
DOCA Documentation v2.8.0

2

Table of Contents
1 DOCA Documentation v2.8.0 .. 52

1.1 DOCA Overview.. 52

1.2 Release Notes.. 52

1.3 User Types.. 52

1.4 NVIDIA DOCA EULA .. 52

2 Quick Start ... 53

2.1 Developer Quick Start Guide.. 53

3 Installation and Setup.. 54

3.1 Profiles ... 54

3.1.1 NVIDIA MLNX_OFED Transition Guide... 54

3.2 Installation Guide for Linux ... 54

3.3 Developer Guide .. 54

4 DOCA Programming Guides .. 55

5 Applications.. 56

5.1 App Shield Agent .. 56

5.2 DMA Copy... 56

5.3 DPA All-to-all... 56

5.4 DPA L2 Reflector... 56

5.5 East-west Overlay Encryption... 56

5.6 Ethernet L2 Forwarding.. 56

5.7 File Compression.. 56

5.8 File Integrity... 56

5.9 GPU Packet Processing ... 56

5.10 IPsec Security Gateway .. 57

5.11 PCC.. 57

5.12 PSP Gateway... 57

5.13 Secure Channel.. 57

5.14 Simple Forward VNF .. 57

5.15 Switch .. 57

5.16 UROM RDMO.. 57

5.17 YARA Inspection ... 57

6 Tools .. 58

3

6.1 DOCA Bench.. 58

6.2 Capabilities Print Tool .. 58

6.3 Comm Channel Admin Tool .. 58

6.4 DPA Tools ... 58

6.5 PCC Counter Tool ... 58

6.6 Socket Relay ... 58

7 DOCA Services ... 59

7.1 Container Deployment ... 59

7.2 DOCA BlueMan Service ... 59

7.3 DOCA Firefly Service.. 59

7.4 DOCA Flow Inspector Service.. 59

7.5 DOCA HBN Service .. 59

7.6 DOCA Management Service .. 59

7.7 OpenvSwitch Acceleration (OVS in DOCA)....................................... 59

7.8 DOCA Telemetry Service ... 59

7.9 DOCA UROM Service .. 60

8 API References .. 61

8.1 DOCA Driver APIs .. 61

8.2 DOCA Libraries APIs ... 61

9 Miscellaneous.. 62

9.1 Glossary .. 62

9.2 Crypto Acceleration .. 62

9.3 DOCA Services Fluent Logger.. 62

9.4 DPU CLI ... 62

9.5 Emulated Devices ... 62

9.6 Modes of Operation... 62

9.7 Switching... 62

9.8 OpenSSL .. 62

9.9 Scalable Functions (SFs) ... 62

9.10 TLS Offload .. 63

9.11 Troubleshooting ... 63

9.12 Virtual Functions (VFs) ... 63

10 Archive ... 64

10.1 LTS Versions.. 64

4

10.2 Documentation Archives ... 64

11 DOCA SDK v2.8.0 .. 65

11.1 NVIDIA DOCA Overview ... 65

11.1.1 Introduction.. 65

11.1.2 Installation... 68

11.1.3 API... 68

11.1.4 Programming Guides.. 68

11.1.5 Applications.. 68

11.1.6 Tools .. 69

11.1.7 Services... 69

11.2 NVIDIA DOCA Release Notes ... 69

11.2.1 Introduction.. 69

11.2.2 Installation Notes ... 69

11.2.3 Supported Device Speeds .. 70

11.2.4 Technical Support ... 71

11.2.5 General Support... 71

11.2.5.1 Embedded DOCA Firmware Components71
11.2.5.2 Supported NIC Firmware Versions ...72
11.2.5.3 Embedded DOCA Drivers ..72
11.2.5.4 DOCA Packages ...76
11.2.5.5 Supported Host OS and Features per DOCA-Host Installation

Profile..76
11.2.5.6 DOCA-OFED Version Interoperability......................................88
11.2.5.7 BF-Bundle (BFB) Version Upgrade/Downgrade89
11.2.5.8 Supported DOCA Version Upgrade Using Standard Linux Tools on

BlueField ..89
11.2.5.9 API Changes...89
11.2.5.10 Device Definition...90
11.2.5.11 Unsupported Functionalities/Features/NICs.............................91

11.2.6 Changes and New Features.. 91

11.2.6.1 New Features and Updates ...91

11.2.7 Bug Fixes in This Version... 92

11.2.7.1 DOCA Bug Fixes...92
11.2.7.2 BSP Bug Fixes ...94
11.2.7.3 BMC Bug Fixes ..94

11.2.8 Known Issues... 94

11.3 BlueField and DOCA User Types..101

11.3.1 Introduction... 101

5

11.3.2 DOCA Components ... 102

11.3.3 BlueField Networking Platform User Types 104

11.3.3.1 BlueField Administrator... 104
11.3.3.2 DOCA Developer.. 105

11.4 NVIDIA DOCA EULA ...105

11.4.1 End-User License Agreement... 105

12 Quick Start for BlueField Developers 110

12.1 NVIDIA DOCA Developer Quick Start Guide.....................................110

12.1.1 Introduction... 110

12.1.2 Install BlueField Networking Platform...................................... 110

12.1.3 Install DOCA Software Package .. 110

12.1.4 Access BlueField ... 110

12.1.5 Run Reference DOCA Application .. 111

12.1.6 More Information .. 111

13 Installation and Setup.. 112

13.1 NVIDIA DOCA Profiles ..112

13.1.1 Introduction... 112

13.1.2 doca-all.. 113

13.1.3 doca-networking ... 113

13.1.4 doca-ofed ... 114

13.1.5 Which Profile to Install?... 114

13.1.6 DOCA-Host Profile Installation ... 114

13.1.7 Supported Host OS per DOCA-Host Installation Profile................... 114

13.1.8 NVIDIA MLNX_OFED to DOCA-OFED Transition Guide 115

13.1.8.1 Introduction... 115
13.1.8.2 What is DOCA-Host?.. 115
13.1.8.3 What is DOCA-OFED?... 115
13.1.8.4 Why Switch to DOCA-OFED and DOCA-Host? 116
13.1.8.5 Switching to DOCA-OFED and DOCA-Host 116
13.1.8.5.1 Installation Example of DOCA-OFED from Online Repo 116
13.1.8.5.2 Installation Example of DOCA-OFED Offline Repo 116
13.1.8.6 MLNX_EN Transition.. 116
13.1.8.7 Transition Timeline .. 116
13.1.8.8 Summary .. 117

13.2 NVIDIA DOCA Installation Guide for Linux117

13.2.1 Introduction... 117

6

13.2.1.1 Supported Platforms... 117
13.2.1.1.1 Supported BlueField Platforms .. 117
13.2.1.1.2 Supported ConnectX NICs... 121
13.2.1.2 Hardware Prerequisites ... 121
13.2.1.3 DOCA Packages ... 121
13.2.1.4 Supported Host OS per DOCA-Host Installation Profile............... 121

13.2.2 BlueField Networking Platform Image Installation 121

13.2.2.1 Installation Files ... 122
13.2.2.2 Uninstalling Software from Host... 129
13.2.2.3 Installing Prerequisites on Host for Target BlueField 129
13.2.2.4 Installing Software on Host... 130
13.2.2.4.1 DOCA Extra Package ... 134
13.2.2.5 Installing Software on BlueField... 135
13.2.2.5.1 Installing Full DOCA Image on DPU via Host 136
13.2.2.5.2 Installing Full DOCA Image on Multiple BlueField Platforms 138
13.2.2.5.3 Installing DOCA Local Repo Package on BlueField 138
13.2.2.6 Upgrading Firmware ... 139
13.2.2.7 Post-installation Procedure... 140

13.2.3 Upgrading BlueField Using Standard Linux Tools 140

13.2.4 Post-Installation Procedure... 140

13.2.5 Building Your Own BFB Installation Image.................................. 141

13.2.6 Setting Up Build Environment for Developers 141

13.2.7 Additional SDKs for DOCA... 141

13.2.7.1 Installing CUDA on NVIDIA Converged Accelerator 141
13.2.7.1.1 Configuring Operation Mode ... 141
13.2.7.1.2 Downloading and Installing CUDA Toolkit and Driver 142
13.2.7.1.3 GPUDirect RDMA ... 143
13.2.7.2 Installing Rivermax on BlueField .. 143
13.2.7.2.1 Downloading Rivermax Driver.. 143
13.2.7.2.2 Installing Rivermax Driver .. 144
13.2.7.2.3 Installing Rivermax Libraries from DOCA............................... 144

13.3 NVIDIA DOCA Developer Guide ...144

13.3.1 Introduction... 144

13.3.2 Developing Using BlueField Networking Platform......................... 145

13.3.2.1 Setup... 145
13.3.2.2 Development ... 147
13.3.2.3 Testing ... 147
13.3.2.4 Publishing ... 147

13.3.3 Developing Without BlueField Networking Platform 148

7

13.3.3.1 Setup... 145
13.3.3.2 Development ... 147
13.3.3.3 Testing ... 150
13.3.3.4 Publishing ... 147

14 DOCA Programming Guide ... 151

14.1 DOCA Programming Overview ..151

14.1.1 Hardware Overview.. 151

14.1.2 DOCA SDK Architecture.. 152

14.1.2.1 Device Subsystem.. 152
14.1.2.2 Memory Management Subsystem .. 153
14.1.2.3 Execution Model.. 155

14.2 DOCA Backward Compatibility Policy ...156

14.2.1 DOCA SDK Versioning .. 156

14.2.2 DOCA SDK API Backwards Compatibility 157

14.2.2.1 Source Compatibility .. 157
14.2.2.2 Binary Compatibility... 157
14.2.2.3 Behavioral Compatibility ... 157

14.2.3 DOCA SDK Protocol Compatibility ... 158

14.2.4 DOCA SDK Dependencies Compatibility..................................... 158

14.3 DOCA Development Best Practices ..158

14.3.1 Capability Checking ... 158

14.3.1.1 Device Capability .. 158
14.3.1.2 Library Capability.. 159
14.3.1.3 Core Capability... 159

14.3.2 Debuggability ... 159

14.3.2.1 Return value .. 159
14.3.2.2 SDK log... 160

14.4 DOCA Libraries..160

14.4.1 DOCA Common.. 160

14.4.1.1 DOCA Core .. 161
14.4.1.1.1 Introduction... 161
14.4.1.1.2 Prerequisites.. 162
14.4.1.1.3 Changes From Previous Releases .. 162
14.4.1.1.4 Architecture .. 163
14.4.1.1.5 DOCA Core Samples.. 197
14.4.1.1.6 Backward Compatibility of DOCA Core doca_buf 201
14.4.1.1.7 Sync Event .. 201
14.4.1.1.8 Mmap Advise .. 218

8

14.4.1.2 DOCA Log .. 223
14.4.1.2.1 Log Verbosity Level Enumerations....................................... 223
14.4.1.2.2 Logging Backends .. 224
14.4.1.2.3 Enabling DOCA SDK Libraries Logging 224
14.4.1.2.4 Enabling DOCA Application Logging 224
14.4.1.2.5 Logging DOCA Application Messages..................................... 225

14.4.2 DOCA Flow .. 226

14.4.2.1 Introduction... 226
14.4.2.2 Prerequisites.. 226
14.4.2.3 Architecture .. 227
14.4.2.4 Steering Domains .. 228
14.4.2.4.1 List of Steering Domains .. 228
14.4.2.4.2 Domains in VNF Mode ... 229
14.4.2.4.3 Domains in Switch Mode .. 230
14.4.2.5 API.. 230
14.4.2.6 Flow Life Cycle ... 230
14.4.2.6.1 Initialization Flow.. 230
14.4.2.6.2 Start Point... 234
14.4.2.6.3 Port Operation State .. 234
14.4.2.6.4 Create Pipe and Pipe Entry ... 236
14.4.2.6.5 Teardown.. 265
14.4.2.7 Metadata .. 265
14.4.2.8 Packet Processing .. 266
14.4.2.9 Debug and Trace Features .. 267
14.4.2.9.1 Installation.. 267
14.4.2.9.2 Using Trace Libraries .. 267
14.4.2.9.3 Trace Features.. 268
14.4.2.10 DOCA Flow Samples.. 268
14.4.2.10.1 Sample Prerequisites .. 268
14.4.2.10.2 Running the Sample ... 269
14.4.2.10.3 Samples.. 270
14.4.2.11 Field String Support Appendix ... 298
14.4.2.11.1 Supported Field String .. 298
14.4.2.11.2 Supported Non-field String ... 305
14.4.2.12 DOCA Flow Connection Tracking ... 305
14.4.2.12.1 Introduction... 306
14.4.2.12.2 Architecture .. 306
14.4.2.12.3 Prerequisites.. 308
14.4.2.12.4 Actions... 310
14.4.2.12.5 Changeable Forward... 312
14.4.2.12.6 API.. 313

9

14.4.2.12.7 DOCA Flow Connection Tracking Samples 318
14.4.2.13 DOCA Flow Tune Server ... 324
14.4.2.13.1 Introduction... 324
14.4.2.13.2 Prerequisites.. 325
14.4.2.13.3 API.. 325
14.4.2.13.4 DOCA Flow Tune Server Samples... 328
14.4.2.13.5 Flow Visualization.. 330

14.4.3 DPA Subsystem.. 333

14.4.3.1 Multiple Processes on Multiple Execution Units 334
14.4.3.2 DPA RTOS .. 335
14.4.3.3 DPA Memory and Caches .. 335
14.4.3.4 DPA Access to NIC Accelerators .. 335
14.4.3.5 DPA Development .. 336
14.4.3.5.1 Overview .. 336
14.4.3.5.2 FlexIO.. 348
14.4.3.5.3 DPA Application Authentication .. 357
14.4.3.5.4 Known Limitations ... 377
14.4.3.6 DOCA DPA.. 378
14.4.3.6.1 Introduction... 378
14.4.3.6.2 Prerequisites.. 379
14.4.3.6.3 Library Changes From Previous Releases 379
14.4.3.6.4 Software Architecture... 379
14.4.3.6.5 Hello World Example .. 404
14.4.3.6.6 Samples.. 407
14.4.3.7 DOCA PCC ... 412
14.4.3.7.1 Introduction... 412
14.4.3.7.2 Prerequisites.. 412
14.4.3.7.3 Changes From Previous Releases .. 413
14.4.3.7.4 Dependencies... 414
14.4.3.7.5 Architecture .. 414
14.4.3.7.6 API.. 417

14.4.4 DOCA DMA... 420

14.4.4.1 Introduction... 420
14.4.4.2 Prerequisites.. 421
14.4.4.3 Library Changes From Previous Releases 421
14.4.4.3.1 Changes in 2.8.0 ... 421
14.4.4.4 Environment .. 421
14.4.4.5 Architecture .. 421
14.4.4.5.1 Objects .. 422
14.4.4.6 Configuration Phase ... 423
14.4.4.6.1 Configurations .. 423

10

14.4.4.6.2 Device Support ... 423
14.4.4.6.3 Buffer Support.. 424
14.4.4.7 Execution Phase.. 424
14.4.4.7.1 Tasks ... 424
14.4.4.7.2 Events.. 425
14.4.4.8 State Machine .. 425
14.4.4.8.1 Idle ... 425
14.4.4.8.2 Starting .. 426
14.4.4.8.3 Running .. 426
14.4.4.8.4 Stopping ... 426
14.4.4.9 Alternative Datapath Options .. 426
14.4.4.9.1 GPU Datapath .. 427
14.4.4.10 DOCA DMA Samples .. 427
14.4.4.10.1 Running the Samples .. 427
14.4.4.10.2 Samples.. 428

14.4.5 DOCA Comch .. 429

14.4.5.1 DOCA Comch – New .. 430
14.4.5.1.1 Introduction... 430
14.4.5.1.2 Prerequisites.. 431
14.4.5.1.3 Changes From Previous Release ... 431
14.4.5.1.4 Environment .. 432
14.4.5.1.5 Architecture .. 432
14.4.5.1.6 Configuration Phase ... 438
14.4.5.1.7 Execution Phase.. 440
14.4.5.1.8 State Machine .. 445
14.4.5.1.9 Alternative Datapath Options .. 447
14.4.5.1.10 DOCA Comch Samples ... 450
14.4.5.2 DOCA Comm Channel – Deprecated 452
14.4.5.2.1 Introduction... 452
14.4.5.2.2 Prerequisites.. 453
14.4.5.2.3 API.. 453
14.4.5.2.4 Limitations .. 465
14.4.5.2.5 Usage .. 466
14.4.5.2.6 DOCA Comm Channel Samples ... 470

14.4.6 DOCA UROM ... 472

14.4.6.1 Introduction... 472
14.4.6.2 Prerequisites.. 472
14.4.6.3 Architecture .. 473
14.4.6.3.1 UROM Deployment ... 473
14.4.6.3.2 UROM Framework .. 473
14.4.6.3.3 UROM Installation .. 475

11

14.4.6.4 API.. 477
14.4.6.4.1 DOCA_UROM_SERVICE_FILE... 477
14.4.6.4.2 doca_urom_service .. 478
14.4.6.4.3 doca_urom_service_plugin_info ... 478
14.4.6.4.4 doca_urom_service_get_workers_by_gid_task 478
14.4.6.4.5 doca_urom_service_create... 478
14.4.6.4.6 doca_urom_service_destroy.. 479
14.4.6.4.7 doca_urom_service_set_max_comm_msg_size 479
14.4.6.4.8 doca_urom_service_as_ctx ... 479
14.4.6.4.9 doca_urom_service_get_plugins_list.................................... 479
14.4.6.4.10 doca_urom_service_get_cpuset ... 480
14.4.6.4.11 doca_urom_service_get_workers_by_gid_task_allocate_init 480
14.4.6.4.12 doca_urom_service_get_workers_by_gid_task_release.............. 480
14.4.6.4.13 doca_urom_service_get_workers_by_gid_task_as_task.............. 480
14.4.6.4.14 doca_urom_service_get_workers_by_gid_task_get_workers_count .48

1
14.4.6.4.15 doca_urom_service_get_workers_by_gid_task_get_worker_ids.... 481
14.4.6.4.16 doca_urom_worker .. 481
14.4.6.4.17 doca_urom_worker_cmd_task ... 481
14.4.6.4.18 doca_urom_worker_cmd_task_completion_cb_t 481
14.4.6.4.19 doca_urom_worker_create... 482
14.4.6.4.20 doca_urom_worker_destroy.. 482
14.4.6.4.21 doca_urom_worker_set_service ... 482
14.4.6.4.22 doca_urom_worker_set_id ... 482
14.4.6.4.23 doca_urom_worker_set_gid .. 483
14.4.6.4.24 doca_urom_worker_set_plugins ... 483
14.4.6.4.25 doca_urom_worker_set_env ... 483
14.4.6.4.26 doca_urom_worker_as_ctx ... 484
14.4.6.4.27 doca_urom_worker_cmd_task_allocate_init 484
14.4.6.4.28 doca_urom_worker_cmd_task_release 484
14.4.6.4.29 doca_urom_worker_cmd_task_set_plugin 484
14.4.6.4.30 doca_urom_worker_cmd_task_set_cb.................................. 484
14.4.6.4.31 doca_urom_worker_cmd_task_get_payload 485
14.4.6.4.32 doca_urom_worker_cmd_task_get_response.......................... 485
14.4.6.4.33 doca_urom_worker_cmd_task_get_user_data 485
14.4.6.4.34 doca_urom_worker_cmd_task_as_task................................. 485
14.4.6.4.35 doca_urom_domain.. 486
14.4.6.4.36 doca_urom_domain_allgather_cb_t..................................... 486
14.4.6.4.37 doca_urom_domain_req_test_cb_t 486
14.4.6.4.38 doca_urom_domain_req_free_cb_t 486
14.4.6.4.39 doca_urom_domain_oob_coll .. 486
14.4.6.4.40 doca_urom_domain_create .. 487

12

14.4.6.4.41 doca_urom_domain_destroy ... 487
14.4.6.4.42 doca_urom_domain_set_workers.. 487
14.4.6.4.43 doca_urom_domain_add_buffer... 488
14.4.6.4.44 doca_urom_domain_set_oob... 488
14.4.6.4.45 doca_urom_domain_as_ctx... 488
14.4.6.5 Execution Model.. 488
14.4.6.6 UROM Building Blocks ... 489
14.4.6.6.1 Program Flow ... 489
14.4.6.6.2 Plugin Development ... 492
14.4.6.7 DOCA UROM Samples .. 494
14.4.6.7.1 Sample Prerequisite ... 495
14.4.6.7.2 Running the Sample ... 495
14.4.6.7.3 UROM Plugin Samples ... 496
14.4.6.7.4 UROM Program Samples... 496

14.4.7 DOCA RDMA ... 498

14.4.7.1 Introduction... 498
14.4.7.2 Prerequisites.. 498
14.4.7.3 Environment .. 499
14.4.7.4 Architecture .. 499
14.4.7.4.1 Objects .. 499
14.4.7.5 Configuration Phase ... 500
14.4.7.5.1 Configurations .. 500
14.4.7.5.2 Device Support ... 501
14.4.7.5.3 Buffer Support.. 502
14.4.7.5.4 Establishing RDMA Connections .. 502
14.4.7.6 Execution Phase.. 506
14.4.7.6.1 Tasks ... 506
14.4.7.6.2 Events.. 522
14.4.7.7 State Machine .. 522
14.4.7.7.1 Idle ... 522
14.4.7.7.2 Starting .. 523
14.4.7.7.3 Running .. 523
14.4.7.7.4 Stopping ... 523
14.4.7.8 Alternative Datapath Options .. 524
14.4.7.8.1 DPA Datapath ... 524
14.4.7.8.2 GPU Datapath .. 524
14.4.7.9 DOCA RDMA Samples... 525
14.4.7.9.1 Running the Samples .. 525
14.4.7.9.2 Samples.. 526

14.4.8 DOCA Ethernet ... 534

14.4.8.1 Introduction... 534

13

14.4.8.2 Prerequisites.. 535
14.4.8.3 Changes From Previous Releases .. 535
14.4.8.3.1 Changes in 2.8.0 ... 535
14.4.8.4 Environment .. 536
14.4.8.5 Architecture .. 536
14.4.8.5.1 DOCA ETH RXQ.. 536
14.4.8.5.2 DOCA ETH TXQ.. 540
14.4.8.5.3 Objects .. 541
14.4.8.6 Configurations Phase .. 542
14.4.8.6.1 Configurations .. 542
14.4.8.6.2 Mandatory Configurations .. 542
14.4.8.6.3 Optional Configurations... 543
14.4.8.6.4 Device Support ... 543
14.4.8.6.5 Buffer Support.. 543
14.4.8.7 Execution Phase.. 544
14.4.8.7.1 Tasks ... 544
14.4.8.7.2 Events.. 548
14.4.8.7.3 Task Batch... 550
14.4.8.7.4 Event Batch ... 553
14.4.8.8 State Machine .. 554
14.4.8.8.1 Idle ... 554
14.4.8.8.2 Starting .. 554
14.4.8.8.3 Running .. 554
14.4.8.8.4 Stopping ... 555
14.4.8.9 Alternative Datapath Options .. 555
14.4.8.10 DOCA ETH Samples... 556
14.4.8.10.1 Running the Samples .. 557
14.4.8.10.2 Samples.. 557

14.4.9 DOCA GPUNetIO .. 562

14.4.9.1 Introduction... 562
14.4.9.2 Changes From Previous Releases .. 564
14.4.9.2.1 Changes in 2.8.. 564
14.4.9.3 System Configuration.. 565
14.4.9.3.1 Application on Host CPU .. 565
14.4.9.3.2 Application on BlueField Converged Arm CPU......................... 568
14.4.9.3.3 PCIe Configuration... 569
14.4.9.3.4 Hugepages .. 570
14.4.9.3.5 GPU Configuration ... 570
14.4.9.4 Architecture .. 573
14.4.9.5 API.. 574
14.4.9.5.1 CPU Functions .. 575

14

14.4.9.5.2 DOCA PE ... 579
14.4.9.5.3 Strong Mode vs. Weak Mode.. 579
14.4.9.5.4 GPU Functions – Ethernet... 580
14.4.9.5.5 GPU Functions – RDMA .. 584
14.4.9.5.6 GPU Functions – DMA .. 588
14.4.9.6 Building Blocks ... 589
14.4.9.6.1 Initialize GPU and NIC... 589
14.4.9.6.2 Semaphore .. 590
14.4.9.6.3 Ethernet Queue with GPU Data Path.................................... 590
14.4.9.6.4 RDMA Queue with GPU Data Path 594
14.4.9.7 GPUNetIO Samples... 596
14.4.9.7.1 Ethernet Send Wait Time ... 596
14.4.9.7.2 Ethernet Simple Receive.. 599
14.4.9.7.3 RDMA Client Server .. 600
14.4.9.7.4 GPU DMA Copy.. 603

14.4.10 DOCA App Shield ... 603

14.4.10.1 Introduction... 603
14.4.10.2 Prerequisites.. 604
14.4.10.3 Dependencies... 605
14.4.10.4 API.. 605
14.4.10.4.1 doca_apsh_dma_dev_set ... 606
14.4.10.4.2 Capabilities Per System ... 606
14.4.10.5 App Shield Initialization and Teardown................................. 611
14.4.10.5.1 doca_apsh_ctx.. 611
14.4.10.5.2 doca_apsh_system ... 612
14.4.10.5.3 doca_apsh_config.py Tool .. 613
14.4.10.6 DOCA App Shield Samples... 614
14.4.10.6.1 Sample Prerequisites .. 614
14.4.10.6.2 Running the Sample ... 614
14.4.10.6.3 Samples.. 615

14.4.11 DOCA Compress .. 619

14.4.11.1 Introduction... 620
14.4.11.2 Prerequisites.. 620
14.4.11.3 Changes From Previous Releases .. 620
14.4.11.3.1 Changes in 2.8.. 620
14.4.11.4 Environment .. 620
14.4.11.5 Architecture .. 621
14.4.11.5.1 Supported Compress/Decompress Algorithms 621
14.4.11.5.2 Supported Checksum Methods ... 621
14.4.11.5.3 Objects .. 622
14.4.11.5.4 Source and Destination Location .. 622

15

14.4.11.6 Configuration Phase ... 623
14.4.11.6.1 Configurations .. 623
14.4.11.6.2 Device Support ... 623
14.4.11.6.3 Buffer Support.. 623
14.4.11.7 Execution Phase.. 624
14.4.11.7.1 Tasks ... 624
14.4.11.7.2 Events.. 629
14.4.11.8 State Machine .. 629
14.4.11.8.1 States .. 629
14.4.11.9 Alternative Datapath Options .. 630
14.4.11.10 DOCA Compress Samples.. 631
14.4.11.10.1 Running the Sample ... 631
14.4.11.10.2 Samples.. 632
14.4.11.10.3 Backward Compatibility... 633

14.4.12 DOCA SHA ... 633

14.4.12.1 Introduction... 633
14.4.12.2 Prerequisites.. 634
14.4.12.3 Environment .. 634
14.4.12.4 Architecture .. 634
14.4.12.4.1 Objects .. 635
14.4.12.5 Configuration Phase ... 636
14.4.12.5.1 Configurations .. 636
14.4.12.5.2 Device Support ... 636
14.4.12.5.3 Buffer Support.. 636
14.4.12.6 Execution Phase.. 637
14.4.12.6.1 Tasks ... 637
14.4.12.6.2 Events.. 641
14.4.12.7 State Machine .. 641
14.4.12.7.1 Idle ... 641
14.4.12.7.2 Starting .. 641
14.4.12.7.3 Running .. 641
14.4.12.7.4 Stopping ... 642
14.4.12.8 Alternative Datapath Options .. 642
14.4.12.9 DOCA SHA Samples... 642
14.4.12.9.1 Running the Samples .. 642
14.4.12.9.2 Samples.. 643

14.4.13 DOCA Erasure Coding .. 644

14.4.13.1 Introduction... 644
14.4.13.1.1 Glossary ... 645
14.4.13.2 Prerequisites.. 645
14.4.13.3 Environment .. 645

16

14.4.13.4 Architecture .. 645
14.4.13.4.1 Flows... 646
14.4.13.4.2 Create Redundancy Blocks ... 647
14.4.13.4.3 Recover Block... 648
14.4.13.4.4 Objects .. 648
14.4.13.5 Configuration Phase ... 649
14.4.13.5.1 Configurations .. 649
14.4.13.5.2 Device Support ... 649
14.4.13.5.3 Buffer Support.. 650
14.4.13.6 Execution Phase.. 650
14.4.13.6.1 Matrix Generate.. 650
14.4.13.6.2 Tasks ... 652
14.4.13.7 DOCA Erasure Coding Samples ... 658
14.4.13.7.1 Sample Prerequisites .. 658
14.4.13.7.2 Running the Sample ... 659
14.4.13.7.3 Samples.. 659

14.4.14 DOCA AES-GCM ... 661

14.4.14.1 Introduction... 661
14.4.14.2 Prerequisites.. 662
14.4.14.3 Environment .. 662
14.4.14.4 Architecture .. 662
14.4.14.4.1 Objects .. 663
14.4.14.5 Configuration Phase ... 664
14.4.14.5.1 Configurations .. 664
14.4.14.5.2 Device Support ... 664
14.4.14.5.3 Buffer Support.. 664
14.4.14.6 Execution Phase.. 665
14.4.14.6.1 Tasks ... 665
14.4.14.6.2 Events.. 668
14.4.14.7 State Machine .. 668
14.4.14.7.1 Idle ... 668
14.4.14.7.2 Starting .. 669
14.4.14.7.3 Running .. 669
14.4.14.7.4 Stopping ... 669
14.4.14.8 Alternative Datapath Options .. 669
14.4.14.9 DOCA AES-GCM Samples... 670
14.4.14.9.1 Running the Samples .. 670
14.4.14.9.2 Samples.. 671

14.4.15 DOCA Rivermax... 672

14.4.15.1 Introduction... 672
14.4.15.2 Prerequisites.. 672

17

14.4.15.3 Environment .. 672
14.4.15.4 Architecture .. 673
14.4.15.4.1 Objects .. 673
14.4.15.5 Configuration Phase ... 673
14.4.15.5.1 Configurations .. 673
14.4.15.5.2 Device Support ... 674
14.4.15.5.3 Buffer Support.. 674
14.4.15.6 Execution Phase.. 674
14.4.15.6.1 Events.. 674
14.4.15.6.2 Runtime Configurations ... 675
14.4.15.7 State Machine .. 675
14.4.15.7.1 Idle ... 675
14.4.15.7.2 Starting .. 676
14.4.15.7.3 Running .. 676
14.4.15.7.4 Stopping ... 676
14.4.15.8 DOCA Rivermax Samples .. 676
14.4.15.8.1 Running the Samples .. 676
14.4.15.8.2 Samples.. 677

14.4.16 DOCA Telemetry Exporter... 680

14.4.16.1 Introduction... 680
14.4.16.2 Architecture .. 681
14.4.16.2.1 DOCA Telemetry Exporter API Walkthrough 681
14.4.16.2.2 DOCA Telemetry Exporter NetFlow API Walkthrough 683
14.4.16.3 API.. 684
14.4.16.3.1 DOCA Telemetry Exporter Buffer Attributes 684
14.4.16.3.2 DOCA Telemetry Exporter File Write Attributes 684
14.4.16.3.3 DOCA Telemetry Exporter IPC Attributes 684
14.4.16.3.4 DOCA Telemetry Exporter Source Attributes........................... 685
14.4.16.3.5 DOCA Telemetry Exporter Netflow Collector Attributes 685
14.4.16.3.6 doca_telemetry_exporter_source_report 686
14.4.16.3.7 doca_telemetry_exporter_schema_add_type 686
14.4.16.4 Telemetry Data Format ... 686
14.4.16.5 Data Outputs ... 687
14.4.16.5.1 Inter-process Communication.. 687
14.4.16.5.2 NetFlow ... 688
14.4.16.5.3 Fluent Bit.. 688
14.4.16.5.4 Prometheus ... 689
14.4.16.6 DOCA Telemetry Exporter Samples 690
14.4.16.6.1 Running the Sample ... 690
14.4.16.6.2 Samples.. 691

14.4.17 DOCA Telemetry Diagnostics ... 692

18

14.4.17.1 Introduction... 692
14.4.17.2 Architecture .. 692
14.4.17.2.1 Synchronized Start... 692
14.4.17.2.2 Output Formats .. 693
14.4.17.2.3 Device and Ownership... 694
14.4.17.2.4 State Machine .. 695
14.4.17.2.5 Data IDs.. 695
14.4.17.3 Telemetry Diagnostics Sample ... 695
14.4.17.4 Appendix - List of Supported Data IDs 696
14.4.17.5 Known Limitations ... 699

14.4.18 DOCA Device Emulation ... 699

14.4.18.1 Introduction... 699
14.4.18.2 Known Limitations ... 700
14.4.18.3 DOCA DevEmu PCI.. 700
14.4.18.3.1 Introduction... 700
14.4.18.3.2 Prerequisites.. 701
14.4.18.3.3 Environment .. 701
14.4.18.3.4 Architecture .. 702
14.4.18.3.5 Device Support ... 706
14.4.18.3.6 PCIe Device ... 706
14.4.18.3.7 DOCA DevEmu PCI Generic ... 709
14.4.18.4 DOCA DevEmu Virtio ... 736
14.4.18.4.1 Introduction... 736
14.4.18.4.2 Prerequisites.. 736
14.4.18.4.3 Environment .. 737
14.4.18.4.4 Architecture .. 737
14.4.18.4.5 DOCA DevEmu Virtio-FS ... 740

14.5 DOCA Utils...748

14.5.1 DOCA Arg Parser .. 748

14.5.1.1 Introduction... 748
14.5.1.2 API.. 748
14.5.1.2.1 doca_argp_param.. 749
14.5.1.2.2 doca_argp_param_create... 749
14.5.1.2.3 doca_argp_register_param ... 749
14.5.1.2.4 doca_argp_set_dpdk_program ... 749
14.5.1.2.5 doca_argp_start.. 750
14.5.1.3 DPDK Flags .. 750
14.5.1.4 DOCA General Flags.. 751
14.5.1.5 DOCA Program Flags ... 751
14.5.1.6 JSON File Example ... 751

14.6 DOCA Drivers..752

19

14.6.1 DOCA UCX ... 752

14.6.1.1 Introduction... 752
14.6.1.2 Prerequisites.. 752
14.6.1.3 Architecture .. 753
14.6.1.3.1 UCP Objects .. 754
14.6.1.4 API.. 755
14.6.1.4.1 ucs_status_t .. 755
14.6.1.4.2 ucp_init.. 755
14.6.1.4.3 ucp_cleanup .. 756
14.6.1.4.4 ucp_worker_create .. 756
14.6.1.4.5 ucp_worker_destroy... 757
14.6.1.4.6 ucp_listener_create ... 757
14.6.1.4.7 ucp_listener_destroy .. 758
14.6.1.4.8 ucp_ep_create ... 758
14.6.1.4.9 ucs_status_ptr_t ... 759
14.6.1.4.10 ucp_ep_close_nbx ... 759
14.6.1.4.11 ucp_request_param_t ... 760
14.6.1.4.12 ucp_worker_progress.. 761
14.6.1.4.13 ucp_am_send_nbx ... 761
14.6.1.4.14 ucp_worker_set_am_recv_handler...................................... 762
14.6.1.4.15 ucp_am_recv_data_nbx... 763
14.6.1.5 UCX Best Practices... 764
14.6.1.5.1 Initialization .. 764
14.6.1.5.2 Communications ... 764

14.6.2 MLX Drivers (MLNX_OFED) .. 764

14.6.2.1 InfiniBand Network .. 765
14.6.2.1.1 InfiniBand Interface ... 765
14.6.2.1.2 NVIDIA SM ... 765
14.6.2.1.3 QoS - Quality of Service... 802
14.6.2.1.4 IP over InfiniBand (IPoIB) ... 804
14.6.2.1.5 Advanced Transport.. 811
14.6.2.1.6 Optimized Memory Access .. 813
14.6.2.1.7 NVIDIA PeerDirect .. 816
14.6.2.1.8 CPU Overhead Distribution ... 817
14.6.2.1.9 Out-of-Order (OOO) Data Placement 817
14.6.2.1.10 IB Router .. 817
14.6.2.1.11 MAD Congestion Control .. 818
14.6.2.2 Storage Protocols .. 819
14.6.2.2.1 SRP - SCSI RDMA Protocol ... 820
14.6.2.2.2 iSCSI Extensions for RDMA (iSER) .. 829
14.6.2.2.3 Lustre .. 830

20

14.6.2.2.4 NVME-oF - NVM Express over Fabrics 831
14.6.2.3 Virtualization ... 831
14.6.2.3.1 Single Root IO Virtualization (SR-IOV) 831
14.6.2.3.2 Enabling Paravirtualization... 851
14.6.2.3.3 VXLAN Hardware Stateless Offloads 852
14.6.2.3.4 Q-in-Q Encapsulation per VF in Linux (VST) 853
14.6.2.3.5 802.1Q Double-Tagging.. 855
14.6.2.3.6 Scalable Functions ... 855
14.6.2.4 Resiliency ... 855
14.6.2.4.1 Reset Flow .. 856
14.6.2.5 Docker Containers ... 858
14.6.2.5.1 Docker Using SR-IOV ... 858
14.6.2.5.2 Kubernetes Using SR-IOV.. 858
14.6.2.5.3 Kubernetes with Shared HCA... 859
14.6.2.6 HPC-X .. 859
14.6.2.7 Fast Driver Unload ... 859

15 DOCA Applications .. 860

15.1 Introduction...860

15.1.1 Installation.. 860

15.1.2 Prerequisites.. 860

15.1.3 Compilation... 860

15.1.4 Developer Configurations... 861

15.2 Application Use of DOCA Libs ..861

15.3 Applications...863

15.3.1 App Shield Agent ... 863

15.3.2 DMA Copy.. 863

15.3.3 DPA All-to-all.. 863

15.3.4 DPA L2 Reflector.. 863

15.3.5 East-West Overlay Encryption.. 863

15.3.6 Ethernet L2 Forwarding... 863

15.3.7 File Compression... 863

15.3.8 File Integrity.. 864

15.3.9 GPU Packet Processing .. 864

15.3.10 IPsec Gateway.. 864

15.3.11 Programmable Congestion Control .. 864

15.3.12 PSP Gateway.. 864

15.3.13 Secure Channel... 864

21

15.3.14 Simple Forward VNF ... 864

15.3.15 Switch ... 864

15.3.16 UROM RDMO... 865

15.3.17 YARA Inspection .. 865

15.4 NVIDIA DOCA App Shield Agent Application Guide.............................865

15.4.1 Introduction... 865

15.4.2 System Design .. 865

15.4.3 Application Architecture.. 866

15.4.4 DOCA Libraries.. 867

15.4.5 Compiling the Application .. 867

15.4.5.1 Compiling All Applications .. 867
15.4.5.2 Compiling Only the Current Application................................ 868
15.4.5.3 Troubleshooting .. 868

15.4.6 Running the Application... 868

15.4.6.1 Prerequisites.. 868
15.4.6.2 Application Execution ... 870
15.4.6.3 Command Line Flags... 871
15.4.6.4 Troubleshooting .. 873

15.4.7 Application Code Flow .. 873

15.4.8 References .. 874

15.5 NVIDIA DOCA DMA Copy Application Guide874

15.5.1 Introduction... 874

15.5.2 System Design .. 875

15.5.3 Application Architecture.. 875

15.5.4 DOCA Libraries.. 876

15.5.5 Compiling the Application .. 877

15.5.5.1 Compiling All Applications .. 877
15.5.5.2 Compiling Only the Current Application................................ 877
15.5.5.3 Troubleshooting .. 878

15.5.6 Running the Application... 878

15.5.6.1 Application Execution ... 878
15.5.6.2 Command Line Flags... 879
15.5.6.3 Troubleshooting .. 880

15.5.7 Application Code Flow .. 880

15.5.8 References .. 882

15.6 NVIDIA DOCA DPA All-to-all Application Guide882

22

15.6.1 Introduction... 882

15.6.2 System Design .. 882

15.6.3 Application Architecture.. 883

15.6.4 DOCA Libraries.. 883

15.6.5 Dependencies... 884

15.6.6 Compiling the Application .. 884

15.6.6.1 Compiling All Applications .. 884
15.6.6.2 Compiling DPA All-to-all Application Only 885
15.6.6.3 Troubleshooting .. 885

15.6.7 Running the Application... 885

15.6.7.1 Prerequisites.. 885
15.6.7.2 Application Execution ... 886
15.6.7.3 Command Line Flags... 887
15.6.7.4 Troubleshooting .. 888

15.6.8 Application Code Flow .. 888

15.6.9 References .. 891

15.7 NVIDIA DOCA DPA L2 Reflector Application Guide892

15.7.1 Introduction... 892

15.7.2 System Design .. 892

15.7.3 Application Architecture.. 893

15.7.4 DOCA Libraries and Drivers ... 894

15.7.5 Dependencies... 894

15.7.6 Compiling the Application .. 895

15.7.6.1 Compiling All Applications .. 895
15.7.6.2 Compiling DPA L2 Reflector Application Only 895
15.7.6.3 Troubleshooting .. 896

15.7.7 Running the Application... 896

15.7.7.1 Application Execution ... 896
15.7.7.2 Command Line Flags... 897
15.7.7.3 Troubleshooting .. 898

15.7.8 Application Code Flow .. 898

15.7.9 References .. 899

15.8 NVIDIA DOCA East-West Overlay Encryption Application899

15.8.1 Introduction... 899

15.8.2 System Design .. 900

15.8.3 Application Architecture.. 901

23

15.8.4 DOCA Libraries.. 902

15.8.5 Configuration Flow .. 902

15.8.5.1 Enabling IPsec Packet Offload ... 902
15.8.5.2 Configuring OVS IPsec ... 903
15.8.5.2.1 Authentication Methods... 905
15.8.5.3 Ensuring IPsec is Configured ... 908
15.8.5.4 Configuring OVS IPsec Using strongSwan Manually.................... 909
15.8.5.5 swanctl.conf Files.. 910

15.8.6 Running the Application... 912

15.8.6.1 Installation.. 912
15.8.6.2 Application Execution ... 912
15.8.6.2.1 Script Parameters.. 912
15.8.6.2.2 Using JSON Parameters File .. 914
15.8.6.2.3 Passing Parameters on Command Line.................................. 915
15.8.6.3 Troubleshooting .. 916
15.8.6.4 Building strongSwan ... 916
15.8.6.5 Reverting IPsec Configuration.. 917

15.8.7 References .. 917

15.9 NVIDIA DOCA Eth L2 Forwarding Application Guide...........................917

15.9.1 Introduction... 917

15.9.2 System Design .. 917

15.9.3 Application Architecture.. 918

15.9.4 DOCA Libraries.. 919

15.9.5 Compiling the Application .. 919

15.9.5.1 Installation.. 919
15.9.5.2 Overview .. 920
15.9.5.3 Compiling All Applications .. 920
15.9.5.4 Compiling Only the Current Application................................ 920
15.9.5.5 Troubleshooting .. 921

15.9.6 Running the Application... 921

15.9.6.1 Application Execution ... 921
15.9.6.2 Command Line Flags... 922
15.9.6.3 Troubleshooting .. 923

15.9.7 Application Code Flow .. 923

15.9.8 References .. 924

15.10 NVIDIA DOCA File Compression Application Guide924

15.10.1 Introduction... 924

15.10.2 System Design .. 924

24

15.10.3 Application Architecture.. 925

15.10.4 DOCA Libraries.. 927

15.10.5 Compiling the Application .. 927

15.10.5.1 Compiling All Applications .. 927
15.10.5.2 Compiling File Compression Application Only 927
15.10.5.3 Troubleshooting .. 928

15.10.6 Running the Application... 928

15.10.6.1 Application Execution ... 928
15.10.6.2 Command Line Flags... 929
15.10.6.3 Troubleshooting .. 930

15.10.7 Application Code Flow .. 930

15.10.8 References .. 931

15.11 NVIDIA DOCA File Integrity Application Guide931

15.11.1 Introduction... 931

15.11.2 System Design .. 932

15.11.3 Application Architecture.. 932

15.11.4 DOCA Libraries.. 933

15.11.5 Compiling the Application .. 934

15.11.5.1 Compiling All Applications .. 934
15.11.5.2 Compiling Only the Current Application................................ 934
15.11.5.3 Troubleshooting .. 935

15.11.6 Running the Application... 935

15.11.6.1 Application Execution ... 935
15.11.6.2 Command Line Flags... 936
15.11.6.3 Troubleshooting .. 937

15.11.7 Application Code Flow .. 937

15.11.8 References .. 938

15.12 NVIDIA DOCA GPU Packet Processing Application Guide938

15.12.1 Introduction... 939

15.12.2 System Design .. 939

15.12.3 Application Architecture.. 939

15.12.3.1 ICMP Network Traffic .. 940
15.12.3.2 UDP Network Traffic ... 942
15.12.3.3 TCP Network Traffic and HTTP Echo Server 943
15.12.3.3.1 Step 1: TCP Connection Establishment 944
15.12.3.3.2 Step 2: TCP Data Processing.. 944
15.12.3.3.3 Step 3: HTTP Echo Server... 944

25

15.12.3.3.4 Step 4: TCP Connection Closure ... 944

15.12.4 DOCA Libraries.. 946

15.12.5 Dependencies... 946

15.12.6 Compiling the Application .. 946

15.12.6.1 Compiling All Applications .. 947
15.12.6.2 Compiling Only the Current Application................................ 947
15.12.6.3 Troubleshooting .. 948

15.12.7 Running the Application... 948

15.12.7.1 Command Line Flags... 948
15.12.7.2 Troubleshooting .. 949

15.12.8 Application Code Flow .. 950

15.12.9 References .. 951

15.13 NVIDIA DOCA IPsec Security Gateway Application Guide.....................951

15.13.1 Introduction... 951

15.13.2 System Design .. 952

15.13.3 Application Architecture.. 954

15.13.3.1 Static Configuration ... 954
15.13.3.2 Dynamic Configuration.. 955
15.13.3.3 DOCA Flow Modes .. 955
15.13.3.3.1 VNF Mode.. 956
15.13.3.3.2 Switch Mode .. 958

15.13.4 DOCA Libraries.. 958

15.13.5 Compiling the Application .. 958

15.13.5.1 Prerequisites.. 959
15.13.5.2 Compiling All Applications .. 959
15.13.5.3 Compiling Only the Current Application................................ 959
15.13.5.4 Troubleshooting .. 960

15.13.6 Running the Application... 960

15.13.6.1 Prerequisites.. 960
15.13.6.2 Application Execution ... 961
15.13.6.3 Command Line Flags... 962
15.13.6.4 Static Configuration IPsec Rules ... 964
15.13.6.5 Dynamic Configuration IPsec Rules...................................... 967
15.13.6.6 Troubleshooting .. 968

15.13.7 Application Code Flow .. 968

15.13.8 Keying Daemon Integration (StrongSwan).................................. 970

15.13.8.1 End-to-end Architecture .. 970
15.13.8.2 Running the Solution .. 974

26

15.13.8.3 Building strongSwan ... 975

15.13.9 References .. 975

15.14 NVIDIA DOCA PCC Application Guide ..975

15.14.1 Introduction... 976

15.14.2 System Design .. 976

15.14.3 Application Architecture.. 977

15.14.4 DOCA Libraries.. 978

15.14.5 Dependencies... 978

15.14.6 Compiling the Application .. 978

15.14.6.1 Compiling All Applications .. 979
15.14.6.2 Compiling Only the Current Application................................ 979
15.14.6.3 Compilation Options... 979
15.14.6.4 Troubleshooting .. 980

15.14.7 Running the Application... 980

15.14.7.1 Prerequisites.. 980
15.14.7.2 Application Execution ... 980
15.14.7.3 Command Line Flags... 981
15.14.7.4 Troubleshooting .. 984

15.14.8 Application Code Flow .. 984

15.14.9 Port Programmable Congestion Control Register.......................... 986

15.14.9.1 Usage .. 986
15.14.9.2 Internal Default Algorithm.. 988
15.14.9.3 Counters... 988

15.14.10 References .. 989

15.15 NVIDIA DOCA PSP Gateway Application Guide989

15.15.1 Introduction... 989

15.15.2 System Design .. 990

15.15.3 Application Architecture.. 992

15.15.3.1 Startup vs. On-Demand Tunnel Creation 992
15.15.3.2 Sampling... 994
15.15.3.3 Pipelines... 995
15.15.3.3.1 Host-to-Network Flows.. 995
15.15.3.3.2 Network-to-Host Flows.. 996
15.15.3.4 DOCA Libraries.. 997

15.15.4 Compiling the Application .. 997

15.15.4.1 Prerequisites.. 997
15.15.4.2 Compiling All Applications .. 998
15.15.4.3 Compiling Only the Current Application................................ 998

27

15.15.4.4 Troubleshooting .. 998

15.15.5 Running the Application... 999

15.15.5.1 Prerequisites.. 999
15.15.5.2 Application Execution ... 999
15.15.5.3 Command Line Flags.. 1000
15.15.5.4 Tunnel Mappings File ... 1003
15.15.5.5 Troubleshooting ... 1003

15.15.6 Application Code Flow ...1003

15.15.6.1 References ... 1007

15.16 NVIDIA DOCA Secure Channel Application Guide 1007

15.16.1 Introduction..1007

15.16.2 System Design ...1008

15.16.3 Application Architecture...1008

15.16.4 DOCA Libraries...1009

15.16.5 Compiling the Application ...1009

15.16.5.1 Compiling All Applications ... 1009
15.16.5.2 Compiling Only the Current Application............................... 1010
15.16.5.3 Troubleshooting ... 1010

15.16.6 Running the Application..1010

15.16.6.1 Application Execution .. 1010
15.16.6.2 Command Line Flags.. 1012
15.16.6.3 Troubleshooting ... 1013

15.16.7 Application Code Flow ...1013

15.16.8 References ...1014

15.17 NVIDIA DOCA Simple Forward VNF Application Guide 1014

15.17.1 Introduction..1014

15.17.2 System Design ...1015

15.17.3 Application Architecture...1016

15.17.4 DOCA Libraries...1017

15.17.5 Compiling the Application ...1017

15.17.5.1 Compiling All Applications ... 1018
15.17.5.2 Compiling Simple Forward Application Only 1018
15.17.5.3 Troubleshooting ... 1018

15.17.6 Running the Application..1019

15.17.6.1 Prerequisites... 1019
15.17.6.2 Application Execution .. 1019
15.17.6.3 Command Line Flags.. 1021
15.17.6.4 Troubleshooting ... 1022

28

15.17.7 Application Code Flow ...1022

15.17.8 References ...1024

15.18 NVIDIA DOCA Switch Application Guide....................................... 1024

15.18.1 Introduction..1024

15.18.2 System Design ...1024

15.18.3 Application Architecture...1026

15.18.4 DOCA Libraries...1027

15.18.5 Compiling the Application ...1028

15.18.5.1 Compiling All Applications ... 1028
15.18.5.2 Recompiling Only the Current Application 1028
15.18.5.3 Troubleshooting ... 1029

15.18.6 Running the Application..1029

15.18.6.1 Prerequisites... 1029
15.18.6.2 Application Execution .. 1029
15.18.6.3 Command Line Flags.. 1030
15.18.6.4 Supported Commands .. 1031
15.18.6.5 Troubleshooting ... 1034

15.18.7 Application Code Flow ...1034

15.18.8 References ...1036

15.19 NVIDIA DOCA UROM RDMO Application Guide 1036

15.19.1 Introduction..1036

15.19.2 System Design ...1037

15.19.2.1 Bootstrap Procedure.. 1037
15.19.2.2 Memory Management... 1038
15.19.2.3 RDMO UROM Worker Operation ... 1038

15.19.3 Application Architecture...1039

15.19.3.1 UROM RDMO Worker Component 1039
15.19.3.1.1 Init .. 1040
15.19.3.1.2 RQ Create .. 1040
15.19.3.1.3 RQ Destroy ... 1041
15.19.3.1.4 MR Register .. 1041
15.19.3.1.5 MR Deregister.. 1042
15.19.3.2 Command Format ... 1042
15.19.3.2.1 Append ... 1043
15.19.3.2.2 Flush .. 1044
15.19.3.2.3 Scatter.. 1044

15.19.4 DOCA Libraries...1045

15.19.5 Compiling the Application ...1045

29

15.19.5.1 Compiling All Applications ... 1045
15.19.5.2 Compiling Only the Current Application............................... 1046
15.19.5.3 Troubleshooting ... 1046

15.19.6 Running the Application..1047

15.19.6.1 Host Application Execution.. 1047
15.19.6.2 RDMO DPU Plugin Component... 1047
15.19.6.3 Command Line Flags.. 1048
15.19.6.4 Troubleshooting ... 1049

15.19.7 Application Code Flow ...1049

15.19.8 References ...1050

15.20 NVIDIA DOCA YARA Inspection Application Guide............................ 1050

15.20.1 Introduction..1050

15.20.2 System Design ...1050

15.20.3 Application Architecture...1051

15.20.4 DOCA Libraries...1052

15.20.5 Limitations ...1052

15.20.6 Compiling the Application ...1053

15.20.6.1 Compiling All Applications ... 1053
15.20.6.2 Compiling Only the Current Application............................... 1053
15.20.6.3 Troubleshooting ... 1054

15.20.7 Running the Application..1054

15.20.7.1 Prerequisites... 1054
15.20.7.2 Application Execution .. 1056
15.20.7.3 Command Line Flags.. 1056
15.20.7.4 Troubleshooting ... 1059

15.20.8 Application Code Flow ...1059

15.20.9 References ...1060

16 DOCA Tools .. 1061

16.1 Introduction... 1061

16.2 Tools ... 1061

16.2.1 DOCA Bench..1061

16.2.2 Capabilities Print Tool ..1061

16.2.3 DPA Tools ...1061

16.2.4 PCC Counter ...1061

16.2.5 Socket Relay ...1062

16.3 NVIDIA DOCA Bench .. 1062

16.3.1 Introduction..1062

30

16.3.2 Feature Overview...1062

16.3.3 Installation...1063

16.3.3.1 Prerequisites... 1063
16.3.3.2 Granular Build Support... 1063

16.3.4 Operating Modes ..1063

16.3.5 Throughput Measurements ..1063

16.3.5.1 Latency Measurements... 1063
16.3.5.1.1 Bulk Latency ... 1064
16.3.5.1.2 Precision Latency ... 1064

16.3.6 Core Principles ..1065

16.3.6.1 Host or BlueField Arm Execution 1065
16.3.6.2 Pipelines.. 1065
16.3.6.3 Warm-up Period ... 1065
16.3.6.4 Defaults .. 1065
16.3.6.5 Optimizing Performance ... 1066

16.3.7 Supported BlueField Feature Matrix1066

16.3.8 Remote Operations ...1067

16.3.9 CPU Core and Thread Selection ..1068

16.3.10 Device Selection ..1068

16.3.11 Input Data Selection and Sizing of Jobs1068

16.3.11.1 Input Data Selection.. 1069
16.3.11.1.1 File .. 1069
16.3.11.1.2 File Sets .. 1069
16.3.11.1.3 Random Data .. 1069
16.3.11.2 Job Sizing .. 1069

16.3.12 Controlling Test Duration ..1070

16.3.12.1 Limit to Specific Number of Seconds 1070
16.3.12.2 Limited Through Total Number of Jobs 1070

16.3.13 GGA-specific Attributes ..1070

16.3.14 Command-line Parameters ..1070

16.3.14.1 CPU Core and Thread Count Configuration 1071
16.3.14.1.1 --core-mask .. 1071
16.3.14.1.2 --core-list .. 1071
16.3.14.1.3 --core-count ... 1071
16.3.14.1.4 --threads-per-core -t ... 1071
16.3.14.2 Device Configuration ... 1071
16.3.14.2.1 --device -A ... 1072
16.3.14.2.2 --representor -R... 1072
16.3.14.3 Input Data and Buffer Size Configuration 1072

31

16.3.14.3.1 --data-provider -I ... 1072
16.3.14.3.2 --data-provider-job-count ... 1073
16.3.14.3.3 --data-provider-input-file ... 1074
16.3.14.3.4 --uniform-job-size .. 1074
16.3.14.3.5 --job-output-buffer-size ... 1074
16.3.14.3.6 --input-cwd -i.. 1074
16.3.14.4 Test Execution Control ... 1075
16.3.14.4.1 --mode.. 1075
16.3.14.4.2 --latency-bucket-range .. 1076
16.3.14.5 Blocking Mode ... 1076
16.3.14.5.1 --use-blocking-mode.. 1077
16.3.14.5.2 --record-cpu-usage ... 1077
16.3.14.6 Execution Limits .. 1077
16.3.14.6.1 --run-limit-seconds -s .. 1077
16.3.14.6.2 --run-limit-jobs -J... 1078
16.3.14.6.3 --run-limit-bytes -b ... 1078
16.3.14.7 Gather/Scatter Support.. 1078
16.3.14.7.1 --gather-value ... 1078
16.3.14.8 Stats Output ... 1078
16.3.14.8.1 --rt-stats-interval ... 1078
16.3.14.8.2 --csv-output-file... 1078
16.3.14.8.3 --csv-stats .. 1079
16.3.14.8.4 --csv-append-mode ... 1079
16.3.14.8.5 --csv-separate-dynamic-values ... 1079
16.3.14.8.6 --enable-environment-information..................................... 1079
16.3.14.9 Remote Memory Testing.. 1080
16.3.14.9.1 --use-remote-input-buffers.. 1080
16.3.14.9.2 --use-remote-output-buffers.. 1080

16.3.15 Network Options ..1080

16.3.15.1 --mtu-size .. 1080
16.3.15.2 --receive-queue-size ... 1080
16.3.15.3 --send-queue-size... 1080
16.3.15.4 DOCA Lib Configuration Options .. 1080
16.3.15.4.1 --task-pool-size.. 1080
16.3.15.5 Pipeline Configuration ... 1081
16.3.15.5.1 --pipeline-steps ... 1081
16.3.15.5.2 --attribute.. 1082
16.3.15.5.3 --warm-up-jobs.. 1082
16.3.15.6 Companion Configuration.. 1082
16.3.15.6.1 --companion-connection-string ... 1083
16.3.15.6.2 --companion-core-list .. 1083

32

16.3.15.6.3 --companion-core-mask.. 1084
16.3.15.7 Sweep Tests .. 1084
16.3.15.7.1 --sweep ... 1084
16.3.15.8 Queries ... 1085
16.3.15.8.1 Device Capabilities ... 1085
16.3.15.8.2 Supported Sweep Attributes .. 1086

