TABLE OF CONTENTS

Chapter 1. Introduction to the NVIDIA DGX-2/2H System

- 1.1 About this Document .. 6
- 1.2 Hardware Overview .. 6
- 1.3 Network Ports .. 12
- 1.4 InfiniBand Cables ... 13
- 1.5 Recommended Ports to Use for External Storage 14
- 1.6 DGX OS Software .. 15
- 1.7 Additional Documentation ... 15
- 1.8 Customer Support .. 16

Chapter 2. Connecting to the DGX-2 Console 17

- 2.1 Direct Connection .. 18
- 2.2 Remote Connection through the BMC 19
- 2.3 SSH Connection .. 21

Chapter 3. Setting Up the DGX-2 System 22

Chapter 4. Quick Start Instructions 26

- 4.1 Registration .. 26
- 4.2 Installation and Configuration 27
- 4.3 Obtaining an NVIDIA GPU Cloud Account 27
- 4.4 Turning the DGX-2 On and OFF 27
- 4.5 Verifying Basic Functionality 28
- 4.6 Running NGC Containers with GPU Support 29

Chapter 5. Network Configuration 31

- 5.1 BMC Security ... 31
- 5.2 Configuring Network Proxies 31
- 5.3 Configuring Docker IP Addresses 32
- 5.4 Opening Ports .. 34
- 5.5 Connectivity Requirements 34
- 5.6 Configuring Static IP Address for the BMC 35
- 5.7 Configuring Static IP Addresses for the Network Ports ... 39
- 5.8 Switching Between InfiniBand and Ethernet 41

Chapter 6. Configuring Storage – NFS Mount and Cache 47

Chapter 7. Special Features and Configurations 49

- 7.1 Setting MaxQ/MaxP .. 49
- 7.2 Managing the DGX Crash Dump Feature 51
- 7.3 Using PCIe Access Control Services 52

Chapter 8. Restoring the DGX-2 Software Image 53

- 8.1 Obtaining the DGX-2 Software ISO Image and Checksum File 54
- 8.2 Re-Imaging the System Remotely 54
- 8.3 Creating a Bootable Installation Medium 55
- 8.4 Re-Imaging the System From a USB Flash Drive 58
- 8.5 Retaining the RAID Partition While Installing the OS 59
Chapter 9. Updating the DGX OS Software ... 61
 9.1 Connectivity Requirements For Software Updates 61
 9.2 Update Instructions .. 62

Chapter 10. Updating Firmware .. 63
 10.1 General Firmware Update Guidelines ... 64
 10.2 Obtaining the Firmware Update Container 64
 10.3 Querying the Firmware Manifest ... 65
 10.4 Querying the Currently Installed Firmware Versions 65
 10.5 Updating the Firmware ... 66
 10.6 Command Syntax .. 66
 10.7 Updating All Firmware components .. 67
 10.8 Updating Specific Firmware Components 67
 10.9 Additional Options .. 68
 10.10 Command Summary ... 68
 10.11 Removing the Container ... 69
 10.12 Using the .run File ... 69
 10.13 Troubleshooting ... 70

Chapter 11. Using the BMC ... 71
 11.1 Connecting to the BMC ... 71
 11.2 Overview of BMC Controls .. 72

Chapter 12. Using DGX-2 System in KVM Mode 76
 12.1 Overview .. 76
 12.2 Converting the DGX-2 System to a DGX-2 KVM Host 79
 12.3 Launching a Guest GPU VM Instance ... 81
 12.4 Stopping, Restarting, and Deleting a Guest GPU VM 84
 12.5 Connecting to Your Guest GPU VM .. 86
 12.6 Making Your VM More Secure ... 87
 12.7 Managing Images .. 88
 12.8 Using the Guest OS Drives and Data Drives 91
 12.9 Network Configuration ... 93
 12.10 Updating the Software ... 94
 12.11 Supplemental Information .. 96
 12.12 Troubleshooting Tools ... 101

Appendix A. Installing Software on Air-gapped DGX-2 Systems 108
 A.1. Installing NVIDIA DGX-2 Software .. 108
 A.2. Re-Imaging the System ... 109
 A.3. Creating a Local Mirror of the NVIDIA and Canonical Repositories 109
 A.4. Installing Docker Containers ... 114

Appendix B. Supplemental KVM Information 115
 B.1. Using Cloud-init .. 115

Appendix C. Safety ... 117
 C.1. Safety Information ... 117
 C.2. Safety Warnings and Cautions .. 118
 C.3. Intended Application Uses ... 119
 C.4. Site Selection ... 119
C.5. Equipment Handling Practices ... 119
C.6. Electrical Precautions .. 120
C.7. System Access Warnings .. 121
C.8. Rack Mount Warnings .. 122
C.9. Electrostatic Discharge (ESD) .. 123
C.10. Other Hazards .. 123

Appendix D. Compliance.. 125
D.1. United States .. 125
D.2. United States / Canada .. 126
D.3. Canada ... 126
D.4. CE .. 126
D.5. Japan ... 127
D.6. Australia and New Zealand ... 129
D.7. China .. 130
Chapter 1.
INTRODUCTION TO THE NVIDIA DGX-2/2H SYSTEM

The NVIDIA® DGX-2™ System is the world’s first two-petaFLOPS system that engages 16 fully interconnected GPUs for accelerated deep learning performance. The DGX-2 System is powered by NVIDIA® DGX™ software stack and an architecture designed for Deep Learning, and High-Performance Computing and analytics.

A recent addition to the DGX family, the NVIDIA DGX-2H is a high-performance version of the DGX-2. See the Hardware Overview section for specification differences.
1.1 ABOUT THIS DOCUMENT

This document is for users and administrators of the DGX-2 System. It is organized as follows:

- **Chapters 1-4**: Overview of the DGX-2 System, including basic first-time setup and operation
- **Chapters 5-6**: Network and storage configuration instructions.
- **Chapter 7**: Special Features and Configuration
- **Chapters 8-10**: Software and firmware update instructions
- **Chapter 11**: How to use the BMC
- **Chapter 12**: How to configure and use the DGX-2 System as a Kernel Virtual Machine host

Unless otherwise indicated, references to the DGX-2 in this User Guide also apply to the DGX-2H.

1.2 HARDWARE OVERVIEW

1.2.1 Major Components

The following diagram shows the major components of the DGX-2 System.

<table>
<thead>
<tr>
<th>ID</th>
<th>Component</th>
<th>Qty</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>GPU</td>
<td>16</td>
<td>NVIDIA® Tesla V100</td>
</tr>
</tbody>
</table>
1.2.2 Other Components not in Exploded View

<table>
<thead>
<tr>
<th>Component</th>
<th>Qty</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Supply</td>
<td>6</td>
<td>3000 W each</td>
</tr>
<tr>
<td>Storage (RAID 1) (OS)</td>
<td>2</td>
<td>960GB NVMe SSDs</td>
</tr>
</tbody>
</table>

1.2.3 Mechanical Specifications

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Form Factor</td>
<td>10U Rackmount</td>
</tr>
<tr>
<td>Height</td>
<td>17.32” (440 mm)</td>
</tr>
<tr>
<td>Width</td>
<td>19” (482.6 mm)</td>
</tr>
<tr>
<td>Depth</td>
<td>31.3” (795 mm)</td>
</tr>
<tr>
<td>Gross Weight</td>
<td>360 lbs (163.29 kg)</td>
</tr>
</tbody>
</table>
1.2.4 Power Specifications

<table>
<thead>
<tr>
<th>Input</th>
<th>Specification for Each Power Supply</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>200-240 volts AC</td>
<td>DGX-2: 10 kW max.</td>
<td>The DGX-2/2H System contains six load-balancing power supplies.</td>
</tr>
<tr>
<td></td>
<td>DGX-2H: 12 kW max.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3000 W @ 200-240 V, 16 A, 50-60 Hz</td>
<td></td>
</tr>
</tbody>
</table>

Support for Degraded Power

The DGX-2/2H includes six power supply units (PSU) configured for 5+1 redundancy. If one PSU fails, the system will continue to operate at full power with the remaining five PSUs.

The DGX-2/2H also supports operating in a degraded power mode when more than one PSU fails. If only 3 or 4 PSUs are operating, then performance is degraded slightly but the system is still operational.

Note: The DGX-2 will not operate with less than three PSUs.

DGX-2 Power Cord

The DGX-2 is shipped with a set of six (6) power cords that have been qualified for use with the DGX-2 to ensure regulatory compliance.

WARNING: To avoid electric shock or fire, do not connect other power cords to the DGX-2. For more details, see B.6, *Electrical Precautions.*

<table>
<thead>
<tr>
<th>Power Cord Feature</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrical</td>
<td>250VAC, 16A</td>
</tr>
<tr>
<td>Plug Standard</td>
<td>C19/C20</td>
</tr>
<tr>
<td>Dimension</td>
<td>1800mm length</td>
</tr>
<tr>
<td>Compliance</td>
<td>Cord: UL62, IEC60227</td>
</tr>
<tr>
<td></td>
<td>Connector/Plug: IEC60320-1</td>
</tr>
</tbody>
</table>
1.2.5 Environmental Specifications

<table>
<thead>
<tr>
<th>Feature</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating Temperature</td>
<td>DGX-2: 5 °C to 35 °C (41 °F to 95 °F)</td>
</tr>
<tr>
<td></td>
<td>DGX-2H: 5 °C to 25 °C (41 °F to 77 °F)</td>
</tr>
<tr>
<td>Relative Humidity</td>
<td>20% to 80% noncondensing</td>
</tr>
<tr>
<td>Airflow</td>
<td>DGX-2: 1000 CFM @ 35 °C</td>
</tr>
<tr>
<td></td>
<td>DGX-2H: 1200 CFM @ 25 °C</td>
</tr>
<tr>
<td>Heat Output</td>
<td>DGX-2: 34,122 BTU/hr</td>
</tr>
<tr>
<td></td>
<td>DGX-2H: 40,945 BTU/hr</td>
</tr>
</tbody>
</table>

1.2.6 Front Panel Connections and Controls

<table>
<thead>
<tr>
<th>ID</th>
<th>Qty</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td>Upper GPU tray fans</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>Lower GPU tray fans</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>Solid State Drives.</td>
</tr>
<tr>
<td></td>
<td>(default)</td>
<td>Additional SSDs available for purchase to expand to 16.</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>Motherboard tray fans</td>
</tr>
</tbody>
</table>
1.2.7 Rear Panel Connections and Controls

1.2.7.1 With EMI Shield Installed

<table>
<thead>
<tr>
<th>ID</th>
<th>Qty</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>EMI shield</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>Power supplies and connectors</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>I/O tray</td>
</tr>
</tbody>
</table>

IMPORTANT: See the section [Turning the DGX-2 On and Off](#) for instructions on how to properly turn the system on or off.
1.2.7.2 With EMI Shield Removed

<table>
<thead>
<tr>
<th>ID</th>
<th>Qty</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>1</td>
<td>Motherboard tray</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>Handles to pull power supply carrier</td>
</tr>
</tbody>
</table>

1.2.8 Motherboard Tray Ports and Controls

<table>
<thead>
<tr>
<th>ID</th>
<th>Qty</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>NVIDIA NVLink™ plane card</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>(Optional) High profile PCI card slot (for network storage)</td>
</tr>
<tr>
<td>9</td>
<td>2</td>
<td>(Default) QSFP28 network ports (for network storage)</td>
</tr>
</tbody>
</table>
1.3 NETWORK PORTS

The following figure highlights the available network ports and their purpose.

<table>
<thead>
<tr>
<th>ID</th>
<th>Connectivity</th>
<th>Uses</th>
<th>Number of Ports</th>
<th>Port Type</th>
<th>Cable Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>BMC (remote management and monitoring)</td>
<td>Out-of-band management</td>
<td>1</td>
<td>RJ45</td>
<td>100/1000 Ethernet Cat5E/6 Ethernet</td>
</tr>
<tr>
<td>2</td>
<td>Motherboard RJ45</td>
<td>In-band management, administration</td>
<td>1 (enp6s0)</td>
<td>RJ45</td>
<td>100/1000 Ethernet Cat5E/6 Ethernet</td>
</tr>
<tr>
<td>3</td>
<td>ConnectX-5 (LP) Ethernet mode</td>
<td>Storage (NFS) System</td>
<td>2 (Left):</td>
<td>QSFP28</td>
<td>100 GbE (QSFP28)</td>
</tr>
</tbody>
</table>
1.4 INFINIBAND CABLES

The DGX-2 System is not shipped with InfiniBand cables. For a list of cables compatible with the Mellanox ConnectX-5 VPI cards installed in the DGX-2 system, visit the [Mellanox ConnectX-5 Firmware Download](#) page, select the appropriate FW version, OPN (model), and PSID, and then select **Release Notes** from the Documentation column.

To connect the DGX-2 system to an existing 10 or 25 GbE network, you can purchase the following adaptors from NVIDIA.

<table>
<thead>
<tr>
<th>Component</th>
<th>Mellanox MPN</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethernet Cable Adapter</td>
<td>MAM1Q00A-QSA</td>
<td>40Gb/s to 10Gb/s, QSFP+ to SFP+</td>
</tr>
<tr>
<td>Passive Copper Hybrid Cable</td>
<td>MC2609130-003</td>
<td>Ethernet 40GbE to 4x10GbE, QSFP to 4xSFP+, 3m length</td>
</tr>
<tr>
<td>Passive Copper Hybrid Cable</td>
<td>MCP7F00-A003</td>
<td>Ethernet 100GbE to 4x25GbE, QSFP28 to 4xSFP28, 3m length, 28AWG</td>
</tr>
</tbody>
</table>
1.5 RECOMMENDED PORTS TO USE FOR EXTERNAL STORAGE

For clarity, the following figure reiterates the recommended ports to use for external storage. In most configurations, the storage ports (ID 1 below) should be used for connecting to high-speed NAS storage, while the cluster ports (ID 2 below) should be used for communication between nodes.

<table>
<thead>
<tr>
<th>ID</th>
<th>Connectivity</th>
<th>Uses</th>
<th>Number of Ports</th>
<th>Port Type</th>
<th>Cable Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ConnectX-5 (LP) (MCX-556A-ECAT) Ethernet mode</td>
<td>Storage (NFS)</td>
<td>2</td>
<td>QSFP28</td>
<td>1/10/25/40/100 GbE</td>
</tr>
<tr>
<td></td>
<td>(Left): enp134s0f0 (Right): enp134s0f1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>ConnectX-5 (MCX-555A-ECAT) InfiniBand or Ethernet mode</td>
<td>Cluster</td>
<td>8</td>
<td>QSFP28</td>
<td>EDR InfiniBand or 100 GbE</td>
</tr>
</tbody>
</table>
1.6 DGX OS SOFTWARE

The DGX-2 System comes installed with a base OS incorporating
- An Ubuntu server distribution with supporting packages
- The NVIDIA driver
- Docker CE
- NVIDIA Container Runtime for Docker
- The following health monitoring software
 - NVIDIA System Management (NVSM)
 Provides active health monitoring and system alerts for NVIDIA DGX nodes in a data center. It also provides simple commands for checking the health of the DGX-2 SYSTEM from the command line.
 - Data Center GPU Management (DCGM)
 This software enables node-wide administration of GPUs and can be used for cluster and data-center level management.

1.7 ADDITIONAL DOCUMENTATION

Note: Some of the documentation listed below are not available at the time of publication. See https://docs.nvidia.com/dgx/ for the latest status.

- **DGX-2 System Service Manual**
 Instructions for servicing the DGX-2 System, including how to replace select components.

- **DGX OS Server Release Notes**
 Provides software component versions as well as a list of changes and known issues in the installed OS software.

- **NGC Container Registry for DGX**
 How to access the NGC container registry for using containerized deep learning GPU-accelerated applications on your DGX-2 System.

- **NVSM Software User Guide**
 Contains instructions for using the NVIDIA System Management software.

- **DCGM Software User Guide**
 Contains instructions for using the Data Center GPU Manager software.
1.8 CUSTOMER SUPPORT

Contact NVIDIA Enterprise Support for assistance in reporting, troubleshooting, or diagnosing problems with your DGX-2 System. Also contact NVIDIA Enterprise Support for assistance in installing or moving the DGX-2 System. You can contact NVIDIA Enterprise Support in the following ways.

1.8.1 NVIDIA Enterprise Support Portal

The best way to file an incident is to log on to the NVIDIA Enterprise Support portal.

1.8.2 NVIDIA Enterprise Support Email

You can also send an email to enterprisesupport@nvidia.com.

1.8.3 NVIDIA Enterprise Support - Local Time Zone Phone Numbers

Visit NVIDIA Enterprise Support Phone Numbers.

Our support team can help collect appropriate information about your issue and involve internal resources as needed.
Chapter 2.
CONNECTING TO THE DGX-2 CONSOLE

Connect to the DGX-2 console using either a direct connection, a remote connection through the BMC, or through an SSH connection.

⚠️ CAUTION: Connect directly to the DGX-2 console if the DGX-2 System is connected to a 172.17.xx.xx subnet.

DGX OS Server software installs Docker CE which uses the 172.17.xx.xx subnet by default for Docker containers. If the DGX-2 System is on the same subnet, you will not be able to establish a network connection to the DGX-2 System.

Refer to the section Configuring Docker IP Addresses for instructions on how to change the default Docker network settings.
2.1 DIRECT CONNECTION

At either the front or the back of the DGX-2 System, connect a display to the VGA connector, and a keyboard to any of the USB ports.
2.2 REMOTE CONNECTION THROUGH THE BMC

See the section Configuring Static IP Address for the BMC if you need to configure a static IP address for the BMC.

This method requires that you have the BMC login credentials. These credentials depend on the following conditions:

Prior to first time boot: The default credentials are

Username: admin
Password: admin

After first boot setup: The administrative user username that was set up during the initial boot is used for both the BMC username and BMC password.

Username: <administrator-username>
Password: <administrator-username>

After first boot setup with changed password: The BMC password can be changed from “<system-username>”, in which case the credentials are

Username: <administrator-username>
Password: <new-bmc-password>

1. Make sure you have connected the BMC port on the DGX-2 System to your LAN.
2. Open a browser within your LAN and go to:
 https://<bmc-ip-address>/
 Make sure popups are allowed for the BMC address.
3. Log in.
4. From the left-side navigation menu, click **Remote Control**.

The **Remote Control** page allows you to open a virtual Keyboard/Video/Mouse (KVM) on the DGX-2 System, as if you were using a physical monitor and keyboard connected to the front of the system.

5. Click **Launch KVM**.

The DGX-2 console appears in your browser.
2.3 SSH CONNECTION

You can also establish an SSH connection to the DGX-2 System through the network port. See the section Network Ports to identify the port to use, and the section Configuring Static IP Addresses for the Network Ports if you need to configure a static IP address.
While NVIDIA service personnel will install the DGX-2 System at the site and perform the first boot setup, the first boot setup instructions are provided here for reference and to support any re-imaging of the server.

These instructions describe the setup process that occurs the first time the DGX-2 System is powered on after delivery or after the server is re-imaged.

Be prepared to accept all End User License Agreements (EULAs) and to set up your username and password.

