DGX SOFTWARE WITH RED HAT ENTERPRISE LINUX 7

Installation Guide
TABLE OF CONTENTS

Chapter 1. Introduction... 1
 1.1. Related Documentation... 1
 1.2. Prerequisites... 1
 1.2.1. Red Hat Subscription.. 1
 1.2.2. Access to Repositories.. 2
 1.2.2.1. NVIDIA Repositories... 2
 1.2.2.2. Red Hat Repositories... 2
 1.2.3. Network File System.. 3
 1.2.4. BMC Password.. 3

Chapter 2. Installing Red Hat Enterprise Linux... 4
 2.1. Obtaining Red Hat Enterprise Linux... 4
 2.2. Booting Red Hat Enterprise Linux ISO Locally.. 4
 2.3. Booting the Red Hat Enterprise Linux ISO Remotely on the DGX-1 or DGX-2........ 5
 2.3.1. Booting the ISO Image on the DGX-1 Remotely.. 5
 2.3.2. Booting the ISO Image on the DGX-2 Remotely.. 8
 2.4. Installing Red Hat Enterprise Linux.. 12
 2.4.1. Installing on the DGX-1 or the DGX Station.. 12
 2.4.2. Installing on the DGX-2.. 19

Chapter 3. Installing the DGX Software.. 27
 3.1. Configuring a System Proxy... 27
 3.2. Enabling the Repositories.. 27
 3.3. Installing Required Components.. 28
 3.3.1. Installing DGX Tools and Updating Configuration Files............................. 28
 3.3.2. Configuring the /raid Partition.. 29
 3.3.2.1. Configuring the /raid Partition as an NFS Cache............................... 29
 3.3.2.2. Configuring the /raid Partition for Local Persistent Storage............... 29
 3.3.3. Installing and Loading the NVIDIA CUDA Drivers................................. 30
 3.3.4. Installing the NVIDIA Container Runtime.. 31
 3.4. Installing Diagnostic Components.. 32
 3.5. Replicating the EFI System Partition on DGX-2.. 32
 3.6. Installing Optional Components.. 33
 3.7. Applying an NVIDIA Look and Feel to the Desktop User Interface................... 34
 3.8. Managing CPU Mitigations.. 36
 3.8.1. Determining the CPU Mitigation State of the DGX System....................... 37
 3.8.2. Disabling CPU Mitigations.. 37
 3.8.3. Re-enabling CPU Mitigations... 38

Chapter 4. Running Containers... 39

Chapter 5. Configuring Storage - NFS Mount and Cache... 40

Appendix A. Installing Software on Air-Gapped NVIDIA DGX Systems............................ 42
 A.1. Registering Your System... 42
A.2. Creating the Mirrors on the Low-Side Red Hat System... 42
A.3. Installing Red Hat Enterprise Linux on the Air-Gapped DGX-2................................. 44
A.4. Installing DGX Software on the Air-Gapped DGX-2.. 47
A.5. Renaming RAID Volumes..50
A.6. Installing Docker Containers...50
Appendix B. Changing the BMC Login.. 52
 B.1. Changing the BMC Login on the DGX-1.. 52
 B.2. Changing the BMC Login on the DGX-2.. 57
Appendix C. Installing Mellanox InfiniBand Drivers.. 59
Appendix D. Using Custom DGX Software Utilities for the DGX Station...................... 60
 D.1. Rebuilding the DGX Station RAID Array.. 60
 D.2. Changing the RAID Level of the RAID Array... 61
 D.3. EL7-20.01 Only: Checking the Health of the DGX Station.................................... 62
 D.4. EL7-20.01 Only: Collecting Information for Troubleshooting the DGX Station........ 63
Chapter 1.
INTRODUCTION

The NVIDIA® DGX™ systems (DGX-1 and DGX-2 servers and NVIDIA DGX Station™ workstation) are shipped with DGX™ OS which incorporates the NVIDIA DGX software stack built upon the Ubuntu Linux distribution. Instead of running the Ubuntu distribution, you can run Red Hat Enterprise Linux on the DGX system and still take advantage of the advanced DGX features.

This document explains how to install and configure the NVIDIA DGX software stack on DGX systems installed with Red Hat Enterprise Linux.

While it may be possible to use other derived Linux distributions besides Red Hat Enterprise Linux, not all have been tested and qualified by NVIDIA. Refer to the DGX Software for Red Hat Enterprise Linux 7 Release Notes for the list of tested and qualified software and Linux distributions.

1.1. Related Documentation

- NVIDIA DGX Software for Red Hat Enterprise Linux - Release Notes
- NVIDIA DGX-1 User Guide
- NVIDIA DGX-2 User Guide
- NVIDIA DGX Station User Guide

1.2. Prerequisites

The following are required (or recommended where indicated).

1.2.1. Red Hat Subscription

You need a Red Hat subscription if you plan to install and use Red Hat Enterprise Linux 7 on the DGX. A subscription also lets you obtain update packages and additional
packages for Red Hat Enterprise Linux. You can either purchase a subscription or obtain a free evaluation subscription from the Red Hat Software & Download Center.

Of the available Red Hat Enterprise Linux platforms, only Red Hat Enterprise Linux Server is supported on DGX systems (DGX servers and DGX Station workstation). Other Red Hat Enterprise Linux platforms are not supported on any DGX system.

1.2.2. Access to Repositories

The repositories can be accessed from the internet.

If your installation does not allow connection to the internet, see the section Installing Software on Air-Gapped NVIDIA DGX Systems for information about updating software on “air-gapped” systems.

If you are using a proxy server, then follow the instructions in the section Configuring a System Proxy to make sure the system can access the necessary URIs.

You can use `yum-config-manager` to conveniently enable certain repositories. To use `yum-config-manager`, first install the yum utilities.

```
sudo yum -y install yum-utils
```

1.2.2.1. NVIDIA Repositories

- **NVIDIA DGX Software Repository**

 After installing Red Hat Enterprise Linux on the DGX system, you must enable the NVIDIA DGX software repository. The repository includes the NVIDIA drivers and software for supporting DGX systems.

 See the section Enabling the Repositories for instructions on how to enable the repositories.

1.2.2.2. Red Hat Repositories

Installation of the DGX Software over Red Hat Enterprise Linux 7 requires access to several additional repositories.

- **Red Hat Enterprise Server Extras Repository: rhel-7-server-extras-rpms**

 Required for container support

- **Red Hat Enterprise Server Optional Repository: rhel-7-server-optional-rpms**

 Required by NVIDIA System Manager (NVSM) and the GPU driver.

- **Red Hat Software Collections Repository: rhel-server-rhscl-7-rpms**
This repository is required by the NVSM tool for Python 3. If you do not have access to the Red Hat software collections repository, refer to https://access.redhat.com/solutions/472793 for instructions on requesting access for free.

Important NVSM is not supported with the `python3` package. Be sure to only install the `rh-python36` package per the instructions in Installing Diagnostic Components.

1.2.3. Network File System

A network file system (NFS) is recommended to take advantage of the cache file system provided by the DGX software stack for the DGX servers or if you intend to configure the SSDs for data storage in the DGX Station as an NFS cache.

1.2.4. BMC Password

The DGX BMC comes with default login credentials as specified in Appendix B: Changing the BMC Login.

Important

NVIDIA recommends disabling the default username and creating a unique BMC username and strong password as soon as possible. Refer to Appendix B: Changing the BMC Login for instructions.
Chapter 2.
INSTALLING RED HAT ENTERPRISE LINUX

There are several methods for installing Red Hat Enterprise Linux as described in the
Red Hat Enterprise Linux Installation Guide (https://access.redhat.com/documentation/
en-us/red_hat_enterprise_linux/7/html/installation_guide/index).

See the DGX Software for Red Hat Enterprise Linux Release Notes for the Linux
distributions that are qualified and tested for use with the DGX Software.

For convenience, this section describes how to install Red Hat Enterprise Linux using the
Quick Install method, and shows when to reclaim disk space in the process. It describes
a minimal installation. If you have a preferred method for installing Red Hat Enterprise
Linux, then you can skip this section but be sure to reclaim disk space occupied by the
existing Ubuntu installation.

The interactive method described here installs Red Hat Enterprise Linux on DGX using
a connected monitor and keyboard and USB stick with the ISO image, or remotely
through the remote console of the BMC.

2.1. Obtaining Red Hat Enterprise Linux

Obtain the Red Hat Enterprise Linux ISO image and store on your local disk or create
a boot USB drive formatted for UEFI. See Downloading Red Hat Enterprise Linux
(https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/
installation_guide/chap-download-red-hat-enterprise-linux) for instructions.