16.3.16 Test Memory Footprint ...1086

16.3.17 DOCA Bench Sample Invocations..1086

16.3.17.1 Overview ... 1086
16.3.17.2 DOCA Eth Receive Sample ... 1087
16.3.17.2.1 Command Line... 1087
16.3.17.2.2 Results Output... 1087
16.3.17.2.3 Results Overview.. 1088
16.3.17.3 DOCA Eth Send Sample... 1088
16.3.17.3.1 Command Line... 1088
16.3.17.3.2 Results Output... 1089
16.3.17.3.3 Results Overview.. 1090
16.3.17.4 Host-side AES-GCM Decrypt Sample.................................... 1090
16.3.17.4.1 Command Line... 1090
16.3.17.4.2 Results Output... 1090
16.3.17.4.3 Results Overview.. 1091
16.3.17.5 BlueField-side AES-GCM Encrypt Sample 1091
16.3.17.5.1 Command Line... 1091
16.3.17.5.2 Results Output... 1091
16.3.17.5.3 Results Overview.. 1092
16.3.17.6 Host-side AES-GCM Encrypt and Decrypt Sample 1092
16.3.17.6.1 Command Line... 1092
16.3.17.6.2 Results Output... 1092
16.3.17.6.3 Results Overview.. 1093
16.3.17.7 Host-side SHA with CSV Output File Sample 1093
16.3.17.7.1 Command Line... 1093
16.3.17.7.2 Results Output... 1093
16.3.17.7.3 Results Overview.. 1093
16.3.17.8 Host-side SHA with CSV Appended Output File Sample 1094
16.3.17.8.1 Command Line... 1094
16.3.17.8.2 Results Output... 1094
16.3.17.8.3 Results Overview.. 1095
16.3.17.9 BlueField-side SHA with Transient Statistics Sample 1096
16.3.17.9.1 Command Line... 1096
16.3.17.9.2 Results Output... 1096
16.3.17.9.3 Results Overview.. 1097

33

16.3.17.10 Host-side Local DMA with Core Sweep Sample 1097
16.3.17.10.1 Command Line... 1097
16.3.17.10.2 Results Overview.. 1098
16.3.17.10.3 Results Overview.. 1099
16.3.17.11 Host-side Local DMA with Job Size Sweep Sample................... 1099
16.3.17.11.1 Command Line... 1099
16.3.17.11.2 Results Overview.. 1100
16.3.17.11.3 Results Overview.. 1100
16.3.17.12 BlueField-side Remote DMA Sample.................................... 1101
16.3.17.12.1 Command Line... 1101
16.3.17.12.2 Results Overview.. 1101
16.3.17.12.3 Results Overview.. 1101
16.3.17.13 Compress BlueField-side Sample 1101
16.3.17.13.1 Command Line... 1102
16.3.17.13.2 Result Output.. 1102
16.3.17.13.3 Results Overview.. 1102
16.3.17.14 BlueField-side Decompress LZ4 Sample 1102
16.3.17.14.1 Command Line... 1102
16.3.17.14.2 Results Output... 1102
16.3.17.14.3 Results Comment ... 1103
16.3.17.15 Host-side EC Creation in Bulk Latency Mode Sample................ 1103
16.3.17.15.1 Command Line... 1103
16.3.17.15.2 Results Output... 1103
16.3.17.15.3 Results Comment ... 1103
16.3.17.16 BlueField-side EC Creation in Precision Latency Mode Sample 1103
16.3.17.16.1 Command Line... 1103
16.3.17.16.2 Results Output... 1104
16.3.17.16.3 Results Comment ... 1104
16.3.17.17 Comch Consumer from Host Side Sample 1104
16.3.17.17.1 Command Line... 1104
16.3.17.17.2 Results Output... 1104
16.3.17.17.3 Results Comment ... 1104
16.3.17.18 Host-side Comch Producer Sample 1104
16.3.17.18.1 Command Line... 1104
16.3.17.18.2 Results Overview.. 1105
16.3.17.18.3 Results Comment ... 1105
16.3.17.19 Host-side RDMA Send Sample ... 1105
16.3.17.19.1 Command Line... 1105
16.3.17.19.2 Results Output... 1105
16.3.17.19.3 Results Comment ... 1105
16.3.17.20 Host-side RDMA Receive Sample .. 1105

34

16.3.17.20.1 Command Line... 1106
16.3.17.20.2 Results Output... 1106
16.3.17.20.3 Results Overview.. 1106

16.4 NVIDIA DOCA Capabilities Print Tool... 1106

16.4.1 Introduction..1106

16.4.2 Prerequisites...1106

16.4.3 Description...1106

16.4.4 Execution...1107

16.5 NVIDIA DOCA Comm Channel Admin Tool 1114

16.5.1 Introduction..1114

16.5.2 Prerequisites...1114

16.5.3 Description and Execution...1114

16.5.3.1 Sample Output from BlueField Arm 1115
16.5.3.2 Sample Output from x86... 1115

16.6 NVIDIA DPA Tools.. 1116

16.6.1 Introduction..1116

16.6.2 DPA Tools ...1117

16.6.2.1 DPACC Compiler ... 1117
16.6.2.2 DPA EU Management Tool .. 1117
16.6.2.3 DPA GDB Server Tool .. 1117
16.6.2.4 DPA PS Tool... 1117
16.6.2.5 DPA Statistic Tool.. 1117

16.6.3 NVIDIA DOCA DPACC Compiler...1117

16.6.3.1 Introduction.. 1117
16.6.3.1.1 Glossary .. 1118
16.6.3.1.2 Offloading Work on DPA.. 1118
16.6.3.1.3 DPACC Predefined Macros.. 1119
16.6.3.1.4 Writing DPA Applications ... 1119
16.6.3.2 Prerequisites... 1121
16.6.3.2.1 Supported Versions ... 1121
16.6.3.3 Description... 1121
16.6.3.3.1 DPACC Inputs and Outputs ... 1121
16.6.3.3.2 DPACC Trajectory ... 1124
16.6.3.3.3 Modes of Operation... 1125
16.6.3.4 Execution... 1126
16.6.3.4.1 Mandatory Arguments .. 1126
16.6.3.4.2 Commonly Used Arguments.. 1127
16.6.3.4.3 DPA Hardware Architectures .. 1128
16.6.3.4.4 Architecture Macros .. 1128

35

16.6.3.4.5 LTO Usage Guidelines... 1129
16.6.3.4.6 Deprecated Features ... 1129
16.6.3.4.7 Examples ... 1129
16.6.3.4.8 DPA Compiler Usage .. 1131

16.6.4 NVIDIA DOCA DPA Execution Unit Management Tool1133

16.6.4.1 Introduction.. 1134
16.6.4.2 Execution Unit Objects .. 1135
16.6.4.3 dpaeumgmt Commands .. 1135
16.6.4.3.1 General Commands ... 1135
16.6.4.3.2 Execution Unit Group Commands 1135
16.6.4.3.3 EU Partition Commands .. 1138
16.6.4.4 vHCAs and Partitions ... 1139
16.6.4.5 Known Limitations .. 1140

16.6.5 NVIDIA DOCA DPA GDB Server Tool..1141

16.6.5.1 Introduction.. 1141
16.6.5.1.1 Glossary .. 1141
16.6.5.1.2 Known Limitations .. 1142
16.6.5.2 DPA-specific Notes .. 1142
16.6.5.2.1 Token ... 1142
16.6.5.2.2 Connection on Application Launch 1142
16.6.5.2.3 Dummy Thread Concept ... 1142
16.6.5.2.4 Watchdog Issues... 1143
16.6.5.3 Tool TCP Port and Execution Unit (EU) 1143
16.6.5.4 Debugging .. 1143
16.6.5.4.1 Preparation for Debug.. 1143
16.6.5.4.2 Start Debugging ... 1144
16.6.5.4.3 DPA-specific Debugging Techniques 1144
16.6.5.5 Error Reporting .. 1146
16.6.5.5.1 Tool Log Directory .. 1146
16.6.5.5.2 Verbosity Level of gdbserver .. 1147
16.6.5.6 Useful Info Regarding Work with GDB.................................. 1148
16.6.5.6.1 Command "directory"... 1148
16.6.5.6.2 Core Dump Usage ... 1149
16.6.5.6.3 Debug of Optimized Code ... 1149
16.6.5.6.4 Disassembly of Advanced RISC-V Commands.......................... 1150

16.6.6 NVIDIA DOCA DPA PS Tool...1150

16.6.6.1 Introduction.. 1150
16.6.6.2 Command Flags and Arguments... 1150
16.6.6.3 Example .. 1151
16.6.6.4 Known Limitations .. 1151

16.6.7 NVIDIA DOCA DPA Statistics Tool ..1151

36

16.6.7.1 Introduction.. 1151
16.6.7.2 Collecting Performance Statistics Data................................ 1151
16.6.7.3 Presenting Statistics List... 1152
16.6.7.3.1 Examples ... 1153
16.6.7.4 Known Limitations .. 1153

16.7 NVIDIA DOCA PCC Counter Tool .. 1153

16.7.1 Introduction..1154

16.7.2 Prerequisites...1154

16.7.3 Description...1154

16.7.4 Execution...1155

16.8 NVIDIA DOCA Socket Relay .. 1155

16.8.1 Introduction..1155

16.8.2 Prerequisites...1157

16.8.3 Dependencies..1157

16.8.4 Execution...1157

16.8.5 Arg Parser DOCA Flags..1157

17 DOCA Services .. 1159

17.1 Introduction... 1159

17.2 Development Lifecycle.. 1159

17.2.1 Development ..1159

17.2.2 Containerization ..1160

17.2.3 Profiling ..1160

17.3 Services.. 1161

17.3.1 Container Deployment ...1161

17.3.2 DOCA BlueMan ...1161

17.3.3 DOCA Firefly ...1161

17.3.4 DOCA Flow Inspector ...1161

17.3.5 DOCA HBN ..1161

17.3.6 DOCA Management Service ..1161

17.3.7 OpenvSwitch Acceleration (OVS in DOCA).................................1162

17.3.8 DOCA Telemetry ...1162

17.3.9 DOCA UROM ..1162

17.4 NVIDIA BlueField Container Deployment Guide 1162

17.4.1 Introduction..1162

17.4.2 Prerequisites...1163

37

17.4.3 Container Deployment ...1163

17.4.3.1 Pull Container YAML Configurations 1164
17.4.3.2 Container-specific Instructions ... 1164
17.4.3.3 Structure of NGC Resource .. 1165
17.4.3.4 Spawn Container .. 1165
17.4.3.5 Review Container Deployment.. 1165
17.4.3.6 Stop Container .. 1167

17.4.4 Troubleshooting Common Errors..1167

17.4.4.1 Yaml Syntax .. 1167
17.4.4.2 Huge Pages... 1168

17.4.5 Advanced Troubleshooting...1168

17.4.5.1 Manual Execution from Within Container - Debugging 1168

17.4.6 Air-gapped Container Deployment ...1169

17.4.6.1 Pulling Container for Offline Deployment............................. 1169
17.4.6.2 Importing Container Image .. 1169
17.4.6.3 Built-in Infrastructure Support.. 1170

17.4.7 DOCA Services for Host...1170

17.4.7.1 Docker Deployment... 1170

17.5 NVIDIA DOCA BlueMan Service Guide.. 1171

17.5.1 Introduction..1171

17.5.2 Requirements..1172

17.5.2.1 Verifying DTS Status .. 1172
17.5.2.2 Verifying DPE Status .. 1172

17.5.3 Service Deployment ..1173

17.5.3.1 DOCA Service on NGC... 1173
17.5.3.2 Default Deployment – BlueField BSP 1173
17.5.3.2.1 Enabling BlueMan Service.. 1173
17.5.3.3 Verifying Deployment Success .. 1174

17.5.4 Collected Data ..1174

17.5.5 Connecting to BlueMan Web Interface.....................................1175

17.5.6 Troubleshooting ...1175

17.6 NVIDIA DOCA Firefly Service Guide.. 1176

17.6.1 Introduction..1176

17.6.2 Requirements..1177

17.6.2.1 Firmware Version ... 1177
17.6.2.2 BlueField BSP Version .. 1177
17.6.2.3 Embedded Mode... 1178
17.6.2.3.1 Configuring Firmware Settings on DPU for Embedded Mode 1178

38

17.6.2.3.2 Ensuring OVS Hardware Offload .. 1178
17.6.2.3.3 Helper Scripts ... 1178
17.6.2.3.4 Setting Up Network Interfaces for DPU Mode 1180
17.6.2.4 Separated Mode ... 1181
17.6.2.4.1 Configuring Firmware Settings on DPU for Separated Mode........ 1181
17.6.2.4.2 Setting Up Network Interfaces for Separated Mode 1181
17.6.2.5 Host-based Deployment.. 1181

17.6.3 Service Deployment ..1182

17.6.3.1 DPU Deployment .. 1182
17.6.3.2 Host Deployment.. 1182

17.6.4 Configuration ..1182

17.6.4.1 Built-In Config File.. 1182
17.6.4.2 Custom Config File.. 1183
17.6.4.3 Overriding Specific Config File Parameters 1183
17.6.4.4 Ensuring and Debugging Correctness of Config Files 1184

17.6.5 Description...1185

17.6.5.1 Providers ... 1185
17.6.5.2 Profiles ... 1186
17.6.5.3 Outputs ... 1187
17.6.5.3.1 Container Output ... 1187
17.6.5.3.2 Firefly Output ... 1188
17.6.5.3.3 ptp4l Output ... 1188
17.6.5.3.4 phc2sys Output .. 1189
17.6.5.3.5 SyncE Output .. 1189
17.6.5.3.6 Firefly Servo Output.. 1189
17.6.5.4 Tx Timestamping Support on DPU Mode............................... 1190
17.6.5.4.1 Troubleshooting Tx Timestamp Issues 1190
17.6.5.5 PTP .. 1191
17.6.5.6 PHC2SYS .. 1191
17.6.5.7 SYNCE... 1192
17.6.5.8 PTP Monitor .. 1193
17.6.5.8.1 Configuration .. 1194
17.6.5.8.2 Time Representations (PTP Time vs System Time)................... 1194
17.6.5.8.3 Monitor Server... 1195
17.6.5.8.4 Monitor Client ... 1197
17.6.5.9 Firefly Servo ... 1197
17.6.5.9.1 Firefly Servo Configuration.. 1198
17.6.5.9.2 Dynamic Packet Rate Support... 1198
17.6.5.10 VLAN Tagging .. 1198
17.6.5.10.1 Separated Mode ... 1181
17.6.5.10.2 Embedded Mode... 1199

39

17.6.5.11 Multiple Interfaces.. 1199

17.6.6 Troubleshooting ...1199

17.6.6.1 Pod is Marked as "Ready" and No Container is Listed................ 1200
17.6.6.1.1 Error .. 1200
17.6.6.1.2 Solution... 1200
17.6.6.2 Custom Config File is Not Found.. 1201
17.6.6.2.1 Error .. 1201
17.6.6.2.2 Solution... 1201
17.6.6.3 Profile is Not Supported ... 1201
17.6.6.3.1 Error .. 1201
17.6.6.3.2 Solution... 1201
17.6.6.4 PPS Capability is Missing ... 1201
17.6.6.4.1 Error .. 1201
17.6.6.4.2 Solution... 1202
17.6.6.5 Timed Out While Polling for Tx Timestamp 1202
17.6.6.5.1 Error .. 1202
17.6.6.5.2 Solution... 1202
17.6.6.6 Warning – Time Jumped Backwards 1202
17.6.6.6.1 Error .. 1202
17.6.6.6.2 Solution... 1202

17.6.7 PTP Profile Default Config Files ..1203

17.6.7.1 Media Profile... 1203
17.6.7.2 Default Profile... 1203
17.6.7.3 Telco (L2) Profile.. 1203

17.6.8 Firefly Modules Configuration Options.....................................1204

17.6.8.1 PTP Monitor .. 1204
17.6.8.1.1 monitor-default.conf... 1204
17.6.8.1.2 Configuration Options .. 1204
17.6.8.2 Firefly Servo ... 1204
17.6.8.2.1 servo-default.conf .. 1204
17.6.8.2.2 Configuration Options .. 1205

17.7 NVIDIA DOCA Flow Inspector Service Guide 1206

17.7.1 Introduction..1206

17.7.1.1 Service Flow ... 1206

17.7.2 Requirements..1208

17.7.3 Service Deployment ..1209

17.7.4 Configuration ..1209

17.7.4.1 JSON Input ... 1209
17.7.4.1.1 Export Unit Attributes.. 1210
17.7.4.2 Yaml File ... 1211

40

17.7.4.3 Verifying Output .. 1211

17.7.5 Troubleshooting ...1213

17.7.5.1 Pod is Marked as "Ready" and No Container is Listed................ 1213
17.7.5.1.1 Error .. 1213
17.7.5.1.2 Solution... 1213
17.7.5.2 Pod is Not Listed .. 1213
17.7.5.2.1 Error .. 1213
17.7.5.2.2 Solution... 1214

17.8 NVIDIA DOCA HBN Service Guide... 1214

17.8.1 Introduction..1214

17.8.1.1 Service Function Chaining ... 1216

17.8.2 HBN Service Release Notes ..1216

17.8.2.1 Changes and New Features.. 1216
17.8.2.2 Supported Platforms and Interoperability 1217
17.8.2.2.1 Supported BlueField Networking Platforms........................... 1217
17.8.2.2.2 Supported BlueField OS .. 1218
17.8.2.2.3 Verified Scalability Limits ... 1218
17.8.2.3 Known Issues... 1219
17.8.2.4 Bug Fixes ... 1238

17.8.3 HBN Service Deployment ..1238

17.8.3.1 HBN Service Requirements .. 1238
17.8.3.1.1 Enabling BlueField DPU Mode ... 1238
17.8.3.1.2 Enabling SFC ... 1238
17.8.3.2 Launching HBN Service... 1242
17.8.3.2.1 HBN Service Container Deployment.................................... 1242
17.8.3.2.2 HBN Deployment Configuration... 1245
17.8.3.2.3 HBN Deployment Considerations 1249

17.8.4 HBN Service Configuration...1255

17.8.4.1 General Network Configuration... 1255
17.8.4.1.1 Flat Files Configuration .. 1255
17.8.4.2 NVUE Configuration... 1255
17.8.4.2.1 NVUE Service .. 1255
17.8.4.2.2 NVUE REST API... 1256
17.8.4.2.3 NVUE CLI ... 1256
17.8.4.2.4 NVUE Startup Configuration File.. 1256
17.8.4.3 HBN Configuration Examples .. 1257
17.8.4.3.1 HBN Default Configuration .. 1257
17.8.4.3.2 Layer-3 Routing ... 1257
17.8.4.3.3 Ethernet Virtual Private Network – EVPN.............................. 1263
17.8.4.3.4 Access Control Lists .. 1291

41

17.8.4.3.5 DHCP Relay on HBN ... 1296

17.8.5 HBN Service Troubleshooting..1299

17.8.5.1 HBN Container Stuck in init-sfs ... 1299
17.8.5.2 Host-side PF/VF Down After BlueField Reboot 1299
17.8.5.3 BGP Session not Establishing .. 1300
17.8.5.4 Generating Support Information.. 1300
17.8.5.5 SFC Troubleshooting .. 1300
17.8.5.6 General nl2doca Troubleshooting....................................... 1301
17.8.5.7 nl2doca Offload Troubleshooting 1301
17.8.5.8 NVUE Troubleshooting .. 1303

17.9 NVIDIA DOCA Management Service Guide 1304

17.9.1 Introduction..1304

17.9.2 Requirements..1304

17.9.3 Service Deployment ..1305

17.9.4 Configuration ..1306

17.9.4.1 General Flags .. 1306
17.9.4.2 Security Flags.. 1306
17.9.4.3 Provisioning Flags ... 1307

17.9.5 Description...1307

17.9.5.1 gNMI Command.. 1307
17.9.5.1.1 Get Supported Paths.. 1307
17.9.5.1.2 Get Request.. 1308
17.9.5.1.3 Set Request .. 1308
17.9.5.2 gNOI Commands... 1309
17.9.5.2.1 OS ... 1309
17.9.5.2.2 System .. 1310

17.10 NVIDIA OpenvSwitch Acceleration (OVS in DOCA)........................... 1311

17.10.1 Introduction..1312

17.10.2 OVS and Virtualized Devices ..1312

17.10.3 OVS-Kernel Hardware Acceleration ..1313

17.10.3.1 Switchdev Configuration... 1313
17.10.3.2 Switchdev Performance Tuning ... 1314
17.10.3.2.1 Steering Mode ... 1314
17.10.3.2.2 Troubleshooting SMFS .. 1315
17.10.3.2.3 vPort Match Mode... 1315
17.10.3.2.4 Flow Table Large Group Number 1316
17.10.3.3 Open vSwitch Configuration... 1316
17.10.3.4 OVS Performance Tuning ... 1317
17.10.3.4.1 Flow Aging.. 1317

42

17.10.3.4.2 TC Policy ... 1317
17.10.3.4.3 max-revalidator ... 1318
17.10.3.4.4 n-handler-threads... 1318
17.10.3.4.5 n-revalidator-threads .. 1318
17.10.3.5 Basic TC Rules Configuration.. 1318
17.10.3.6 SR-IOV VF LAG ... 1319
17.10.3.6.1 SR-IOV VF LAG Configuration on ASAP2................................ 1319
17.10.3.6.2 Using TC with VF LAG .. 1320
17.10.3.7 Classification Fields (Matches).. 1320
17.10.3.7.1 Ethernet Layer 2 .. 1321
17.10.3.7.2 IPv4/IPv6 ... 1321
17.10.3.7.3 TCP/UDP Source and Destination Ports and TCP Flags 1322
17.10.3.7.4 VLAN .. 1322
17.10.3.7.5 Tunnel... 1322
17.10.3.8 Supported Actions... 1323
17.10.3.8.1 Forward... 1323
17.10.3.8.2 Drop... 1323
17.10.3.8.3 Statistics ... 1324
17.10.3.8.4 Tunnels: Encapsulation/Decapsulation 1324
17.10.3.8.5 VLAN Push/Pop .. 1325
17.10.3.8.6 Header Rewrite.. 1326
17.10.3.8.7 Ethernet Layer 2 .. 1326
17.10.3.8.8 IPv4/IPv6 ... 1327
17.10.3.8.9 Connection Tracking .. 1329
17.10.3.8.10 Forward to Chain (TC Only) ... 1330
17.10.3.9 Port Mirroring: Flow-based VF Traffic Mirroring for ASAP².......... 1330
17.10.3.10 Forward to Multiple Destinations....................................... 1331
17.10.3.11 sFlow.. 1332
17.10.3.12 Rate Limit .. 1333
17.10.3.13 Kernel Requirements ... 1333
17.10.3.14 VF Metering .. 1334
17.10.3.15 Representor Metering .. 1334
17.10.3.16 OVS Metering .. 1335
17.10.3.17 Multiport eSwitch Mode.. 1335

17.10.4 OVS-DPDK Hardware Acceleration..1336

17.10.4.1 OVS-DPDK Hardware Offloads Configuration 1336
17.10.4.2 Offloading VXLAN Encapsulation/Decapsulation Actions 1337
17.10.4.2.1 Configuring VXLAN Encap/Decap Offloads 1337
17.10.4.3 CT Offload ... 1338
17.10.4.4 SR-IOV VF LAG ... 1338
17.10.4.5 VirtIO Acceleration Through VF Relay: Software and Hardware

vDPA... 1339

43

17.10.4.5.1 vDPA Configuration in OVS-DPDK Mode 1340
17.10.4.5.2 Software vDPA Configuration in OVS-Kernel Mode 1341
17.10.4.6 Large MTU/Jumbo Frame Configuration 1342
17.10.4.7 E2E Cache .. 1343
17.10.4.8 Geneve Encapsulation/Decapsulation 1343
17.10.4.9 Parallel Offloads .. 1344
17.10.4.9.1 sFlow.. 1344
17.10.4.10 CT CT NAT.. 1345
17.10.4.11 OpenFlow Meters (OpenFlow13+) 1345

17.10.5 OVS-DOCA Hardware Acceleration..1346

17.10.5.1 Configuring OVS-DOCA ... 1347
17.10.5.2 Notable Differences Between OVS-DPDK and OVS-DOCA 1349
17.10.5.2.1 Eswitch Dependency.. 1349
17.10.5.2.2 Pre-allocated Offload Tables .. 1349
17.10.5.2.3 Unsupported CT-CT-NAT.. 1349
17.10.5.3 OVS-DOCA Specific vSwitch Configuration 1349
17.10.5.3.1 other_config ... 1349
17.10.5.3.2 netdev-dpdk ... 1351
17.10.5.4 Offloading VXLAN Encapsulation/Decapsulation Actions 1351
17.10.5.4.1 VXLAN GBP Extension .. 1352
17.10.5.5 Offloading Connection Tracking .. 1353
17.10.5.6 SR-IOV VF LAG ... 1353
17.10.5.7 Multiport eSwitch Mode.. 1354
17.10.5.8 Offloading Geneve Encapsulation/Decapsulation.................... 1355
17.10.5.9 GRE Tunnel Offloads .. 1356
17.10.5.10 Slow Path Rate Limiting/SW-Meter..................................... 1357
17.10.5.11 Hairpin.. 1358
17.10.5.12 OpenFlow Meters.. 1358
17.10.5.13 DP-HASH Offloads ... 1359
17.10.5.14 sFlow.. 1359
17.10.5.15 OVS-DOCA Known Limitations ... 1359
17.10.5.16 OVS-DOCA Debugging... 1360
17.10.5.17 OVS-DOCA Build ... 1361
17.10.5.18 Scaling Megaflows... 1361

17.10.6 OVS Metrics ..1362

17.10.7 OVS Inside BlueField..1362

17.10.7.1 Verifying Host Connection on Linux 1362
17.10.7.2 Verifying Connection from Host to BlueField 1362
17.10.7.3 Verifying Host Connection on Windows................................ 1363

17.11 NVIDIA DOCA Telemetry Service Guide.. 1364

44

17.11.1 Introduction..1364

17.11.2 Service Deployment ..1364

17.11.2.1 Available Images .. 1364
17.11.2.1.1 Built-in DOCA Service Image .. 1364
17.11.2.1.2 DOCA Service on NGC... 1365
17.11.2.2 DPU Deployment .. 1365
17.11.2.3 Host Deployment.. 1365
17.11.2.4 Deployment with Grafana Monitoring.................................. 1366

17.11.3 Configuration ..1366

17.11.3.1 Init Scripts ... 1367
17.11.3.2 Enabling Fluent Bit Forwarding ... 1367
17.11.3.3 Generating Configuration.. 1367
17.11.3.4 Resetting Configuration.. 1367
17.11.3.5 Enabling Providers .. 1367
17.11.3.5.1 Remote Collection .. 1368
17.11.3.6 Enabling Data Write .. 1368
17.11.3.7 Enabling IPC with Non-container Program 1368

17.11.4 Description...1368

17.11.4.1 Providers ... 1368
17.11.4.1.1 Sysfs Counters List .. 1369
17.11.4.1.2 Power Thermal Counters... 1374
17.11.4.1.3 Ethtool Counters .. 1375
17.11.4.1.4 Traffic Control Info ... 1391
17.11.4.1.5 Amber Provider.. 1391
17.11.4.1.6 PPCC_ETH Provider ... 1391
17.11.4.1.7 Fluent Aggregator... 1392
17.11.4.1.8 Prometheus Aggregator .. 1392
17.11.4.1.9 Network Interfaces ... 1393
17.11.4.1.10 HCA Performance ... 1393
17.11.4.1.11 NVIDIA System Management Interface 1394
17.11.4.1.12 NVIDIA Data Center GPU Manager 1394
17.11.4.1.13 BlueField Performance ... 1395
17.11.4.1.14 Ngauge.. 1395
17.11.4.2 Data Outputs .. 1399
17.11.4.2.1 Data Writer .. 1400
17.11.4.2.2 Prometheus .. 1400
17.11.4.2.3 Configuration Details ... 1401
17.11.4.2.4 Prometheus Aggregator Exporter 1402
17.11.4.2.5 Fluent Bit... 1402
17.11.4.2.6 NetFlow Exporter ... 1404

45

17.11.5 DOCA Privileged Executer..1405

17.11.5.1 DPE Usage .. 1405
17.11.5.2 DPE Configuration File ... 1405

17.11.6 Deploying with Grafana Monitoring ..1406

17.11.6.1 Grafana Deployment Prerequisites..................................... 1406
17.11.6.2 Grafana Deployment Configuration 1407
17.11.6.2.1 DTS Configuration (DPU Side) ... 1407
17.11.6.2.2 Prometheus Configuration (Remote Server) 1407
17.11.6.2.3 Grafana Configuration (Remote Server) 1408
17.11.6.3 Exploring Telemetry Data.. 1409

17.11.7 Troubleshooting ...1409

17.12 NVIDIA DOCA UROM Service Guide... 1410

17.12.1 Introduction..1410

17.12.2 Requirements..1411

17.12.3 Service Deployment ..1411

17.12.4 Description...1411

17.12.4.1 Plugin Discovery and Reporting ... 1411
17.12.4.2 Loading Plugin in Worker .. 1412
17.12.4.3 Yaml File ... 1412

17.12.5 Troubleshooting ...1412

17.12.5.1 Pod is Marked as "Ready" and No Container is Listed................ 1413
17.12.5.1.1 Error .. 1413
17.12.5.1.2 Solution... 1413
17.12.5.2 Pod is Not Listed .. 1413
17.12.5.2.1 Error .. 1413
17.12.5.2.2 Solution... 1414

17.13 NVIDIA DOCA SNAP Virtio-fs Service Guide 1414

17.13.1 Introduction..1414

17.13.1.1 DOCA SNAP Virtio-fs as Container 1415

17.13.2 Release Notes..1415

17.13.2.1 Changes and New Features.. 1415
17.13.2.1.1 Key Features in Version 1.0.0-doca2.8.0 1415
17.13.2.2 Limitations ... 1416
17.13.2.3 Known Issues... 1416
17.13.2.3.1 DOCA SNAP Virtio-fs Issues .. 1416
17.13.2.3.2 OS or Vendor Issues ... 1417

17.13.3 DOCA SNAP Virtio-fs Deployment ...1418

17.13.3.1 Installing Full DOCA Image on BlueField............................... 1418
17.13.3.2 Firmware Installation .. 1418

46

17.13.3.3 Firmware Configuration.. 1418
17.13.3.3.1 RDMA/RoCE Firmware Configuration................................... 1419
17.13.3.3.2 Hot-plug Firmware Configuration 1419
17.13.3.4 DOCA SNAP Virtio-fs Container Deployment 1420
17.13.3.4.1 Preparation Steps ... 1420
17.13.3.4.2 Downloading YAML from Early Access NGC 1421
17.13.3.4.3 Adjusting YAML Configuration ... 1422
17.13.3.4.4 Spawning DOCA SNAP Virtio-fs Container 1423
17.13.3.4.5 Debug and Log... 1423
17.13.3.4.6 Stop, Start, Restart DOCA SNAP Virtio-fs Container 1423
17.13.3.5 DOCA SNAP Virtio-fs with SNAP Support 1423

17.13.4 RPC Commands..1424

17.13.4.1 Using JSON-based RPC Protocol... 1424
17.13.4.2 PCIe Function Management ... 1425
17.13.4.2.1 virtio_fs_doca_get_managers ... 1425
17.13.4.2.2 virtio_fs_doca_get_functions ... 1425
17.13.4.3 Hot-pluggable PCIe Functions Management 1426
17.13.4.3.1 virtio_fs_doca_get_functions ... 1425
17.13.4.3.2 virtio_fs_doca_function_create .. 1426
17.13.4.3.3 virtio_fs_doca_function_destroy 1426
17.13.4.3.4 virtio_fs_doca_device_hotplug ... 1427
17.13.4.3.5 virtio_fs_doca_device_hotunplug 1427
17.13.4.4 SPDK FSdev Module Configuration...................................... 1427
17.13.4.4.1 fsdev_set_opts .. 1427
17.13.4.4.2 fsdev_get_opts .. 1427
17.13.4.5 SPDK FSDEV Management .. 1428
17.13.4.5.1 fsdev_get_fsdevs.. 1428
17.13.4.5.2 fsdev_aio_create.. 1428
17.13.4.5.3 fsdev_aio_delete.. 1428
17.13.4.6 Virtio-fs Emulation Management 1429
17.13.4.6.1 virtio_fs_transport_create .. 1429
17.13.4.6.2 virtio_fs_transport_destroy ... 1429
17.13.4.6.3 virtio_fs_transport_start... 1430
17.13.4.6.4 virtio_fs_transport_stop ... 1430
17.13.4.6.5 virtio_fs_get_transports ... 1430
17.13.4.6.6 virtio_fs_device_create.. 1430
17.13.4.6.7 virtio_fs_device_start .. 1431
17.13.4.6.8 virtio_fs_device_stop... 1432
17.13.4.6.9 virtio_fs_device_destroy... 1432
17.13.4.6.10 virtio_fs_device_modify ... 1432
17.13.4.6.11 virtio_fs_get_devices... 1433

47

17.13.4.6.12 virtio_fs_doca_device_modify .. 1434
17.13.4.7 Configuration Example... 1434
17.13.4.7.1 Static Function – Bring up ... 1434
17.13.4.7.2 Static Function – Teardown.. 1435
17.13.4.7.3 Hotplug Function.. 1436
17.13.4.7.4 Hot-unplug Function.. 1437

17.13.5 Appendix – BlueField Firmware Configuration............................1438

17.13.5.1 System Configuration Parameters 1438
17.13.5.2 RDMA/RoCE Configuration ... 1438
17.13.5.3 Virtio-fs Configuration ... 1439

17.13.6 Appendix – Host OS Configuration ..1439

17.13.6.1 Intel Server Performance Optimizations 1440
17.13.6.2 AMD Server Performance Optimizations............................... 1440

17.13.7 References ...1440

18 API References ... 1441

18.1 NVIDIA DOCA Driver APIs .. 1441

18.2 NVIDIA DOCA Library APIs ... 1441

19 Miscellaneous (Runtime) .. 1442

19.1 NVIDIA DOCA Glossary ... 1442

19.2 NVIDIA DOCA Crypto Acceleration ... 1446

19.3 NVIDIA DOCA Services Fluent Logger .. 1447

19.3.1 Introduction..1447

19.3.2 Deployment ..1447

19.3.3 Configuration ..1448

19.3.4 Troubleshooting ...1449

19.4 NVIDIA DOCA DPU CLI.. 1449

19.4.1 Introduction..1449

19.4.2 General Commands ...1450

19.4.3 DPU/DOCA Commands..1450

19.5 NVIDIA DOCA Emulated Devices.. 1452

19.6 NVIDIA BlueField Modes of Operation... 1452

19.6.1 Introduction..1452

19.7 DOCA Switching .. 1453

19.7.1 DOCA Representors Model ...1453

19.7.2 Virtio Acceleration through Hardware vDPA1455

19.7.2.1 Hardware vDPA Installation.. 1455

48

19.7.2.2 Hardware vDPA Configuration ... 1455
19.7.2.3 Running Hardware vDPA.. 1457

19.7.3 Bridge Offload ...1457

19.7.3.1 Basic Configuration ... 1458
19.7.3.2 Configuring VLAN ... 1458
19.7.3.3 VF LAG Support.. 1458

19.7.4 Link Aggregation ..1458

19.7.5 Controlling Host PF and VF Parameters1458

19.8 NVIDIA DOCA with OpenSSL... 1459

19.8.1 Introduction..1459

19.8.2 Prerequisites...1459

19.8.3 Architecture ...1459

19.8.4 Capabilities and Limitations ..1460

19.8.5 OpenSSL Command Line Verification.......................................1460

19.8.6 OpenSSL Throughput Test..1461

19.8.7 Using DOCA SHA Offload Engine in OpenSSL Application1461

19.9 NVIDIA BlueField DPU Scalable Function User Guide 1462

19.9.1 Introduction..1462

19.9.2 Prerequisites...1463

19.9.3 SF Configuration ..1463

19.9.3.1 Configuration Using mlxdevm Tool 1464

19.10 NVIDIA TLS Offload Guide... 1469

19.10.1 Introduction..1469

19.10.1.1 TLS Handshake .. 1469
19.10.1.2 kTLS ... 1470
19.10.1.3 HW-offloading kTLS... 1470
19.10.1.3.1 kTLS Offload Flow in High Level .. 1470
19.10.1.3.2 Resync and Error Handling... 1471

19.10.2 Prerequisites...1471

19.10.2.1 Checking Hardware Support for Crypto Acceleration 1471
19.10.2.2 Kernel Requirements ... 1472

19.10.3 Configurations and Useful Commands1473

19.10.3.1 TLS Setup... 1473
19.10.3.2 Finding NVIDIA Interfaces.. 1473
19.10.3.3 Configuring TLS Offload.. 1473
19.10.3.4 Configuring OVS Bridge on BlueField................................... 1474

19.10.4 Common Use Cases ...1474

49

19.10.4.1 OpenSSL .. 1474
19.10.4.2 Nginx.. 1475
19.10.4.2.1 Prerequisites... 1475
19.10.4.2.2 Configuration .. 1476
19.10.4.2.3 Stopping Nginx .. 1477
19.10.4.2.4 Wrk – Client .. 1477
19.10.4.2.5 Using Wrk... 1477

19.10.5 Testing Offload via OpenSSL...1477

19.10.5.1 TLS Testing Setup ... 1477
19.10.5.2 Adding Certificate and Key .. 1478
19.10.5.3 Running Server Side .. 1478
19.10.5.4 Running Client Side ... 1479
19.10.5.5 Testing kTLS.. 1479

19.10.6 Optimizations over kTLS ...1480

19.10.6.1 XLIO ... 1480

19.10.7 Performance Tuning Options ..1480

19.10.8 Additional Reading..1482

19.11 NVIDIA DOCA Troubleshooting Guide .. 1482

19.11.1 DOCA Infrastructure ..1482

19.11.1.1 RShim Troubleshooting and How-Tos................................... 1482
19.11.1.1.1 Another backend already attached 1482
19.11.1.1.2 RShim driver not loading... 1482
19.11.1.1.3 Change ownership of RShim from NIC BMC to host 1484
19.11.1.2 Connectivity Troubleshooting ... 1485
19.11.1.2.1 Connection (ssh, screen console) to the DPU is lost................. 1485
19.11.1.2.2 Driver not loading in host server 1486
19.11.1.2.3 No connectivity between network interfaces of source host to

destination device .. 1487
19.11.1.2.4 Uplink in Arm down while uplink in host server up 1487
19.11.1.3 Performance Degradation ... 1487
19.11.1.4 SR-IOV Troubleshooting .. 1488
19.11.1.4.1 Unable to create VFs ... 1488
19.11.1.4.2 No traffic between VF to external host 1488
19.11.1.5 eSwitch Troubleshooting ... 1488
19.11.1.5.1 Unable to configure legacy mode 1488
19.11.1.5.2 DPU appears as two interfaces ... 1490

19.11.2 DOCA Applications ..1490

19.11.2.1 EAL Initialization Failure... 1490
19.11.2.1.1 Error .. 1490
19.11.2.1.2 Solution... 1491

50

19.11.2.2 Ring Memory Issue .. 1491
19.11.2.2.1 Error .. 1491
19.11.2.2.2 Solution... 1491
19.11.2.3 DOCA Apps Using DPDK in Parallel Issue 1491
19.11.2.3.1 Error .. 1492
19.11.2.3.2 Solution... 1492
19.11.2.4 Failure to Set Huge Pages ... 1492
19.11.2.4.1 Error .. 1492
19.11.2.4.2 Solution... 1492

19.11.3 DOCA Libraries...1492

19.11.3.1 DOCA Flow Error .. 1493
19.11.3.1.1 Error .. 1493
19.11.3.1.2 Solution... 1493

19.11.4 DOCA SDK Compilation ...1493

19.11.4.1 Meson Complains About Missing Dependencies 1493
19.11.4.1.1 Error .. 1493
19.11.4.1.2 Solution... 1494
19.11.4.2 Meson Complains About Permissions 1495
19.11.4.2.1 Error .. 1495
19.11.4.2.2 Solution... 1495
19.11.4.3 Static Compilation on CentOS: Undefined References to C++ 1496
19.11.4.3.1 Error .. 1496
19.11.4.3.2 Solution... 1496
19.11.4.4 Static Compilation on CentOS: Unresolved Symbols................. 1496
19.11.4.4.1 Error .. 1496
19.11.4.4.2 Solution... 1497

19.11.5 Cross-compiling DOCA and CUDA ...1497

19.11.5.1 Application Build Error ... 1497
19.11.5.1.1 Error .. 1497
19.11.5.1.2 Solution... 1497

19.11.6 DOCA Services (Containers) ...1497

19.11.6.1 YAML Syntax Error #1 ... 1497
19.11.6.1.1 Error .. 1497
19.11.6.1.2 Solution... 1498
19.11.6.2 YAML Syntax Error #2 ... 1498
19.11.6.2.1 Error .. 1498
19.11.6.2.2 Solution... 1498
19.11.6.3 Missing Huge Pages ... 1498
19.11.6.3.1 Error .. 1499
19.11.6.3.2 Solution... 1499
19.11.6.4 Failed to Reserve Sandbox Name....................................... 1499

51

19.11.6.4.1 Error .. 1499
19.11.6.4.2 Solution... 1500

19.11.7 Collecting DOCA Logs for NVIDIA Inspection1500

19.11.8 NVIDIA BlueField Reset and Reboot Procedures1501

19.12 NVIDIA DOCA Virtual Functions User Guide 1501

19.12.1 Introduction..1501

19.12.2 Prerequisites...1501

19.12.3 VF Creation ..1502

19.12.4 Running DOCA Application on Host ...1503

19.12.5 Topology Example...1503

19.12.6 VF Creation on Adapter Card..1505

20 Archives ... 1506

20.1 NVIDIA DOCA LTS Versions... 1506

20.1.1 Introduction..1506

20.1.2 LTS Documentation ...1506

20.2 NVIDIA DOCA Documentation Archives .. 1506

52

1 DOCA Documentation v2.8.0

1.1 DOCA Overview
This page provides an overview of the structure of NVIDIA DOCA documentation.

1.2 Release Notes
This page contains information on new features, bug fixes, and known issues.

1.3 User Types
This page provides a quick introduction to the NVIDIA® BlueField® family of networking platforms
(i.e., DPUs and SuperNICs), its DOCA software components, and BlueField user types.

1.4 NVIDIA DOCA EULA
This page provides the NVIDIA DOCA SDK end-user license agreement.

53

2 Quick Start

2.1 Developer Quick Start Guide
This page details the basic steps to bring up the NVIDIA DOCA development environment and to build
and run the DOCA reference applications provided along with the DOCA software framework
package.

54

3 Installation and Setup

3.1 Profiles
This page provides an introduction to the various supported DOCA profiles.

3.1.1 NVIDIA MLNX_OFED Transition Guide
This page covers what users must know about the DOCA-Host unified software stack for NVIDIA
networking products.

3.2 Installation Guide for Linux
This page details the necessary steps to set up NVIDIA DOCA in your Linux environment.

3.3 Developer Guide
This page details the recommended steps to set up an NVIDIA DOCA development environment.

55

4 DOCA Programming Guides
These pages are intended for developers wishing to utilize DOCA SDK to develop application on top
of NVIDIA® BlueField® networking platforms.

56

5 Applications
This page provides an overview of the example DOCA applications implemented on top of NVIDIA®
BlueField®.

5.1 App Shield Agent
This page provides process introspection system implementation on top of NVIDIA® BlueField®.

5.2 DMA Copy
This page provides an example of a DMA Copy implementation on top of NVIDIA® BlueField®.

5.3 DPA All-to-all
This page explains the all-to-all collective operation example when accelerated using the DPA in
NVIDIA® BlueField®-3.

5.4 DPA L2 Reflector
This page provides an L2 reflector implementation on top of the NVIDIA® BlueField®-3.

5.5 East-west Overlay Encryption
This page describes IPsec based strongSwan solution on top of NVIDIA® BlueField®.

5.6 Ethernet L2 Forwarding
This page provides an Ethernet L2 Forwarding implementation on top of the NVIDIA® BlueField®
DPU.

5.7 File Compression
This page provides a file compression implementation on top of the NVIDIA® BlueField®.

5.8 File Integrity
This page provides a file integrity implementation on top of NVIDIA® BlueField®.

5.9 GPU Packet Processing
This page provides a description of the GPU packet processing application to demonstrate using the
DOCA GPUNetIO, DOCA Ethernet, and DOCA Flow libraries to implement a GPU traffic analyzer.

57

5.10 IPsec Security Gateway
This page provides an IPsec security gateway implementation on top of NVIDIA® BlueField®.

5.11 PCC
This page provides a DOCA PCC implementation on top of NVIDIA® BlueField®.

5.12 PSP Gateway
This page describes the usage of the NVIDIA DOCA PSP Gateway sample application on top of an
NVIDIA® BlueField® networking platform or NVIDIA® ConnectX® SmartNIC.

5.13 Secure Channel
This page provides a secure channel implementation on top of NVIDIA® BlueField®.

5.14 Simple Forward VNF
This page provides a Simple Forward implementation on top of NVIDIA® BlueField®.

5.15 Switch
This page provides an example of switch implementation on top of NVIDIA® BlueField®.

5.16 UROM RDMO
This page provides a DOCA Remote Direct Memory Operation implementation on top of NVIDIA®
BlueField® using Unified Communication X (UCX)..

5.17 YARA Inspection
This page provides YARA inspection implementation on top of NVIDIA® BlueField®.

58

6 Tools
This page provides an overview of the set of tools provided by DOCA and their purpose.

6.1 DOCA Bench
This page describes a tool which allows users to evaluate the performance of DOCA applications,
with reasonable accuracy for real-world applications.

6.2 Capabilities Print Tool
This page provides instruction on the usage of the DOCA Capabilities Print Tool.

6.3 Comm Channel Admin Tool
This page provides instructions on the usage of the DOCA Comm Channel Admin Tool.

6.4 DPA Tools
This page lists a set of executables that enable the DPA application developer and the system
administrator to manage and monitor DPA resources and to debug DPA applications.

6.5 PCC Counter Tool
This page provides instruction on the usage of the PCC Counter tool.

6.6 Socket Relay
This page describes DOCA Socket Relay architecture, usage, etc.

59

7 DOCA Services
This page provides an overview of the set of services provided by DOCA and their purpose.

7.1 Container Deployment
This page provides an overview and deployment configuration of DOCA containers for NVIDIA®
BlueField®.

7.2 DOCA BlueMan Service
This page provides instructions on how to use the DOCA BlueMan service on top of NVIDIA®
BlueField®.

7.3 DOCA Firefly Service
This page provides instructions on how to use the DOCA Firefly service container on top of NVIDIA®
BlueField®.

7.4 DOCA Flow Inspector Service
This page provides instructions on how to use the DOCA Flow Inspector service container on top of
NVIDIA® BlueField®.

7.5 DOCA HBN Service
This page provides instructions on how to use the DOCA HBN Service container on top of NVIDIA®
BlueField®.

7.6 DOCA Management Service
This page provides instructions on how to use the DOCA Management Service on top of NVIDIA®
BlueField® Networking Platform or ConnectX® Network Adapters.

7.7 OpenvSwitch Acceleration (OVS in DOCA)
These pages describe OVS within DOCA, particularly OVS-DOCA, a virtual switch service tailored for
NVIDIA NICs and DPUs. It leverages ASAP2 technology for accelerated data-path processing, ensuring
optimal performance and features through its architecture and integration with DOCA libraries.

7.8 DOCA Telemetry Service
This page provides instructions on how to use the DOCA Telemetry Service (DTS) container on top of
NVIDIA® BlueField®.

https://confluence.nvidia.com/display/docadev/.NVIDIA+OpenvSwitch+Acceleration+%28OVS+in+DOCA%29+v2.8.0

60

7.9 DOCA UROM Service
This page provides instructions on how to use the DOCA Telemetry Service (DTS) container on top of
NVIDIA® BlueField®.

61

8 API References

8.1 DOCA Driver APIs
This page contains DOCA driver APIs.

8.2 DOCA Libraries APIs
This page contains DOCA libraries APIs.

62

9 Miscellaneous

9.1 Glossary
This page provides a list of terms and acronyms and in the DOCA documentation.

9.2 Crypto Acceleration
This page shows the ability of NVIDIA® BlueField® to accelerate crypto operations.

9.3 DOCA Services Fluent Logger
This page provides instructions on how to use the logging infrastructure for DOCA services on top of
NVIDIA® BlueField®.

9.4 DPU CLI
This page provides quick access to a useful set of CLI commands and utilities on the NVIDIA®
BlueField® environment.

9.5 Emulated Devices
For information on virtio-net device emulation, please refer to the NVIDIA BlueField Virtio-
net documentation.

9.6 Modes of Operation
This page describes the modes of operation available for NVIDIA® BlueField®.

9.7 Switching
These pages describe the extensive switching capabilities enabled by DOCA libraries and services on
these platforms.

9.8 OpenSSL
This page provides instructions on using DOCA SHA for OpenSSL implementations.

9.9 Scalable Functions (SFs)
This page provides an overview and configuration of scalable functions (sub-functions, or SFs) for
NVIDIA® BlueField®.

https://docs.nvidia.com/networking/display/bluefieldvirtionet

63

9.10 TLS Offload
This page provides an overview and configuration steps of TLS hardware offloading via kernel-TLS,
using hardware capabilities of NVIDIA® BlueField®.

9.11 Troubleshooting
This page provides troubleshooting information for common issues and misconfigurations
encountered when using DOCA for NVIDIA® BlueField®.

9.12 Virtual Functions (VFs)
This page provides an overview and configuration of virtual functions for NVIDIA® BlueField® and
demonstrates a use case for running the DOCA applications over x86 host.

64

10 Archive

10.1 LTS Versions
This page provides pointers to the DOCA long term support (LTS) releases.

10.2 Documentation Archives
This page provides pointers to archived documentation of previous DOCA software releases.

For questions, comments, and feedback, please contact us at DOCA-
Feedback@exchange.nvidia.com.

mailto:DOCA-Feedback@exchange.nvidia.com

65

•
•
•
•

11 DOCA SDK v2.8.0
This section contains the following pages:

NVIDIA DOCA Overview
NVIDIA DOCA Release Notes
BlueField and DOCA User Types
NVIDIA DOCA EULA

11.1 NVIDIA DOCA Overview
This is an overview of the structure of NVIDIA DOCA documentation. It walks you through DOCA's
developer zone portal which contains all the information about the DOCA toolkit from NVIDIA,
providing all you need to develop NVIDIA® BlueField®-accelerated applications and the drivers for
the host.

11.1.1 Introduction
The NVIDIA DOCA™ Framework enables rapidly creating and managing applications and services on
top of the BlueField networking platform, leveraging industry-standard APIs. With DOCA, developers
can deliver breakthrough networking, security, and storage performance by harnessing the power of
NVIDIA's BlueField data-processing units (DPUs) and SuperNICs. Installing DOCA on your host provides
all the necessary drivers and tools to manage NVIDIA® BlueField® and NVIDIA® ConnectX® devices.

66

•

•

•
•
•

DOCA Framework includes the DOCA-Host package and the BlueField Software Bundle for BlueField
Arm:

BlueField Software Bundle (BF-Bundle) is the software package installed on the BlueField Arm
cores
DOCA-Host is the software package installed on the host server which includes different DOCA
installation profiles

The BlueField Software Bundle includes:

The DOCA runtime drivers and libs installed on top of the BlueField Platform
The OS installed on the BlueField Platform
The BlueField Platform Software (i.e., firmware and UEFI bootloader)

DOCA provides all the required libraries and drivers for hosts that include NVIDIA Networking
platforms (i.e., BlueField and ConnectX) with a dedicated DOCA-Host package installation.

DOCA contains a runtime and development environment, including libraries and drivers for device
management and programmability, for the host and as part of a BlueField Platform Software.

67

DOCA is the software infrastructure for BlueField's main hardware entities:

68

11.1.2 Installation
Installation instructions for both host and BlueField image can be found in the NVIDIA DOCA
Installation Guide for Linux.

Whether DOCA has been installed on the host or on the BlueField networking platform, one can find
the different DOCA components under the /opt/mellanox/doca directory. These include the
traditional SDK-related components (libraries, header files, etc.) as well as the DOCA samples,
applications, tools and more, as described in this document.

11.1.3 API
The DOCA SDK is built around the different DOCA libraries designed to leverage the capabilities of
BlueField. Under the Programming Guide section, one can find a detailed description of each DOCA
library, its goals, and API. These guides document DOCA's API, aiming to help develop DOCA-based
programs.

The API References section holds the Doxygen-generated documentation of DOCA's official API.

11.1.4 Programming Guides
DOCA programming guides provide the full picture of DOCA libraries and their APIs. Each guide
includes an introduction, architecture, API overview, and other library-specific information.

Each library's programming guide includes code snippets for achieving basic DOCA-based tasks. It is
recommended to review these samples while going over the programming guide of the relevant
DOCA library to learn about its API. The samples provide an implementation example of a single
feature of a given DOCA library.

For a more detailed reference of full DOCA-based programs that make use of multiple DOCA
libraries, please refer to the Reference Applications.

11.1.5 Applications
Applications are a higher-level reference code than the samples and demonstrate how a full DOCA-
based program can be built. In addition to the supplied source code and compilation definitions, the
applications are also shipped in their compiled binary form. This is to allow users an out-of-the-box
interaction with DOCA-based programs without the hassle of a developer-oriented compilation
process.

Many DOCA applications combine the functionality of more than one DOCA library and offer an
example implementation for common scenarios of interest to users such as application recognition
according to incoming/outgoing traffic, scanning files using the hardware RegEx acceleration, and
much more.

For more information about DOCA applications, refer to DOCA Applications.

69

•
•
•
•

11.1.6 Tools
Some of the DOCA libraries are shipped alongside helper tools for both runtime and development.
These tools are often an extension to the library's own API and bridge the gap between the library's
expected input format and the input available to the users.

For more information about DOCA tools, refer to DOCA Tools.

11.1.7 Services
DOCA services are containerized DOCA-based programs that provide an end-to-end solution for a
given use case. DOCA services are accessible as part of NVIDIA's container catalog (NGC) from which
they can be easily deployed directly to BlueField, and sometimes also to the host.

For more information about container-based deployment to the BlueField Platform, refer to the
NVIDIA BlueField Container Deployment Guide.

For more information about DOCA services, refer to the DOCA Services.

11.2 NVIDIA DOCA Release Notes
NVIDIA DOCA SDK release notes containing information on new features, software interoperability,
and known issues.

11.2.1 Introduction
DOCA 2.8.0 introduces NVIDIA® BlueField® networking platform (DPU or SuperNIC) enhancements
for high-performance and secure AI bare-metal cloud and DOCA-Host updates for supported
BlueField and NVIDIA® ConnectX® devices. With programmable congestion control (PCC) and data-
path acceleration (DPA). DOCA SDK provides an extensive framework for developers.

The DOCA release notes contain the following subpages:

General Support
Changes and New Features
Bug Fixes in This Version
Known Issues

11.2.2 Installation Notes

For questions, comments, and feedback, please contact us at DOCA-
Feedback@exchange.nvidia.com.

BlueField-3 devices are not supported with MLNX_OFED as the host driver and are required
to use DOCA-Host.

mailto:DOCA-Feedback@exchange.nvidia.com

70

•
•

•
•

•
•

•
•

•

•

•
•

•
•

•

Refer to the NVIDIA DOCA Installation Guide for Linux for information on:

Setting up DOCA SDK on your BlueField networking platform or SmartNIC
Supported BlueField platforms

11.2.3 Supported Device Speeds

Uplink/Adapter Card Driver
Name

Uplink Speed

BlueField-2 mlx5 InfiniBand: SDR, FDR, EDR, HDR
Ethernet: 1GbE, 10GbE, 25GbE, 40GbE, 50GbE 1 , 100GbE 1

BlueField InfiniBand: SDR, QDR, FDR, FDR10, EDR
Ethernet: 1GbE, 10GbE, 25GbE, 40GbE, 50GbE, 100GbE

ConnectX-7 InfiniBand: EDR, HDR100, HDR, NDR200, NDR
Ethernet: 1GbE, 10GbE, 25GbE, 40GbE, 50GbE 1 , 100GbE 1 , 200GbE

2 , 400GbE

ConnectX-6 Lx Ethernet: 1GbE, 10GbE, 25GbE, 40GbE, 50GbE 1

ConnectX-6 Dx Ethernet: 10GbE, 25GbE, 40GbE, 50GbE 1 , 100GbE 1 , 200GbE 1

ConnectX-6 InfiniBand: SDR, FDR, EDR, HDR
Ethernet: 10GbE, 25GbE, 40GbE, 50GbE 1 , 100GbE 1 , 200GbE 1

ConnectX-5/ConnectX-5
Ex

InfiniBand: SDR, QDR, FDR, FDR10, EDR
Ethernet: 1GbE, 10GbE, 25GbE, 40GbE, 50GbE, 100GbE

ConnectX-4 Lx Ethernet: 1GbE, 10GbE, 25GbE, 40GbE, 50GbE

•
•
•
•

BlueField DPUs with the following SKUs require an 8-pin ATX power supply cable connection
when powering up. Without this connection to the power supply cable, the device will not
complete the power-on procedure and will not function properly.

*B3220 DPUs – 900-9D3B6-00CV-AA0 and 900-9D3B6-00SV-AA0
*B3240 DPUs – 900-9D3B6-00CN-AB0 and 900-9D3B6-00SN-AB0
*B3210 DPUs – 900-9D3B6-00CC-AA0 and 900-9D3B6-00SC-AA0
*B3210E DPUs – 900-9D3B6-00CC-EA0 and 900-9D3B6-00SC-EA0

•

•

DOCA Runtime and DOCA Devel (SDK)

By default, installing DOCA profiles with standard Linux tools (yum, apt) installs both doca-

runtime and doca-devel (previously doca-sdk).

doca-runtime includes all the components, libs, drivers, and tools used in the
production environment by the DOCA admin
doca-devel includes all the components, libs, drivers, and tools used for
development, including reference applications, compilers, etc.

Starting with DOCA 2.8.0, the default installation of BlueField-Bundle and DOCA-Host
profiles will only include DOCA runtime. doca-devel can be installed manually as needed.

71

•
•

•
•

Uplink/Adapter Card Driver
Name

Uplink Speed

ConnectX-4 InfiniBand: SDR, QDR, FDR, FDR10, EDR
Ethernet: 1GbE, 10GbE, 25GbE, 40GbE, 50GbE, 56GbE 3 , 100GbE

1. Speed that supports both NRZ and PAM4 modes in Force mode and Auto-Negotiation mode.

2. Speed that supports PAM4 mode only.
3. 56GbE is an NVIDIA proprietary link speed and can be achieved while connecting an NVIDIA
adapter card to NVIDIA SX10XX switch series or when connecting an NVIDIA adapter card to
another NVIDIA adapter card.