1. Connect to the DGX-2 console as explained in Connecting to the DGX-2 Console.

2. Power on the DGX-2 System.
 - Using the physical power button
The system will take a few minutes to boot.

You are presented with end user license agreements (EULAs) for the NVIDIA software.
3. Accept all EULAs to proceed with the installation.
 The system boots and you are prompted to configure the DGX-2 software.

4. Perform the steps to configure the DGX-2 software.
 - Select your language and location.
 - Create a user account with your name, username, and password.
 You will need these credentials to log in to the DGX-2 System as well as to log in to the BMC remotely. When logging in to the BMC, enter your username for both the User ID as well as the password. Be sure to create a unique BMC password at the first opportunity.

 ![CAUTION: Once you create your login credentials, the default admin/admin login will no longer work.](image)

 ![Note: The BMC software will not accept "sysadmin" for a user name. If you create this user name for the system log in, "sysadmin" will not be available for logging in to the BMC.](image)

 - Choose a primary network interface for the DGX-2 System; for example, enp6s0. This should typically be the interface that you will use for subsequent system configuration or in-band management.

 ![Note: After you select the primary network interface, the system attempts to configure the interface for DHCP and then asks you to enter a hostname for the system. If DHCP is not available, you will have the option to configure the network manually. If you need to configure a static IP address on a network interface connected to a DHCP network, select Cancel at the Network configuration - Please enter the hostname for the system screen. The system will then present a screen with the option to configure the network manually.](image)

 - Choose a host name for the DGX-2 System.
 After completing the setup process, the DGX-2 System reboots automatically and then presents the login prompt.

5. Update the software to ensure you are running the latest version.
 Updating the software ensures your DGX-2 System contains important updates, including security updates. The Ubuntu Security Notice site (https://usn.ubuntu.com/) lists known Common Vulnerabilities and Exposures (CVEs), including those that can be resolved by updating the DGX OS software.
 a) Run the package manager.
b) Upgrade to the latest version.

$ sudo apt full-upgrade

Note: RAID 1 Rebuild in Progress - When the system is booted after restoring the image, software RAID begins the process of rebuilding the RAID 1 array - creating a mirror of (or resynchronizing) the drive containing the software. System performance may be affected during the RAID 1 rebuild process, which can take an hour to complete.

During this time, the command “nvsm show health” will report a warning that the RAID volume is resyncing.

You can check the status of the RAID 1 rebuild process using “sudo mdadm -D /dev/md0”.
This chapter provides basic requirements and instructions for using the DGX-2 System, including how to perform a preliminary health check and how to prepare for running containers. Be sure to visit the DGX documentation website at https://docs.nvidia.com/dgx/ for additional product documentation.

4.1 REGISTRATION

Be sure to register your DGX-2 System with NVIDIA as soon as you receive your purchase confirmation e-mail. Registration enables your hardware warranty and allows you to set up an NVIDIA GPU Cloud for DGX account.

To register your DGX-2 System, you will need information provided in your purchase confirmation e-mail. If you do not have the information, send an e-mail to NVIDIA Enterprise Support at enterprisesupport@nvidia.com.

2. Enter all required information and then click **SUBMIT** to complete the registration process and receive all warranty entitlements and DGX-2 support services entitlements.
4.2 INSTALLATION AND CONFIGURATION

IMPORTANT: It is mandatory that your DGX-2 System be installed by NVIDIA service personnel or trained Advanced Technology Program (ATP) installation partner. If not performed by NVIDIA or an ATP partner, your DGX-2 hardware warranty will be voided.

Before installation, make sure you have completed the Site Survey and have given all relevant site information to your Installation Partner.

4.3 OBTAINING AN NVIDIA GPU CLOUD ACCOUNT

NVIDIA GPU Cloud (NGC) provides simple access to GPU-optimized software tools for deep learning and high-performance computing (HPC) that take full advantage of NVIDIA GPUs. An NGC account grants you access to these tools as well as the ability to set up a private registry to manage your customized tools.

Work with NVIDIA Enterprise Support to set up an NGC enterprise account if you are the organization administrator for your DGX-2 purchase. See the NGC Container Registry for DGX User Guide (https://docs.nvidia.com/dgx/ngc-registry-for-dgx-user-guide/) for detailed instructions on getting an NGC enterprise account.

4.4 TURNING THE DGX-2 ON AND OFF

The DGX-2 is a complex system, integrating a large number of cutting-edge components with specific startup and shutdown sequences. Observe the following startup and shutdown instructions.

4.4.1 Startup Considerations

In order to keep your DGX-2 running smoothly, allow up to a minute of idle time after reaching the login prompt. This ensures that all components are able to complete their initialization.
4.4.2 Shutdown Considerations

WARNING: Risk of Danger - Removing power cables or using Power Distribution Units (PDUs) to shut off the system while the Operating System is running may cause damage to sensitive components in the DGX-2 server.

When shutting down the DGX-2, always initiate the shutdown from the operating system, momentary press of the power button, or by using Graceful Shutdown from the BMC, and wait until the system enters a powered-off state before performing any maintenance.

4.5 VERIFYING BASIC FUNCTIONALITY

This section walks you through the steps of performing a health check on the DGX-2 System, and verifying the Docker and NVIDIA driver installation.

1. Establish an SSH connection to the DGX-2 System.
2. Run a basic system check.

   ```
   $ sudo nvsm show health
   ```

 Verify that the output summary shows that all checks are Healthy and that the overall system status is Healthy.
3. Verify that Docker is installed by viewing the installed Docker version.

   ```
   $ sudo docker --version
   ```

 This should return the version as “Docker version 18.03-ce”, where the actual version may differ depending on the specific release of the DGX OS Server software.
4. Verify connection to the NVIDIA repository and that the NVIDIA Driver is installed.

   ```
   $ sudo docker container run --runtime=nvidia --rm nvcr.io/nvidia/cuda:10.0-runtime nvidia-smi
   ```

 Docker pulls the nvidia/cuda container image layer by layer, then runs nvidia-smi.

 When completed, the output should show the NVIDIA Driver version and a description of each installed GPU.

See the NVIDIA Containers and Deep Learning Frameworks User Guide at https://docs.nvidia.com/deeplearning/dgx/user-guide/index.html for further instructions, including an example of logging into the NGC container registry and launching a deep learning container.
4.6 RUNNING NGC CONTAINERS WITH GPU SUPPORT

To obtain the best performance when running NGC containers on DGX-2 systems, two methods of providing GPU support for Docker containers have been developed:

- Native GPU support (included in Docker 19.03 and later)
- NVIDIA Container Runtime for Docker (nvidia-docker2 package)

The method implemented in your system depends on the DGX OS version installed.

<table>
<thead>
<tr>
<th>DGX OS Release</th>
<th>Method included</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2</td>
<td>Native GPU support</td>
</tr>
<tr>
<td></td>
<td>NVIDIA Container Runtime for Docker</td>
</tr>
<tr>
<td>4.1</td>
<td>NVIDIA Container Runtime for Docker</td>
</tr>
<tr>
<td>4.0</td>
<td>NVIDIA Container Runtime for Docker</td>
</tr>
</tbody>
</table>

Each method is invoked by using specific Docker commands, described as follows.

4.6.1 Using Native GPU Support

Note: If Docker is updated to 19.03 on a system which already has the nvidia-docker2 package installed, then the instructions for using the NVIDIA Container Runtime for Docker can still be used.

- Use `docker run --gpus` to run GPU-enabled containers.
 - Example using all GPUs
    ```sh
    $ docker run --gpus all ...
    ```
 - Example using two GPUs
    ```sh
    $ docker run --gpus 2 ...
    ```
 - Examples using specific GPUs
    ```sh
    $ docker run --gpus "device=1,2" ...
    $ docker run --gpus "device=UUID-ABCDEF,1" ...
    ```
4.6.2 Using the NVIDIA Container Runtime for Docker

With the NVIDIA Container Runtime for Docker installed (nvidia-docker2), you can run GPU-accelerated containers in one of the following ways.

- Use `docker run` and specify `runtime=nvidia`.


  ```
  $ docker run --runtime=nvidia ...
  ```

- Use `nvidia-docker run`.


  ```
  $ nvidia-docker run ...
  ```

The `nvidia-docker2` package provides backward compatibility with the previous `nvidia-docker` package, so you can run GPU-accelerated containers using this command and the new runtime will be used.

- Use `docker run` with `nvidia` as the default runtime.

 You can set `nvidia` as the default runtime, for example, by adding the following line to the `/etc/docker/daemon.json` configuration file as the first entry.

  ```json
  "default-runtime": "nvidia",
  ``

  The following is an example of how the added line appears in the JSON file. Do not remove any pre-existing content when making this change.

  ```json
 {
 "default-runtime": "nvidia",
 "runtimes": {
 "nvidia": {
 "path": "/usr/bin/nvidia-container-runtime",
 "runtimeArgs": []
 }
 },
 }
  ```

  You can then use `docker run` to run GPU-accelerated containers.

  
  ```
 $ docker run ...
  ```

- **CAUTION:** If you build Docker images while `nvidia` is set as the default runtime, make sure the build scripts executed by the Dockerfile specify the GPU architectures that the container will need. Failure to do so may result in the container being optimized only for the GPU architecture on which it was built. Instructions for specifying the GPU architecture depend on the application and are beyond the scope of this document. Consult the specific application build process for guidance.
Chapter 5. NETWORK CONFIGURATION

This chapter describes key network considerations and instructions for the DGX-2 System.

5.1 BMC SECURITY

NVIDIA recommends that customers follow best security practices for BMC management (IPMI port). These include, but are not limited to, such measures as:

- Restricting the DGX-2 IPMI port to an isolated, dedicated, management network
- Using a separate, firewalled subnet
- Configuring a separate VLAN for BMC traffic if a dedicated network is not available

5.2 CONFIGURING NETWORK PROXIES

If your network requires use of a proxy server, you will need to set up configuration files to ensure the DGX-2 System communicates through the proxy.

5.2.1 For the OS and Most Applications

Edit the file /etc/environment and add the following proxy addresses to the file, below the PATH line.

```bash
http_proxy="http://<username>:<password>@<host>:<port>/"
ftp_proxy="ftp://<username>:<password>@<host>:<port>/";
```
Network Configuration

https_proxy="https://<username>:<password>@<host>:<port>/";
no_proxy="localhost,127.0.0.1,localaddress,.localdomain.com"
HTTP_PROXY="http://<username>:<password>@<host>:<port>/"
FTP_PROXY="ftp://<username>:<password>@<host>:<port>/"
HTTPS_PROXY="https://<username>:<password>@<host>:<port>/"
NO_PROXY="localhost,127.0.0.1,localaddress,.localdomain.com"

Where username and password are optional.

Example:

http_proxy="http://myproxy.server.com:8080/"
ftp_proxy="ftp://myproxy.server.com:8080/"
https_proxy="https://myproxy.server.com:8080/"

5.2.2 For apt

Edit (or create) a proxy config file /etc/apt/apt.conf.d/myproxy and include the following lines

Acquire::http::proxy "http://<username>:<password>@<host>:<port>/";
Acquire::ftp::proxy "ftp://<username>:<password>@<host>:<port>/";
Acquire::https::proxy "https://<username>:<password>@<host>:<port>/";

Where username and password are optional.

Example:

Acquire::http::proxy "http://myproxy.server.com:8080/"
Acquire::ftp::proxy "ftp://myproxy.server.com:8080/"
Acquire::https::proxy "https://myproxy.server.com:8080/"

5.2.3 For Docker

To ensure that Docker can access the NGC container registry through a proxy, Docker uses environment variables. For best practice recommendations on configuring proxy environment variables for Docker, see https://docs.docker.com/engine/admin/systemd/#http-proxy.

5.3 CONFIGURING DOCKER IP ADDRESSES

To ensure that the DGX-2 System can access the network interfaces for Docker containers, Docker should be configured to use a subnet distinct from other network resources used by the DGX-2 System.
By default, Docker uses the `172.17.0.0/16` subnet. Consult your network administrator to find out which IP addresses are used by your network. **If your network does not conflict with the default Docker IP address range, then no changes are needed and you can skip this section.**

However, if your network uses the addresses within this range for the DGX-2 System, you should change the default Docker network addresses.

You can change the default Docker network addresses by either modifying the `/etc/docker/daemon.json` file or modifying the `/etc/systemd/system/docker.service.d/docker-override.conf` file. These instructions provide an example of modifying the `/etc/systemd/system/docker.service.d/docker-override.conf` to override the default Docker network addresses.

1. Open the `docker-override.conf` file for editing.
   
   ```
 $ sudo vi /etc/systemd/system/docker.service.d/docker-override.conf
 [Service]
 ExecStart=
 ExecStart=/usr/bin/dockerd -H fd:// -s overlay2
 LimitMEMLOCK=infinity
 LimitSTACK=67108864
   ```
   
2. Make the changes indicated in bold below, setting the correct bridge IP address and IP address ranges for your network. Consult your IT administrator for the correct addresses.
   
   ```
 [Service]
 ExecStart=
 ExecStart=/usr/bin/dockerd -H fd:// -s overlay2 --bip=192.168.127.1/24
 --fixed-cidr=192.168.127.128/25
 LimitMEMLOCK=infinity
 LimitSTACK=67108864
   ```
   
   Save and close the `/etc/systemd/system/docker.service.d/docker-override.conf` file when done.

3. Reload the systemctl daemon.
   
   ```
 $ sudo systemctl daemon-reload
   ```

4. Restart Docker.
   
   ```
 $ sudo systemctl restart docker
   ```
5.4 OPENING PORTS

Make sure that the ports listed in the following table are open and available on your firewall to the DGX-2 System:

<table>
<thead>
<tr>
<th>Port (Protocol)</th>
<th>Direction</th>
<th>Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>22 (TCP)</td>
<td>Inbound</td>
<td>SSH</td>
</tr>
<tr>
<td>53 (UDP)</td>
<td>Outbound</td>
<td>DNS</td>
</tr>
<tr>
<td>80 (TCP)</td>
<td>Outbound</td>
<td>HTTP, package updates</td>
</tr>
<tr>
<td>443 (TCP)</td>
<td>Outbound</td>
<td>For internet (HTTP/HTTPS) connection to NVIDIA GPU Cloud</td>
</tr>
<tr>
<td></td>
<td></td>
<td>If port 443 is proxied through a corporate firewall, then WebSocket protocol traffic must be supported</td>
</tr>
<tr>
<td>443 (TCP)</td>
<td>Inbound</td>
<td>For BMC web services, remote console services, and cd-media service.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>If port 443 is proxied through a corporate firewall, then WebSocket protocol traffic must be supported</td>
</tr>
</tbody>
</table>

5.5 CONNECTIVITY REQUIREMENTS

To run NVIDIA NGC containers from the NGC container registry, your network must be able to access the following URLs:

- [http://security.ubuntu.com/ubuntu/](http://security.ubuntu.com/ubuntu/)
  (To be accessed using apt-get, not through a browser.)
- [https://apt.dockerproject.org/repo/](https://apt.dockerproject.org/repo/)
- [https://download.docker.com/linux/ubuntu/](https://download.docker.com/linux/ubuntu/)
- [https://nvcr.io/](https://nvcr.io/)

To verify connection to nvcr.io, run

```
$ wget https://nvcr.io/v2
```

You should see connecting verification followed by a 401 error.
5.6 CONFIGURING STATIC IP ADDRESS FOR THE BMC

This section explains how to set a static IP address for the BMC. You will need to do this if your network does not support DHCP.

Use one of the methods described in the following sections:

- Configuring a BMC Static IP Address Using ipmitool
- Configuring a BMC Static IP Address Using the System BIOS
- Configuring a BMC Static IP Address Using the BMC Dashboard

5.6.1 Configuring a BMC Static IP Address Using ipmitool

This section describes how to set a static IP address for the BMC from the Ubuntu command line.

Note: If you cannot access the DGX-2 System remotely, then connect a display (1440x900 or lower resolution) and keyboard directly to the DGX-2 System.

To view the current settings, enter the following command.

```
$ sudo ipmitool lan print 1
```

To set a static IP address for the BMC, do the following.

1. Set the IP address source to static.
   
   $ sudo ipmitool lan set 1 ipsrc static

2. Set the appropriate address information.
   - To set the IP address (“Station IP address” in the BIOS settings), enter the following and replace the italicized text with your information.
     
     $ sudo ipmitool lan set 1 ipaddr 10.31.241.190
   - To set the subnet mask, enter the following and replace the italicized text with your information.
Network Configuration

To set the default gateway IP ("Router IP address" in the BIOS settings), enter the following and replace the italicized text with your information.