2.2. Booting Red Hat Enterprise Linux ISO Locally

1. Plug the USB flash drive containing the Red Hat Enterprise Linux ISO image into
 the DGX.
2. Connect a monitor and keyboard directly to the DGX.
3. Boot the system and press F11 when the NVIDIA logo appears to get to the boot
 menu.
4. Select the UEFI volume name that corresponds to the inserted USB flash drive, and
 boot the system from it.
5. Follow the instructions at Installing Red Hat Enterprise Linux

2.3. Booting the Red Hat Enterprise Linux ISO Remotely on the DGX-1 or DGX-2

Skip this chapter if you are using a monitor and keyboard for installing locally on the DGX-1 or DGX-2, or if you are installing the software on the DGX Station. The DGX Station cannot be booted remotely.

2.3.1. Booting the ISO Image on the DGX-1 Remotely

Skip this chapter if you are using a monitor and keyboard for installing locally. For instructions applicable to the NVIDIA DGX-2, see Booting the ISO Image on the DGX-2 Remotely

1. Connect to the BMC and change user privileges.
 a) Open a Java-enabled web browser within your LAN and go to http://<BMC-ip-address>/, then log in.
 Use Firefox or Internet Explorer. Google Chrome is not officially supported by the BMC.
 b) From the top menu, click Configuration and then select User Management.
 c) Select the user name that you created for the BMC, then click Modify User.
 d) In the Modify User dialog, select the VMedia checkbox to add it to the extended privileges for the user, then click Modify.

![Modify User Dialog](image)

2. Set up the ISO image as virtual media and reboot the system.
a) From the top menu, click **Remote Control** and select **Console Redirection**.

![Remote Control](image1.png)

b) Click **Java Console** to open the remote JViewer window. Make sure pop-up blockers are disabled for this site.

c) From the JViewer top menu bar, click **Media** and then select **Virtual Media Wizard**.

![Virtual Media Wizard](image2.png)

d) From the CD/DVD Media: I section of the Virtual Media dialog, click **Browse** and then locate the Red Hat Enterprise Linux ISO file on your system and click **Open**.

You can ignore the device redirection warning at the bottom of the Virtual Media wizard as it does not affect the ability to re-image the system.

e) Click **Connect CD/DVD**, then click **OK** at the Information dialog.

The Virtual Media window shows that the ISO image is connected.

![Virtual Media](image3.png)

f) Close the window.

The CD ROM icon in the menu bar turns green to indicate that the ISO image is attached.
g) From the top menu, click **Power** and then select **Reset Server**.

h) Click **Yes** and then **OK** at the Power Control dialogs, then wait for the system to power down and then come back online.

3. Boot the CD ROM image.

 Typically, the default boot order does not boot the CDROM image. This can be changed in the BIOS or as a one-time option in the boot menu. To bring up the boot menu, press F11 at the beginning of the boot process. Pressing **F11** will display Show Boot Options at the top of the virtual display before entering the boot menu. Use the ‘soft’ keyboard (Menu → Keyboard Layout → SoftKeyboard → <Language>) to bring up a virtual keyboard if pressing the physical key has no effect.

 a) In the boot menu, select **UEFI: AMI Virtual CDROM 1.00** as the boot device and then press ENTER.
b) Follow the instructions at Installing Red Hat Enterprise Linux.

2.3.2. Booting the ISO Image on the DGX-2 Remotely

Skip this chapter if you are using a monitor and keyboard for installing locally.

1. Connect to the BMC and ensure the required user privileges are set.
 a) Open a browser within your LAN and go to `https://<BMC-ip-address>/`, then log in.
 b) From the left-side menu, click Settings and then select User Management.
 c) Click the card with the user name that you created for the BMC.
 d) In the User Management Configuration dialog, make sure the VMedia Access checkbox is selected, then click Save.
2. Set up the ISO image as virtual media.
 a) From the left-side menu, click **Remote Control**.
 b) Select **Launch KVM**.
c) From the top menu bar in the KVM window, click **Browse File** and select the ISO image, then click **Start Media**.

![KVM window with CD image connected](image)

The CD image should now be connected.

![KVM window with Power and Reset options](image)

d) From the top menu bar in the KVM window, click **Power** and then select **Reset Server**.

3. Boot from the virtual media.

 Typically, the default boot order does not boot the CDROM image. This can be changed in the BIOS or as a one-time option in the boot menu.

 a) To bring up the boot menu, press **F11** at the beginning of the boot process.

 Pressing **F11** will display **Entering Boot Menu** in the virtual display before entering the boot menu.
b) In the boot menu, select **UEFI: Virtual CDROM 1.00** as the boot device and then press **ENTER**.

```
Please select boot device:

Local M.2_0 ubuntu
Local M.2_0 UEFI OS
Local M.2_1 ubuntu
Local M.2_1 UEFI OS
UEFI: Virtual CDROM 1.00
UEFI: PXE IPv4 Intel(R) I210 Gigabit Network Connection
UEFI: HTTP IPv4 Intel(R) I210 Gigabit Network Connection
UEFI: PXE IPv6 Intel(R) I210 Gigabit Network Connection
UEFI: HTTP IPv6 Intel(R) I210 Gigabit Network Connection
UEFI: Built-in EFI Shell
Enter Setup

↑ and ↓ to move selection
ENTER to select boot device
ESC to boot using defaults
```

c) Follow the instructions at **Installing Red Hat Enterprise Linux**
2.4. Installing Red Hat Enterprise Linux

2.4.1. Installing on the DGX-1 or the DGX Station

This section assumes you have booted the Red Hat Enterprise Linux ISO image, either locally or remotely.

For instructions applicable to the DGX-2, see Installing on the DGX-2.

1. After booting the ISO image through either the BMC or from the USB drive, start the installation.

 - **On the DGX-1:** Select **Install Red Hat Enterprise Linux** and then press **Enter** to start the installation.
 - **On the DGX Station:** Update the **linuxefi** parameters to prevent the Nouveau driver in Red Hat Enterprise Linux from being loaded and then start the installation.

 The Nouveau driver does not properly support the GPUs in the DGX Station, which may cause display issues. The GPUs in the DGX Station require that drivers that are installed as explained in **Installing and Loading the NVIDIA CUDA Drivers**.

 1. Select **Install Red Hat Enterprise Linux** and then type **e**.
 2. Append the **nomodeset** option to the **linuxefi** parameters.

 3. Press **Ctrl+X** to save your changes and start the installation.
The Red Hat Enterprise Linux installer starts.

2. Configure the language, region, date, time, keyboard, and other configuration options you may need from the Installation Summary screen.

3. Select the software packages that you want to install.

4. Set up the system drive.

 This step removes the Ubuntu installation in order to reclaim space for the Red Hat Enterprise Linux installation.

 a) From the Installation Summary screen, click INSTALLATION DESTINATION.

 ![Installation Summary Screen](image)

 Please complete items marked with this icon before continuing to the next step.

 b) Select the first drive (sda) as the installation drive, then select Automatically configure partitioning under Other Storage Options and click Done.

 If the software is being installed on the DGX Station, the number of local standard disks, their labels, capacities, and the amount of free space shown may be different than the examples shown in the screen capture.
The Installation Options dialog box appears.

c) At the Installation Options dialog, click **Reclaim space**.
d) At the Device Selection screen, click **Delete** all to delete all existing data on the system drive.
e) Click **Reclaim space** to permanently delete all data from the drive and to use it as the destination drive.
5. Configure Ethernet.

Select and enable the Ethernet device. This defaults to DHCP and can be changed for static IP configurations under Configure.

![Ethernet Configuration Screen]

6. From the INSTALLATION SUMMARY screen, click **Begin installation** to start the installation.
a) While the installation process is running, set your password (ROOT PASSWORD) and create a new user (USER CREATION) from the Configuration screen.

b) When the installation completes, click Reboot to reboot the system.

If you have installed Red Hat Enterprise Linux 7.5 and are using the BMC remote console, then follow the instructions provided in the release notes under Black screen on BMC Remote Console with Red Hat Enterprise Linux 7.5.

7. Register the system with the Red Hat Enterprise Customer Portal to complete the initial setup.

- If you installed with the Server with GUI base environment, the Initial Setup starts automatically where you can accept the license agreement and register the system. See the Red Hat instructions for details.
- If you installed with any other base environment, log on to the system as root user and then register the system.

```
subscription-manager register --auto-attach --username=user_name --password=password
```

See How to register and subscribe a system to the Red Hat Customer Portal using Red Hat Subscription-Manager for further information.
2.4.2. Installing on the DGX-2

This section assumes you have booted the Red Hat Enterprise Linux ISO image, either locally or remotely.

For instructions applicable to the DGX-1 and the DGX Station, see Installing on the DGX-1 or the DGX Station.

1. After booting the ISO image through either the BMC or from the USB drive, select Install Red Hat Enterprise Linux and then press Enter to start the installation.

![Install Red Hat Enterprise Linux 7.5]

Use the ▲ and ▼ keys to change the selection.
Press 'e' to edit the selected item, or 'c' for a command prompt.

The Red Hat Enterprise Linux installer starts.

2. Configure the language, region, date, time, keyboard, and other configuration options you may need from the Installation Summary screen.