11.2.4 Technical Support
Customers who purchased NVIDIA products directly from NVIDIA are invited to contact us through the
following methods:

E-mail: enterprisesupport@nvidia.com
Enterprise Support page: https://www.nvidia.com/en-us/support/enterprise

Customers who purchased NVIDIA M-1 Global Support Services, please see your contract for details
regarding Technical Support.

Customers who purchased NVIDIA products through an NVIDIA-approved reseller should first seek
assistance through their reseller.

11.2.5 General Support

11.2.5.1 Embedded DOCA Firmware Components
Component Version Description

ATF v2.2(release):4.8.0-41-
gf0ff3a4

Arm-trusted firmware is a reference
implementation of secure world software for
Arm architectures

UEFI 4.8.0-36-gf01f42f UEFI is a specification that defines the
architecture of the platform firmware used
for booting and its interface for interaction
with the operating system

BlueField-3 NIC firmware 32.42.1000 Firmware is used to run user programs on the
BlueField-3 which allow hardware to run

BlueField-2 NIC firmware 24.42.1000 Firmware is used to run user programs on the
BlueField-2 which allow hardware to run

BMC firmware 24.07 BlueField BMC firmware

For questions, comments, and feedback, please contact us at DOCA-
Feedback@exchange.nvidia.com.

https://mail.google.com/mail/?view=cm&fs=1&tf=1&to=Enterprisesupport@nvidia.com
https://www.nvidia.com/en-us/support/enterprise/
https://docs.nvidia.com/networking/display/bluefielddpuosv480
https://docs.nvidia.com/networking/display/bluefielddpuosv480
https://docs.nvidia.com/networking/display/BlueField3Firmwarev32421000
https://docs.nvidia.com/networking/display/BlueField2Firmwarev24421000
https://docs.nvidia.com/networking/display/bluefieldbmcv2407
mailto:DOCA-Feedback@exchange.nvidia.com

72

Component Version Description

BlueField-3 eROT (Glacier) 00.02.0182.0000 BlueField-3 eROT firmware

BlueField-2 eROT (CEC) cec_ota_BMGP-04.0f BlueField-2 eROT firmware

11.2.5.2 Supported NIC Firmware Versions

Adapter Card Bundled Firmware Version

BlueField-2 24.42.1xxx

ConnectX-7 28.42.1xxx

ConnectX-6 Lx 26.42.1xxx

ConnectX-6 Dx 22.42.1xxx

ConnectX-6 20.42.1xxx

ConnectX-5/ConnectX-5 Ex 16.35.4030

BlueField 18.33.1048

ConnectX-4 Lx 14.32.1010

ConnectX-4 12.28.2006

To obtain the official firmware versions, refer to the NVIDIA Firmware Download page.

11.2.5.3 Embedded DOCA Drivers
Component Version Description Licenses

clusterkit 1.14.462-1.2407052 A multifaceted node assessment tool
for high-performance clusters

BSD

collectx-clxapi 1.18.2-17111037 A library which exposes the CollectX
API, which allows any 3rd party to
easily use CollectX functionality in
their own programs

Proprietary

dpacc 1.8.0 DPACC is a high-level compiler for
the DPA processor which compiles
code targeted for the data-path
accelerator (DPA) processor into a
device executable and generates a
DPA program

Proprietary

dpcp 1.1.49-1.2407052 DPCP provides a unified flexible
interface for programming IB
devices using DevX

Proprietary

flexio 24.04.2148-0 FlexIO SDK exposes an API for
managing the device and executing
native code over the DPA processor

Proprietary

DOCA 2.9.0 will be the last DOCA release to support ConnectX-4. DOCA 2.9.0 will be an LTS
version and will be supported for 3 years for bug fixes and CVE updates.

https://network.nvidia.com/support/firmware/firmware-downloads/

73

Component Version Description Licenses

fwctl 24.07-
OFED.24.07.0.5.1.1

Subsystem designed to standardize
the secure firmware interface for
userspace, focusing on debugging,
configuration, and provisioning

GPLv2

hcoll 4.8.3228-1.2407052 HCOLL contains support for building
runtime configurable hierarchical
collectives

Proprietary

ibarr 0.1.3-1.2407052 ip2gid address resolution and gid2lid
path record resolution

GPL-2.0 with Linux-
syscall-note or BSD-2-
Clause

ibdump 6.0.0-1.2407052 Dump of InfiniBand traffic;
diagnostic tool

BSD2+GPL2

ibsim 0.12-1.2407052 Open-source InfiniBand fabric
simulator

GPLv2 or BSD

ibutils 2.1.1 ibdiagnet scans the fabric using
directed route packets and extracts
all the available information
regarding its connectivity and
devices.

Proprietary

ibutils2 2.1.1-0.21800.MLNX2024
0801.ga4352587.240705
2

Utilities for InfiniBand Proprietary

iser 24.07-
OFED.24.07.0.5.2.1

Storage related drivers GPLv2

isert 24.07-
OFED.24.07.0.5.2.1

Storage related drivers GPLv2

kernel-mft 4.29.0-127 Kernel part of MFT tools (for
firmware burning, etc.)

Dual BSD/GPL

knem 1.1.4.90mlnx3-
OFED.23.10.0.2.1.1

Open-source kernel module that
enables high-perf intra-node MPI
communication

BSD and GPLv2

libvma 9.8.60-1 The NVIDIA® Messaging Accelerator
(VMA) library accelerates latency-
sensitive and throughput-demanding
TCP and UDP socket-based
applications by offloading traffic
from the user-space directly to the
NIC, without going through the
kernel and the standard IP stack
(kernel-bypass)

GPLv2 or BSD

libxlio 3.31.2-1 The NVIDIA® XLIO software library
boosts the performance of TCP/IP
applications based on NGINX
(CDN, DoH, etc.) and storage
solutions as part of the SPDK

GPLv2 or BSD

mft 4.29.0-131 NVIDIA® MFT is a set of firmware
management and debug tools for
NVIDIA devices

Proprietary

https://docs.nvidia.com/networking/display/MFTv4290/Release+Notes

74

Component Version Description Licenses

mlnx-dpdk 22.11.0-2404 Equivalent to DPDK upstream. The
versioning of MLNX_DPDK indicates
which upstream DPDK it is
compatible with it (e.g., 22.11 is
compatible with upstream DPDK
2022.11).

BSD, LGPLv2, and GPLv2

mlnx-en 24.07-0.5.2.0.ge08362d Kernel drivers part for Ethernet-only
package

GPLv2

mlnx-ethtool 24.07-0.5.2.0.ge08362d Ethtool with optional MLNX
adaptation

GPL

mlnx-iproute2 6.9.0-1.2407052 IPRoute with optional MLNX
adaptation

GPL

mlnx-libsnap 1.6.0-1 Libsnap is a common library
designed to assist common tasks for
applications wishing to interact with
emulated hardware over
BlueField and take the most
advantage from hardware
capabilities

Proprietary

mlnx-nfsrdma 24.07-
OFED.24.07.0.5.2.1

Storage related driver for NFS over
RDMA

GPLv2

mlnx-nvme 24.07-
OFED.24.07.0.5.2.1

Storage related driver for NVMe GPLv2

mlnx-ofa_kernel 24.07-
OFED.24.07.0.5.2.1

Kernel drivers for Ethernet
InfiniBand together

GPLv2

mlnx-snap 3.8.0-3 BlueField SNAP for NVMe and virtio-
blk enables hardware-accelerated
virtualization of local storage

Proprietary

mlnx-tools 24.07-0.2407052 Tools for loading modules,
configurations, scripts, etc.

GPLv2 or BSD

mlx-regex 1.2-ubuntu1 RegEx is a library that provides
RegEx pattern matching to DOCA
applications using the regular
expression processor (RXP) or
software-based engines when
required

Proprietary

mlx-steering-dump 1.0.0-0.2407052 Hardware/software steering dump
parsing tools

GPLv2

mpitests 3.2.24-2ffc2d6.2407052 Test suite for benchmarking the MPI BSD

mstflint 4.26.0-1 User space part of our MFT tools GPL/BSD

multiperf 3.0-3.0.2407052 Linux tool for perf testing BSD 3-Clause, GPL v2 or
later

ofed-scripts 24.07-OFED.24.07.0.5.2 Scripts used to build OFED GPL/BSD

openmpi 4.1.7a1-1.2407052 MPI implementation (for RDMA/
RoCE) with some improvements
done by the HPC team

BSD

75

Component Version Description Licenses

opensm 5.20.0.MLNX20240801.ef
1f438a-0.1.2407052

InfiniBand Subnet Manager and
Subnet Administrator based on
OpenSM

GPLv2 or BSD

openvswitch 2.17.8-1.2407052 OVS (virtual switch), DPDK based ASL 2.0, LGPLv2+, and
SISSL

perftest 24.07.0-0.44.g57725f2.2
407052

Test suite for performance BSD 3-Clause, GPL v2, or
later

rdma-core 2407mlnx52-1.2407052 Implementation of the RDMA verbs GPLv2 or BSD

rivermax 1.51.4 NVIDIA® Rivermax® is an optimized
networking SDK for media and data
streaming applications

Proprietary

rshim 2.0.38-0.gc0f82f3 The user-space driver to access the
BlueField SoC via the RShim
interface, providing ways to push
boot stream, debug the target, or
login via the virtual console or
network interface

GPLv2

sharp 3.8.0.MLNX20240801.61
8ff287-1.2407052

Improves the performance of MPI
and Machine Learning collective
operation by offloading from CPUs
and GPUs to the network and
eliminating the need to send data
multiple times between endpoints

Proprietary

sockperf 3.10-0.git5ebd327da983
.2407052

Network benchmarking utility over
socket API UDP/TCP designed for
testing network performance
(latency and throughput)

BSD

spdk 23.01.5-21 SPDK provides a set of tools and
libraries for writing high
performance, scalable, user-mode
storage applications

Proprietary

srp 24.07-
OFED.24.07.0.5.2.1

Storage-related driver for SCSI RDMA
Protocol initiator

GPLv2

ucx 1.17.0-1.2407052 High-level application-oriented API
for high-performance
communication over RDMA networks

BSD

virtio-net-
controller

24.07.11-1 Virtio-net-controller is a systemd
service running on BlueField, with a
user interface front-end to manage
the emulated virtio-net devices

Proprietary

vma 9.8.60-1 Accelerates latency-sensitive and
throughput-demanding TCP and UDP
socket-based applications by
offloading traffic from the user-
space directly to the network
interface card (NIC) or Host Channel
Adapter (HCA)

 GPLv2 or BSD

xlio 3.31.2-1 Boosts the performance of TCP/IP
applications based on NGINX (CDN,
DoH, etc.) and storage solutions as
part of the SPDK

GPLv2 or BSD

https://docs.nvidia.com/networking/display/mlnxsmrnv5200
https://docs.nvidia.com/networking/display/SHARPv380
https://docs.nvidia.com/networking/display/bluefieldvirtionetv2407/release+notes
https://docs.nvidia.com/networking/display/VMAv9860
https://docs.nvidia.com/networking/display/XLIOv3312

76

Component Version Description Licenses

xpmem 2.7.3-1.2407052 Kernel module to enable inter-
process mapping for memory copy in
user space

GPLv2 and LGPLv2.1

xpmem-lib 2.7-0.2310055 High-performance inter-process
memory sharing

LGPLv2.1

11.2.5.4 DOCA Packages
Device Component Version Description

Host DOCA Devel 2.8.0 Software development kit package
and tools for developing host
software

DOCA Runtime 2.8.0 Runtime libraries and tools required
to run DOCA-based software
applications on host

DOCA Extra 2.8.0 Contains helper scripts (doca-info,
doca-kernel-support)

DOCA OFED 2.8.0 Software stack which operates across
all NVIDIA network adapter solutions

Arm emulated
(QEMU) development
container

4.8.0 Linux-based BlueField Arm emulated
container for developers

Target BlueField DPU (Arm) BlueField BSP 4.8.0 BlueField image and firmware

DOCA SDK 2.8.0 Software development kit packages
and tools for developing Arm software

DOCA Runtime 2.8.0 Runtime libraries and tools required
to run DOCA-based software
applications on Arm

11.2.5.5 Supported Host OS and Features per DOCA-Host Installation
Profile

The default operating system included with the BlueField Bundle (for DPU and SuperNIC) is Ubuntu
22.04.

The supported operating systems on the host machine per DOCA-Host installation profile are the
following:

Only the following generic kernel versions are supported for DOCA local repo package for
host installation.

77

Oper
ating
Syste

m

Archi
tect
ure

Default
Kernel
Version
(Primar

y)/
Tested
with

Kernel
Version
(Comm
unity)

Supported DOCA
Profile

OS
Supp
ort

Mode
l

ASAP
2 OV
S-

Kern
el
SR-
IOV

A
S
A
P2

O
V
S-
D
P
D
K
S
R
-I
O
V

NFS-
over-
RDMA

NVMe G
P
U
D
ir
e
c
t
S
t
o
r
a
g
e
(
G
D
S
)

U
C
X
-
C
U
D
A
V
e
r
s
i
o
n

doca-
all

doca-
netw
orkin

g

doca-
ofed

Alinux
3.2

x86 5.10.134-
13.al8.x8
6_64

Primary

Alma
8.5

x86 4.18.0-34
8.12.2.EL
8_5.X86_
64

Commu
nity

e

Anolis
OS 8.4

aarch6
4

4.18.0-34
8.2.1.AN
8_4.aarc
h64

Commu
nity

x86 4.18.0-30
5.AN8.X8
6_64

Commu
nity

Anolis
OS 8.6

aarch6
4

5.10.134
+

Primary

x86 5.10.134
+

Primary

BCLinux
 21.10S
P2

aarch6
4

4.19.90-2
107.6.0.0
098.oe1.
bclinux.a
arch64

Primary

x86 4.19.90-2
107.6.0.0
100.oe1.
bclinux.x
86_64

Primary

BCLinux
22.10

aarch6
4

5.10.0-15
3.24.0.10
0.6.oe22
03sp2.bcl
inux.aarc
h64

Primary

78

Oper
ating
Syste

m

Archi
tect
ure

Default
Kernel
Version
(Primar

y)/
Tested
with

Kernel
Version
(Comm
unity)

Supported DOCA
Profile

OS
Supp
ort

Mode
l

ASAP
2 OV
S-

Kern
el
SR-
IOV

A
S
A
P2

O
V
S-
D
P
D
K
S
R
-I
O
V

NFS-
over-
RDMA

NVMe G
P
U
D
ir
e
c
t
S
t
o
r
a
g
e
(
G
D
S
)

U
C
X
-
C
U
D
A
V
e
r
s
i
o
n

doca-
all

doca-
netw
orkin

g

doca-
ofed

x86 5.10.0-15
3.24.0.10
0.6.oe22
03sp2.bcl
inux.x86_
64

Primary

CentOS
Stream
8

aarch6
4

4.18.0-53
5.el8.aar
ch64

Commu
nity

x86 4.18.0-53
5.el8.x86
_64

Commu
nity

CentOS
Stream
9

aarch6
4

5.14.0-40
7.el9.x86
_64

Commu
nity

x86 5.14.0-40
7.el9.aar
ch64

Commu
nity

CTyunO
S 2.0

aarch6
4

4.19.90-2
102.2.0.0
062.ctl2.
aarch64

Primary

x86 4.19.90-2
102.2.0.0
062.ctl2.
x86_64

Primary

CTyunO
S 23.01

aarch6
4

5.10.0-13
6.12.0.86
.ctl3.aar
ch64

Primary

x86 5.10.0-13
6.12.0.86
.ctl3.x86
_64

Primary

79

Oper
ating
Syste

m

Archi
tect
ure

Default
Kernel
Version
(Primar

y)/
Tested
with

Kernel
Version
(Comm
unity)

Supported DOCA
Profile

OS
Supp
ort

Mode
l

ASAP
2 OV
S-

Kern
el
SR-
IOV

A
S
A
P2

O
V
S-
D
P
D
K
S
R
-I
O
V

NFS-
over-
RDMA

NVMe G
P
U
D
ir
e
c
t
S
t
o
r
a
g
e
(
G
D
S
)

U
C
X
-
C
U
D
A
V
e
r
s
i
o
n

doca-
all

doca-
netw
orkin

g

doca-
ofed

Debian
10.8

aarch6
4

4.19.0-14
-arm64

Primary

x86 4.19.0-14
-amd64

Primary

Debian
10.9

x86 4.19.0-14
-amd64

Primary

x86 4.19.0-16
-amd64

Primary

Debian
10.13

aarch6
4

4.19.0-21
-arm64

Primary

x86 4.19.0-21
-amd64

Primary

Debian
11.3

aarch6
4

5.10.0-13
-arm64

Primary

x86 5.10.0-13
-amd64

Primary

Debian
12.1

aarch6
4

6.1.0-10-
arm64

Primary

x86 6.1.0-10-
amd64

Primary

Debian
12.5

aarch6
4

6.1.0-18-
arm64

Primary

x86 6.1.0-18-
amd64

Primary

EulerOS
2.0 SP9

aarch6
4

4.19.90-
vhulk200
6.2.0.h17
1.euleros
v2r9.aarc
h64

Commu
nity

80

Oper
ating
Syste

m

Archi
tect
ure

Default
Kernel
Version
(Primar

y)/
Tested
with

Kernel
Version
(Comm
unity)

Supported DOCA
Profile

OS
Supp
ort

Mode
l

ASAP
2 OV
S-

Kern
el
SR-
IOV

A
S
A
P2

O
V
S-
D
P
D
K
S
R
-I
O
V

NFS-
over-
RDMA

NVMe G
P
U
D
ir
e
c
t
S
t
o
r
a
g
e
(
G
D
S
)

U
C
X
-
C
U
D
A
V
e
r
s
i
o
n

doca-
all

doca-
netw
orkin

g

doca-
ofed

x86 4.18.0-14
7.5.1.0.h
269.euler
osv2r9.x8
6_64

Commu
nity

EulerOS
2.0
SP10

aarch6
4

4.19.90-
vhulk211
0.1.0.h86
0.euleros
v2r10.aar
ch64

Commu
nity

x86 4.18.0-14
7.5.2.4.h
694.euler
osv2r10.x
86_64

Commu
nity

EulerOS
2.0
SP11

aarch6
4

5.10.0-60
.18.0.50.
h323.eul
erosv2r11
.aarch64

Primary

x86 5.10.0-60
.18.0.50.
h323.eul
erosv2r11
.x86_64

Primary

EulerOS
2.0
SP12

aarch6
4

5.10.0-13
6.12.0.86
.h1032.e
ulerosv2r
12.aarch
64

Primary

81

Oper
ating
Syste

m

Archi
tect
ure

Default
Kernel
Version
(Primar

y)/
Tested
with

Kernel
Version
(Comm
unity)

Supported DOCA
Profile

OS
Supp
ort

Mode
l

ASAP
2 OV
S-

Kern
el
SR-
IOV

A
S
A
P2

O
V
S-
D
P
D
K
S
R
-I
O
V

NFS-
over-
RDMA

NVMe G
P
U
D
ir
e
c
t
S
t
o
r
a
g
e
(
G
D
S
)

U
C
X
-
C
U
D
A
V
e
r
s
i
o
n

doca-
all

doca-
netw
orkin

g

doca-
ofed

x86 5.10.0-13
6.12.0.86
.h1032.e
ulerosv2r
12.x86_6
4

Primary

Kylin
1.0 SP2

aarch6
4

4.19.90-2
4.4.v2101
.ky10.aar
ch64

Primary

x86 4.19.90-2
4.4.v2101
.ky10.x86
_64

Primary

Kylin
1.0 SP3

aarch6
4

4.19.90-5
2.22.v220
7.ky10.aa
rch64

Primary

x86 4.19.90-5
2.22.v220
7.ky10.x8
6_64

Primary

Linux
Kernel
6.10

aarch6
4

6.10 Primary

x86 Primary

Mariner
2.0

x86 5.15.148.
2-2.cm2

Primary

Oracle
Linux
7.9

x86 5.4.17-20
11.6.2.el
7uek.x86
_64

Primary

Oracle
Linux
8.4

x86 5.4.17-21
02.201.3.
el8uek.x8
6_64

Primary

82

Oper
ating
Syste

m

Archi
tect
ure

Default
Kernel
Version
(Primar

y)/
Tested
with

Kernel
Version
(Comm
unity)

Supported DOCA
Profile

OS
Supp
ort

Mode
l

ASAP
2 OV
S-

Kern
el
SR-
IOV

A
S
A
P2

O
V
S-
D
P
D
K
S
R
-I
O
V

NFS-
over-
RDMA

NVMe G
P
U
D
ir
e
c
t
S
t
o
r
a
g
e
(
G
D
S
)

U
C
X
-
C
U
D
A
V
e
r
s
i
o
n

doca-
all

doca-
netw
orkin

g

doca-
ofed

Oracle
Linux
8.6

x86 5.4.17-21
36.307.3.
1.el8uek.
x86_64

Primary

Oracle
Linux
8.7

x86 5.15.0-3.
60.5.1.el
8uek.x86
_64

Primary

Oracle
Linux
8.8

x86 5.15.0-10
1.103.2.1
.el8uek.x
86_64

Primary

Oracle
Linux
9.0

x86 5.15.0-0.
30.19.el9
uek.x86_
64

Primary

Oracle
Linux
9.1

x86 5.15.0-3.
60.5.1.el
9uek.x86
_64

Primary

Oracle
Linux
9.2

x86 5.15.0-10
1.103.2.1
.el9uek.x
86_64

Primary

OpenSU
SE 15.3

aarch6
4

- Commu
nity

x86 5.3.18-15
0300.59.
43-
DEFAULT

Commu
nity

openEul
er
20.03
SP1

aarch6
4

4.19.90-2
012.4.0.0
053.OE1.
aarch64

Commu
nity

83

Oper
ating
Syste

m

Archi
tect
ure

Default
Kernel
Version
(Primar

y)/
Tested
with

Kernel
Version
(Comm
unity)

Supported DOCA
Profile

OS
Supp
ort

Mode
l

ASAP
2 OV
S-

Kern
el
SR-
IOV

A
S
A
P2

O
V
S-
D
P
D
K
S
R
-I
O
V

NFS-
over-
RDMA

NVMe G
P
U
D
ir
e
c
t
S
t
o
r
a
g
e
(
G
D
S
)

U
C
X
-
C
U
D
A
V
e
r
s
i
o
n

doca-
all

doca-
netw
orkin

g

doca-
ofed

x86 4.19.90-
2110.8.0.
0119.OE1
.X86_64

Commu
nity

openEul
er
20.03
SP3

aarch6
4

4.19.90-2
112.8.0.0
131.oe1.
aarch64

Primary

x86 4.19.90-2
112.8.0.0
131.oe1.
x86_64

Primary

openEul
er
22.03

aarch6
4

5.10.0-60
.18.0.50.
oe2203.a
arch64

Primary

x86 5.10.0-60
.18.0.50.
oe2203.x
86_64

Primary

openEul
er
22.03
SP1

x86 5.10.0-13
6.12.0.86
.oe2203s
p1.x86_6
4

Primary

Photon
OS 3.0

x86 4.19.225-
3.ph3

Commu
nity

RHEL/
CentOS
8.0

aarch6
4

4.18.0-80
.el8.aarc
h64

Primary 12
.5

x86 4.18.0-80
.el8.x86_
64

Primary 12
.5

84

Oper
ating
Syste

m

Archi
tect
ure

Default
Kernel
Version
(Primar

y)/
Tested
with

Kernel
Version
(Comm
unity)

Supported DOCA
Profile

OS
Supp
ort

Mode
l

ASAP
2 OV
S-

Kern
el
SR-
IOV

A
S
A
P2

O
V
S-
D
P
D
K
S
R
-I
O
V

NFS-
over-
RDMA

NVMe G
P
U
D
ir
e
c
t
S
t
o
r
a
g
e
(
G
D
S
)

U
C
X
-
C
U
D
A
V
e
r
s
i
o
n

doca-
all

doca-
netw
orkin

g

doca-
ofed

RHEL/
CentOS
8.1

aarch6
4

4.18.0-14
7.el8.aar
ch64

Primary 12
.5

x86 4.18.0-14
7.el8.x86
_64

Primary 12
.5

RHEL/
CentOS
8.2

aarch6
4

4.18.0-19
3.el8.aar
ch64

Primary 12
.5

x86 4.18.0-19
3.el8.x86
_64

Primary 12
.5

RHEL/
CentOS
8.3

aarch6
4

4.18.0-24
0.el8.aar
ch64

Primary 12
.5

x86 4.18.0-24
0.el8.x86
_64

Primary 12
.5

RHEL/
CentOS
8.4

aarch6
4

4.18.0-30
5.el8.aar
ch64

Primary 12
.5

x86 4.18.0-30
5.el8.x86
_64

Primary 12
.5

RHEL/
CentOS
8.5

aarch6
4

4.18.0-34
8.el8.aar
ch64

Primary 12
.5

x86 4.18.0-34
8.el8.x86
_64

Primary 12
.5

RHEL/
Rocky
8.6

aarch6
4

aarch644
.18.0-372
.41.1.el8
_6.aarch
64

Primary 12
.5

85

Oper
ating
Syste

m

Archi
tect
ure

Default
Kernel
Version
(Primar

y)/
Tested
with

Kernel
Version
(Comm
unity)

Supported DOCA
Profile

OS
Supp
ort

Mode
l

ASAP
2 OV
S-

Kern
el
SR-
IOV

A
S
A
P2

O
V
S-
D
P
D
K
S
R
-I
O
V

NFS-
over-
RDMA

NVMe G
P
U
D
ir
e
c
t
S
t
o
r
a
g
e
(
G
D
S
)

U
C
X
-
C
U
D
A
V
e
r
s
i
o
n

doca-
all

doca-
netw
orkin

g

doca-
ofed

x86 4.18.0-37
2.41.1.el
8_6.x86_
64

Primary 12
.5

RHEL/
Rocky
8.7

aarch6
4

4.18.0-42
5.14.1.el
8_7.aarc
h64

Primary 12
.5

x86 4.18.0-42
5.14.1.el
8_7.x86_
64

Primary 12
.5

RHEL/
Rocky
8.8

aarch6
4

4.18.0-47
7.10.1.el
8_8.aarc
h64

Primary 12
.5

x86 4.18.0-47
7.10.1.el
8_8.x86_
64

Primary 12
.5

RHEL/
Rocky
8.9

aarch6
4

4.18.0-51
3.5.1.el8
_9.aarch
64

Primary 12
.5

x86 4.18.0-51
3.5.1.el8
_9.x86_6
4

Primary 12
.5

RHEL/
Rocky
8.10

aarch6
4

4.18.0-55
3.el8_10.
aarch64

Primary 12
.5

x86 4.18.0-55
3.el8_10.
x86_64

Primary 12
.5

86

Oper
ating
Syste

m

Archi
tect
ure

Default
Kernel
Version
(Primar

y)/
Tested
with

Kernel
Version
(Comm
unity)

Supported DOCA
Profile

OS
Supp
ort

Mode
l

ASAP
2 OV
S-

Kern
el
SR-
IOV

A
S
A
P2

O
V
S-
D
P
D
K
S
R
-I
O
V

NFS-
over-
RDMA

NVMe G
P
U
D
ir
e
c
t
S
t
o
r
a
g
e
(
G
D
S
)

U
C
X
-
C
U
D
A
V
e
r
s
i
o
n

doca-
all

doca-
netw
orkin

g

doca-
ofed

RHEL/
Rocky
9.0

aarch6
4

5.14.0-70
.46.1.el9
_0.aarch
64

Primary 12
.5

x86 5.14.0-70
.46.1.el9
_0.x86_6
4

Primary 12
.5

RHEL/
Rocky
9.1

aarch6
4

5.14.0-16
2.19.1.el
9_1.aarc
h64

Primary 12
.5

x86 5.14.0-16
2.19.1.el
9_1.x86_
64

Primary 12
.5

RHEL/
Rocky
9.2

aarch6
4

5.14.0-28
4.11.1.el
9_2.aarc
h64

Primary 12
.5

x86 5.14.0-28
4.11.1.el
9_2.x86_
64

Primary 12
.5

RHEL/
Rocky
9.3

aarch6
4

5.14.0-36
2.8.1.el9
_3.aarch
64

Primary 12
.5

x86 5.14.0-36
2.8.1.el9
_3.x86_6
4

Primary 12
.5

RHEL/
Rocky
9.4

aarch6
4

5.14.0-42
7.13.1.el
9_4.aarc
h64

Primary 12
.5

87

Oper
ating
Syste

m

Archi
tect
ure

Default
Kernel
Version
(Primar

y)/
Tested
with

Kernel
Version
(Comm
unity)

Supported DOCA
Profile

OS
Supp
ort

Mode
l

ASAP
2 OV
S-

Kern
el
SR-
IOV

A
S
A
P2

O
V
S-
D
P
D
K
S
R
-I
O
V

NFS-
over-
RDMA

NVMe G
P
U
D
ir
e
c
t
S
t
o
r
a
g
e
(
G
D
S
)

U
C
X
-
C
U
D
A
V
e
r
s
i
o
n

doca-
all

doca-
netw
orkin

g

doca-
ofed

x86 5.14.0-42
7.13.1.el
9_4.x86_
64

Primary 12
.5

SLES 15
SP2

aarch6
4

5.3.18-22
-default

Primary

x86 5.3.18-22
-default

Primary

SLES 15
SP3

aarch6
4

5.3.18-57
-default

Primary

x86 5.3.18-57
-default

Primary

SLES 15
SP4

aarch6
4

5.14.21-1
50400.22
-default

Primary

x86 5.14.21-1
50400.22
-default

Primary

SLES 15
SP5

aarch6
4

5.14.21-1
50500.53
-default

Primary

x86 5.14.21-1
50500.53
-default

Primary

SLES 15
SP6

x86 6.4.0-150
600.21-
default

Primary

Tencent
OS 3.3

aarch6
4

5.4.119-1
9.0009.3
9

Primary

x86 5.4.119-1
9.0009.3
9

Primary

88

Oper
ating
Syste

m

Archi
tect
ure

Default
Kernel
Version
(Primar

y)/
Tested
with

Kernel
Version
(Comm
unity)

Supported DOCA
Profile

OS
Supp
ort

Mode
l

ASAP
2 OV
S-

Kern
el
SR-
IOV

A
S
A
P2

O
V
S-
D
P
D
K
S
R
-I
O
V

NFS-
over-
RDMA

NVMe G
P
U
D
ir
e
c
t
S
t
o
r
a
g
e
(
G
D
S
)

U
C
X
-
C
U
D
A
V
e
r
s
i
o
n

doca-
all

doca-
netw
orkin

g

doca-
ofed

Ubuntu
20.04

aarch6
4

5.4.0-26-
generic

Primary 12
.5

x86 5.4.0-26-
generic

Primary 12
.5

Ubuntu
22.04

aarch6
4

5.15.0-25
-generic

Primary 12
.5

x86 5.15.0-25
-generic

Primary 12
.5

Ubuntu
24.04

aarch6
4

6.6.0-14-
generic

Primary 12
.5

x86 6.6.0-14-
generic

Primary 12
.5

UOS
20.1060

aarch6
4

5.10.0-46
.uel20.aa
rch64

Primary

x86 5.10.0-46
.uel20.x8
6_64

Primary

UOS
20.1060
a

aarch6
4

5.10.0-46
.uelc20.a
arch64

Primary

x86 5.10.0-46
.uelc20.x
86_64

Primary

11.2.5.6 DOCA-OFED Version Interoperability
This section reflects which versions were tested and verified for multi-version environments (i.e.,
environments with more than one doca-ofed version on host servers).

Target Version Versions Verified for Interoperability

24.07-1.x.x.x July 2024 24.04-0.7.0.0 - DOCA-OFED Profile

89

Target Version Versions Verified for Interoperability

5.8-5.1.1.2 LTS

11.2.5.7 BF-Bundle (BFB) Version Upgrade/Downgrade
The following table provides a matrix for the supported upgrade/downgrade of BFBs across different
versions.

Version Upgrade to Downgrade to

1.5.0 2.0.2; 2.2.0; 1.5.1; 1.5.2; 1.5.3 1.4.0; 1.3.0

1.5.1 1.5.2 1.5.0

1.5.2 1.5.3 1.5.1; 1.5.0

1.5.3 N/A 1.5.2; 1.5.0

2.0.2 2.2.0; 2.5.0 1.5.0; 1.4.0

2.2.0 2.5.0; 2.6.0 N/A

2.2.1 2.5.0; 2.6.0 N/A

2.5.0 2.5.1; 2.6.0 2.2.1 for BlueField-3; 2.2.0 for BlueField-2

2.5.1 2.5.2 2.5.0

2.5.2 N/A 2.5.1; 2.5.0

2.6.0 2.7.0 2.5.0; 2.2.1 for BlueField-3; 2.2.0 for
BlueField-2

2.7.0 2.8.0 2.6.0; 2.5.0; 2.2.1 for BlueField-3; 2.2.0 for
BlueField-2

2.8.0 N/A 2.7.0; 2.6.0; 2.5.0

11.2.5.8 Supported DOCA Version Upgrade Using Standard Linux Tools
on BlueField
Version Upgrade to

2.5.0 2.5.1; 2.6.0; 2.7.0; 2.8.0

2.5.1 2.5.2

2.5.2 N/A

2.6.0 2.7.0; 2.8.0

2.7.0 2.8.0

11.2.5.9 API Changes

The old DOCA Comm Channel API will be deprecated in DOCA 2.9.0.

90

•
•
•

•
•

•
•

•
•
•
•

•
•

•

•
•

•
•

•

•
•

•
•

•
•

•

•
•
•

•
•

Library Change Description

doca_comch Changed features
API function name changes
API function parameter and return value changes

doca_dma Added features
Enable exporting DMA to GPU

doca_dpa Added features
Add multi-GVMI support (i.e., run DOCA DPA RDMA on VF
while DOCA DPA created on PF)

doca_common Added features
Bitfield support
Expandable doca_buf_inventory
Batching support (group tasks and flash explicitly to
hardware)
Set doca_pe (progress-engine) affinity

Changed features
Imported doca_mmap (to DPU) can be exported to
(remote) RDMA

doca_compress Removed features
Decompress LZ4

doca_eth Added features
Ability to extend (i.e., increase) number of allocated
tasks
Control notification moderation (once in n events or

time)
Changed features

Parameter order in:
doca_eth_rxq_task_recv_allocate_init

doca_gpunetio Added features
Support doca_buf on GPU (doca_gpu_buf)

Support dma operations GPU ↔ DPU/host
Changed Features

RDMA API changes

doca_pcc Added features
More debug/dump APIs
Performance enhancements (e.g., inline functions)

Changed features
Structure of cc_event – Added support for future
hardware (placeholder)

11.2.5.10 Device Definition
The supported adapter cards are specified as follows:

Supported Cards Description

All HCAs Supported in the following adapter cards unless specifically
stated otherwise:
ConnectX-4/ConnectX-4 Lx/ConnectX-5/ConnectX-6/ConnectX-6
Dx/ConnectX-6 Lx/ConnectX-7/BlueField-2/BlueField-3

91

•
•
•
•
•
•
•

•

Supported Cards Description

ConnectX-6 Dx and above Supported in the following adapter cards unless specifically
stated otherwise:
ConnectX-6 Dx/ConnectX-6 Lx/ConnectX-7/BlueField-2/
BlueField-3

ConnectX-6 and above Supported in the following adapter cards unless specifically
stated otherwise:
ConnectX-6/ConnectX-6 Dx/ConnectX-6 Lx/ConnectX-7/
BlueField-2/BlueField-3

ConnectX-5 and above Supported in the following adapter cards unless specifically
stated otherwise:
ConnectX-5/ConnectX-6/ConnectX-6 Dx/ConnectX-6 Lx/
ConnectX-7/BlueField-2/BlueField-3

ConnectX-4 and above Supported in the following adapter cards unless specifically
stated otherwise:
ConnectX-4/ConnectX-4 Lx/ConnectX-5/ConnectX-6/ConnectX-6
Dx/ConnectX-6 Lx/ConnectX-7/BlueField-2/BlueField-3

11.2.5.11 Unsupported Functionalities/Features/NICs
The following are the unsupported functionalities/features/NICs in the current version:

RDMA experimental verbs library (mlnx_lib)
CIFS (Common Internet File System) module installation
Relational Database Service (RDS)
mthca InfiniBand driver
Ethernet IPoIB (eIPoIB)
InfiniBand Connected transport service
IPSec over bond for crypto offload

11.2.6 Changes and New Features

11.2.6.1 New Features and Updates

Spectrum-X 1.1 – SuperNIC Enhancements and Host Telemetry – OTLP streaming protocol

DOCA 2.8.0 is a mandatory update release for all customers and projects with BlueField-3
DPU or SuperNIC when used in NIC mode with Arm cores disabled. This version fixes an
eMMC clock toggling loop issue after boot is completed.

The October '24 LTS release will be the final software version to support ConnectX-4 device.
Starting January '25, Connect-X 4 will no longer be supported by future DOCA-Host releases.

BlueField-3 networking platforms are required to use DOCA-Host as the host driver.
MLNX_OFED does not support BlueField-3 devices.

92

•

•

•

•

•

•

•

•
•

DOCA-Flow and OVS-DOCA enhancements – Hitless upgrade/restart, micro-segmentation,
"send-to-kernel" switch mode, "Basic pipe" resize, sFlow support (monitoring, debugging)
Added alpha support for SNAP Virtio-FS file system emulation to the early access NGC service
container
Added beta support for DOCA Management Service (DMS) – systemd service in DOCA for Host
package
DOCA DPA resource allocation optimization – Allocating DPA compute resources to multiple
apps
DOCA Core – Added support for L3 cache invalidation and task batching submission/
completion
DOCA reference applications code and DOCA libs sample code is now provided under BSD-3
open-source license
New DOCA Comch library (Comm Channel) GA, will replace the previous DOCA Comm Channel
library which is scheduled to be deprecated in the next release (Oct '24). See DOCA Comch
for details.
BFB update – Added support for setting BMC password
Added new BF-Bundle package format, .iso , in addition to .bfb

11.2.7 Bug Fixes in This Version

11.2.7.1 DOCA Bug Fixes
Ref # Issue

3928479 Description: Users may encounter an error in "dmesg" when unplugging an
emulated PCIe device.

Keyword: DevEmu

Reported in version: 2.7.0

3881941 Description: When working with RShim 2.0.28, PCIe host crash may rarely occur
at the beginning of BFB push after the Arm reset.

Keyword: RShim; driver

Reported in version: 2.7.0

3882794 Description: When working with doca_pcc_np context, the return value from

the API doca_pcc_get_max_num_threads() is incorrect. The function has an
output parameter that indicates the maximum number of threads allowed for a
doca_pcc_np context. The correct value that the library expects is 16 instead
of the returned 64.

Keyword: PCC; threads

Reported in version: 2.7,0

3840230 Description: Order of cores specified in --core-list is not respected. Cores
are picked in ascending order instead.

Keyword: DOCA Bench

Reported in version: 2.7,0

3849701 Description: DOCA Comch tests cannot be launched from BlueField side.

93

Ref # Issue

Keyword: DOCA Bench; DOCA Comch

Reported in version: 2.7,0

3857097 Description: DOCA RDMA tests cannot be launched from BlueField side.

Keyword: DOCA Bench; DOCA RDMA

Reported in version: 2.7,0

3857095 Description: Send tasks on DOCA RDMA may fail.

Keyword: DOCA Bench; DOCA RDMA; send

Reported in version: 2.7,0

3859823 Description: Multi-threaded tests using DOCA Comch may hang or emit an
infinite amount of log messages. Single-threaded tests are less likely to cause
this issue.

Keyword: DOCA Bench; DOCA Comch

Reported in version: 2.7.0

3872654 Description: And issue occurs when submitting tasks with DOCA SHA with the
following error.

[DOCA][ERR][doca_pe.cpp:177][task_submit] Task 0xaaaaf4865bf0: Failed to submit
task: task is already submitted

Keyword: DOCA Bench

Reported in version: 2.7,0

3869639 Description: Users cannot use --job-output-buffer-size 0 when using

remote output memory (--use-remote-output-buffers).

Keywords: DOCA Bench

Reported in version: 2.7,0

3886315 Description: To reset or shut down the BlueField Arm, it is mandatory to specify
the --sync 0 argument with reset level 1 and reset type 3 or 4. For
example:

mlxfwreset -d <device> -l 1 -t 4 --sync 0 r

Keyword: Arm; shutdown

Reported in version: 2.7.0

3957990 Description: Sending a malformed UDP packet with VXLAN configuration causes
OVS-DOCA to crash.

Keyword: OVS-DOCA; encap; crash

Reported in version: 2.7.0

3994490 Description: Malformed packets cause OVS to crash when performing
encapsulation.

Keyword: Openvswitch

Reported in version: 2.7.0

3949342 Description: NVQual fails due to low line rate.

94

Ref # Issue

Keyword: NVQual

Reported in version: 2.7.0

3960883 Description: If working with 2 different NICs with the same app, encryption can
occur on the wrong port.

Keyword: PSP gateway

Reported in version: 2.6.0

3546202 Description: After rebooting a BlueField-3 DPU running Rocky Linux 8.6 BFB,
the kernel log shows the following error:

[3.787135] mlxbf_gige MLNXBF17:00: Error getting PHY irq. Use polling
instead

This message indicates that the Ethernet driver will function normally in all
aspects, except that PHY polling is enabled.

Keywords: Linux; PHY; kernel

Reported in version: 2.2.0

11.2.7.2 BSP Bug Fixes

Unable to render include or excerpt-include. Could not retrieve page.

11.2.7.3 BMC Bug Fixes

Unable to render include or excerpt-include. Could not retrieve page.

11.2.8 Known Issues
The following table lists the known issues and limitations for this release of DOCA SDK.

Reference Description

4032924 Description: When upgrading to DOCA 2.8.0 on RPM-based OSes, a conflict
between strongswan-bf or libreswan and strongSwan may occur.

Workaround: Before upgrading, delete strongswan-bf and libreswan :

yum remove strongswan-bf strongswan-swanctl libreswan

Keyword: strongSwan; upgrade

Reported in version: 2.8.0

4035553 Description: oper_sample_period does not always reflect the correct

sample period. In some cases, it will reflect the admin_sample_period
instead.

95

•
•
•

1.
2.

•

•

Reference Description

Workaround: N/A

Keyword: Core

Reported in version: 2.8.0

4023257 Description: If RDMA samples are compiled with memory sanitizer enabled,
"read memory leak" errors are printed when running the samples with the
RDMA CM flag and when running the client before the server.

Workaround: Make sure to start the RDMA Server before RDMA Client.

Keyword: DOCA RDMA; samples

Reported in version: 2.8.0

4021752
4021748

Description: In all RDMA samples, if an error occurs in any of the following
functions:

Exporting RDMA/MMAP/Sync event
Connecting RDMA
Writing or reading the descriptors

An error is printed but the sample resumes and might:
Fail later, or be in busy-wait state indefinitely; and/or
Result in access to an unknown address, causing an address sanitizer
violation.

Workaround for 1: Either:
Follow the error logs to verify no errors occurred in the relevant
function. And if it did, stop the sample.
Fix the issue locally.

Workaround for 2: The mentioned address sanitizer violation shall be ignored
in case of an error in a relevant function.

Keyword: DOCA RDMA; samples

Reported in version: 2.8.0

3961940 Description: OVS-DOCA connection tracking with E2E enabled is not
supported.

Workaround: N/A

Keyword: OVS-DPDK; connection tracking; E2E

Reported in version: 2.8.0

3989851 Description: A DOCA Flow pipe has multiple actions. When the action idx is
not 0 and it has a shared endecap action, a crash occurs when attempting to
create an entry.

Workaround: N/A

Keyword: DOCA Flow

Reported in version: 2.8.0

3988904 Description: Failure to create a control entry with shared endecap action.

Workaround: N/A

Keyword: DOCA Flow

Reported in version: 2.8.0

3886674 Description: Installing doca-all and other DOCA metapackages does not install
the mlnx-nvme driver.

96

•

•

Reference Description

Workaround: mlnx-nvme is only needed for NVMe-over-RDMA remote storage

support. If you wish to install it, add the mlnx-nvme package to the install
command.

On RHEL:

apt install doca-all mlnx-nvme-modules

On Ubuntu:

dnf install doca-all-kmod-mlnx-nvme

Keyword: NVMe; DOCA profile

Reported in version: 2.7.0

3885930 Description: When installing DOCA-Host on a system using NVMe storage
(typically local NVMe disk), and the script doca-kernel-support is used to

rebuild and install kernel modules, unloading the mlx5 drivers is only
possible after also unmounting the NVMe storage, which would typically
necessitate a reboot.

Workaround: N/A

Keyword: NVMe; doca-kernel-support; DOCA for host

Reported in version: 2.7.0

3837255 Description: When running Arm shutdown from the host OS it is expected to
get the message -E- Failed to send Register MRSI . This message
should be ignored.

Workaround: Wait 2 more minutes before rebooting the host.
Before proceeding with host OS reboot, it is recommended to query the
operational state of the BlueField Arm cores from the BlueField BMC to verify
that shutdown state has been reached. Run the following command:

ipmitool -C 17 -I lanplus -H <bmc_ip> -U root -P <password> raw 0x32 0xA3

Expected output is "06" .

Keyword: Host OS; reboot; error

Reported in version: 2.7.0

3844705 Description: In OpenEuler 20.03, the Linux Kernel version 4.19.90 is affected
by an issue that impacts the discard/trim functionality for the BlueField
eMMC device which may cause degraded performance of the BlueField eMMC
over time.

Workaround: Upgrade to Linux Kernel version 5.10 or later.

Keyword: eMMC discard; trim functionality

Reported in version: 2.7.0

97

Reference Description

3877725 Description: During BFB installation in NIC mode on BlueField-3, too much
information is added into RShim log which fills it, causing the Linux
installation progress log to not appear in the RShim log.

echo "DISPLAY_LEVEL 2" > /dev/rshim0/misc
cat /dev/rshim0/misc

Workaround: Monitor the BlueField-3 Arm's UART console to check whether
BFB installation has completed or not for NIC mode.

[13:58:39] INFO: Installation finished
...
[14:01:53] INFO: Rebooting...

Keyword: NIC mode; BFB install

Reported in version: 2.7.0

3855702 Description: Trying to jump from a steering level in the hardware to a lower
level using software steering is not supported on rdma-core lower than
48.x.

Workaround: N/A

Keyword: RDMA; SWS

Reported in version: 2.7.0

3855485 Description: When enabling the PCI_SWITCH_EMULATION_ENABLE NVconfig,
the mlx devices, and potentially the RShim devices disappear. Also, looking
at the kernel logs using dmesg shows the following messages:

pci 0000:29:00.0: BAR 0: no space for [mem size 0x0200 0000 64bit pref]
pci 0000:29:00.0: BAR 2: no space for [mem size 0x0080 0000 64bit pref]
...

Workaround: N/A

Keyword: NVconfig; RShim; dmsg

Reported in version: 2.7.0

3831230 Description: In OpenEuler 20.03, the Linux Kernel version 4.19.90 is affected
by an issue that impacts the discard/trim functionality for BlueField eMMC
device which may cause degraded performance of BlueField eMMC over time.

Workaround: Upgrade to Linux Kernel version 5.10 or later.

Keyword: eMMC discard; trim functionality

Reported in version: 2.7.0

3743879 Description: mlxfwreset could timeout on servers where the RShim driver
is running and INTx is not supported. The following error message is printed:
BF reset flow encountered a failure due to a reset state error

of negotiation timeout .

98

Reference Description

Workaround: Set PCIE_HAS_VFIO=0 and PCIE_HAS_UIO=0 in /etc/

rshim.conf and restart the RShim driver. Then re-run the mlxfwreset
command.
If host Linux kernel lockdown is enabled, then manually unbind the RShim
driver before mlxfwreset and bind it back after mlxfwreset :

echo "DROP_MODE 1" > /dev/rshim0/misc
mlxfwreset <arguments>
echo "DROP_MODE 0" > /dev/rshim0/misc

Keyword: Timeout; mlxfwreset; INTx

Reported in version: 2.7.0

3665070 Description: Virtio-net controller fails to load if DPA_AUTHENTICATION is
enabled.

Workaround: N/A

Keyword: Virtio-net; DPA

Reported in version: 2.5.0

3678069 Description: If using BlueField with NVMe and mmcbld and configured to boot
from mmcblk, users must create bf.cfg file with device=/dev/mmcblk0 ,

then install the *.bfb as normal.

Workaround: N/A

Keyword: NVMe

Reported in version: 2.5.0

3680538 Description: When using strongSwan or OVS-IPsec as explained in the NVIDIA
BlueField DPU BSP, the IPSec Rx data path is not offloaded to hardware and
occurs in software running on the Arm cores. As a result, bandwidth
performance is substantially low.

Workaround: N/A

Keyword: IPsec

Reported in version: 2.5.0

N/A Description: Execution unit partitions are still not implemented and would be
added in a future release.

Workaround: N/A

Keyword: EU tool

Reported in version: 2.5.0

3666160 Description: Installing BFB using bfb-install when mlxconfig

PF_TOTAL_SF >1700, triggers server reboot immediately.

Workaround: Change PF_TOTAL_SF to 0, perform a graceful shutdown,
power cycle, then installing BFB.

Keyword: SF; PF_TOTAL_SF ; BFB installation

Reported in version: 2.2.1

https://docs.nvidia.com/networking/display/bluefielddpuos/ipsec+functionality

99

Reference Description

3594836 Description: When enabling Flex IO SDK tracer at high rates, a slow-down in
processing may occur and/or some traces may be lost.

Workaround: Keep tracing limited to ~1M traces per second to avoid a
significant processing slow-down. Use tracer for debug purposes and consider
disabling it by default.

Keyword: Tracer FlexIO

Reported in version: 2.2.1

3592080 Description: When using UEK8 on the host in DPU mode, creating a VF on the
host consumes about 100MB memory on BlueField

Workaround: N/A

Keyword: UEK; VF

Reported in version: 2.2.1

3546202 Description: After rebooting a BlueField-3 DPU running Rocky Linux 8.6 BFB,
the kernel log shows the following error:

[3.787135] mlxbf_gige MLNXBF17:00: Error getting PHY irq. Use polling
instead

This message indicates that the Ethernet driver will function normally in all
aspects, except that PHY polling is enabled.

Workaround: N/A

Keyword: Linux; PHY; kernel

Reported in version: 2.2.0

3566042 Description: Virtio hotplug is not supported in GPU-HOST mode on the NVIDIA
Converged Accelerator.

Workaround: N/A

Keyword: Virtio; Converged Accelerator

Reported in version: 2.2.0

3546474 Description: PXE boot over ConnectX interface might not work due to an
invalid MAC address in the UEFI boot entry.

Workaround: On BlueField, create /etc/bf.cfg file with the relevant PXE

boot entries, then run the command bfcfg .

Keyword: PXE; boot; MAC

Reported in version: 2.2.0

3561723 Description: Running mlxfwreset sync 1 on NVIDIA Converged Accelerators
may be reported as supported although it is not. Executing the reset will fail.

Workaround: N/A

Keywords: mlxfwreset

Reported in version: 2.2.0

3306489 Description: When performing longevity tests (e.g., mlxfwreset, DPU reboot,
burning of new BFBs), a host running an Intel CPU may observer errors
related to "CPU 0: Machine Check Exception".

100

1.

2.

Reference Description

Workaround: Add intel_idle.max_cstate=1 entry to the kernel command
line.

Keywords: Longevity; mlxfwreset; DPU reboot

Reported in version: 2.2.0

3538486 Description: When removing LAG configuration from BlueField, a kernel
warning for uverbs_destroy_ufile_hw is observed if virtio-net-controller
is still running.

Workaround: Stop virtio-net-controller service before cleaning up bond
configuration.

Keywords: Virtio-net; LAG

Reported in version: 2.2.0

3534219 Description: On BlueField-3 devices, from DOCA 2.2.0 to 32.37.1306 (or
lower), the host crashes when executing partial Arm reset (e.g., Arm reboot;
BFB push; mlxfwreset).

Workaround: Before downgrading the firmware:
Run:

echo 0 > /sys/bus/platform/drivers/mlxbf-bootctl/large_icm

Reboot Arm.

Keyword: BlueField-3; downgrade

Reported in version: 2.2.0

3462630 When trying to perform a PXE installation when UEFI Secure Boot is enabled,
the following error messages may be observed:

error: shim_lock protocol not found.
error: you need to load the kernel first.

Workaround: Download a Grub EFI binary from the Ubuntu website. For
further information on Ubuntu UEFI Secure Boot PXE Boot, please visit
Ubuntu's official website.

Keyword: PXE; UEFI Secure Boot

Reported in version: 2.0.2

3448841 Description: While running CentOS 8.2, switchdev Ethernet BlueField runs in
"shared" RDMA net namespace mode instead of "exclusive".

Workaround: Use ib_core module parameter netns_mode=0 . For
example:

echo "options ib_core netns_mode=0" >> /etc/modprobe.d/mlnx-bf.conf

Keyword: RDMA; isolation; Net NS

Reported in version: 2.0.2

2706803 Description: When an NVMe controller, SoC management controller, and DMA
controller are configured, the maximum number of VFs is limited to 124.

Workaround: N/A

http://ports.ubuntu.com/ubuntu-ports/dists/focal/main/uefi/grub2-arm64/current/grubnetaa64.efi.signed

101

Reference Description

Keyword: VF; limitation

Reported in version: 2.0.2

3273435 Description: Changing the mode of operation between NIC and DPU modes
results in different capabilities for the host driver which might cause
unexpected behavior.

Workaround: Reload the host driver or reboot the host.

Keyword: Modes of operation; driver

Reported in version: 2.0.2

3264749 Description: In Rocky and CentOS 8.2 inbox-kernel BFBs, RegEx requires the
following extra huge page configuration for it to function properly:

sudo hugeadm --pool-pages-min DEFAULT:2048M
sudo systemctl start mlx-regex.service
systemctl status mlx-regex.service

If these commands have executed successfully you should see active

(running) in the last line of the output.

Workaround: N/A

Keyword: RegEx; hugepages

Reported in version: 1.5.1

3240153 Description: DOCA kernel support only works on a non-default kernel.

Workaround: N/A

Keyword: Kernel

Reported in version: 1.5.0

3217627 Description: The doca_devinfo_rep_list_create API returns success on

the host instead of Operation not supported .

Workaround: N/A

Keyword: DOCA core; InfiniBand

Reported in version: 1.5.0

11.3 BlueField and DOCA User Types
This guide provides a quick introduction to the NVIDIA® BlueField® networking platform, its DOCA
software components, and BlueField user types.

11.3.1 Introduction
The BlueField family of networking platforms includes data processing units (DPUs) and SuperNICs,
and is optimized for traditional enterprise, high-performance computing (HPC), and modern cloud
workloads, delivering a broad set of accelerated software-defined networking, storage, security,
and management services. BlueField enables organizations to transform their IT infrastructures into

102

•

state-of-the-art data centers that are accelerated, fully programmable, and armed with zero-trust
security to prevent data breaches and cyber-attacks.

NVIDIA DOCA™ brings together a wide range of powerful APIs, libraries, and frameworks for
programming and acceleration of the modern data center infrastructure. Like NVIDIA® CUDA® for
GPUs, DOCA is a consistent and essential resource across all existing and future generations of
BlueField products.

11.3.2 DOCA Components
DOCA software consists of a development and a runtime environment.

DOCA-Devel provides industry-standard open APIs and frameworks, including Data Plane
Development Kit (DPDK) and P4 for networking and security, and the Storage Performance
Development Kit (SPDK) for storage. The frameworks simplify application offload with
integrated NVIDIA acceleration packages. The Devel environment supports a range of
operating systems and distributions and includes drivers, libraries, tools, documentation, and
reference applications.

103

• DOCA runtime includes tools for provisioning, deploying, and orchestrating containerized
services on BlueField Platforms in bulk across the data center.

104

•
•
•

11.3.3 BlueField Networking Platform User Types

11.3.3.1 BlueField Administrator
A BlueField administrator can be a system admin, an IT specialist, a security operations specialist,
or anyone managing data center servers and their functionality. The admin would usually be
interfacing with BlueField configuration and DOCA services and applications running on the BlueField
Platform.

Common operations performed by the BlueField admin:

Updating the BlueField image
Running reference applications on the BlueField Platform
Running DOCA services on the BlueField Platform

For more information, please visit BlueField Administrator Quick Start Guide.

https://docs.nvidia.com/networking/display/bf3dpu/bluefield+dpu+administrator+quick+start+guide

105

•
•
•

1.

a.
b.

c.

11.3.3.2 DOCA Developer
A DOCA developer creates the services and applications that run on top of the BlueField Platform
and usually interfaces with DOCA libraries and drivers to create the necessary workflow and
functionality.

Common operations performed by the DOCA developer:

Developing DOCA applications using DOCA libraries and drivers
Compiling DOCA reference applications
Using DOCA sample code to create a new workflow

For more information, please refer to the NVIDIA DOCA Developer Quick Start Guide.

11.4 NVIDIA DOCA EULA
NVIDIA DOCA SDK end-user license agreement.

11.4.1 End-User License Agreement
This license is a legal agreement between you and Mellanox Technologies, Ltd. ("NVIDIA Mellanox")
and governs the use of the NVIDIA DOCA software and materials provided hereunder ("SOFTWARE").

This license can be accepted only by an adult of legal age of majority in the country in which the
SOFTWARE is used. If you are under the legal age of majority, you must ask your parent or legal
guardian to consent to this license. If you are entering this license on behalf of a company or other
legal entity, you represent that you have legal authority and "you" will mean the entity you
represent.

By using the SOFTWARE, you affirm that you have reached the legal age of majority, you accept the
terms of this license, and you take legal and financial responsibility for the actions of your
permitted users.

You agree to use the SOFTWARE only for purposes that are permitted by (a) this license, and (b) any
applicable law, regulation or generally accepted practices or guidelines in the relevant jurisdictions.

LICENSE. Subject to the terms of this license, NVIDIA Mellanox hereby grants you a non-
exclusive, non-transferable license, without the right to sublicense (except as expressly
provided in this license) to:

Install and use the SOFTWARE,
Modify and create derivative works of sample or reference source code delivered in
the SOFTWARE, and
Distribute the following portions of the SOFTWARE as incorporated in object code
format into a software application, subject to the distribution requirements indicated
in this license: API headers, drivers, libraries and sample applications.