```
$ sudo ipmitool lan set 1 defgw ipaddr 10.31.241.1
```

5.6.2 Configuring a BMC Static IP Address Using the System BIOS

This section describes how to set a static IP address for the BMC when you cannot access the DGX-2 System remotely. This process involves setting the BMC IP address during system boot.

1. Connect a keyboard and display (1440 x 900 maximum resolution) to the DGX-2 System, then turn on the DGX-2 System.

2. When you see the SBIOS version screen, press Del or F2 to enter the BIOS Setup Utility screen.

Example setup screen – details may vary depending on SBIOS version.

3. At the BIOS Setup Utility screen, navigate to the Server Mgmt tab on the top menu, then scroll to BMC network configuration and press Enter.
4. Scroll to **Configuration Address Source** and press **Enter**, then at the **Configuration Address source** pop-up, select **Static** and then press **Enter**.

5. Set the addresses for the Station IP address, Subnet mask, and Router IP address as needed by performing the following for each:
Network Configuration

a) Scroll to the specific item and press **Enter**.
b) Enter the appropriate information at the pop-up, then press **Enter**.

![BMC network configuration screen](image)

6. When finished making all your changes, press **F10** to save & exit
You can now access the BMC over the network.

5.6.3 Configuring a BMC Static IP Address Using the BMC Dashboard

These instructions describe IPv4 addressing, but IPv6 addressing to the BMC can be configured if needed through the corresponding IPv6 fields.

1. Log into the BMC, then click **Settings->Network Settings->Network IP Settings**.
2. Clear the **Enable IPv4 DHCP** check box, then enter the appropriate values for the **IPv4 Address**, **IPv4 Subnet**, and **IPv4 Gateway** fields.
3. Click **Save** when done.

### 5.7 CONFIGURING STATIC IP ADDRESSES FOR THE NETWORK PORTS

During the initial boot setup process for the DGX-2 System, you had an opportunity to configure static IP addresses for a single network interface. If you did not set this up at that time, you can configure the static IP addresses from the Ubuntu command line using the following instructions.

*Note: If you cannot access the DGX-2 System remotely, then connect a display (1440x900 or lower resolution) and keyboard directly to the DGX-2 System.*

1. Determine the port designation that you want to configure, based on the physical ethernet port that you have connected to your network.
2. Edit the network configuration yaml file.

   $ sudo vi /etc/netplan/01-netcfg.yaml

   network:
     version: 2
     renderer: networkd
     ethernets:
       <port-designation>:
         dhcp4: no
         dhcp6: no
         addresses: [10.10.10.2/24]
         gateway4: 10.10.10.1
         nameservers:
           search: [<mydomain>, <other-domain>]
           addresses: [10.10.10.1, 1.1.1.1]

Consult your network administrator for the appropriate information for the items in bold, such as network, gateway, and nameserver addresses, and use the port designations that you determined in step 1.

3. When finished with your edits, press ESC to switch to command mode, then save the file to the disk and exit the editor.

4. Apply the changes.

   $ sudo netplan apply
5.8 SWITCHING BETWEEN INFINIBAND AND ETHERNET

The NVIDIA DGX-2 System is equipped with eight QSFP28 network ports on the I/O board, typically used for cluster communications. By default these are configured as InfiniBand ports, but you have the option to convert these to Ethernet ports.

For these changes to work properly, the configured port must connect to a networking switch that matches the port configuration. In other words, if the port configuration is set to InfiniBand, then the external switch should be an InfiniBand switch with the corresponding InfiniBand cables. Likewise, if the port configuration is set to Ethernet, then the switch should also be Ethernet.

5.8.1 Starting the Mellanox Software Tools

1. Start the `mst` driver.

   ```
 $ sudo mst start
   ```

2. To verify that the Mellanox Software Tools (MST) services are running, enter the following.

   ```
 $ sudo mst status
   ```

   • The following output indicates the services are **not** running.

   ```
 MST modules:

 MST PCI module is not loaded
 MST PCI configuration module is not loaded
   ```

   • The following output indicates the services are running.

   ```
 MST modules:

   ```
MST PCI module is not loaded
MST PCI configuration module loaded

MST devices:
-------------
/dev/mst/mt4119_pciconf0  - PCI configuration cycles access.
  domain:bus:dev.fn=0000:35:00.0 addr.reg=88 data.reg=92
  Chip revision is: 00
/dev/mst/mt4119_pciconf1  - PCI configuration cycles access.
  domain:bus:dev.fn=0000:3a:00.0 addr.reg=88 data.reg=92
  Chip revision is: 00
/dev/mst/mt4119_pciconf2  - PCI configuration cycles access.
  domain:bus:dev.fn=0000:58:00.0 addr.reg=88 data.reg=92
  Chip revision is: 00
/dev/mst/mt4119_pciconf3  - PCI configuration cycles access.
  domain:bus:dev.fn=0000:5c:00.0 addr.reg=88 data.reg=92
  Chip revision is: 00
/dev/mst/mt4119_pciconf4  - PCI configuration cycles access.
  domain:bus:dev.fn=0000:86:00.0 addr.reg=88 data.reg=92
  Chip revision is: 00
/dev/mst/mt4119_pciconf5  - PCI configuration cycles access.
  domain:bus:dev.fn=0000:b8:00.0 addr.reg=88 data.reg=92
  Chip revision is: 00
/dev/mst/mt4119_pciconf6  - PCI configuration cycles access.
  domain:bus:dev.fn=0000:bd:00.0 addr.reg=88 data.reg=92
  Chip revision is: 00
/dev/mst/mt4119_pciconf7  - PCI configuration cycles access.
  domain:bus:dev.fn=0000:e1:00.0 addr.reg=88 data.reg=92
  Chip revision is: 00
/dev/mst/mt4119_pciconf8  - PCI configuration cycles access.
  domain:bus:dev.fn=0000:e6:00.0 addr.reg=88 data.reg=92
  Chip revision is: 00

$
5.8.2 Determining the Current Port Configuration

To determine the current port configuration, enter the following:

```
$ sudo mlxconfig query | egrep -e Device\|LINK_TYPE
```

<table>
<thead>
<tr>
<th>Device #1:</th>
<th>Device type:</th>
<th>ConnectX5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device:</td>
<td>0000:bd:00.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LINK_TYPE_P1</td>
<td>IB(1)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Device #2:</th>
<th>Device type:</th>
<th>ConnectX5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device:</td>
<td>0000:b8:00.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LINK_TYPE_P1</td>
<td>IB(1)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Device #3:</th>
<th>Device type:</th>
<th>ConnectX5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device:</td>
<td>0000:3a:00.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LINK_TYPE_P1</td>
<td>IB(1)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Device #4:</th>
<th>Device type:</th>
<th>ConnectX5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device:</td>
<td>0000:e1:00.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LINK_TYPE_P1</td>
<td>IB(1)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Device #5:</th>
<th>Device type:</th>
<th>ConnectX5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device:</td>
<td>0000:35:00.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LINK_TYPE_P1</td>
<td>IB(1)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Device #6:</th>
<th>Device type:</th>
<th>ConnectX5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device:</td>
<td>0000:5d:00.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LINK_TYPE_P1</td>
<td>IB(1)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Device #7:</th>
<th>Device type:</th>
<th>ConnectX5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device:</td>
<td>0000:e6:00.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LINK_TYPE_P1</td>
<td>IB(1)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Device #8:</th>
<th>Device type:</th>
<th>ConnectX5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device:</td>
<td>0000:58:00.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LINK_TYPE_P1</td>
<td>IB(1)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Device #9:</th>
<th>Device type:</th>
<th>ConnectX5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device:</td>
<td>0000:86:00.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LINK_TYPE_P1</td>
<td>ETH(2)</td>
</tr>
<tr>
<td></td>
<td>LINK_TYPE_P2</td>
<td>ETH(2)</td>
</tr>
</tbody>
</table>

This output shows the first eight cards are configured for InfiniBand and correspond to the network cluster ports. The last card has two ports which correspond to the two network storage ports. These are configured for Ethernet should not be changed.

Map the Device bus numbers from your output to the device name from the `mystatus` output on your system. For example, this example output shows that the device name for bus `bd` is `/dev/mst/mt4119_pciconf5`. You will need the device name when changing the configuration.
5.8.3 Switching the Port from InfiniBand to Ethernet

Make sure that you have started the Mellanox Software Tools (MST) services as explained in the section Starting the Mellanox Software Tools, and have identified the correct ports to change.

1. Change the configuration for the network cluster ports to Ethernet by setting \texttt{LINK\_TYPE\_P1=2} for each port.

The following example configures the 8 network cluster ports.

```
~$ sudo mlxconfig -y -d /dev/mst/mt4119_pciconf0 set LINK_TYPE_P1=2
~$ sudo mlxconfig -y -d /dev/mst/mt4119_pciconf1 set LINK_TYPE_P1=2
~$ sudo mlxconfig -y -d /dev/mst/mt4119_pciconf2 set LINK_TYPE_P1=2
~$ sudo mlxconfig -y -d /dev/mst/mt4119_pciconf3 set LINK_TYPE_P1=2
~$ sudo mlxconfig -y -d /dev/mst/mt4119_pciconf4 set LINK_TYPE_P1=2
~$ sudo mlxconfig -y -d /dev/mst/mt4119_pciconf5 set LINK_TYPE_P1=2
~$ sudo mlxconfig -y -d /dev/mst/mt4119_pciconf6 set LINK_TYPE_P1=2
~$ sudo mlxconfig -y -d /dev/mst/mt4119_pciconf7 set LINK_TYPE_P1=2
```

2. Reboot the server.

3. Verify the configuration changes have been applied.

```
$ sudo mlxconfig query | egrep -e Device\|LINK_TYPE
Device #1:
Device type: ConnectX5
Device: 0000:bd:00.0
 LINK_TYPE_P1 ETH (1)
Device #2:
Device type: ConnectX5
Device: 0000:b8:00.0
 LINK_TYPE_P1 ETH (1)
Device #3:
Device type: ConnectX5
Device: 0000:3a:00.0
 LINK_TYPE_P1 ETH (1)
Device #4:
Device type: ConnectX5
Device: 0000:e1:00.0
 LINK_TYPE_P1 ETH (1)
Device #5:
Device type: ConnectX5
Device: 0000:35:00.0
 LINK_TYPE_P1 ETH (1)
Device #6:
Device type: ConnectX5
Device: 0000:5d:00.0
 LINK_TYPE_P1 ETH (1)
Device #7:
Device type: ConnectX5
```
5.8.4 Switching the Port from Ethernet to InfiniBand

Make sure that you have started the Mellanox Software Tools (MST) as explain in the section Starting the Mellanox Software Tools, and have identified the correct ports to change.

1. Change the configuration for the network cluster ports to InfiniBand by setting \texttt{LINK\_TYPE\_P1=1} for each port.

The following example configures all 8 network cluster ports.

```bash
~$ sudo mlxconfig -y -d /dev/mst/mt4119_pciconf0 set LINK_TYPE_P1=1
~$ sudo mlxconfig -y -d /dev/mst/mt4119_pciconf1 set LINK_TYPE_P1=1
~$ sudo mlxconfig -y -d /dev/mst/mt4119_pciconf2 set LINK_TYPE_P1=1
~$ sudo mlxconfig -y -d /dev/mst/mt4119_pciconf3 set LINK_TYPE_P1=1
~$ sudo mlxconfig -y -d /dev/mst/mt4119_pciconf4 set LINK_TYPE_P1=1
~$ sudo mlxconfig -y -d /dev/mst/mt4119_pciconf5 set LINK_TYPE_P1=1
~$ sudo mlxconfig -y -d /dev/mst/mt4119_pciconf6 set LINK_TYPE_P1=1
~$ sudo mlxconfig -y -d /dev/mst/mt4119_pciconf7 set LINK_TYPE_P1=1
```

2. Verify the configuration changes have been applied.

```bash
$ sudo mlxconfig query | egrep -e Device\|\|LINK_TYPE
```

<table>
<thead>
<tr>
<th>Device</th>
<th>LINK_TYPE_P1</th>
<th>LINK_TYPE_P2</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1</td>
<td>IB(1)</td>
<td></td>
</tr>
<tr>
<td>#2</td>
<td>IB(1)</td>
<td></td>
</tr>
<tr>
<td>#3</td>
<td>IB(1)</td>
<td></td>
</tr>
<tr>
<td>#4</td>
<td>IB(1)</td>
<td></td>
</tr>
<tr>
<td>Device #5:</td>
<td>Device type: ConnectX5</td>
<td>Device: 0000:35:00.0</td>
</tr>
<tr>
<td>-----------</td>
<td>------------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td></td>
<td>LINK_TYPE_P1 IB(1)</td>
<td></td>
</tr>
<tr>
<td>Device #6:</td>
<td>Device type: ConnectX5</td>
<td>Device: 0000:5d:00.0</td>
</tr>
<tr>
<td></td>
<td>LINK_TYPE_P1 IB(1)</td>
<td></td>
</tr>
<tr>
<td>Device #7:</td>
<td>Device type: ConnectX5</td>
<td>Device: 0000:e6:00.0</td>
</tr>
<tr>
<td></td>
<td>LINK_TYPE_P1 IB(1)</td>
<td></td>
</tr>
<tr>
<td>Device #8:</td>
<td>Device type: ConnectX5</td>
<td>Device: 0000:58:00.0</td>
</tr>
<tr>
<td></td>
<td>LINK_TYPE_P1 IB(1)</td>
<td></td>
</tr>
<tr>
<td>Device #9:</td>
<td>Device type: ConnectX5</td>
<td>Device: 0000:86:00.0</td>
</tr>
<tr>
<td></td>
<td>LINK_TYPE_P1 ETH(2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LINK_TYPE_P2 ETH(2)</td>
<td></td>
</tr>
</tbody>
</table>
By default, the DGX-2 System includes eight SSDs in a RAID 0 configuration. These SSDs are intended for application caching, so you must set up your own NFS storage for long term data storage. The following instructions describe how to mount the NFS onto the DGX-2 System, and how to cache the NFS using the DGX-2 SSDs for improved performance.

Make sure that you have an NFS server with one or more exports with data to be accessed by the DGX-2 System, and that there is network access between the DGX-2 System and the NFS server.

1. Configure an NFS mount for the DGX-2 System.
   a) Edit the filesystem tables configuration.
      
      ```
 sudo vi /etc/fstab
      ```
   b) Add a new line for the NFS mount, using the local mount point of /mnt.
      ```
 <nfs_server>:<export_path> /mnt nfs
 rw,noatime,rsize=32768,wsize=32768,nolock,tcp,intr,fsc,nofail 0 0
      ```
      
      –/mnt is used here as an example mount point.
      – Consult your Network Administrator for the correct values for <nfs_server> and <export_path>.
      – The nfs arguments presented here are a list of recommended values based on typical use cases. However, "fsc" must always be included as that argument specifies use of FS-Cache.
   c) Save the changes.

2. Verify the NFS server is reachable.
   ```
 ping <nfs_server>
   ```
Use the server IP address or the server name provided by your network administrator.

3. **Mount the NFS export.**
   ```
 sudo mount /mnt
   ```
   /mnt is an example mount point.

4. **Verify caching is enabled.**
   ```
 cat /proc/fs/nfsfs/volumes
   ```
   Look for the text FSC=yes in the output.

The NFS will be mounted and cached on the DGX-2 System automatically upon subsequent reboot cycles.
This chapter describes specific features of the DGX-2 server to consider during setup and operation.

7.1 SETTING MAXQ/MAXP

The maximum power consumption of the DGX-2 system is 10 kW. Beginning with DGX OS 4.0.5, you can reduce the power consumption of the GPUs in the DGX-2 system to accommodate server racks with a power budget of 18 kW. This allows you to install two DGX-2 systems in the rack, instead of being limited to one.

Use NVSM CLI to control the power mode of the GPUs.

**Notes:**
- MaxQ is supported on DGX-2 systems with BMC firmware version 1.04.03 or later.
- MaxQ is not supported on DGX-2H systems.
- Commands to switch to MaxP or MaxQ, or to see the current power state, are not supported on DGX-2H systems.
- Setting MaxP/MaxQ is not supported on DGX-2 systems configured to run kernel virtual machines (KVM mode).

7.1.1 MaxQ

- Maximum efficiency mode
**Special Features and Configurations**

- Allows two DGX-2 systems to be installed in racks that have a power budget of 18 kW.
- Switch to MaxQ mode as follows:

  ```bash
 $ sudo nvsm set powermode=maxq

 The settings are preserved across reboots.

 7.1.2 MaxP
 - Default mode that provides maximum performance
 - GPUs operate unconstrained up to the thermal design power (TDP) level.
 In this setting, the maximum DGX-2 power consumption is 10 kW.
 - Provides reduced but better performance than MaxQ when only 3 or 4 PSUs are working.
 - If you switch to MaxQ mode, you can switch back to the default power mode (MaxP) as follows:

    ```bash
    $ sudo nvsm set powermode=maxp
    
    The settings are preserved across reboots.
    
  **7.1.3 Determining GPU Power Mode**

  Determine the GPU power mode as follows:

  ```bash
 $ sudo nvsm show chassis/localhost
  ```
7.2 MANAGING THE DGX CRASH DUMP FEATURE

Beginning with DGX OS Server 4.0.5, the Linux crash dump capability is enabled. The DGX OS includes a script to manage this feature.

7.2.1 Using the Script

- To enable dmesg crash dumps, enter

  ```bash
 /user/sbin/dgs-kdump-config enable-dmesg-dump
  ```

  This option reserves memory for the crash kernel.

- To enable dmesg and vmcore crash dumps, enter

  ```bash
 /user/sbin/dgs-kdump-config enable-vmcore-dump
  ```

  This option reserves memory for the crash kernel.

- To disable crash dumps, enter

  ```bash
 /user/sbin/dgs-kdump-config disable
  ```

  This option disables the use of kdump and make sure no memory is reserved for the crash kernel.

7.2.2 Connecting to Serial Over LAN

While dumping vmcore, the BMC screen console goes blank approximately 11 minutes after the crash dump is started. To view the console output during the crash dump, connect to serial over LAN as follows:

```bash
$ ipmitool -I lanplus -H <bmc-ip-address> -U <BMC-USERNAME> -P <BMC-PASSWORD> sol activate
```
7.3 USING PCIE ACCESS CONTROL SERVICES

PCle Access Control Services (ACS) is needed primarily if you are using the DGX-2 in KVM mode. When using the DGX-2 in bare-metal (non-KVM) mode, ACS affects GPUDirect performance and may cause InfiniBand failure.

NVIDIA enables/disables ACS according to whether the DGX-2 is in bare-metal or KVM mode as follows:

- Beginning with SBIOS version .18, the PCIe Access Control Services (ACS) is disabled by default.
  
  Since SBIOS updates do not over-write existing settings, the DGX-2 automatically disables ACS upon rebooting the system as part of the SBIOS update.

- If you are using the DGX-2 in KVM mode, ACS will be enabled automatically as part of the conversion from bare-metal to KVM host.

- When converting back to bare-metal mode from KVM mode and then rebooting, the DGX-2 automatically disables ACS.
Chapter 8.  
RESTORING THE DGX-2 SOFTWARE IMAGE

If the DGX-2 software image becomes corrupted (or both OS NVMe drives are replaced), restore the DGX-2 software image to its original factory condition from a pristine copy of the image.

The process for restoring the DGX-2 software image is as follows:

1. Obtain an ISO file that contains the image from NVIDIA Enterprise Support as explained in Obtaining the DGX-2 Software ISO Image and Checksum File.
2. Restore the DGX-2 software image from this file either remotely through the BMC or locally from a bootable USB flash drive.
   - If you are restoring the image remotely, follow the instructions in Re-Imaging the System Remotely.
   - If you are restoring the image locally, prepare a bootable USB flash drive and restore the image from the USB flash drive as explained in the following topics:
     - Creating a Bootable Installation Medium
     - Re-Imaging the System From a USB Flash Drive

**Note:** The DGX OS Server software is restored on one of the two NMVe M.2 drives. When the system is booted after restoring the image, software RAID begins the process rebuilding the RAID 1 array - creating a mirror of (or resynchronizing) the drive containing the software. System performance may be affected during the RAID 1 rebuild process, which can take an hour to complete.
8.1 OBTAINING THE DGX-2 SOFTWARE ISO IMAGE AND CHECKSUM FILE

To ensure that you restore the latest available version of the DGX-2 software image, obtain the current ISO image file from NVIDIA Enterprise Support. A checksum file is provided for the image to enable you to verify the bootable installation medium that you create from the image file.

1. Log on to the NVIDIA Enterprise Support site.
2. Click the Announcements tab to locate the download links for the DGX-2 software image.
3. Download the ISO image and its checksum file and save them to your local disk. The ISO image is also available in an archive file. If you download the archive file, be sure to extract the ISO image before proceeding.

8.2 RE-IMAGING THE SYSTEM REMOTELY

These instructions describe how to re-image the system remotely through the BMC. For information about how to restore the system locally, see Re-Imaging the System from a USB Flash Drive.

Before re-imaging the system remotely, ensure that the correct DGX-2 software image is saved to your local disk. For more information, see Obtaining the DGX-2 Software ISO Image and Checksum File.

1. Log in to the BMC.
2. Click Remote Control and then click Launch KVM.
3. Set up the ISO image as virtual media.
   a) From the top bar, click Browse File and then locate the re-image ISO file and click Open.
   b) Click Start Media.
4. Reboot, install the image, and complete the DGX-2 System setup.
   a) From the top menu, click Power and then select Hard Reset, then click Perform Action.
   b) Click Yes and then OK at the Power Control dialogs, then wait for the system to power down and then come back online.
   c) At the boot selection screen, select Install DGX Server.
      If you are an advanced user who is not using the RAID disks as cache and want to keep data on the RAID disks, then select Install DGX Server without formatting.
RAID. See the section Retaining the RAID Partition While Installing the OS for more information.

d) Press Enter.

The DGX-2 System will reboot from ISO image and proceed to install the image. This can take approximately 15 minutes.

Note: The Mellanox InfiniBand driver installation may take up to 10 minutes.