3. Select the software packages that you want to install.

4. Set up the boot disks.

The DGX OS, which is installed in the factory before shipping out the DGX-2, creates a RAID-1 array on the two M.2 NVMe boot disks. Therefore, it is necessary to select both boot disks when installing RHEL 7 on a DGX-2.

a) From the Installation Summary screen, click INSTALLATION DESTINATION.
b) At the Installation Destination screen, select both M.2 disks (i.e. the 894.25 GB ones) and the "I will configure partitioning" radio button, then click Done.
Installing Red Hat Enterprise Linux

The Manual Partitioning window appears.
c) Expand the **Unknown** drop-down menu.

This shows the disks that Red Hat Enterprise Linux has identified. They will be

- the RAID-1 root partition (ext4, 893 GB),
- the first EFI system partition (ESP) (nvme0n1p1, 512 MB), and
- the second ESP (nvme1n1p1, 512 MB).

d) Select the **ext4** partition and reformat it as **xfs**, then set the mount point to **"/"** and label it as **"md0"**
e) Click **Update Settings**.

5. Create an EFI partition.
 a) Select the **nvme0n1p1** partition and reformat as an **EFI System Partition**, then set the mount point to "/boot/efi" and click **Update Settings**.
At this point, the two partitions you configured will be under the New Red Hat Enterprise Linux Installation drop down menu, and the nvme1n1p1 EFI partition will still be in Unknown. We can't create a second ESP because Red Hat Enterprise Linux won't allow you to create two partitions mounted on the same mount point, i.e. /boot/efi, even if they are on different disks. You can replicate the ESP after installing the "DGX System Management" yum group, which provides a tool to accomplish this.

b) Click Done.
A yellow-highlighted warning appears on the bottom of the screen.
c) Click the yellow-highlighted warning message.
 The following message appears.

 ![Warning message]

 The message appears because the DGX OS from the factory has created a RAID 1 array for the root partition, and has replicated the EFI system partitions.

d) Close the warning and then press **Done**.
 A summary of the partitioning steps appears.
e) Click **Accept Changes** to get back to the main Installation Summary Screen.

There should no longer be a yellow warning icon on the **System: Installation Destination** option.

6. **Configure Ethernet.**

 Select and enable the Ethernet device. This defaults to DHCP and can be changed for static IP configurations under **Configure**.

7. From the INSTALLATION SUMMARY screen, click **Begin installation** to start the installation.
a) While the installation process is running, set your password (ROOT PASSWORD) and create a new user (USER CREATION) from the Configuration screen.
b) When the installation completes, click Reboot to reboot the system.

8. Register the system with the Red Hat Enterprise Customer Portal to complete the initial setup.

 ▶ If you installed with the Server with GUI base environment, the Initial Setup starts automatically where you can accept the license agreement and register the system. See the Red Hat instructions for details.
 ▶ If you installed with any other base environment, log on to the system as root user and then register the system.

   ```bash
   subscription-manager register --auto-attach --username=user_name --password=password
   ```

See How to register and subscribe a system to the Red Hat Customer Portal using Red Hat Subscription-Manager for further information.
Chapter 3.
INSTALLING THE DGX SOFTWARE

This section requires that you have already installed Red Hat Enterprise Linux" or derived operating system on the DGX server.

3.1. Configuring a System Proxy

If your network requires use of a proxy, then

- Edit the file `/etc/yum.conf` and make sure the following lines are present in the `[main]` section, using the parameters that apply to your network:

```
proxy=http://<Proxy-Server-IP-Address>:<Proxy-Port>
proxy_username=<Proxy-User-Name>
proxy_password=<Proxy-Password>
```

- Make sure that the following domains are 'white-listed' and that the system can access them:
 - cdn.redhat.com
 - international.download.nvidia.com

3.2. Enabling the Repositories

1. On Red Hat Enterprise Linux, run the following commands to enable additional repositories required by the DGX software.

   ```
   sudo subscription-manager repos --enable=rhel-7-server-extras-rpms
   sudo subscription-manager repos --enable=rhel-7-server-optional-rpms
   ```

2. Run the following commands to install the DGX software installation package and enable the NVIDIA DGX software repository.

 Attention By running these commands you are confirming that you have read and agree to be bound by the DGX Software License Agreement. You are also confirming that you understand that any pre-release software and materials available that you elect to install in a DGX may not be fully functional, may contain errors or design flaws, and may have reduced or different security,
a) Install the NVIDIA DGX Package for Red Hat Enterprise Linux.

```
yum install -y \nhttps://international.download.nvidia.com/dgx/repos/rhel-files/dgx-repo-setup-19.07-2.el7.x86_64.rpm
```

b) Enable the update repository.

- Either edit `/etc/yum.repos.d/nvidia-dgx-7.repo` and set `enabled=1`,

```
[nvidia-dgx-7-updates]
name=NVIDIA DGX EL7 Updates
baseurl=https://international.download.nvidia.com/dgx/repos/rhel7-updates/
enabled=1
gpgcheck=1 gpgkey=file:///etc/pki/rpm-gpg/RPM-GPG-KEY-dgx-cosmos-support
```

- Or (if you have the `yum-utils` package installed), issue the following.

```
sudo yum-config-manager --enable nvidia-dgx-7-updates
```

3.3. Installing Required Components

3.3.1. Installing DGX Tools and Updating Configuration Files

1. Install DGX tools and configuration files.

 - For DGX-1, install DGX-1 Configurations.

   ```
sudo yum groupinstall -y 'DGX-1 Configurations'
```

 - For the DGX-2, install DGX-2 Configurations.

   ```
sudo yum groupinstall -y 'DGX-2 Configurations'
```

 - For the DGX Station, install DGX Station Configurations.

   ```
sudo yum groupinstall -y 'DGX Station Configurations'
```

 The configuration changes take effect only after rebooting the system, which is covered in the next step.

2. Update the kernel.

 a) Issue the following.

   ```
   $ sudo yum update
   ```

 b) Reboot the server into the updated kernel.

   ```
   $ sudo reboot
3.3.2. Configuring the /raid Partition

The DGX servers and the DGX Station include multiple SSDs for data caching or data storage. Configure these SSDs as a RAID array in a partition mounted at /raid. For the DGX servers, these SSDs are intended to be used as a data cache for NFS mounted directories. For the DGX Station, these SSDs are intended to be used either for local persistent storage or as a data cache for NFS mounted directories.

3.3.2.1. Configuring the /raid Partition as an NFS Cache

If you are using the data SSDs for caching NFS reads, configure these SSDs as a RAID 0 array, mounted at /raid and update the cachefilesd configuration to use the /raid partition.

1. Configure the RAID array.

   This will create the RAID group, mount it to /raid, and create an appropriate entry in /etc/fstab.

   ```
 sudo configure_raid_array.py -c -f
   ```

   The RAID array must be configured before installing dgx-conf-cachefilesd, which places the proper SELinux label on the /raid directory. If you ever need to recreate the RAID array - which will wipe out any labeling on /raid - after dgx-conf-cachefilesd has already been installed, be sure to restore the label manually before restarting cachefilesd.

   ```
 sudo restorecon /raid
 sudo systemctl restart cachefilesd
   ```

2. Install dgx-conf-cachefilesd to update the cachefilesd configuration to use the /raid partition.

   ```
 sudo yum install -y dgx-conf-cachefilesd
   ```

3.3.2.2. Configuring the /raid Partition for Local Persistent Storage

If you are using the data SSDs in the DGX Station for local persistent storage, configure these SSDs as a RAID 0 or RAID 5 array, mounted at /raid.

RAID 0 provides the maximum storage capacity, but does not provide any redundancy. If a single SSD in the array fails, all data stored on the array is lost. RAID 5 provides some level of protection against failure of a single SSD but with lower storage capacity than RAID 0.

- To configure a RAID 0 array, run the following command.

  ```
 sudo configure_raid_array.py -c -f
  ```

- To configure a RAID 5 array, run the following command.