BlueField SNAP software and materials, if delivered to you under this license, are licensed
only for use in BlueField DPUs and subject to license fees Per DPU. "Per DPU" license means a
license that allows concurrent authorized users to use the SOFTWARE in a single DPU under
the license, and in some cases the SKU or documentation will indicate the maximum number
of concurrent authorized users or virtual machines per DPU. Notwithstanding contrary terms

106

2.

a.

b.

c.

d.

3.

4.
a.

b.

c.

d.

e.

f.

g.

h.

in Section 1 above, you may not use or copy BlueField SNAP software without the necessary
licenses.
DISTRIBUTION REQUIREMENTS. These are the distribution requirements for you to exercise the
grants above:

An application must have material additional functionality, beyond the included
portions of the SOFTWARE.
The following notice shall be included in modifications and derivative works of source
code distributed: "This software contains source code provided by Mellanox
Technologies Ltd."
You agree to distribute the SOFTWARE subject to the terms at least as protective as
the terms of this license, including (without limitation) terms relating to the license
grant, license restrictions and protection of NVIDIA Mellanox's intellectual property
rights. Additionally, you agree that you will protect the privacy, security and legal
rights of your application users.
You agree to notify NVIDIA Mellanox in writing of any known or suspected distribution
or use of the SOFTWARE not in compliance with the requirements of this license, and
to enforce the terms of your agreements with respect to the distributed portions of
the SOFTWARE.

AUTHORIZED USERS. You may allow employees and contractors of your entity or of your
subsidiary(ies) to access and use the SOFTWARE from your secure network to perform work on
your behalf. If you are an academic institution you may allow users enrolled or employed by
the academic institution to access and use the SOFTWARE from your secure network. You are
responsible for the compliance with the terms of this license by your authorized users.
LIMITATIONS. Your license to use the SOFTWARE is restricted as follows:

The SOFTWARE is licensed for you to develop applications only for their use in systems
with NVIDIA DPUs or adapter products or related adapter products.
Except as provided in this Agreement, you may not modify, reverse engineer,
decompile or disassemble, or remove copyright or other proprietary notices from any
portion of the SOFTWARE or copies of the SOFTWARE.
You may not disclose the results of benchmarking, competitive analysis, regression or
performance data relating to the SOFTWARE without the prior written permission from
NVIDIA Mellanox.
Except as expressly provided in this license, you may not copy, sell, rent, sublicense,
transfer, distribute, modify, or create derivative works of any portion of the
SOFTWARE. For clarity, unless you have an agreement with NVIDIA Mellanox for this
purpose you may not distribute or sublicense the SOFTWARE as a stand-alone product.
Unless you have an agreement with NVIDIA Mellanox for this purpose, you may not
indicate that an application created with the SOFTWARE is sponsored or endorsed by
NVIDIA Mellanox.
You may not bypass, disable, or circumvent any technical limitation, encryption,
security, digital rights management or authentication mechanism in the SOFTWARE.
You may not replace any NVIDIA Mellanox software components in the SOFTWARE that
are governed by this license with other software that implements NVIDIA Mellanox
APIs.
You may not use the SOFTWARE in any manner that would cause it to become subject
to an open-source software license. As examples, licenses that require as a condition
of use, modification, and/or distribution that the SOFTWARE be: (i) disclosed or

107

i.

j.

5.

6.

7.

8.
a.

b.

distributed in source code form; (ii) licensed for the purpose of making derivative
works; or (iii) redistributable at no charge.
Unless you have an agreement with NVIDIA Mellanox for this purpose, you may not use
the SOFTWARE with any system or application where the use or failure of the system or
application can reasonably be expected to threaten or result in personal injury, death,
or catastrophic loss. Examples include use in avionics, navigation, military, medical,
life support or other life critical applications. NVIDIA Mellanox does not design, test or
manufacture the SOFTWARE for these critical uses and NVIDIA Mellanox shall not be
liable to you or any third party, in whole or in part, for any claims or damages arising
from such uses.
You agree to defend, indemnify and hold harmless NVIDIA Mellanox and its affiliates,
and their respective employees, contractors, agents, officers and directors, from and
against any and all claims, damages, obligations, losses, liabilities, costs or debt,
fines, restitutions and expenses (including but not limited to attorney's fees and costs
incident to establishing the right of indemnification) arising out of or related to your
use of the SOFTWARE outside of the scope of this license, or not in compliance with its
terms.

UPDATES. NVIDIA Mellanox may, at its option, make available patches, workarounds or other
updates to this SOFTWARE. Unless the updates are provided with their separate governing
terms, they are deemed part of the SOFTWARE licensed to you as provided in this license. You
agree that the form and content of the SOFTWARE that NVIDIA Mellanox provides may change
without prior notice to you. While NVIDIA Mellanox generally maintains compatibility between
versions, NVIDIA Mellanox may in some cases make changes that introduce incompatibilities in
future versions of the SOFTWARE.
PRE-RELEASE VERSIONS. SOFTWARE versions identified as alpha, beta, preview, early access
or otherwise as pre-release may not be fully functional, may contain errors or design flaws,
and may have reduced or different security, privacy, availability, and reliability standards
relative to commercial versions of NVIDIA Mellanox software and materials. You may use a
pre-release SOFTWARE version at your own risk, understanding that these versions are not
intended for use in production or business-critical systems. NVIDIA Mellanox may choose not
to make available a commercial version of any pre-release SOFTWARE. NVIDIA Mellanox may
also choose to abandon development and terminate the availability of a pre-release
SOFTWARE at any time without liability.
COMPONENTS UNDER OTHER LICENSES. The SOFTWARE may include NVIDIA Mellanox or third-
party components with separate legal notices or terms as may be described in proprietary
notices accompanying the SOFTWARE, such as components governed by open source software
licenses. If and to the extent there is a conflict between the terms in this license and the
license terms associated with a component, the license terms associated with the
components control only to the extent necessary to resolve the conflict.
OWNERSHIP

NVIDIA Mellanox reserves all rights, title and interest in and to the SOFTWARE not
expressly granted to you under this license. NVIDIA Mellanox and its suppliers hold all
rights, title and interest in and to the SOFTWARE, including their respective
intellectual property rights. The SOFTWARE is copyrighted and protected by the laws of
the United States and other countries, and international treaty provisions.
Subject to the rights of NVIDIA Mellanox and its suppliers in the SOFTWARE, you hold all
rights, title and interest in and to your applications and your derivative works of the

108

9.

10.

11.

12.

13.

sample source code delivered in the SOFTWARE including their respective intellectual
property rights.

FEEDBACK. You may, but are not obligated to, provide to NVIDIA Mellanox Feedback.
"Feedback" means suggestions, fixes, modifications, feature requests or other feedback
regarding the SOFTWARE. Feedback, even if designated as confidential by you, shall not
create any confidentiality obligation for NVIDIA Mellanox. NVIDIA Mellanox and its designees
have a perpetual, non-exclusive, worldwide, irrevocable license to use, reproduce, publicly
display, modify, create derivative works of, license, sublicense, and otherwise distribute and
exploit Feedback as NVIDIA Mellanox sees fit without payment and without obligation or
restriction of any kind on account of intellectual property rights or otherwise.
NO WARRANTIES. THE SOFTWARE IS PROVIDED AS-IS. TO THE MAXIMUM EXTENT PERMITTED BY
APPLICABLE LAW NVIDIA MELLANOX AND ITS AFFILIATES EXPRESSLY DISCLAIM ALL WARRANTIES
OF ANY KIND OR NATURE, WHETHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT
LIMITED TO, WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR A
PARTICULAR PURPOSE. NVIDIA MELLANOX DOES NOT WARRANT THAT THE SOFTWARE WILL
MEET YOUR REQUIREMENTS OR THAT THE OPERATION THEREOF WILL BE UNINTERRUPTED OR
ERROR-FREE, OR THAT ALL ERRORS WILL BE CORRECTED.
LIMITATIONS OF LIABILITY. TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW NVIDIA
MELLANOX AND ITS AFFILIATES SHALL NOT BE LIABLE FOR ANY SPECIAL, INCIDENTAL, PUNITIVE
OR CONSEQUENTIAL DAMAGES, OR FOR ANY LOST PROFITS, PROJECT DELAYS, LOSS OF USE,
LOSS OF DATA ORLOSS OF GOODWILL, OR THE COSTS OF PROCURING SUBSTITUTE PRODUCTS,
ARISING OUT OF OR IN CONNECTION WITH THIS LICENSE OR THE USE OR PERFORMANCE OF
THE SOFTWARE, WHETHER SUCH LIABILITY ARISES FROM ANY CLAIM BASED UPON BREACH OF
CONTRACT, BREACH OF WARRANTY, TORT (INCLUDING NEGLIGENCE), PRODUCT LIABILITY OR
ANY OTHER CAUSE OF ACTION OR THEORY OF LIABILITY, EVEN IF NVIDIA MELLANOX HAS
PREVIOUSLY BEEN ADVISED OF, OR COULD REASONABLY HAVE FORESEEN, THE POSSIBILITY OF
SUCH DAMAGES. IN NO EVENT WILL NVIDIA MELLANOX'S AND ITS AFFILIATES TOTAL CUMULATIVE
LIABILITY UNDER OR ARISING OUT OF THIS LICENSE EXCEED US$10.00. THE NATURE OF THE
LIABILITY OR THE NUMBER OF CLAIMS OR SUITS SHALL NOT ENLARGE OR EXTEND THIS LIMIT.
TERMINATION. Your rights under this license will terminate automatically without notice from
NVIDIA Mellanox if you fail to comply with any term and condition of this license or if you
commence or participate in any legal proceeding against NVIDIA Mellanox with respect to the
SOFTWARE. NVIDIA Mellanox may terminate this license with advance written notice to you, if
NVIDIA Mellanox decides to no longer provide the SOFTWARE in a country or, in NVIDIA
Mellanox's sole discretion, the continued use of it is no longer commercially viable. Upon any
termination of this license, you agree to promptly discontinue use of the SOFTWARE and
destroy all copies in your possession or control. Your prior distributions in accordance with
this license are not affected by the termination of this license. All provisions of this license
will survive termination, except for the license granted to you.
APPLICABLE LAW. This license will be governed in all respects by the laws of the United States
and of the State of Delaware, without regard to the conflicts of laws principles. The United
Nations Convention on Contracts for the International Sale of Goods is specifically disclaimed.
You agree to all terms of this license in the English language. The state or federal courts
residing in Santa Clara County, California shall have exclusive jurisdiction over any dispute or
claim arising out of this license. Notwithstanding this, you agree that NVIDIA Mellanox shall
still be allowed to apply for injunctive remedies or urgent legal relief in any jurisdiction.

109

14.

15.

16.

17.

18.

19.

NO ASSIGNMENT. This license and your rights and obligations thereunder may not be assigned
by you by any means or operation of law without NVIDIA Mellanox's permission. Any
attempted assignment not approved by NVIDIA Mellanox in writing shall be void and of no
effect. NVIDIA Mellanox may assign, delegate or transfer this license and its rights and
obligations, and if to a non-affiliate you will be notified.
EXPORT. The SOFTWARE is subject to United States export laws and regulations. You agree to
comply with all applicable U.S. and international export laws, including the Export
Administration Regulations (EAR) administered by the U.S. Department of Commerce and
economic sanctions administered by the U.S. Department of Treasury's Office of Foreign
Assets Control (OFAC). These laws include restrictions on destinations, end-users and end-use.
By accepting this license, you confirm that you are not currently residing in a country or
region currently embargoed by the U.S. and that you are not otherwise prohibited from
receiving the SOFTWARE.
GOVERNMENT USE. The SOFTWARE is, and shall be treated as being, "Commercial Items" as
that term is defined at 48 CFR § 2.101, consisting of "commercial computer software" and
"commercial computer software documentation", respectively, as such terms are used in,
respectively, 48 CFR § 12.212 and 48 CFR §§ 227.7202 & 252.227-7014(a)(1). Use, duplication
or disclosure by the U.S. Government or a U.S. Government subcontractor is subject to the
restrictions in this license pursuant to 48 CFR § 12.212 or 48 CFR § 227.7202. In no event shall
the US Government user acquire rights in the SOFTWARE beyond those specified in 48 C.F.R.
52.227-19(b)(1)-(2).
NOTICES. Please direct your legal notices or other correspondence to NVIDIA Corporation,
2788 San Tomas Expressway, Santa Clara, California 95051, United States of America,
Attention: Legal Department and NBU legal_notices@exchange.nvidia.com.
ENTIRE AGREEMENT. This license is the final, complete and exclusive agreement between the
parties relating to the subject matter of this license and supersedes all prior or
contemporaneous understandings and agreements relating to this subject matter, whether
oral or written. If any court of competent jurisdiction determines that any provision of this
license is illegal, invalid or unenforceable, the remaining provisions will remain in full force
and effect. Any amendment or waiver under this license shall be in writing and signed by
representatives of both parties.
LICENSING. If the distribution terms in this license are not suitable for your organization, or
for any questions regarding this license, please contact NVIDIA Mellanox at
doca_license@nvidia.com.

Last updated: May 10, 2022

mailto:legal_notices@exchange.nvidia.com
mailto:doca_license@nvidia.com

110

•

1.

2.

12 Quick Start for BlueField Developers
This section contains the following pages:

NVIDIA DOCA Developer Quick Start Guide

12.1 NVIDIA DOCA Developer Quick Start Guide
This guide details the basic steps to bring up the NVIDIA DOCA development environment and to
build and run the DOCA reference applications provided along with the DOCA software framework
package.

12.1.1 Introduction
NVIDIA DOCA brings together a wide range of powerful APIs, libraries, and frameworks for
programming and accelerating modern data center infrastructures. Like NVIDIA® CUDA® for GPUs,
DOCA is a consistent and essential resource across all existing and future generations of BlueField
DPU and SuperNIC products.

This document is intended for those wishing to develop applications using the DOCA framework.

12.1.2 Install BlueField Networking Platform
Install the BlueField networking platform into your host according to the installation instructions in
the BlueField's hardware user guide. The steps include installing BlueField into the PCIe slot and
properly securing it in the chassis. Make sure your host OS is listed under the supported operating
systems section.

12.1.3 Install DOCA Software Package
A detailed step-by-step process for downloading and installing the required development software
on both the host and BlueField can be found in the NVIDIA DOCA Installation Guide for Linux.

During installation, you must change the default password, ubuntu , to access the NVIDIA®
BlueField® networking platform.

12.1.4 Access BlueField
After a successful installation, on the host, the RShim driver exposes a virtual Ethernet device
called tmfifo_net0 .

Configure the host side of the tmfifo_net0 with a static IP to enable IPv4-based
communication to the BlueField OS according to the instructions on "Host-side Interface
Configuration" in the NVIDIA BlueField DPU BSP document.
Log into BlueField's Ubuntu-based OS by running the following command from the host:

Not sure which installation type to use? To expand on different DOCA user types and the
relevant installation for each, see BlueField and DOCA User Types.

https://docs.mellanox.com/display/BlueField2DPUENUG/Hardware+Installation
https://docs.nvidia.com/networking/display/bluefielddpuos/host-side+interface+configuration#src-141856512_HostsideInterfaceConfiguration-VirtualEthernetInterface

111

1.

2.

host# ssh ubuntu@192.168.100.2

Use the BlueField networking platform password you defined during the installation process.

At this stage DOCA is installed on BlueField and the host server.

12.1.5 Run Reference DOCA Application
DOCA package assets (e.g., references, tools) are located on Bluefield and on the host under /opt/

mellanox/doca/ .

The DOCA package includes a set of reference applications to facilitate developer on-boarding.
Please refer to the DOCA Reference Applications and DOCA Programming Guide for more
information.

To run the DOCA Secure Channel reference application which demonstrates accelerated and secure
message transmission between the host and BlueField over the Comm Channel interface:

Run the application as server on the BlueField networking platform using the following
command (all parameters are available in the secure channel application guide):

/opt/mellanox/doca/applications/secure_channel/bin/doca_secure_channel -s 256 -n 10 -p 03:00.0 -r 3b:00.0

Run the application as client on the host using the following command (all parameters are
available in the secure channel application guide):

/opt/mellanox/doca/applications/secure_channel/bin/doca_secure_channel -s 256 -n 10 -p 3b:00.0

12.1.6 More Information
To learn more about NVIDIA BlueField networking platforms, refer to the NVIDIA BlueField Hardware
Manuals.

For questions, comments, and feedback, please contact us at DOCA-
Feedback@exchange.nvidia.com.

https://docs.nvidia.com/networking/dpu-doca/index.html#dpu-hw
mailto:DOCA-Feedback@exchange.nvidia.com

112

•
•
•

•
•
•

•
•
•
•
•
•
•
•
•

•
•

13 Installation and Setup
This section contains the following page:

NVIDIA DOCA Profiles
NVIDIA DOCA Installation Guide for Linux
NVIDIA DOCA Developer Guide

13.1 NVIDIA DOCA Profiles
The following document provides an introduction to the various supported DOCA-Host profiles.

13.1.1 Introduction
NVIDIA DOCA™ can be installed on the host and used by a variety of customers who have different
workloads and requirements. The DOCA-Host package includes drivers, libraries, and tools to
support NVIDIA® BlueField® Networking Platform and NVIDIA® ConnectX® SmartNIC, Ethernet and
InfiniBand, with both kernel and user-space components. Depending on their specific needs,
customers may choose not to install the full DOCA-Host package on their host server but only the
subset of components and tools relevant for their use case (whether to have a smaller installation
size, lower integration/validation effort, etc).

To support the different use cases, DOCA includes DOCA-Host Installation Profiles, which are a
subset of the full DOCA installation. DOCA-Host profiles are validated and tested installation
packages. The following are the available DOCA profiles:

doca-all
doca-networking
doca-ofed

DOCA-Host supports the following NVIDIA devices:

BlueField-3
BlueField-2
ConnectX-7
ConnectX-6 DX
ConnectX-6 LX
ConnectX-6
ConnectX-5
ConnectX-4 LX
ConnectX-4

For hardware details on these devices, refer to the following pages:

BlueField devices
ConnectX devices

DOCA functionality is limited by the specific device capabilities.

https://docs.nvidia.com/networking/dpu-doca/index.html#dpu-hw
https://docs.nvidia.com/networking/adapters/index.html

113

•
•
•
•
•

13.1.2 doca-all
The full DOCA-Host installation is intended for users who wish to utilize the full extent of DOCA libs
and drivers.

This profile is the super-set of components, which also includes the content of doca-ofed and doca-
networking.

All DOCA libraries, drivers and tools are included in doca-all.

13.1.3 doca-networking
The doca-networking profile is intended for users who wish to benefit only from the networking
functionality of DOCA.

The content of the doca-networking package is the following:

MLNX_OFED
DOCA Core
MLNX-DPDK
OVS-DOCA
DOCA Flow

When installing doca-all on host, BlueField Platforms can utilize all DOCA libs and drivers
whereas ConnectX devices can utilize only doca-ofed and doca-networking subset of
functions from within the super-set of doca-all, depending on the device's capabilities.

114

•

•
•

•

•
•
•

13.1.4 doca-ofed
This profile is intended for users who wish to have the same user experience and content as
MLNX_OFED but with DOCA package. doca-ofed installs the MLNX_OFED drivers and tools and does
not include any other DOCA components.

The content of the doca-ofed package is:

MLNX_OFED drivers and tools

13.1.5 Which Profile to Install?
Selecting the right DOCA-Host installation profile is important to fully utilize the capabilities of your
BlueField Platforms or ConnectX.

The functionality of DOCA-Host is limited by the device capabilities (e.g., ConnectX devices cannot
utilize DOCA libs such as DPA, even if doca-all is installed on the host).

For BlueField devices:

It is recommended to use doca-all
If you require the smallest installation package for networking-only purposes, use doca-
networking
For MLNX_OFED-like installation, use doca-ofed (no additional DOCA functionality)

For ConnectX devices:

It is recommended to use doca-networking
For future-proof and mixed BlueField/ConnectX deployments, use doca-all
For MLNX_OFED-like installation use doca-ofed (no additional DOCA functionality)

13.1.6 DOCA-Host Profile Installation
DOCA-Host can be installed on specific host OSs. Each of the Host Installation Profiles has specific
OSs on which is can be installed as specified in section "Supported Host OS per DOCA-Host
Installation Profile".

Follow the instructions under section "Installing Software on Host" in the NVIDIA DOCA Installation
Guide for Linux.

13.1.7 Supported Host OS per DOCA-Host Installation Profile

BlueField DPUs, BlueField SuperNICs, and ConnectX devices can utilize all included libs and
drivers in the doca-networking profile, based on the device's capabilities.

BlueField Platforms and ConnectX devices can utilize only the drivers in doca-ofed, based
on the device's capabilities. No added DOCA libs are supported with any of the devices with
doca-ofed profile installation.

115

•
•

•

Unable to render include or excerpt-include. Could not retrieve page.

13.1.8 NVIDIA MLNX_OFED to DOCA-OFED Transition Guide
This guide covers what users must know about the DOCA-Host unified software stack for NVIDIA
networking products.

13.1.8.1 Introduction
MLNX_OFED is a software stack that provides kernel drivers, user space libraries, and management
tools for NVIDIA networking products, including ConnectX and BlueField adapters. MLNX_OFED has
been the standard software stack for NVIDIA networking products for many years, providing high
performance, scalability, and compatibility with various operating systems and applications.

With the introduction of NVIDIA BlueField Networking Platform and DOCA as the software framework
to support it, there are 2 host-server software packages dedicated for different devices.

DOCA-Host is the unified software package for your host-server, supporting both BlueField and
ConnectX. Customers may choose to use the Inbox drivers of the operating system vendor. The
drivers with the latest features are included as part of NVIDIA software packages, and specifically
DOCA-OFED.

13.1.8.2 What is DOCA-Host?
DOCA-Host can be installed on the host-server and used by customers with different workloads and
requirements. The DOCA-Host package includes drivers, libraries, and tools to support the NVIDIA®
BlueField® networking platform (DPU or SuperNIC) and NVIDIA® ConnectX® SmartNIC, Ethernet and
InfiniBand, with both kernel and user-space components. Depending on their needs, customers may
choose not to install the full DOCA-Host package on their host server but only the subset of
components and tools relevant for their use case.

To support the different use cases, DOCA includes DOCA-Host Installation Profiles, which are a
subset of the full DOCA installation.

The following are the available DOCA profiles:

doca-all – intended for users who wish to utilize the full extent of DOCA libraries and drivers
doca-networking – intended for users who wish to benefit only from the networking
functionality of DOCA
doca-ofed – intended for users who wish to have the same user experience and content as
MLNX_OFED. Doca-ofed installs the MLNX_OFED drivers and tools and does not include any
other DOCA components.

13.1.8.3 What is DOCA-OFED?
DOCA-OFED is an equivalent package of MLNX_OFED, providing the same functionality as MLNX_OFED
and including the same kernel drivers, user space libraries, and management tools for NVIDIA
networking products. DOCA-OFED supports the same OSs and applications as MLNX_OFED.

DOCA-Host profiles are validated and tested installation packages.

116

1.
2.
3.
4.

•

13.1.8.4 Why Switch to DOCA-OFED and DOCA-Host?
DOCA-OFED is a 1-to-1 substitute for MLNX_OFED. All customers using MLNX_OFED on their host-
server should install DOCA-OFED instead.

Following the last release of MLNX_OFED, no new features will be added to MLNX_OFED. All new
features will only be included as part of DOCA-OFED.

13.1.8.5 Switching to DOCA-OFED and DOCA-Host
Switching to DOCA-Host with any of the installation profiles, and specifically DOCA-OFED, is a
straightforward process. You just need to follow these steps:

Download the latest DOCA-Host package from the NVIDIA website or public repo.
Uninstall the existing MLNX_OFED package from your system.
Install the DOCA-OFED package on your host server using standard Linux package manager.
Reboot your system and verify that the DOCA-OFED components are working properly.

13.1.8.5.1 Installation Example of DOCA-OFED from Online Repo

echo "[doca]
name=DOCA Online Repo
baseurl=https://linux.mellanox.com/public/repo/doca/2.7.0/rhel9.4/x86_64/
enabled=1
gpgcheck=0" > /etc/yum.repos.d/doca.repo
sudo dnf clean all
sudo dnf -y install doca-ofed

13.1.8.5.2 Installation Example of DOCA-OFED Offline Repo

wget https://www.mellanox.com/downloads/DOCA/DOCA_v2.7.0/host/doca-host-2.7.0-209000_24.04_rhel94.x86_64.rpm
sudo rpm -i doca-host-2.7.0-209000_24.04_rhel94.x86_64.rpm
sudo dnf clean all
sudo dnf -y install doca-ofed

13.1.8.6 MLNX_EN Transition
With the transition from MLNX_OFED, the MLNX_EN lite weight software package will also no longer
be supported. Customers who wish to get the smaller package of drivers available via MLNX_EN thus
far, are advised to use Inbox drivers, providing the same components.

DOCA-Host will also support a new installation profile, DOCA-RoCE, which is a subset of DOCA_OFED
and includes only Ethernet and RoCE drivers, without IB specific components. So, customers can also
use this profile which includes more content than MLNX_EN.

13.1.8.7 Transition Timeline
The transition timeline from MLNX_OFED to DOCA-OFED gives users enough time to switch to the
new software stack. The timeline for the transition is as follows:

October 2024 – The last standalone release of MLNX_OFED. Following this release,
MLNX_OFED will no longer receive support for new features or enhancements.

117

•

•

October 2024-October 2027 – The last standalone MLNX_OFED release will receive critical bug
fixes and security updates for MLNX_OFED users as part of its long-term support (LTS) plan
October 2027 – MLNX_OFED will no longer receive support or updates by NVIDIA (MLNX_OFED
end of life)

13.1.8.8 Summary
DOCA-OFED is the new software stack for NVIDIA networking products, with the exact same user
experience as MLNX_OFED. Users are encouraged to switch to DOCA-OFED as soon as possible to
enjoy the full potential of NVIDIA Networking products. Users can download the latest DOCA-OFED
package from the NVIDIA website or directly from DOCA public repo, and follow the simple
installation steps.

The last standalone release of MLNX_OFED will be October 2024. Afterwards, MLNX_OFED enters the
LTS period and will only receive critical bug fixes and security updates for 3 years.

13.2 NVIDIA DOCA Installation Guide for Linux
This guide details the necessary steps to set up NVIDIA DOCA in your Linux environment.

13.2.1 Introduction
Installation of the NVIDIA® BlueField® networking platform (DPU or SuperNIC) software requires
following the following step-by-step procedure.

13.2.1.1 Supported Platforms

13.2.1.1.1 Supported BlueField Platforms

The following NVIDIA® BlueField® platforms are supported with DOCA:

NVIDIA SKU Legacy OPN PSID Description

900-9D3B6-00CV-AA0 N/A MT_0000000884 BlueField-3 B3220 P-Series FHHL DPU;
200GbE (default mode) / NDR200 IB;
Dual-port QSFP112; PCIe Gen5.0 x16 with
x16 PCIe extension option; 16 Arm cores;
32GB on-board DDR; integrated BMC;
Crypto Enabled

Customers are encouraged to switch to DOCA-OFED as soon as possible to stay up-to-
date on new features and enhancements for NVIDIA networking products.

Users are strongly advised to switch to DOCA-OFED before this date, to avoid any
compatibility or security issues.

In October 2027, MLNX_OFED will no longer be supported or updated by NVIDIA.

118

NVIDIA SKU Legacy OPN PSID Description

900-9D3B6-00SV-AA0 N/A MT_0000000965 BlueField-3 B3220 P-Series FHHL DPU;
200GbE (default mode) / NDR200 IB;
Dual-port QSFP112; PCIe Gen5.0 x16 with
x16 PCIe extension option; 16 Arm cores;
32GB on-board DDR; integrated BMC;
Crypto Disabled

900-9D3B6-00CC-AA0 N/A MT_0000001024 BlueField-3 B3210 P-Series FHHL DPU;
100GbE (default mode) / HDR100 IB;
Dual-port QSFP112; PCIe Gen5.0 x16 with
x16 PCIe extension option; 16 Arm cores;
32GB on-board DDR; integrated BMC;
Crypto Enabled

900-9D3B6-00SC-AA0 N/A MT_0000001025 BlueField-3 B3210 P-Series FHHL DPU;
100GbE (default mode) / HDR100 IB;
Dual-port QSFP112; PCIe Gen5.0 x16 with
x16 PCIe extension option; 16 Arm cores;
32GB on-board DDR; integrated BMC;
Crypto Disabled

900-9D219-0086-ST1 MBF2M516A-CECOT MT_0000000375 BlueField-2 E-Series DPU 100GbE Dual-
Port QSFP56; PCIe Gen4 x16; Crypto and
Secure Boot Enabled; 16GB on-board DDR;
1GbE OOB management; FHHL

900-9D219-0086-ST0 MBF2M516A-EECOT MT_0000000376 BlueField-2 E-Series DPU 100GbE/EDR/
HDR100 VPI Dual-Port QSFP56; PCIe Gen4
x16; Crypto and Secure Boot Enabled;
16GB on-board DDR; 1GbE OOB
management; FHHL

900-9D219-0056-ST1 MBF2M516A-EENOT MT_0000000377 BlueField-2 E-Series DPU 100GbE/EDR/
HDR100 VPI Dual-Port QSFP56; PCIe Gen4
x16; Crypto Disabled; 16GB on-board DDR;
1GbE OOB management; FHHL

900-9D206-0053-SQ0 MBF2H332A-AENOT MT_0000000539 BlueField-2 P-Series DPU 25GbE Dual-Port
SFP56; PCIe Gen4 x8; Crypto Disabled;
16GB on-board DDR; 1GbE OOB
management; HHHL

900-9D206-0063-ST2 MBF2H332A-AEEOT MT_0000000540 BlueField-2 P-Series DPU 25GbE Dual-Port
SFP56; PCIe Gen4 x8; Crypto Enabled;
16GB on-board DDR; 1GbE OOB
management; HHHL

900-9D206-0083-ST3 MBF2H332A-AECOT MT_0000000541 BlueField-2 P-Series DPU 25GbE Dual-Port
SFP56; PCIe Gen4 x8; Crypto and Secure
Boot Enabled; 16GB on-board DDR; 1GbE
OOB management; HHHL

900-9D206-0083-ST1 MBF2H322A-AECOT MT_0000000542 BlueField-2 P-Series DPU 25GbE Dual-Port
SFP56; PCIe Gen4 x8; Crypto and Secure
Boot Enabled; 8GB on-board DDR; 1GbE
OOB management; HHHL

900-9D206-0063-ST1 MBF2H322A-AEEOT MT_0000000543 BlueField-2 P-Series DPU 25GbE Dual-Port
SFP56; PCIe Gen4 x8; Crypto Enabled;
8GB on-board DDR; 1GbE OOB
management; HHHL

119

NVIDIA SKU Legacy OPN PSID Description

900-9D219-0066-ST0 MBF2M516A-EEEOT MT_0000000559 BlueField-2 E-Series DPU 100GbE/EDR/
HDR100 VPI Dual-Port QSFP56; PCIe Gen4
x16; Crypto Enabled; 16GB on-board DDR;
1GbE OOB management; FHHL

900-9D219-0056-SN1 MBF2M516A-CENOT MT_0000000560 BlueField-2 E-Series DPU 100GbE Dual-
Port QSFP56; PCIe Gen4 x16; Crypto
Disabled; 16GB on-board DDR; 1GbE OOB
management; FHHL

900-9D219-0066-ST2 MBF2M516A-CEEOT MT_0000000561 BlueField-2 E-Series DPU 100GbE Dual-
Port QSFP56; PCIe Gen4 x16; Crypto
Enabled; 16GB on-board DDR; 1GbE OOB
management; FHHL

900-9D219-0006-ST0 MBF2H516A-CEEOT MT_0000000702 BlueField-2 DPU 100GbE Dual-Port
QSFP56; PCIe Gen4 x16; Crypto; 16GB on-
board DDR; 1GbE OOB management; FHHL

900-9D219-0056-ST2 MBF2H516A-CENOT MT_0000000703 BlueField-2 DPU 100GbE Dual-Port
QSFP56; PCIe Gen4 x16; Crypto Disabled;
16GB on-board DDR; 1GbE OOB
management; FHHL

900-9D219-0066-ST3 MBF2H516A-EEEOT MT_0000000704 BlueField-2 DPU 100GbE/EDR/HDR100 VPI
Dual-Port QSFP56; PCIe Gen4 x16; Crypto
Enabled; 16GB on-board DDR; 1GbE OOB
management; FHHL

900-9D219-0056-SQ0 MBF2H516A-EENOT MT_0000000705 BlueField-2 DPU 100GbE/EDR/HDR100 VPI
Dual-Port QSFP56; PCIe Gen4 x16; Crypto
Disabled; 16GB on-board DDR; 1GbE OOB
management; FHHL

900-9D250-0038-ST1 MBF2M345A-HESOT MT_0000000715 BlueField-2 E-Series DPU; 200GbE/HDR
single-port QSFP56; PCIe Gen4 x16;
Secure Boot Enabled; Crypto Disabled;
16GB on-board DDR; 1GbE OOB
management; HHHL

900-9D250-0048-ST1 MBF2M345A-HECOT MT_0000000716 BlueField-2 E-Series DPU; 200GbE/HDR
single-port QSFP56; PCIe Gen4 x16;
Secure Boot Enabled; Crypto Enabled;
16GB on-board DDR; 1GbE OOB
management; HHHL

900-9D218-0073-ST1 MBF2H512C-AESOT MT_0000000723 BlueField-2 P-Series DPU 25GbE Dual-Port
SFP56; integrated BMC; PCIe Gen4 x8;
Secure Boot Enabled; Crypto Disabled;
16GB on-board DDR; 1GbE OOB
management; FHHL

900-9D218-0083-ST2 MBF2H512C-AECOT MT_0000000724 BlueField-2 P-Series DPU 25GbE Dual-Port
SFP56; integrated BMC; PCIe Gen4 x8;
Secure Boot Enabled; Crypto Enabled;
16GB on-board DDR; 1GbE OOB
management; FHHL

120

NVIDIA SKU Legacy OPN PSID Description

900-9D208-0086-ST4 MBF2M516C-EECOT MT_0000000728 BlueField-2 E-Series DPU 100GbE/EDR/
HDR100 VPI Dual-Port QSFP56; integrated
BMC; PCIe Gen4 x16; Secure Boot
Enabled; Crypto Enabled; 16GB on-board
DDR; 1GbE OOB management; Tall
Bracket; FHHL

900-9D208-0086-SQ0 MBF2H516C-CECOT MT_0000000729 BlueField-2 P-Series DPU 100GbE Dual-
Port QSFP56; integrated BMC; PCIe Gen4
x16; Secure Boot Enabled; Crypto
Enabled; 16GB on-board DDR; 1GbE OOB
management; Tall Bracket; FHHL

900-9D208-0076-ST5 MBF2M516C-CESOT MT_0000000731 BlueField-2 E-Series DPU 100GbE Dual-
Port QSFP56; integrated BMC; PCIe Gen4
x16; Secure Boot Enabled; Crypto
Disabled; 16GB on-board DDR; 1GbE OOB
management; Tall Bracket; FHHL

900-9D208-0076-ST6 MBF2M516C-EESOT MT_0000000732 BlueField-2 E-Series DPU 100GbE/EDR/
HDR100 VPI Dual-Port QSFP56; integrated
BMC; PCIe Gen4 x16; Secure Boot
Enabled; Crypto Disabled; 16GB on-board
DDR; 1GbE OOB management; Tall
Bracket; FHHL

900-9D208-0086-ST3 MBF2M516C-CECOT MT_0000000733 BlueField-2 E-Series DPU 100GbE Dual-
Port QSFP56; integrated BMC; PCIe Gen4
x16; Secure Boot Enabled; Crypto
Enabled; 16GB on-board DDR; 1GbE OOB
management; Tall Bracket; FHHL

900-9D208-0076-ST2 MBF2H516C-EESOT MT_0000000737 BlueField-2 P-Series DPU 100GbE/EDR/
HDR100 VPI Dual-Port QSFP56; integrated
BMC; PCIe Gen4 x16; Secure Boot
Enabled; Crypto Disabled; 16GB on-board
DDR; 1GbE OOB management; Tall
Bracket; FHHL

900-9D208-0076-ST1 MBF2H516C-CESOT MT_0000000738 BlueField-2 P-Series DPU 100GbE Dual-
Port QSFP56; integrated BMC; PCIe Gen4
x16; Secure Boot Enabled; Crypto
Disabled; 16GB on-board DDR; 1GbE OOB
management; Tall Bracket; FHHL

900-9D218-0083-ST4 MBF2H532C-AECOT MT_0000000765 BlueField-2 P-Series DPU 25GbE Dual-Port
SFP56; integrated BMC; PCIe Gen4 x8;
Secure Boot Enabled; Crypto Enabled;
32GB on-board DDR; 1GbE OOB
management; FHHL

900-9D218-0073-ST0 MBF2H532C-AESOT MT_0000000766 BlueField-2 P-Series DPU 25GbE Dual-Port
SFP56; integrated BMC; PCIe Gen4 x8;
Secure Boot Enabled; Crypto Disabled;
32GB on-board DDR; 1GbE OOB
management; FHHL

900-9D208-0076-ST3 MBF2H536C-CESOT MT_0000000767 BlueField-2 P-Series DPU 100GbE Dual-
Port QSFP56; integrated BMC; PCIe Gen4
x16; Secure Boot Enabled; Crypto
Disabled; 32GB on-board DDR; 1GbE OOB
management; FHHL

121

NVIDIA SKU Legacy OPN PSID Description

900-9D208-0086-ST2 MBF2H536C-CECOT MT_0000000768 BlueField-2 P-Series DPU 100GbE Dual-
Port QSFP56; integrated BMC; PCIe Gen4
x16; Secure Boot Enabled; Crypto
Enabled; 32GB on-board DDR; 1GbE OOB
management; FHHL

900-9D218-0073-ST4 MBF2H512C-AEUOT MT_0000000972 BlueField-2 P-Series DPU 25GbE Dual-Port
SFP56; integrated BMC; PCIe Gen4 x8;
Secure Boot Enabled with UEFI disabled;
Crypto Disabled; 16GB on-board DDR;
1GbE OOB management

900-9D208-0076-STA MBF2H516C-CEUOT MT_0000000973 BlueField-2 P-Series DPU 100GbE Dual-
Port QSFP56; integrated BMC; PCIe Gen4
x16; Secure Boot Enabled with UEFI
disabled; Crypto Disabled; 16GB on-board
DDR; 1GbE OOB management

900-9D208-0076-STB MBF2H536C-CEUOT MT_0000001008 BlueField-2 P-Series DPU 100GbE Dual-
Port QSFP56, integrated BMC, PCIe Gen4
x16, Secure Boot Enabled with UEFI
Disabled, Crypto Disabled, 32GB on-board
DDR, 1GbE OOB management, Tall
Bracket, FHHL

P1004/699210040230 N/A NVD0000000015 BlueField-2 A30X, P1004 SKU 205,
Generic, GA100, 24GB HBM2e, PCIe
passive Dual Slot 230W GEN4, DPU Crypto
ON W/ Bkt, 1 Dongle, Black, HF, VCPD

P4028/699140280000 N/A NVD0000000020 ZAM / NAS

13.2.1.1.2 Supported ConnectX NICs

The NVIDIA® ConnectX® NICs supported with DOCA-Host can be found in: NVIDIA DOCA Profiles

13.2.1.2 Hardware Prerequisites
For BlueField Platform users, this guide assumes that a BlueField device has been installed in a
server according to the instructions detailed in your DPU's hardware user guide.

13.2.1.3 DOCA Packages
See information in the NVIDIA DOCA Release Notes page.

13.2.1.4 Supported Host OS per DOCA-Host Installation Profile
See information in the NVIDIA DOCA Profiles page.

13.2.2 BlueField Networking Platform Image Installation
This guide provides the minimal instructions for setting up DOCA on a standard system.

https://docs.nvidia.com/doca/sdk/NVIDIA+DOCA+Profiles/index.html
https://docs.mellanox.com/category/bluefieldsnic

122

•
•
•
•

13.2.2.1 Installation Files
To download the DOCA for host packages from the links in this table, please register to the NVIDIA
Developer Program. Otherwise, please use the public repo from DOCA Downloader.

Device Component OS Arch Link

Host These files contain the
following components
suitable for their respective
OS version.

DOCA-All v2.8.0
DOCA-Networking v2.8.0
DOCA-OFED v2.8.0
DOCA-Extra v2.8.0
(included in all)

Alinux 3.2 x86 doca-
host-2.8.0-204000_24.07
_alinux32.x86_64.rpm

Anolis aarch64 doca-
host-2.8.0-204000_24.07
_anolis86.aarch64.rpm

x86 doca-
host-2.8.0-204000_24.07
_anolis86.x86_64.rpm

BCLinux 21.10 aarch64 doca-
host-2.8.0-204000_24.07
_bclinux2210.aarch64.rp
m

x86 doca-
host-2.8.0-204000_24.07
_bclinux2210.x86_64.rp
m

BCLinux 21.10
SP2

aarch64 doca-
host-2.8.0-204000_24.07
_bclinux2110sp2.aarch6
4.rpm

x86 doca-
host-2.8.0-204000_24.07
_bclinux2110sp2.x86_64
.rpm

CTyunOS 2.0 aarch64 doca-
host-2.8.0-204000_24.07
_ctyunos20.aarch64.rpm

x86 doca-
host-2.8.0-204000_24.07
_ctyunos20.x86_64.rpm

CTyunOS 23.01 aarch64 doca-
host-2.8.0-204000_24.07
_ctyunos2301.aarch64.r
pm

x86 doca-
host-2.8.0-204000_24.07
_ctyunos2301.x86_64.rp
m

Important!

Make sure to follow the instructions in this section sequentially. Make sure to update DOCA
on the host side first before installing the BFB Bundle on the BlueField.

Please take a look
on the NVIDIA DOCA
Profiles to know
which from the
below profiles are
supported on your
desired OS.

https://nam11.safelinks.protection.outlook.com/?url=https%3A%2F%2Fdeveloper.nvidia.com%2Fdeveloper-program&data=05%7C02%7Camirn%40nvidia.com%7C8d201606f6a443d8163408dca6f2802b%7C43083d15727340c1b7db39efd9ccc17a%7C0%7C0%7C638568807677986520%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C0%7C%7C%7C&sdata=pWl1qlzVP9qufTvetK3eVmLTYfHTm6CagdYjYagQQHo%3D&reserved=0
https://nam11.safelinks.protection.outlook.com/?url=https%3A%2F%2Fdeveloper.nvidia.com%2Fdoca-downloads&data=05%7C02%7Camirn%40nvidia.com%7C8d201606f6a443d8163408dca6f2802b%7C43083d15727340c1b7db39efd9ccc17a%7C0%7C0%7C638568807677999267%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C0%7C%7C%7C&sdata=2FfPItX%2BKf2g%2FfnpYDIT1aCLZIlJEudsaFJocB1bcXE%3D&reserved=0
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host-2.8.0-204000_24.07_alinux32.x86_64.rpm
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host-2.8.0-204000_24.07_anolis86.aarch64.rpm
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host-2.8.0-204000_24.07_anolis86.x86_64.rpm
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host-2.8.0-204000_24.07_bclinux2210.aarch64.rpm
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host-2.8.0-204000_24.07_bclinux2210.x86_64.rpm
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host-2.8.0-204000_24.07_bclinux2110sp2.aarch64.rpm
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host-2.8.0-204000_24.07_bclinux2110sp2.x86_64.rpm
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host-2.8.0-204000_24.07_ctyunos20.aarch64.rpm
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host-2.8.0-204000_24.07_ctyunos20.x86_64.rpm
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host-2.8.0-204000_24.07_ctyunos2301.aarch64.rpm
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host-2.8.0-204000_24.07_ctyunos2301.x86_64.rpm
https://confluence.nvidia.com/display/docadev/.NVIDIA+DOCA+Profiles+v2.8.0

123

Device Component OS Arch Link

Debian 10.13 aarch64 doca-
host_2.8.0-204000-24.07
-debian1013_arm64.deb

x86 doca-
host_2.8.0-204000-24.07
-debian1013_amd64.deb

Debian 10.8 aarch64 doca-
host_2.8.0-204000-24.07
-debian108_arm64.deb

x86 doca-
host_2.8.0-204000-24.07
-debian108_amd64.deb

Debian 10.9 x86 doca-
host_2.8.0-204000-24.07
-debian109_amd64.deb

Debian 11.3 aarch64 doca-
host_2.8.0-204000-24.07
-debian113_arm64.deb

x86 doca-
host_2.8.0-204000-24.07
-debian113_amd64.deb

Debian 12.1 aarch64 doca-
host_2.8.0-204000-24.07
-debian121_arm64.deb

x86 doca-
host_2.8.0-204000-24.07
-debian121_amd64.deb

Debian 12.5 aarch64 doca-
host_2.8.0-204000-24.07
-debian125_arm64.deb

x86 doca-
host_2.8.0-204000-24.07
-debian125_amd64.deb

EulerOS 20
SP11

aarch64 doca-
host-2.8.0-204000_24.07
_euleros20sp11.aarch64
.rpm

x86 doca-
host-2.8.0-204000_24.07
_euleros20sp11.x86_64.r
pm

EulerOS 20
SP12

aarch64 doca-
host-2.8.0-204000_24.07
_euleros20sp12.aarch64
.rpm

x86 doca-
host-2.8.0-204000_24.07
_euleros20sp12.x86_64.r
pm

https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host_2.8.0-204000-24.07-debian1013_arm64.deb
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host_2.8.0-204000-24.07-debian1013_amd64.deb
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host_2.8.0-204000-24.07-debian108_arm64.deb
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host_2.8.0-204000-24.07-debian108_amd64.deb
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host_2.8.0-204000-24.07-debian109_amd64.deb
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host_2.8.0-204000-24.07-debian113_arm64.deb
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host_2.8.0-204000-24.07-debian113_amd64.deb
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host_2.8.0-204000-24.07-debian121_arm64.deb
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host_2.8.0-204000-24.07-debian121_amd64.deb
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host_2.8.0-204000-24.07-debian125_arm64.deb
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host_2.8.0-204000-24.07-debian125_amd64.deb
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host-2.8.0-204000_24.07_euleros20sp11.aarch64.rpm
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host-2.8.0-204000_24.07_euleros20sp11.x86_64.rpm
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host-2.8.0-204000_24.07_euleros20sp12.aarch64.rpm
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host-2.8.0-204000_24.07_euleros20sp12.x86_64.rpm

124

Device Component OS Arch Link

Fedora32 x86 doca-
host-2.8.0-204000_24.07
_fc32.x86_64.rpm

Kylin 1.0 SP2 aarch64 doca-
host-2.8.0-204000_24.07
_kylin10sp2.aarch64.rp
m

x86 doca-
host-2.8.0-204000_24.07
_kylin10sp2.x86_64.rpm

Kylin 1.0 SP3 aarch64 doca-
host-2.8.0-204000_24.07
_kylin10sp3.aarch64.rp
m

x86 doca-
host-2.8.0-204000_24.07
_kylin10sp3.x86_64.rpm

Mariner 2.0 x86 doca-
host-2.8.0-204000_24.07
_mariner20.x86_64.rpm

Oracle Linux
7.9

x86 doca-
host-2.8.0-204000_24.07
_ol79.x86_64.rpm

Oracle Linux
8.4

x86 doca-
host-2.8.0-204000_24.07
_ol84.x86_64.rpm

Oracle Linux
8.6

x86 doca-
host-2.8.0-204000_24.07
_ol86.x86_64.rpm

Oracle Linux
8.7

x86 doca-
host-2.8.0-204000_24.07
_ol87.x86_64.rpm

Oracle Linux
8.8

x86 doca-
host-2.8.0-204000_24.07
_ol88.x86_64.rpm

Oracle Linux
9.1

x86 doca-
host-2.8.0-204000_24.07
_ol91.x86_64.rpm

Oracle Linux
9.2

x86 doca-
host-2.8.0-204000_24.07
_ol92.x86_64.rpm

openEuler
20.03 SP3

aarch64 doca-
host-2.8.0-204000_24.07
_openeuler2003sp3.aarc
h64.rpm

x86 doca-
host-2.8.0-204000_24.07
openeuler2003sp3.x86
64.rpm

https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host-2.8.0-204000_24.07_fc32.x86_64.rpm
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host-2.8.0-204000_24.07_kylin10sp2.aarch64.rpm
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host-2.8.0-204000_24.07_kylin10sp2.x86_64.rpm
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host-2.8.0-204000_24.07_kylin10sp3.aarch64.rpm
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host-2.8.0-204000_24.07_kylin10sp3.x86_64.rpm
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host-2.8.0-204000_24.07_mariner20.x86_64.rpm
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host-2.8.0-204000_24.07_ol79.x86_64.rpm
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host-2.8.0-204000_24.07_ol84.x86_64.rpm
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host-2.8.0-204000_24.07_ol86.x86_64.rpm
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host-2.8.0-204000_24.07_ol87.x86_64.rpm
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host-2.8.0-204000_24.07_ol88.x86_64.rpm
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host-2.8.0-204000_24.07_ol91.x86_64.rpm
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host-2.8.0-204000_24.07_ol92.x86_64.rpm
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host-2.8.0-204000_24.07_openeuler2003sp3.aarch64.rpm
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host-2.8.0-204000_24.07_openeuler2003sp3.x86_64.rpm

125

Device Component OS Arch Link

openEuler
22.03

aarch64 doca-
host-2.8.0-204000_24.07
_openeuler2203.aarch64
.rpm

x86 doca-
host-2.8.0-204000_24.07
_openeuler2203.x86_64.
rpm

openEuler
22.03 SP1

x86 doca-
host-2.8.0-204000_24.07
openeuler2203sp1.x86
64.rpm

RHEL/CentOS
8.0

aarch64 doca-
host-2.8.0-204000_24.07
_rhel80.aarch64.rpm

x86 doca-
host-2.8.0-204000_24.07
_rhel80.x86_64.rpm

RHEL/CentOS
8.1

aarch64 doca-
host-2.8.0-204000_24.07
_rhel81.aarch64.rpm

x86 doca-
host-2.8.0-204000_24.07
_rhel81.x86_64.rpm

RHEL/CentOS
8.2

aarch64 doca-
host-2.8.0-204000_24.07
_rhel82.aarch64.rpm

x86 doca-
host-2.8.0-204000_24.07
_rhel82.x86_64.rpm

RHEL/CentOS
8.3

aarch64 doca-
host-2.8.0-204000_24.07
_rhel83.aarch64.rpm

x86 doca-
host-2.8.0-204000_24.07
_rhel83.x86_64.rpm

RHEL/CentOS
8.4

aarch64 doca-
host-2.8.0-204000_24.07
_rhel84.aarch64.rpm

x86 doca-
host-2.8.0-204000_24.07
_rhel84.x86_64.rpm

RHEL/CentOS
8.5

aarch64 doca-
host-2.8.0-204000_24.07
_rhel85.aarch64.rpm

x86 doca-
host-2.8.0-204000_24.07
_rhel85.x86_64.rpm

https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host-2.8.0-204000_24.07_openeuler2203.aarch64.rpm
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host-2.8.0-204000_24.07_openeuler2203.x86_64.rpm
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host-2.8.0-204000_24.07_openeuler2203sp1.x86_64.rpm
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host-2.8.0-204000_24.07_rhel80.aarch64.rpm
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host-2.8.0-204000_24.07_rhel80.x86_64.rpm
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host-2.8.0-204000_24.07_rhel81.aarch64.rpm
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host-2.8.0-204000_24.07_rhel81.x86_64.rpm
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host-2.8.0-204000_24.07_rhel82.aarch64.rpm
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host-2.8.0-204000_24.07_rhel82.x86_64.rpm
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host-2.8.0-204000_24.07_rhel83.aarch64.rpm
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host-2.8.0-204000_24.07_rhel83.x86_64.rpm
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host-2.8.0-204000_24.07_rhel84.aarch64.rpm
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host-2.8.0-204000_24.07_rhel84.x86_64.rpm
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host-2.8.0-204000_24.07_rhel85.aarch64.rpm
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host-2.8.0-204000_24.07_rhel85.x86_64.rpm

126

Device Component OS Arch Link

RHEL/Rocky 8.6 aarch64 doca-
host-2.8.0-204000_24.07
_rhel86.aarch64.rpm

x86 doca-
host-2.8.0-204000_24.07
_rhel86.x86_64.rpm

RHEL/Rocky 8.7 aarch64 doca-
host-2.8.0-204000_24.07
_rhel87.aarch64.rpm

x86 doca-
host-2.8.0-204000_24.07
_rhel87.x86_64.rpm

RHEL/Rocky 8.8 aarch64 doca-
host-2.8.0-204000_24.07
_rhel88.aarch64.rpm

x86 doca-
host-2.8.0-204000_24.07
_rhel88.x86_64.rpm

RHEL/Rocky 8.9 aarch64 doca-
host-2.8.0-204000_24.07
_rhel89.aarch64.rpm

x86 doca-
host-2.8.0-204000_24.07
_rhel89.x86_64.rpm

RHEL/Rocky
8.10

aarch64 doca-
host-2.8.0-204000_24.07
_rhel810.aarch64.rpm

x86 doca-
host-2.8.0-204000_24.07
_rhel810.x86_64.rpm

RHEL/Rocky 9.0 aarch64 doca-
host-2.8.0-204000_24.07
_rhel90.aarch64.rpm

x86 doca-
host-2.8.0-204000_24.07
_rhel90.x86_64.rpm

RHEL/Rocky 9.1 aarch64 doca-
host-2.8.0-204000_24.07
_rhel91.aarch64.rpm

x86 doca-
host-2.8.0-204000_24.07
_rhel91.x86_64.rpm

RHEL/Rocky 9.2 aarch64 doca-
host-2.8.0-204000_24.07
_rhel92.aarch64.rpm

x86 doca-
host-2.8.0-204000_24.07
_rhel92.x86_64.rpm

https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host-2.8.0-204000_24.07_rhel86.aarch64.rpm
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host-2.8.0-204000_24.07_rhel86.x86_64.rpm
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host-2.8.0-204000_24.07_rhel87.aarch64.rpm
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host-2.8.0-204000_24.07_rhel87.x86_64.rpm
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host-2.8.0-204000_24.07_rhel88.aarch64.rpm
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host-2.8.0-204000_24.07_rhel88.x86_64.rpm
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host-2.8.0-204000_24.07_rhel89.aarch64.rpm
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host-2.8.0-204000_24.07_rhel89.x86_64.rpm
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host-2.8.0-204000_24.07_rhel810.aarch64.rpm
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host-2.8.0-204000_24.07_rhel810.x86_64.rpm
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host-2.8.0-204000_24.07_rhel90.aarch64.rpm
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host-2.8.0-204000_24.07_rhel90.x86_64.rpm
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host-2.8.0-204000_24.07_rhel91.aarch64.rpm
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host-2.8.0-204000_24.07_rhel91.x86_64.rpm
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host-2.8.0-204000_24.07_rhel92.aarch64.rpm
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host-2.8.0-204000_24.07_rhel92.x86_64.rpm

127

Device Component OS Arch Link

RHEL/Rocky 9.3 aarch64 doca-
host-2.8.0-204000_24.07
_rhel93.aarch64.rpm

x86 doca-
host-2.8.0-204000_24.07
_rhel93.x86_64.rpm

RHEL/Rocky 9.4 aarch64 doca-
host-2.8.0-204000_24.07
_rhel94.aarch64.rpm

x86 doca-
host-2.8.0-204000_24.07
_rhel94.x86_64.rpm

SLES 15 SP2 aarch64 doca-
host-2.8.0-204000_24.07
_sles15sp2.aarch64.rpm

x86 doca-
host-2.8.0-204000_24.07
_sles15sp2.x86_64.rpm

SLES 15 SP3 aarch64 doca-
host-2.8.0-204000_24.07
_sles15sp3.aarch64.rpm

x86 doca-
host-2.8.0-204000_24.07
_sles15sp3.x86_64.rpm

SLES 15 SP4 aarch64 doca-
host-2.8.0-204000_24.07
_sles15sp4.aarch64.rpm

x86 doca-
host-2.8.0-204000_24.07
_sles15sp4.x86_64.rpm

SLES 15 SP5 aarch64 doca-
host-2.8.0-204000_24.07
_sles15sp5.aarch64.rpm

x86 doca-
host-2.8.0-204000_24.07
_sles15sp5.x86_64.rpm

SLES 15 SP6 x86 doca-
host-2.8.0-204000_24.07
_sles15sp6.x86_64.rpm

TencentOS 3.3 aarch64 doca-
host-2.8.0-204000_24.07
_tencentos33.aarch64.r
pm

x86 doca-
host-2.8.0-204000_24.07
_tencentos33.x86_64.rp
m

https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host-2.8.0-204000_24.07_rhel93.aarch64.rpm
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host-2.8.0-204000_24.07_rhel93.x86_64.rpm
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host-2.8.0-204000_24.07_rhel94.aarch64.rpm
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host-2.8.0-204000_24.07_rhel94.x86_64.rpm
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host-2.8.0-204000_24.07_sles15sp2.aarch64.rpm
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host-2.8.0-204000_24.07_sles15sp2.x86_64.rpm
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host-2.8.0-204000_24.07_sles15sp3.aarch64.rpm
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host-2.8.0-204000_24.07_sles15sp3.x86_64.rpm
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host-2.8.0-204000_24.07_sles15sp4.aarch64.rpm
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host-2.8.0-204000_24.07_sles15sp4.x86_64.rpm
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host-2.8.0-204000_24.07_sles15sp5.aarch64.rpm
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host-2.8.0-204000_24.07_sles15sp5.x86_64.rpm
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host-2.8.0-204000_24.07_sles15sp6.x86_64.rpm
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host-2.8.0-204000_24.07_tencentos33.aarch64.rpm
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host-2.8.0-204000_24.07_tencentos33.x86_64.rpm

128

Device Component OS Arch Link

Ubuntu 20.04 aarch64 doca-
host_2.8.0-204000-24.07
-ubuntu2004_arm64.deb

x86 doca-
host_2.8.0-204000-24.07
-ubuntu2004_amd64.de
b

Ubuntu 22.04 aarch64 doca-
host_2.8.0-204000-24.07
-ubuntu2204_arm64.deb

x86 doca-
host_2.8.0-204000-24.07
-ubuntu2204_amd64.de
b

Ubuntu 24.04 aarch64 doca-
host_2.8.0-204000-24.07
-ubuntu2404_arm64.deb

x86 doca-
host_2.8.0-204000-24.07
-ubuntu2404_amd64.de
b

UOS20.1060 aarch64 doca-
host-2.8.0-204000_24.07
_uos201060.aarch64.rp
m

x86 doca-
host-2.8.0-204000_24.07
_uos201060.x86_64.rpm

UOS20.1060A aarch64 doca-
host-2.8.0-204000_24.07
_uos201060a.aarch64.rp
m

x86 doca-
host-2.8.0-204000_24.07
_uos201060a.x86_64.rp
m

XenServer 8.2 x86 doca-
host-2.8.0-204000_24.07
_xenserver82.x86_64.rp
m

Target BlueField
Platform (Arm)

BlueField Software v4.8.0 Ubuntu 22.04 aarch64 bf-
bundle-2.8.0-98_24.07_
ubuntu-22.04_prod.bfb

DOCA SDK v2.8.0 Ubuntu 22.04 aarch64 doca-dpu-repo-
ubuntu2204-
local_1-2.8.0081-1.24.0
7.0.6.1.bf.4.8.0.13249_
arm64.deb

DOCA Runtime v2.8.0

https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host_2.8.0-204000-24.07-ubuntu2004_arm64.deb
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host_2.8.0-204000-24.07-ubuntu2004_amd64.deb
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host_2.8.0-204000-24.07-ubuntu2204_arm64.deb
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host_2.8.0-204000-24.07-ubuntu2204_amd64.deb
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host_2.8.0-204000-24.07-ubuntu2404_arm64.deb
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host_2.8.0-204000-24.07-ubuntu2404_amd64.deb
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host-2.8.0-204000_24.07_uos201060.aarch64.rpm
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host-2.8.0-204000_24.07_uos201060.x86_64.rpm
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host-2.8.0-204000_24.07_uos201060a.aarch64.rpm
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host-2.8.0-204000_24.07_uos201060a.x86_64.rpm
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-host-2.8.0-204000_24.07_xenserver82.x86_64.rpm
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/bf-bundle-2.8.0-98_24.07_ubuntu-22.04_prod.bfb
https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.8/doca-dpu-repo-ubuntu2204-local_1-2.8.0081-1.24.07.0.6.1.bf.4.8.0.13249_arm64.deb

129

1.