After the installation is completed, the system ejects the virtual CD and then reboots into the OS.

Refer to Setting Up the DGX-2 System for the steps to take when booting up the DGX-2 System for the first time after a fresh installation.

8.3 CREATING A BOOTABLE INSTALLATION MEDIUM

After obtaining an ISO file that contains the software image from NVIDIA Enterprise Support, create a bootable installation medium, such as a USB flash drive or DVD-ROM, that contains the image.

Note: If you are restoring the software image remotely through the BMC, you do not need a bootable installation medium and you can omit this task.

- If you are creating a bootable USB flash drive, follow the instructions for the platform that you are using:
  - On a text-only Linux distribution, see Creating a Bootable USB Flash Drive by Using the dd Command.
  - On Windows, see Creating a Bootable USB Flash Drive by Using Akeo Rufus.
- If you are creating a bootable DVD-ROM, you can use any of the methods described in Burning the ISO on to a DVD on the Ubuntu Community Help Wiki.
8.3.1 Creating a Bootable USB Flash Drive by Using the dd Command

On a Linux system, you can use the dd command to create a bootable USB flash drive that contains the DGX-2 software image.

Note: To ensure that the resulting flash drive is bootable, use the dd command to perform a device bit copy of the image. If you use other commands to perform a simple file copy of the image, the resulting flash drive may not be bootable.

Ensure that the following prerequisites are met:

- The correct DGX-2 software image is saved to your local disk. For more information, see Obtaining the DGX-2 Software ISO Image and Checksum File.
- The USB flash drive capacity is at least 4 GB.

1. Plug the USB flash drive into one of the USB ports of your Linux system.
2. Obtain the device name of the USB flash drive by running the lsblk command.
   ```bash
 lsblk
   ```
   You can identify the USB flash drive from its size.
3. As root, convert and copy the image to the USB flash drive.
   ```bash
 sudo dd if=path-to-software-image bs=2048 of=usb-drive-device-name
   ```

CAUTION: The dd command erases all data on the device that you specify in the of option of the command. To avoid losing data, ensure that you specify the correct path to the USB flash drive.
8.3.2 Creating a Bootable USB Flash Drive by Using Akeo Rufus

On a Windows system, you can use the Akeo Reliable USB Formatting Utility (Rufus) to create a bootable USB flash drive that contains the DGX-2 software image.

Ensure that the following prerequisites are met:

- The correct DGX-2 software image is saved to your local disk. For more information, see Obtaining the DGX-2 Software ISO Image and Checksum File.
- The USB flash drive has a capacity of at least 4 GB.

1. Plug the USB flash drive into one of the USB ports of your Windows system.
2. Download and launch the Akeo Reliable USB Formatting Utility (Rufus).
3. Under Boot selection, click SELECT and then locate and select the ISO image.
4. Under Partition scheme, select GPT.
5. Under File system, select FAT32.
6. Click Start. Because the image is a hybrid ISO file, you are prompted to select whether to write the image in ISO Image (file copy) mode or DD Image (disk image)
7. Select Write in ISO Image mode and click OK.

8.4 RE-IMAGING THE SYSTEM FROM A USB FLASH DRIVE

These instructions describe how to re-image the system from a USB flash drive. For information about how to restore the system remotely, see Re-Imaging the System Remotely.

Before re-imaging the system from a USB flash drive, ensure that you have a bootable USB flash drive that contains the current DGX-2 software image.

1. Plug the USB flash drive containing the OS image into the DGX-2 System.
2. Connect a monitor and keyboard directly to the DGX-2 System.
3. Boot the system and press F11 when the NVIDIA logo appears to get to the boot menu.
4. Select the USB volume name that corresponds to the inserted USB flash drive, and boot the system from it.
5. When the system boots up, select Install DGX Server on the startup screen.
   If you are an advanced user who is not using the RAID disks as cache and want to keep data on the RAID disks, then select Install DGX Server without formatting RAID. See the section Retaining the RAID Partition While Installing the OS for more information.
6. Press Enter.
   The DGX-2 System will reboot and proceed to install the image. This can take more than 15 minutes.

Note: The Mellanox InfiniBand driver installation may take up to 10 minutes.
8.5 RETAINING THE RAID PARTITION WHILE INSTALLING THE OS

The re-imaging process creates a fresh installation of the DGX OS. During the OS installation or re-image process, you are presented with a boot menu when booting the installer image. The default selection is Install DGX Software. The installation process then repartitions all the SSDs, including the OS SSD as well as the RAID SSDs, and the RAID array is mounted as /raid. This overwrites any data or file systems that may exist on the OS disk as well as the RAID disks.

Since the RAID array on the DGX-2 System is intended to be used as a cache and not for long-term data storage, this should not be disruptive. However, if you are an advanced user and have set up the disks for a non-cache purpose and want to keep the data on those drives, then select the Install DGX Server without formatting RAID option at the boot menu during the boot installation. This option retains data on the RAID disks and performs the following:

- Installs the cache daemon but leaves it disabled by commenting out the RUN=yes line in /etc/default/cachefilesd.
- Creates a /raid directory, leaves it out of the file system table by commenting out the entry containing “/raid” in /etc/fstab.
- Does not format the RAID disks.

When the installation is completed, you can repeat any configurations steps that you had performed to use the RAID disks as other than cache disks.

You can always choose to use the RAID disks as cache disks at a later time by enabling cachefilesd and adding /raid to the file system table as follows:

1. Uncomment the #RUN=yes line in /etc/default/cachefiled.
2. Uncomment the /raid line in etc/fstab.
3. Run the following:
   a) Mount /raid.

   ```
 sudo mount /raid
   ```

   b) Start the cache daemon.
systemctl start cachefilesd

These changes are preserved across system reboots.
Chapter 9.
UPDATING THE DGX OS SOFTWARE

You must register your DGX-2 System in order to receive email notification whenever a new software update is available.

These instructions explain how to update the DGX-2 software through an internet connection to the NVIDIA public repository. The process updates a DGX-2 System image to the latest QA’d versions of the entire DGX-2 software stack, including the drivers, for the latest update within a specific release; for example, to update to the latest Release 4.0 update from an earlier Release 4.0 version.

For instructions on upgrading from one Release to another (for example, from Release 3.1 to Release 4.1), consult the release notes for the target release.

9.1 CONNECTIVITY REQUIREMENTS FOR SOFTWARE UPDATES

Before attempting to perform the update, verify that the DGX-2 System network connection can access the public repositories and that the connection is not blocked by a firewall or proxy.

Enter the following on the DGX-2 System.

```bash
$ wget -O f1-changelogs http://changelogs.ubuntu.com/meta-release-lts
$ wget -O f4-security http://security.ubuntu.com/ubuntu/dists/bionic/Release
```
All the `wget` commands should be successful and there should be six files in the directory with non-zero content.

### 9.2 UPDATE INSTRUCTIONS

**CAUTION:** These instructions update all software for which updates are available from your configured software sources, including applications that you installed yourself. If you want to prevent an application from being updated, you can instruct the Ubuntu package manager to keep the current version. For more information, see [Introduction to Holding Packages](#) on the Ubuntu Community Help Wiki.

Perform the updates using commands on the DGX-2 console.

1. Run the package manager.
   ```bash
 $ sudo apt update
   ```

2. Check to see which software will get updated.
   ```bash
 $ sudo apt full-upgrade -s
   ```
   To prevent an application from being updated, instruct the Ubuntu package manager to keep the current version. See [Introduction to Holding Packages](#).

3. Upgrade to the latest version.
   ```bash
 $ sudo apt full-upgrade
   ```
   Answer any questions that appear.
   Most questions require a Yes or No response. If asked to select the grub configuration to use, select the current one on the system.
   Other questions will depend on what other packages were installed before the update and how those packages interact with the update. Typically, you can accept the default option when prompted.

4. Reboot the system.
This section provides instructions for updating firmware for the NVIDIA® DGX server firmware using a Docker container.

The container supports

- NVIDIA DGX-2, starting with container `nvfw-dgx2_18.09.4`
- NVIDIA DGX-2H, starting with container `nvfw-dgx2:19.03.1`.

**IMPORTANT:** DGX-2H is supported only with firmware container `nvfw-dgx2:19.03.1` or later. Do not update the DGX-2H firmware using an earlier container as this will result in version mismatch with the DGX-2H.

See the [DGX-2 System Firmware Update Container Release Notes](#) for information about each release.

For reference, the following naming scheme is used for the package, container image, and run file, depending on the FW update container version.

<table>
<thead>
<tr>
<th>Component</th>
<th>Pre-19.03.1</th>
<th>19.03.1 and later</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tarball package</td>
<td><code>nvfw-dgx2_&lt;version&gt;.tar.gz</code></td>
<td><code>nvfw-dgx2_&lt;version&gt;.tar.gz</code></td>
</tr>
<tr>
<td>Container Image</td>
<td><code>nvfw-dgx2.tar.gz</code></td>
<td><code>nvfw-dgx2:&lt;version&gt;</code></td>
</tr>
<tr>
<td>Run file</td>
<td>N/A</td>
<td><code>nvfw-dgx2_&lt;version&gt;.run</code></td>
</tr>
</tbody>
</table>
10.1 GENERAL FIRMWARE UPDATE GUIDELINES

- Before updating the firmware, do the following to prevent corrupting the firmware due to a system crash or disruption to the update process.
  - Ensure the system is healthy
  - Stop system activities

**Caution:** Stop all unnecessary system activities before attempting to update firmware, and do not add additional processing loads while an update is in progress. A high workload can disrupt the firmware update process and result in an incapacitated component.

When initiating an update, the update software assists in determining the activity state of the DGX system and provides a warning if it detects that activity levels are above a predetermined threshold. If the warning is encountered, you are strongly advised to take action to reduce the workload before proceeding with the update.

- Do not terminate the firmware update console, close the browser, or shut down the system while updating the firmware.
  Component firmware corruption may occur if the update process is interrupted.

- Certain components, such as the system BIOS, require a system reboot for the new firmware to take effect.
  Reboot the system if prompted.

- When updating the BMC firmware, system management services are shut down first to allow the update to occur. Consequently, system management is not available during the BMC update.

- In the event of a firmware update failure, run `nvsm dump health` and then send the resulting archive containing the output to NVIDIA Enterprise Support ([https://nvid.nvidia.com/dashboard/](https://nvid.nvidia.com/dashboard/)) for failure analysis.
  Do not attempt any further firmware updates until the issue is resolved or cleared by NVIDIA Enterprise Support.

10.2 OBTAINING THE FIRMWARE UPDATE CONTAINER

1. Obtain the container tarball from the NVIDIA Enterprise Support portal and transfer it to the DGX-2 System.
   The container is provided in the tarball `<package-name>.tar.gz`. 
Beginning with container version 19.03.1, the container is also available from the NVIDIA Enterprise Support portal as a .run file `<run-file-name>.run`. See the section `Using the .run File` for instructions.

2. From the directory where you copied the tarball file, enter the following command.

```
$ sudo docker load -i <package-name>.tar.gz
```

3. To verify that the container image is loaded, enter the following.

```
$ sudo docker images
```

Example output after loading `nvfw-dgx2_18.09.3.tar.gz`.

<table>
<thead>
<tr>
<th>REPOSITORY</th>
<th>TAG</th>
<th>IMAGE ID</th>
<th>CREATED</th>
<th>SIZE</th>
</tr>
</thead>
<tbody>
<tr>
<td>nvfw-dgx2_18.09.3</td>
<td>latest</td>
<td>aa681a4ae600</td>
<td>1 hours ago</td>
<td>278MB</td>
</tr>
</tbody>
</table>

Starting with version 19.03.1, the container naming format has changed from `nvfw_dgx2_version` to `nvfw_dgx2:tag`, where `tag` indicates the version.

Example output after loading `nvfw-dgx2_19.03.1.tar.gz`.

<table>
<thead>
<tr>
<th>REPOSITORY</th>
<th>TAG</th>
<th>IMAGE ID</th>
<th>CREATED</th>
<th>SIZE</th>
</tr>
</thead>
<tbody>
<tr>
<td>nvfw-dgx2</td>
<td>19.03.1</td>
<td>fec80ce658ef</td>
<td>1 hours ago</td>
<td>532MB</td>
</tr>
</tbody>
</table>

10.3 QUERYING THE FIRMWARE MANIFEST

The manifest displays a listing of firmware components embedded in the containers that are qualified by NVIDIA.

To query the firmware manifest, enter the following:

```
sudo docker run --rm --privileged -ti -v /:/hostfs <image-name> show_fw_manifest
```

10.4 QUERYING THE CURRENTLY INSTALLED FIRMWARE VERSIONS

Display the onboard firmware version level of each component supported by the container. The output will show which component firmware is up to date, or whether it needs to be updated to the firmware level listed in the manifest.
To query the version information, enter the following.

```sh
sudo docker run --privileged -v /:/hostfs <image-name> show_version
```

The output shows the onboard version, the version in the manifest, and whether the firmware is up-to-date.

### 10.5 UPDATING THE FIRMWARE

You can either update all the down-level firmware components at one time, or update just one or more components.

### 10.6 COMMAND SYNTAX

```sh
sudo docker run --rm [-e auto=1] --privileged -ti -v /:/hostfs <image-name> update_fw [-f] <target>
```

Where `<target>` specifies the hardware to update, and is either:

- **all**
  - to update all firmware components (SBIOS, BMC)

or one or more of the following:

- **SBIOS**
  - to update the SBIOS

- **BMC**
  - to update the BMC firmware

**Note:** Other components may be supported beyond those listed here. Query the firmware manifest to see all the components supported by the container.

The command will scan the specified firmware components and update any that are down-level.

See the section **Additional Options** for an explanation of the `[-e auto=1]` and `[-f]` options.
10.7 UPDATING ALL FIRMWARE COMPONENTS

The following instructions are an example of attempting to update all the firmware components using the container `nvfw-dgx2:19.03.1`. In this example, the SBIOS and BMC require an update.

1. Enter the following.

```
$ sudo docker run --rm --privileged -ti -v /:/hostfs nvfw-dgx2:19.03.1 update_fw all
```

The container will scan the components and then prompt for confirmation before starting the update.

Following components will be updated with new firmware version:
- SBIOS
- BMC

**IMPORTANT:** Firmware update is disruptive and may require system reboot.
Stop system activities before performing the update.

Ok to proceed with firmware update? <Y/N>

2. Press **Y** to proceed.

The firmware update progress is displayed for each component.

```
Note: While the progress output shows the current and manifest firmware versions, the versions may be truncated due to space limitations. You can confirm the updated version after the update is completed using the show_version option.
```

When the update completes successfully, the following message is displayed.

```
Firmware update completed
Component: SBIOS, update status: success, reboot required: yes
Component: BMC, update status: success, new version: 3.20.30
```

3. If directed by the update message, reboot the system.

10.8 UPDATING SPECIFIC FIRMWARE COMPONENTS

The following is an example of updating the SBIOS firmware using the container `nvfw-dgx2_18.09.3`.

1. Enter the following.

```
$ sudo docker run --rm --privileged -ti -v /:/hostfs nvfw-dgx2:19.03.1 update_fw SBIOS
```

The container will scan the components and then prompt for confirmation before starting the update.

Following components will be updated with new firmware version:
IMPORTANT: Firmware update is disruptive and may require system reboot.
Stop system activities before performing the update.
Ok to proceed with firmware update? <Y/N>

2. Press **Y** to proceed. When the update completes successfully, the following message is displayed.

Firmware update completed
Component: SBIOS, update status: success, reboot required: yes

You can also update a subset of all the components. For example, to update both the BMC firmware and the system BIOS, enter the following:

```
$ sudo docker run --rm --privileged -ti -v /:/hostfs nvfw-dgx2:19.03.1 update_fw BMC SBIOS
```

### 10.9 ADDITIONAL OPTIONS

#### 10.9.1 Forcing the Firmware Update

To update the firmware regardless of whether it is down-level, use the `-f` option as follows.

```
$ sudo docker run --rm --privileged -ti -v /:/hostfs <image-name> update_fw -f <target>
```

The container will not check the onboard versions against the manifest.

#### 10.9.2 Updating the Firmware Non-interactively

The standard way to run the container is interactively (-ti option). The container will prompt you to confirm before initiating the update.

To update the firmware without encountering the prompt, omit the `-ti` option and instead use the `-e auto=1` and `-t` options as follows.

```
$ sudo docker run -e auto=1 --rm --privileged -t -v /:/hostfs <image-name> update_fw <target>
```

### 10.10 COMMAND SUMMARY

- Show the manifest.

```
$ sudo docker run --rm --privileged -v /:/hostfs <image-name> show_fw_manifest
```
Updating Firmware

- Show version information.
  
  ```
 $ sudo docker run --rm --privileged -v /:/hostfs <image-name>
 show_version
  ```

- Check the onboard firmware against the manifest and update any down-level firmware.
  
  ```
 $ sudo docker run --rm --privileged -ti -v /:/hostfs <image-name>
 update_fw <target>
  ```

- Bypass the version check and update the firmware.
  
  ```
 $ sudo docker run --rm --privileged -ti -v /:/hostfs <image-name>
 update_fw -f <target>
  ```

- Update the firmware in non-interactive mode.
  
  ```
 $ sudo docker run --rm -e auto=1 --privileged -t -v /:/hostfs <image-name>
 update_fw <target>
  ```

10.11 REMOVING THE CONTAINER

Remove the container and image from the DGX server when it is no longer needed. To remove the container and image, enter the following:

```
$ sudo docker rmi -f <image-name>
```

In this case, specify only the container repository and not the tag.

10.12 USING THE .RUN FILE

Beginning with the firmware container version 19.03.1, a .run file is also available to run the firmware update container. The .run file is a self-extracting package embedding the firmware update container tarball. Using the .run file requires DGX OS Server 4.0.5 or later.

1. Before using, you need to make the file executable as follows:

  ```
 $ chmod +x /<run-file-name>.run
  ```

2. Run the file.

  ```
 $ sudo ./<run-file-name>.run
  ```

  This command is the same as running the container with the update_fw all option.

The .run file accepts the same options that are used when running the container.
Examples:

- Show the manifest.
  
  ```
 $ sudo ./<run-file-name>.run show_fw_manifest
  ```

- Show version information.
  
  ```
 $ sudo ./<run-file-name>.run show_version
  ```

- Check the onboard firmware against the manifest and update any down-level firmware.
  
  ```
 $ sudo ./<run-file-name>.run update_fw <target>
  ```

- Bypass the version check and update the firmware.
  
  ```
 $ sudo ./<run-file-name>.run update_fw -f <target>
  ```

## 10.13 TROUBLESHOOTING

### 10.13.1 Redundant PSU fails to update

The system is still operational with only five of the six PSUs working, but the firmware update may fail.

Make sure all PSUs are fully inserted and that power cords to all PSUs are fully inserted and secured. If the firmware update still fails, then run `nvsm dump health` and send the resulting archive containing the output to NVIDIA Enterprise Support (https://nvid.nvidia.com/dashboard/) for failure analysis.

Do not attempt any further firmware updates until the issue is resolved or cleared by NVIDIA Enterprise Support.
Chapter 11.
USING THE BMC

The NVIDIA DGX-2 System comes with a baseboard management controller (BMC) for monitoring and controlling various hardware devices on the system. It monitors system sensors and other parameters.