  ```
 sudo configure_raid_array.py -c -f -5
  ```
These commands will create the RAID group, mount it to `/raid`, and create an appropriate entry in `/etc/fstab`.

### 3.3.3. Installing and Loading the NVIDIA CUDA Drivers

1. **Install the kernel-devel package**

   The kernel-devel package provides kernel headers required for the NVIDIA CUDA driver. Use the following command to install the kernel headers for the kernel version that is currently running on the system.

   ```
 sudo yum install -y "kernel-devel-uname-r == $(uname -r)"
   ```

2. **Ensure that you have installed the latest version of `gcc` installed, as older versions may not support all of the features required to build the driver.**

   ```
 sudo yum install -y gcc
   ```

3. **Install the driver package.**

   This will build and install the driver kernel modules. The installation of the dkms-nvidia package can take approximately five minutes.

   ```
 sudo yum install -y cuda-drivers dgx-persistence-mode
   ```

4. **Reboot the system to load the drivers and to update system configurations.**

   ```
 sudo reboot
   ```

5. **After the system has rebooted, verify that the drivers have been loaded and are handling the NVIDIA devices.**

   ```
 nvidia-smi
   ```

   The output should show all available GPUs.

   **Example**: Output from a DGX-1 system

   ```
 +---+
 | NVIDIA-SMI 410.79 Driver Version: 410.79 CUDA Version: 10.0 |
 |----------------------------+-------------------+----------------------+
 | GPU Name Persistence-M | Bus-Id Disp.A | Volatile Uncorr. ECC |
 | Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
 |============================+===================+======================|
 | 0 Tesla V100-SXM2... On | ...00:06:00.0 Off | 0 |
 | N/A 33C P0 45W / 300W | 0MiB / 32480MiB | 0% Default |
 |----------------------------+-------------------+----------------------|
 | 1 Tesla V100-SXM2... On | ...00:07:00.0 Off | 0 |
 | N/A 35C P0 44W / 300W | 0MiB / 32480MiB | 0% Default |
 +---+
   ```
3.3.4. Installing the NVIDIA Container Runtime

1. Install Docker 1.13 from the `rhel-7-server-extras-rpms` repository.
   
   ```bash
 sudo yum install -y docker
   ```

2. Install the NVIDIA Container Runtime group.
   
   ```bash
 sudo yum groupinstall -y 'NVIDIA Container Runtime'
   ```

3. Run the following command to verify the installation.
   
   ```bash
 sudo docker run --security-opt label=type:nvidia_container_t --rm nvcr.io/nvidia/cuda nvidia-smi
   ```

   See the section Running Containers for more information about this command. For a description of nvcr.io, see the NGC Registry Spaces documentation.

   To ensure that Docker can access the NGC container registry through a proxy, refer to the Red Hat customer portal knowledge base article Configure Docker to use a proxy with or without authentication.

   The output should show all available GPUs.
3.4. Installing Diagnostic Components

NVIDIA System Management (NVSM) provides the diagnostic components for NVIDIA DGX systems. NVSM is a software framework for monitoring NVIDIA DGX server nodes in a data center. It includes active health monitoring, system alerts, and log generation. The NVSM CLI can also be used for checking the health of and obtaining diagnostic information for DGX Station workstations.

The diagnostic components for NVIDIA DGX systems require Python 3. It is available from the Red Hat Enterprise Linux Software Collections (https://developers.redhat.com/products/softwarecollections/overview/). The Fedora EPEL repository also contains a version of Python 3; however, this combination has not been tested.

1. Enable the Red Hat Software Collections repository.

   ```bash
 sudo subscription-manager repos --enable=rhel-server-rhscl-7-rpms
   ```

   If you do not have access to the Red Hat Software Collections repository, refer to https://access.redhat.com/solutions/472793 for instructions on requesting access for free.

2. Install Python 3.6.

   ```bash
 sudo yum install -y rh-python36
   ```

   **Important** The diagnostic components for NVIDIA DGX systems are not supported with the `python3` package. Be sure to only install the `rh-python36` package.

3. Install the DGX System Management package group.

   ```bash
 sudo yum groupinstall -y 'DGX System Management'
   ```

For information about using NVSM, see the NVIDIA System Management documentation.

3.5. Replicating the EFI System Partition on DGX-2

This section applies only to the NVIDIA DGX-2.

Once the 'DGX System Management' group is installed, the 'nvsm' tool can be used to replicate the EFI system partition (ESP) onto the second M.2 drive.

**Important** Run these steps ONLY IF

- You are installing Red Hat Enterprise Linux on the NVIDIA DGX-2, and
1. Start the NVSM tool.
   
   ```
 sudo nvsm
   ```

2. Navigate to `/systems/localhost/storage/volumes/md0`.
   
   ```
 nvsm-> cd /systems/localhost/storage/volumes/md0
   ```

3. Start the rebuild process.
   
   ```
 nvsm(/systems/localhost/storage/volumes/md0)-> start rebuild
   ```

   a) At the first prompt, specify the second M.2 disk.

   ```
 PROMPT: In order to rebuild this volume, a spare drive is required. Please specify the spare drive to use to rebuild md0.
 Name of spare drive for md0 rebuild (CTRL-C to cancel): nvme1n1
   ```

   This should be the M.2 disk on which you did NOT install the ESP. If you followed the instructions in the section Installing on DGX-2, this should be `nvme1n1`.

   b) At the second prompt, confirm that you want to proceed.

   ```
 WARNING: Once the volume rebuild process is started, the process cannot be stopped.
 Start RAID-1 rebuild on md0? [y/n] y
   ```

   Upon successful completion, the following message should appear indicating that the ESP has been replicated:

   ```
 /systems/localhost/storage/volumes/md0/rebuild started at 2019-03-07 14:40:55.844542
 RAID-1 rebuild exit status: ESP_REBUILT
   ```

   If necessary, the RAID 1 array is rebuilt after the ESP has been replicated.

   ```
 Finished rebuilding RAID-1 on volume md0
 100.0% [==]
 Status: Done
   ```

3.6. Installing Optional Components

The DGX is fully functional after installing the components as described in Installing Required Components. If you intend to launch NGC containers (which incorporate the CUDA toolkit, NCCL, cuDNN, and TensorRT) on the DGX system, which is the expected use case, then you can skip this section.

If you intend to use your DGX system as a development system for running deep learning applications on bare metal, then install the optional components as described in this section.

1. Install the CUDA toolkit.
sudo yum install cuda

2. Install the NVIDIA Collectives Communication Library (NCCL) Runtime.

   sudo yum groupinstall 'NVIDIA Collectives Communication Library Runtime'

3. Install the CUDA Deep Neural Networks (cuDNN) Library Runtime.

   sudo yum groupinstall 'CUDA Deep Neural Networks Library Runtime'

4. Install NVIDIA TensorRT.

   sudo yum install tensorrt

3.7. Applying an NVIDIA Look and Feel to the Desktop User Interface

If the GNOME Desktop is installed, you can optionally apply an NVIDIA look and feel to the desktop user interface by applying the NVIDIA theme to applications and the shell, and using NVIDIA images for the desktop background and lock screen.

The GNOME Desktop must already be installed and running on your system. If SOFTWARE SELECTION was set to Server with GUI when you installed Red Hat Enterprise Linux, the GNOME Desktop is already installed. If the GNOME Desktop is not installed, you must install the X Window System and GNOME package groups.

1. Install the DGX Desktop Theme package group.

   sudo yum groupinstall -y 'DGX Desktop Theme'

2. Start gnome-tweaks.

3. In the Appearance window that opens, under Tweaks, click Extensions.
4. In the Extensions window that opens, set Extensions in the title bar and User themes to ON.
5. Stop and restart `gnome-tweaks`.

6. In the **Appearance** window that opens, apply the NVIDIA theme to applications and the shell, and use NVIDIA images for the desktop background and lock screen.
   
a) Under **Themes**, in the drop-down lists for **Applications** and **Shell**, click **Nvidia**.
b) Under **Background** and **Lock Screen**, click the **Image** file selector.
c) In the **Image** window that opens, select an NVIDIA DGX Station background image, for example, `NVIDIA_DGX_Station_Background_B.JPG`, and click **Open**.

---

### 3.8. Managing CPU Mitigations

DGX Software for Red Hat Enterprise Linux includes security updates to mitigate CPU speculative side-channel vulnerabilities. These mitigations can decrease the performance of deep learning and machine learning workloads.

If your installation of DGX systems incorporates other measures to mitigate these vulnerabilities, such as measures at the cluster level, you can disable the CPU mitigations for individual DGX nodes and thereby increase performance. This capability is available starting with DGX Software for Red Hat Enterprise Linux software version EL7-20.02.
3.8.1. Determining the CPU Mitigation State of the DGX System

If you do not know whether CPU mitigations are enabled or disabled, issue the following.

```bash
$ cat /sys/devices/system/cpu/vulnerabilities/*
```

- **Mitigation:** CPU mitigations are enabled if the output consists of multiple lines prefixed with `Mitigation:`.

  **Example**

  ```
 KVM: Mitigation: Split huge pages
 Mitigation: PTE Inversion; VMX: conditional cache flushes, SMT vulnerable
 Mitigation: Clear CPU buffers; SMT vulnerable
 Mitigation: PTI
 Mitigation: Speculative Store Bypass disabled via prctl and seccomp
 Mitigation: usercopy/swaps barriers and __user pointer sanitization
 Mitigation: Full generic retpoline, IBPB: conditional, IBRS_FW, STIBP: conditional, RSB filling
 Mitigation: Clear CPU buffers; SMT vulnerable
  ```

- **Vulnerable:** CPU mitigations are disabled if the output consists of multiple lines prefixed with `Vulnerable`.

  **Example**

  ```
 KVM: Vulnerable
 Mitigation: PTE Inversion; VMX: vulnerable
 Vulnerable; SMT vulnerable
 Vulnerable
 Vulnerable
 Vulnerable: __user pointer sanitization and usercopy barriers only; no swaps barriers
 Vulnerable, IBPB: disabled, STIBP: disabled
 Vulnerable
  ```

3.8.2. Disabling CPU Mitigations

**Caution** Performing the following instructions will disable the CPU mitigations provided by the DGX Software for Red Hat Enterprise Linux.

1. Apply the `dgx*-no-mitigations` profile.

   - On a DGX-2 system, issue

     ```bash
 $ sudo tuned-adm profile dgx2-no-mitigations
     ```

   - On a DGX-1 system, issue

     ```bash
 $ sudo tuned-adm profile dgx-no-mitigations
     ```

   - On a DGX Station workstation, issue

     ```bash
 $ sudo tuned-adm profile dgxstation-no-mitigations
     ```
2. Reboot the system.
3. Verify CPU mitigations are disabled.