2.

3.

13.2.2.2 Uninstalling Software from Host
If an older DOCA (or MLNX_OFED) software version is installed on your host, make sure to uninstall it
before proceeding with the installation of the new version:

Deb-based
$ for f in $(dpkg --list | grep doca | awk '{print $2}'); do echo $f ; apt
remove --purge $f -y ; done
$ /usr/sbin/ofed_uninstall.sh --force
$ sudo apt-get autoremove

RPM-based
host# for f in $(rpm -qa | grep -i doca) ; do yum -y remove $f; done
host# /usr/sbin/ofed_uninstall.sh --force
host# yum autoremove
host# yum makecache

Then perform the following steps:

Download NVIDIA's RPM-GPG-KEY-Mellanox-SHA256 key:

wget http://www.mellanox.com/downloads/ofed/RPM-GPG-KEY-Mellanox-SHA256
--2018-01-25 13:52:30-- http://www.mellanox.com/downloads/ofed/RPM-GPG-KEY-Mellanox-SHA256
Resolving www.mellanox.com... 72.3.194.0
Connecting to www.mellanox.com|72.3.194.0|:80... connected.
HTTP request sent, awaiting response... 200 OK
Length: 1354 (1.3K) [text/plain]
Saving to: ?RPM-GPG-KEY-Mellanox-SHA256?

100%[===>] 1,354 --.-K/s in 0s

2018-01-25 13:52:30 (247 MB/s) - ?RPM-GPG-KEY-Mellanox-SHA256? saved [1354/1354]

Install the key:

sudo rpm --import RPM-GPG-KEY-Mellanox-SHA256
warning: rpmts_HdrFromFdno: Header V3 DSA/SHA1 Signature, key ID 6224c050: NOKEY
Retrieving key from file:///repos/MLNX_OFED//RPM-GPG-KEY-Mellanox
Importing GPG key 0x6224C050:
 Userid: "Mellanox Technologies (Mellanox Technologies - Signing Key v2) "
 From : /repos/MLNX_OFED//RPM-GPG-KEY-Mellanox-SHA256
Is this ok [y/N]:

Verify that the key was successfully imported:

rpm -q gpg-pubkey --qf '%{NAME}-%{VERSION}-%{RELEASE}\t%{SUMMARY}\n' | grep Mellanox
gpg-pubkey-a9e4b643-520791ba gpg(Mellanox Technologies)

13.2.2.3 Installing Prerequisites on Host for Target BlueField
Install RShim to manage and flash the BlueField Platform.

The following procedure is valid for RPM-based OS only.

130

1.

2.

3.

4.

1.

2.

3.

4.

1.

OS Procedure

Deb-based Download the DOCA host repo package from the "Installation
Files" section.
Unpack the deb repo. Run:

host# sudo dpkg -i <repo_file>

Perform apt update. Run:

host# sudo apt-get update

Run apt install for RShim:

host# sudo apt install rshim

RPM-based Download the DOCA host repo package from the "Installation
Files" section.
Unpack the RPM repo. Run:

host# sudo rpm -Uvh <repo_file>

Enable new dnf repos. Run:

host# sudo dnf makecache

Run dnf install to install RShim:

host# sudo dnf install rshim

13.2.2.4 Installing Software on Host

Install DOCA local repo package for host:

Skip section "Installing Software on Host" to proceed without the DOCA local repo package
for host.

Skip this section if you intend to update only the BlueField software (*.bfb). The RShim
driver is sufficient for that purpose.

Make sure to have followed the instructions under "Installing Prerequisites on Host for
Target BlueField".

The following table provides instructions for installing the DOCA host repo on your
device depending on your OS and desired profile.

131

a.

b.

c.

d.

e.

f.

OS Profile Instructions

Deb-based doca-all Download the DOCA host repo from
section "Installation Files" for the host.
Unpack the deb repo. Run:

host# dpkg -i <repo_file>

Perform apt update. Run:

host# apt-get update

If the kernel version on your host is not
supported (not shown under "Supported
Operating System Distributions"), refer
to section "DOCA Extra Package".
Ensure that the kernel headers installed
match the version of the currently
running kernel.

Run apt install for DOCA SDK and DOCA
runtime:

host# sudo apt install -y doca-all
mlnx-fw-updater

If the build directory exists in
under /lib/modules/$

(uname -r)/build , then the
kernel headers are installed.

132

a.

b.

c.

d.

e.

f.

OS Profile Instructions

doca-networking Download the DOCA host repo from
section "Installation Files" for the host.
Unpack the deb repo. Run:

host# dpkg -i <repo_file>

Perform apt update. Run:

host# apt-get update

If the kernel version on your host is not
supported (not shown under "Supported
Operating System Distributions"), refer
to section "DOCA Extra Package".
Ensure that the kernel headers installed
match the version of the currently
running kernel.

Run apt install for DOCA SDK and DOCA
runtime:

host# sudo apt install -y doca-
networking mlnx-fw-updater

If the build directory exists in
under /lib/modules/$

(uname -r)/build , then the
kernel headers are installed.

133

a.

b.

c.

d.

e.

f.

a.

b.

c.

d.

e.

OS Profile Instructions

doca-ofed Download the DOCA host repo from
section "Installation Files" for the host.
Unpack the deb repo. Run:

host# sudo dpkg -i <repo_file>

Perform apt update. Run:

host# sudo apt-get update

If the kernel version on your host is not
supported (not shown under "Supported
Operating System Distributions"), refer
to section "DOCA Extra Package".
Ensure that the kernel headers installed
match the version of the currently
running kernel.

Install doca-ofed . Run:

host# sudo apt install -y doca-ofed
mlnx-fw-updater

RPM-based doca-all Download the DOCA host repo from
section "Installation Files" for the host.
Unpack the rpm repo. Run:

host# rpm -Uvh <repo_file>.rpm

Perform yum update. Run:

host# sudo yum makecache

If the kernel version on your host is not
supported (not shown under "Supported
Operating System Distributions"), refer
to section "DOCA Extra Package".
Run yum install for DOCA SDK and DOCA
runtime:

host# sudo yum install -y doca-all
mlnx-fw-updater

If the build directory exists in
under /lib/modules/$

(uname -r)/build , then the
kernel headers are installed.

134

a.

b.

c.

d.

e.

a.

b.

c.

d.

e.

2.

3.

•

OS Profile Instructions

doca-networking Download the DOCA host repo from
section "Installation Files" for the host.
Unpack the rpm repo. Run:

host# rpm -Uvh <repo_file>.rpm

Perform yum update. Run:

host# sudo yum makecache

If the kernel version on your host is not
supported (not shown under "Supported
Operating System Distributions"), refer
to section "DOCA Extra Package".
Run yum install for DOCA SDK and DOCA
runtime:

host# sudo yum install -y doca-
networking mlnx-fw-updater

doca-ofed Download the DOCA host repo from
section "Installation Files" for the host.
Unpack the RPM repo. Run:

host# sudo rpm -Uvh <repo_file>.rpm

Perform yum update. Run:

host# sudo yum makecache

If the kernel version on your host is not
supported (not shown under "Supported
Operating System Distributions"), refer
to section "DOCA Extra Package".
Install doca-ofed . Run:

host# sudo yum install -y doca-ofed
mlnx-fw-updater

Load the drivers:

host# sudo /etc/init.d/openibd restart

Initialize MST. Run:

host# sudo mst restart

13.2.2.4.1 DOCA Extra Package

If the kernel version on your host is not supported (not shown under "Supported Operating System
Distributions"), two options are available:

Switch to a compatible kernel.

135

•
a.

b.

c.

d.

Install doca-extra package:
Run:

host# sudo apt/yum install -y doca-extra

Execute the doca-kernel-support script which rebuilds and installs the DOCA-Host
kernel modules with the running kernel:

host# sudo /opt/mellanox/doca/tools/doca-kernel-support

Install user-space packages:

host# sudo apt/yum install -y doca-ofed-userspace

(Optional) Retrieve installed packages and their versions as part of DOCA Host
installation:

host# doca-info

Versions:
- DOCA Base MLNX_OFED_LINUX-24.07-0.5.5.0
- MFT 4.29.0-127

UEFI\ATF versions:
- mst_device: mt41692_pciconf0
 UEFI Version: 4.7.0-42-g13081ae
 ATF Version: 4.7.0-25-g5569834

Firmware (Current):
- BlueField-3 32.41.1000

DOCA:
- doca-all 2.8.0-0.0.4
- doca-apsh-config 2.8.0079-1
- doca-bench 2.8.0079-1
…

DOCA Dependencies:
…
- flexio 24.07.2300
- mlnx-dpdk 22.11.0-2407.0.10

OFED:
…
- rdma-core 2407mlnx52-1.2407055
…
- ucx 1.17.0-1.2407055
…

13.2.2.5 Installing Software on BlueField
Users have two options for installing DOCA on BlueField DPU or SuperNIC:

doca-kernel-support does not support customized or unofficial kernels.

If BlueField has a BlueField Bundle version older than 2.7.0 installed on it,
UEFI\ATF versions appear as N\A. If your version is 2.7.0 or higher and still see
N\A, then perform driver restart on the host:

/etc/init.d/openibd restart

136

•

•

•

1.

Upgrading the full DOCA image on BlueField (recommended) – this option overwrites the
entire boot partition with an Ubuntu 22.04 installation and updates BlueField and NIC
firmware.
Upgrading DOCA local repo package on BlueField – this option upgrades DOCA components
without overwriting the boot partition. Use this option to preserve configurations or files on
BlueField itself.
Upgrading DOCA online repo package on BlueField – this option upgrades DOCA components
without overwriting the boot partition. Use this option to preserve configurations or files on
BlueField itself.

13.2.2.5.1 Installing Full DOCA Image on DPU via Host

13.2.2.5.1.1 Option 1 – No Pre-defined Password

BFB installation is executed as follows:

host# sudo bfb-install --rshim rshim<N> --bfb <image_path.bfb>

Where rshim<N> is rshim0 if you only have one Bluefield. You may run the following command to
verify:

host# ls -la /dev/ | grep rshim

13.2.2.5.1.2 Option 2 – Set Pre-defined Password

Ubuntu users can provide a unique password that will be applied at the end of the BlueField BFB
bundle installation. This password needs to be defined in a bf.cfg configuration file.

To set the password for the "ubuntu" user:

Create password hash. Run:

host# openssl passwd -1
Password:
Verifying - Password:
$1$3B0RIrfX$TlHry93NFUJzg3Nya00rE1

This step overwrites the entire boot partition.

This installation sets up the OVS bridge.

If you are installing DOCA on multiple BlueField platforms, skip to section Installing Full
DOCA Image on Multiple BlueField Platforms.

To change the default Ubuntu password during the BFB bundle installation, proceed to
Option 2.

137

2. Add the password hash in quotes to the bf.cfg file:

host# echo ubuntu_PASSWORD='$1$3B0RIrfX$TlHry93NFUJzg3Nya00rE1' > bf.cfg

When running the installation command, use the --config flag to provide the file
containing the password:

host# sudo bfb-install --rshim rshim<N> --bfb <image_path.bfb> --config bf.cfg

The following is an example of Ubuntu-22.04 BFB bundle installation (Release version may
vary in the future).

host# sudo bfb-install --rshim rshim0 --bfb bf-bundle-2.7.0_24.04_ubuntu-22.04_prod.bfb --config bf.cfg
Pushing bfb 1.41GiB 0:02:02 [11.7MiB/s]
[<=>
]
Collecting BlueField booting status. Press Ctrl+C to stop
 INFO[PSC]: PSC BL1 START
 INFO[BL2]: start
 INFO[BL2]: boot mode (rshim)
 INFO[BL2]: VDDQ: 1120 mV
 INFO[BL2]: DDR POST passed
 INFO[BL2]: UEFI loaded
 INFO[BL31]: start
 INFO[BL31]: lifecycle GA Secured
 INFO[BL31]: VDD: 850 mV
 INFO[BL31]: runtime
 INFO[BL31]: MB ping success
 INFO[UEFI]: eMMC init
 INFO[UEFI]: eMMC probed
 INFO[UEFI]: UPVS valid
 INFO[UEFI]: PMI: updates started
 INFO[UEFI]: PMI: total updates: 1
 INFO[UEFI]: PMI: updates completed, status 0
 INFO[UEFI]: PCIe enum start
 INFO[UEFI]: PCIe enum end
 INFO[UEFI]: UEFI Secure Boot
 INFO[UEFI]: PK configured
 INFO[UEFI]: Redfish enabled
 INFO[UEFI]: exit Boot Service
 INFO[MISC]: Found bf.cfg
 INFO[MISC]: Ubuntu installation started
 INFO[MISC]: Installing OS image
 INFO[MISC]: Changing the default password for user ubuntu
 INFO[MISC]: Ubuntu installation completed
 INFO[MISC]: Updating NIC firmware...
 INFO[MISC]: NIC firmware update done
 INFO[MISC]: Installation finished

To verify the BlueField has completed booting up, allow additional 90 seconds then perform
the following:

host# sudo cat /dev/rshim<N>/misc
...

Optionally, to upgrade the BlueField integrated BMC firmware using BFB bundle,
please provide the current BMC root credentials in a bf.cfg file, as shown in the
following:

BMC_PASSWORD="<root password>"
BMC_USER="root"
BMC_REBOOT="yes"

Unless previously changed, the default BMC root password is 0penBmc .

If --config is not used, then upon first login to the BlueField device, users will be
prompted to update the default 'ubuntu' password.

138

•

•

1.
2.

3.

 INFO[MISC]: Linux up
 INFO[MISC]: DPU is ready

13.2.2.5.2 Installing Full DOCA Image on Multiple BlueField Platforms

On a host with multiple BlueField devices, the BFB image can be installed on all of them using
the multi-bfb-install script.

host# ./multi-bfb-install --bfb <image_path.bfb> --password <password>

This script detects the number of RShim devices and configures them statically.

For Ubuntu – the script creates a configuration file /etc/netplan/20-tmfifo.yaml

For CentOS/RH 8.0 and 8.2 – the script installs the bridge-utils package to use the brctl

command, creates the tm-br bridge, and connects all RShim interfaces to it

After the installation is complete, the configuration of the bridge and each RShim interface can be
observed using ifconfig . The expected result is to see the IP on the tm-br bridge configured

to 192.168.100.1 with subnet 255.255.255.0 .

The script burns a new MAC address to each BlueField and configures a new IP, 192.168.100.x, as
described earlier.

13.2.2.5.3 Installing DOCA Local Repo Package on BlueField

Download the DOCA SDK and DOCA Runtime package from section Installation Files.
Copy deb repo package into BlueField. Run:

host# sudo scp -r doca-repo-aarch64-ubuntu2204-local_<version>_arm64.deb ubuntu@192.168.100.2:/tmp/

Unpack the deb repo. Run:

To log into BlueField with rshim0 , run:

ssh ubuntu@192.168.100.2

For each RShim after that, add 1 to the fourth octet of the IP address
(e.g., ubuntu@192.168.100.3 for rshim1, ubuntu@192.168.100.4 for rshim2 , etc).

If you have already installed BlueField image, be aware that the DOCA SDK, Runtime, and
Tools are already contained in the BFB, and this installation is not mandatory. If you have
not installed the BlueField image and wish to update DOCA Local Repo package, proceed
with the following procedure.

Before installing DOCA on the target BlueField, make sure the out-of-band interface (mgmt)
is connected to the internet.

https://developer.nvidia.com/downloads/networking/secure/doca-sdk/doca_2.0.2/doca_202_b37/multi-bfb-install/

139

4.

5.

1.

dpu# sudo dpkg -i doca-dpu-repo-ubuntu2204-local_<version>_arm64.deb

Run apt update.

dpu# sudo apt-get update

Run apt install for DOCA Runtime and DOCA SDK:

dpu# sudo apt install doca-runtime doca-sdk

13.2.2.6 Upgrading Firmware

This section explains how to update the NIC firmware on a DOCA installed BlueField OS.

An up-to-date NIC firmware image is provided in BlueField BFB bundle and copied to the BlueField
filesystem during BFB installation.

To upgrade firmware in the BlueField Arm OS:

SSH to your BlueField Arm OS by any means available.
The following instructions enable to login to the BlueField Arm OS from the host OS over the
RShim virtual interface, tmfifo_net<N> and do not require LAN connectivity with the
BlueField OOB network port.

The default credentials for Ubuntu are as follows:

Username Password

ubuntu ubuntu

For example, to log into BlueField Arm OS over IPv6:

host]# systemctl restart rshim
// Wait 10 seconds

host]# ssh -6 fe80::21a:caff:feff:ff01%tmfifo_net<N>

This operation is only required if the user skipped NIC firmware update during BFB bundle
installation using the parameter WITH_NIC_FW_UPDATE=no in the bf.cfg file.

If multiple BlueFields are installed, the following steps must be performed on all of them
after BFB installation.

This operation can be performed over the host's tmfifo_net0 IPv4, 192.168.100.1
(preconfigured) with BlueField Arm OS at 192.168.100.2 (default).

If multiple BlueField DPUs were updated using the multi-bfb-install script, as
explained above, then each target BlueField OS IPv4 address changes in its last
octate according to the underlaying RShim interface number: 192.168.100.3 for
rshim1, 192.168.100.4 for rshim2, etc.

140

2.

3.

1.

2.

1.

2.

Password: <configured-password>

Upgrade firmware in BlueField. Run:

dpu# sudo /opt/mellanox/mlnx-fw-updater/mlnx_fw_updater.pl --force-fw-update

Example output:

Device #1:

 Device Type: BlueField-2
 [...]
 Versions: Current Available
 FW <Old_FW> <New_FW>

For the firmware upgrade to take effect perform a BlueField system reboot.

13.2.2.7 Post-installation Procedure
Restart the driver. Run:

host# sudo /etc/init.d/openibd restart
Unloading HCA driver: [OK]
Loading HCA driver and Access Layer: [OK]

Configure the physical function (PF) interfaces.

host# sudo ifconfig <interface-1> <network-1/mask> up
host# sudo ifconfig <interface-2> <network-2/mask> up

For example:

host# sudo ifconfig p2p1 192.168.200.32/24 up
host# sudo ifconfig p2p2 192.168.201.32/24 up

Pings between the source and destination should now be operational.

13.2.3 Upgrading BlueField Using Standard Linux Tools

Unable to render include or excerpt-include. Could not retrieve page.

13.2.4 Post-Installation Procedure
Restart the driver. Run:

host# sudo /etc/init.d/openibd restart
Unloading HCA driver: [OK]
Loading HCA driver and Access Layer: [OK]

Configure the physical function (PF) interfaces.

host# sudo ifconfig <interface-1> <network-1/mask> up
host# sudo ifconfig <interface-2> <network-2/mask> up

For example:

141

1.
2.

•
•

host# sudo ifconfig p2p1 192.168.200.32/24 up
host# sudo ifconfig p2p2 192.168.201.32/24 up

Pings between the source and destination should now be operational.

13.2.5 Building Your Own BFB Installation Image
Users wishing to build their own customized BlueField OS image can use the BFB build environment.
Please refer to the bfb-build project in this GitHub webpage for more information.

13.2.6 Setting Up Build Environment for Developers
For full instructions about setting up a development environment, refer to the NVIDIA DOCA
Developer Guide.

13.2.7 Additional SDKs for DOCA

13.2.7.1 Installing CUDA on NVIDIA Converged Accelerator
NVIDIA® CUDA® is a parallel computing platform and programming model developed by NVIDIA for
general computing GPUs.

This section details the necessary steps to set up CUDA on your environment. This section assumes
that a BFB image has already been installed on your environment.
To install CUDA on your converged accelerator:

Download and install the latest NVIDIA Data Center GPU driver.
Download and install CUDA

13.2.7.1.1 Configuring Operation Mode

There are two modes that the NVIDIA Converged Accelerator may operate in:

Standard mode (default) – the BlueField and the GPU operate separately
BlueField-X mode – the GPU is exposed to BlueField and is no longer visible on the host

For a customized BlueField OS image to boot on the UEFI secure-boot-enabled BlueField
(default BlueField secure boot setting), the OS must be either signed with an existing key in
the UEFI DB (e.g., the Microsoft key), or UEFI secure boot must be disabled. Please refer to
the "Secure Boot" page under NVIDIA BlueField DPU Platform Operating System
Documentation for more details.

The CUDA version tested to work with DOCA SDK is 11.8.0.

Downloading CUDA includes the latest NVIDIA Data Center GPU driver and CUDA toolkit. For
more information about CUDA and driver compatibility, refer to the NVIDIA CUDA Toolkit
Release Notes.

https://github.com/Mellanox/bfb-build/
https://docs.nvidia.com/networking/dpu-doca/index.html#dpu-os
https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html

142

•

•

1.

2.

To verify which mode the system is operating in, run:

host# sudo mst start
host# sudo mlxconfig -d <device-id> q PCI_DOWNSTREAM_PORT_OWNER[4]

Standard mode output:

Device #1:
[…]
Configurations: Next Boot
 PCI_DOWNSTREAM_PORT_OWNER[4] DEVICE_DEFAULT(0)

BlueField-X mode output:

Device #1:
[…]
Configurations: Next Boot
 PCI_DOWNSTREAM_PORT_OWNER[4] EMBEDDED_CPU(15)

To configure BlueField-X mode, run:

host# mlxconfig -d <device-id> s PCI_DOWNSTREAM_PORT_OWNER[4]=0xF

To configure standard mode, run:

host# mlxconfig -d <device-id> s PCI_DOWNSTREAM_PORT_OWNER[4]=0x0

Power cycle is required for configuration to take effect. For power cycle the host run:

host# ipmitool power cycle

13.2.7.1.2 Downloading and Installing CUDA Toolkit and Driver

This section details the necessary steps to set up CUDA on your environment. It assumes that a BFB
image has already been installed on your environment.

Install CUDA by visiting the CUDA Toolkit Downloads webpage.

Test that the driver installation completed successfully. Run:

To learn your BlueField Platform's device ID, refer to section "Determining BlueField Device
ID".

To learn your BlueField Platform's device ID, refer to section "Determining BlueField Device
ID".

Select the Linux distribution and version relevant for your environment.

This section shows the native compilation option either on x86 or aarch64 hosts.

https://developer.nvidia.com/cuda-downloads?target_os=Linux&target_arch=arm64-sbsa&Compilation=Native&Distribution=Ubuntu&target_version=20.04&target_type=deb_local

143

3.
a.

b.

1.
2.

3.

dpu# nvidia-smi

Tue Apr 5 13:37:59 2022
+---+
| NVIDIA-SMI 510.47.03 Driver Version: 510.47.03 CUDA Version: 11.8 |
|-------------------------------+----------------------+----------------------+
GPU Name Persistence-M	Bus-Id Disp.A	Volatile Uncorr. ECC
Fan Temp Perf Pwr:Usage/Cap	Memory-Usage	GPU-Util Compute M.
		MIG M.
===============================+======================+======================		
0 NVIDIA BF A10 Off	00000000:06:00.0 Off	0
0% 43C P0 N/A / 225W	0MiB / 23028MiB	0% Default
		N/A
+-------------------------------+----------------------+----------------------+

+---+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|===|
| No running processes found |
+---+

Verify that the installation completed successfully.
Download CUDA samples repo. Run:

dpu# git clone https://github.com/NVIDIA/cuda-samples.git

Build and run vectorAdd CUDA sample. Run:

dpu# cd cuda-samples/Samples/0_Introduction/vectorAdd
dpu# make
dpu# ./vectorAdd

13.2.7.1.3 GPUDirect RDMA

For information on GPUDirect RMDA and more, refer to DOCA GPUNetIO documentation.

13.2.7.2 Installing Rivermax on BlueField
NVIDIA Rivermax offers a unique IP-based solution for any media and data streaming use case.

This section provides the steps to install Rivermax assuming that a BFB image has already been
installed on your environment.

13.2.7.2.1 Downloading Rivermax Driver
Navigate to the NVIDIA Rivermax SDK product page.
Register to be able to download the driver package using the JOIN button at the top of the
page.
Download the appropriate driver package according to your BFB under the "Linux" subsection.
For example, for Ubuntu 22.04 BFB, download rivermax_ubuntu2204_<version>.tar.gz .

If the vectorAdd sample works as expected, it should output " Test Passed ".

If it seems that the GPU is slow or stuck, stop execution and run:

dpu# sudo setpci -v -d ::0302 800.L=201 # CPL_VC0 = 32

https://developer.nvidia.com/networking/rivermax

144

1.

2.

3.

1.

2.

3.

13.2.7.2.2 Installing Rivermax Driver
Copy the .tgz file to BlueField:

host# sudo scp -r rivermax_ubuntu2204_<version>.tar.gz ubuntu@192.168.100.2:/tmp/

Extract the Rivermax file:

dpu# sudo tar xzf rivermax_ubuntu2204_<version>.tar.gz

Install the Rivermax driver package:

dpu# cd <rivermax-version>/Ubuntu.22.04/deb-dist/aarch64/
dpu# sudo dpkg -i rivermax_<version>.deb

13.2.7.2.3 Installing Rivermax Libraries from DOCA

Rivermax libraries are compatibles with DOCA components and can be found inside the doca-dpu-

repo .

Unpack the doca-dpu-repo:

dpu# sudo dpkg -i doca-dpu-repo-ubuntu2204-local_<version>_arm64.deb

Run apt update:

dpu# sudo apt-get update

Install the Rivermax libraries:

dpu# sudo apt install doca-rmax-libs
dpu# sudo apt install libdoca-rmax-libs-dev

For additional details and guidelines, please visit the NVIDIA Rivermax SDK product page.

13.3 NVIDIA DOCA Developer Guide
This guide details the recommended steps to set up an NVIDIA DOCA development environment.

13.3.1 Introduction
This guide is intended for software developers aiming to modify existing NVIDIA DOCA applications or
develop their own DOCA-based software.

Instructions for installing DOCA on the NVIDIA® BlueField® Networking Platform (i.e., DPU or
SuperNIC) can be found in the NVIDIA DOCA Installation Guide for Linux.

For questions, comments, and feedback, please contact us at DOCA-
Feedback@exchange.nvidia.com.

https://developer.nvidia.com/networking/rivermax
mailto:DOCA-Feedback@exchange.nvidia.com

145

•
•

•
•
•

This guide focuses on the recommended flow for developing DOCA-based software, and will address
the following scenarios:

BlueField is accessible and can be used during the development and testing process
Working within a development container

BlueField is inaccessible, and the development happens on the host or on a different server
Cross-compilation from the host
Working within a development container on top of QEMU running on the host

It is recommended to follow the instructions for the first scenario, leveraging BlueField during the
development and testing process.

This guide recommends using DOCA's development container during the development process on
BlueField Platforms or on the host. Deploying development containers allows multiple developers to
work simultaneously on the same device (host or BlueField Platform) in an isolated manner and even
across multiple different DOCA SDK versions. This can allow multiple developers to work on the
BlueField Platform itself, for example, without needing to have a dedicated BlueField per
developer.

Another benefit of this container-based approach is that the development container allows
developers to create and test their DOCA-based software in a user-friendly environment that comes
pre-shipped with a set of handy development tools. The development container is focused on
improving the development experience and is designed for that purpose, whereas the BlueField
software is meant to be an efficient runtime environment for DOCA products.

13.3.2 Developing Using BlueField Networking Platform

13.3.2.1 Setup

DOCA's base image containers include a DOCA development container for the BlueField (doca:devel)
which can be found on NGC. It is recommended to deploy this container on top of BlueField when
preparing a development setup.

For questions, comments, and feedback, please contact us at DOCA-
Feedback@exchange.nvidia.com.

https://catalog.ngc.nvidia.com/orgs/nvidia/teams/doca/containers/doca
mailto:DOCA-Feedback@exchange.nvidia.com

146

1.

2.
a.
b.
c.

3.

4.

The recommended approach for working using DOCA's development container on top of the
BlueField, is by using docker, which is already included in the supplied BFB image.

Make sure the docker service is started. Run:

sudo systemctl daemon-reload
sudo systemctl start docker

Pull the container image:
Visit the NGC page of the DOCA base image.
Under the "Tags" menu, select the desired development tag for BlueField.
The container tag for the docker pull command is copied to your clipboard once

selected. Example docker pull command using the selected tag:

sudo docker pull nvcr.io/nvidia/doca/doca:1.5.1-devel

Once loaded locally, you may find the image's ID using the following command:

sudo docker images

Example output:

REPOSITORY TAG IMAGE ID CREATED SIZE
nvcr.io/nvidia/doca/doca 1.5.1-devel 931bd576eb49 10 months ago 1.49GB

Run the docker image:

sudo docker run -v <source-code-folder>:/doca_devel -v /dev/hugepages:/dev/hugepages --privileged --
net=host -it <image-name/ID>

For example, to map a source folder named my_sources into the same container tag from
the example above, the command should look like this:

https://www.docker.com/
https://catalog.ngc.nvidia.com/orgs/nvidia/teams/doca/containers/doca

147

•

•

•

•

•

sudo docker run -v my_sources:/doca_devel -v /dev/hugepages:/dev/hugepages --privileged --net=host -it
nvcr.io/nvidia/doca/doca:1.5.1-devel

After running the command, you get a shell inside the container where you can build your
project using the regular build commands:

From the container's perspective, the mounted folder will be named /doca_devel

--net=host ensures the container has network access, including visibility to SFs and
VFs as allocated on BlueField
-v /dev/hugepages:/dev/hugepages ensures that allocated huge pages are
accessible to the container

13.3.2.2 Development

It is recommended to do the development within the doca:devel container. That said, some
developers prefer different integrated development environments (IDEs) or development tools, and
sometimes prefer working using a graphical IDE until it is time to compile the code. As such, the
recommendation is to mount a network share to BlueField (refer to NVIDIA DOCA DPU CLI for more
information) and to the container.

13.3.2.3 Testing
The container is marked as "privileged", hence it can directly access the hardware capabilities of
the BlueField Platform. This means that once the tested program compiles successfully, it can be
directly tested from within the container without the need to copy it to BlueField and running it
there.

13.3.2.4 Publishing
Once the program passes the testing phase, it should be prepared for deployment. While some
proof-of-concept (POC) programs are just copied "as-is" in their binary form, most deployments will
probably be in the form of a package (.deb / .rpm) or a container.

Construction of the binary package can be done as-is inside the current doca:devel container, or
as part of a CI pipeline that will leverage the same development container as part of it.

For the construction of a container to ship the developed software, it is recommended to use
a multi-staged build that ships the software on top of the runtime-oriented DOCA base images:

doca:base-rt – slim DOCA runtime environment

doca:full-rt – full DOCA runtime environment similar to the BlueField image

Make sure to map a folder with write privileges to everyone . Otherwise, the
docker would not be able to write the output files to it.

Having the same code folder accessible from the IDE and the container helps prevent edge
cases where the compilation fails due to a typo in the code, but the typo is only fixed
locally within the container and not propagated to the main source folder.

https://docs.docker.com/develop/develop-images/multistage-build/

148

1.

2.

The runtime DOCA base images, alongside more details about their structure, can be found under
the same NGC page that hosts the doca:devel image.

For a multi-staged build, it is recommended to compile the software inside the doca:devel contai
ner, and later copy it to one of the runtime container images. All relevant images must be pulled
directly from NGC (using docker pull) to the container registry of BlueField.

13.3.3 Developing Without BlueField Networking Platform
If the development process needs to be done without access to a BlueField Platform, the
recommendation is to use a QEMU-based deployment of a container on top of a regular x86 server.
The development container for the host will be the same doca:devel image we mentioned
previously.

13.3.3.1 Setup
Make sure Docker is installed on your host. Run:

docker version

If it is not installed, visit the official Install Docker Engine webpage for installation
instructions.
Install QEMU on the host.

This step is for x86 hosts only. If you are working on an aarch64 host, move to the
next step.

https://catalog.ngc.nvidia.com/orgs/nvidia/teams/doca/containers/doca
https://docs.docker.com/engine/install/

149

3.

4.

5.

Host OS Command

Ubuntu

sudo apt-get install qemu binfmt-support qemu-user-static
sudo docker run --rm --privileged multiarch/qemu-user-static --
reset -p yes

CentOS/RHEL 7.x

sudo yum install epel-release
sudo yum install qemu-system-arm

CentOS 8.0/8.2

sudo yum install epel-release
sudo yum install qemu-kvm

Fedora

sudo yum install qemu-system-aarch64

If you are using CentOS or Fedora on the host, verify if qemu-aarch64.conf Run:

cat /etc/binfmt.d/qemu-aarch64.conf

If it is missing, run:

echo ":qemu-aarch64:M::
\x7fELF\x02\x01\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x00\xb7:\xff\xff\xff\xff\xff\xff\xff\xfc\xff\xf
f\xff\xff\xff\xff\xff\xff\xfe\xff\xff:/usr/bin/qemu-aarch64-static:" > /etc/binfmt.d/qemu-aarch64.conf

If you are using CentOS or Fedora on the host, restart system binfmt. Run:

$ sudo systemctl restart systemd-binfmt

To load and execute the development container, refer to the "Setup" section discussing the
same docker-based deployment on the BlueField side.

13.3.3.2 Development
Much like the development phase using BlueField, it is recommended to develop within the
container running on top of QEMU.

The doca:devel container supports multiple architectures. Therefore, Docker by default

attempts to pull the one matching that of the current machine (i.e., amd64 for the host

and arm64 for BlueField). Pulling the arm64 container from the x86 host can be done by

adding the flag --platform=linux/arm64 :

sudo docker pull --platform=linux/arm64 nvcr.io/nvidia/doca/doca:1.5.1-devel

150

13.3.3.3 Testing
While the compilation can be performed on top of the container, testing the compiled software
must be done on top of a BlueField Platform. This is because the QEMU environment emulates an
aarch64 architecture, but it does not emulate the hardware devices present on the BlueField
Platform. Therefore, the tested program will not be able to access the devices needed for its
successful execution, thus mandating that the testing is done on top of a physical BlueField.

13.3.3.4 Publishing
The publishing process is identical to the publishing process when using BlueField.

Make sure that the DOCA version used for compilation is the same as the version installed
on BlueField used for testing.

151

•

•

•

•

•

•
•

14 DOCA Programming Guide
The DOCA Programming Guide is intended for developers wishing to utilize DOCA SDK to develop
application on top of the NVIDIA® BlueField® DPUs and SuperNICs.

DOCA Programming Overview is important to read for new DOCA developers to understand the
architecture and main building blocks most applications will rely on.
DOCA Development Best Practices outlines common development pitfalls and capabilities to
speed up application development, qualification, and productization.
DOCA Libraries describes in details how to use each DOCA library, its APIs, and different
aspects related to that library. Users may choose to only read the pages concerning DOCA
libraries required for their application.
DOCA Utils includes modules that may be used by application developers to speed up their
development process (e.g., DOCA Arg Parser which simplifies the creation of a command-line
interface for your application).
DOCA Drivers describes additional frameworks used within DOCA.

14.1 DOCA Programming Overview
This section contains the following pages:

Hardware Overview
DOCA SDK Architecture

14.1.1 Hardware Overview
DOCA is the software framework for BlueField's main hardware entities:

For questions, comments, and feedback, please contact us at DOCA-
Feedback@exchange.nvidia.com.

mailto:DOCA-Feedback@exchange.nvidia.com

152

•

•
•
•
•
•

•

•
•
•
•

•

•
•

•
•
•

Arm cores – optimized for control-path applications, general-purpose applications and single-
flow performance

16 A78 Arm cores general-purpose processor
Coherent Mesh architecture
Last level cache (LLC)
DDR5 memory subsystem
Base OS and microservices

Accelerated programmable pipeline – optimized for high-performance packet processing
applications and advanced packet handling

Programmable 64-128 packet processor
Multi-staged, highly parallelized
Flow-based classification and action engine
RDMA, crypto, time-based scheduling

Data-path accelerator – optimized for IO-intensive applications, high insertion rate, network
flow processing, device emulation, and collective and DMA operations

16 hyper-threaded cores I/O and packet processor
Real-time OS

14.1.2 DOCA SDK Architecture
DOCA provides libraries for networking and data processing programmability that leverage NVIDIA®
BlueField® networking platform (DPU or SuperNIC) and NVIDIA® ConnectX® NIC hardware
accelerators.

DOCA software framework is built on top of DOCA Core, which provides a unified software
framework for DOCA libraries, to form a processing pipeline or workflow build of one or many DOCA
libraries.

14.1.2.1 Device Subsystem
The DOCA SDK allows applications to offload resource intensive tasks (e.g., encryption, and
compression) to hardware. DOCA also allows applications to offload network related tasks (e.g.,
packet acquisition, RDMA send). As such, BlueField and ConnectX provide dedicated hardware
processing units for executing such tasks.

The DOCA device subsystem provides an abstraction of the hardware processing units referred to as
device.

DOCA Device subsystem provides means to:

Discover available hardware acceleration units provided by DPUs/SuperNICs/NICs
Query capabilities and properties of available hardware acceleration units
Open device to enable libraries to allocate and share resources necessary for hardware
acceleration

On a given system, there can be multiple available devices. An application can choose a device
based on the following characteristics topology (e.g., PCIe address) and/or capabilities (e.g.,
encryption support).

 DOCA Core supports two DOCA Device types:

153

•

•

Local device – this is an actual device exposed in the local system (BlueField or host) and can
perform DOCA library processing jobs. This can be a PCIe physical function (PF), virtual
function (VF), or scalable function (SF)
Representor device – this is a representation of a local device. The represented local device is
typically on the host (except for SFs) and the representor is always on the BlueField side (a
proxy on the BlueField for the host-side device).

The following figure provides an example of host local devices with representors on BlueField:

The diagram shows BlueField (on the right side of the figure) connected to a host (on the left). The
host has physical function PF0 with a child virtual function VF0.

The BlueField side has a representor-device per host function in a 1-to-1 ratio (e.g., hpf0 is the
representor device for the host's PF0 device, etc.) as well as a representor for each SF function,
such that both the SF and its representor reside in BlueField.

14.1.2.2 Memory Management Subsystem
Hardware processing tasks require data buffers as inputs and/or outputs to processing operations.
The application is responsible to provide the input data and/or read the output data. To achieve
maximum performance, the SDK uses zero-copy technology to pass data to hardware. To allow zero-
copy, the application must register the memory that would hold data buffers beforehand. The
memory management subsystem provides a means to register memory and manage allocation of
data buffers on registered memory.

Memory registration:

DPU Mode

The diagram shows typical topology when using BlueField in DPU mode as described
in NVIDIA BlueField DPU Modes of Operation.

For more details on the DOCA Device subsystem, see section "DOCA Device".

https://confluence.nvidia.com/display/doca250/NVIDIA+BlueField+DPU+Modes+of+Operation

154

•
•
•

•
•

•

•

•

Defines user application memory range to use to hold data buffers
Allows one or more devices to access the memory range
Defines the access permission (e.g., read only)

Data buffer allocation management:

Allows allocating data buffers that cover subranges within the registered memory
Allows memory pool semantics over registered memory

DOCA memory has the following main components:

doca_buf – describes a data buffer, and is used as input/output to various hardware
processing tasks within DOCA libraries
doca_mmap – describes registered memory, which is accessible by devices, with a set of

permissions. doca_buf is a segment in the memory range represented by doca_mmap .

doca_buf_inventory – pool of doca_buf with the same characteristics (see more in
sections "DOCA Core Buffers" and "DOCA Core Inventories")

The following diagram shows the various modules within the DOCA memory subsystem:

The diagram shows a doca_buf_inventory containing 2 doca_buf s. Each doca_buf points to a

portion of the memory buffer which is part of a doca_mmap . The mmap is populated with one

continuous memory range and is registered with 2 DOCA Devices, dev1 and dev2 .

For more details about DOCA Memory management subsystem, see section "DOCA Memory
Subsystem".

155

•
•
•

•

•

•

•

14.1.2.3 Execution Model
DOCA SDK introduces libraries that utilize hardware processing units. Each library defines dedicated
APIs for achieving a specific processing task (e.g., encryption). The library abstracts all the low-
level details related to operation of the hardware, allowing the application focus on what matters.
This type of library is referred to as a context. Since a context utilizes a hardware processing unit,
it requires a device to operate. This device also determines which buffers are accessible by that
context. Contexts provide hardware processing operation APIs in the form of tasks and events.

Task:

Application prepares the task arguments
Application submits the task; this issues a request to the relevant hardware processing unit
Application receives a completion in the form of a callback once hardware processing
completes

Event:

Application registers to the event. This informs hardware to report whenever the event
occurs.
Application receives a completion in the form of a callback every time hardware identifies
that the event has occurred

Since hardware processing is asynchronous in nature. DOCA provides an object that allows waiting
on processing operations (tasks and events). This object is referred to as a Progress Engine (PE). The
PE allows waiting on completions using the following methods:

Busy waiting/polling mode – in this case, the application repeatedly invokes a method that
checks if a completion has occurred
Notification-driven mode – in this case, the application can use OS primitives (e.g., linux

event fd) to notify the thread whenever some completion has occurred

Once completion occurs, whether caused by a task or event, the relevant callback is invoked as part
of the PE method.

A single PE instance allows waiting on multiple tasks/events from different contexts. As such, it is
possible for an application to utilize a single PE per thread.

The following diagram illustrates how a combination of various DOCA modules combine DOCA cross-
library processing runtime.

For more details about the DOCA Progress Engine, see section "DOCA Progress Engine".

156

•
•
•

The diagram shows 3 contexts utilizing the same device, each context has some tasks/events that
have been submitted/registered by the application. All 3 contexts are connected to the same PE,
where the application can use the same PE to wait on all completions at once.

14.2 DOCA Backward Compatibility Policy
The NVIDIA DOCA™ SDK enables developers to rapidly create applications and services on top of
NVIDIA® BlueField® networking platforms.

The DOCA software package is released on a quarterly release cadence to deliver new features,
performance improvements, and critical bug fixes. DOCA compatibility allows users to update the
latest DOCA software package (including all libraries, drivers, and tools) without requiring updating
the application.

14.2.1 DOCA SDK Versioning
DOCA versions follow the Semantic Versioning scheme. That is, the DOCA version is of the form
X.Y.Z, and each part is incremented when the following applies:

Major version – when incompatible API changes may be introduced
Minor version – when functionality is added in a backwards compatible manner
Patch version – when backwards compatible bug fixes are submitted

For more details about DOCA Execution model see section "DOCA Execution Model".

https://semver.org/

157

1.

2.

3.

4.

14.2.2 DOCA SDK API Backwards Compatibility
One of the key attributes of enterprise grade SDK is backward compatibility. Backward compatible
APIs allows application developers using the SDK to monetize on their investment, by guaranteeing
that their application will continue to operate successfully as they update to a newer SDK version.

DOCA SDK APIs may go through the following lifecycle stages:

Experimental – an API marked as DOCA_EXPERIMENTAL is an experimental API and is not
guaranteed to be present across upcoming releases
Stable – an API marked as DOCA_STABLE is guaranteed to be supported throughout the
lifecycle of the current major version
Deprecated – an API marked as DOCA_DEPRECATED will be removed from DOCA SDKs header

files in an upcoming release. If the API was previously marked as DOCA_STABLE , it will only
be removed in an upcoming major release.
Removed – an API that was present on an older major version and is now no longer supported.
If this API was previously marked as DOCA_STABLE , the binary representation is preserved to
maintain binary backwards compatibility.

The following subsections explain the different backwards compatibility types including how
semantic versions are mapped to these different types.

14.2.2.1 Source Compatibility
Source compatibility guarantees that a program written and compiled using a given DOCA SDK
version compiles successfully against a newer DOCA SDK version.

As described in section "DOCA SDK Versioning", DOCA SDK is source compatible across minor and
patch versions. However, across major version, APIs can be changed, deprecated, or removed (see
the lifecycle stages under section "DOCA SDK API Backwards Compatibility"). Therefore, an
application that compiles successfully on an older major DOCA SDK version of the toolkit may
require changes to compile against a newer major version.

14.2.2.2 Binary Compatibility
Binary compatibility guarantees that a program dynamically linked against a given DOCA SDK library
(*.so) successfully links against a newer DOCA SDK library.

DOCA SDK API has a versioned C-style application binary interface (ABI) which guarantees binary
compatibility across both minor and major versions. This means that upgrading the DOCA SDK
package installed on a system to a newer version always supports existing applications and their
functions.

14.2.2.3 Behavioral Compatibility
Behavioral compatibility (i.e., semantic compatibility) guarantees that given the same inputs, a
function or component will produce the same outputs. Thus, an application developed, compiled,
linked, and tested with a given DOCA SDK and relying on the SDK’s behavior, can successfully run
with newer version of DOCA SDK, as the behavior will be compatible (apart from fixing bugs).

158

•
•

14.2.3 DOCA SDK Protocol Compatibility
Some DOCA SDK components include interaction across remote entities (host-to-BlueField,
BlueField-to-BlueField, or host-to-host). That is, communication channel between a process running
on the host server and a process running on the BlueField networking platform Arm processors. Since
applications using DOCA may be deployed in large clusters and upgraded on a different schedule,
DOCA SDK guarantees maintaining different DOCA SDK versions protocol-compatible with each other.
This allows the flexibility to perform a rolling upgrade to DOCA SDK applications while maintaining
operations throughout the process (nodes with different SDK versions maintain communication).

14.2.4 DOCA SDK Dependencies Compatibility
DOCA is distributed in a meta-package format, either as a *.bfb file for installation on the

BlueField networking platform Arm processor, or as a DOCA-for-host package (*.rpm or *.deb) for
installation on the server hosting the BlueField networking platform. This package includes different
libraries, tools, executables, firmware, and sample applications.

DOCA SDK is developed and tested to work with all components included in the meta-package.
There is no guarantee that DOCA SDK would work correctly if any of these components is upgraded
independently. Thus, updating DOCA to a newer version requires updating the meta-package with all
its components.

14.3 DOCA Development Best Practices
The following sub-sections describe some best practices DOCA SDK users/developers should consider
when using DOCA SDK.

Capability Checking
Debuggability

14.3.1 Capability Checking
An application that uses a DOCA Device relies on a subset of features for it to function as designed.
As such, it is recommended to check whether these features exist for the selected DOCA Device. To
achieve this, DOCA SDK exposes capabilities which are a set of APIs with a common look and feel, as
described on this page.

The application is expected to use these capability APIs prior to any use of DOCA SDK APIs (Core,
libraries) to fail as soon as possible (before initializing any resource) and to be able to implement
fallback flows instead of getting error unexpectedly in the application flow.

14.3.1.1 Device Capability
An application that uses DOCA Core APIs may need to identify the specific DOCA Device to work
based on specific capabilities.

For that, doca_devinfo and doca_devinfo_rep expose APIs with the prefix

doca_devinfo_cap_* / doca_devinfo_rep_cap_* . For example:

159

•

•

•

•

•

•

doca_error_t doca_devinfo_cap_is_hotplug_manager_supported(const struct doca_devinfo *devinfo, uint8_t
*is_hotplug_manager);
doca_error_t doca_devinfo_rep_cap_is_filter_emulated_supported(const struct doca_devinfo *devinfo, uint8_t
*filter_emulated_supported);

14.3.1.2 Library Capability
Each DOCA library exposes a set of capability APIs for the following purposes:

Querying the maximum/minimum valid values of a configuration property of the library
context or a library task
Validating whether a library task is supported for a specific DOCA Device

All library capability API starts with the prefix doca_<library_name>_cap_* . Moreover:

Configuration limitation capability APIs start with the prefix
doca_<library_name>_cap_[task_<task_type>]_get_min/max_*
Task supported capability APIs have the naming template
doca_<library_name>_cap_task_<task_type>_is_supported

For example, DOCA DMA exposes:

doca_error_t doca_dma_cap_task_memcpy_is_supported(const struct doca_devinfo *devinfo);
doca_error_t doca_dma_cap_get_max_num_tasks(struct doca_dma *dma, uint32_t *max_num_tasks);
doca_error_t doca_dma_cap_task_memcpy_get_max_buf_size(const struct doca_devinfo *devinfo, uint64_t *buf_size);

14.3.1.3 Core Capability
Like any other DOCA library, each DOCA Core module also exposes capability APIs.

For example:

A hotplug (of emulated PCIe functions) oriented application can check if a specific DOCA
Device information structure enables hotplugging emulated devices, by calling:

doca_error_t doca_devinfo_cap_is_hotplug_manager_supported(const struct doca_devinfo *devinfo, uint8_t
*is_hotplug_manager);

An application that works with DOCA mmap to be shared between the host and BlueField,
must export the doca_mmap from the host and import it from BlueField. Before starting the
workflow, the application can check if those operations are supported for a given a
doca_devinfo using the following APIs:

doca_error_t doca_mmap_cap_is_export_pci_supported(const struct doca_devinfo *devinfo, uint8_t
*mmap_export);
doca_error_t doca_mmap_cap_is_create_from_export_pci_supported(const struct doca_devinfo *devinfo, uint8_t
*from_export);

14.3.2 Debuggability

14.3.2.1 Return value
All DOCA APIs return the status in the form of doca_error_t.

https://confluence.nvidia.com/display/docadev/.DOCA+Core+v2.7.0#id-.DOCACorev2.7.0-doca_error_t

160

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

•

The return value of every call to the DOCA API should be checked to verify that it was successful. In
case of an error, one should look at the meaning of the returned value in the description of the
failing function.

14.3.2.2 SDK log
DOCA SDK supports error message and debug prints.

For enabling the DOCA SDK log messages one should create a backend and set the verbosity level of
that backend, if needed.

For more details about DOCA log, see section "DOCA Log".

14.4 DOCA Libraries
This section describes in details how to use each DOCA library, its APIs, and different aspects related
to that library.

Users may choose to only read the pages concerning DOCA libraries required for their application.

This section contains the following pages:

DOCA Common
DOCA Flow
DPA Subsystem
DOCA DMA
DOCA Comch
DOCA UROM
DOCA RDMA
DOCA Ethernet
DOCA GPUNetIO
DOCA App Shield
DOCA Compress
DOCA SHA
DOCA Erasure Coding
DOCA AES-GCM
DOCA Rivermax
DOCA Telemetry Exporter
DOCA Telemetry Diagnostics
DOCA Device Emulation

14.4.1 DOCA Common
DOCA Common is comprised of the following libraries:

DOCA Core

For questions, comments, and feedback, please contact us at DOCA-
Feedback@exchange.nvidia.com.

https://confluence.nvidia.com/display/docadev/.DOCA+Log+v2.7.0#id-.DOCALogv2.7.0-EnablingDOCASDKLibrariesLogging
mailto:DOCA-Feedback@exchange.nvidia.com

161

•

•
•

•

•
•
•

•
•

•
•
•

•

DOCA Log

14.4.1.1 DOCA Core
This document provides guidelines on using DOCA Core objects as part of DOCA SDK programming.

14.4.1.1.1 Introduction

DOCA Core objects provide a unified and holistic interface for application developers to interact
with various DOCA libraries. The DOCA Core API and objects bring a standardized flow and building
blocks for applications to build upon while hiding the internal details of dealing with hardware and
other software components. DOCA Core is designed to give the right level of abstraction while
maintaining performance.

DOCA Core has the same API (header files) for both NVIDIA® BlueField® and CPU installations, but
specific API calls may return DOCA_ERROR_NOT_SUPPORTED if the API is not implemented for that
processor. However, this is not the case for Windows and Linux as DOCA Core does have API
differences between Windows and Linux installations.

DOCA Core exposes C-language API to application writers and users must include the right header
file to use according to the DOCA Core facilities needed for their application.

DOCA Core can be divided into the following software modules:

DOCA Core Module Description

General DOCA Core enumerations and basic structures
Header files – doca_error.h , doca_types.h

Device handling Queries device information (host-side and BlueField) and
device capabilities (e.g., device's PCIe BDF address)

On BlueField
Gets local BlueField devices
Gets representors list (representing host
local devices)

On the host
Gets local devices

Queries device capabilities and library capabilities
Opens and uses the selected device representor
Relevant entities – doca_devinfo , doca_devinfo_rep ,

doca_dev , doca_dev_rep

Header files – doca_dev.h

The DOCA Core library is supported at beta level.

There is a symmetry between device entities on host
and its representor (on BlueField). The convention of
adding rep to the API or the object hints that it is
representor-specific.

162

•

•

•
•

•

•

•

•

•

•

•
•
•
•
•

•

•

•

•

DOCA Core Module Description

Memory management Handles optimized memory pools to be used by applications
and enables sharing resources between DOCA libraries
(while hiding hardware-related technicalities)
Data buffer services (e.g., linked list of buffers to support
scatter-gather list)
Maps host memory to BlueField for direct access
Relevant entities – doca_buf , doca_mmap ,

doca_buf_inventory , doca_buf_array , doca_bufpool

Header files – doca_buf.h , doca_buf_inventory.h ,

doca_mmap.h , doca_buf_array.h , doca_bufpool

Progress engine and task execution Enables submitting tasks to DOCA libraries and track task
progress (supports both polling mode and event-driven
mode)
Relevant entities – doca_ctx , doca_task , doca_event ,

doca_event_handle_t , doca_pe

Header files – doca_ctx.h

Sync events Sync events are used to synchronize different processors
(e.g., synchronize BlueField and host)
header files – doca_dpa_sync_event.h ,

doca_sync_event.h

The following sections describe DOCA Core's architecture and subsystems along with some basic
flows that help users get started using DOCA Core.

14.4.1.1.2 Prerequisites

DOCA Core objects are supported on NVIDIA® BlueField® networking platforms (DPU or SuperNIC)
and the host machine. Both must meet the following prerequisites:

DOCA version 2.0.2 or greater
NVIDIA® BlueField® software 4.0.2 or greater
NVIDIA® BlueField®-3 firmware version 32.37.1000 and higher
NVIDIA® BlueField®-2 firmware version 24.37.1000 and higher
Please refer to the DOCA Backward Compatibility Policy

14.4.1.1.3 Changes From Previous Releases

14.4.1.1.3.1 Changes in 2.8.0

Added

doca_bitfield.h

doca_error_t doca_buf_inventory_expand(struct doca_buf_inventory *inventory,

uint32_t num_elements)

void doca_ctx_flush_tasks(struct doca_ctx *ctx)

doca_error_t doca_devinfo_cap_is_notification_moderation_supported(const

struct doca_devinfo *devinfo, uint8_t *is_notification_moderation_supported)

163

•

•

•

•

•

•
•

1.

2.

3.

New DOCA errors: DOCA_ERROR_AUTHENTICATION , DOCA_ERROR_BAD_CONFIG ,

DOCA_ERROR_SKIPPED

doca_error_t doca_task_submit_ex(struct doca_task *task, uint32_t flags)

doca_error_t doca_pe_set_notification_affinity(struct doca_pe *pe, uint32_t

core_id)

doca_error_t doca_pe_is_set_notification_affinity_supported(const struct

doca_devinfo *devinfo, uint8_t *is_set_notification_affinity_supported

Changed

doca_error_t doca_devinfo_get_active_rate(const struct doca_devinfo *devinfo,

doubleuint64_t *active_rate); // Gb/s -> bits/s

doca_buf_set_data_len is STABLE API
Imported mmap can be exported to RDMA

14.4.1.1.4 Architecture

The following sections describe the architecture for the various DOCA Core software modules.
Please refer to the NVIDIA DOCA Library APIs for DOCA header documentation.

14.4.1.1.4.1 General

All core objects adhere to same flow that later helps in doing no allocations in the fast path.

The flow is as follows:

Create the object instance (e.g., doca_mmap_create).

Configure the instance (e.g., doca_mmap_set_memory_range).

Start the instance (e.g., doca_mmap_start).

After the instance is started, it adheres to zero allocations and can be used safely in the data
path. After the instance is complete, it must be stopped and destroyed (doca_mmap_stop ,

doca_mmap_destroy).