11.1 CONNECTING TO THE BMC

1. Make sure you have connected the BMC port on the DGX-2 System to your LAN.
2. Open a browser within your LAN and go to:
   https://<bmc-ip-address>/
   Make sure popups are allowed for the BMC address.
3. Log in.

### 11.2 OVERVIEW OF BMC CONTROLS

The left-side navigation menu on the BMC dashboard contains the primary controls.
11.2.1 QuickLinks...

Provides quick access to several tasks.

Note: Depending on the BMC firmware version, the following quick links may appear:

- Maintenance->Firmware Update
- Settings->NbMeManagement->NvMe P3700Vpd Info

Do not access these tasks using the Quick Links dropdown menu, as the resulting pages are not fully functional.
11.2.2 Sensor
Provides status and readings for system sensors, such as SSD, PSUs, voltages, CPU temperatures, DIMM temperatures, and fan speeds.

11.2.3 FRU Information
Provides, chassis, board, and product information for each FRU device.

11.2.4 Logs & Reports
View, and if applicable, download and erase, the IPMI event log, and system, audit, video and POST Code logs.

11.2.5 Settings
Configure the following settings

- Captu rol EOSO
- External User Service
- KVM Mouse Setting
- Log Settings
- Media Redirection Settings
- Network Settings
- NVMe Management
- PAM Order Settings
- Platform Event Filter
- Services
- SMTP Settings
- SSL Settings
- System Firewall
- User Management
- Video Recording

11.2.6 Remote Control
Opens the KVM Launch page for accessing the DGX-2 console remotely.

11.2.7 Power Control
Perform various power actions
11.2.8 Maintenance

**IMPORTANT:** While you can update the BMC firmware from this page, NVIDIA recommends using the NVIDIA Firmware Update Container instead (see section Updating Firmware for instructions).

Do not update from versions earlier than 01.04.02 using the BMC UI, as the sensor data record (SDR) is erroneously preserved which can result in the BMC UI reporting a critical 3V Battery sensor error. This is corrected in version 1.0.4.02 - updating from 1.04.02 does not preserve the SDR.

If you need to update from this page, click Dual Firmware Update and then select whichever is the Current Active Image to update.
Chapter 12.
USING DGX-2 SYSTEM IN KVM MODE

12.1 OVERVIEW

12.1.1 About NVIDIA KVM

The NVIDIA Kernel-based Virtual Machine (KVM) is a virtualization solution based on the Linux Kernel Virtual Machine (https://www.linux-kvm.org) and enhanced to enable GPU multi-tenancy. Since the KVM Hypervisor is part of the Linux kernel on the DGX-2 System, it contains the system-level components necessary to support multi-tenancy on the DGX-2 System, such as a memory manager, process scheduler, input/output (I/O) stack, device drivers, security manager, and a network stack.

**Note:** NVIDIA KVM is also supported on the NVIDIA DGX-2H. References to DGX-2 in this chapter also apply to DGX-2H.

The following diagram depicts an overview of the NVIDIA KVM architecture, showing the hardware layer, the DGX Server KVM OS, and the virtual machines.
Using NVIDIA KVM, the DGX-2 System can be converted to include a bare metal hypervisor to provide GPU multi-tenant virtualization. This is referred to as the DGX-2 KVM host. It allows different users to run concurrent deep learning jobs using multiple virtual machines (guest GPU VMs) within a single DGX-2 System. Just like the bare-metal DGX-2 System, each GPU-enabled VM contains a DGX OS software image which includes NVIDIA drivers, CUDA, the NVIDIA Container Runtime for Docker, and other software components for running deep learning containers.

**Note:** Unlike the bare metal DGX-2 system or the KVM host OS, the guest VM OS is configured for English-only with no option to switch to languages such as Chinese. To set up a guest VM for a different language, install the appropriate language pack onto the guest VM.

Example of installing a Chinese language pack:

```
Guest-vm-2g4-5:~$ sudo apt install language-pack-zh-hant
```

Running NVIDIA containers on the VM is just like running containers on a DGX-2 bare metal system with DGX OS software installed.

While NVIDIA KVM turns your DGX system into a hypervisor supporting multiple guest GPU VMs, it does not currently provide support for the following:
Using DGX-2 System in KVM Mode

- oVirt, virt-manager
  The DGX-2 OS incorporates Ubuntu server, which does not include a graphics manager required by oVirt and virt-manager.

- Orchestration/resource manager
  Created GPU VMs are static and cannot be altered once created.

- NVMe drives as pass-through devices
  To preserve the existing RAID configuration on the DGX-2 System and simplify the process of reusing this resource if the server were ever to be reverted from KVM, NVMe drives should not be up as pass-through devices. However, if you want to use NVMe as pass-through devices for performance reasons, refer to the KVM Performance Tuning section of the DGX Best Practices guide for instructions.

- The DGX-2 KVM host cannot be used to run containers.

- NVIDIA GPUDirect™ is not supported on multi-GPU guest VMs across InfiniBand.

- There is no guest UEFI BIOS support.

### 12.1.2 About the Guest GPU VM (Features and Limitations)

- Guest GPU VMs are based on an installed KVM image.
- Guest GPU VM size and resources are based on the number of GPUs assigned.
- Once a GPU VM is created and resources assigned, reconfiguring the VM (adding or removing GPUs, modifying other resource allocations) is not supported.
- Access to the hardware is restricted from within the guest GPU VM such that
  - GPUs cannot be reset
  - GPU VBIOS cannot be updated
  - System firmware upgrade is not supported

### 12.1.3 About nvidia-vm

Guest GPU VMs can be managed using the virsh (see https://linux.die.net/man/1/virsh) program or using libvirt-based XML templates. For the NVIDIA KVM, NVIDIA has taken the most common virsh options and configuration steps and incorporated them into the tool nvidia-vm, provided with the DGX KVM package. nvidia-vm simplifies the process of creating guest GPU VMs and allocating resources. In addition, you can use nvidia-vm to modify default options to suit your needs for the VM and manage VM images installed on the system.
To view the top-level help, enter the following.

```
sudo nvidia-vm --help
```

You can view the man pages by entering the following from the DGX-2 KVM host.

```
man nvidia-vm
```

Details of basic commands are provided in the following sections.

Note: Using nvidia-vm requires root or sudo privilege. This includes deleting VMs, running health-check, or other operations.

### 12.2 CONVERTING THE DGX-2 SYSTEM TO A DGX-2 KVM HOST

To operate VMs from the DGX-2 System, you must first convert the DGX-2 System to a DGX-2 KVM host. Do this by installing the DGX KVM Software package and the DGX KVM image. Perform the following steps on the command line of the DGX-2 System.

1. Update the package list.
   ```
sudo apt-get update
   ```

2. If you have not already installed the update packages, then perform the following to be sure to get the latest KVM packages.
   ```
sudo apt install -y dgx-bionic-updates-repo
   ```

3. Get the latest updates.
   ```
sudo apt update
 sudo apt full-upgrade -y
   ```

4. Check available DGX KVM images.
   ```
sudo apt-cache policy dgx-kvm-image*
   ```
   This returns a list of images in the repository.

5. Install the `dgx-kvm-sw` package as well as one of the images listed in the previous step.
   ```
sudo apt-get install dgx-kvm-sw <dgx-kvm-image-x-y-z>
   ```

   This step updates the GRUB menu options so the Linux kernel is made KVM-ready, and binds the virtualization drivers to the NVIDIA devices. It also creates the GPU health database.

   Example of selecting image `dgx-kvm-image-4-1-1`:
   ```
sudo apt-get install dgx-kvm-sw dgx-kvm-image-4-1-1
   ```
See the section [Installing Images](#) for more information about installing KVM guest images, including how to view the image contents.

6. Reboot the system.
Rebooting the system is needed to finalize the KVM preparation of the DGX-2 System.

    `sudo reboot`

Your DGX-2 System is now ready for you to create VMs.

### 12.2.1 Getting Updated KVM Packages

You can obtain the latest KVM packages, including any updates to KVM images by performing the following from the KVM host.

1. Update the package list.
    `sudo apt-get update`

2. If you have not already installed the update packages, then perform the following to be sure to get the latest KVM packages.
    `sudo apt install -y dgx-bionic-updates-repo`

3. Get the latest updates.
    `sudo apt update`
    `sudo apt full-upgrade -y`

### 12.2.2 Restoring to Bare Metal

After setting up the DGX-2 System as a KVM host, you can restore the server to a bare metal system.

⚠️ **CAUTION:** Reverting the server back to a bare metal system destroys all guest GPU VMs that were created as well as any data. Be sure to save your data before removing the KVM software.

To restore the DGX-2 System to a bare metal system, do the following.

1. Remove the meta package and all its dependencies.

    `sudo apt-get purge --auto-remove dgx-kvm-sw`

2. Reboot the system.

    `sudo reboot`
12.3 LAUNCHING A GUEST GPU VM INSTANCE

To create and delete guest GPU VMs, use the NVIDIA utility `nvidia-vm` which simplifies the complex process of these tasks.

12.3.1 Determining the Guest GPU VMs on the DGX-2 System

GPUs cannot be assigned to more than one VM. Therefore, before you can create a VM that uses one or more GPUs, you must determine the number and position of the GPUs that are already allocated to VMs.

Run the following command.

```bash
sudo nvidia-vm list
```

The domain of each guest GPU VM is either based on the username of the VM creator appended with a timestamp, or is specified by the VM creator. The domain is then appended with a suffix to indicate the number of GPUs and their indices using the format

`<number-of-gpus>g<starting-index>-<ending index>`.  

Examples:

- `my-lab-vm1-8g0-7` : This VM is assigned 8 GPUs from index 0 through 7
- `my-lab-vm2-1g0` : This VM is assigned 1 GPU from index 0
- `my-lab-vm3-4g8-11`: This VM is assigned 4 GPUs from index 8 through 11

Inspect the list to determine the GPU indices that are available to you.

12.3.2 Creating a VM Using Available GPUs

Use `nvidia-vm` as explained in About `nvidia-vm`.

Syntax
sudo nvidia-vm create --gpucount N --gpu-index X [--image] [options]

where

**--gpucount**  The allowed number of GPUs to assign to the VM, depending on availability. Acceptable values: 1, 2, 4, 8, 16

A value of 0 is not supported, and can result in unexpected behavior.

**--gpu-index**  For the purposes of the KVM, GPUs on the DGX-2 System are distinguished by a zero-based, sequential index. gpu_index specifies the starting index value for the group of sequentially indexed GPUs to be assigned to the VM. Allowed values for gpu_index depend on the number of GPUs assigned to the VM, as shown in the following table.

<table>
<thead>
<tr>
<th>Number of GPUs</th>
<th>Allowed values for gpu_index</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15</td>
</tr>
<tr>
<td>2</td>
<td>0,2,4,6,8,10,12,14</td>
</tr>
<tr>
<td>4</td>
<td>0,4,8,12</td>
</tr>
<tr>
<td>8</td>
<td>0,8</td>
</tr>
<tr>
<td>16</td>
<td>0</td>
</tr>
</tbody>
</table>

**--image**  (Optional) Specifies the KVM image to use as the basis for the VM. If not specified, the latest version that is installed will be used. See the section Managing the Images for instructions on how to install images and also how to view which images are installed.

**--user-date**  (Optional) Starting with dgx-kvm-sw 4.1.1, you can use cloud-init by specifying the cloud-config file containing setup parameters for the VM. See section Using cloud-init to Initialize the Guest VM.

**--meta-data**  (Optional) Starting with dgx-kvm-sw 4.1.1, you can use cloud-init to specify the meta-data file containing the meta-data that you want to include in your VM. See section Using cloud-init to Initialize the Guest VM.

[options]  Optional parameters, including options to customize the default resource allocation (vCPUs, memory, OS disk size):
See the man pages or the Help for a detailed list of options.

Command Help:

[sudo] nvidia-vm create --help

This command does not require “sudo”; however, using sudo affects the VM name as described in this section.
Command Examples:

- Basic command

  ```bash
 sudo nvidia-vm create --gpu-count 4 --gpu-index 12
  ```

  This command creates a guest GPU VM with 4 GPUs, starting with index 12.

  Since no domain was specified, the software generates a domain, the name of which depends on whether `sudo` is used.

  - If using `sudo`, then the domain incorporates “root”, day, hour, and minute.
    
    For example, `rootTue1308-4g12-15`

  - If not using `sudo`, then the domain incorporates the username, day, hour, and minute.
    
    For example, `jsmithTue1308-4g12-15`

- Specifying a domain

  ```bash
 sudo nvidia-vm create --gpu-count 2 --gpu-index 8 --domain mydgx2vm
  ```

  This command creates a VM with 2 GPUs, starting with index 8, named `mydgx2vm-2g8-9`.

  **IMPORTANT:** A value of 0x0 for the domain name is not supported.

- Specifying an image

  ```bash
 sudo nvidia-vm create --gpu-count 2 --gpu-index 2 --image dgx-kvm-image-4-1-1
  ```

  This command creates a VM with 2 GPUs, starting with index 2, named `rootTue1308-2g2-3`, and based on the image `dgx-kvm-image-4-1-1`.

**Note:** If you encounter the following message when creating a VM,

```
Error setting up logfile: No write access to directory /home/$USER/.cache/virt-manager
```

remove the `/home/$USER/.cache/virt-manager` directory and then create the VM again.
12.3.2.1 Using cloud-init to Initialize the Guest VM

The NVIDIA DGX KVM software installs cloud-init in guest VMs. Cloud-init is a tool for automating the initial setup of VMs such as configuring the host name, network interfaces, and authority keys.

For more information about using cloud-init, see https://cloudinit.readthedocs.io/en/latest/index.html.

Using cloud-init involves creating two configuration files - cloud-config and instance-data.json - and then calling them when creating the guest VM using the following options:

- `--user-data <cloud-config>`
- `--meta-data <meta-data file>`

Example:

```
$ nvidia-vm create --gpu-count <#> --verbose --user-data /home/lab/cloud-config --meta-data /home/lab/instance-data.json
```

See Using Cloud-init for details on setting up the files.

12.4 STOPPING, RESTARTING, AND DELETING A GUEST GPU VM

Once a guest GPU is created, it can be stopped if you want to temporarily free resources while keeping your data. You can then restart the stopped guest GPU VM. You can also permanently delete a guest GPU VM, which frees resources and deletes associated data.

12.4.1 Shutting Down a VM

You can perform a graceful shutdown of a VM, which does the following:

- Releases the CPUs, memory, GPUs, and NVLink
- Retains allocation of the OS and data disks

**Note:** Since allocation of the OS and data disks are retained, the creation of other VMs is still impacted by the shut-down VM.

To shut down a VM, enter the following.

```
sudo nvidia-vm shutdown <vm-domain>
```
In the event that `nvidia-vm shutdown` fails to shut down the VM, for example, if the VM OS is unresponsive, then you’ll need to delete the VM as explained in the section Deleting a VM.

### 12.4.2 Starting an Inactive VM

To restart a VM that has been shut down (not deleted), run the following.

```
sudo nvidia-vm start <vm-domain>
```

You can also connect to the console automatically upon restarting the VM using the following command.

```
sudo nvidia-vm start --console <vm-domain>
```

### 12.4.3 Deleting a VM

Like the process of creating a guest GPU VM, deleting a VM involves several `virsh` commands. For this reason, NVIDIA provides a simple way to delete a VM using `nvidia-vm`. Deleting a VM using `nvidia-vm` does the following:

- Stops the VM if it is running
- Erases data on disks that the VM is using and releases the disks
- Deletes any temporary support files

You should delete your VM instead of merely stopping it in order to release all resources and to remove unused files.

**CAUTION:** VMs that are deleted cannot be recovered. Be sure to save any data before deleting any VMs.

Use `nvidia-vm` as explained in About `nvidia-vm`.

**Syntax**

```
sudo nvidia-vm delete --domain <vm-domain>
```

**Command Help**

```
sudo nvidia-vm delete --help
```

**Command Examples**

- Deleting an individual VM

  ```
sudo nvidia-vm delete --domain dgx2vm-labTue1308-4g12-15
  ```

- Deleting all the VMs on the system
12.4.4 Stopping a VM

You can stop (or destroy) a VM, which forcefully stops the VM but leaves its resources intact.

```bash
dsud nvidia-vm delete --domain ALL
```

To terminate gracefully, use the `--graceful` option:

```bash
dsud nvidia-vm destroy --domain <vm-domain> --graceful
```

12.4.5 Rebooting a VM

```bash
dsud nvidia-vm reboot --domain <vm-domain> --mode <shutdown-mode>
```

Where the shutdown mode string is one of the following: `acpi`, `agent`, `initctl`, `signal`, `paravirt`.

12.5 CONNECTING TO YOUR GUEST GPU VM

12.5.1 Determining IP Addresses

You can determine the IP address of your VM by entering the following.

```bash
virsh domifaddr <vm-domain> --source agent
```

This command returns IP addresses for the default network configuration (macvtap) as well as private networks. Refer to the section Network Configuration for a description of each network type.

Example:

```plaintext
$ virsh domifaddr lgpu-vm-1g1 --source agent
```

<table>
<thead>
<tr>
<th>Name</th>
<th>MAC address</th>
<th>Protocol</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>lo</td>
<td>00:00:00:00:00:00</td>
<td>ipv4</td>
<td>127.0.0.1/8</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>ipv6</td>
<td>::1/128</td>
</tr>
<tr>
<td>enp1s0</td>
<td>52:54:00:1e:23:2b</td>
<td>ipv4</td>
<td>10.120.28.219/24</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>ipv6</td>
<td>fe80::5054:ff:fe1e:232b/64</td>
</tr>
<tr>
<td>enp2s0</td>
<td>52:54:00:1b:3b:1c</td>
<td>ipv4</td>
<td>192.168.254.150/24</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>ipv6</td>
<td>fe80::5054:ff:fe1b:3b1c/64</td>
</tr>
</tbody>
</table>
In this example, 10.120.28.219/24 refers to the macvtap network, and 192.168.254.150/24 refers to the private network.

12.5.2 Connecting to the Guest GPU VM

You can connect to your VM in the following ways.

- **Option 1** (connecting to the VM from the Host OS)
  
  ```
 virsh console <vm-domain>
  ```

- **Option 2** (connecting to the VM using SSH)
  
  ```
 ssh <username>@<IP ADDRESS>
  ```

The default credentials for logging into the VM are -

- **Login**: nvidia
- **Password**: nvidia

These can be changed. See the section [*Changing Login Credentials*](#) for instructions.

12.6 MAKING YOUR VM MORE SECURE

There are a couple of things you can do to make your VM more secure.

- Change the Login Credentials
- Add SSH Keys

12.6.1 Changing Login Credentials

When the guest GPU VM is created, the default login credentials are nvidia/nvidia. As a security practice, use the standard Ubuntu methods to create a new user account and then delete the nvidia user account from the GPU VM. The basic commands are provided below for convenience. Consult the Ubuntu/Linux documentation for additional options.

- **Creating a new user account**
  
  ```
 sudo useradd -m <new-username> -p <new-password>
  ```

- **Deleting the nvidia user account**
To run virsh commands, the new user must then be added to the libvirt and libvirt-qemu groups.

\[
\text{sudo usermod -a -G libvirt <new-username>}
\]
\[
\text{sudo usermod -a -G libvirt-qemu <new-username>}
\]

Using cloud-init

You can also use \textit{cloud-init} to establish a unique username and password when you create the VM. Specify the username and password in the cloud config file. See the section \textit{Using cloud-init to Initialize the Guest VM} for more information about using cloud-init.

