023255040 bytes for
 512-byte sectors. Use GUID partition table format (GPT).
Command (m for help): d
Selected partition 1
Partition 1 has been deleted.
Command (m for help): n
Partition type
 p primary (0 primary, 0 extended, 4 free)
 e extended (container for logical partitions)
Select (default p): p
Partition number (1-4, default 1):
First sector (2048-4294967295, default 2048):
Last sector, +sectors or +size{K,M,G,T,P} (2048-4294967294, default 4294967294):
 2147485695
Created a new partition 1 of type 'Linux' and of size 1 TiB.
Command (m for help): n
Partition type
 p primary (1 primary, 0 extended, 3 free)
 e extended (container for logical partitions)
Select (default p): p
Partition number (2-4, default 2):
First sector (2147485696-4294967295, default 2147485696):
Last sector, +sectors or +size{K,M,G,T,P} (2147485696-4294967294, default
 4294967294):
Created a new partition 2 of type 'Linux' and of size 1024 GiB.
Command (m for help): wq
The partition table has been altered.
Calling ioctl() to re-read partition table.
Syncing disks.

 3. Verify that the two partitions exist.
$ sudo fdisk -l /dev/nvme5n1
Disk /dev/nvme5n1: 3.5 TiB, 3840755982336 bytes, 7501476528 sectors
Units: sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disklabel type: dos
Disk identifier: 0xb1dc316c
Device Boot Start End Sectors Size Id Type
/dev/nvme5n1p1 2048 2147485695 2147483648 1T 83 Linux
/dev/nvme5n1p2 2147485696 4294967294 2147481599 1024G 83 Linux
$ lsblk
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
sr0 11:0 1 1024M 0 rom
nvme0n1 259:0 0 894.3G 0 disk
├─nvme0n1p1 259:1 0 512M 0 part /boot/efi
└─nvme0n1p2 259:2 0 893.8G 0 part
 └─md0 9:0 0 893.6G 0 raid1 /
nvme1n1 259:3 0 894.3G 0 disk
├─nvme1n1p1 259:4 0 512M 0 part
└─nvme1n1p2 259:5 0 893.8G 0 part
 └─md0 9:0 0 893.6G 0 raid1 /
nvme3n1 259:6 0 3.5T 0 disk
nvme4n1 259:7 0 3.5T 0 disk
nvme5n1 259:9 0 3.5T 0 disk
├─nvme5n1p1 259:8 0 1T 0 part
└─nvme5n1p2 259:17 0 1024G 0 part
nvme6n1 259:10 0 3.5T 0 disk
nvme2n1 259:11 0 3.5T 0 disk
nvme9n1 259:12 0 3.5T 0 disk
nvme8n1 259:13 0 3.5T 0 disk
nvme7n1 259:14 0 3.5T 0 disk

DGX-2 KVM Performance Tuning

Best Practices for DGX DG-08868-001 _v06 | 78

This examples shows two partitions, with the intent of passing the 2nd partition to a guest
VM.

 4. Put a filesystem on a drive’s partition (here nvme5n1p1 is used).
$ mkfs.ext4 /dev/nvme5n1p1
mke2fs 1.44.1 (24-Mar-2018)
Discarding device blocks: done
Creating filesystem with 268435456 4k blocks and 67108864 inodes
Filesystem UUID: 7fa91b82-51db-4953-87d5-4364958951e5
Superblock backups stored on blocks:
32768, 98304, 163840, 229376, 294912, 819200, 884736, 1605632, 2654208,
4096000, 7962624, 11239424, 20480000, 23887872, 71663616, 78675968,
102400000, 214990848
Allocating group tables: done
Writing inode tables: done
Creating journal (262144 blocks): done
Writing superblocks and filesystem accounting information: done

 5. Figure out the path to disk partition by UUID.
$ ls -l /dev/disk/by-partuuid/ | grep 5n1p1
lrwxrwxrwx 1 root root 15 Sep 26 08:35 b1dc316c-01 -> ../../nvme5n1p1

 6. Launch a GPU VM, shut it down, and pass no data drive.
$ nvidia-vm create --domain disk-passthrough --gpu-count 1 --gpu-index 9 --volGB 0
WARNING: Host Data volume not setup, no VM data volume will be created
disk-passthrough-1g9: create start mac: 52:54:00:96:6c:38 ip: 192.168.122.140

 7. Capture how many devices are visible in the VM.
nvidia@disk-passthrough-1g9:~$ lsblk
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
vda 252:0 0 50G 0 disk
└─vda1 252:1 0 50G 0 part /
nvidia@disk-passthrough-1g9:~$
$ virsh shutdown disk-passthrough-1g9

 8. Add these lines to XML next to the existing <disk> entry.
$ virsh edit disk-passthrough-1g9
 <disk type='block' device='disk'>
 <driver name='qemu' type='raw'/>
 <source dev='/dev/disk/by-partuuid/b1dc316c-01'/>
 <target dev='vdb' bus='virtio'/>
 </disk>

Note: Make sure the UUID matches that from the previous steps.