There are core objects that can be reconfigured and restarted again (i.e., create → configure →
start → stop → configure → start). Please read the header file to see if specific objects support this
option.

doca_error_t

All DOCA APIs return the status in the form of doca_error_t .

typedef enum doca_error {
 DOCA_SUCCESS,
 DOCA_ERROR_UNKNOWN,
 DOCA_ERROR_NOT_PERMITTED, /**< Operation not permitted */
 DOCA_ERROR_IN_USE, /**< Resource already in use */
 DOCA_ERROR_NOT_SUPPORTED, /**< Operation not supported */
 DOCA_ERROR_AGAIN, /**< Resource temporarily unavailable, try again */
 DOCA_ERROR_INVALID_VALUE, /**< Invalid input */
 DOCA_ERROR_NO_MEMORY, /**< Memory allocation failure */
 DOCA_ERROR_INITIALIZATION, /**< Resource initialization failure */
 DOCA_ERROR_TIME_OUT, /**< Timer expired waiting for resource */
 DOCA_ERROR_SHUTDOWN, /**< Shut down in process or completed */
 DOCA_ERROR_CONNECTION_RESET, /**< Connection reset by peer */
 DOCA_ERROR_CONNECTION_ABORTED, /**< Connection aborted */
 DOCA_ERROR_CONNECTION_INPROGRESS, /**< Connection in progress */
 DOCA_ERROR_NOT_CONNECTED, /**< Not Connected */
 DOCA_ERROR_NO_LOCK, /**< Unable to acquire required lock */

164

•

•

 DOCA_ERROR_NOT_FOUND, /**< Resource Not Found */
 DOCA_ERROR_IO_FAILED, /**< Input/Output Operation Failed */
 DOCA_ERROR_BAD_STATE, /**< Bad State */
 DOCA_ERROR_UNSUPPORTED_VERSION, /**< Unsupported version */
 DOCA_ERROR_OPERATING_SYSTEM, /**< Operating system call failure */
 DOCA_ERROR_DRIVER, /**< DOCA Driver call failure */
 DOCA_ERROR_UNEXPECTED, /**< An unexpected scenario was detected */
 DOCA_ERROR_ALREADY_EXIST, /**< Resource already exist */
 DOCA_ERROR_FULL, /**< No more space in resource */
 DOCA_ERROR_EMPTY, /**< No entry is available in resource */
 DOCA_ERROR_IN_PROGRESS, /**< Operation is in progress */
 DOCA_ERROR_TOO_BIG, /**< Requested operation too big to be contained */
 } doca_error_t;

See doca_error.h for more.

Generic Structures/Enum

The following types are common across all DOCA APIs.

union doca_data {
 void *ptr;
 uint64_t u64;
};

enum doca_access_flags {
 DOCA_ACCESS_LOCAL_READ_ONLY = 0,
 DOCA_ACCESS_LOCAL_READ_WRITE = (1 << 0),
 DOCA_ACCESS_RDMA_READ = (1 << 1),
 DOCA_ACCESS_RDMA_WRITE = (1 << 2),
 DOCA_ACCESS_RDMA_ATOMIC = (1 << 3),
 DOCA_ACCESS_DPU_READ_ONLY = (1 << 4),
 DOCA_ACCESS_DPU_READ_WRITE = (1 << 5),
};

enum doca_pci_func_type {
 DOCA_PCI_FUNC_PF = 0, /* physical function */
 DOCA_PCI_FUNC_VF, /* virtual function */
 DOCA_PCI_FUNC_SF, /* sub function */
};

For more see doca_types.h .

14.4.1.1.4.2 DOCA Device

Local Device and Representor

Prerequisites

For the representors model, BlueField must be operated in DPU mode. See NVIDIA BlueField Modes
of Operation.

Topology

The DOCA device represents an available processing unit backed by hardware or software
implementation. The DOCA device exposes its properties to help an application in choosing the right
device(s). DOCA Core supports two device types:

Local device – this is an actual device exposed in the local system (BlueField or host) and can
perform DOCA library processing tasks.
Representor device – this is a representation of a local device. The local device is usually on
the host (except for SFs) and the representor is always on BlueField side (a proxy on
BlueField for the host-side device).

The following figure provides an example topology:

165

•
•

•

•

The diagram shows a BlueField device (on the right side of the figure) connected to a host (on the
left side of the figure). The host topology consists of two physical functions (PF0 and PF1).
Furthermore, PF0 has two child virtual functions, VF0 and VF1. PF1 has only one VF associated with
it, VF0. Using the DOCA SDK API, the user gets these five devices as local devices on the host.

The BlueField side has a representor-device per each host function in a 1-to-1 relation (e.g., hpf0
is the representor device for the host's PF0 device and so on) as well as a representor for each SF
function, such that both the SF and its representor reside in BlueField.

If the user queries local devices on the BlueField (not representor devices), they get the two (in this
example) BlueField DPU PFs, p0 and p1 . These two BlueField local devices are the parent devices
for:

7 representor devices –
5 representor devices shown as arrows to/from the host (devices with the prefix hpf*)
in the diagram
2 representor devices for the SF devices, pf0sf0 and pf1sf0

2 local SF devices (not the SF representors), p0s0 and p1s0

In the diagram, the topology is split into two parts (note the dotted line), each part is represented
by a BlueField physical device, p0 and p1 , each of which is responsible for creating all other local
devices (host PFs, host VFs, and BlueField SFs). As such, the BlueField physical device can be

166

1.
2.

3.

referred to as the parent device of the other devices and would have access to the representor of
every other function (via doca_devinfo_rep_list_create).

Local Device and Representor Matching

Based on the topology diagram, the mmap export APIs can be used as follows:

Device to Select on Host When
Using doca_mmap_export_dpu()

BlueField Matching
Representor

Device to Select on BlueField
When Using

doca_mmap_create_from_export()

pf0 – 0b:00.0 hpf0 – 0b:00.0 p0 – 03:00.0

pf0vf0 – 0b:00.2 hpf0vf0 – 0b:00.2

pf0vf1 – 0b:00.3 hpf0vf1 – 0b:00.3

pf1 – 0b:00.1 hpf1 – 0b:00.1 p1 – 03:00.1

pf1vf0 – 0b:00.4 hpf1vf0 – 0b:00.4

Expected Flow

Device Discovery

To work with DOCA libraries or DOCA Core objects, application must open and use a device on
BlueField or host.

There are usually multiple devices available depending on the setup. See section "Topology" for
more information.

An application can decide which device to select based on capabilities, the DOCA Core API, and
every other library which provides a wide range of device capabilities. The flow is as follows:

The application gets a list of available devices.
Select a specific doca_devinfo to work with according to one of its properties and
capabilities. This example looks for a specific PCIe address.
Once the doca_devinfo that suits the user's needs is found, open doca_dev .

167

4.

1.

2.

3.

4.

5.

After the user opens the right device, they can close the doca_devinfo list and continue

working with doca_dev . The application eventually must close the doca_dev .

Representor Device Discovery

To work with DOCA libraries or DOCA Core objects, some applications must open and use a
representor device on BlueField. Before they can open the representor device and use it,
applications need tools to allow them to select the appropriate representor device with the
necessary capabilities. The DOCA Core API provides a wide range of device capabilities to help the
application select the right device pair (device and its BlueField representor). The flow is as follows:

The application "knows" which device it wants to use (e.g., by its PCIe BDF address). On the
host, it can be done using DOCA Core API or OS services.
On the BlueField side, the application gets a list of device representors for a specific
BlueField local device.
Select a specific doca_devinfo_rep to work with according to one of its properties. This
example looks for a specific PCIe address.
Once the doca_devinfo_rep that suits the user's needs is found, open doca_dev_rep .

After the user opens the right device representor, they can close the doca_devinfo_rep list

and continue working with doca_dev_rep . The application eventually must close

doca_dev_rep too.

As mentioned previously, the DOCA Core API can identify devices and their representors that have a
unique property (e.g., the BDF address, the same BDF for the device, and its BlueField representor).

Regarding representor device property caching, the function
doca_devinfo_rep_create_list provides a snapshot of the DOCA representor device
properties when it is called. If any representor's properties are changed dynamically (e.g.,
BDF address changes after bus reset), the device properties that the function returns would
not reflect this change. One should create the list again to get the updated properties of
the representors.

168

•

•

•
•

•
•
•

14.4.1.1.4.3 DOCA Memory Subsystem

DOCA memory subsystem is designed to optimize performance while keeping a minimal memory
footprint (to facilitate scalability) as main design goal.

DOCA memory has the following main components:

doca_buf – this is the data buffer descriptor. This is not the actual data buffer, rather, it is a
descriptor that holds metadata on the "pointed" data buffer.
doca_mmap – this is the data buffers pool which doca_buf points at. The application
provides the memory as a single memory region, as well as permissions for certain devices to
access it.

As the doca_mmap serves as the memory pool for data buffers, there is also an entity called

doca_buf_inventory which serves as a pool of doca_buf with same characteristics (see more in
sections "DOCA Core Buffers" and "DOCA Core Inventories"). As all DOCA entities, memory subsystem
objects are opaque and can be instantiated by DOCA SDK only.

The following diagram shows the various modules within the DOCA memory subsystem.

In the diagram, you may see two doca_buf_inventory s. Each doca_buf points to a portion of the

memory buffer which is part of a doca_mmap . The mmap is populated with one continuous memory

buffer memrange and is mapped to two devices, dev1 and dev2 .

Requirements and Considerations

The DOCA memory subsystem mandates the usage of pools as opposed to dynamic allocation
Pool for doca_buf → doca_buf_inventory

Pool for data memory → doca_mmap
The memory buffer in the mmap can be mapped to one device or more
Devices in the mmap are restricted by access permissions defining how they can access the
memory buffer

169

•

•

•

•

1.

2.

3.
4.

•
•

•

•

5.

6.

doca_buf points to a specific memory buffer (or part of it) and holds the metadata for that
buffer
The internals of mapping and working with the device (e.g., memory registrations) is hidden
from the application
As best practice, the application should start the doca_mmap in the initialization phase as

the start operation is time consuming. doca_mmap should not be started as part of the data
path unless necessary.
The host-mapped memory buffer can be accessed by BlueField

doca_mmap

doca_mmap is more than just a data buffer as it hides a lot of details (e.g., RDMA technicalities,
device handling, etc.) from the application developer while giving the right level of abstraction to
the software using it. doca_mmap is the best way to share memory between the host and BlueField
so BlueField can have direct access to the host-side memory or vice versa.

DOCA SDK supports several types of mmap that help with different use cases: local mmap and mmap
from export.

Local mmap

This is the basic type of mmap which maps local buffers to the local device(s).

The application creates the doca_mmap .

The application sets the memory range of the mmap using doca_mmap_set_memrange . The
memory range is memory that the application allocates and manages (usually holding the
pool of data sent to the device's processing units).
The application adds devices, granting the devices access to the memory region.
The application can specify the access permission for the devices to that memory range
using doca_mmap_set_permissions .

If the mmap is used only locally, then DOCA_ACCESS_LOCAL_* must be specified
If the mmap is created on the host but shared with BlueField (see step 6), then
DOCA_ACCESS_PCI_* must be specified
If the mmap is created on BlueField but shared with the host (see step 6), then
DOCA_ACCESS_PCI_* must be specified

If the mmap is shared with a remote RDMA target, then DOCA_ACCESS_RDMA_* must be
specified

The application starts the mmap.

To share the mmap with BlueField/host or the RDMA remote target, call
doca_mmap_export_pci or doca_mmap_export_rdma respectively. If appropriate access has
not been provided, the export fails.

From this point no more changes can be made to the mmap.

The exported data contains sensitive information. Make sure to pass this data
through a secure channel!

170

7.

1.

2.

The generated blob from the previous step can be shared out of band using a socket. If
shared with a BlueField, it is recommended to use the DOCA Comm Channel instead. See the
DMA Copy application for the exact flow.

mmap from Export

This mmap is used to access the host memory (from BlueField) or the remote RDMA target's memory.

The application receives a blob from the other side. The blob contains data returned from
step 6 in the former bullet.
The application calls doca_mmap_create_from_export and receives a new mmap that
represents memory defined by the other side.

Now the application can create doca_buf to point to this imported mmap and have direct access
to the other machine's memory.

Buffers

The DOCA buffer object is used to reference memory that is accessible by BlueField hardware. The
buffer can be utilized across different BlueField accelerators. The buffer may reference CPU, GPU,
host, or even RDMA memory. However, this is abstracted so once a buffer is created, it can be
handled in a similar way regardless of how it got created. This section covers usage of the DOCA
buffer after it is allocated.

BlueField can access memory exported to BlueField if the exporter is a host on the same
machine. Or it can access memory exported through RDMA which can be on the same
machine, a remote host, or on a remote BlueField.

The host can only access memory exported through RDMA. This can be memory on a remote
host, remote BlueField, or BlueField on same machine.

171

•
•

•
•

•

•
•
•
•

The DOCA buffer has an address and length describing a memory region. Each buffer can also point
to data within the region using the data address and data length. This distinguishes three sections of
the buffer: The headroom, the dataroom, and the tailroom.

Headroom – memory region starting from the buffer's address up to the buffer's data address
Dataroom – memory region starting from the buffer's data address with a length indicated by
the buffer's data length
Tailroom – memory region starting from the end of the dataroom to the end of the buffer
Buffer length – the total length of the headroom, the dataroom, and the tailroom

Buffer Considerations

There are multiple ways to create the buffer but, once created, it behaves in the same way
(see section "Inventories").
The buffer may reference memory that is not accessible by the CPU (e.g., RDMA memory)
The buffer is a thread-unsafe object
The buffer can be used to represent non-continuous memory regions (scatter/gather list)
The buffer does not own nor manage the data it references. Freeing a buffer does not affect
the underlying memory.

Headroom

The headroom is considered user space. For example, this can be used by the user to hold relevant
information regarding the buffer or data coupled with the data in the buffer's dataroom.

This section is ignored and remains untouched by DOCA libraries in all operations.

Dataroom

The dataroom is the content of the buffer, holding either data on which the user may want to
perform different operations using DOCA libraries or the result of such operations.

Tailroom

The tailroom is considered as free writing space in the buffer by DOCA libraries (i.e., a memory
region that may be written over in different operations where the buffer is used as output).

Buffer as Source

172

•

•

•

•

•
•

When using doca_buf as a source buffer, the source data is considered as the data section only
(the dataroom).

Buffer as Destination

When using doca_buf as a destination buffer, data is written to the tailroom (i.e., appended after
existing data, if any).

When DOCA libraries append data to the buffer, the data length is increased accordingly.

Scatter/Gather List

To execute operations on non-continuous memory regions, it is possible to create a buffer list. The
list would be represented by a single doca_buf which represents the head of the list.

To create a list of buffers, the user must first allocate each buffer individually and then chain them.
Once they are chained, they can be unchained as well:

The chaining operation, doca_buf_chain_list() , receives two lists (heads) and appends
the second list to the end of the first list
The unchaining operation, doca_buf_unchain_list() , receives the list (head) and an
element in the list, and separates them
Once the list is created, it can be traversed using doca_buf_get_next_in_list() . NULL is
returned once the last element is reached.

Passing the list to another library is same as passing a single buffer; the application sends the head
of the list. DOCA libraries that support this feature can then treat the memory regions that comprise
the list as one contiguous.

When using the buffer list as a source, the data of each buffer (in the dataroom) is gathered and
used as continuous data for the given operation.

When using the buffer list as destination, data is scattered in the tailroom of the buffers in the list
until it is all written (some buffers may not be written to).

Buffer Use Cases

The DOCA buffer is widely used by the DOCA acceleration libraries (e.g., DMA, compress, SHA). In
these instances, the buffer can be provided as a source or as a destination.

Buffer use-case considerations:

If the application wishes to use a linked list buffer and concatenate several doca_buf s to a
scatter/gather list, the application is expected to ensure the library indeed supports a linked
list buffer. For example, to check linked-list support for DMA memcpy task, the application
may call doca_dma_cap_task_memcpy_get_max_buf_list_len() .
Operations made on the buffer's data are not atomic unless stated otherwise
Once a buffer has been passed to the library as part of the task, ownership of the buffer
moves to the library until that task is complete

When using doca_buf as an input to some processing library (e.g., doca_dma),

doca_buf must remain valid and unmodified until processing is complete.

173

•

•
•

•

•

•

•

•

1.

Writing to an in-flight buffer may result in anomalous behavior. Similarly, there are no
guarantees for data validity when reading from an in-flight buffer.

Inventories

The inventory is the object responsible for allocating DOCA buffers. The most basic inventory allows
allocations to be done without having to allocate any system memory. Other inventories involve
enforcing that buffer addresses do not overlap.

Inventory Considerations

All inventories adhere to zero allocation after start.
Allocation of a DOCA buffer requires a data source and an inventory.

The data source defines where the data resides, what can access it, and with what
permissions.
The data source must be created by the application. For creation of mmaps, see
doca_mmap .

The inventory describes the allocation pattern of the buffers, such as, random access or pool,
variable-size or fixed-size buffers, and continuous or non-continuous memory.
Some inventories require providing the data source, doca_mmap , when allocating the
buffers, others require it on creation of the inventory.
All inventory types are thread-unsafe.

Inventory Types

Inventory Type Characteristics When to Use Notes

doca_buf_inven

tory

Multiple mmaps, flexible
address, flexible buffer size.

When multiple sizes or
mmaps are used.

Most common use case.

doca_buf_array Single mmap, fixed buffer
size. User receives an array
of pointers to DOCA buffers.
In case of DPA, mmap and
buffer size can be
unconfigured and later can
be set from the DPA.

Use for creating DOCA
buffers on GPU or DPA.

doca_buf_arr can be
configured on the CPU and
created on the GPU or DPA

doca_bufpool Single mmap, fixed buffer
size, address not controlled
by the user.

Use as a pool of buffers of
the same characteristics
when buffer address is not
important.

Slightly faster than
doca_buf_inventory .

Example Flow

The following is a simplified example of the steps expected for exporting the host mmap to
BlueField to be used by DOCA for direct access to the host memory (e.g., for DMA):

Create mmap on the host (see section "Expected Flow" for information on how to choose the
doca_dev to add to mmap if exporting to BlueField). This example adds a single doca_dev
to the mmap and exports it so the BlueField/RDMA endpoint can use it.

174

2. Import to the BlueField/RDMA endpoint (e.g., use the mmap descriptor output parameter as
input to doca_mmap_create_from_export).

175

14.4.1.1.4.4 DOCA Execution Model

The execution model is based on hardware processing on data and application threads. DOCA does
not create an internal thread for processing data.

The workload is made up of tasks and events. Some tasks transform source data to destination data.
The basic transformation is a DMA operation on the data which simply copies data from one memory
location to another. Other operations allow users to receive packets from the network or involve
calculating the SHA value of the source data and writing it to the destination.

For instance, a transform workload can be broken into three steps:

176

1.
2.
3.

1.
2.
3.

•
•

•

•

•

•

Read source data (doca_buf see memory subsystem).
Apply an operation on the read data (handled by a dedicated hardware accelerator).
Write the result of the operation to the destination (doca_buf see memory subsystem).

Each such operation is referred to as a task (doca_task).

Tasks describe operations that an application would like to submit to DOCA (hardware or BlueField).
To do so, the application requires a means of communicating with the hardware/BlueField. This is
where the doca_pe comes into play. The progress engine (PE) is a per-thread object used to queue
tasks to offload to DOCA and eventually receive their completion status.

doca_pe introduces three main operations:

Submission of tasks.
Checking progress/status of submitted tasks.
Receiving a notification on task completion (in the form of a callback).

A workload can be split into many different tasks that can be executed on different threads; each
thread represented by a different PE. Each task must be associated to some context, where the
context defines the type of task to be done.

A context can be obtained from some libraries within the DOCA SDK. For example, to submit DMA
tasks, a DMA context can be acquired from doca_dma.h , whereas SHA context can be obtained

using doca_sha.h . Each such context may allow submission of several task types.

A task is considered asynchronous in that once an application submits a task, the DOCA execution
engine (hardware or BlueField) would start processing it, and the application can continue to do
some other processing until the hardware finishes. To keep track of which task has finished, there
are two modes of operation: polling mode and event-driven mode.

Requirements and Considerations

The task submission/execution flow/API is optimized for performance (latency)
DOCA does not manage internal (operating system) threads. Rather, progress is managed by
application resources (calling DOCA API in polling mode or waiting on DOCA notification in
event-driven mode).
The basic object for executing the task is a doca_task . Each task is allocated from a
specific DOCA library context.
doca_pe represents a logical thread of execution for the application and tasks submitted to
the progress engine (PE)

Execution-related elements (e.g., doca_pe , doca_ctx , doca_task) are opaque and the
application performs minimal initialization/configuration before using these elements
A task submitted to PE can fail (even after the submission succeeds). In some cases, it is
possible to recover from the error. In other cases, the only option is to reinitialize the
relevant objects.

PE is not thread safe and it is expected that each PE is managed by a single
application thread (to submit a task and manage the PE).

177

•

•
•

•

•
•
•

1.

2.

3.

PE does not guarantee order (i.e., tasks submitted in certain order might finish out-of-order).
If the application requires order, it must impose it (e.g., submit a dependent task once the
previous task is done).
A PE can either work in polling mode or event-driven mode, but not in both at same time
All DOCA contexts support polling mode (i.e., can be added to a PE that supports polling
mode)

DOCA Context

DOCA Context (struct doca_ctx) defines and provides (implements) task/event handling. A
context is an instance of a specific DOCA library (i.e., when the library provides a DOCA Context, its
functionality is defined by the list of tasks/events it can handle). When more than one type of task
is supported by the context, it means that the supported task types have a certain degree of
similarity to implement and utilize common functionality.

The following list defines the relationship between task contexts:

Each context utilizes at least one DOCA Device functionality/accelerated processing
capabilities
For each task type there is one and only context type supporting it
A context virtually contains an inventory per supported task type
A context virtually defines all parameters of processing/execution per task type (e.g., size of
inventory, device to accelerate processing)

Each context needs an instance of progress engine (PE) as a runtime for its tasks (i.e., a context
must be associated with a PE to execute tasks).

The following diagram shows the high-level (domain model) relations between various DOCA Core
entities.

doca_task is associated to a relevant doca_ctx that executes the task (with the help of

the relevant doca_dev).

doca_task , after it is initialized, is submitted to doca_pe for execution.

doca_ctx s are connected to the doca_pe . Once a doca_task is queued to doca_pe , it is

executed by the doca_ctx that is associated with that task in this PE.

The following diagram describes the initialization sequence of a context:

178

•

•

•

•
•

•
•

After the context is started, it can be used to enable the submission of tasks to a PE based on the
types of tasks that the context supports. See section "DOCA Progress Engine" for more information.

Configuration Phase

A DOCA context must be configured before attempting to start it using doca_ctx_start() . Some

configurations are mandatory (e.g., providing doca_dev) while others are not.

Configurations can be useful to allow certain tasks/events, to enable features which are
disabled by default, and to optimize performance depending on a specific workload.
Configurations are provided using setter functions. Refer to context documentation for a list
of mandatory and optional configurations and their corresponding APIs.
Configurations are provided after creating the context and before starting it. Once the
context is started, it can no longer be configured unless it is stopped again.

Examples of common configurations:

Providing a device – usually done as part of the create API
Enabling tasks or registering to events – all tasks are disabled by default

Execution Phase

Once context configuration is complete, the context can be used to execute tasks. The context
executes the tasks by offloading the workload to hardware, while software polls the tasks (i.e.,
waits) until they are complete.

In this phase, an application uses the context to allocate and submit asynchronous tasks, and then
polls tasks (waits) until completion.

The application must build an event loop to poll the tasks (wait), utilizing one of the following
modes:

Polling Mode
Notification-driven Mode

In this phase, the context and all core objects perform zero allocations by utilizing memory pools. It
is recommended that the application utilizes same approach for its own logic.

State Machine

Context is a thread-unsafe object which can be connected to a single PE only.

179

•
•

•

•
•

•
•
•

State Description

Idle 0 in-flight tasks
On init (right after doca_<T>_create(ctx)): All configuration APIs
enabled
On reconf (on transition from stopping state): Some configuration APIs
enabled

Starting This state is mandatory for CTXs where transition to running state is
conditioned by one or more async op completions/external events.
For example, when a client connects to comm channel, it enters running
state. Waiting for state change can be terminated by a voluntary (user)
doca_ctx_stop() call or involuntary context state change due to internal
error.

Running Task allocation/submission enabled (disabled in all other states)
All configuration APIs are disabled

Stopping Preparation before stopped state
Clean all in-flight tasks that may not complete in near future
Procedures relying on external entity actions should be terminated by
CTX logic

The following diagram describes DOCA Context state transitions:

180

Internal Error

DOCA Context states can encounter internal errors at any time. If the state is starting or running, an
internal error can cause an involuntary transition to stopping state.

For instance, an involuntary transition from running to stopping can happen when a task execution
fails. This results in a completion with error for the failed task and all subsequent task completions.

After stopping, the state may become idle. However, doca_ctx_start() may fail if there is a
configuration issue or if an error event prevented proper transition to starting or running state.

DOCA Task

A task is a unit of (functional/processing) workload offload-able to hardware. The majority of tasks
utilize NVIDIA® BlueField® and NVIDIA® ConnectX® hardware to provide accelerated processing of
the workload defined by the task. Tasks are asynchronous operations (e.g., tasks submitted for
processing via non-blocking doca_task_submit() API).

181

•

•

•

•
•
•

•

•

Upon task completion, the preset completion callback is executed in context of
doca_pe_progress() call. The completion callback is a basic/generic property of the task, similar
to user data. Most tasks are IO operations executed/accelerated by NVIDIA device hardware.

Task Properties

Task properties share generic properties which are common to all task types and type-specific
properties. Since task structure is opaque (i.e., its content not exposed to the user), the access to
task properties provided by set/get APIs.

The following are generic task properties:

Setting completion callback – it has separate callbacks for successful completion and
completion with failure.
Getting/setting user data – used in completion callback as some structure associated with
specific task object.
Getting task status – intended to retrieve error code on completion with failure.

For each task there is only one owner: a context object. There is a doca_task_get_ctx() API to
get generic context object.

The following are generic task APIs:

Allocating and freeing from CTX (internal/virtual) inventory
Configuring via setters (or init API)
Submit-able (i.e., implements doca_task_submit(task))

Upon completion, there is a set of getters to access the results of the task execution.

Task Lifecycle

This section describes the lifecycle of DOCA Task. Each DOCA Task object lifecycle:

starts on the event of entering Running state by the DOCA Context owning the task i.e.,
once Running state entered application can obtain the task from CTX by calling doca_<CTX

name>_task_<Task name>_alloc_init(ctx, ... &task) .
ends on the event of entering Stopped state by the DOCA Context owning the task i.e.,
application can no longer allocate tasks once the related DOCA Context left the Running
state.

From application perspective DOCA Context provides a virtual task inventory The diagram below
shows the how ownership if the DOCA Task passed from DOCA Context virtual inventory to
application and than from application back to CTX, pay attention to the colors used in activation
bars for application (APP) participant & DOCA Context (CTX) participant and DOCA Context Task
virtual inventory (Task).

182

•
•

The diagram below shows the lifecycle of DOCA Task staring from its allocation to its submission.

The diagram above displays following ownership transitions during DOCA Task object lifecycle:

starting from allocation task ownership passed from context to application
application may modify task attributes via API templated as doca_<CTX name>_task_<Task

name>_set_<Parameter name>(task, param) ; on return from the task modification call the
ownership of the task object returns to application.

183

•

•

•

•

submit the task for processing in the PE, once all required modifications/settings of the task
object completed. On task submission the ownership of the object passed to the related
context.

The next two diagrams below shows the lifecycle of DOCA Task on its completion.

The diagram above displays following ownership transitions during DOCA Task object lifecycle:

on DOCA Task completion the appropriate handler provided by application invoked; on
handler invocation the DOCA Task ownership passed to application.
after DOCA Task completion application may access task attributes & result fields utilizing
appropriate APIs; application remains owner of the task object.
application may call doca_task_free() when task is no longer needed; on return from the
call task ownership passed to DOCA Context while task became uninitialized & pre-allocated
till the context enters Idle state.

184

•

•
•

The diagram above displays similar to the previous diagram ownership transitions during DOCA Task
object lifecycle with the only difference that instead of doca_task_free(task)

doca_task_submit(task) was called:

DOCA Task result (related attributes) can be accessed right after enter successful task
completion callback, similar to the previous case
lifecycle of the DOCA Task results ends on exit from the task completion callback scope.
On doca_task_free() or doca_<CTX name>_task_<Task name>_set_<Parameter

name>(task, param) call all task results should be considered invalidated regardless of
scope.

The diagram below shows the lifecycle of DOCA Task set-able parameters while API to set such a
parameter templated as doca_<CTX name>_task_<Task name>_set_<Parameter name>(task,

param) .

185

•
•

Green activation of param participant describes the time slice when all DOCA Task parameters
owned by DOCA library. On doca_task_submit() call the ownership on all task arguments passed
from application to the DOCA Context the related Task object belongs to. The ownership of task
arguments passed back to application on task completion. The application should not modify and/or
destroy/free Task argument related objects if it doesn’t own the argument.

DOCA Progress Engine

The progress engine (PE) enables asynchronous processing and handling of multiple tasks and events
of different types in a single-threaded execution environment. It is an event loop for all context-
based DOCA libraries, with I/O completion being the most common event type.

PE is designed to be thread unsafe (i.e., it can only be used in one thread at a time) but a single OS
thread can use multiple PEs. The user can assign different priorities to different contexts by adding
them to different PEs and adjusting the polling frequency for each PE accordingly. Another way to
view the PE is as a queue of workload units that are scheduled for execution.

There are no explicit APIs to add and/or schedule a workload to/on a PE but a workload can be
added by:

Adding a DOCA context to PE
Registering a DOCA event to probe (by the PE) and executing the associated handler if the
probe is positive

PE is responsible for scheduling workloads (i.e., picking the next workload to execute). The order of
workload execution is independent of task submission order, event registration order, or order of

186

•
•

•

•

•

context associations with a given PE object. Multiple task completion callbacks may be executed in
an order different from the order of related task submissions.

The following diagram describes the initialization flow of the PE:

After a PE is created and connected to contexts, it can start progressing tasks which are submitted
to the contexts. Refer to context documentation to find details such as what tasks can be submitted
using the context.

Note that the PE can be connected to multiple contexts. Such contexts can be of the same type or
of different types. This allows submitting different task types to the same PE and waiting for any of
them to finish from the same place/thread.

After initializing the PE, an application can define an event loop using one of these modes:

Polling mode
Blocking (notification-driven) mode

PE as Event Loop Mode of Operation

All completion handlers for both tasks and events are executed in the context of
doca_pe_progress() . doca_pe_progress() loops for every workload (i.e., for each workload
unit) scheduled for execution:

Run the selected workload unit. For the following cases:

Task completion, execute associated handler and break the loop and return status made some

progress
Positive probe of event, execute associated handler and break the loop and return status
made some progress
Considerable progress is made to contribute to future task completion or positive event
probe, break the loop and return status made some progress

Otherwise, reach the end of the loop and return status no progress .

Polling Mode

In this mode, the application submits a task and then does busy-wait to find out when the task has
completed.

The following diagram demonstrates this sequence:

187

1.

2.

a.

b.

c.

3.

The application submits all tasks (one or more) and tracks the number of task completions to
know if all tasks are done.
The application waits for a task to complete by consecutive polls on doca_pe_progress() .

If doca_pe_progress() returns 1, it means progress is being made (i.e., some task
completed or some event handled).
Each time a task is completed or an event is handled, its preset completion or event
handling callback is executed accordingly.
If a task is completed with an error, preset task completion with error callback is
executed (see section "Error Handling").

The application may add code to completion callbacks or event handlers for tracking the
amount of completed and pending workloads.

Blocking Mode - Notification Driven

In this mode, the application is always using the CPU even when it is doing nothing (busy-
wait).

188

1.

2.

In this mode, the application submits a task and then waits for a notification to be received before
querying the status.

The following diagram demonstrates this sequence:

The application gets a notification handle from the doca_pe representing a Linux file
descriptor which is used to signal the application that some work has finished.
The application then arms the PE with doca_pe_request_notification() .

189

3.
4.
5.

6.

7.

8.

The application submits a task.
The application waits (e.g., Linux epoll/select) for a signal to be received on the pe-fd .
The application clears the notifications received, notifying the PE that a signal has been
received and allowing it to perform notification handling.
The application attempts to handle received notifications via (multiple) calls to
doca_pe_progress() .

The application handles its internal state changes caused by task completions and event
handlers called in the previous step.
Repeat steps 2-7 until all tasks are completed and all expected events are handled.

Progress Engine versus Epoll

The epoll mechanism in Linux and the DOCA PE handles high concurrency in event-driven
architectures. Epoll, like a post office, tracks "mailboxes" (file descriptors) and notifies the
"postman" (the epoll_wait function) when a "letter" (event) arrives. DOCA PE, like a restaurant,
uses a single "waiter" to handle "orders" (workload units) from "customers" (DOCA contexts). When
an order is ready, it is placed on a "tray" (task completion handler/event handler execution) and
delivered in the order received. Both systems efficiently manage resources while waiting for events
or tasks to complete.

DOCA Event

An event is a type of occurrence that can be detected or verified by the DOCA software, which can
then trigger a handler (a callback function) to perform an action. Events are associated with a
specific source object, which is the entity whose state or attribute change defines the event's
occurrence. For example, a context state change event is caused by the change of state of a
context object.

To register an event, the user must call the doca_<event_type>_reg(pe, ...) function, passing a
pointer to the user handler function and an opaque argument for the handler. The user must also
associate the event handler with a PE, which is responsible for running the workloads that involve
event detection and handler execution.

Once an event is registered, it is periodically checked by the doca_pe_progress() function, which
runs in the same execution context as the PE to which the event is bound. If the event condition is
met, the handler function is invoked. Events are not thread-safe objects and should only be
accessed by the PE to which they are bound.

This must be done every time an application is interested in receiving a notification
from the PE.

After doca_pe_request_notification() , no calls to doca_pe_progress() are

allowed. In other words, doca_pe_request_notification() should be followed by

doca_pe_clear_notification before any calls to doca_pe_progress() .

There is no guarantee that the call to doca_pe_progress() would execute any task
completion/event handler, but the PE can continue the operation.

190

Error Handling

After a task is submitted successfully, consequent calls to doca_pe_progress() may fail (i.e., task
failure completion callback is called).

Once a task fails, the context may transition to stopping state, in this state, the application has to
progress all in-flight tasks until completion before destroying or restarting the context.

The following diagram shows how an application may handle an error from doca_pe_progress() :

191

1.
2.

•
•
•

•

•
•
•

•

•

Application runs event loop.
Any of the following may happen:

[Optional] Task fails, and the task failed completion handler is called
This may be caused by bad task parameters or another fatal error
Handler releases the task and all associated resources

[Optional] Context transitions to stopping state, and the context state changed handler
is called

This may be caused by failure of a task or another fatal error
In this state, all in-flight tasks are guaranteed to fail
Handler releases tasks that are not in-flight if such tasks exist

[Optional] Context transitions to idle state, and the context state changed handler is
called

This may happen due to encountering an error and the context does not have
any resources that must be freed by the application

192

• In this case, the application may decide to recover the context by calling start
again or it may decide to destroy the context and possibly exit the application

Task and Event Batching

DOCA Batching is an approach for grouping multiple tasks or events of the same type and handling
them as a single unit. DOCA offers two options of achieving this as described in the following
subsections.

Batch Task/Event

In this batching option, a library (e.g., doca_eth_txq) offers a task that represents a batched
operation (e.g., sending multiple packets), the task is considered a batch task and has a task type
that is separate from the non-batched operation (e.g., sending a single packet).

To submit the batch task, the user is required to build the batch and then submit it at once, similar
to submitting a regular task.

The completion of the batch is based on the completion of all items in the batch and is handled as
the completion of a single unit. This allows for multiple DOCA Task initialization/submission and
multiple DOCA Task/Event completion handling in a single API call (see DOCA Ethernet for example).

Iterative Batch

In this batching option, it is possible to utilize existing task types to build a batch operation, where
each task within the batch is submitted individually and each task receives its own completion.

Furthermore, the batch is built iteratively, where the user is not required to have information for
the entire batch ahead of time.

To utilize this option, the user can submit each task in the batch using an extended submit API
doca_task_submit_ex while providing additional submit flags.

The extended submit API is similar to a regular submit API (doca_task_submit) but with the ability
to receive submit flags. These flags are used as hints to the library that executes the tasks. They
can have implications on the current task but may also have implications on previously submitted
flags, as described in the following table:

Submit
Flag 1

Effect on Current Task Effect on Previous Tasks

2
Default
Behavi

or
of doc
a_task
_submi

t

Comments

Flag Provided Flag not
Provided

Flag
Provided

Flag not
Provided

DOCA_TASK

_SUBMIT_FL

AG_FLUSH

Task is
submitted for
hardware
execution
immediately,
and is
considered
"flushed".

Task may not be
submitted for
hardware
execution, and
is considered
"unflushed".

All previous
tasks which
are
considered
unflushed
become
flushed.

None Flag is
provided

As long as the
task is
unflushed, it
never completes.
The flag allows
batching such
that multiple
tasks are flushed
at once, instead
of individually.

193

Submit
Flag 1

Effect on Current Task Effect on Previous Tasks

2
Default
Behavi

or
of doc
a_task
_submi

t

Comments

Flag Provided Flag not
Provided

Flag
Provided

Flag not
Provided

DOCA_TASK

_SUBMIT_FL

AG_OPTIMIZ

E_REPORTS

The user does
not receive task
completion after
hardware has
completed
execution of the
task, and the
completion is
considered
"unreported".

The user
receives task
completion after
hardware has
completed
execution of the
task, and the
completion is
considered
"reported".

None Once the
hardware
completes
execution of
this task, all
previous 3

unreported
completions
become
reported.

Flag is
not
provided

As long as the
task is
unreported, the
user would never
know that it has
been completed.
The completion
of a task is
reported through
a completion
callback using
the progress
engine.
The library does
not guarantee
any order of
execution/
completion of
tasks.
The flag allows
batching, such
that multiple
task completions
are reported
using a single
hardware
completion,
instead of
receiving a
completion for
every task.

1. Note that these flags are hints which may allow internal optimizations. However, on a task
by task basis, the library may decide to ignore user flags and revert to default submit
behavior.
2. "Previous tasks" only refers to tasks submitted to the same library instance (doca_ctx). The
flags do not allow optimizations across different library instances.
3. "previous" refers to tasks that have been submitted before this one.

DOCA Graph Execution

DOCA Graph facilitates running a set of actions (tasks, user callbacks, graphs) in a specific order and
dependencies. DOCA Graph runs on a DOCA progress engine.

DOCA Graph creates graph instances that are submitted to the progress engine
(doca_graph_instance_submit).

Nodes

194

•

•

•

1.

2.

3.

4.

5.

6.

7.

8.
•

•
•

DOCA Graph is comprised of context, user, and sub-graph nodes. Each of these types can be in any
of the following positions in the network:

Root nodes – a root node does not have a parent. The graph can have one or more root nodes.
All roots begin running when the graph instance is submitted.
Edge nodes – an edge node is a node that does not have child nodes connected to it. The
graph instance is completed when all edge nodes are completed.
Intermediate node – a node connected to parent and child nodes

Context Node

A context node runs a specific DOCA task and uses a specific DOCA context (doca_ctx). The
context must be connected to the progress engine before the graph is started.

The task lifespan must be longer or equal to the life span of the graph instance.

User Node

A user node runs a user callback to facilitate performing actions during the run time of the graph
instance (e.g., adjust next node task data, compare results).

Sub-graph Node

A sub-graph node runs an instance of another graph.

Using DOCA Graph

Create the graph using doca_graph_create .

Create the graph nodes (e.g., doca_graph_node_create_from_ctx).

Define dependencies using doca_graph_add_dependency .

Start the graph using doca_graph_start .

Create the graph instance using doca_graph_instance_create .

Set the nodes data (e.g., doca_graph_instance_set_ctx_node_data).

Submit the graph instance to the pe using doca_graph_instance_submit .

Call doca_pe_progress until the graph callback is invoked.
Progress engine can run graph instances and standalone tasks simultaneously.

DOCA Graph Limitations

DOCA Graph does not support circle dependencies
DOCA Graph must contain at least one context node. A graph containing a sub-graph with at
least one context node is a valid configuration.

DOCA Graph Sample

The graph sample is based on the DOCA DMA library. The sample copies 2 buffers using DMA.

The graph ends with a user callback node that compares source and destinations.

Running DOCA Graph Sample

DOCA graph does not support circle dependencies (e.g., A => B => A).

195

1.
•

•

2.

3.

•
•
•

•
•

Refer to the following documents:
NVIDIA DOCA Installation Guide for Linux for details on how to install BlueField-related
software.
NVIDIA DOCA Troubleshooting Guide for any issue you may encounter with the
installation, compilation, or execution of DOCA samples.

To build a given sample:

cd /opt/mellanox/doca/samples/doca_common/graph/
meson build
ninja -C build

Sample (e.g., doca_graph) usage:

./build/doca_graph

No parameters required.

Alternative Data Path

DOCA Progress Engine utilizes the CPU to offload data path operations to hardware. However, some
libraries support utilization of DPA and/or GPU.

Considerations:

Not all contexts support alternative datapath
Configuration phase is always done on CPU
Datapath operations are always offloaded to hardware. The unit that offloads the operation
itself can be either CPU/DPA/GPU.
The default mode of operation is CPU
Each mode of operation introduces a different set of APIs to be used in execution path. The
used APIs are mutually exclusive for specific context instance.

DPA

Users must first refer to the programming guide of the relevant context (e.g., DOCA RDMA) to check
if datapath on DPA is supported. Additionally, the guide provides what operations can be used.

To set the datapath mode to DPA, acquire a DOCA DPA instance, then use the
doca_ctx_set_datapath_on_dpa() API.

After the context has been started with this mode, it becomes possible to get a DPA handle, using an
API defined by the relevant context (e.g., doca_rdma_get_dpa_handle()). This handle can then
be used to access DPA data path APIs within DPA code.

GPU

Users must first refer to the programming guide of the relevant context (E.g., DOCA Ethernet) to
check if datapath on GPU is supported. Additionally, the guide provides what operations can be
used.

To set the data path mode to GPU, acquire a DOCA GPU instance, then use the
doca_ctx_set_datapath_on_gpu() API.

https://confluence.nvidia.com/display/NMAR/NVIDIA+DOCA+Installation+Guide+for+Linux
https://confluence.nvidia.com/display/NMAR/NVIDIA+DOCA+Troubleshooting+Guide

196

1.

2.

3.

4.
5.

1.
2.
3.
4.

5.
6.
7.
8.

▪

▪

After the context has been started with this mode, it becomes possible to get a GPU handle, using
an API defined by the relevant context (e.g., doca_eth_rxq_get_gpu_handle()). This handle can
then be used to access GPU data path APIs within GPU code.

14.4.1.1.4.5 Object Life Cycle

Most DOCA Core objects share the same handling model in which:

The object is allocated by DOCA so it is opaque for the application (e.g.,
doca_buf_inventory_create , doca_mmap_create).
The application initializes the object and sets the desired properties (e.g.,
doca_mmap_set_memrange).
The object is started, and no configuration or attribute change is allowed (e.g.,
doca_buf_inventory_start , doca_mmap_start).
The object is used.
The object is stopped and deleted (e.g., doca_buf_inventory_stop →

doca_buf_inventory_destroy , doca_mmap_stop → doca_mmap_destroy).

The following procedure describes the mmap export mechanism between two machines (remote
machines or host-BlueField):

Memory is allocated on Machine1.
Mmap is created and is provided memory from step 1.
Mmap is exported to the Machine2 pinning the memory.
On the Machine2, an imported mmap is created and holds a reference to actual memory
residing on Machine1.
Imported mmap can be used by Machine2 to allocate buffers.
Imported mmap is destroyed.
Exported mmap is destroyed.
Original memory is destroyed.

14.4.1.1.4.6 RDMA Bridge

The DOCA Core library provides building blocks for applications to use while abstracting many
details relying on the RDMA driver. While this takes away complexity, it adds flexibility especially for
applications already based on rdma-core. The RDMA bridge allows interoperability between DOCA
SDK and rdma-core such that existing applications can convert DOCA-based objects to rdma-core-
based objects.

Requirements and Considerations

This library enables applications already using rdma-core to port their existing application or
extend it using DOCA SDK.
Bridge allows converting DOCA objects to equivalent rdma-core objects.

DOCA Core Objects to RDMA Core Objects Mapping

The RDMA bridge allows translating a DOCA Core object to a matching RDMA Core object. The
following table shows how the one object maps to the other.

197

•
•
•
•
•
•

RDMA Core Object DOCA Equivalent RDMA Object to DOCA
Object

DOCA Object to RDMA
Object

ibv_pd doca_dev doca_rdma_bridge_open_de

v_from_pd

doca_rdma_bridge_get_de

v_pd

ibv_mr doca_buf - doca_rdma_bridge_get_bu

f_mkey

14.4.1.1.5 DOCA Core Samples

14.4.1.1.5.1 Progress Engine Samples

All progress engine (PE) samples use DOCA DMA because of its simplicity. PE samples should be used
to understand the PE not DOCA DMA.

pe_common

pe_common.c and pe_common.h contain code that is used in most or all PE samples.

Users can find core code (e.g., create MMAP) and common code that uses PE (e.g.,
poll_for_completion).

Struct pe_sample_state_base (defined in pe_common.h) is the base state for all PE samples,
containing common members that are used by most or all PE samples.

pe_polling

The polling sample is the most basic sample for using PE. Start with this sample to learn how to use
DOCA PE.

The sample demonstrates the following functions:

How to create a PE
How to connect a context to the PE
How to allocate tasks
How to submit tasks
How to run the PE
How to cleanup (e.g., destroy context, destroy PE)

All the DOCA samples described in this section are governed under the BSD-3 software
license agreement.

You can diff between pe_polling_sample.c and any other pe_x_sample.c to see the
unique features that the other sample demonstrates.

Pay attention to the order of destruction (e.g., all contexts must be destroyed before
the PE).

198

1.
2.

3.

•
•

•

1.
2.

•

1.
2.

•

1.

The sample performs the following:

Uses one DMA context.
Allocates and submits 16 DMA tasks.

Polls until all tasks are completed.

pe_async_stop

A context can be stopped while it still processes tasks. This stop is asynchronous because the
context must complete/abort all tasks.

The sample demonstrates the following functions:

How to asynchronously stop a context
How to implement a context state changed callback (with regards to context moving from
stopping to idle)
How to implement task error callback (check if this is a real error or if the task is flushed)

The sample performs the following:

Submits 16 tasks and stops the context after half of the tasks are completed.
Polls until all tasks are complete (half are completed successfully, half are flushed).

The difference between pe_polling_sample.c and pe_async_stop_sample.c is to learn how to
use PE APIs for event-driven mode.

pe_event

Event-driven mode reduces CPU utilization (wait for event until a task is complete) but may
increase latency or reduce performance.

The sample demonstrates the following functions:

How to run the PE in event-driven mode

The sample performs the following:

Runs 16 DMA tasks.
Waits for event.

The difference between pe_polling_sample.c and pe_event_sample.c is to learn how to use PE
APIs for event-driven mode.

pe_multi_context

A PE can host more than one instance of a specific context. This facilitates running a single PE with
multiple BlueField devices.

The sample demonstrates the following functions:

How to run a single PE with multiple instances of a specific context

The sample performs the following:

Connects 4 instances of DOCA DMA context to the PE.

Task completion callback checks that the copied content is valid.

199

2.
3.

•

•
•

1.
2.

•
•

•

1.
2.

•

Allocates and submits 4 tasks to every context instance.
Polls until all tasks are complete.

The difference between pe_polling_sample.c and pe_multi_context_sample.c is to learn how
to use PE with multiple instances of a context.

pe_reactive

PE and contexts can be maintained in callbacks (task completion and state changed).

The sample demonstrates the following functions:

How to maintain the context and PE in the callbacks instead of the program's main function

The user must make sure to:

Review the task completion callback and the state changed callbacks
Review the difference between poll_to_completion and the polling loop in main

The sample performs the following:

Runs 16 DMA tasks.
Stops the DMA context in the completion callback after all tasks are complete.

The difference between pe_polling_sample.c and pe_reactive_sample.c is to learn how to
use PE in reactive model.

pe_single_task_cb

A DOCA task can invoke a success or error callback. Both callbacks share the same structure (same
input parameters).

DOCA recommends using 2 callbacks:

Success callback – does not need to check the task status, thereby improving performance
Error callback – may need to run a different flow than success callback

The sample demonstrates the following functions:

How to use a single callback instead of two callbacks

The sample performs the following:

Runs 16 DMA tasks.
Handles completion with a single callback.

The difference between pe_polling_sample.c and pe_single_task_comp_cb_sample.c is to
learn how to use PE with a single completion callback.

pe_task_error

Task execution may fail causing the associated context (e.g., DMA) to move to stopping state due to
this fatal error.

The sample demonstrates the following functions:

How to mitigate a task error during runtime

The user must make sure to:

200

•

1.
2.
3.

•

•
•

•
•

1.
2.

•

1.

Review the state changed callback and the error callback to see how the sample mitigates
context error

The sample performs the following:

Submits 255 tasks.
Allocates the second task with invalid parameters that cause hardware to fail.
Mitigates the failure and polls until all submitted tasks are flushed.

The difference between pe_polling_sample.c and pe_task_error_sample.c is to learn how to
mitigate context error.

pe_task_resubmit

A task can be freed or reused after it is completed:

Task resubmit can improve performance because the program does not free and allocate the
task.
Task resubmit can reduce memory usage (using a smaller task pool).
Task members (e.g., source or destination buffer) can be set, so resubmission can be used if
the source or destination are changed every iteration.

The sample demonstrates the following functions:

How to re-submit a task in the completion callback
How to replace buffers in a DMA task (similar to other task types)

The sample performs the following:

Allocates a set of 4 tasks and 16 buffer pairs.
Uses the tasks to copy all sources to destinations by resubmitting the tasks.

The difference between pe_polling_sample.c and pe_task_resubmit_sample.c is to learn how
to use task resubmission.

pe_task_try_submit

doca_task_submit does not validate task inputs (to increase performance). Developers can use

doca_task_try_submit to validate the tasks during development.

The sample demonstrates the following functions:

How to use doca_task_try_submit instead of doca_task_submit

The sample performs the following:

Allocates and tries to submit tasks using doca_task_try_submit .

The difference between pe_polling_sample.c and pe_task_try_submit_sample.c is to learn

how to use doca_task_try_submit .

Task validation impacts performance and should not be used in production.

201

•
•

14.4.1.1.5.2 Graph Sample

The graph sample demonstrates how to use DOCA graph with PE. The sample can be used to learn
how to build and use DOCA graph.

The sample uses two nodes of DOCA DMA and one user node.

The graph runs both DMA nodes (copying a source buffer to two destinations). Once both nodes are
complete, the graph runs the user node that compares the buffers.

The sample runs 10 instances of the graph in parallel.

14.4.1.1.6 Backward Compatibility of DOCA Core doca_buf

This section lists changes to the DOCA SDK which impacts backward compatibility.

14.4.1.1.6.1 DOCA Core doca_buf

Unable to render include or excerpt-include. Could not retrieve page.

14.4.1.1.7 Sync Event

14.4.1.1.7.1 Introduction

DOCA Sync Event (SE) is a software synchronization mechanism for parallel execution across the
CPU, DPU, DPA and remote nodes. The SE holds a 64-bit counter which can be updated, read, and
waited upon from any of these units to achieve synchronization between executions on them.

To achieve the best performance, DOCA SE defines a subscriber and publisher locality, where:

Publisher – the entity which updates (sets or increments) the event value
Subscriber – the entity which gets and waits upon the SE

Based on hints, DOCA selects memory locality of the SE counter, closer to the subscriber side. Each
DOCA SE is configured with a single publisher location and a single subscriber location which can be
the CPU or DPU.

The SE control path happens on the CPU (either host CPU or DPU CPU) through the DOCA SE CPU
handle. It is possible to retrieve different execution-unit-specific handles (DPU/DPA/GPU/remote
handles) by exporting the SE instance through the CPU handle. Each SE handle refers to the DOCA SE

DOCA Sync Event API is considered thread-unsafe

DOCA Sync Event does not currently support GPU related features.

Both publisher and subscriber can read (get) the actual counter's value.

202

•
•
•

instance from which it is retrieved. By using the execution-unit-specific handle, the associated SE
instance can be operated from that execution unit.

In a basic scenario, synchronization is achieved by updating the SE from one execution and waiting
upon the SE from another execution unit.

14.4.1.1.7.2 Prerequisites

DOCA SE can be used as a context which follows the architecture of a DOCA Core Context, it is
recommended to read the following sections of the DOCA Core page before proceeding:

DOCA Execution Model
DOCA Device
DOCA Memory Subsystem

14.4.1.1.7.3 Environment

DOCA SE based applications can run either on the host machine or on the NVIDIA® BlueField® DPU
target and can involve DPA, GPU and other remote nodes.

Using DOCA SE with DPU requires BlueField to be configured to work in DPU mode as described in
NVIDIA BlueField Modes of Operation.

14.4.1.1.7.4 Architecture

DOCA SE can be converted to a DOCA Context as defined by DOCA Core. See DOCA Context for more
information.

As a context, DOCA SE leverages DOCA Core architecture to expose asynchronous tasks/events
offloaded to hardware.

The figure that follows demonstrates components used by DOCA SE. DOCA Device provides
information on the capabilities of the configured HW used by SE to control system resources.

DOCA DPA, GPUNetIO, and RDMA modules are required for cross-device synchronization (could be
DPA, GPU, or remote peer respectively).

DOCA SE allows flexible memory management by its ability to specify an external buffer, where a
DOCA mmap module handles memory registration for advanced synchronization scenarios.

For asynchronous operation scheduling, SE uses the DOCA Progress Engine (PE) module.

DOCA Sync Event Components Diagram

Asynchronous wait on a DOCA SE requires NVIDIA® BlueField-3® or newer.

203

The following diagram represents DOCA SE synchronization abilities on various devices.

DOCA Sync Event Interaction Diagram

DOCA Sync Event Objects

DOCA SE exposes different types of handles per execution unit as detailed in the following table.

Execution Unit Type Description

CPU (host/DPU) struct doca_sync_event Handle for interacting with the SE from
the CPU

DPU struct doca_sync_event Handle for interacting with the SE from
the DPU

204

Execution Unit Type Description

DPA doca_dpa_dev_sync_event_t Handle for interacting with the SE from
the DPA

GPU doca_gpu_dev_sync_event_t Handle for interacting with the SE from
the GPU

Remote net CPU doca_sync_event_remote_net Handle for interacting with the SE from a
remote CPU

Remote net DPA doca_dpa_dev_sync_event_remote_

net_t

Handle for interacting with the SE from a
remote DPA

Remote net GPU doca_gpu_dev_sync_event_remote_

net_t

Handle for interacting with the SE from a
remote GPU

Each one of these handle types has its own dedicated API for creating the handle and interacting
with it.

14.4.1.1.7.5 Configuration Phase

Any DOCA SE creation starts with creating CPU handle by calling doca_sync_event_create API.

After creation, the SE entity could be shared with local PCIe, remote CPU, DPA, and GPU by a
dedicated handle creation via the DOCA SE export flow, as illustrated in the following diagram:

Operation Modes

DOCA SE exposes two different APIs for starting it depending on the desired operation
mode, synchronous or asynchronous.

Synchronous Mode

Start the SE to operate in synchronous mode by calling doca_sync_event_start .

In synchronous operation mode, each data path operation (get, update, wait) blocks the calling
thread from continuing until the operation is done.

Once started, SE operation mode cannot be changed.

205

•

•

•
•

•

•

•

Asynchronous Mode

To start the SE to operate in asynchronous mode, convert the SE instance to doca_ctx by calling

doca_sync_event_as_ctx . Then use DOCA CTX API to start the SE and DOCA PE API to submit tasks
on the SE (see section "DOCA Progress Engine" for more).

Configurations

Mandatory Configurations

These configurations must be set by the application before attempting to start the SE:

DOCA SE CPU handle must be configured by providing the runtime hints on the publisher and
subscriber locations. Both the subscriber and publisher locations must be configured using the
following APIs:

doca_sync_event_add_publisher_location_<cpu|dpa|gpu|remote_pci|

remote_net>

doca_sync_event_add_subscriber_location_<cpu|dpa|gpu|remote_pci>
For the asynchronous use case, at least one task/event type must be configured. See
configuration of tasks.

Optional Configurations

These configurations provide an 8-byte buffer to be used as the backing memory of the SE. If
set, it is user responsibility to handle the memory (i.e., preserve the memory allocated
during DOCA SE lifecycle and free it after DOCA SE destruction). If not provided, the SE
backing memory is allocated by the SE.

doca_sync_event_set_addr

doca_sync_event_set_doca_buf

Export DOCA Sync Event to Another Execution Unit

To use an SE from an execution unit other than the CPU, it must be exported to get a handle for the
specific execution unit:

An operation is considered done if the requested change fails and the exact error can be
reported or if the requested change has taken effect.

If these configurations are not set, a default value is used.

206

•

•

•

•

•

•

DPA – doca_sync_event_get_dpa_handle returns a DOCA SE DPA handle

(doca_dpa_dev_sync_event_t) which can be passed to the DPA SE data path APIs from the
DPA kernel
GPU – doca_sync_event_get_gpu_handle returns a DOCA SE GPU handle

(doca_gpu_dev_sync_event_t) which can be passed to the GPU SE data path APIs for the
CUDA kernel
DPU – doca_sync_event_export_to_remote_pci returns a blob which can be used from the

DPU CPU to instantiate a DOCA SE DPU handle (struct doca_sync_event) using

the doca_sync_event_create_from_export function

DOCA SE allows notifications from remote peers (remote net) utilizing capabilities of the DOCA RDMA
library. The following figure illustrates the remote net export flow:

Remote net CPU – doca_sync_event_export_to_remote_net returns a blob which can be

used from the remote net CPU to instantiate a DOCA SE remote net CPU handle (struct

doca_sync_event_remote_net) using

the doca_sync_event_remote_net_create_from_export function. The handle can be used

directly for submitting asynchronous tasks through the doca_rdma library or exported to the
remote DPA/GPU.
Remote net DPA – doca_sync_event_remote_net_get_dpa_handle returns a DOCA SE

remote net DPA handle (doca_dpa_dev_sync_event_remote_net_t) which can be passed to
the DPA RDMA data path APIs from a DPA kernel
Remote net GPU – doca_sync_event_remote_net_get_gpu_handle returns a DOCA SE

remote net GPU handle (doca_gpu_dev_sync_event_remote_net_t) which can be passed to
the GPU RDMA data path APIs from a CUDA kernel

The CPU handle (struct doca_sync_event) can be exported only to the location where
the SE is configured.

Prior to calling any export function, users must first verify it is supported by calling the
corresponding export capability getter:
doca_sync_event_cap_is_export_to_dpa_supported ,

207

•

•

•

•

•

•

•

•

Device Support

DOCA SE needs a device to operate. For instructions on picking a device, see DOCA Core device
discovery.

As device capabilities may change in the future (see DOCA Capability Check), it is recommended to
choose your device using any relevant capability method (starting with the prefix
doca_sync_event_cap_*).