12.6.2 Adding SSH Keys

You can incorporate SSH keys to increase security over password authentication.

Refer to the following websites for instructions.

\begin{itemize}
  \item \texttt{How to set up SSH so you aren't asked for a password}
  \item \texttt{How to disable password authentication}
\end{itemize}

Using cloud-init

You can also use cloud-init to establish the SSH keys on a per-user basis when you create the VM. Specify the SSH authorized keys in the cloud config file. See the section \textit{Using cloud-init to Initialize the Guest VM} for more information about using cloud-init.

12.7 MANAGING IMAGES

Guest GPU VMs are based on an installed KVM image using thin provisioning for resource efficiency.

\begin{itemize}
  \item \textit{IMPORTANT:} A KVM guest VM runs a thin-provisioned copy of the source image. If the source image is ever uninstalled, the guest VM may not work properly. To keep guest VMs running uninterrupted, save the KVM source image to another location before uninstalling it.
\end{itemize}
You can manage these images as explained in this section.

Use `nvidia-vm` as explained in About `nvidia-vm`.

Syntax

```bash
sudo nvidia-vm image [options]
```

This section describes common command options.

Command Help

```bash
sudo nvidia-vm image --help
```

## 12.7.1 Installing Images

The KVM image is typically installed at the time the KVM package is installed. Since updated KVM images may be available from the repository, you can install any of these images for use in creating a guest GPU VM.

- To check available DGX KVM images, enter the following.
  ```bash
 apt-cache policy dgx-kvm-image*
  ```
  This returns a list of images in the repository.

- You can get detailed information about a specific KVM image using the `apt show` command as follows.

  Syntax

  ```bash
 apt show <kvm-image>
  ```

  Example

  ```bash
 apt show dgx-kvm-image-4-1-1
  ```

  <snip>

  Description: NVIDIA DGX bionic KVM hard disk image
  - DGX BaseOS image for KVM
  - OS Version: Ubuntu 18.04
  - Kernel Version: 4.15.0-47.50
  - Nvidia Driver Version: 418.67
  - Nvidia Docker Version: 2.0.3+docker18.09.4-1
  - Nvidia Container Runtime Version: 2.0.0+docker18.09.4-1
  - Libnvidia Container Version: 1.0.2-1

- To install a KVM image from the list, use the `nvidia-vm image install` command.
Using DGX-2 System in KVM Mode

**Syntax**

```
sudo nvidia-vm image install <kvm-image>
```

**Example**

```
sudo nvidia-vm image install dgx-kvm-image-4-1-1
```

12.7.2 Viewing a List of Installed Images

To view a list of all the VM images that are installed in the guest OS image directory, enter the following.

```
sudo nvidia-vm image show
```

12.7.3 Viewing Image Usage

To view a list of created VMs and the images they are using, enter the following.

```
sudo nvidia-vm image vmshow
```

**Note:** This command applies only to VMs that are not running. Currently, the command returns “Unknown” for any guest VMs that are running.

12.7.4 Uninstalling Images

If you convert the DGX-2 System from a KVM OS back to the bare metal system, you need to uninstall all the dgx-kvm images that were installed.

Perform the following for each installed image.

```
sudo nvidia-vm image uninstall dgx-kvm-image-x-y-z
```

```
Ok to remove image package "dgx-kvm-image-x-y-z"? (y/N) :
```

where  \( x-y-z \) is the version for each installed image.

**IMPORTANT:** If you uninstall KVM images without converting the system back to bare metal - or example, to recover space on the Hypervisor or to upgrade to a newer image - then you should make a copy of the image first.

A KVM guest VM runs a thin-provisioned copy of the source image. If the source image is ever uninstalled, the guest VM may not work properly. To keep guest VMs running uninterrupted, save the KVM source image to another location before uninstalling it.
12.8 USING THE GUEST OS DRIVES AND DATA DRIVES

The figure below depicts how NVIDIA KVM generates the Guest OS Drive and Data Drive from the physical drives on the DGX-2 System.

12.8.1 Guest OS Drive

DGX-2 KVM Host software uses the existing RAID-1 volume as the OS drive of each Guest (/dev/vda1) which by default is 50 GB. Since the OS drive resides on the RAID-1 array of the KVM Host, its data shall always be persistent.

Using the nvidia-vm tool, a system administrator can change the default OS drive size.

12.8.2 Data Drives

The DGX-2 KVM host software assigns a virtual disk to each guest GPU VM, referred to here as the Data Drive. It is based on filesystem directory-based volumes and can be used either as scratch space or as a cache drive.
DGX-2 software sets up a storage pool on top of the existing RAID-0 volume on the KVM Host for Data Drives on the Guests. The Data drive is automatically carved, by `nvidia-vm` tool, out of the Storage Pool and allocated to each GPU VM as a Data Drive (/dev/vdb1) which is automatically mounted on /raid. The Data Drive size is pre-configured according to the size of the GPU VM. For example, a 16-GPU VM gets a very large Data Drive (See the Resource Allocation section for size details).

Since the Data Drive is created on the Host RAID-0 array, data is not intended to be persistent. Therefore, when the GPU VM is destroyed, the Data Drive is automatically deleted and data is not preserved.

Using the `nvidia-vm` tool, a system administrator can change the default Data Drive size.

### 12.8.3 Storage Pool Examples

This section shows how to view the storage pool, and how disk space is assigned to a VM from the storage pool.

#### Show storage pool

Enter the following to verify the storage pool is active.

```bash
$ virsh pool-list
```

<table>
<thead>
<tr>
<th>Name</th>
<th>State</th>
<th>Autostart</th>
</tr>
</thead>
<tbody>
<tr>
<td>dgx-kvm-pool</td>
<td>active</td>
<td>yes</td>
</tr>
</tbody>
</table>

#### Create a VM:

```bash
$ sudo nvidia-vm create --gpu-count 1 --gpu-index 0
dgx2vm-rootTue1616-1g0: create define start mac: 52:54:00:16:b9:ff ip: 10.120.28.219/24
```

#### Viewing the Volume from the DGX-2 KVM Host

To see the volumes that are created for each VM, enter the following.

```bash
$ virsh vol-list dgx-kvm-pool --details
```
### Viewing the Data Volume from the Guest VM

1. Connect to the guest GPU VM.

   ```
 $ virsh console dgx2vm-labTue1616-1g0
 Connected to domain dgx2vm-rootTue1616-1g0
   ```

2. List the virtual storage on the guest GPU VM.

   ```
 nvidia@dgx2vm-rootTue1616-1g0:~$ lsblk
 NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
 vda 252:0 0 50G 0 disk
 └─vda1 252:1 0 50G 0 part /
 vdb 252:16 0 54.9G 0 disk
 └─vdb1 252:17 0 54.9G 0 part /raid
   ```

### 12.9 NETWORK CONFIGURATION

Networks can be configured in several way. The following table shows the available options and describes their application.

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Host&lt;-&gt;VM</th>
<th>VM&lt;-&gt;VM</th>
<th>VM&lt;-&gt;External</th>
</tr>
</thead>
<tbody>
<tr>
<td>macvtap</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>(bridged mode - default)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>macvtap</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>(VEPA mode)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Private</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>
Macvtap (bridged mode)

This is the default mode. Each guest VM has a virtual network interface based on the
macvtap-net network.

Macvtap (VEPA mode)

Set macvtap in Virtual Ethernet Port Aggregator (VEPA) mode to support
communication between the VM and an outside network. This mode requires that the
network switch supported “hairpin” mode. Refer to the "KVM Networking Best
Practices Guide" for more details.

Private Network

Specify --privateIP while creating the VM so that the second virtual network
interface will be added based on private-net network for Host-to-VM connectivity.

Example:

```
sudo nvidia-vm create --gpu-count 4 --gpu-index 12 --privateIP
```

12.10 UPDATING THE SOFTWARE

12.10.1 Updating the Host OS

You can update the DGX OS software for the host using standard Ubuntu apt process
with an internet connection.

Since the reboot step will stop any running guest VMs, they should be stopped first to
avoid an uncontrolled or unexpected interruption which can lead to corruption of the
VM.

**IMPORTANT:** Updating the DGX OS software may result in an over-write of the
associated KVM image. Guest VMs created from this older image will no longer be
available. To keep guest VMs, save the older KVM image to another location and then
and then restore the image after updating the DGX OS.

Perform the following from the host OS.

1. Shut down all running VMs.
   Failure to shut down the VMs may result in corruption of one or more VMs after the
   final reboot step.

2. Update the list of available packages and their versions.

   `sudo apt update`
3. Review the packages that will be updated.

```
$ sudo apt full-upgrade -s
```

To prevent an application from being updated, instruct the Ubuntu package manager to keep the current version. See Introduction to Holding Packages.

4. Upgrade to the latest version.

```
$ sudo apt full-upgrade
```

- Answer any questions that appear.
  - Most questions require a Yes or No response. When asked to select the grub configuration to use, select the current one on the system.
  - Other questions will depend on what other packages were installed before the update and how those packages interact with the update.
- If a message appears indicating that nvidia-docker.service failed to start, you can disregard it and continue with the next step. The service will start normally at that time.

5. Reboot the system.

```
$ sudo reboot
```

### 12.10.2 Updating the Guest VM OS

You can update the DGX OS software for the guest VM using standard Ubuntu apt process with an internet connection. This is the same process that is used when updating the DGX OS software on the bare metal system.

**IMPORTANT:** A KVM guest VM runs a thin-provisioned copy of the source image. If the source image is ever uninstalled, the guest VM may not work properly. To keep guest VMs running uninterrupted, save the KVM source image to another location before uninstalling it.

Perform the following from the guest VM.

1. Update the list of available packages and their versions.

```
$ sudo apt update
```

2. Review the packages that will be updated.

```
$ sudo apt full-upgrade -s
```

To prevent an application from being updated, instruct the Ubuntu package manager to keep the current version. See Introduction to Holding Packages.

3. Upgrade to the latest version.
4. Reboot the guest VM.

```bash
sudo reboot
```

## 12.11 SUPPLEMENTAL INFORMATION

### 12.11.1 Resource Allocations

By default, the KVM software assigns the following resources in approximate proportion to the number of assigned GPUs:

<table>
<thead>
<tr>
<th>Resource</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>8</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>vCPU/HT</td>
<td>5</td>
<td>10</td>
<td>22</td>
<td>46</td>
<td>92</td>
</tr>
<tr>
<td>Memory (GB)</td>
<td>90</td>
<td>180</td>
<td>361</td>
<td>723</td>
<td>1446</td>
</tr>
<tr>
<td>InfiniBand</td>
<td>N/A</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>OS Drive (GB)</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>Data Drive (TB)</td>
<td>1.92</td>
<td>3.84</td>
<td>7.68</td>
<td>15.36</td>
<td>31.72</td>
</tr>
<tr>
<td>Ethernet</td>
<td>macvtap</td>
<td>macvtap</td>
<td>macvtap</td>
<td>macvtap</td>
<td>macvtap</td>
</tr>
<tr>
<td>NVLink</td>
<td>N/A</td>
<td>1</td>
<td>3</td>
<td>6</td>
<td>6</td>
</tr>
</tbody>
</table>

- Data drive values indicate the maximum space that will be used. The actual space is allocated as needed.
- You can use command options to customize memory allocation, OS disk size, and number of vCPUs to assign.
**12.11.2 Resource Management**

NVIDIA KVM optimizes resources to maximize the performance of the VM.

- **vCPU**
  vCPUs are pinned to each VM to be NUMA-aware and to provide better VM performance.

- **InfiniBand**
  InfiniBand (IB) devices are set up as passthrough devices to maximize performance.

- **GPU**
  GPUs are set up as passthrough devices to maximize performance.

- **Data Drive**
  Data drives are intended to be used as scratch space cache.

- **NVSwitch**
  NVSwitch assignments are optimized for NVLink peer-to-peer performance.

- **NVLink**
  An NVLink connection is the connection between each GPU and the NVSwitch fabric. Each NVLink connection allows up to 25 GB/s uni-directional performance.

**12.11.3 NVIDIA KVM Security Considerations**

Consult the security policies of your organization to determine firewall needs and settings.

**12.11.4 Launching VMs in Degraded Mode**

On DGX-2 KVM systems, degraded mode is a mechanism that allows one or more GPUs to fail without affecting the operation or creation of other VMs on the server. This allows the DGX-2 System to run GPU VMs with fewer than 16 GPUs present. System administrators can then keep a subset of GPU VMs available for use while waiting to replace GPUs that may have failed.

**12.11.4.1 When the DGX-2 is Put in Degraded Mode**

The following are the type of GPU errors that will put the system in degraded mode:

- GPU double-bit ECC errors
GPU failure to enumerate on the PCIe bus
GPU side NVLink training error
GPU side unexpected XID error

To identify failed GPUs, the KVM host automatically polls the state of any GPUs to be used upon launching a VM. When a failed GPU is identified by the software, the DGX-2 System is marked as ‘degraded’ and operates in degraded mode until all bad GPUs are replaced.

12.11.4.2 Performing a GPU Health Check

You can create the initial GPU health database after installing the KVM software but before rebooting the system.

The following command tests all the GPUs in the system.

```bash
$ sudo nvidia-vm health-check [options]
```

Where [options] are

--force Forces health-check to run, and rebuilds the database
--help Prints this help text
--fulltest Runs an extensive test, approximately 2 minutes per GPU
--timelimit Approximate time to limit running of the test

**Examples:**

To run a quick test if health info does not exist.

```bash
$ sudo nvidia-vm health-check
```

To run an extended test.

```bash
$ sudo nvidia-vm health-check --force --fulltest
```

To see the GPU status as recorded in the database:

```bash
$ sudo nvidia-vm health-check show
```
12.11.4.3 Getting GPU Health Information from Within the VM

Enable fetching the GPU health from the KVM host by enabling monitoring of the guest VM.

1. Shut down the guest VM.

   ```sh
 $ virsh shutdown <vm-name>
   ```

2. Edit the NVIDIA fabric manager service.

   ```sh
 $ sudo virt-edit <vm-name> /lib/systemd/system/nvidia-fabricmanager.service
   ```

   Change the following line from
   ```
 ExecStart=/usr/bin/nv-hostengine -l -g --log-level 4 --log-rotate --log-filename /var/log/fabricmanager.log
   ```

   to
   ```
 ExecStart=/usr/bin/nv-hostengine -l -g --log-level 4 -b ALL --log-rotate --log-filename /var/log/fabricmanager.log
   ```

3. Restart the guest VM.

   ```sh
 $ virsh start <vm-name>
   ```

4. Get the guest VM’s IP address

   ```sh
 $ virsh domifaddr <vm-name> --source agent
   ```

5. Get the guest VM’s GPU information

   ```sh
 $ dcgmi discovery --host <vm-ip-address> -l
   ```

6. Enable the guest VM health monitoring.

   ```sh
 $ dcgmi health --host <vm-ip-address> -s a
   ```

7. Get the guest VM health status.

   ```sh
 $ dcgmi health --host <vm-ip-address> --check
   ```

Example output

```
+--------------------------+--------------------------------------+
| Health Monitor Report |
+==========================+======================================+
| Overall Health | Healthy |
```
12.11.4.4 Creating VMs with the DGX-2 System in Degraded Mode

You can still create guest GPU VMs on a DGX-2 System in degraded mode as long as you do not try to assign a failed GPU. If you attempt to create a VM with a failed GPU after its state has been marked as ‘bad’ by the system, the VM will fail to start and an appropriate error message is returned. Restarting an existing VM after a GPU fails will result in the same failure and error message.

The following is an example of launching a VM when GPU 12 and 13 have been marked as degraded or in a failed state.

```
sudo nvidia-vm create --gpu-count 8 --gpu-index 8
```

```
ERROR: GPU 12 is in unexpected state "missing", can't use it - BDF:e0:00.0 SXMD:13 UUID:GPU-b7187886-d894-2266-d11d-21124dc61dd3
ERROR: GPU 13 is in unexpected state "missing", can't use it - BDF:e2:00.0 SXMD:16 UUID:GPU-9a6a6a52-c6b6-79c3-086b-fcf2d5b1c87e
ERROR: 2 GPU's are unavailable, unable to start this VM "dgx2vm-labMon1559-8g8-15"
```

Note: If you attempt to launch a VM with a failed GPU before the system has identified its failed state, the VM will fail to launch but without an error message. If this happens, keep trying to launch the VM until the message appears.

12.11.4.5 Restarting a VM After the System or VM Crashes

Some GPU errors may cause the VM or the system to crash.

- If the system crashes, you can attempt to restart the VM.
- If the VM crashes (but not the system), you can attempt to restart the VM.

Your VM should restart successfully if none of the associated GPUs failed. However, if one or more of the GPUs associated with your VM failed, then the response depends on whether the system has had a chance to identify the GPU as unavailable.

- Failed GPU identified as unavailable
  The system will return an error indicating that the GPU is missing or unavailable and that the VM is unable to start.
- Failed GPU not yet identified as unavailable
The VM crashes upon being restarted.

12.11.4.6 Restoring a System from Degraded Mode

All GPUs need to be replaced to restore the DGX-2 from degraded mode.

The server must be powered off when performing the replacement. After GPU replacement and upon powering on the server, the KVM software runs a health scan to add any new GPUs to the health database.

12.12 TROUBLESHOOTING TOOLS

This section discusses tools to assist in gathering data to help NVIDIA Enterprise Services troubleshoot GPU VM issues. Most of the tools are used at the KVM host level. If you are using guest VMs and do not have access to the KVM host, then request the help of your system administrator.

12.12.1 Reporting Issues and Collecting Information

Log on to the NVIDIA Enterprise Services site for assistance with troubleshooting, diagnosing, or reporting DGX-2 KVM issues.

Run `nvsysinfo` from within the guest VM as well as on the KVM host, collect the output and provide to NVIDIA Enterprise Services.

The following sections focus on detecting
- Guest VM launch and shutdown issues
- Guest VM connection issues
- Guest VM GPU issues
- Host KVM and Guest VM Storage issues

12.12.2 How to Detect Guest Launch/Shutdown Issues

Obtain the following log files and information:

```bash
virt-install.log

$ grep -i 'error|fail' $HOME/.cache/virt-manager/virt-install.log
```

Guest VM log file
Using DGX-2 System in KVM Mode

```
$ sudo egrep -i 'error|fail' /var/log/libvirt/qemu/<vm-name>.log
```

From the KVM host, connect to the VM console to verify guest VM operation.

```
$ virsh console <vm-name>
```

### 12.12.3 How to Detect Guest Networking Issues

There are several steps to take to verify suspected guest connection issues.