 9. Save and restart the guest VM.
$ virsh start disk-passthrough-1g9

 10.Verify that drive shows up inside the guest VM.
$ virsh console disk-passthrough-1g9
nvidia@disk-passthrough-1g8:~$ lsblk
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
vda 252:0 0 50G 0 disk
└─vda1 252:1 0 50G 0 part /
vdb 252:16 0 1024G 0 disk
└─vdb1 252:17 0 1024G 0 part /raid

12.6.4.2. How to Revert Drive Partition Passthrough
To revert drive partition passthrough, follow the instructions in How to Revert Drive
Passthrough as the same instructions apply.

Notice

This document is provided for information purposes only and shall not be regarded as a warranty of a certain functionality, condition, or quality of a product. NVIDIA
Corporation (“NVIDIA”) makes no representations or warranties, expressed or implied, as to the accuracy or completeness of the information contained in this
document and assumes no responsibility for any errors contained herein. NVIDIA shall have no liability for the consequences or use of such information or for any
infringement of patents or other rights of third parties that may result from its use. This document is not a commitment to develop, release, or deliver any Material
(defined below), code, or functionality.

NVIDIA reserves the right to make corrections, modifications, enhancements, improvements, and any other changes to this document, at any time without notice.

Customer should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the time of order acknowledgement, unless otherwise agreed
in an individual sales agreement signed by authorized representatives of NVIDIA and customer (“Terms of Sale”). NVIDIA hereby expressly objects to applying any
customer general terms and conditions with regards to the purchase of the NVIDIA product referenced in this document. No contractual obligations are formed
either directly or indirectly by this document.

NVIDIA products are not designed, authorized, or warranted to be suitable for use in medical, military, aircraft, space, or life support equipment, nor in applications
where failure or malfunction of the NVIDIA product can reasonably be expected to result in personal injury, death, or property or environmental damage. NVIDIA
accepts no liability for inclusion and/or use of NVIDIA products in such equipment or applications and therefore such inclusion and/or use is at customer’s own risk.

NVIDIA makes no representation or warranty that products based on this document will be suitable for any specified use. Testing of all parameters of each product
is not necessarily performed by NVIDIA. It is customer’s sole responsibility to evaluate and determine the applicability of any information contained in this document,
ensure the product is suitable and fit for the application planned by customer, and perform the necessary testing for the application in order to avoid a default of
the application or the product. Weaknesses in customer’s product designs may affect the quality and reliability of the NVIDIA product and may result in additional
or different conditions and/or requirements beyond those contained in this document. NVIDIA accepts no liability related to any default, damage, costs, or problem
which may be based on or attributable to: (i) the use of the NVIDIA product in any manner that is contrary to this document or (ii) customer product designs.

No license, either expressed or implied, is granted under any NVIDIA patent right, copyright, or other NVIDIA intellectual property right under this document.
Information published by NVIDIA regarding third-party products or services does not constitute a license from NVIDIA to use such products or services or a warranty
or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property rights of the third party,
or a license from NVIDIA under the patents or other intellectual property rights of NVIDIA.

Reproduction of information in this document is permissible only if approved in advance by NVIDIA in writing, reproduced without alteration and in full compliance
with all applicable export laws and regulations, and accompanied by all associated conditions, limitations, and notices.

THIS DOCUMENT AND ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS
(TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR
OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND
FITNESS FOR A PARTICULAR PURPOSE. TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL NVIDIA BE LIABLE FOR ANY DAMAGES, INCLUDING
WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF
THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF NVIDIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
Notwithstanding any damages that customer might incur for any reason whatsoever, NVIDIA’s aggregate and cumulative liability towards customer for the products
described herein shall be limited in accordance with the Terms of Sale for the product.

Trademarks

NVIDIA, the NVIDIA logo, DGX, DGX-1, DGX-2, DGX A100, DGX Station, and DGX Station A100 are trademarks and/or registered trademarks of NVIDIA Corporation in
the Unites States and other countries. Other company and product names may be trademarks of the respective companies with which they are associated.