Capability APIs to query whether sync event can be constructed from export blob:

doca_sync_event_cap_is_create_from_export_supported

doca_sync_event_cap_remote_net_is_create_from_export_supported

Capability APIs to query whether sync event can be exported to other execution units:

doca_sync_event_cap_is_export_to_remote_pci_supported

doca_sync_event_cap_is_export_to_dpa_supported

doca_sync_event_cap_is_export_to_gpu_supported

doca_sync_event_cap_is_export_to_remote_net_supported

doca_sync_event_cap_remote_net_is_export_to_dpa_supported

doca_sync_event_cap_remote_net_is_export_to_gpu_supported

doca_sync_event_cap_is_export_to_gpu_supported ,

doca_sync_event_cap_is_export_to_remote_pci_supported , or

doca_sync_event_cap_is_export_to_remote_net_supported .

Prior to calling any *_create_from_export function, users must first verify it is supported
by calling the corresponding create from the export capability getter:
doca_sync_event_cap_is_create_from_export_supported or

doca_sync_event_cap_remote_net_is_create_from_export_supported .

Once created from an export, both the SE DPU handle struct doca_sync_event and the

SE remote net CPU handle struct doca_sync_event_remote_net cannot be configured,
but only the SE DPU handle must be started before it is used.

Data exported in doca_sync_event_export_to_* functions contains sensitive information.
Make sure to pass this data through a secure channel!

Both NVIDIA® BlueField®-2 and BlueField®-3 devices are supported as well as any
doca_dev is supported.

Asynchronous wait (blocking/polling) is supported on NVIDIA® BlueField®-3 and NVIDIA®
ConnectX®-7 and later.

208

•

•

•

•

•

•

•

•

•

Capability APIs to query whether an asynchronous task is supported:

doca_sync_event_cap_task_get_is_supported

doca_sync_event_cap_task_notify_set_is_supported

doca_sync_event_cap_task_notify_add_is_supported

doca_sync_event_cap_task_wait_eq_is_supported

doca_sync_event_cap_task_wait_neq_is_supported

14.4.1.1.7.6 Execution Phase

This section describes execution on CPU. For additional execution environments refer to section
"Alternative Datapath Options".

DOCA Sync Event Data Path Operations

The DOCA SE synchronization mechanism is achieved using exposed datapath operations. The API
exposes a function for "writing" to the SE and for "reading" the SE.

The synchronous API is a set of functions which can be called directly by the user, while the
asynchronous API is exposed by defining a corresponding doca_task for each synchronous function
to be submitted on a DOCA PE (see DOCA Progress Engine and DOCA Context for additional
information).

The following subsections describe the DOCA SE datapath operation with respect to synchronous and
asynchronous operation modes.

Publishing on DOCA Sync Event

Setting DOCA Sync Event Value

Users can set DOCA SE to a 64-bit value:

Synchronously by calling doca_sync_event_update_set

Asynchronously by submitting a doca_sync_event_task_notify_set task

Adding to DOCA Sync Event Value

Users can atomically increment the value of a DOCA SE:

Synchronously by calling doca_sync_event_update_add

Asynchronously by submitting a doca_sync_event_task_notify_add task

Subscribe on DOCA Sync Event

Getting DOCA Sync Event Value

Remote net CPU handle (struct doca_sync_event_remote_net) can be used for
submitting asynchronous tasks using the DOCA RDMA library.

Prior to asynchronous task submission, users must check if the job is supported using
doca_error_t doca_sync_event_cap_task_<task_type>_is_supported .

209

•

•

•

•

Users can get the value of a DOCA SE:

Synchronously by calling doca_sync_event_get

Asynchronously by submitting a doca_sync_event_task_get task

Waiting on DOCA Sync Event

Waiting for an event is the main operation for achieving synchronization between different
execution units.

Users can wait until an SE reaches a specific value in a variety of ways.

Synchronously

doca_sync_event_wait_gt waits for the value of a DOCA SE to be greater than a specified value in
a "polling busy wait" manner (100% processor utilization). This API enables users to wait for an SE in
real time.

doca_sync_event_wait_gt_yield waits for the value of a DOCA SE to be greater than a specified
value in a "periodically busy wait" manner. After each polling iteration, the calling thread
relinquishes the CPU, so a new thread gets to run. This API allows a tradeoff between real-time
polling to CPU starvation.

doca_sync_event_wait_eq waits for the value of a DOCA SE to be equal to a specified value in a
"polling busy wait" manner (100% processor utilization). This API enables users to wait for an SE in
real time.

doca_sync_event_wait_eq_yield waits for the value of a DOCA SE to be equal to a specified
value in a "periodically busy wait" manner. After each polling iteration, the calling thread
relinquishes the CPU so a new thread gets to run. This API allows a tradeoff between real-time
polling to CPU starvation.

doca_sync_event_wait_neq waits for the value of a DOCA SE to not be equal to a specified value
in a "polling busy wait" manner (100% processor utilization). This API enables users to wait for an SE
in real time.

doca_sync_event_wait_neq_yield waits for the value of a DOCA SE to not be equal to a specified
value in a "periodically busy wait" manner. After each polling iteration, the calling thread
relinquishes the CPU so a new thread gets to run. This API allows a tradeoff between real-time
polling to CPU starvation.

Asynchronously

DOCA SE exposes an asynchronous wait method by defining a doca_sync_event_task_wait_eq and

doca_sync_event_task_wait_neq tasks.

Users can wait for wait-job completion in the following methods:

Blocking – get a doca_event_handle_t from the doca_pe to blocking-wait on

Polling – poll the wait task by calling doca_pe_progress

This wait method is supported only from the CPU.

210

•
•

Tasks

DOCA SE context exposes asynchronous tasks that leverage the DPU hardware according to the DOCA
Core architecture. See DOCA Core Task.

Get Task

The get task retrieves the value of a DOCA SE.

Task Configuration

Description API to Set the Configuration API to Query Support

Enable the task doca_sync_event_task_get_set_co

nf

doca_sync_event_cap_task_get_is_

supported

Number of tasks doca_sync_event_task_get_set_co

nf

-

Task Input

Common input described in DOCA Core Task.

Name Description

Return value 8-bytes memory pointer to hold the DOCA SE value

Task Output

Common output described in DOCA Core Task.

Task Completion Success

After the task is completed successfully, the return value memory holds the DOCA SE value.

Task Completion Failure

If the task fails midway:

The context may enter a stopping state if a fatal error occurs
The return value memory may be modified

Task Limitations

All limitations are described in DOCA Core Task.

Notify Set Task

The notify set task allows setting the value of a DOCA SE.

Asynchronous wait (blocking/polling) is supported on BlueField-3 and ConnectX-7 and later.

Users may leverage the doca_sync_event_task_get job to implement asynchronous wait
by asynchronously submitting the task on a DOCA PE and comparing the result to some
threshold.

211

Task Configuration

Description API to Set the Configuration API to Query Support

Enable the task doca_sync_event_task_notify_set

_set_conf

doca_sync_event_cap_task_notify_s

et_is_supported

Number of tasks doca_sync_event_task_notify_set

_set_conf

-

Task Input

Common input described in DOCA Core Task.

Name Description

Set value 64-bit value to set the DOCA SE value to

Task Output

Common output described in DOCA Core Task.

Task Completion Success

After the task is completed successfully, the DOCA SE value is set to the given set value.

Task Completion Failure

If the task fails midway, the context may enter a stopping state if a fatal error occurs.

Task Limitations

This operation is not atomic. Other limitations are described in DOCA Core Task.

Notify Add Task

The notify add task allows atomically setting the value of a DOCA SE.

Task Configuration

Description API to Set the Configuration API to Query Support

Enable the task doca_sync_event_task_notify_add

_set_conf

doca_sync_event_cap_task_notify_a

dd_is_supported

Number of tasks doca_sync_event_task_notify_add

_set_conf

-

Task Input

Common input described in DOCA Core Task.

Name Description

Increment value 64-bit value to atomically increment the DOCA SE value by

Fetched value 8-bytes memory pointer to hold the DOCA SE value before the
increment

212

•
•

•
•

•

Task Output

Common output described in DOCA Core Task.

Task Completion Success

After the task is completed successfully, the following occurs:

The DOCA SE value is incremented according to the given increment value
The fetched value memory holds the DOCA SE value before the increment

Task Completion Failure

If the task fails midway:

The context may enter a stopping state if a fatal error occurs
The fetched value memory may be modified.

Task Limitations

All limitations are described in DOCA Core Task.

Wait Equal-to Task

The wait-equal task allows atomically waiting for a DOCA SE value to be equal to some threshold.

Task Configuration

Description API to set the configuration API to query support

Enable the task doca_sync_event_task_wait_eq_se

t_conf

doca_sync_event_cap_task_wait_eq_

is_supported

Number of tasks doca_sync_event_task_wait_eq_set

_conf

-

Task Input

Common input described in DOCA Core Task.

Name Description

Wait threshold 64-bit value to wait for the DOCA SE value to be equal to

Mask 64-bit mask to apply on the DOCA SE value before comparing with
the wait threshold

Task Output

Common output described in DOCA Core Task.

Task Completion Success

After the task is completed successfully, the following occurs:

The DOCA SE value is equal to the given wait threshold.

Task Completion Failure

If the task fails midway, the context may enter a stopping state if a fatal error occurs.

https://confluence.nvidia.com/display/doca250/NVIDIA+DOCA+Core+Programming+Guide#NVIDIADOCACoreProgrammingGuide-DOCATask

213

•

Task Limitations

Other limitations are described in DOCA Core Task.

Wait Not-equal-to Task

The wait-not-equal task allows atomically waiting for a DOCA SE value to not be equal to some
threshold.

Task Configuration

Description API to set the configuration API to query support

Enable the task doca_sync_event_task_wait_neq_s

et_conf

doca_sync_event_cap_task_wait_neq

_is_supported

Number of tasks doca_sync_event_task_wait_neq_se

t_conf

-

Task Input

Common input described in DOCA Core Task.

Name Description

Wait threshold 64-bit value to wait for the DOCA SE value to be not equal to

Mask 64-bit mask to apply on the DOCA SE value before comparing with
the wait threshold

Task Output

Common output described in DOCA Core Task.

Task Completion Success

After the task is completed successfully, the following occurs:

The DOCA SE value is not equal to the given wait threshold.

Task Completion Failure

If the task fails midway, the context may enter a stopping state if a fatal error occurs.

Task Limitations

Limitations are described in DOCA Core Task.

Events

DOCA SE context exposes asynchronous events to notify about changes that happen unexpectedly,
according to the DOCA Core architecture.

The only event DOCA SE context exposes is common events as described in DOCA Core Event.

14.4.1.1.7.7 State Machine

The DOCA SE context follows the Context state machine as described in DOCA Core Context State
Machine.

214

•
•

•
•

•
•

•
•
•

•
•

•

The following subsection describe how to move to specific states and what is allowed in each state.

Idle

In this state, it is expected that the application will:

Destroy the context; or
Start the context

Allowed operations in this state:

Configure the context according to section "Configurations"
Start the context

It is possible to reach this state as follows:

Previous State Transition Action

None Create the context

Running Call stop after making sure all tasks have been freed

Stopping Call progress until all tasks are completed and then freed

Starting

This state cannot be reached.

Running

In this state, it is expected that the application will:

Allocate and submit tasks
Call progress to complete tasks and/or receive events

Allowed operations in this state:

Allocate previously configured task
Submit an allocated task
Call stop

It is possible to reach this state as follows:

Previous State Transition Action

Idle Call start after configuration

Stopping

In this state, it is expected that the application will:

Call progress to complete all inflight tasks (tasks will complete with failure)
Free any completed tasks

Allowed operations in this state:

Call progress

It is possible to reach this state as follows:

215

•
•

Previous State Transition Action

Running Call progress and fatal error occurs

Running Call stop without freeing all tasks

14.4.1.1.7.8 DOCA Sync Event Tear Down

Multiple SE handles (for different execution units) associated with the same DOCA SE instance can
live simultaneously, though the teardown flow is performed only from the CPU on the CPU handle.

Stopping DOCA Sync Event

To stop a DOCA SE:

Synchronous – call doca_sync_event_stop on the CPU handle
Asynchronous – stop the DOCA context associated with the DOCA SE instance

Destroying DOCA Sync Event

Once stopped, a DOCA SE instance can be destroyed by calling doca_sync_event_destroy on the
CPU handle.

Remote net CPU handle instance terminates and frees by calling
doca_sync_event_remote_net_destroy on the remote net CPU handle.

Upon destruction, all the internal resources are released, allocated memory is freed, associated
doca_ctx (if it exists) is destroyed, and any associated exported handles (other than CPU handles)
and their resources are destroyed.

14.4.1.1.7.9 Alternative Datapath Options

DOCA SE supports datapath on CPU (see section "Execution Phase") and also on DPA and GPU.

GPU Datapath

DOCA SE does not currently support GPU related features.

DPA Datapath

Once a DOCA SE DPA handle (doca_dpa_dev_sync_event_t) has been retrieved it can be used
within a DOCA DPA kernel as described in DOCA DPA Sync Event.

Users must validate active handles associated with the CPU handle during the teardown
flow because DOCA SE does not do that.

Stopping a DOCA SE must be followed by destruction. Refer to section "Destroying DOCA
Sync Event" for details.

An SE with DPA-subscriber configuration currently supports synchronous APIs only.

216

1.
•

•

2.

3.

4.

14.4.1.1.7.10 DOCA Sync Event Sample

This section provides DOCA SE sample implementation on top of the BlueField DPU.

The sample demonstrates how to share an SE between the host and the DPU while simultaneously
interacting with the event from both the host and DPU sides using different handles.

Running DOCA Sync Event Sample

Refer to the following documents:
NVIDIA DOCA Installation Guide for Linux for details on how to install BlueField-related
software.
NVIDIA DOCA Troubleshooting Guide for any issue you may encounter with the
installation, compilation, or execution of DOCA samples.

To build a given sample:

cd /opt/mellanox/doca/samples/doca_common/sync_event_<local|remote>_pci
meson /tmp/build
ninja -C /tmp/build

Sample usage:

Usage: doca_sync_event_remote_pci [DOCA Flags] [Program Flags]

DOCA Flags:
 -h, --help Print a help synopsis
 -v, --version Print program version information
 -l, --log-level Set the (numeric) log level for the program <10=DISABLE, 20=CRITICAL,
30=ERROR, 40=WARNING, 50=INFO, 60=DEBUG, 70=TRACE>
 --sdk-log-level Set the SDK (numeric) log level for the program <10=DISABLE, 20=CRITICA
L, 30=ERROR, 40=WARNING, 50=INFO, 60=DEBUG, 70=TRACE>
 -j, --json <path> Parse all command flags from an input json file

Program Flags:
 -d, --pci-addr Device PCI address
 -r, --rep-pci-addr DPU representor PCI address
 --async Start DOCA Sync Event in asynchronous mode (synchronous mode by default)
 --async_num_tasks Async num tasks for asynchronous mode
 --atomic Update DOCA Sync Event using Add operation (Set operation by default)

For additional information per sample, use the -h option:

/tmp/build/doca_sync_event_<local|remote>_pci -h

Samples

Sync Event Remote PCIe

The binary doca_sync_event_<local|remote>_pci is created under /tmp/build/ .

The flag --rep-pci-addr is relevant only for the DPU.

This sample should be run (on the DPU or on the host) before Sync Event Local PCIe.

217

1.
2.

3.
4.
5.
6.
7.

a.

b.

8.

•

•

•

1.
2.

3.
4.
5.
6.
7.

a.

This sample demonstrates creating an SE from an export which is associated with an SE on a local
PCIe (host or the DPU) and interacting with the SE to achieve synchronization between the host and
DPU.

The sample logic includes:

Reading configuration files and saving their content into local buffers.
Locating and opening DOCA devices and DOCA representors (if running on the DPU) matching
the given PCIe addresses.
Initializing DOCA Comm Channel.
Receiving SE blob through Comm Channel.
Creating SE from export.
Starting the above SE in the requested operation mode (synchronous or asynchronous).
Interacting with the SE:

Waiting for signal from the host – synchronously or asynchronously (with busy wait
polling) according to user input.
Signaling the SE for the host – synchronously or asynchronously, using set or atomic
add, according to user input.

Cleaning all resources.

Reference:

/opt/mellanox/doca/samples/doca_common/sync_event_remote_pci/

sync_event_remote_pci_sample.c

/opt/mellanox/doca/samples/doca_common/sync_event_remote_pci/

sync_event_remote_pci_main.c

/opt/mellanox/doca/samples/doca_common/sync_event_remote_pci/meson.build

Sync Event Local PCIe

This sample demonstrates how to initialize a SE to be shared with a remote PCIe (host or the DPU)
how to export it to a remote PCIe, and how to interact with the SE to achieve synchronization
between the host and DPU.

The sample logic includes:

Reading configuration files and saving their content into local buffers.
Locating and opening DOCA devices and DOCA representors (if running on the DPU) matching
the given PCIe addresses.
Creating and configuring the SE to be shared with a remote PCIe.
Starting the above SE in the requested operation mode (synchronous or asynchronous).
Initializing DOCA Comm Channel.
Exporting the SE and sending it through the Comm Channel.
Interacting with the SE :

Signaling the SE for the remote PCIe – synchronously or asynchronously, using set or
atomic add, according to user input.

This sample should run (on the DPU or on the Host) only after Sync Event Remote PCIe has
been started.

218

b.

8.

•

•

•

•
•
•

•

Waiting for a signal – synchronously or asynchronously, with busy wait polling,
according to user input.

Cleaning all resources.

Reference:

/opt/mellanox/doca/samples/doca_common/sync_event_local_pci/

sync_event_local_pci_sample.c

/opt/mellanox/doca/samples/doca_common/sync_event_local_pci/

sync_event_local_pci_main.c

/opt/mellanox/doca/samples/doca_common/sync_event_local_pci/meson.build

14.4.1.1.8 Mmap Advise

14.4.1.1.8.1 Introduction

DOCA Mmap Advise is used to give advanced memory-related instructions to NVIDIA® BlueField®
DPUs in order to improve system or application performance.

The operations in the instructions are meant to influence the performance of the application, but
not its semantics. The operations allow an application to inform the NIC how it expects it to use
some mapped memory areas, so the BlueField's hardware can choose appropriate optimization
techniques.

14.4.1.1.8.2 Prerequisites

DOCA Mmap Advise is a context and follows the architecture of a DOCA Core Context, it is
recommended to read the following sections of the DOCA Core page before proceeding:

DOCA Core Execution Model
DOCA Core Device
DOCA Core Memory Subsystem

14.4.1.1.8.3 Architecture

DOCA Mmap Advise is a DOCA Context as defined by DOCA Core. See DOCA Core Context for more
information.

DOCA Mmap Advise currently supports the following list of advised operations:

Cache Invalidate Operation

Cache Invalidate Operation

When data is processed by BlueField's cores it may be temporarily stored in the cores' system-level
cache (i.e., L3 cache). When a cache line is occupied and new data must be written to it, the cache
management sub-system evicts the existing data, usually based on LRU policy, by performing a
write-back operation to store this data in the main (DDR) memory. When this data is not required to

To use DOCA Mmap Advise with BlueField, the device must be configured to work in DPU
mode as described in NVIDIA BlueField Modes of Operation.

219

•

be stored in the BlueField's memory (e.g., it is host data and is no longer needed after it is copied
to the host's memory), the cache's write-back operation wastes memory bandwidth that reduces
overall system performance, which is undesirable. The simplest to avoid this write-back operation is
to mark the appropriate cache lines as "invalid". This enables their immediate reuse, without
additional operations.

The cache invalidate operation facilitates invalidating a set of cache lines.

14.4.1.1.8.4 Environment

Applications based on DOCA Mmap Advise can run on the BlueField target.

Objects

Device and Device Representor

The MMAP Advise context requires a DOCA Device to operate. The device is used to access memory
and perform the copy operation. See DOCA Core Device Discovery.

Memory Buffers

The cache invalidate task requires one DOCA Buffer containing the address space to invalidate
depending on the allocation pattern of the buffers (refer to the table in section "Inventory Types").
To find what kind of memory is supported, refer to the table in section "Buffer Support".

Buffers must not be modified or read during the cache invalidate operation.

14.4.1.1.8.5 Configuration Phase

To start using the context, users must go through a configuration phase as described in DOCA Core
Context Configuration Phase.

This section describes how to configure and start the context, to allow execution of tasks and
retrieval of events.

Configurations

The context can be configured to match the application's use case.

To find if a configuration is supported, or what the min/max value for it is, refer to section "Device
Support".

Mandatory Configurations

These configurations are mandatory and must be set by the application before attempting to start
the context:

At least one task/event type must be configured. See configuration of tasks and/or events in
sections "Tasks" and "Events" respectively for information.

For the same DPU, it does not matter which device is used (i.e., PF, VF, SF) as all these
devices utilize the same hardware components.

The device must stay valid for as long as the MMAP Advise instance is not destroyed.

https://confluence.nvidia.com/display/docadev/.DOCA+DMA+v2.8.0#id-.DOCADMAv2.8.0-BufferSupport

220

•

•

•

A device with appropriate support must be provided upon creation

Device Support

DOCA Mmap Advise requires a device to operate. To pick a device, refer to DOCA Core Device
Discovery.

As device capabilities may change (see DOCA Core Device Support), it is recommended to select
your device using the following method:

doca_mmap_advise_cap_task_cache_invalidate_is_supported

Some devices expose different capabilities as follows:

Maximum cache invalidate buffer size may differ.

Buffer Support

Tasks support buffers with the following features:

Buffer Type Buffer

Local mmap buffer Yes

MMAP from PCIe export buffer No

MMAP from RDMA export buffer No

Linked list buffer No

14.4.1.1.8.6 Execution Phase

This section describes execution on the CPU using DOCA Core Progress Engine.

Tasks

DOCA Mmap Advise exposes asynchronous tasks that leverage DPU hardware according to the DOCA
Core architecture. See DOCA Core Task for information.

Cache Invalidate Task

The cache invalidate task facilitates invalidating a set of cache lines, preventing them from being
written back to the RAM (thus increasing performance).

Task Configuration

Description API to Set the Configuration API to Query Support

Enable the task doca_mmap_advise_task_invalida

te_cache_set_conf

doca_mmap_advise_cap_task_cache

_invalidate_is_supported

Number of tasks doca_mmap_advise_task_invalida

te_cache_set_conf

–

Maximal buffer size – doca_mmap_advise_task_cache_inv

alidate_get_max_buf_size

Maximal buffer list size – –

221

•

•
•

•
•
•

•
•

•
•

Task Input

Common input as described in DOCA Core Task.

Name Description

buffer Buffer that points to the memory to be invalidated

Task Output

Common output as described in DOCA Core Task.

Task Completion Success

After the task is completed successfully:

The cache is invalidated

Task Completion Failure

If the task fails midway:

The context may enter stopping state, if a fatal error occurs
The cache is not invalidated

Task Limitations

The operation is not atomic
Once the task has been submitted, the buffer should not be read/written to
Other limitations are described in DOCA Core Task

Events

DOCA Mmap Advise exposes asynchronous events to notify on changes that happen unexpectedly,
according to DOCA Core architecture.

The only events DOCA Mmap Advise exposes are common events as described in DOCA Core Event.

14.4.1.1.8.7 State Machine

DOCA Mmap Advise context follows the context state machine as described in DOCA Core Context
State Machine.

The following section describes how to move states and what is allowed in each state.

Idle

In this state it is expected that the application:

Destroys the context
Starts the context

Allowed operations:

Configuring the context according to section "Configurations"
Starting the context

It is possible to reach this state as follows:

222

•
•

•
•
•

•
•

•

Previous State Transition Action

None Create the context

Running Call stop after making sure all tasks have been freed

Stopping Call progress until all tasks are completed and freed

Starting

This state cannot be reached.

Running

In this state, it is expected that the application:

Allocates and submits tasks
Calls progress to complete tasks and/or receive events

Allowed operations:

Allocating a previously configured task
Submitting a task
Calling stop

It is possible to reach this state as follows:

Previous State Transition Action

Idle Call start after configuration

Stopping

In this state it is expected that the application:

Calls progress to complete all in-flight tasks (tasks complete with failure)
Frees any completed tasks

Allowed operations:

Call progress

It is possible to reach this state as follows:

Previous State Transition Action

Running Call progress and fatal error occurs

Running Call stop without freeing all tasks

14.4.1.1.8.8 Alternative Datapath Options

DOCA Mmap Advise only supports datapath on the CPU. See section "Execution Phase".

14.4.1.1.8.9 Samples

Cache Invalidate Sample

223

1.
2.
3.
4.
5.
6.
7.
8.

a.

b.
9.

10.

•

•

•

The sample illustrates how to invalidate the cache for a memory range after copying it using DOCA
DMA.

The sample logic includes:

Locating DOCA device.
Initializing needed DOCA core structures.
Populating DOCA memory map with two relevant buffers.
Allocating element in DOCA buffer inventory for each buffer.
Initializing DOCA DMA memory copy task object.
Initializing DOCA Mmap Advise cache invalidate task object
Submitting DMA task.
Polling for completion:

Handling DMA task completion – submitting the cache invalidate task in the DMA task
completion callback body.
Handling cache invalidate task completion.

Polling for completion.
Destroying DMA, DOCA MMAP Advise, and DOCA Core objects.

Reference:

/opt/mellanox/doca/samples/doca_common/cache_invalidate/

cache_invalidate_sample.c

/opt/mellanox/doca/samples/doca_common/cache_invalidate/

cache_invalidate_main.c

/opt/mellanox/doca/samples/doca_common/cache_invalidate/meson.build

14.4.1.2 DOCA Log
DOCA logging infrastructure allows printing DOCA SDK library error messages, and printing debug and
error messages from applications.

To work with the DOCA logging mechanism, the header file doca_log.h must be included in every
source code using it.

14.4.1.2.1 Log Verbosity Level Enumerations

The following verbosity levels are supported by the DOCA logging:

enum doca_log_level {
 DOCA_LOG_LEVEL_DISABLE = 10, /**< Disable log messages */
 DOCA_LOG_LEVEL_CRIT = 20, /**< Critical log level */
 DOCA_LOG_LEVEL_ERROR = 30, /**< Error log level */
 DOCA_LOG_LEVEL_WARNING = 40, /**< Warning log level */
 DOCA_LOG_LEVEL_INFO = 50, /**< Info log level */
 DOCA_LOG_LEVEL_DEBUG = 60, /**< Debug log level */
 DOCA_LOG_LEVEL_TRACE = 70, /**< Trace log level */
};

See doca_log.h for more information.

The DOCA_LOG_LEVEL_TRACE verbosity level is available only if the macro

DOCA_LOGGING_ALLOW_TRACE is set before the compilation.

224

•
•

•

•

•

•

•

•

•

•

14.4.1.2.2 Logging Backends

DOCA's logging backend is the target to which log messages are directed.

The following backend types are supported:

FILE * – file stream which can be any open file or stdout/stderr
file descriptor – any file descriptor that the system supports, including (but not limited to)
raw files, sockets, and pipes
buf – memory buffer (address and size) that can hold a single message and a callback to be
called for every logged message
syslog – system standard logging

Every logger is created with the following default lower and upper verbosity levels:

Lower level – DOCA_LOG_LEVEL_INFO

Upper level – DOCA_LOG_LEVEL_CRIT

SDK and application logging have different default configuration values and can be controlled
separately using the appropriate API.

Every message is printed to every created backend if its verbosity level allows it.

14.4.1.2.3 Enabling DOCA SDK Libraries Logging

The DOCA SDK libraries print debug and error messages to all the backends created using the
following functions:

doca_log_backend_create_with_file_sdk()

doca_log_backend_create_with_fd_sdk()

doca_log_backend_create_with_buf_sdk()

doca_log_backend_create_with_syslog_sdk()

A newly created SDK backend verbosity level is set to the SDK global verbosity level value. This
value can be changed using doca_log_level_set_global_sdk_limit() .

doca_log_level_set_global_sdk_limit() sets the verbosity level for all existing SDK backends
and sets the SDK global verbosity level.

doca_log_backend_set_sdk_level() sets the verbosity level of a specific SDK backend.

doca_log_level_get_global_sdk_limit() gets the SDK global verbosity level.

14.4.1.2.4 Enabling DOCA Application Logging

Any source code that uses DOCA can use DOCA logging infrastructure.

Every debug and error messages is printed to all backends created using the following functions:

Messages may change between different versions of DOCA. Users cannot rely on message
permanence or formatting.

225

•

•

•

•

•

•

•

•

•

•

•

•

doca_log_backend_create_with_file()

doca_log_backend_create_with_fd()

doca_log_backend_create_with_buf()

doca_log_backend_create_with_syslog()

The lower and upper levels of a newly created backend are set to the default values. Those values
can be changed using doca_log_backend_set_level_lower_limit() and

doca_log_backend_set_level_upper_limit() .

doca_log_backend_create_standard() creates a default non-configurable set of two backends:

stdout prints the range from a global minimum level up to DOCA_LOG_LEVEL_INFO

stderr prints the range from DOCA_LOG_LEVEL_WARNING level up to DOCA_LOG_LEVEL_CRIT

doca_log_backend_set_level_lower_limit_strict() marks the lower log level limit of a
backend as strict, preventing it from being lowered by future log level changes. It is both global and
direct.

doca_log_backend_set_level_upper_limit_strict() marks the upper log level limit of a
backend as strict, preventing it from being raised by future log level changes. It is both global and
direct.

doca_log_level_set_global_lower_limit() sets the lower limit for all existing backends not
marked as strict and sets the global application lower limit.

doca_log_level_set_global_upper_limit() sets the upper limit for all existing backends not
marked as strict and sets the global application upper limit.

14.4.1.2.5 Logging DOCA Application Messages

To use the DOCA logging infrastructure with your source code to log its messages, users must call, at
the beginning of the file, the macro DOCA_LOG_REGISTER(source) just before using the DOCA
logging functionality. This macro handles the registration and the teardown from the DOCA logging.

Printing a message can be done by calling one of the following macros (with the same usage as
printf()):

DOCA_LOG_CRIT(format, ...)

DOCA_LOG_ERR(format, ...)

DOCA_LOG_WARN(format, ...)

DOCA_LOG_INFO(format, ...)

DOCA_LOG_DBG(format, ...)

DOCA_LOG_TRC(format, ...)

The message is printed to all the application's backends with configured lower and upper logging
limits.

226

•
•
•
•
•

•
•
•
•
•
•
•

•
•

•
•
•
•

14.4.2 DOCA Flow
This guide describes how to deploy the DOCA Flow library, the philosophy of the DOCA Flow API, and
how to use it. The guide is intended for developers writing network function applications that focus
on packet processing (such as gateways). It assumes familiarity with the network stack and DPDK.

14.4.2.1 Introduction
DOCA Flow is the most fundamental API for building generic packet processing pipes in
hardware. The DOCA Flow library provides an API for building a set of pipes, where each pipe
consists of match criteria, monitoring, and a set of actions. Pipes can be chained so that after a
pipe-defined action is executed, the packet may proceed to another pipe.

Using DOCA Flow API, it is easy to develop hardware-accelerated applications that have a match on
up to two layers of packets (tunneled).

MAC/VLAN/ETHERTYPE
IPv4/IPv6
TCP/UDP/ICMP
GRE/VXLAN/GTP-U/ESP/PSP
Metadata

The execution pipe can include packet modification actions such as the following:

Modify MAC address
Modify IP address
Modify L4 (ports)
Strip tunnel
Add tunnel
Set metadata
Encrypt/Decrypt

The execution pipe can also have monitoring actions such as the following:

Count
Policers

The pipe also has a forwarding target which can be any of the following:

Software (RSS to subset of queues)
Port
Another pipe
Drop packets

14.4.2.2 Prerequisites
A DOCA Flow-based application can run either on the host machine or on an NVIDIA® BlueField® DPU
target. Flow-based programs require an allocation of huge pages, hence the following commands
are required:

227

•
•

echo '1024' | sudo tee -a /sys/kernel/mm/hugepages/hugepages-2048kB/nr_hugepages
sudo mkdir /mnt/huge
sudo mount -t hugetlbfs nodev /mnt/huge

14.4.2.3 Architecture
The following diagram shows how the DOCA Flow library defines a pipe template, receives a packet
for processing, creates the pipe entry, and offloads the flow rule in NIC hardware.

Features of DOCA Flow:

User-defined set of matches parser and actions
DOCA Flow pipes can be created or destroyed dynamically

On some operating systems (RockyLinux, OpenEuler, CentOS 8.2) the default huge page size
on the DPU (and Arm hosts) is larger than 2MB, often 512MB. Users can check the size of the
huge pages on their OS using the following command:

$ grep -i huge /proc/meminfo

AnonHugePages: 0 kB
ShmemHugePages: 0 kB
FileHugePages: 0 kB
HugePages_Total: 4
HugePages_Free: 4
HugePages_Rsvd: 0
HugePages_Surp: 0
Hugepagesize: 524288 kB
Hugetlb: 6291456 kB

In this case, instead of allocating 1024 pages, users should only allocate 4:

echo '4' | sudo tee -a /sys/kernel/mm/hugepages/hugepages-524288kB/nr_hugepages

228

•
•

•
•
•

•
•
•
•
•

•
•

•

•

•
•

•

•

•
•
•

•
•

•

•

Packet processing is fully accelerated by hardware with a specific entry in a flow pipe
Packets that do not match any of the pipe entries in hardware can be sent to Arm cores for
exception handling and then reinjected back to hardware

The DOCA Flow pipe consists of the following components:

Monitor (MON in the diagram) - counts, meters, or mirrors
Modify (MDF in the diagram) - modifies a field
Forward (FWD in the diagram) - forwards to the next stage in packet processing

14.4.2.4 Steering Domains
DOCA Flow organizes pipes into high-level containers named domains to address the specific needs
of the underlying architecture.

A key element in defining a domain is the packet direction and a set of allowed actions.

A domain is a pipe attribute (also relates to shared objects)
A domain restricts the set of allowed actions
Transition between domains is well-defined (packets cannot cross domains arbitrarily)
A domain may restrict the sharing of objects between packet directions
Packet direction can restrict the move between domains

14.4.2.4.1 List of Steering Domains

DOCA Flow provides the following set of predefined steering domains:

Domain Description

DOCA_FLOW_PIPE_DOMAIN_DEFAULT Default domain for actions on ingress traffic
Encapsulated and secure actions are not allowed
here
The next milestone is queue or pipe in the EGRESS
domain
Miss action is: Drop

DOCA_FLOW_PIPE_DOMAIN_SECURE_INGRESS For secure actions on ingress traffic
Encapsulation and encrypting actions not allowed
here
The only allowed domain for decrypting secure
actions
The next milestone is queue or pipe in the DEFAULT
or EGRESS domain
Only meta register is preserved
Miss action is: Drop
Memory may be optimized if set with
DOCA_FLOW_DIRECTION_NETWORK_TO_HOST
direction information

DOCA_FLOW_PIPE_DOMAIN_EGRESS Domain for actions on egress traffic
Decapsulation and secure actions are not allowed
here
The next milestone is wire/representor or pipe in
SECURE_EGRESS domain
Miss action is: Send to wire/representor

229

•
•
•

•
•
•

Domain Description

DOCA_FLOW_PIPE_DOMAIN_SECURE_EGRESS Domain for secure actions on egress traffic
Decapsulation actions are not allowed here
The only allowed domain for encrypting secure
action
The next milestone is wire/representor
Miss action is: Send to wire/representor
Memory may be optimized if set with
DOCA_FLOW_DIRECTION_HOST_TO_NETWORK
direction information

14.4.2.4.2 Domains in VNF Mode

230

14.4.2.4.3 Domains in Switch Mode

14.4.2.5 API
DOCA API is available through the NVIDIA DOCA Library APIs page.

14.4.2.6 Flow Life Cycle

14.4.2.6.1 Initialization Flow

Before using any DOCA Flow function, it is mandatory to call DOCA Flow
initialization, doca_flow_init() , which initializes all resources required by DOCA Flow.

The pkg-config (*.pc file) for the DOCA Flow library is doca-flow .

231

•

•

14.4.2.6.1.1 Pipe Mode

This mode (mode_args) defines the basic traffic in DOCA. It creates some miss rules when a DOCA
port initializes. Currently, DOCA supports 3 modes:

vnf
A packet arriving from one of the device's ports is processed, and can be sent to another port.
By default, missed packets go to RSS.
The following diagram shows the basic traffic flow in vnf mode. Packet1 firstly misses and is
forwarded to host RSS. The app captures this packet and decides how to process it and then
creates a pipe entry. Packet2 will hit this pipe entry and do the action, for example, for
VXLAN, will do decap, modify, and encap, then is sent out from P1.

switch
Used for internal switching, only representor ports are allowed, for example, uplink
representors and SF/VF representors. Packet is forwarded from one port to another. If a
packet arrives from an uplink and does not hit the rules defined by the user's pipe, then the
packet is received on all RSS queues of the representor of the uplink.
The following diagram shows the basic flow of traffic in switch mode. Packet1 firstly misses
to host RSS queues. The app captures this packet and decides to which representor the
packet goes, and then sets the rule. Packets hit this rule and go to representor0.

232

•

doca_dev field is mandatory in doca_flow_port_cfg (using

doca_flow_port_cfg_set_dev()) and isolated mode should be specified.

DOCA Flow switch mode unifies all the ports to the switch manager port for traffic
management. This means that all the traffic is handled by switch manager port. Users only
have to create an RSS pipe on the switch manager port to get the missed traffic, and they
should only manage the pipes on the switch manager port. Switch mode can work with two
different mode_args configurations: With or without expert . The way to retrieve the miss

traffic source's port_id depends on this configuration:

If expert is not set, the traffic misses to software would be tagged with port_id

information in the mbuf CQE field to allow users to deduce the source port_id .

Meanwhile, users can set the destination port_id to mbuf meta and the packet is
sent out directly to the destination port based on the meta information.

The application must avoid initialization of the VF/SF representor ports in DPDK API
(i.e., the following functions rte_eth_dev_configure() ,

rte_eth_rx_queue_setup() , rte_eth_dev_start() must not be called for VF/SF
representor ports).

Only one RSS pipe is supported in switch mode, users can add multiple RSS pipe
entries to that RSS pipe. Traffic missed from the user's pipe without a specified
fwd_miss target is sent to the kernel if it is isolated mode, or sent to DOCA

application (bypassing the kernel) if it is non-isolated (default) mode.

Please refer to the "Flow Switch to Wire" sample to get more information
regarding the port_id management with missed traffic mbuf.

233

•

•

If expert is set, the port_id is not added to the packet. Users can configure the
pipes freely to implement their own solution.

remote-vnf
Remote mode is a BlueField mode only, with two physical ports (uplinks). Users must
use doca_flow_port_pair to pair one physical port and one of its representors. A packet
from this uplink, if it does not hit any rules from the users, is firstly received on this
representor. Users must also use doca_flow_port_pair to pair two physical uplinks. If a
packet is received from one uplink and hits the rule whose FWD action is to another uplink,
then the packets are sent out from it.
The following diagram shows the basic traffic flow in remote-vnf mode. Packet1, from
BlueField uplink P0, firstly misses to host VF0. The app captures this packet and decides
whether to drop it or forward it to another uplink (P1). Then, using gRPC to set rules on P0,
packet2 hits the rule, then is either dropped or is sent out from P1.

Traffic cloned from the VF to the RSS pipe misses its port_id information
due to firmware limitation.

234

14.4.2.6.2 Start Point

DOCA Flow API serves as an abstraction layer API for network acceleration. The packet processing in-
network function is described from ingress to egress and, therefore, a pipe must be attached to the
origin port. Once a packet arrives to the ingress port, it starts the hardware execution as defined by
the DOCA API.

doca_flow_port is an opaque object since the DOCA Flow API is not bound to a specific packet
delivery API, such as DPDK. The first step is to start the DOCA Flow port by
calling doca_flow_port_start() . The purpose of this step is to attach user application ports to
the DOCA Flow ports.

When DPDK is used, the following configuration must be provided:

enum doca_flow_port_type type = DOCA_FLOW_PORT_DPDK_BY_ID;

const char *devargs = "1";

The devargs parameter points to a string that has the numeric value of the DPDK port_id in
decimal format. The port must be configured and started before calling this API. Mapping the DPDK
port to the DOCA port is required to synchronize application ports with hardware ports.

14.4.2.6.3 Port Operation State

DOCA Flow ports can be initialized multiple times from different instances. Each instance prepares
its pipeline, but only one actively receives port traffic at a time. The instance actively handling the

235

•

•

•

•

1.

2.

3.
4.

5.
6.

7.

port traffic depends on the operation state set by the
doca_flow_port_cfg_set_operation_state() function:

DOCA_FLOW_PORT_OPERATION_STATE_ACTIVE – The instance actively handles incoming and
outgoing traffic
DOCA_FLOW_PORT_OPERATION_STATE_ACTIVE_READY_TO_SWAP – The instance handles traffic
actively when no other active instance is available
DOCA_FLOW_PORT_OPERATION_STATE_STANDBY – The instance handles traffic only when no

active or active_ready_to_swap instance is available

DOCA_FLOW_PORT_OPERATION_STATE_UNCONNECTED – The instance does not handle traffic,
regardless of the state of other instances

If the doca_flow_port_cfg_set_operation_state() function is not called, the default state

DOCA_FLOW_PORT_OPERATION_STATE_ACTIVE is applied.

When the active port is closed, either gracefully or due to a crash, the standby instance
automatically becomes active without any action required.

The port operation state can be modified after the port is started using the
doca_flow_port_operation_state_modify() function.

14.4.2.6.3.1 Use Case Examples

Hot Upgrade

This operation state mechanism allows upgrading the DOCA Flow program without losing any traffic.

To upgrade an existing DOCA Flow program with ports started in
DOCA_FLOW_PORT_OPERATION_STATE_ACTIVE state (Instance A):

Open a new Instance B and start its ports in DOCA_FLOW_PORT_OPERATION_STATE_STANDBY
state.
Modify Instance A's ports from DOCA_FLOW_PORT_OPERATION_STATE_ACTIVE to

DOCA_FLOW_PORT_OPERATION_STATE_UNCONNECTED state. At this point, Instance B starts
receiving traffic.
Close Instance A.
Open a new Instance C with DOCA_FLOW_PORT_OPERATION_STATE_UNCONNECTED state.
Instance C is the upgraded version of Instance A.
Create the entire pipeline for Instance C.
Change Instance C's state from DOCA_FLOW_PORT_OPERATION_STATE_UNCONNECTED to

DOCA_FLOW_PORT_OPERATION_STATE_ACTIVE . At this point, Instance B stops receiving traffic
and Instance C starts.
Instance B can either be closed or kept as a backup should Instance C crash.

Swap Existing Instances

When a port is configured with a state that expects to handle traffic, it takes effect only
after root pipes are created for this port.

236

1.

2.

3.

•
•

•

•
•
•
•

This mechanism also facilitates swapping two different DOCA Flow programs without losing any
traffic.

To swap between two existing DOCA Flow programs with ports started in
DOCA_FLOW_PORT_OPERATION_STATE_ACTIVE and DOCA_FLOW_PORT_OPERATION_STATE_STANDBY
states (Instance A and Instance B, respectively):

Modify Instance A's ports from DOCA_FLOW_PORT_OPERATION_STATE_ACTIVE to

DOCA_FLOW_PORT_OPERATION_STATE_ACTIVE_READY_TO_SWAP .

Modify Instance B's ports from DOCA_FLOW_PORT_OPERATION_STATE_STANDBY to

DOCA_FLOW_PORT_OPERATION_STATE_ACTIVE . At this point, Instance B starts receiving
traffic.
Modify Instance A's ports from DOCA_FLOW_PORT_OPERATION_STATE_ACTIVE_READY_TO_SWAP

to DOCA_FLOW_PORT_OPERATION_STATE_STANDBY .

14.4.2.6.3.2 Limitations
Supported only in switch mode – the mode_args string must include "switch" .
Only the switch port supports states; its representors are affected by its state. Starting a
representor port or calling the modify function with a non-active operation state should fail.
Two instances cannot be in the same operation state simultaneously, except for
DOCA_FLOW_PORT_OPERATION_STATE_UNCONNECTED .

14.4.2.6.4 Create Pipe and Pipe Entry

Pipe is a template that defines packet processing without adding any specific hardware rule. A pipe
consists of a template that includes the following elements:

Match
Monitor
Actions
Forward

The following diagram illustrates a pipe structure.

237

•
•

•
•
•

The creation phase allows the hardware to efficiently build the execution pipe. After the pipe is
created, specific entries can be added. A subset of the pipe may be used (e.g., skipping the monitor
completely, just using the counter, etc).

14.4.2.6.4.1 Pipe Matching or Action Applying

DOCA Flow allows defining criteria for matching on a packet or for taking actions on a matched
packet by modifying it. The information defining these criteria is provided through the following
pointers:

Match or action pointer – given at pipe or entry creation
Mask pointer – optionally given at pipe creation

Defining criteria for matching or actions on a packet can be done at the pipe level, where it applies
to all packets of a pipe, or specified on a per entry basis, where each entry defines the operation on
either the match, actions, or both.

In DOCA Flow terminology, when a field is identified as CHANGEABLE at pipe creation, this means
that the actual criterion of the field is deferred to entry creation. Different entries can provide
different criteria for a CHANGEABLE field.

A match or action field can be categorized, during pipe creation, as one of the following:

IGNORED – Ignored in either the match or action taking process
CHANGEABLE – When the actual behavior is deferred to the entry creation stage
SPECIFIC – Value is used as is in either match or action process

A mask field can either be provided, in which case it is called it explicit matching, or action
applying. If the mask pointer is NULL, we call it implicit matching or action applying. The following
subsections provide the logic governing matching and action applying.

When a field value is specified as 0xffff it means that all the field's bits are set (e.g., for TTL it

means 0xff and for IPv4 address it means 0xffffffff).

Matching

Matching is the process of selecting packets based on their fields' values and steering them for
further processing. Processing can either be further matching or actions applying.

The packet enters the green filter which modifies it by masking it with the value A. The output
value, P&A, is then compared to the value B, and if they are equal, then that is a match.

The values of A and B are evaluated according to the values of the pipe configuration and entry
configuration fields, according to the tables in sections "Implicit matching" and "Explicit matching".

Implicit Matching

238

•
•
•
•

Match Type Pipe Match
Value (V)

Pipe Match
Mask (M)

Entry Match
Value (E)

Filter (A) Rule (B)

Ignore 0 NULL N/A 0 0

Constant 0<V<0xffff NULL N/A 0xffff V

Changeable (per
entry)

0xffff NULL 0≤E≤0xffff 0xffff E

Explicit Matching

Match Type Pipe Match
Value (V)

Pipe Match Mask
(M)

Entry Match
Value (E)

Filter (A) Rule (B)

Constant V!=0xffff 0<M≤0xffff 0≤E≤0xffff M M&V

Changeable V==0xffff 0<M≤0xffff 0≤E≤0xffff M M&E

Ignored 0≤V<0xffff M==0 0≤E≤0xffff 0 0

Action Applying

Implicit Action Applying

Action Type Pipe Action value
(V)

Pipe Action Mask
(M)

Entry Action value
(E)

Action on the
field

Ignore 0 NULL N/A none

Constant 0 < V < 0xffff NULL N/A set to V

Changeable 0xffff NULL E set to E

Implicit action applying example:

Destination IPv4 address is 255.255.255.255
No mask provided
Entry value is 192.168.0.1
Result – The action field is changeable. Therefore, the value is provided by the entry. If a
match on the packet occurs, the packet destination IPv4 address is changed to 192.168.0.1.

Explicit Action Applying

Action Type Pipe Action
value (V)

Pipe Action
Mask (M)

Entry Action
value (E)

Action on the field

constant V!=0xffff 0≤M≤0xffff 0≤E≤0xffff set to (~M & P) | (M & V)
In words: modify only bits
that are set on the mask to
the values in V

Changeable V==0xffff 0<M≤0xffff 0≤E≤0xffff set to (~M & P) | (M & E)

Ignored 0≤V<0xffff M==0 0≤E≤0xffff none

Assume P is packet's field value.

239

•
•
•
•

•

•

•

•
•
•
•

Explicit action applying example:

Destination IPv4 address is 192.168.10.1
Mask is provided and equals 255.255.0.0
Entry value is ignored
Result – If a match on the packet occurs, the packet destination IPv4 value changes to
192.168.0.0.

14.4.2.6.4.2 Setting Pipe Match or Action

Match is a mandatory parameter when creating a pipe. Using the doca_flow_match struct, users
must define the packet fields to be matched by the pipe.

For each doca_flow_match field, users select whether the field type is:

Ignore (match any) – the value of the field is ignored in a packet. In other words, match on
any value of the field.
Constant (specific) – all entries in the pipe have the same value for this field. Users should
not put a value for each entry.
Changeable – the value of the field is defined per entry. Users must provide it upon adding an
entry.

The match field type can be defined either implicitly or explicitly using the
doca_flow_pipe_cfg_set_match(struct doca_flow_pipe_cfg *cfg, const doca_flow_match

*match, const doca_flow_match *match_mask) function. If match_mask == NULL , then it is
done implicitly. Otherwise, it is explicit.

In the tables in the following subsections, an example is used of a 16-bit field (such as layer-4
destination port) where:

P stands for the packet field value
V stands for the pipe match field value
M stands for the pipe mask field value
E stands for the match entry field value

Implicit Match

Match Type Pipe Match
Value (V)

Pipe Match
Mask (M)

Entry Match
Value (E)

Filter (A) Rule (B)

Ignore 0 NULL N/A 0 0

Constant 0<V<0xffff NULL N/A 0xffff V

Changeable (per
entry)

0xffff NULL 0≤E≤0xffff 0xffff E

L4 type, L3 type, and tunnel type cannot be changeable.

 The same concept would apply to any other field (such as an IP address occupying 32 bits).

240

•
•
•

•

•

•
•

•
•
•
•
•
•
•

•
•
•
•
•
•

To match implicitly, the following considerations should be taken into account.

Ignored fields:
Field is zeroed
Pipeline has no comparison on the field

Constant fields – These are fields that have a constant value among all entries. For example,
as shown in the following, the tunnel type is VXLAN:

match.tun.type = DOCA_FLOW_TUN_VXLAN;

These fields must only be configured once at pipe build stage, not once per new pipeline
entry.
Changeable fields – These are fields whose value may change per entry. For example, the
following shows match on a destination IPv4 address of variable per-entry value (outer 5-
tuple):

match.outer.ip4.dst_ip = 0xffffffff;

The following is an example of a match, where:
Outer 5-tuple

L3 type is IPv4 – constant among entries by design
L4 type is UDP – constant among entries by design
Tunnel type is DOCA_FLOW_TUN_VXLAN – constant among entries by design
IPv4 destination address varies per entry
UDP destination port is always DOCA_VXLAN_DEFAULT_PORT
VXLAN tunnel ID varies per entry
The rest of the packet fields are ignored

Inner 5-tuple
L3 type is IPv4 – constant among entries by design
L4 type is TCP – constant among entries by design
IPv4 source and destination addresses vary per entry
TCP source and destination ports vary per entry
The rest of the packet fields are ignored

// filter creation
static void build_underlay_overlay_match(struct doca_flow_match *match)
{
 //outer
 match->outer.l3_type = DOCA_FLOW_L3_TYPE_IP4;
 match->outer.l4_type_ext = DOCA_FLOW_L4_TYPE_EXT_UDP;
 match->tun.type = DOCA_FLOW_TUN_VXLAN;
 match->outer.ip4.dst_ip = 0xffffffff;
 match->outer.udp.l4_port.dst_port = DOCA_VXLAN_DEFAULT_PORT;
 match->tun.vxlan_tun_id = 0xffffffff;

 //inner
 match->inner.l3_type = DOCA_FLOW_L3_TYPE_IP4;
 match->inner.l4_type_ext = DOCA_FLOW_L4_TYPE_EXT_TCP;
 match->inner.ip4.dst_ip = 0xffffffff;
 match->inner.ip4.src_ip = 0xffffffff;
 match->inner.tcp.l4_port.src_port = 0xffff;
 match->inner.tcp.l4_port.dst_port = 0xffff;
}

// create entry specifying specific values to match upon
doca_error_t add_entry(struct doca_flow_pipe *pipe, struct doca_flow_port *port,
 struct doca_flow_pipe_entry **entry)
{
 struct doca_flow_match match = {};
 struct entries_status status = {};
 doca_error_t result;

 match.outer.ip4.dst_ip = BE_IPV4_ADDR(7, 7, 7, 1);
 match.tun.vxlan_tun_id = RTE_BE32(9876);
 match.inner.ip4.src_ip = BE_IPV4_ADDR(8, 8, 8, 1);
 match.inner.ip4.dst_ip = BE_IPV4_ADDR(9, 9, 9, 1);

241

•
•

•

 match.inner.tcp.l4_port.src_port = rte_cpu_to_be_16(5678);
 match.inner.tcp.l4_port.dst_port = rte_cpu_to_be_16(1234);
 result = doca_flow_pipe_add_entry(0, pipe, &match, &actions, NULL, NULL, 0, &status, entry);
}

Explicit Match

Match Type Pipe Match
Value (V)

Pipe Match Mask
(M)

Entry Match
Value (E)

Filter (A) Rule (B)

Constant V!=0xffff 0<M≤0xffff 0≤E≤0xffff M M&V

Changeable V==0xffff 0<M≤0xffff 0≤E≤0xffff M M&E

Ignored 0≤V<0xffff M==0 0≤E≤0xffff 0 0

In this case, there are two doca_flow_match items, the following considerations should be
considered:

Ignored fields
M equals zero. This can be seen from the table where the rule equals 0. Since mask is
also 0, the resulting packet after the filter is0. Thus, the comparison always succeeds.

match_mask.inner.ip4.dst_ip = 0;

Constant fields
These are fields that have a constant value. For example, as shown in the following, the inner
5-tuple match on IPv4 destination addresses belonging to the 0.0.0.0/24 subnet, and this
match is constant among all entries:

// BE_IPV4_ADDR converts 4 numbers A,B,C,D to a big endian representation of IP address A.B.C.D
match.inner.ip4.dst_ip = 0;
match_mask.inner.ip4.dst_ip = BE_IPV4_ADDR(255, 255, 255, 0);

For example, as shown in the following, the inner 5-tuple match on IPv4 destination
addresses belonging to the 1.2.0.0/16 subnet, and this match is constant among all

entries. The last two octets of the match.inner.ip4.dst_ip are ignored because the

match_mask of 255.255.0.0 is applied:

// BE_IPV4_ADDR converts 4 numbers A,B,C,D to a big endian representation of IP address A.B.C.D
match.inner.ip4.dst_ip = BE_IPV4_ADDR(1, 2, 3, 4);
match_mask.inner.ip4.dst_ip = BE_IPV4_ADDR(255, 255, 0, 0);

Once a field is defined as constant, the field's value cannot be changed per entry.

A more complex example of constant matches may be achieved as follows:

match_mask.outer.tcp.l4_port.dst_port = rte_cpu_to_be_16(0xf0f0);

The fields of the doca_flow_meta struct inside the match are not subject to implicit
match rules and must be paired with explicit mask values.

Users should set constant fields to zero when adding entries for better code
readability.

242

•
•
•
•

•

•

•

•

•

match.outer.tcp.l4_port.dst_port = rte_cpu_to_be_16(0x5020)

The following ports would be matched:
0x5020 - 0x502f
0x5120 - 0x512f
...
0x5f20 - 0x5f2f

Changeable fields

The following example matches on either FTP or TELNET well known port numbers and forwards
packets to a server after modifying the destination IP address and destination port numbers. In the
example, either FTP or TELNET are forwarded to the same server. FTP is forwarded to port 8000 and
TELNET is forwarded to port 9000.

// at Pipe creation
pipe_cfg.attr.name = "PORT_MAPPER";
pipe_cfg.attr.type = DOCA_FLOW_PIPE_BASIC;
match.outer.tcp.l4_port.dst_port = rte_cpu_to_be_16(0xffff); // v
match_mask.outer.tcp.l4_port.dst_port = rte_cpu_to_be_16(0xffff); // M
pipe_cfg.match_mask = &match_mask;
pipe_cfg.match = &match;
actions_arr[0] = &actions;
pipe_cfg.actions = actions_arr;
pipe_cfg.attr.is_root = true;
pipe_cfg.attr.nb_actions = 1;

// Adding entries
// FTP
match.outer.tcp.l4_port.dst_port = rte_cpu_to_be_16(20); // E
actions.outer.ip4.src_ip = server_addr;
actions.outer.tcp.l4_port.dst_port = rte_cpu_to_be_16(8000);
result = doca_flow_pipe_add_entry(0, pipe, &match, &actions, NULL, NULL, 0, &status, entry);

// TELNET
match.outer.tcp.l4_port.dst_port = rte_cpu_to_be_16(23); // E
actions.outer.ip4.src_ip = server_addr;
actions.outer.tcp.l4_port.dst_port = rte_cpu_to_be_16(9000);
result = doca_flow_pipe_add_entry(0, pipe, &match, &actions, NULL, NULL, 0, &status, entry);

14.4.2.6.4.3 Relaxed Match

Relaxed matching is the default working mode in DOCA flow. However, it can be disabled per pipe
using the enable_strict_matching pipe attribute. This mode grants the user more control on
matching fields such that only explicitly set match fields by the user (either specific or changeable)
are matched by the pipe.

Consider the following strict matching mode example. There are three pipes:

Basic pipe A with match.outer.l4_type_ext = DOCA_FLOW_L4_TYPE_EXT_TCP;

and match.outer.tcp.flags = 1;

Basic pipe B with match.outer.l4_type_ext = DOCA_FLOW_L4_TYPE_EXT_UDP;

and match.outer.udp.l4_port.src_port = 8080;

Control pipe X with two entries to direct TCP traffic to pipe A and UDP to pipe B . The first

entry has match.outer.l4_type_ext = DOCA_FLOW_L4_TYPE_EXT_TCP; while the second

has match.outer.l4_type_ext = DOCA_FLOW_L4_TYPE_EXT_UDP; .

As a result, the hardware performs match on the L4 header type twice:

First, when the packet enters the filter in control pipe X to decide the next pipe

Second, when the packet enters the filter of pipe A or pipe B to do the match on L4 header
fields

243

•

•

•

•

•
•
•
•
•
•
•

•

•
•
•

With particularly large pipelines, such double matches decrease performance and increase the
memory footprint in hardware. Relaxed matching mode gives the user greater control of the match
to solve the performance problems.

In relaxed mode, type selectors in the outer , inner , and tun parts of the doca_flow_match
are used only for the type cast (or selectors) of the underlying unions. Header-type matches are
available using the parser_meta API.