**Verify Enabled Networks**

Check whether macvtap and private networks are still active.

```
$ virsh net-list
```

**Example output**

<table>
<thead>
<tr>
<th>Name</th>
<th>State</th>
<th>Autostart</th>
<th>Persistent</th>
</tr>
</thead>
<tbody>
<tr>
<td>macvtap-net</td>
<td>active</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>private-net</td>
<td>active</td>
<td>yes</td>
<td>yes</td>
</tr>
</tbody>
</table>

**Verify Guest VM IP Address**

Check the guest IP address to see if there is an IP address and whether it is as expected.

```
$ virsh domifaddr <vm-name> --source agent
```

**Example output:**

```
$ virsh domifaddr 1gpu-vm-1g2 --source agent
```

<table>
<thead>
<tr>
<th>Name</th>
<th>MAC address</th>
<th>Protocol</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>lo</td>
<td>00:00:00:00:00:00:00</td>
<td>ipv4</td>
<td>127.0.0.1/8</td>
</tr>
<tr>
<td>-</td>
<td></td>
<td>ipv6</td>
<td>::1/128</td>
</tr>
<tr>
<td>enp1s0</td>
<td>52:54:00:3c:07:62</td>
<td>ipv4</td>
<td>10.120.28.227/24</td>
</tr>
<tr>
<td>-</td>
<td></td>
<td>ipv6</td>
<td>fe80::5054:ff:fe3c:762/64</td>
</tr>
<tr>
<td>docker0</td>
<td>02:42:9f:5c:39:da</td>
<td>ipv4</td>
<td>172.17.0.1/16</td>
</tr>
</tbody>
</table>
Configuring VMs for Host-to-VM Network Connectivity

By default, each VM is created with a virtual network interface based on the macvtap-net network for VM-to-External and VM-to-VM network connectivity. The default macvtapnet network is configured in "bridge" mode and it will not provide Host-to-VM network connectivity. Read more on macvtap and its limitation.

You can configure the VM for Host-to-VM network connectivity by using privateIP. See How to Configure the Guest VM with privateIP for instructions.

12.12.4 How to Detect GPU Issues in a Guest VM

See Getting GPU Health Information from Within the VM.

12.12.5 How to Detect Storage Issues in a Guest VM or on the KVM Host

NVIDIA KVM reuses SSDs available to hypervisor to create Guest OS and Data Drives. This section covers how to check the health of SSDs from Host as well as inside a GPU Guest.

Instructions for fixing degraded RAID-0 and its impact to GPU VMs is currently beyond the scope of this document.

12.12.5.1 How to Check Storage Health in the KVM Host

The DGX-2 Host has two OS drives in RAID-1 array (/dev/nvme0n1, /dev/nvme1n1), and the remaining NVMe drives are in aRAID-0 array as Data Drives. Check the health of SSDs and RAID separately.

To check health of SSDs:

1. Run the following command to list the SSDs.

   ```bash
 $ sudo nvme list
   ```

   Example output

   ```
 Node SN Model Namespace Usage Format FW Rev
 ------------ -------------- -------------------------- -- -------------------- ---------- --------
 /dev/nvme0n1 S2X6NX0X501953 SAMSUNG MZ1LW960HMJP-00003 1 61.79 GB / 960.20 GB 512 B + 0 B CXV8601Q
 <snip> ...
 /dev/nvme9n1 18141C246847 Micron_9200_MTFDHAL3T8TCT 1 3.84 TB / 3.84 TB 512 B + 0 B 101008R0
   ```

2. Check whether the number of drives is less than two.
If less than two, then there is an issue.

3. View the health of each NVMe drive by running the following command:

```bash
$ sudo nvme smart-log /dev/nvme9n1
```

Example output

```
Smart Log for NVME device:nvme9n1 namespace-id:ffffffff
critical_warning : 0
<snip> ...
```

If `smart-log` shows `critical_warning` as a non-zero value, your NVMe SSD is faulted.

To check health of the RAID Array:

Run the following command on the raid devices ( `/dev/md0, /dev/md1`).

```bash
$ sudo mdadm -S -D /dev/md0
```

Example output

```
/dev/md0:
 Version : 1.2
 Creation Time : Tue Aug 13 08:23:52 2019
 Raid Level : raid1
 Array Size : 937034752 (893.63 GiB 959.52 GB)
 Used Dev Size : 937034752 (893.63 GiB 959.52 GB)
 Raid Devices : 2
 Total Devices : 2
 Persistence : Superblock is persistent
 Intent Bitmap : Internal
 Update Time : Thu Aug 15 16:31:29 2019
 State : clean
 Active Devices : 2
 Working Devices : 2
 Failed Devices : 0
 Spare Devices : 0

Consistency Policy : bitmap

 Name : dgx-18-04:0
 UUID : 98c0057f:11b0d131:2b689147:c780f126
 Events : 2014

 Number Major Minor RaidDevice State
```
If highlighted areas show error, your RAID is faulted.

To check health of the KVM Storage Pools:

The DGX-2 KVM software creates Data Drives for each GPU VM on the RAID-0 array as a volume. OS drives are also created as a Volume. You could check the health of KVM pools as follows.

```
$ virsh pool-list --details
```

Example Output

<table>
<thead>
<tr>
<th>Name</th>
<th>State</th>
<th>Autostart</th>
<th>Persistent</th>
<th>Capacity</th>
<th>Allocation</th>
<th>Available</th>
</tr>
</thead>
<tbody>
<tr>
<td>dgx-kvm-pool</td>
<td>running</td>
<td>yes</td>
<td>yes</td>
<td>27.83 TiB</td>
<td>171.71 GiB</td>
<td>27.66 TiB</td>
</tr>
<tr>
<td>images</td>
<td>running</td>
<td>yes</td>
<td>yes</td>
<td>878.57 GiB</td>
<td>19.62 GiB</td>
<td>858.95 GiB</td>
</tr>
</tbody>
</table>

If highlighted areas show error, your Storage Pool is faulted.

12.12.5.2 How to Check Storage Health in KVM Guests

The DGX-2 KVM Host software uses the existing RAID-1 volume as the OS drive of each Guest (/dev/vda1), which by default is 50 GB. Each GPU VM also gets a virtual disk called the Data Drive. It is based on filesystem directory-based volumes and can be used either as scratch space or as a cache drive.

- From within the guest VM, run the following command.

```
:~# lsblk
```

Example output

<table>
<thead>
<tr>
<th>NAME</th>
<th>MAJ:MIN</th>
<th>RM</th>
<th>SIZE</th>
<th>RO</th>
<th>TYPE</th>
<th>MOUNTPOINT</th>
</tr>
</thead>
<tbody>
<tr>
<td>vda</td>
<td>252:0</td>
<td>0</td>
<td>50G</td>
<td>0</td>
<td>disk</td>
<td></td>
</tr>
<tr>
<td>vda1</td>
<td>252:1</td>
<td>0</td>
<td>50G</td>
<td>0</td>
<td>part</td>
<td>/</td>
</tr>
<tr>
<td>vdb</td>
<td>252:16</td>
<td>0</td>
<td>13.9T</td>
<td>0</td>
<td>disk</td>
<td></td>
</tr>
<tr>
<td>vdb1</td>
<td>252:17</td>
<td>0</td>
<td>13.9T</td>
<td>0</td>
<td>part</td>
<td>/raid</td>
</tr>
</tbody>
</table>

If you do not see both drives, report this as an error.
From within the Hypervisor, perform the following command and verify that the output shows “No errors found”.

```
$ virsh domblkerror <vm-name>
No errors found
```

### 12.12.6 Using libguestfs-tools to Gather Log Files and Perform Console Scraping

The NVIDIA KVM software installs the libguestfs-tool utility which provides useful tools for viewing log files, console scraping, etc. These tools should be run from the KVM host.

The following are some usage examples.

**Partial List of tools for checking log files**
- virt-cat
- virt-log
- virt-tail
- virt-edit

**Partial List of tools for checking block devices and filesystems**
- virt-df
- virt-filesystems
- virt-ls
- virt-copy-in
- virt-copy-out
- virt-list-filesystems
- virt-list-partitions

**Examples**
- Check console/syslog
  ```
 $ sudo virt-log -d <vm-name>
  ```

- Read/Write specific log files
  ```
 $ sudo virt-cat -d <vm-name> /var/log/syslog
 $ sudo virt-edit -d <vm-name> /var/log/syslog
  ```
Display free space on guest VM filesystems.

```bash
$ sudo virt-df -d <vm-name>
```

**Example**

```bash
$ sudo virt-df -d 1gpu-vm-1g0
```

<table>
<thead>
<tr>
<th>Filesystem</th>
<th>1K-blocks</th>
<th>Used</th>
<th>Available</th>
<th>Use%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1gpu-vm-1g0:/dev/sda1</td>
<td>51341792</td>
<td>3313160</td>
<td>45390912</td>
<td>7%</td>
</tr>
</tbody>
</table>

List filesystems, partitions, block devices, LVM on the guest VM’s disk image.

```bash
$ sudo virt-filesystems -d <vm-name>
```

## 12.12.7 Known Issues

For a list of known issues with using GPU VMs on DGX-2 systems, refer to [DGX-2 Server Software Release Notes](#).

## 12.12.8 Reference Resources

The following are some useful resources for debugging and troubleshooting KVM issues.

- [Linux KVM: Guest OS debugging](#)
For security purposes, some installations require that systems be isolated from the internet or outside networks. Since most DGX-2 software updates are accomplished through an over-the-network process with NVIDIA servers, this section explains how updates can be made when using an over-the-network method is not an option. It includes a process for installing Docker containers as well.

A.1. Installing NVIDIA DGX-2 Software

One method for updating DGX-2 software on an air-gapped DGX-2 System is to download the ISO image, copy it to removable media and then re-image the DGX-2 System from the media. This method is available only for software versions that are available as ISO images for download.

Alternately, you can update the DGX-2 software by performing a network update from a local repository. This method is available only for software versions that are available for over-the-network updates.
A.2. Re-Imaging the System

**CAUTION:** This process destroys all data and software customizations that you have made on the DGX-2 System. Be sure to back up any data that you want to preserve, and push any Docker images that you want to keep to a trusted registry.

1. Obtain the ISO image from the Enterprise Support site.
   a) Log on to the [NVIDIA Enterprise Support](#) site and click the Announcements tab to locate the DGX OS Server image ISO file.
   b) Download the image ISO file.
2. Refer to the instructions in the [Restoring the DGX-2 Software Image](#) section for additional instructions.

A.3. Creating a Local Mirror of the NVIDIA and Canonical Repositories

The procedure below describes how to download all the necessary packages to create a mirror of the repositories that are needed to update Nvidia DGX systems. The steps are specific to versions 4.0.X and 4.1.X, but they can be edited to work with other versions. For more information on DGX OS versions and the release notes available, please visit [https://docs.nvidia.com/dgx/dgx-os-server-release-notes/index.html#dgx-os-release-number-scheme](https://docs.nvidia.com/dgx/dgx-os-server-release-notes/index.html#dgx-os-release-number-scheme).


A.3.1 Create Mirrors

The instructions in this section are to be performed on a system with network access.

**Prerequisites**
- A system installed with Ubuntu OS is needed to create the mirror because there are several Ubuntu tools that need to be used.
- The system must contain enough storage space to replicate the repositories to a filesystem; the space requirement could be as high as 250GB.
An efficient way to move large amount of data; for example, shared storage in a
DMZ, or portable USB drives that can be brought into the air-gapped area.
The data will need to be moved to the systems that need to be updated. Make sure the
portable drive is formatted using ext4 or FAT32.

1. Make sure the storage device is attached to the system with network access and
identify the mount point.
   Example mount point: /media/usb/repository

2. Once the space requirement has been met, install the apt-mirror package.
   Make sure the target directory is owned by the user apt-mirror or the replication will
   not work.

   ```
 $ sudo apt update
 $ sudo apt install apt-mirror
 $ sudo chown apt-mirror:apt-mirror /media/usb/repository
   ```

3. Configure the path of the destination directory in /etc/apt/mirror.list and
   use the included list of repositories below to retrieve the packages for both Ubuntu
   base OS as well as the NVIDIA DGX OS packages:

   ```
 ############### config ###########################
 #
 set base_path /media/usb/repository #/your/path/here
 #
 # set mirror_path $base_path/mirror
 # set skel_path $base_path/skel
 # set var_path $base_path/var
 # set cleanscript $var_path/clean.sh
 # set defaultarch <running host architecture>
 # set postmirror_script $var_path/postmirror.sh
 set run_postmirror 0
 set nthreads 20
 set _tilde 0
 #
 ############### end config ####################
 # Standard Canonical package repositories:
 deb http://security.ubuntu.com/ubuntu bionic-security main
 deb http://security.ubuntu.com/ubuntu bionic-security universe
 deb http://security.ubuntu.com/ubuntu bionic-security multiverse
 deb http://archive.ubuntu.com/ubuntu/ bionic main multiverse universe
 deb http://archive.ubuntu.com/ubuntu/ bionic-updates main multiverse universe
 #
 deb-i386 http://security.ubuntu.com/ubuntu bionic-security main
 deb-i386 http://security.ubuntu.com/ubuntu bionic-security universe
 deb-i386 http://security.ubuntu.com/ubuntu bionic-security multiverse
 deb-i386 http://archive.ubuntu.com/ubuntu/ bionic main multiverse universe
   ```
4. Run `apt-mirror` and wait for it to finish downloading content. This will take a long
time depending on the network connection speed.

```bash
$ sudo apt-mirror
```

5. Eject the removable storage with all packages.

```bash
$ sudo eject /media/usb/repository
```

### A.3.2 Configure the Target System

The instructions in this section are to be performed on the target system.

**Prerequisites**

- The target DGX system is installed, has gone through the first boot process, and is
  ready to be updated with the latest packages.
- A USB storage device is attached to the target DGX server.

There are other ways to transfer the data that are not covered in this document as
they will depend on the data center policies for the air-gapped environment.

1. Mount the storage device on the air-gapped system to `/media/usb/repository`
or consistency.

2. Configure `apt` to use the filesystem as the repository in the file `/etc/apt/sources.list` by modifying the following lines.
3. Configure apt to use the NVIDIA DGX OS packages in the file 
   `/etc/apt/sources.list.d/dgx.list`
   ```
 deb file:///media/usb/repository/mirror/international.download.nvidia.com/dgx/repos/bionic
 bionic main multiverse restricted universe
   ```

4. If present, remove the file `/etc/apt/sources.list.d/docker.list` as it is no longer needed and it will eliminate error messages during the update process.

5. (For DGX OS Release 4.1 and later only) Configure apt to use the NVIDIA DGX OS packages in the file `/etc/apt/sources.list.d/dgx-bionic-r418-cuda10-1-repo.list`
   ```
 deb file:///media/usb/repository/mirror/international.download.nvidia.com/dgx/repos/bionic
 /bionic-r418+cuda10.1 main multiverse restricted universe
   ```

6. Edit the file `/etc/apt/preferences.d/nvidia` to update the Pin parameter as follows.
   ```
 Package: *
 #Pin: origin international.download.nvidia.com
 Pin: release o=DGX Server
 Pin-Priority: 600
   ```

7. Update the apt repository and confirm there are no errors.
   ```
 sudo apt update
   ```

   ```
 Get:1 file://media/usb/repository/mirror/security.ubuntu.com/ubuntu
 bionic-security InRelease [88.7 kB]
 Get:1 file://media/usb/repository/mirror/security.ubuntu.com/ubuntu
 bionic-security universe [88.7 kB]
 Get:2 file://media/usb/repository/mirror/archive.ubuntu.com/ubuntu
 bionic InRelease [242 kB]
 Get:2 file://media/usb/repository/mirror/archive.ubuntu.com/ubuntu
 bionic-updates InRelease [88.7 kB]
 Get:4 file://media/usb/repository/mirror/international.download.nvidia.com/dgx
 /repos/bionic bionic-r418+cuda10.1 InRelease [13.0 kB]
 Get:5 file://media/usb/repository/mirror/international.download.nvidia.com/dgx
 /repos/bionic bionic InRelease [13.1 kB]
   ```
Upgrade the system using the newly configured local repositories.

```
$ sudo apt full-upgrade
```
A.4. Installing Docker Containers

This method applies to Docker containers hosted on the NVIDIA NGC Container Registry, and requires that you have an active NGC account.

1. On a system with internet access, log in to the NGC Container Registry by entering the following command and credentials.

   `$ docker login nvcr.io
   Username: $oauthtoken
   Password: apikey`

   Type “$oauthtoken” exactly as shown for the Username. This is a special username that enables API key authentication. In place of apikey, paste in the API Key text that you obtained from the NGC website.

2. Enter the docker pull command, specifying the image registry, image repository, and tag:

   `$ docker pull nvcr.io/nvidia/repository:tag`

3. Verify the image is on your system using docker images.

   `$ docker images`

4. Save the Docker image as an archive.

   `$ docker save nvcr.io/nvidia/repository:tag > framework.tar`

5. Transfer the image to the air-gapped system using removable media such as a USB flash drive.

6. Load the NVIDIA Docker image.

   `$ docker load -i framework.tar`

7. Verify the image is on your system.

   `$ docker images`
B.1. Using Cloud-init

Setting Up the Cloud-Config File

Set up a cloud-config file that your guest VM will use when it is created. Refer to https://cloudinit.readthedocs.io/en/latest/topics/examples.html for a description of the file format and options.

Following are the minimum set of options to appear in the cloud-config file.

`name`

The user’s login name. The default file contains a dummy value which must be replaced with your own.

`primary_group`

Define the primary group. Defaults to a new group created named after the user. The default file contains a dummy value which must be replaced with your own.

`groups`

Optional. Additional groups to add the user to. Defaults to none.

`shell`

Shell for the created user

`lock_passwd`

Defaults to true. Lock the password to disable password login.

`passwd`
The hash - not the password itself - of the password you want to use for this user.

**sshAuthorizedKeys**

Optional. [list] Add keys to user’s authorized keys file.

**Setting Up Instance-Data**

Set up an `instance-data.json` file with the metadata that you want to include in your VM. Refer to https://cloudinit.readthedocs.io/en/latest/topics/instance-data.html#format-of-instance-data-json for a list of metadata attributes and file format.
APPENDIX C.   SAFETY

C.1. Safety Information

To reduce the risk of bodily injury, electrical shock, fire, and equipment damage, read this document and observe all warnings and precautions in this guide before installing or maintaining your server product.

In the event of a conflict between the information in this document and information provided with the product or on the website for a particular product, the product documentation takes precedence.

Your server should be integrated and serviced only by technically qualified persons.

You must adhere to the guidelines in this guide and the assembly instructions in your server manuals to ensure and maintain compliance with existing product certifications and approvals. Use only the described, regulated components specified in this guide. Use of other products or components will void the UL Listing and other regulatory approvals of the product, and may result in noncompliance with product regulations in the region(s) in which the product is sold.
C.2. Safety Warnings and Cautions

To avoid personal injury or property damage, before you begin installing the product, read, observe, and adhere to all of the following safety instructions and information. The following safety symbols may be used throughout the documentation and may be marked on the product and/or the product packaging.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAUTION</td>
<td>Indicates the presence of a hazard that may cause minor personal injury or property damage if the CAUTION is ignored.</td>
</tr>
<tr>
<td>WARNING</td>
<td>Indicates the presence of a hazard that may result in serious personal injury if the WARNING is ignored.</td>
</tr>
<tr>
<td></td>
<td>Indicates potential hazard if indicated information is ignored.</td>
</tr>
<tr>
<td></td>
<td>Indicates shock hazards that result in serious injury or death if safety instructions are not followed</td>
</tr>
<tr>
<td></td>
<td>Indicates hot components or surfaces.</td>
</tr>
<tr>
<td></td>
<td>Indicates do not touch fan blades, may result in injury.</td>
</tr>
<tr>
<td></td>
<td>Shock hazard - Product might be equipped with multiple power cords. To remove all hazardous voltages, disconnect all power cords.</td>
</tr>
<tr>
<td></td>
<td>High leakage current ground(earth) connection to the Power Supply is essential before connecting the supply.</td>
</tr>
<tr>
<td></td>
<td>Recycle the battery.</td>
</tr>
<tr>
<td></td>
<td>The rail racks are designed to carry only the weight of the server system. Do not use rail-mounted equipment as a workspace. Do not place additional load onto any rail-mounted equipment.</td>
</tr>
</tbody>
</table>
C.3. Intended Application Uses

This product was evaluated as Information Technology Equipment (ITE), which may be installed in offices, schools, computer rooms, and similar commercial type locations. The suitability of this product for other product categories and environments (such as medical, industrial, residential, alarm systems, and test equipment), other than an ITE application, may require further evaluation.