```bash
$ cat /sys/devices/system/cpu/vulnerabilities/*
```

The output should include several `Vulnerable` lines. See [Determining the CPU Mitigation State of the DGX System](#) for example output.

### 3.8.3. Re-enabling CPU Mitigations

1. Apply the `dgx*-performance` package.
   - On a DGX-2 system, issue
     ```bash
 $ sudo tuned-adm profile dgx2-performance
     ```
   - On a DGX-1 system, issue
     ```bash
 $ sudo tuned-adm profile dgx-performance
     ```
   - On a DGX Station workstation, issue
     ```bash
 $ sudo tuned-adm profile dgxstation-performance
     ```
2. Reboot the system.
3. Verify CPU mitigations are enabled.

```bash
$ cat /sys/devices/system/cpu/vulnerabilities/*
```

The output should include several `Mitigations` lines. See [Determining the CPU Mitigation State of the DGX System](#) for example output.
Chapter 4.
RUNNING CONTAINERS

The following is an example of running the CUDA container from the NGC registry.

```
sudo docker run --security-opt label=type:nvidia_container_t --rm nvcr.io/nvidia/cuda:10.0-runtime nvidia-smi
```

To accommodate SELinux, the DGX software stack includes a package (nvidia-container-selinux) that defines a policy for allowing containers to access NVIDIA GPUs. The `--security-opt` option in the command sets the corresponding label type permitting the specified container to access NVIDIA GPUs. If SELinux is removed or disabled, then the `--security-opt` option is not needed.
The DGX servers and the DGX Station include multiple SSDs for data caching or data storage.

- The DGX-1 server contains four SSDs to be used in a RAID 0 configuration.
- The DGX-2 server contains 8 or 16 SSDs to be used in a RAID 0 configuration.
- The DGX Station contains three SSDs to be used in a RAID 0 or RAID 5 configuration.

For the DGX servers, these SSDs are intended to be used as a data cache for NFS mounted directories. For the DGX Station, these SSDs are intended to be used either for local persistent storage or as a data cache for NFS mounted directories. If you are using these SSDs as a data cache for NFS mounted directories, you must set up your own NFS mounted directories for long-term data storage.

The following instructions describe how to mount the NFS directories onto the DGX System, and how to cache the NFS using the DGX SSDs for improved performance.

Make sure that you have an NFS server with one or more exports with data to be accessed by the DGX System, and that there is network access between the DGX System and the NFS server.

1. Configure an NFS mount for the DGX.
   a) Edit the filesystem tables configuration.

   ```bash
 sudo vi /etc/fstab
   ```

   b) Add a new line for the NFS mount, using the local mount point of /mnt.

   ```bash
 <nfs_server>:<export_path> /mnt nfs
 rw,noatime,rsize=32768,wsize=32768,nolock,tcp,intr,fsc,nofail 0 0
   ```

   /mnt is used here as an example mount point.

   Consult your Network Administrator for the correct values for <nfs_server> and <export_path>. 
The nfs arguments presented here are a list of recommended values based on typical use cases. However, "fsc" must always be included as that argument specifies use of FS-Cache.

c) Save the changes.

2. Verify the NFS server is reachable.

```bash
ping <nfs_server>
```

Use the server IP address or the server name provided by your network administrator.

3. Mount the NFS export.

```bash
sudo mount /mnt
```

/mnt is the example mount point used in step 1.

4. Verify caching is enabled.

```bash
cat /proc/fs/nfsfs/volumes
```

Look for the text `FSC=yes` in the output. The NFS will be mounted and cached on the DGX System automatically upon subsequent reboot cycles.
Appendix A.
INSTALLING SOFTWARE ON AIR-GAPPED NVIDIA DGX SYSTEMS

When installing Red Hat Enterprise Linux on DGX systems, many of the packages that the DGX system requires are downloaded over the internet from both Red Hat and NVIDIA servers. This is not suitable for tightly secured systems which must be "Air-Gapped"; isolated from the internet or outside networks.

For air-gapped systems, Red Hat provides tools (createrepo and reposync) to make local mirrors of the internet available repositories. These repository mirrors can then be copied into the air-gapped environment and activated on the DGX system for installation.

This document assumes that you have created a mirror of the Red Hat repositories. For the NVIDIA repositories, it provides steps for mirroring NVIDIA repositories on a "low-side" system that has public internet access, and then copying and activating the repositories to an air-gapped DGX system. It also includes a process for installing Docker containers.

A.1. Registering Your System

See the Red Hat customer portal knowledge base article How to register and subscribe a system offline to the Red Hat Customer Portal.

A.2. Creating the Mirrors on the Low-Side Red Hat System

Perform these tasks on a system with network access (low-side Red Hat system), where 

low-side-user
represents the username on the low-side system.

my-mirror
represents the folder where the mirrored files are create or stored.
1. Set up a directory for creating the mirror.
   
   ```bash
 mkdir /home/<low-side-user>/my-mirror
   ```

2. Mirror the `nvidia-dgx-7` repo.
   a) cd /home/<low-side-user>/my-mirror
   b) reposync -n gpgcheck -l --repoid nvidia-dgx-7 --download_path=/home/<low-side-user>/my-mirror --downloadcomps --downloadmetadata
   c) cd nvidia-dgx-7/
   d) sudo createrepo -v /home/<low-side-user>/my-mirror/nvidia-dgx-7 -g comps.xml
   e) cp /etc/yum.repos.d/nvidia-dgx-7.repo /home/<low-side-user>/my-mirror/nvidia-dgx-7/
   f) cp /etc/pki/rpm-gpg/RPM-GPG-KEY-dgx-cosmos-support /home/<low-side-user>/my-mirror

3. Mirror the `nvidia-dgx-7-updates` repo
   a) cd /home/<low-side-user>/my-mirror
   b) reposync -n gpgcheck -l --repoid nvidia-dgx-7-updates --download_path=path/to/mirrored/files --downloadcomps --downloadmetadata
   c) sudo createrepo -v /home/<low-side-user>/my-mirror/nvidia-dgx-7-updates

4. Mirror the `rhel-7-server-extras-rpms` repo.
   a) cd /home/<low-side-user>/my-mirror
   b) sudo reposync -n gpgcheck -l --repoid rhel-7-server-extras-rpms --download_path=/home/<low-side-user>/my-mirror --downloadcomps --downloadmetadata
   c) cd rhel-7-server-extras-rpms/
   d) sudo createrepo -v /home/<low-side-user>/my-mirror/rhel-7-server-extras-rpms -g comps.xml
   e) sudo cp /etc/yum.repos.d/redhat_repo /home/<low-side-user>/my-mirror/rhel-7-server-extras-rpms/
   f) sudo cp /etc/pki/rpm-gpg/RPM-GPG-KEY-redhat-release /home/<low-side-user>/my-mirror/rhel-7-server-extras-rpms

5. Mirror the `rhel-7-server-optional-rpms` repo
   a) cd /home/<low-side-user>/my-mirror
   b) sudo reposync -n gpgcheck -l --repoid rhel-7-server-optional-rpms --download_path=/home/<low-side-user>/my-mirror --downloadcomps --downloadmetadata
   c) cd rhel-7-server-optional-rpms/
   d) sudo createrepo -v /home/<low-side-user>/my-mirror/rhel-7-server-optional-rpms -g comps.xml

6. Mirror the `rhel-7-server-rpms` repo
   a) cd /home/<low-side-user>/my-mirror
b) `sudo reposync -n gpgcheck -l --repoid rhel-7-server-rpms --download_path=/home/<low-side-user>/<my-mirror> --downloadcomps --download-metadata`

c) `cd rhel-7-server-rpms/`

d) `sudo createrepo -v /home/<low-side-user>/<my-mirror>/rhel-7-server-rpms -g comps.xml`

7. Mirror the `rhel-server-rhscl-7-rpms` repo.
   a) `cd /home/<low-side-user>/<my-mirror>`
   b) `sudo reposync -n gpgcheck -l --repoid rhel-server-rhscl-7-rpms --download_path=/home/<low-side-user>/<my-mirror> --downloadcomps --download-metadata`
   c) `cd rhel-server-rhscl-7-rpms/`
   d) `sudo createrepo -v /home/<low-side-user>/<my-mirror>/rhel-server-rhscl-7-rpms -g comps.xml`

8. Create an archive of the mirrored repos.