Copyright
© 2022 NVIDIA Corporation. All rights reserved.

NVIDIA Corporation | 2788 San Tomas Expressway, Santa Clara, CA 95051
www.nvidia.com

http://www.nvidia.com

	Table of Contents
	Overview
	Storage
	2.1. Internal Storage (NFS Cache)
	2.1.1. NFS Cache for Deep Learning
	2.1.2. RAID-0
	2.1.3. DGX Internal Storage
	2.1.4. Monitoring the RAID Array

	2.2. External Storage
	2.2.1. NFS Storage
	2.2.2. Distributed Filesystems
	2.2.3. Scaling Out Recommendations

	Authenticating Users
	3.1. Local
	3.2. NIS Vs NIS+
	3.3. LDAP
	3.4. Active Directory

	Time Synchronization
	4.1. Ubuntu 16.04

	Monitoring
	5.1. DCGM
	5.2. Using ctop For Monitoring
	5.3. Monitoring A Specific DGX Using nvidia-smi

	Managing Resources
	6.1. Example: SLURM
	6.1.1. Simple GPU Scheduling With Exclusive Node Access
	6.1.2. Scheduling Resources At the Per-GPU Level

	6.2. Example: Univa Grid Engine
	6.3. Example: IBM Spectrum LSF
	6.4. Example: Altair PBS Pro

	Provisioning and Cluster Management
	7.1. Example: Bright Computing Cluster

	Networking
	8.1. DGX-1 Networking
	8.1.1. DGX-1 InfiniBand Networking
	8.1.2. DGX-1 Ethernet Networking
	8.1.3. DGX-1 Bonded NICs

	8.2. DGX-2 Networking

	SSH Tunneling
	Head Node
	DGX-2 KVM Networking
	11.1. Introduction
	11.1.1. Network Configuration Options
	11.1.2. Acronyms

	11.2. Virtual Networking
	11.2.1. Default Configuration
	11.2.2. Using Static IP
	11.2.3. Binding the Virtual Network to a Specific Physical NIC

	11.3. Bridged Networking
	11.3.1. Introduction
	11.3.2. Using DHCP
	11.3.3. Using Static IP

	11.4. Bridged Networking with Bonding
	11.4.1. Introduction
	11.4.2. Using DHCP
	11.4.3. Using Static IP

	11.5. MacVTap
	11.5.1. Introduction
	11.5.2. Macvtap Modes
	11.5.3. How to Change the Macvtap and Physical NIC Configuration
	11.5.4. How to Configure the Guest VM Using privateIP

	11.6. SR-IOV
	11.6.1. Introduction
	11.6.2. Device Configuration
	11.6.3. Generic Configuration
	11.6.4. Using DHCP
	11.6.5. Using Static IP

	11.7. Getting the Guest VM IP Address
	11.8. Improving Network Performance
	11.8.1. Jumbo Frames
	11.8.2. Multi-Queue Support
	11.8.3. QOS

	11.9. References

	DGX-2 KVM Performance Tuning
	12.1. Background
	12.2. CPU Tuning
	12.2.1. vCPU Pinning
	12.2.2. How to Disable vCPU Pinning
	12.2.3. Core Affinity Optimization

	12.3. Memory tuning
	12.3.1. Huge Pages Support
	12.3.1.1. How to set up Huge Pages at Runtime
	12.3.1.2. How to set up Huge Pages only for boot
	12.3.1.3. How to disable Huge Pages in the Host

	12.4. NUMA Tuning
	12.4.1. Automatic NUMA Balancing
	12.4.2. Enabling NUMA Tuning
	12.4.2.1. Setting Up NUMA Tuning
	12.4.2.2. Effects of Enabling NUMA Tuning

	12.5. Emulatorpin
	12.6. I/O tuning
	12.6.1. Using Multiple-queues with Logical Volumes
	12.6.1.1. I/O Threads
	12.6.1.2. How to Set up I/O Tuning

	12.6.2. NVMe Drives as PCI-Passthrough Devices
	12.6.2.1. How to Set Up PCI-Passthrough for NVME Drives
	12.6.2.2. How to Revert PCI-Passthrough of NVMe Drives

	12.6.3. Physical Drive Passthrough
	12.6.3.1. How to Set Up Drive Passthrough
	12.6.3.2. How to Revert Drive Passthrough

	12.6.4. Drive Partition Passthrough
	12.6.4.1. How to Set Up Drive Partition Passthrough
	12.6.4.2. How to Revert Drive Partition Passthrough