C.4. Site Selection

Choose a site that is:

- Clean, dry, and free of airborne particles (other than normal room dust).
- Well-ventilated and away from sources of heat including direct sunlight and radiators.
- Away from sources of vibration or physical shock.
- In regions that are susceptible to electrical storms, we recommend you plug your system into a surge suppressor and disconnect telecommunication lines to your modem during an electrical storm.
- Provided with a properly grounded wall outlet.
- Provided with sufficient space to access the power supply cord(s), because they serve as the product’s main power disconnect.

C.5. Equipment Handling Practices

Reduce the risk of personal injury or equipment damage:

- Conform to local occupational health and safety requirements when moving and lifting equipment.
- Use mechanical assistance or other suitable assistance when moving and lifting equipment.
C.6. Electrical Precautions

Power and Electrical Warnings

**Caution:** The power button, indicated by the stand-by power marking, DOES NOT completely turn off the system AC power; standby power is active whenever the system is plugged in. To remove power from system, you must unplug the AC power cord from the wall outlet. Make sure all AC power cords are unplugged before you open the chassis, or add or remove any non hot-plug components.

Do not attempt to modify or use an AC power cord if it is not the exact type required. A separate AC cord is required for each system power supply.

Some power supplies in servers use Neutral Pole Fusing. To avoid risk of shock use caution when working with power supplies that use Neutral Pole Fusing.

The power supply in this product contains no user-serviceable parts. Do not open the power supply. Hazardous voltage, current and energy levels are present inside the power supply. Return to manufacturer for servicing.

When replacing a hot-plug power supply, unplug the power cord to the power supply being replaced before removing it from the server.

To avoid risk of electric shock, turn off the server and disconnect the power cords, telecommunications systems, networks, and modems attached to the server before opening it.

**Power Cord Warnings**

Use certified AC power cords to connect to the server system installed in your rack.

**Caution:** To avoid electrical shock or fire, check the power cord(s) that will be used with the product as follows:

- Do not attempt to modify or use the AC power cord(s) if they are not the exact type required to fit into the grounded electrical outlets.
- The power cord(s) must meet the following criteria:
  - The power cord must have an electrical rating that is greater than that of the electrical current rating marked on the product.
  - The power cord must have safety ground pin or contact that is suitable for the electrical outlet.
  - The power supply cord(s) is/are the main disconnect device to AC power. The socket outlet(s) must be near the equipment and readily accessible for disconnection.
The power supply cord(s) must be plugged into socket-outlet(s) that is/are provided with a suitable earth ground.

C.7. System Access Warnings

**Caution:** To avoid personal injury or property damage, the following safety instructions apply whenever accessing the inside of the product:

- Turn off all peripheral devices connected to this product.
- Turn off the system by pressing the power button to off.
- Disconnect the AC power by unplugging all AC power cords from the system or wall outlet.
- Disconnect all cables and telecommunication lines that are connected to the system.
- Retain all screws or other fasteners when removing access cover(s). Upon completion of accessing inside the product, refasten access cover with original screws or fasteners.
- Do not access the inside of the power supply. There are no serviceable parts in the power supply.
- Return to manufacturer for servicing.
- Power down the server and disconnect all power cords before adding or replacing any non hot-plug component.
- When replacing a hot-plug power supply, unplug the power cord to the power supply being replaced before removing the power supply from the server.

**Caution:** If the server has been running, any installed processor(s) and heat sink(s) may be hot.

Unless you are adding or removing a hot-plug component, allow the system to cool before opening the covers. To avoid the possibility of coming into contact with hot component(s) during a hot-plug installation, be careful when removing or installing the hot-plug component(s).

**Caution:** To avoid injury do not contact moving fan blades. Your system is supplied with a guard over the fan, do not operate the system without the fan guard in place.
C.8. Rack Mount Warnings

Note: The following installation guidelines are required by UL for maintaining safety compliance when installing your system into a rack.

The equipment rack must be anchored to an unmovable support to prevent it from tipping when a server or piece of equipment is extended from it. The equipment rack must be installed according to the rack manufacturer’s instructions.

Install equipment in the rack from the bottom up with the heaviest equipment at the bottom of the rack.

Extend only one piece of equipment from the rack at a time.

You are responsible for installing a main power disconnect for the entire rack unit. This main disconnect must be readily accessible, and it must be labeled as controlling power to the entire unit, not just to the server(s).

To avoid risk of potential electric shock, a proper safety ground must be implemented for the rack and each piece of equipment installed in it.

Elevated Operating Ambient- If installed in a closed or multi-unit rack assembly, the operating ambient temperature of the rack environment may be greater than room ambient. Therefore, consideration should be given to installing the equipment in an environment compatible with the maximum ambient temperature ($T_{ma}$) specified by the manufacturer.

Reduced Air Flow - Installation of the equipment in a rack should be such that the amount of air flow required for safe operation of the equipment is not compromised.

Mechanical Loading- Mounting of the equipment in the rack should be such that a hazardous condition is not achieved due to uneven mechanical loading.

Circuit Overloading- Consideration should be given to the connection of the equipment to the supply circuit and the effect that overloading of the circuits might have on overcurrent protection and supply wiring. Appropriate consideration of equipment nameplate ratings should be used when addressing this concern.

Reliable Earthing- Reliable earthing of rack-mounted equipment should be maintained.

Particular attention should be given to supply connections other than direct connections to the branch circuit (e.g. use of power strips).
C.9. Electrostatic Discharge (ESD)

**Caution:** ESD can damage drives, boards, and other parts. We recommend that you perform all procedures at an ESD workstation. If one is not available, provide some ESD protection by wearing an antistatic wrist strap attached to chassis ground -- any unpainted metal surface -- on your server when handling parts.

Always handle boards carefully. They can be extremely sensitive to ESD. Hold boards only by their edges. After removing a board from its protective wrapper or from the server, place the board component side up on a grounded, static free surface. Use a conductive foam pad if available but not the board wrapper. Do not slide board over any surface.

C.10. Other Hazards

**CALIFORNIA DEPARTMENT OF TOXIC SUBSTANCES CONTROL:**

Perchlorate Material – special handling may apply. See [www.dtsc.ca.gov/hazardouswaste/perchlorate](http://www.dtsc.ca.gov/hazardouswaste/perchlorate).

Perchlorate Material: Lithium battery (CR2032) contains perchlorate. Please follow instructions for disposal.

**NICKEL**

**NVIDIA Bezel.** The bezel’s decorative metal foam contains some nickel. The metal foam is not intended for direct and prolonged skin contact. Please use the handles to remove, attach or carry the bezel. While nickel exposure is unlikely to be a problem, you should be aware of the possibility in case you’re susceptible to nickel-related reactions.

**Battery Replacement**

**Caution:** There is the danger of explosion if the battery is incorrectly replaced. When replacing the battery, use only the battery recommended by the equipment manufacturer.
Dispose of batteries according to local ordinances and regulations. Do not attempt to recharge a battery.

Do not attempt to disassemble, puncture, or otherwise damage a battery.

**Cooling and Airflow**

**Caution:** Carefully route cables as directed to minimize airflow blockage and cooling problems. For proper cooling and airflow, operate the system only with the chassis covers installed. Operating the system without the covers in place can damage system parts. To install the covers:

- Check first to make sure you have not left loose tools or parts inside the system.
- Check that cables, add-in cards, and other components are properly installed.
- Attach the covers to the chassis according to the product instructions.
APPENDIX D.  COMPLIANCE

The NVIDIA DGX-2 is compliant with the regulations listed in this section.

D.1. United States

Product: DGX-2, DGX-2H

Federal Communications Commission (FCC)

FCC Marking (Class A)

This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) this device may not cause harmful interference, and (2) this device must accept any interference received, including any interference that may cause undesired operation of the device.

NOTE: This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.

California Department of Toxic Substances Control: Perchlorate Material - special handling may apply. See www.dtsc.ca.gov/hazardouswaste/perchlorate.
D.2. United States / Canada

Product: DGX-2
cULus Listing Mark

D.3. Canada

Product: DGX-2

Innovation, Science and Economic Development Canada (ISED)

CAN ICES-3(A)/NMB-3(A)

The Class A digital apparatus meets all requirements of the Canadian Interference-Causing Equipment Regulation.

Cet appareil numérique de la class A respecte toutes les exigences du Reglement sur le materiel brouilleur du Canada.

D.4. CE

Product: DGX-2

European Conformity; Conformité Européenne (CE)
This is a Class A product. In a domestic environment this product may cause radio frequency interference in which case the user may be required to take adequate measures.

This device bears the CE mark in accordance with Directive 2014/53/EU.

This device complies with the following Directives:

‣ Low Voltage Directive for electrical safety.
‣ RoHS Directive for hazardous substances.
‣ Energy-related Products Directive (ErP).

D.5. Japan

Product: DGX-2, DGX-2H

Voluntary Control Council for Interference (VCCI)

This is a Class A product.

In a domestic environment this product may cause radio interference, in which case the user may be required to take corrective actions. VCCI-A
2008年、日本における製品含有表示規格JIS C 0950が公示されました。製造業者は2006年7月1日以降に販売される電気・電子機器の特定化学物質の含有に付きまして情報提供を義務付けられました。製品の部材表示に付きましては、

A Japanese regulatory requirement, defined by specification JIS C 0950, 2008, mandates that manufacturers provide Material Content Declarations for certain categories of electronic products offered for sale after July 1, 2006.

To view the JIS C 0950 material declaration for this product, visit www.nvidia.com

Japan RoHS Material Content Declaration

<table>
<thead>
<tr>
<th>主な分類</th>
<th>特定化学物質記号</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pb</td>
</tr>
<tr>
<td>箱体</td>
<td>除外項目</td>
</tr>
<tr>
<td>プリント基板</td>
<td>除外項目</td>
</tr>
<tr>
<td>プロセッサ</td>
<td>除外項目</td>
</tr>
<tr>
<td>マザーボード</td>
<td>除外項目</td>
</tr>
<tr>
<td>電源</td>
<td>除外項目</td>
</tr>
<tr>
<td>システムメモリ</td>
<td>除外項目</td>
</tr>
<tr>
<td>ハードディスクドライブ</td>
<td>除外項目</td>
</tr>
<tr>
<td>機械部品（ファン、ヒートシンク、ベゼル等）</td>
<td>除外項目</td>
</tr>
<tr>
<td>ケーブル/コネクター</td>
<td>除外項目</td>
</tr>
<tr>
<td>はんだ付け材料</td>
<td>除外項目</td>
</tr>
<tr>
<td>フラックス・クリームはんだ、ラベル、その他の消耗品</td>
<td>除外項目</td>
</tr>
</tbody>
</table>

注：
1. 「0」は、特定化学物質の含有率が日本工業規格JIS C 0950:2008に記載されている含有率基準値に近いことを示します。
2. 「除外項目」は、特定化学物質が含有マークの除外項目に該当するため、特定化学物質について、日本工業規格JIS C 0950:2008に基づく含有マークの表示が不要であることを示します。
3. 「0.1wt%超」または「0.01wt%超」は、特定化学物質の含有率が日本工業規格JIS C 0950:2008に記載されている含有率基準値を超えることを示します。

Product Model Number: DGX-2

<table>
<thead>
<tr>
<th>Major Classification</th>
<th>Symbols of Specified Chemical Substance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pb</td>
</tr>
<tr>
<td>Chassis</td>
<td>Exempt</td>
</tr>
<tr>
<td>PCA</td>
<td>Exempt</td>
</tr>
<tr>
<td>Processor</td>
<td>Exempt</td>
</tr>
<tr>
<td>Motherboard</td>
<td>Exempt</td>
</tr>
<tr>
<td>Power supply</td>
<td>Exempt</td>
</tr>
<tr>
<td>System memory</td>
<td>Exempt</td>
</tr>
<tr>
<td>Hard drive</td>
<td>Exempt</td>
</tr>
<tr>
<td>Mechanical parts (fan, heat sink, bezel...)</td>
<td>Exempt</td>
</tr>
<tr>
<td>Cables/Connectors</td>
<td>Exempt</td>
</tr>
<tr>
<td>Soldering material</td>
<td>0</td>
</tr>
<tr>
<td>Flux, Solder Paste, label and other consumable materials</td>
<td>0</td>
</tr>
</tbody>
</table>

Notes:
1. "0" indicates that the level of the specified chemical substance is less than the threshold level specified in the standard, JIS C 0950: 2008.
2. "Exempt" indicates that the specified chemical substance is exempt from marking and it is not required to display the marking for that specified chemical substance per the standard, JIS C 0950: 2008.
3. "Exceeding 0.1wt%" or "Exceeding 0.01wt%" is entered in the table if the level of the specified chemical substance exceeds the threshold level specified in the standard, JIS C 0950: 2008.

D.6. Australia and New Zealand

Product: DGX-2

Australian Communications and Media Authority

This product meets the applicable EMC requirements for Class A, I.T.E equipment
### D.7. China

**Product:** DGX-2

**China RoHS Material Content Declaration**

<table>
<thead>
<tr>
<th>部件名称</th>
<th>Chassis</th>
<th>PCA</th>
<th>Processor</th>
<th>Motherboard</th>
<th>Power supply</th>
<th>System memory</th>
<th>Hard drive</th>
<th>Mechanical parts (fan, heat sink, bezel...)</th>
<th>Cables/Connectors</th>
<th>Soldering material</th>
<th>Flux, Solder Paste, label and other consumable materials</th>
</tr>
</thead>
<tbody>
<tr>
<td>铅 (Pb)</td>
<td>X</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>X</td>
<td>0</td>
<td>0</td>
<td>X</td>
</tr>
<tr>
<td>汞 (Hg)</td>
<td>0</td>
<td>X</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>X</td>
<td>0</td>
<td>0</td>
<td>X</td>
</tr>
<tr>
<td>镉 (Cd)</td>
<td>0</td>
<td>0</td>
<td>X</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>X</td>
<td>0</td>
<td>0</td>
<td>X</td>
</tr>
<tr>
<td>六价铬 (Cr(VI))</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>X</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>X</td>
<td>0</td>
<td>0</td>
<td>X</td>
</tr>
<tr>
<td>多溴联苯 (PBB)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>X</td>
<td>0</td>
<td>0</td>
<td>X</td>
<td>0</td>
<td>0</td>
<td>X</td>
</tr>
<tr>
<td>多溴联苯醚 (PBDE)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>X</td>
<td>0</td>
<td>X</td>
<td>0</td>
<td>0</td>
<td>X</td>
</tr>
</tbody>
</table>

本表格依据 SJ/T 11364-2014 的规定编制

The table according to SJ/T 11364-2014

**O:** 表示该有害物质在该部件所有均质材料中的含量均在 GB/T 26572-2011 标准规定的限量要求以下。

**O:** Indicates that this hazardous substance contained in all of the homogeneous materials for this part is below the limit requirement in GB/T 26572-2011.

**X:** 表示该有害物质至少在该部件的某一均质材料中的含量超出 GB/T 26572-2011 标准规定的限量要求。

**X:** Indicates that this hazardous substance contained in at least one of the homogeneous materials used for this part is above the limit requirement in GB/T 26572-2011.

此表中所有名称中含 "X" 的部件均符合欧盟 RoHS 立法。

All parts named in this table with an “X” are in compliance with the European Union’s RoHS Legislation.

注：环保使用期限的参考标识取决于产品正常工作的温度和湿度等条件

Note: The referenced Environmental Protection Use Period Marking was determined according to normal operating use conditions of the product such as temperature and humidity.
Notice

THE INFORMATION IN THIS GUIDE AND ALL OTHER INFORMATION CONTAINED IN NVIDIA DOCUMENTATION REFERENCED IN THIS GUIDE IS PROVIDED “AS IS.” NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE INFORMATION FOR THE PRODUCT, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE. Notwithstanding any damages that customer might incur for any reason whatsoever, NVIDIA’s aggregate and cumulative liability towards customer for the product described in this guide shall be limited in accordance with the NVIDIA terms and conditions of sale for the product.

THE NVIDIA PRODUCT DESCRIBED IN THIS GUIDE IS NOT FAULT TOLERANT AND IS NOT DESIGNED, MANUFACTURED OR INTENDED FOR USE IN CONNECTION WITH THE DESIGN, CONSTRUCTION, MAINTENANCE, AND/OR OPERATION OF ANY SYSTEM WHERE THE USE OR A FAILURE OF SUCH SYSTEM COULD RESULT IN A SITUATION THAT THREATENS THE SAFETY OF HUMAN LIFE OR SEVERE PHYSICAL HARM OR PROPERTY DAMAGE (INCLUDING, FOR EXAMPLE, USE IN CONNECTION WITH ANY NUCLEAR, AVIONICS, LIFE SUPPORT OR OTHER LIFE CRITICAL APPLICATION). NVIDIA EXPRESSLY DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY OF FITNESS FOR SUCH HIGH RISK USES. NVIDIA SHALL NOT BE LIABLE TO CUSTOMER OR ANY THIRD PARTY, IN WHOLE OR IN PART, FOR ANY CLAIMS OR DAMAGES ARISING FROM SUCH HIGH RISK USES.

NVIDIA makes no representation or warranty that the product described in this guide will be suitable for any specified use without further testing or modification. Testing of all parameters of each product is not necessarily performed by NVIDIA. It is customer’s sole responsibility to ensure the product is suitable and fit for the application planned by customer and to do the necessary testing for the application in order to avoid a default of the application or the product. Weaknesses in customer’s product designs may affect the quality and reliability of the NVIDIA product and may result in additional or different conditions and/or requirements beyond those contained in this guide. NVIDIA does not accept any liability related to any default, damage, costs or problem which may be based on or attributable to: (i) the use of the NVIDIA product in any manner that is contrary to this guide, or (ii) customer product designs.

Other than the right for customer to use the information in this guide with the product, no other license, either expressed or implied, is hereby granted by NVIDIA under this guide. Reproduction of information in this guide is permissible only if reproduction is approved by NVIDIA in writing, is reproduced without alteration, and is accompanied by all associated conditions, limitations, and notices.

Trademarks

NVIDIA, the NVIDIA logo, and DGX-2 are trademarks and/or registered trademarks of NVIDIA Corporation in the United States and other countries. Other company and product names may be trademarks of the respective companies with which they are associated.

Copyright

© 2018-2019 NVIDIA Corporation. All rights reserved.