```
tar cf <mirror-archive-name>.tar <username>
```

A.3. Installing Red Hat Enterprise Linux on the Air-Gapped DGX-2

1. After booting the ISO image through either the BMC or from the USB drive, select Install Red Hat Enterprise Linux and then press Enter to start the installation.


   Configure the language, region, date, time, keyboard, and other configuration options you may need from the Installation Summary screen.

www.nvidia.com
DGX Software with Red Hat Enterprise Linux 7

RN-09301-001_v06 | 44
3. Set up the system drives.
   a) Remove all partitions.
      At the Installation Destination screen, select both M.2 (894.25 GB) disks, the "Automatically configure partitioning" radio button and the I would like to make additional space available check box, then click Done.
   b) At the Reclaim Disk Space screen, click Reclaim Space.
4. Create EFI partitions.
   a) From the Installation Summary screen, click INSTALLATION DESTINATION to create new partitions.
   b) At the Installation Destination screen, select both M.2 (894.25 GB) disks and the "I will configure partitioning" radio button, then click Done.
The Manual Partitioning window appears.

c) Create a new partition.
   At the Manual Partitioning screen, use the Standard Partition and then click "+".

d) Add the mount point for the first EFI partition.
   Set the Mount Point to /boot/efi and the Desired Capacity to 512 MB, then click Add mount point.

e) Verify that the installer selects drive nvme0n1p1.
   If drive nvme0n1p1 is not designated, then click Modify and then select the correct drive from the Configure Mount Point dialog box and click Select.

f) Click "+" to create the alternate EFI boot partition.

g) Add the mount point for the alternate EFI partition.
   Set the Mount Point to /boot/efi2 and the Desired Capacity to 512 MB, then click Add mount point.

5. Create the RAID 1 partition.
   a) Click "+" to add a new partition.
   b) Add the mount point for the RAID partition.
      Set the Mount Point to / and leave the Desired Capacity empty, then click Add mount point.
c) Select the new system partition and set the following.

- **Device Type**: RAID
- **RAID-Level**: RAID1
- **Name**: md0/

6. Verify that the /boot/efi is assigned drive `nvme0n1p1` and /boot/efi2 is assigned drive `nvme1n1p1`.

   Occasionally, the partition names will change. If that happens, select the desired drive and click **Modify->Update settings** to correct.

7. Click **Done** to exit and commit the new partition scheme, then click **Accept Changes**.

8. Continue following the steps starting with step 5 of **Installing Red Hat Enterprise Linux on DGX-2**.

---

**A.4. Installing DGX Software on the Air-Gapped DGX-2**

Perform these tasks on the air-gapped DGX-2 system, where

- **dgx-user** represents the DGX user
- **my-mirror** represents the folder where the mirrored files are created or stored

1. After the system has rebooted, log in and verify the partitioning scheme & correct EFI mount;

   NVSM requires the RAID-1 volume to be named `md0`, and the EFI boot partition to be correctly ordered.

   a) Verify that the partition scheme matches the output shown for the following commands:

   ```bash
 $ ls -ldh /dev/md*
   ```
Installing Software on Air-Gapped NVIDIA DGX Systems

```bash
$ sudo mdadm --detail /dev/md0 | grep nvme
0 259 3 0 active sync /dev/nvme0n1p2
1 259 5 1 active sync /dev/nvme1n1p2
```

```bash
$ sudo lsblk -f | grep efi
├─nvme0n1p1 vfat /boot/efi
├─nvme1n1p1 vfat /boot/efi2
```

If the RAID-1 volume is not named `md0`, see the Appendix: Renaming RAID Volumes for instructions on how to rename the RAID volume.

b) Edit `/etc/fstab` and remove the line to mount `/boot/efi2`.

2. Copy over and enable the repo mirror on the DGX-2 system.
   a) Switch to the directory to place the mirrored repo.

   ```bash
cd /home/<dgx-user>
```

b) Secure-copy the mirrored archive from the low-side system.

   ```bash
 scp <dgx-user>@<low-side-ip-address>:home/<dgx-user>/<mirror-archive-name>.tar .
   ```

c) Extract the mirrored archive.

   ```bash
 sudo tar xf <mirror-archive-name>.tar
   ```

d) Copy the `rhel-7-server-extras` and `nvidia-dgx-7` repos to the `yum.repos.d`.

   ```bash
 sudo cp ./<my-mirror>/rhel-7-server-extras-rpms/redhat.repo /etc/yum.repos.d/redhat-mirror.repo

sudo cp ./<my-mirror>/nvidia-dgx-7/nvidia-dgx-7.repo /etc/yum.repos.d/
   ```


   Change the `nvidia-dgx-7` repo

   From:

   ```bash
 baseurl=https://international.download.nvidia.com/dgx/repos/rhel7/
   ```

   To:

   ```bash
 baseurl=file:///home/<dgx-user>/<my-mirror>/nvidia-dgx-7
   ```

   Change `nvidia-dgx-7-updates` repo

   From:

   ```bash
 baseurl=https://international.download.nvidia.com/dgx/repos/rhel7-updates/
   ```

   To:

   ```bash
 baseurl=file:///home/<dgx-user>/<my-mirror>/nvidia-dgx-7-updates
   ```

   Change `enabled=0` to `enabled=1`
f) For each of the following repos ($reponame):

- rhel-7-server-extras-rpms
- rhel-7-server-optional-rpms
- rhel-7-server-rpms
- rhel-server-rhscl-7-rpms

Edit /etc/yum.repos.d/redhat-mirror.repo, find the $reponame section (listed in brackets), and change the text in that section:

From:

```
baseurl=https://cdn.redhat.com/content/dist/rhel/server/7/...
```

To:

```
baseurl=file:///home/<dgs-user>/<my-mirror>/$reponame
```

Set enabled = 1.

g) Copy the GPG key file to your system.

```
sudo cp <my-mirror>/nvidia-dgx-7/RPM-GPG-KEY-dgx-cosmos-support /etc/pki/rpm-gpg
```

h) List the repositories and verify that all 11 repositories are enabled.

```
sudo yum repolist
```

The output should look like the following:

```
Loaded plugins: product-id, search-disabled-repos, subscription-manager
This system is not registered with an entitlement server. You can use subscription-manager to register.
Repo rhel-7-server-extras-rpms forced skip_if_unavailable=True due to:
/etc/pki/entitlement/9124846071548788754.pem
Repo rhel-7-server-extras-rpms forced skip_if_unavailable=True due to:
/etc/pki/entitlement/9124846071548788754-key.pem
Repo rhel-7-server-rpms forced skip_if_unavailable=True due to:
/etc/pki/entitlement/9124846071548788754.pem
Repo rhel-7-server-rpms forced skip_if_unavailable=True due to:
/etc/pki/entitlement/9124846071548788754-key.pem
Repo rhel-7-server-optional-rpms forced skip_if_unavailable=True due to:
/etc/pki/entitlement/9124846071548788754.pem
Repo rhel-7-server-optional-rpms forced skip_if_unavailable=True due to:
/etc/pki/entitlement/9124846071548788754-key.pem
Repo rhel-server-rhscl-7-rpms forced skip_if_unavailable=True due to:
/etc/pki/entitlement/3657713380925279193.pem
Repo rhel-server-rhscl-7-rpms forced skip_if_unavailable=True due to:
/etc/pki/entitlement/3657713380925279193-key.pem
nvidia-dgx-7 | 3.6 kB 00:00
nvidia-dgx-7-updates | 2.9 kB 00:00
rhel-7-server-extras-rpms | 3.6 kB 00:00
rhel-7-server-optional-rpms | 3.6 kB 00:00
rhel-7-server-rpms | 3.6 kB 00:00
rhel-server-rhscl-7-rpms | 3.6 kB 00:00
(1/11): nvidia-dgx-7/group_gz | 644 B 00:00
(2/11): rhel-7-server-optional-rpms/group_gz | 6.4 kB 00:00
(3/11): nvidia-dgx-7/primary_db | 70 kB 00:00
(4/11): rhel-7-server-optional-rpms/primary_db | 2.1 MB 00:00
(5/11): rhel-7-server-rpms/group_gz | 150 kB 00:00
(6/11): nvidia-dgx-7-updates/primary_db | 56 kB 00:00
(7/11): rhel-7-server-rpms/primary_db | 4.4 MB 00:00
(8/11): rhel-7-server-extras-rpms/group_gz | 133 B 00:00
(9/11): rhel-7-server-extras-rpms/primary_db | 85 kB 00:00
```
(10/11): rhel-server-rhscl-7-rpms/group_gz  133 B 00:00
(11/11): rhel-server-rhscl-7-rpms/primary_db  3.0 MB 00:00
repo id repo name
status
nvidia-dgx-7 NVIDIA DGX EL7 146
nvidia-dgx-7-updates NVIDIA DGX EL7 Updates 101
rhel-7-server-extras-rpms Red Hat Enterprise Linux 7 Server - Extras (R 151
rhel-7-server-optional-rpms Red Hat Enterprise Linux 7 Server - Optional 5,190
rhel-7-server-rpms Red Hat Enterprise Linux 7 Server (RPMS) 5,457
rhel-server-rhscl-7-rpms Red Hat Software Collections RPMs for Red Hat 7,123
colist: 18,168

3. Continue following the installation steps beginning with Installing Required Components.

A.5. Renaming RAID Volumes

The RAID volume should be /dev/md0. If, during the installation process the volume is incorrectly named /dev/md/root, then rename the volume as follows.

1. Convert /dev/md/root to /dev/md0.
   a) Edit /dev/mdadm.conf.
      Example: sudo vi /dev/mdadm.conf
   b) Replace /dev/md/root with /dev/md0.
2. Save the file and then reboot.

A.6. Installing Docker Containers

This method applies to Docker containers hosted on the NGC Container Registry. Most container images are freely available, but some are locked and require that you have an NGC account to access. See the NGC Registry for DGX User Guide for instructions on accessing locked container images.

1. Enter the docker pull command, specifying the image registry, image repository, and tag.
   
   docker pull nvcr.io/nvidia/repository:tag

2. Verify the image is on your system using docker images.
    
    docker images

3. Save the Docker image as an archive.
       
       docker save nvcr.io/nvidia/repository:tag > framework.tar

4. Transfer the image to the air-gapped system using removable media such as a USB flash drive.
5. Load the NVIDIA Docker image.

   `docker load -i framework.tar`

6. Verify the image is on your system.

   `docker images`
Appendix B.
CHANGING THE BMC LOGIN

The NVIDIA DGX server includes a base management controller (BMC) for out-of-band management of the DGX system. NVIDIA recommends disabling the default username and creating a unique username and password as soon as possible.

B.1. Changing the BMC Login on the DGX-1

1. Log into the BMC.
   a) Open a browser within your LAN and go to http://<BMC-ip-address>/.

      Use Firefox or Internet Explorer. Google Chrome is not officially supported by the DGX-1 BMC.

   b) Log in, using qct.admin/qct.admin for the User ID/Password.

2. Select Configuration → Users.
3. Add a new user.
   a) Select an empty field and click Add User.

   ![User Management Table]

   The list below shows the current list of available users. To delete or modify a user, select the user name from the list and click "Delete User" or "Modify User". To add a new user, select an unconfigured slot and click "Add User"

   Number of configured users: 2

   ![User Management Table]

   b) Enter new user information and click Add.
4. Log out and then log back in as the new user.
5. Select Configuration # Users.
   a) Select the user qct.admin user and select Modify User
User Management

The list below shows the current list of available users. To delete or modify a user, select the user name from the list and click “Delete User” or “Modify User”. To add a new user, select an unconfigured slot and click “Add User”

<table>
<thead>
<tr>
<th>UserID</th>
<th>Username</th>
<th>User Access</th>
<th>Network Privilege</th>
<th>SNMPv3 Status</th>
<th>Email ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>anonymous</td>
<td>Disabled</td>
<td>Administrator</td>
<td>Disabled</td>
<td>~</td>
</tr>
<tr>
<td>2</td>
<td>qctadmin</td>
<td>Enabled</td>
<td>Administrator</td>
<td>Disabled</td>
<td>~</td>
</tr>
<tr>
<td>3</td>
<td>admin</td>
<td>Enabled</td>
<td>Administrator</td>
<td>Disabled</td>
<td>~</td>
</tr>
<tr>
<td>4</td>
<td>~</td>
<td>~</td>
<td>~</td>
<td>~</td>
<td>~</td>
</tr>
<tr>
<td>5</td>
<td>~</td>
<td>~</td>
<td>~</td>
<td>~</td>
<td>~</td>
</tr>
<tr>
<td>6</td>
<td>~</td>
<td>~</td>
<td>~</td>
<td>~</td>
<td>~</td>
</tr>
<tr>
<td>7</td>
<td>~</td>
<td>~</td>
<td>~</td>
<td>~</td>
<td>~</td>
</tr>
<tr>
<td>8</td>
<td>~</td>
<td>~</td>
<td>~</td>
<td>~</td>
<td>~</td>
</tr>
<tr>
<td>9</td>
<td>~</td>
<td>~</td>
<td>~</td>
<td>~</td>
<td>~</td>
</tr>
<tr>
<td>10</td>
<td>~</td>
<td>~</td>
<td>~</td>
<td>~</td>
<td>~</td>
</tr>
</tbody>
</table>

b) Deselect Enable in User Access and click Modify.
### Modify User

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Username</td>
<td>qct.admin</td>
</tr>
<tr>
<td>Change Password</td>
<td><strong>on</strong></td>
</tr>
<tr>
<td>Password Size</td>
<td>16 Bytes</td>
</tr>
<tr>
<td>Password</td>
<td></td>
</tr>
<tr>
<td>Confirm Password</td>
<td></td>
</tr>
<tr>
<td>User Access</td>
<td><strong>off</strong></td>
</tr>
<tr>
<td>Network Privilege</td>
<td>Administrator</td>
</tr>
<tr>
<td>Extended Privileges</td>
<td>KVM, VMedia</td>
</tr>
<tr>
<td>SNMPv3 Status</td>
<td><strong>off</strong></td>
</tr>
<tr>
<td>SNMPv3 Access</td>
<td></td>
</tr>
<tr>
<td>Authentication Protocol</td>
<td></td>
</tr>
<tr>
<td>Privacy Protocol</td>
<td></td>
</tr>
<tr>
<td>Email ID</td>
<td></td>
</tr>
<tr>
<td>Email Format</td>
<td>AMI-Format</td>
</tr>
<tr>
<td>Uploaded SSH Key</td>
<td>Not Available</td>
</tr>
<tr>
<td>New SSH Key</td>
<td>Choose File, No file chosen</td>
</tr>
</tbody>
</table>

**c)** Ensure User Access is disabled for the user qct.admin.
B.2. Changing the BMC Login on the DGX-2

1. Log into the BMC.
   a) Open a browser within your LAN and go to https://<BMC-ip-address>/.
   b) Log in, using admin/admin for the User ID/Password.

2. Select **Settings** from the left-side navigation menu.

3. Select the **User Management** card.

7. Log out.
4. Click the green Help icon (?) for information about configuring users, then add a new user with unique username and strong password.

5. Log out and then log back in as the new user.


7. Disable the admin and anonymous users.
Appendix C. INSTALLING MELLANOX INFINIBAND DRIVERS

Unlike the DGX OS shipped with the NVIDIA DGX server, the DGX software stack for Red Hat-derived operating systems does not include the Mellanox OpenFabrics Enterprise Distribution (MLNX_OFED) for Linux. This is to avoid an installation where the MLNX_OFED kernel may be out of sync with the Red Hat distribution kernel, resulting in system instability.

To use InfiniBand on the DGX server, do the following.

1. Determine which MLNX_OFED package supports the latest version of the installed Red Hat Enterprise Linux release.
   a) Visit https://access.redhat.com/articles/3078 and determine the latest Red Hat Enterprise Linux 7 version
   b) Visit https://docs.mellanox.com/category/mlnxofedib, click the latest MLNX_OFED software version and then use the side menu to navigate to Release Notes->General Support in MLNX_OFED and view Supported Operating Systems to determine the MLNX_OFED package OS support.

2. Visit the Mellanox site and download and install the appropriate MLNX_OFED driver.

3. After installing the MLNX_OFED drivers, install the NVIDIA peer memory module.

   ```bash
sudo yum install nvidia-peer-memory-dkms
   ```

While in-box drivers may be available, using the in-box drivers is not recommended as they provide lower performance than the official MLNX OFED drivers and they do not support the GPUDirect™ RDMA feature. For more information on configuring the in-band drivers, see the following Red Hat Enterprise Linux documentation:

- Configuring InfiniBand and RDMA Networks, and
- InfiniBand and RDMA Related Software Packages
The DGX Software includes custom utilities for maintaining the DGX Station persistent storage. Custom utilities for managing and obtaining diagnostic information for the DGX Station were included only in version EL7-20.01 of the DGX Software.

D.1. Rebuilding the DGX Station RAID Array

After adding SSDs to the array, you must rebuild the RAID array to add the new SSDs to the array. After replacing a failed SSD in the RAID array, you must rebuild the array to add the new SSD to a RAID 0 array or to regenerate the lost data on the new SSD in a RAID 5 array.

If the DGX Station RAID array is degraded because an SSD failed, replace the SSD as explained in DGX Station User Guide.

The DGX Station software includes the custom script `configure_raid_array.py` for rebuilding the RAID array.

To rebuild the array, run the following command:

```
$ sudo configure_raid_array.py -r
```

You can monitor the progress of a long-running rebuild by examining the contents of the `/proc/mdstat` file:

```
$ cat /proc/mdstat
Personalities : [raid0] [linear] [multipath] [raid1] [raid6] [raid5] [raid4] [raid10]
md0 : active raid5 sdb[0] sdd[3] sdc[1]
 3750486016 blocks super 1.2 level 5, 512k chunk, algorithm 2 [3/2] [UU_]
```
In this example, the rebuild is 4.0% complete and the rebuild is estimated to finish in 438.3 minutes.

The RAID array is rebuilt with its existing RAID level.

- If the array is a RAID 0 array, all data that was on the array is erased after array is rebuilt.
- If the array is a RAID 5 array, the data on the array is preserved after array is rebuilt.

If you have rebuilt a RAID 0 array and have a backup of data on the array that you want to preserve, restore the data from the backup.

### D.2. Changing the RAID Level of the RAID Array

During the initial installation of the DGX software on Red Hat Enterprise Linux, the data SSDs in the DGX Station are configured as a RAID 0 or RAID 5 array. If your requirements for redundancy or storage capacity change, you can change the RAID level of the array from the level that was initially configured.

Before changing the RAID level of the DGX Station RAID array, back up all data on the array that you want to preserve. Changing the RAID level of the DGX Station RAID array erases all data stored on the array.

The DGX Station software includes the custom script `configure_raid_array.py`, which you can use to change the level of the RAID array without unmounting the RAID volume.

- To change the RAID level to RAID 5, run the following command:

  ```
 $ sudo configure_raid_array.py -m raid5
  ```

  After you change the RAID level to RAID 5, the RAID array is rebuilt. A RAID array that is being rebuilt is online and ready to be used, but a check on the health of the DGX Station reports the status of the RAID volume as unhealthy. Therefore, avoid checking the health of the DGX Station while the RAID array is being rebuilt. For more information, see EL7-20.01 Only: Checking the Health of the DGX Station.

  The time required to rebuild the RAID array depends on the workload on the system. On an idle system, the rebuild might be complete within 30 minutes.

- To change the RAID level to RAID 0, run the following command:

  ```
 $ sudo configure_raid_array.py -m raid0
  ```
To confirm that the RAID level was changed as required, run the `lsblk` command. The entry in the `TYPE` column for each SSD in the RAID array indicates the RAID level of the array.

The following example shows that the RAID level of the array is RAID 0. The name of the RAID volume is `md0` and the mount point of the volume is `/raid`.

```
~$ lsblk
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
sda 8:0 0 1.8T 0 disk
 |_sda1 8:1 0 487M 0 part /boot/efi
 |_sda2 8:2 0 1.8T 0 part /
|_sdb 8:16 0 1.8T 0 disk
 |_md0 9:0 0 5.2T 0 raid0 /raid
|_md0 9:0 0 5.2T 0 raid0 /raid
|md0 9:0 0 5.2T 0 raid0 /raid
```

D.3. EL7-20.01 Only: Checking the Health of the DGX Station

Starting with release EL7-20.02, the NVIDIA System Health Checker (`nvhealth`) tool is replaced by NVIDIA System Management (NVSM). For information about how to use NVSM to perform this task, see Show Health in NVIDIA System Management User Guide.

The DGX Station provides the NVIDIA System Health Checker (`nvhealth`) tool to exercise the system and verify its health. The output of `nvhealth` is an itemized list of checks and their status, typically Healthy or Unhealthy. On a healthy system, all checks should return Healthy. You should investigate any checks that return Unhealthy to determine their root cause and resolve them.

To check the health of the DGX Station, run the following command:

```
$ sudo nvhealth [-k output-file]
```

`output-file`

The name and the path of the file in which the raw state of the system is written. The `nvhealth` command displays this file name at the end of the output from the command.

If you omit the output file, the information is written to the file `/tmp/nvhealth-log.random-string.jsonl`, for example, `/tmp/nvhealth-log.6wf3WriAC3.jsonl`.

If you run the `nvhealth` command while the RAID array is being rebuilt after a change in RAID level to RAID 5, `nvhealth` reports the status of the RAID volume as
unhealthy. To avoid this potentially misleading result, wait until RAID array is rebuilt before running `nvhealth`.

To check the progress of the rebuild and show the percentage complete and an estimate of the time to completion, run this command:

```bash
cat /proc/mdstat
```

```
Personalities : [raid6] [raid5] [raid4] [linear] [multipath] [raid0] [raid1] [raid10]
md0 : active raid5 sdb[0] sdc[1] sdd[2]
 181764096 blocks super 1.2 level 5, 512k chunk, algorithm 2 [4/3]
 [UUU_] [===>...............] recovery = 17.2% (10426232/60588032)
finish=45.8min speed=18238K/sec
```

D.4. EL7-20.01 Only: Collecting Information for Troubleshooting the DGX Station

Starting with release EL7-20.02, the tool to collect troubleshooting information (`nvsysinfo`) tool is replaced by NVIDIA System Management (NVSM). For information about how to use NVSM to perform this task, see Dump Health in NVIDIA System Management User Guide.

To help diagnose and resolve issues, the DGX Station provides a tool to collect troubleshooting information for NVIDIA Support Enterprise Services.

The tool verifies basic functionality and performance of the DGX Station and collects the following information in an xz-compressed tar archive:

- Log files
- Hardware inventory
- SW inventory

To collect information for troubleshooting the DGX Station, run the following command:

```bash
sudo nvsysinfo [-o output-file]
```

`output-file`

The path of the file in which the information is written.

If you omit the output file, the name of the file to which the information is written is `/tmp/nvsysinfo-host-name-timestamp.tar.xz`.

Use any method that is convenient for you to send the file to NVIDIA Support Enterprise Services. For example, send the file as an e-mail attachment.
Notice

THE INFORMATION IN THIS GUIDE AND ALL OTHER INFORMATION CONTAINED IN NVIDIA DOCUMENTATION REFERENCED IN THIS GUIDE IS PROVIDED “AS IS.” NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE INFORMATION FOR THE PRODUCT, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE. Notwithstanding any damages that customer might incur for any reason whatsoever, NVIDIA’s aggregate and cumulative liability towards customer for the product described in this guide shall be limited in accordance with the NVIDIA terms and conditions of sale for the product.

THE NVIDIA PRODUCT DESCRIBED IN THIS GUIDE IS NOT FAULT TOLERANT AND IS NOT DESIGNED, MANUFACTURED OR INTENDED FOR USE IN CONNECTION WITH THE DESIGN, CONSTRUCTION, MAINTENANCE, AND/OR OPERATION OF ANY SYSTEM WHERE THE USE OR A FAILURE OF SUCH SYSTEM COULD RESULT IN A SITUATION THAT THREATENS THE SAFETY OF HUMAN LIFE OR SEVERE PHYSICAL HARM OR PROPERTY DAMAGE (INCLUDING, FOR EXAMPLE, USE IN CONNECTION WITH ANY NUCLEAR, AVIONICS, LIFE SUPPORT OR OTHER LIFE CRITICAL APPLICATION). NVIDIA EXPRESSLY DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY OF FITNESS FOR SUCH HIGH RISK USES. NVIDIA SHALL NOT BE LIABLE TO CUSTOMER OR ANY THIRD PARTY, IN WHOLE OR IN PART, FOR ANY CLAIMS OR DAMAGES ARISING FROM SUCH HIGH RISK USES.

NVIDIA makes no representation or warranty that the product described in this guide will be suitable for any specified use without further testing or modification. Testing of all parameters of each product is not necessarily performed by NVIDIA. It is customer’s sole responsibility to ensure the product is suitable and fit for the application planned by customer and to do the necessary testing for the application in order to avoid a default of the application or the product. Weaknesses in customer’s product designs may affect the quality and reliability of the NVIDIA product and may result in additional or different conditions and/or requirements beyond those contained in this guide. NVIDIA does not accept any liability related to any default, damage, costs or problem which may be based on or attributable to: (i) the use of the NVIDIA product in any manner that is contrary to this guide, or (ii) customer product designs.

Other than the right for customer to use the information in this guide with the product, no other license, either expressed or implied, is hereby granted by NVIDIA under this guide. Reproduction of information in this guide is permissible only if reproduction is approved by NVIDIA in writing, is reproduced without alteration, and is accompanied by all associated conditions, limitations, and notices.

Trademarks

NVIDIA, the NVIDIA logo, DGX, DGX-1, DGX-2, and DGX Station are trademarks and/or registered trademarks of NVIDIA Corporation in the Unites States and other countries. Other company and product names may be trademarks of the respective companies with which they are associated.

Copyright

© 2020 NVIDIA Corporation. All rights reserved.

www.nvidia.com