Thus, the aforementioned scenario may be overwritten in the following manner. There are three
pipes:

Basic pipe A with match.outer.l4_type_ext = DOCA_FLOW_L4_TYPE_EXT_TCP;

and match.outer.tcp.flags = 1;

Basic pipe B with match.outer.l4_type_ext = DOCA_FLOW_L4_TYPE_EXT_UDP;

and match.outer.udp.l4_port.src_port = 8080;

Control pipe X with two entries to direct TCP traffic to pipe A and UDP to pipe B . The first

entry has match.parser_meta.outer_l4_type = DOCA_FLOW_L4_META_TCP; while the

second has match.parser_meta.outer_l4_type = DOCA_FLOW_L4_META_UDP; .

As a result, the hardware performs the L4 header-type match only once, when the packet enters the
filter of control pipe. Basic pipes' match.outer.l4_type_ext are used only for the selection of the

match.outer.tcp or match.outer.udp structures.

Example

The following code snippet is used to demonstrate relaxed matching mode:

// filter creation
static void build_underlay_overlay_match(struct doca_flow_match *match)
{
 //outer
 match->outer.l3_type = DOCA_FLOW_L3_TYPE_IP4;
 match->outer.l4_type_ext = DOCA_FLOW_L4_TYPE_EXT_UDP;
 match->tun.type = DOCA_FLOW_TUN_VXLAN;
 match->outer.ip4.dst_ip = 0xffffffff;
 match->outer.udp.l4_port.src_port = 22;
 match->tun.vxlan_tun_id = 0xffffffff;
}

This match code above is an example of a match where:

With relaxed matching disabled (i.e., enable_strict_matching attribute set to true), the
following hardware matches are performed:

L3 type is IPv4 – constant among entries by design
L4 type is UDP – constant among entries by design
Tunnel type is DOCA_FLOW_TUN_VXLAN – constant among entries by design
IPv4 destination address varies per entry
UDP source port is constant among entries
VXLAN tunnel ID varies per entry
The rest of the packet fields are ignored

With relaxed matching enabled (default mode), the following hardware matches are
performed:

IPv4 destination address varies per entry
UDP source port is constant among entries
VXLAN tunnel ID varies per entry

https://confluence.nvidia.com/pages/viewpage.action?spaceKey=doca250&title=NVIDIA+DOCA+Flow+Programming+Guide#NVIDIADOCAFlowProgrammingGuide-doca_flow_pipe_cfg

244

•

•

•

•
•
•
•
•
•
•
•

•

In summary, with relaxed matching L3, L4, tunnel protocol types, and similar no longer indicate a
match on the specific protocol. They are used solely as a selector for the relevant header fields. For
example, to match on outer.ip4.dst_ip , users must set outer.l3_type =

DOCA_FLOW_L3_TYPE_IP4 . That is, the L3 header is checked for the IPv4 destination address. There
is no check that it is of IPv4 type. It is user responsibility to make sure that packets arriving to such
a filter indeed have an L3 header of type IPv4 (same goes for L4 UDP header/VXLAN tunnel).

Protocols/Tunnels Type Match

The following section explains how to match on a protocol's and a tunnel's type with relaxed
matching.

To match on a specific protocol/tunnel type, consider the following:

To match on an inner/outer L3/L4 protocol type, one can use relevant
doca_flow_parser_meta fields (e.g., for outer protocols,

parser_meta.outer_l[3,4]_type fields can be used).
To match on a specific tunnel type (e.g., VXLAN/GRE and so on), users should match on a
tunnel according to its specification (e.g., for VXLAN, a match on UDP destination port 4789
can be used). Another option is to use the L3 next protocol field (e.g., for IPv4 with next
header GRE, one can match on the IPv4 header's next protocol field value to match GRE IP
protocol number 47).

Example

Using the aforementioned example, to add the match on the same L3,L4 protocol type and on a
VXLAN tunnel with relaxed matching enabled, the following function implementation should be
considered:

// filter creation
static void build_underlay_overlay_match(struct doca_flow_match *match)
{
 //outer
 match->parser_meta.outer_l3_type = DOCA_FLOW_L3_META_IPV4;
 match->parser_meta.outer_l4_type = DOCA_FLOW_L4_META_UDP;
 match->outer.l3_type = DOCA_FLOW_L3_TYPE_IP4;
 match->outer.l4_type_ext = DOCA_FLOW_L4_TYPE_EXT_UDP;
 match->tun.type = DOCA_FLOW_TUN_VXLAN;
 match->outer.ip4.dst_ip = 0xffffffff;
 match->outer.udp.l4_port.src_port = 22;
 match->outer.udp.l4_port.dst_port = DOCA_VXLAN_DEFAULT_PORT;
 match->tun.vxlan_tun_id = 0xffffffff;
}

The match code above is an example of a match, where:

With relaxed matching disabled (i.e., enable_strict_matching attribute set to true), the
following hardware matches are performed:

L3 type is IPv4 – constant among entries by design
L4 type is UDP – constant among entries by design
Tunnel type is DOCA_FLOW_TUN_VXLAN – constant among entries by design
IPv4 destination address varies per entry
UDP source port is always 22
UDP destination port is always DOCA_VXLAN_DEFAULT_PORT
VXLAN tunnel ID varies per entry
The rest of the packet fields are ignored

With relaxed matching enabled (default mode), the following hardware matches are
performed:

https://confluence.nvidia.com/display/doca250/NVIDIA+DOCA+Flow+Programming+Guide#NVIDIADOCAFlowProgrammingGuide-doca_flow_pipe_cfg

245

•
•
•
•
•
•

1.
2.
3.
4.
5.
6.
7.
8.
9.

•
•

•

L3 type is IPv4 – constant among entries by design
L4 type is UDP – constant among entries by design
IPv4 destination address varies per entry
UDP source port is always 22
UDP destination port is always DOCA_VXLAN_DEFAULT_PORT
VXLAN tunnel ID varies per entry

14.4.2.6.4.4 Setting Pipe Actions

Pipe Execution Order

When setting actions, they are executed in the following order:

Crypto (decryption)
Decapsulation
Pop
Meta
Outer
Tun
Push
Encapsulation
Crypto (encryption)

Auto-modification

Similarly to setting pipe match, actions also have a template definition.

Similarly to doca_flow_match in the creation phase, only the subset of actions that should be
executed per packet are defined. This is done in a similar way to match, namely by classifying a
field of doca_flow_match to one of the following:

Ignored field – field is zeroed, modify is not used.
Constant fields – when a field must be modified per packet, but the value is the same for all
packets, a one-time value on action definitions can be used
Changeable fields – fields that may have more than one possible value, and the exact values
are set by the user per entry

actions.outer.ip4.dst_ip = 0xffffffff

With relaxed matching, if any of the selectors is used without setting a relevant field, the
pipe/entry creation would fail with the following error message:

failed building active opcode - active opcode <opcode number> is protocol only

Modifying a field while simultaneously using it as a source for other modifications should be
avoided, as the sequence of modification actions cannot be guaranteed.

246

Explicit Modification Type

It is possible to force constant modification or per-entry modification with action mask. For
example:

static void
create_constant_modify_actions(struct doca_flow_actions *actions，
 struct doca_flow_actions *actions_mask,
 struct doca_flow_action_descs *descs)
{
 actions->outer.l4_type_ext = DOCA_FLOW_L4_TYPE_EXT_UDP;
 actions->outer.udp.src_port = 0x1234;
 actions_mask->outer.udp.src_port = 0xffff;
}

Copy Field

The action descriptor can be used to copy between the packet field and metadata. For example:

#define META_U32_BIT_OFFSET(idx) (offsetof(struct doca_flow_meta, u32[(idx)]) << 3)

static void
create_copy_packet_to_meta_actions(struct doca_flow_match *match，
 struct doca_flow_action_desc *desc)
{
 desc->type = DOCA_FLOW_ACTION_COPY;
 desc->field_op.src.field_string = "outer.ipv4.src_ip";
 desc->field_op.src.bit_offset = 0;
 desc->field_op.dst.field_string = "meta.data";
 desc->field_op.dst.bit_offset = META_U32_BIT_OFFSET(1); /* Bit offset of meta.u32[1] */;
}

Multiple Actions List

Creating a pipe is possible using a list of multiple actions. For example:

static void
create_multi_actions_for_pipe_cfg()
{
 struct doca_flow_actions *actions_arr[2];
 struct doca_flow_actions actions_0 = {0}, actions_1 = {0};
 struct doca_flow_pipe_cfg *pipe_cfg;

 /* input configurations for actions_0 and actions_1 */

 actions_arr[0] = &actions_0;
 actions_arr[1] = &actions_1;
 doca_flow_pipe_cfg_set_actions(pipe_cfg, actions_arr, NULL, NULL, 2);
}

Summary of Action Types

The action_mask should be set as 0xffffffff and action as 0 if the user wants to
configure 0 to this field.

247

•

•

•

•

•

•

Pipe Creation Entr
y

Cre
atio
n

Behavior

action_desc Pipe Actions Pipe
Acti
ons
Mas
k

Entr
y

Acti
ons

doca_flow_action
_type

Configuration

DOCA_FLOW_ACTION_

AUTO/

action_desc =

NULL

No specific config 0 0 N/A Field ignored, no
modification

0 mask
!= 0

N/A Apply 0 and mask to
all entries

val != 0 && val !=
0xFF

mask
 != 0

N/A Apply val and mask
to all entries

val = 0xFF mask
= 0

N/A Apply 0xFF to all
entries

val = 0xFF mask
 != 0

Defin
e
val
per
entry

Apply entry's val and

mask

DOCA_FLOW_ACTION_

ADD
Add field value or
from src

Define only the
dst field and
width

val != 0 N/A N/A Apply this val to all
entries

val == 0 N/A Defin
e
val
per
entry

Apply entry's val

Define the src

and dst fields
and width

Define the source and
destination fields.

Meta field →
header field
Header field →
meta field
Meta field → meta
field

N/A N/A Add data from src

fields to dst for all
entries

DOCA_FLOW_ACTION_

COPY
Copy field to another
field

N/A Define the source and
destination fields.

Meta field →
header field
Header field →
meta field
Meta field → meta
field

N/A N/A Copy data between
fields for all entries

248

•
•
•
•

14.4.2.6.4.5 Setting Pipe Monitoring

If a meter policer should be used, then it is possible to have the same configuration for all policers
on the pipe or to have a specific configuration per entry. The meter policer is determined by the
FWD action. If an entry has NULL FWD action, the policer FWD action is taken from the pipe.

If a mirror should be used, mirror can be shared on the pipe or configured to have a specific value
per entry.

The monitor also includes the aging configuration, if the aging time is set, this entry ages out if
timeout passes without any matching on the entry.

For example:

static void build_entry_monitor(struct doca_flow_monitor *monitor, void *user_ctx)
{
 monitor->aging_sec = 10;
}

Refer to Pipe Entry Aged Query for more information.

14.4.2.6.4.6 Setting Pipe Forwarding

The FWD (forwarding) action is the last action in a pipe, and it directs where the packet goes next.
Users may configure one of the following destinations:

Send to software (representor)
Send to wire
Jump to next pipe
Drop packets

The FORWARDING action may be set for pipe create, but it can also be unique per entry.

A pipe can be defined with constant forwarding (e.g., always send packets on a specific port). In
this case, all entries will have the exact same forwarding. If forwarding is not defined when a pipe
is created, users must define forwarding per entry. In this instance, pipes may have different
forwarding actions.

When a pipe includes meter monitor <cir, cbs> , it must have fwd defined as well as the policer.

If a pipe is created with a dedicate constant mirror with FWD, the pipe FWD can be from a mirror
FWD or a pipe FWD and the two FWDs are exclusive. It is not allowed to specify a mirror with a FWD
to a pipe with FWD also.

If a mirror FWD is not configured, the FWD is from the pipe configuration. The FWD of the pipe with
a mirror cannot be direct RSS, only shared RSS from NULL FWD is allowed.

The following is an RSS forwarding example:

fwd->type = DOCA_FLOW_FWD_RSS;
fwd->rss_queues = queues;
fwd->rss_flags = DOCA_FLOW_RSS_IP | DOCA_FLOW_RSS_UDP;
fwd->num_of_queues = 4;

Queues point to the uint16_t array that contains the queue numbers. When a port is started, the
number of queues is defined, starting from zero up to the number of queues minus 1. RSS queue

249

•
•
•
•
•
•
•
•

numbers may contain any subset of those predefined queue numbers. For a specific match, a packet
may be directed to a single queue by having RSS forwarding with a single queue.

Changeable RSS forwarding is supported. When creating the pipe, the num_of_queues must be set

to 0xffffffff , then different forwarding RSS information can be set when adding each entry.

fwd->num_of_queues = 0xffffffff;

The packet is directed to the port. In many instances the complete pipe is executed in the
hardware, including the forwarding of the packet back to the wire. The packet never arrives to the
software.

Example code for forwarding to port:

struct doca_flow_fwd *fwd = malloc(sizeof(struct doca_flow_fwd));
memset(fwd, 0, sizeof(struct doca_flow_fwd));
fwd->type = DOCA_FLOW_FWD_PORT;
fwd->port_id = port_id; // this should the same port_id that was set in doca_flow_port_cfg_set_devargs()

The type of forwarding is DOCA_FLOW_FWD_PORT and the only data required is the port_id as

defined in DOCA_FLOW_PORT .

Changeable port forwarding is also supported. When creating the pipe, the port_id must be set to

0xffff , then different forwarding port_id values can be set when adding each entry.

fwd->port_id = 0xffff;

14.4.2.6.4.7 Shared Resources

DOCA Flow supports several types of resources that can be shared. The supported types of resources
can be:

Meters
Counters
RSS queues
Mirrors
PSPs
Encap
Decap
IPsec SA

Shared resources can be used by several pipes and can save device and memory resources while
promoting better performance.

To create and configure shared resource, the user should go through the steps detailed in the
following subsections.

Creating Shared Resource Configuration Object

Call doca_flow_cfg_create(&flow_cfg) , passing a pointer to struct doca_flow_cfg to be
used to fill the required parameters for the shared resource.

250

Setting Number of Shared Resources per Shared Resource Type

This can be done by calling doca_flow_cfg_set_nr_shared_resource() . Refer to the API
documentation for details on the configuration process.

Conclude the configuration by calling doca_flow_init() .

Configuring Shared Resource

When shared resources are allocated, they are assigned identifiers ranging from 0 and increasing
incrementally. For example, if the user configures two shared counters, they would bear the
identifiers 0 and 1.

Configuring the shared resources requires the user to call doca_flow_shared_resource_set_cfg() .

Binding Shared Resource

A shared resource must be bound by calling doca_flow_shared_resources_bind() which binds

the resource to a pointer. The object to which the resource is bound is usually a struct

doca_flow_port pointer.

Using Shared Resources

After a resource has been configured, it can be used by referring to its ID.

In the case of meters, counters, and mirrors, they are referenced through struct

doca_flow_monitor during pipe creation or entry addition.

Querying Shared Resource

Querying shared resources can be done by calling doca_flow_shared_resources_query() . The
function accepts the resource type and an array of resource numbers, and returns an array of
struct doca_flow_shared_resource_result with the results.

Shared Meter Resource

A shared meter can be used in multiple pipe entries (hardware steering mode support only).

The shared meter action marks a packet with one of three colors: Green, Yellow, and Red. The
packet color can then be matched in the next pipe, and an appropriate action may be taken. For
example, packets marked in red color are usually dropped. So, the next pipe to meter action may
have an entry which matches on red and has fwd type DOCA_FLOW_FWD_DROP .

DOCA Flow supports three marking algorithms based on RFCs: 2697, 2698, and 4115.

The struct doca_flow_cfg object is used for configuring other resources besides the
aforementioned shared resources, but this section only refers to the configuration of shared
resources.

Note that each resource has its own identifier space. So, if users have two shared counters
and three meters, they would bear identifiers 0..1 and 0..2 respectively.

251

RFC 2697 – Single-rate Three Color Marker (srTCM)

CBS (committed burst size) is the bucket size which is granted credentials at a CIR (committed
information rate). If CBS overflow occurs, credentials are passed to the EBS (excess burst size)
bucket. Packets passing through the meter consume credentials. A packet is marked green if it does
not exceed the CBS, yellow if it exceeds the CBS but not the EBS, and red otherwise. A packet can
have an initial color upon entering the meter. A pre-colored yellow packet will start consuming
credentials from the EBS.

RFC 2698 – Two-rate Three Color Marker (trTCM)

CBS and CIR are defined as in RFC 2697. PBS (peak burst size) is a second bucket which is granted
credentials at a PIR (peak information rate). There is no overflow of credentials from the CBS
bucket to the PBS bucket. The PIR must be equal to or greater than the CIR. Packets consuming CBS
credentials consume PBS credentials as well. A packet is marked red if it exceeds the PIR.
Otherwise, it is marked either yellow or green depending on whether it exceeds the CIR or not. A
packet can have an initial color upon entering the meter. A pre-colored yellow packet starts
consuming credentials from the PBS.

RFC 4115 – trTCM without Peak-rate Dependency

252

EBS is a second bucket which is granted credentials at a EIR (excess information rate) and gets
overflowed credentials from the CBS. For the packet marking algorithm, refer to RFC 4115.

The following sections present the steps for configuring and using shared meters to mark packets.

Shared IPsec SA Resource

The IPsec Security Association (SA) shared resource is used for IPsec ESP encryption protocol. The
resource should be pointed from the doca_flow_crypto_actions struct that inside

doca_flow_actions .

By default, the resource manages the state of the sequence number (SN), incrementing each packet
on the encryption side, and performing anti-replay protection on the decryption side.

To control the SN in software, sn_offload should be disabled per port in the configuration for

doca_flow_port_start (see DOCA API documentation for details). Once sn_offload is disabled,

the following fields are ignored: sn_offload_type , win_size , sn_initial , and

lifetime_threshold .

When shared resource query is called for an IPsec SA resource, the current SN is retrieved for the
encryption resource and the lower bound of anti-replay window is retrieved for the decryption
resource. Querying IPsec SA can only be called when sn_offload is enabled.

To maintain a valid state of the resource during its usage,
doca_flow_crypto_ipsec_resource_handle should be called periodically.

Shared Mirror Resource

The mirror shared resource is used to clone packets to other pipes, vports (switch mode only), RSS
queues (VNF mode only), or drop.

The maximum supported mirror number is 4K.

The maximum supported mirror clone destination is 254.

253

Mirror clone destination as next_pipe cannot be intermixed with port or rss types. Only clone

destination and origin destination both as next_pipe is supported.

The register copy for packet after mirroring is not saved.

If mirror creation fails, users should check the resulting syndrome for failure details.

Mirroring and Packet Order

To maintain the order of the mirrored packets in relation to the non-mirrored ones, set a first mirror
target forward destination equivalent to the non-mirrored packets as illustrated in the following
diagram:

•
•
•
•
•

Mirror limitations

For switch mode, there are several mirror limitations which should be noted:
Mirror should be cloned to DOCA_FLOW_DIRECTION_BIDIRECTIONAL pipe
The register copy for pkt after mirroring is not saved
Mirror should not be cloned to RSS pipe directly
Encap is supported while cloning a packet to a wire port only
Mirror must not be configured on a resizable pipe

254

In NVIDIA® BlueField®-3, NVIDIA® ConnectX®-7, and lower, when using the mirror action in the
egress domain, mirrored packets cannot preserve the order with the non-mirrored packets due to
the high latency of the mirror operation. To maintain the order, use DOCA_FLOW_FWD_DROP as the
target forward as illustrated in the following diagram:

Shared Encap Resource

The encap shared resource is used for encapsulation. A shared encap ID represents one kind of
encap configuration and can be used in multiple pipes and entries (hardware steering mode support
only).

The shared encap action encapsulates the packet with the configured tunnel information.

Shared Decap Resource

255

The decap shared resource is used for decapsulation. A shared decap ID represents one kind of
decap configuration and can be used in multiple pipes and entries (hardware steering mode support
only).

The shared decap action decapsulates the packet. Ethernet information should be provided when
is_l2 is false.

Shared PSP Resource

The PSP shared resource is used for PSP encryption. The resource should be pointed to from the
doca_flow_crypto_actions struct in doca_flow_actions .

The resource should be configured with a key to encrypt the packets. See NVIDIA DOCA Library API
documentation for PSP key generation for a reference about key handling on decrypt side.

14.4.2.6.4.8 Basic Pipe Create

Once all parameters are defined, the user should call doca_flow_pipe_create to create a pipe.

The return value of the function is a handle to the pipe. This handle should be given when adding
entries to pipe. If a failure occurs, the function returns NULL , and the error reason and message
are put in the error argument if provided by the user.

Refer to the NVIDIA DOCA Library APIs to see which fields are optional and may be skipped. It is
typically recommended to set optional fields to 0 when not in use. See Miss Pipe and Control
Pipe for more information.

Once a pipe is created, a new entry can be added to it. These entries are bound to a pipe, so when
a pipe is destroyed, all the entries in the pipe are removed. Please refer to section Pipe Entry for
more information.

There is no priority between pipes or entries. The way that priority can be implemented is to match
the highest priority first, and if a miss occurs, to jump to the next PIPE. There can be more than one
PIPE on a root as long the pipes are not overlapping. If entries overlap, the priority is set according
to the order of entries added. So, if two pipes have overlapping matching and PIPE1 has higher
priority than PIPE2, users should add an entry to PIPE1 after all entries are added to PIPE2.

14.4.2.6.4.9 Pipe Entry (doca_flow_pipe_add_entry)

An entry is a specific instance inside of a pipe. When defining a pipe, users define match criteria
(subset of fields to be matched), the type of actions to be done on matched packets, monitor, and,
optionally, the FWD action.

When a user calls doca_flow_pipe_add_entry() to add an entry, they should define the values
that are not constant among all entries in the pipe. And if FWD is not defined then that is also
mandatory.

DOCA Flow is designed to support concurrency in an efficient way. Since the expected rate is going
to be in millions of new entries per second, it is mandatory to use a similar architecture as the data
path. Having a unique queue ID per core saves the DOCA engine from having to lock the data
structure and enables the usage of multiple queues when interacting with hardware.

256

•

•

Each core is expected to use its own dedicated pipe_queue number when

calling doca_flow_pipe_entry . Using the same pipe_queue from different cores causes a race
condition and has unexpected results.

Failure Path

Entry insertion can fail in two places, add_entry and add_entry_cb .

When add_entry fails, no cleanup is required.

When add_entry succeeds, a handle is returned to the user. If the subsequent

add_entry_cb fails, the user is responsible for releasing the handle through a rm_entry

call. This rm_entry call is expected to return DOCA_SUCCESS and is expected to invoke

doca_rm_entry_cb with a successful return code.

Pipe Entry Counting

By default, no counter is added. If defined in monitor, a unique counter is added per entry.

The retrieved statistics are stored in struct doca_flow_query .

Pipe Entry Aged Query

When a user calls doca_flow_aging_handle() , this query is used to get the aged-out entries by
the time quota in microseconds. The user callback is invoked by this API with the aged entries.

Applications are expected to avoid adding, removing, or updating pipe entries from within
a doca_flow_entry_process_cb .

Having a counter per entry affects performance and should be avoided if it is not required
by the application.

257

Since the number of flows can be very large, the query of aged flows is limited by a quota in
microseconds. This means that it may return without all flows and requires the user to call it again.
When the query has gone over all flows, a full cycle is done.

14.4.2.6.4.10 Pipe Entry With Multiple Actions

Users can define multiple actions per pipe. This gives the user the option to define different actions
per entry in the same pipe by providing the action_idx in struct doca_flow_actions .

For example, to create two flows with the same match but with different actions, users can provide
two actions upon pipe creation, Action_0 and Action_1 , which have indices 0 and 1 respectively

in the actions array in the pipe configuration. Action_0 has modify_mac , and Action_1 has

modify_ip .

Users can also add two kinds of entries to the pipe, the first one with Action_0 and the second

with Action_1 . This is done by assigning 0 in the action_idx field in struct

doca_flow_actions when creating the first entry and 1 when creating the second one.

14.4.2.6.4.11 Miss Pipe and Control Pipe

To set priority between pipes, users must use miss-pipes. Miss pipes allow to look up entries
associated with pipe X, and if there are no matches, to jump to pipe X+1 and perform a lookup on
entries associated with pipe X+1.

The following figure illustrates the hardware table structure:

The first lookup is performed on the table with priority 0. If no hits are found, then it jumps to the
next table and performs another lookup.

The way to implement a miss pipe in DOCA Flow is to use a miss pipe in FWD.
In struct doca_flow_fwd , the field next_pipe signifies that when creating a pipe, if a fwd_miss i

s configured then if a packet does not match the specific pipe, steering should jump to next_pipe i

n fwd_miss .

Only one root pipe is allowed. If more than one is needed, create a control pipe as root and
forward the packets to relevant non-root pipes.

258

next_pipe is defined as doca_flow_pipe and created by doca_flow_pipe_create . To

separate miss_pipe and a general one, is_root is introduced in struct doca_flow_pipe_cfg .

If is_root is true, it means the pipe is a root pipe executed on packet arrival. Otherwise, the pipe

is next_pipe .

When fwd_miss is not null, the packet that does not match the criteria is handled by next_pipe w

hich is defined in fwd_miss .

In internal implementations of doca_flow_pipe_create , if fwd_miss is not null and the

forwarding action type of miss_pipe is DOCA_FLOW_FWD_PIPE , a flow with the lowest priority is

created that always jumps to the group for the next_pipe of the fwd_miss . Then the flow

of next_pipe can handle the packets, or drop the packets if the forwarding action type

of miss_pipe is DOCA_FLOW_FWD_DROP .

For example, VXLAN packets are forwarded as RSS and hairpin for other packets. The miss_pipe is
for the other packets (non-VXLAN packets) and the match is for general Ethernet packets.
The fwd_miss is defined by miss_pipe and the type is DOCA_FLOW_FWD_PIPE . For the VXLAN

pipe, it is created by doca_flow_create() and fwd_miss is introduced.

Since, in the example, the jump flow is for general Ethernet packets, it is possible that some VXLAN
packets match it and cause conflicts. For example, VXLAN flow entry for ipA is created. A VXLAN

packet with ipB comes in, no flow entry is added for ipB , so it hits miss_pipe and is hairpinned.

A control pipe is introduced to handle the conflict. After creating a control pipe, the user can add
control entries with different matches, forwarding, and priorities when there are conflicts.

The user can add a control entry by calling doca_flow_control_pipe_add_entry() .

priority must be defined as higher than the lowest priority (3) and lower than the highest one
(0).

The other parameters represent the same meaning of the parameters in doca_flow_pipe_create .

In the example above, a control entry for VXLAN is created. The VLXAN packets with ipB hit the
control entry.

14.4.2.6.4.12 doca_flow_pipe_lpm

doca_flow_pipe_lpm uses longest prefix match (LPM) matching. LPM matching is limited to a

single field of the match provided by the user at pipe creation (e.g., the outer destination IP).
Each entry is consisted of a value and a mask (e.g., 10.0.0.0/8, 10.10.0.0/16, etc). The LPM match
is defined as the entry that has the maximum matching bits. For example, using the two entries

•

•

fwd_miss is of type struct doca_flow_fwd but it only implements two forward types of
this struct:

DOCA_FLOW_FWD_PIPE – forwards the packet to another pipe

DOCA_FLOW_FWD_DROP – drops the packet

Other forwarding types (e.g., forwarding to port or sending to RSS queue) are not
supported.

259

1.

2.

10.7.0.0/16 and 10.0.0.0/8, the IP 10.1.9.2 matches on 10.0.0.0/8 and IP 10.7.9.2 matches on
10.7.0.0/16 because 16 bits are the longest prefix matched.

In addition to the longest prefix match logic, LPM supports exact match (EM) logic on the meta.u32 ,

inner destination MAC and VNI. Only index 1 is supported for meta.u32 . Any combination of these
three fields can be chosen for EM. However, if inner destination MAC is chosen for LPM, then it
should not be chosen for EM as well. If more than one field is chosen for EM, a logical AND is
applied. Support for EM on meta allows working with any single field by copying its value to the
meta.u32[1] on pipes before LPM. EM is performed at the same time as LPM matching (i.e., a
logical AND is applied for both logics). For example, if there is a match on LPM logic, but the value
in the fields chosen for EM is not exactly matched, this constitutes an LPM pipe miss.

To enable EM logic in an LPM pipe, two steps are required:

Provide match_mask to the LPM pipe creation with meta.u32[1] being fully masked and/or

inner.eth.dst_mac and/or tun.vxlan_tun_id , while setting match_mask.tun.type to

DOCA_FLOW_TUN_VXLAN . Thus, the match parameter is responsible for the choice of field for

LPM logic, while the match_mask parameter is responsible for the enablement of EM logic.
Separation into two parameters is done to distinguish which field is for LPM logic and which is
for EM logic, when both fields can be used for LPM (e.g., destination IP address and source
MAC address).
Per entry, provide values to do exact match using the match structure. match_mask is used
only for LPM-related masks and is not involved into EM logic.

EM logic allows inserting many entries with different meta values for the same pair of LPM-related
data. Regarding IPv4-based LPM logic with exact match enabled: LPM pipe can have 1.1.1.1/32 with
meta 42, 555, and 1020. If a packet with 1.1.1.1/32 goes through such an LPM pipe, its meta value
is compared against 42, 555, and 1020.

The actions and FWD of the DOCA Flow LPM pipe work the same as the basic DOCA Flow pipe.

doca_flow_pipe_lpm insertion max latency can be measured in milliseconds in some cases and,
therefore, it is better to insert it from the control path. To get the best insertion performance,
entries should be added in large batches.

The monitor only supports non-shared counters in the LPM pipe.

An LPM pipe cannot be a root pipe. You must create a pipe as root and forward the packets
to the LPM pipe.

An LPM pipe can only do LPM matching on inner and outer IP and MAC addresses.

For monitoring, an LPM pipe only supports non-shared counters and does not support other
capabilities of doca_flow_monitor .

260

•
•
•

•

•

•

14.4.2.6.4.13 doca_flow_pipe_acl

doca_flow_pipe_acl uses access-control list (ACL) matching. ACL matching is five tuple of the

doca_flow_match . Each entry consists of a value and a mask (e.g., 10.0.0.0/8, 10.10.0.0/16, etc.)
for IP address fields, port range, or specific port in the port fields, protocol, and priority of the
entry.

ACL entry port configuration:

Mask port is 0 ==> Any port
Mask port is equal to match port ==> Exact port. Port with mask 0xffff.
Mask port > match port ==> Match port is used as port from and mask port is used as port to

Monitor actions are not supported in ACL. FWD of the DOCA Flow ACL pipe works the same as the
basic DOCA Flow pipe.

ACL supports the following types of FWD:

DOCA_FLOW_FWD_PORT

DOCA_FLOW_FWD_PIPE

DOCA_FLOW_FWD_DROP

doca_flow_pipe_lpm insertion max latency can be measured in milliseconds in some cases and,
therefore, it is better to insert it from the control path. To get the best insertion performance,
entries should be added in large batches.

14.4.2.6.4.14 doca_flow_pipe_ordered_list

doca_flow_pipe_ordered_list allows the user to define a specific order of actions and multiply
the same type of actions (i.e., specific ordering between counter/meter and encap/decap).

An ordered list pipe is defined by an array of actions (i.e., sequences of actions). Each entry can be
an instance one of these sequences. An ordered list pipe may consist of up to an array of 8 different

An ACL pipe can be a root pipe.

An ACL pipe can be in ingress and egress domain.

An ACL pipe must be accessed on a single queue. Different ACL pipes may be accessed on
different queues.

Adding an entry to the ACL pipe after sending an entry with flag DOCA_FLOW_NO_WAIT is not
supported.

Removing an entry from an ACL pipe is not supported.

261

•

•

actions. The maximum size of each action array is 4 elements. Resource allocation may be
optimized when combining multiple action arrays in one ordered list pipe.

14.4.2.6.4.15 doca_flow_pipe_hash

doca_flow_pipe_hash allows the user to insert entries by index. The index represents the packet
hash calculation.

An hash pipe gets doca_flow_match only on pipe creation and only mask. The mask provides all
fields to be used for hash calculation.

The monitor , actions , actions_descs , and FWD of the DOCA Flow hash pipe works the same
as the basic DOCA Flow pipe.

14.4.2.6.4.16 Hardware Steering Mode

Users can enable hardware steering mode by setting devarg dv_flow_en to 2 .

The following is an example of running DOCA with hardware steering mode:

.... –a 03:00.0, dv_flow_en=2 –a 03:00.1, dv_flow_en=2....

The following is an example of running DOCA with software steering mode:

.... –a 03:00.0 –a 03:00.1

The dv_flow_en=2 means that hardware steering mode is enabled.

In the struct doca_flow_cfg , setting mode_args using (doca_flow_cfg_set_mode_args())

represents DOCA applications. If it is set with hws (e.g., "vnf,hws" , "switch,hws" ,

"remmote_vnf,hws") then hardware steering mode is enabled.

In switch mode, fdb_def_rule_en=0,vport_match=1,repr_matching_en=0,dv_xmeta_en=4
should be added to DPDK PMD devargs, which makes DOCA Flow switch module take over all the
traffic.

To create an entry by calling doca_flow_pipe_add_entry , the parameter flags can be set as

DOCA_FLOW_WAIT_FOR_BATCH or DOCA_FLOW_NO_WAIT :

DOCA_FLOW_WAIT_FOR_BATCH means that this flow entry waits to be pushed to hardware.
Batch flows then can be pushed only at once. This reduces the push times and enhances the
insertion rate.
DOCA_FLOW_NO_WAIT means that the flow entry is pushed to hardware immediately.

The parameter usr_ctx is handled in the callback set in struct doca_flow_cfg .

doca_flow_entries_process processes all the flows in this queue. After the flow is handled and

the status is returned, the callback is executed with the status and usr_ctx .

The nb_flows in doca_flow_pipe_attr should be a power of 2.

262

1.

2.

If the user does not set the callback in doca_flow_cfg , the user can get the status

using doca_flow_entry_get_status to check if the flow has completed offloading or not.

14.4.2.6.4.17 Isolated Mode

In non-isolated mode (default) any received packets (following an RSS forward, for example) can be
processed by the DOCA application, bypassing the kernel. In the same way, the DOCA application can
send packets to the NIC without kernel knowledge. This is why, by default, no replies are received
when pinging a host with a running DOCA application. If only specific packet types (e.g., DNS
packets) should be processed by the DOCA application, while other packets (e.g., ICMP ping) should
be handled directly the kernel, then isolated mode becomes relevant.

In isolated mode, packets that match root pipe entries are steered to the DOCA application (as
usual) while other packets are received/sent directly by the kernel.

If you plan to create a pipe with matches followed by action/monitor/forward operations, due to
functional/performance considerations, it is advised that root pipes entries include the matches
followed by a next pipe forward operation. In the next pipe, all the planned matches actions/
monitor/forward operations could be specified. Unmatched packets are received and sent by the
kernel.

To activate isolated mode, two configurations are required:

DOCA configuration: Update the string member mode_args (struct doca_flow_cfg) using

doca_flow_cfg_set_mode_args() which represents the DOCA application mode and add
"isolated" (separated by comma) to the other mode arguments. For example:
doca_flow_cfg_set_mode_args(cfg, "vnf,hws,isolated")

doca_flow_cfg_set_mode_args(cfg, "switch,isolated")

DPDK configuration: Set isolated_mode to 1 (struct application_port_config). For

example, if DPDK is initialized by the API: dpdk_queues_and_ports_init(struct

application_dpdk_config *app_dpdk_config) .

struct application_dpdk_config app_dpdk_config = {
 .port_config = {
 .isolated_mode = 1,
 .nb_ports = ...
 ...
 },
 ...
};

14.4.2.6.4.18 Pipe Resize

The move to HWS improves performance because rule insertion is implemented in hardware rather
than software. However, this move imposes additional limitations, such as the need to commit in
advance on the size of the pipes (the number of rule entries). For applications that require pipe
sizes to grow over time, a static size can be challenging: Committing to a pipe size too small can
cause the the application to fail once the number of rule entries exceeds the committed number,
and pre-committing to an excessively high number of rules can result in memory over-allocation.

In switch mode, DPDK must be in isolated mode. DOCA Flow may be in isolated or

non-isolated .

263

•
•

•

•

•

•

1.

This is where pipe resizing comes in handy. This feature allows the pipe size to increase during
runtime with support for all entries in a new resized pipe.

Increasing Pipe Size

It is possible to set a congestion level by percentage (CONGESTION_PERCENTAGE). Once the number
of entries in the pipe exceeds this value, a callback is invoked. For example, for a pipe with 1000
entries and a CONGESTION_PERCENTAGE of 80%, the CONGESTION_REACHED callback is invoked after
the 800th entry is added.

Following the CONGESTION_REACHED callback, the application should call the pipe resize API

(resize()). The following are optional callbacks during the resize callback:

A callback on the new number of entries allocated to the pipe
A callback on each entry that existed in the smaller pipe and is now allocated to the resized
pipe

Upon completion of the internal transfer of all entries from the small pipe to the resized pipe, a
RESIZED callback is invoked.

A CONGESTION_REACHED callback is received exactly once before the RESIZED callback. Receiving

another CONGESTION_REACHED only happens after calling resize() and receiving its completion

with a RESIZED callback.

List of Callbacks

CONGESTION_REACHED – on the updated number of entries in the pipe (if pipe is resizable)

RESIZED – upon completion of the resize operation

NR_ENTRIES_CHANGED (optional) – on the new max number of entries in the pipe

ENTRY_RELOCATE (optional) – on each entry moved from the small pipe to the resized pipe

Order of Operations for Pipe Resizing

Set a process callback on flow configuration:

Pipe resizing is supported in a basic pipe and a control pipe.

The pipe pointer remains the same for the application to use even after being resized.

Receiving a CONGESTION_REACHED callback can occur after adding a small number of
entries and for moving entries from a small to resized pipe. The application must
always call pipe resize after receiving the CONGESTION_REACHED callback to handle
such cases.

Calling pipe resize returns immediately. It starts an internal process that ends later
with the RESIZED callback.

264

2.

3.

4.

5.

•
•

•

6.

7.

8.

9.

struct doca_flow_cfg *flow_cfg;
doca_flow_cfg_create(&flow_cfg);
doca_flow_cfg_set_cb_pipe_process(flow_cfg, <pipe-process-callback>);

Set the following pipe attribute configurations:

struct doca_flow_pipe_cfg *pipe_cfg;
doca_flow_pipe_cfg_create(&pipe_cfg, port);
doca_flow_pipe_cfg_set_nr_entries(pipe_cfg, <initial-number-of-entries>);
doca_flow_pipe_cfg_set_is_resizable(pipe_cfg, true);
doca_flow_pipe_cfg_set_congestion_level_threshold(pipe_cfg, <CONGESTION_PERCENTAGE>);
doca_flow_pipe_cfg_set_user_ctx(pipe_cfg, <pipe-user-context>);

Start adding entries:

/* Basic pipe */
doca_flow_pipe_add_entry()
/* Contorl pipe */
doca_flow_pipe_control_add_entry()

Once the number of entries in the pipe crosses the congestion threshold, an
OP_CONGESTION_REACHED operation callback is received.

Mark the pipe's congestion threshold event and, upon return, call doca_flow_pipe_resize() .
For this call, add the following parameters:

The new threshold percentage for calculating the new size.
A callback on the new pipe size (optional):

doca_flow_pipe_resize_nr_entries_changed_cb nr_entries_changed_cb

A callback on the entries to be transferred to the resized pipe:

doca_flow_pipe_resize_entry_relocate_cb entry_relocation_cb

Call doca_flow_entries_process() to trigger the transfer of entries. It is relevant for both
a basic pipe and a control pipe.
At this phase, adding new entries to the pipe is permitted. The entries are added directly to
the resized pipe and therefore do not need to be transferred.
Once all entries are transferred, an OP_RESIZED operation callback is received. Also, at this

point a new OP_CONGESTION_REACHED operation callback can be received again.

At this point calling doca_flow_entries_process() can be stopped for a control pipe. For
a basic pipe an additional call is required to complete the call to
doca_flow_pipe_add_entry() .

This informs on OP_CONGESTION_REACHED and OP_RESIZED operations when
applicable.

•

•

doca_flow_entries_process() has the following roles:
Triggering entry transfer from the smaller to the bigger pipe (until an
OP_RESIZED callback is received)

Follow up API on previous add_entries API (basic pipe relevance only)

265

•

•

•

14.4.2.6.4.19 Hairpin Configuration

In switch mode, if dev is set in struct doca_flow_port_cfg (using

doca_flow_port_cfg_set_dev()), then an internal hairpin is created for direct wire-to-wire fwd.

Users may specify the hairpin configuration using mode_args . The supported options as follows:

hairpinq_num=[n] – the hairpin queue number

use_huge_mem – determines whether the Tx buffer uses hugepage memory

lock_rx_mem – locks Rx queue memory

14.4.2.6.5 Teardown

14.4.2.6.5.1 Pipe Entry Teardown

When an entry is terminated by the user application or ages-out, the user should call the entry
destroy function, doca_flow_pipe_rm_entry() . This frees the pipe entry and cancels hardware
offload.

14.4.2.6.5.2 Pipe Teardown

When a pipe is terminated by the user application, the user should call the pipe destroy
function, doca_flow_pipe_destroy() . This destroys the pipe and the pipe entries that match it.

When all pipes of a port are terminated by the user application, the user should call the pipe flush
function, doca_flow_port_pipes_flush() . This destroys all pipes and all pipe entries belonging
to this port.

14.4.2.6.5.3 Port Teardown

When the port is not used anymore, the user should call the port stop
function, doca_flow_port_stop() . This stops the DOCA port, disables the traffic, destroys the
port and frees all resources of the port.

14.4.2.6.5.4 Flow Teardown

When the DOCA Flow is not used anymore, the user should call the flow destroy
function, doca_flow_destroy() . This releases all the resources used by DOCA Flow.

14.4.2.7 Metadata

During doca_flow_pipe_destroy() execution, the application must avoid adding/
removing entries or checking for aged entries of any other pipes.

A scratch area exists throughout the pipeline whose maximum size is DOCA_FLOW_META_MAX
bytes.

266

•

•

The user can set a value to metadata, copy from a packet field, then match in later pipes. Mask is
supported in both match and modification actions.

The user can modify the metadata in different ways based on its actions' masks or descriptors:

ADD – set metadata scratch value from a pipe action or an action of a specific entry. Width is
specified by the descriptor.
COPY – copy metadata scratch value from a packet field (including the metadata scratch
itself). Width is specified by the descriptor.

Some DOCA pipe types (or actions) use several bytes in the scratch area for internal usage. So, if the
user has set these bytes in PIPE-1 and read them in PIPE-2, and between PIPE-1 and PIPE-2 there is
PIPE-A which also uses these bytes for internal purpose, then these bytes are overwritten by the
PIPE-A. This must be considered when designing the pipe tree.

The bytes used in the scratch area are presented by pipe type in the following table:

Pipe Type/Action Bytes Used in Scratch

ordered_list [0, 1, 2, 3]

LPM [0, 1, 2, 3]

LPM EM [0, 1, 2, 3, 4, 5, 6, 7]

Mirror [0, 1, 2, 3]

ACL [0, 1, 2, 3, 4, 5, 6, 7, 8 ,9, 10, 11, 12, 13, 14, 15]

Fwd from ingress to egress [0, 1, 2, 3]

14.4.2.8 Packet Processing
In situations where there is a port without a pipe defined, or with a pipe defined but without any
entry, the default behavior is that all packets arrive to a port in the software.

Once entries are added to the pipe, if a packet has no match then it continues to the port in the
software. If it is matched, then the rules defined in the pipe are executed.

Refer to DOCA API documentation for details on struct doca_flow_meta .

267

•

•

•

•

If the packet is forwarded in RSS, the packet is forwarded to software according to the RSS
definition. If the packet is forwarded to a port, the packet is redirected back to the wire. If the
packet is forwarded to the next pipe, then the software attempts to match it with the next pipe.

Note that the number of pipes impacts performance. The longer the number of matches and actions
that the packet goes through, the longer it takes the hardware to process it. When there is a very
large number of entries, the hardware must access the main memory to retrieve the entry context
which increases latency.

14.4.2.9 Debug and Trace Features
DOCA Flow supports trace and debugging of DOCA Flow applications which enable collecting
predefined internal key performance indicators (KPIs) and pipeline visualization.

14.4.2.9.1 Installation

The set of DOCA's SDK development packages include also a developer-oriented package that
includes additional trace and debug features which are not included in the production libraries:

.deb based systems – libdoca-sdk-flow-trace

.rpm based systems – doca-sdk-flow-trace

These packages install the trace-version of the libraries under the following directories:

.deb based systems – /opt/mellanox/doca/lib/<arch>/trace

.rpm based systems – /opt/mellanox/doca/lib64/trace

14.4.2.9.2 Using Trace Libraries

The trace libraries are designed to allow a user to link their existing (production) program to the
trace library without needing to recompile the program. To do so, one should simply update the

268

matching environment variable so that the OS will prioritize loading libraries from the above trace
directory:

LD_LIBRARY_PATH=/opt/mellanox/doca/lib/aarch64-linux-gnu/trace:${LD_LIBRARY_PATH} doca_ipsec_security_gw <program
parameters>

14.4.2.9.3 Trace Features

14.4.2.9.3.1 DOCA Log – Trace Level

DOCA's trace logging level (DOCA_LOG_LEVEL_TRACE) is compiled as part of this trace version of the
library. That is, any program compiled against the library can activate this additional logging level
through DOCA's API or even through DOCA's built-in argument parsing (ARGP) library:

LD_LIBRARY_PATH=/opt/mellanox/doca/lib/aarch64-linux-gnu/trace:${LD_LIBRARY_PATH} doca_ipsec_security_gw <program
parameters> --sdk-log-level 70

14.4.2.10 DOCA Flow Samples
This section provides DOCA Flow sample implementation on top of the BlueField.

14.4.2.10.1 Sample Prerequisites

A DOCA Flow-based program can either run on the host machine or on the BlueField.

Flow-based programs require an allocation of huge pages, hence the following commands are
required:

echo '1024' | sudo tee -a /sys/kernel/mm/hugepages/hugepages-2048kB/nr_hugepages
sudo mkdir /mnt/huge
sudo mount -t hugetlbfs nodev /mnt/huge

All the DOCA samples described in this section are governed under the BSD-3 software
license agreement.

On some OSs (RockyLinux, OpenEuler, CentOS 8.2), the default huge page size on the
BlueField (and Arm hosts) is larger than 2MB, often 512MB. Users can check the size of the
huge pages on their OS using the following command:

$ grep -i huge /proc/meminfo

AnonHugePages: 0 kB
ShmemHugePages: 0 kB
FileHugePages: 0 kB
HugePages_Total: 4
HugePages_Free: 4
HugePages_Rsvd: 0
HugePages_Surp: 0
Hugepagesize: 524288 kB
Hugetlb: 6291456 kB

In this case, instead of allocating 1024 pages, users should only allocate 4:

269

1.
•

•

2.

3.

4.

5.

•

•

•

14.4.2.10.2 Running the Sample
Refer to the following documents:

NVIDIA DOCA Installation Guide for Linux for details on how to install BlueField-related
software.
NVIDIA DOCA Troubleshooting Guide for any issue you may encounter with the
installation, compilation, or execution of DOCA samples.

To build a given sample:

cd /opt/mellanox/doca/samples/doca_flow/<sample_name>
meson /tmp/build
ninja -C /tmp/build

Sample (e.g., flow_aging) usage:

Usage: doca_flow_aging [DPDK Flags] –- [DOCA Flags]

DOCA Flags:
 -h, --help Print a help synopsis
 -v, --version Print program version information
 -l, --log-level Set the (numeric) log level for the program <10=DISABLE, 20=CRITI
CAL, 30=ERROR, 40=WARNING, 50=INFO, 60=DEBUG, 70=TRACE>
 --sdk-log-level Set the SDK (numeric) log level for the program <10=DISABLE, 20=C
RITICAL, 30=ERROR, 40=WARNING, 50=INFO, 60=DEBUG, 70=TRACE>
 -j, --json <path> Parse all command flags from an input json file

For additional information per sample, use the -h option after the -- separator:

/tmp/build/doca_<sample_name> -- -h

DOCA Flow samples are based on DPDK libraries. Therefore, the user is required to provide
DPDK flags. The following is an example from an execution on the DPU:

CLI example for running the samples with "vnf" mode:

/tmp/build/doca_<sample_name> -a auxiliary:mlx5_core.sf.2 -a auxiliary:mlx5_core.sf.3 -- -l 60

CLI example for running the VNF samples with vnf,hws mode:

/tmp/build/doca_<sample_name> -a auxiliary:mlx5_core.sf.2,dv_flow_en=2 -a
auxiliary:mlx5_core.sf.3,dv_flow_en=2 -- -l 60

CLI example for running the switch samples with switch,hws mode:

/tmp/build/doca_<sample_name> -- -p 03:00.0 -r sf[2-3] -l 60

echo '4' | sudo tee -a /sys/kernel/mm/hugepages/hugepages-524288kB/nr_hugepages

The binary doca_<sample_name> will be created under /tmp/build/ .

When running on the BlueField with switch,hws mode, it is not necessary to
configure the OVS.

270

1.
2.
3.

a.
i.
ii.
iii.
iv.

b.
i.

•
•
•
•
•
•
•

ii.
•
•
•
•

•
•

•
•

14.4.2.10.3 Samples

14.4.2.10.3.1 Flow ACL

This sample illustrates how to use the access-control list (ACL) pipe.

The sample logic includes:

Initializing DOCA Flow by indicating mode_args="vnf,hws" in the doca_flow_cfg struct.
Starting two DOCA Flow ports.
On each port:

Building an ACL pipe that matches changeable:
Source IPv4 address
Destination IPv4 address
Source port
Destination port

Adding four example 5-tuple entries:
The first entry with:

Full mask on source IPv4 address
Full mask on destination IPv4 address
Null mask on source port (any source port)
Null mask on destination port (any destination port)
TCP protocol
Priority 10
Action "deny" (drop action)

The second entry with:
Full mask on source IPv4 address
Full mask on destination IPv4 address
Null mask on source port (any source port)
Value set in mask on destination port is used as part of port range:

Destination port in match is used as port from
Destination port in mask is used as port to

UDP protocol
Priority 50

DOCA switch sample hides the extra
fdb_def_rule_en=0,vport_match=1,repr_matching_en=0,dv_xmeta_en=4

DPDK devargs with a simple -p and -r to specify the PCIe ID and
representor information.

When running on the DPU using the command above, sub-functions must be
enabled according to the NVIDIA BlueField DPU Scalable Function User Guide.

When running on the host, virtual functions must be used according to the
instructions in the NVIDIA DOCA Virtual Functions User Guide.

271

•
iii.

•
•
•

•
•
•
•

iv.
•
•
•

•

•
•
•

c.

i.
ii.

•

•

•

•

•

1.
2.
3.

a.
b.

4.

Action "allow" (forward port action)
The third entry with:

Full mask on source IPv4 address
Full mask on destination IPv4 address
Value set in mask on source port is equal to the source port in match. It is
the exact port. ACL uses the port with full mask.
Null mask on destination port (any destination port)
TCP protocol
Priority 40
Action "allow" (forward port action)

The fourth entry with:
24-bit mask on source IPv4 address
24-bit mask on destination IPv4 address
Value set in mask on source port is used as part of port range : source
port in match is used as port from, source port in mask is used as port to.
Value set in mask on destination port is equal to the destination port in
match. It is the exact port. ACL uses the port with full mask.
TCP protocol
Priority 20
Action "allow" (forward port action)

The sample shows how to run the ACL pipe on ingress and egress domains. To change
the domain, use the global parameter flow_acl_sample.c .

Ingress domain: ACL is created as root pipe
Egress domain:

Building a control pipe with one entry that forwards the IPv4 traffic
hairpin port.
ACL is created as a root pipe on the hairpin port.

Reference:

/opt/mellanox/doca/samples/doca_flow/flow_acl/flow_acl_sample.c

/opt/mellanox/doca/samples/doca_flow/flow_acl/flow_acl_main.c

/opt/mellanox/doca/samples/doca_flow/flow_acl/meson.build

14.4.2.10.3.2 Flow Aging

This sample illustrates the use of DOCA Flow's aging functionality. It demonstrates how to build a
pipe and add different entries with different aging times and user data.

The sample logic includes:

Initializing DOCA Flow with mode_args="vnf,hws" in the doca_flow_cfg struct.
Starting two DOCA Flow port.
On each port:

Building a pipe with changeable 5-tuple match and forward port action.
Adding 10 entries with different 5-tuple match, a monitor with different aging time
(5-60 seconds), and setting user data in the monitor. The user data will contain the
port ID, entry number, and entry pointer.

Handling aging every 5 seconds and removing each entry after age-out.

272

5.

•

•

•

1.
2.
3.

a.

b.

c.

d.

e.

f.
•
•
•
•

Running these commands until all entries age out.

Reference:

/opt/mellanox/doca/samples/doca_flow/flow_aging/flow_aging_sample.c

/opt/mellanox/doca/samples/doca_flow/flow_aging/flow_aging_main.c

/opt/mellanox/doca/samples/doca_flow/flow_aging/meson.build

14.4.2.10.3.3 Flow Control Pipe

This sample shows how to use the DOCA Flow control pipe and decap action.

The sample logic includes:

Initializing DOCA Flow by indicating mode_args="vnf,hws" in the doca_flow_cfg struct.
Starting two DOCA Flow ports.
On each port:

Building VXLAN pipe with match on VNI field, decap action, action descriptor for
decap, and forwarding the matched packets to the second port.
Building VXLAN-GPE pipe with match on VNI plus next protocol fields, and forwarding
the matched packets to the second port.
Building GRE pipe with match on GRE key field, decap and build eth header actions,
action descriptor for decap, and forwarding the matched packets to the second port.
Building NVGRE pipe with match on protocol is 0x6558, vs_id , flow_id , and inner
UDP source port fields, and forwarding the matched packets to the second port. This
pipe has a higher priority than the GRE pipe. The NVGRE packets are matched first.
Building MPLS pipe with match on third MPLS label field, decap and build eth header
actions, action descriptor for decap, and forwarding the matched packets to the
second port.
Building a control pipe with the following entries:

If L4 type is UDP and destination port is 4789, forward to VXLAN pipe
If L4 type is UDP and destination port is 4790, forward to VXLAN-GPE pipe
If L4 type is UDP and destination port is 6635, forward to MPLS pipe
If tunnel type and L4 type is GRE, forward to GRE pipe

When any tunnel is decapped, it is user responsibility to identify if it is an L2 or L3 tunnel
within the action. If the tunnel is L3, the complete outer layer, tunnel, and inner L2 are
removed and the inner L3 layer is exposed. To keep the packet valid, the user should
provide the ETH header to encap the inner packet. For example:

actions.decap_type = DOCA_FLOW_RESOURCE_TYPE_NON_SHARED;
actions.decap_cfg.is_l2 = false;
/* append eth header after decap GRE tunnel */
SET_MAC_ADDR(actions.decap_cfg.eth.src_mac, src_mac[0], src_mac[1], src_mac[2], src_mac[3], src_mac[4],
src_mac[5]);
SET_MAC_ADDR(actions.decap_cfg.eth.dst_mac, dst_mac[0], dst_mac[1], dst_mac[2], dst_mac[3], dst_mac[4],
dst_mac[5]);
actions.decap_cfg.eth.type = DOCA_FLOW_L3_TYPE_IP4;

For a VXLAN tunnel, since VXLAN is a L2 tunnel, the user must indicate it within the action:

actions.decap_type = DOCA_FLOW_RESOURCE_TYPE_NON_SHARED;

273

•

•

•

1.
2.
3.

1.

2.
3.

4.

•

•

•

1.
2.
3.

1.

2.

Reference:

/opt/mellanox/doca/samples/doca_flow/flow_control_pipe/

flow_control_pipe_sample.c

/opt/mellanox/doca/samples/doca_flow/flow_control_pipe/

flow_control_pipe_main.c

/opt/mellanox/doca/samples/doca_flow/flow_control_pipe/meson.build

14.4.2.10.3.4 Flow Copy to Meta

This sample shows how to use the DOCA Flow copy-to-metadata action to copy the source MAC
address and then match on it.

The sample logic includes:

Initializing DOCA Flow by indicating ode_args="vnf,hws" in the doca_flow_cfg struct.
Starting two DOCA Flow ports.
On each port:

Building a pipe with changeable match on meta_data and forwarding the matched packets
to the second port.
Adding an entry that matches an example source MAC that has been copied to metadata.
Building a pipe with changeable 5-tuple match, copying source MAC action, and fwd to the
first pipe.
Adding example 5-tuple entry to the pipe.

Reference:

/opt/mellanox/doca/samples/doca_flow/flow_copy_to_meta/

flow_copy_to_meta_sample.c

/opt/mellanox/doca/samples/doca_flow/flow_copy_to_meta/

flow_copy_to_meta_main.c

/opt/mellanox/doca/samples/doca_flow/flow_copy_to_meta/meson.build

14.4.2.10.3.5 Flow Add to Metadata

This sample shows how to use the DOCA Flow add-to-metadata action to accumulate the source IPv4
address for double to meta and then match on the meta.

The sample logic includes:

Initializing DOCA Flow by indicating mode_args="vnf,hws" in the doca_flow_cfg struct.
Starting two DOCA Flow ports.
On each port:

Building a pipe with changeable match on meta_data and forwarding the matched packets
to the second port.
Adding an entry that matches an example double of source IPv4 address that has been added
to metadata.

actions.decap_cfg.is_l2 = true;

274

3.

4.

•

•

•

1.
2.
3.

a.

b.

c.

4.
5.

•

•

•

•

•

•

Building a pipe with changeable 5-tuple match, copying the source IPv4, and adding the value
again to the meta action, and forwarding to the first pipe.
Adding an example 5-tuple entry to the pipe.

Reference:

/opt/mellanox/doca/samples/doca_flow/flow_add_to_meta/

flow_add_to_meta_sample.c

/opt/mellanox/doca/samples/doca_flow/flow_add_to_meta/flow_add_to_meta_main.c

/opt/mellanox/doca/samples/doca_flow/flow_add_to_meta/meson.build

14.4.2.10.3.6 Flow Drop

This sample illustrates how to build a pipe with 5-tuple match, forward action drop, and forward
miss action to the hairpin pipe. The sample also demonstrates how to dump pipe information to a
file and query entry.

The sample logic includes:

Initializing DOCA Flow by indicating mode_args="vnf,hws" in the doca_flow_cfg struct.
Starting two DOCA Flow ports.
On each port:

Building a hairpin pipe with an entry that matches all traffic and forwarding traffic to
the second port.
Building a pipe with a changeable 5-tuple match, forwarding action drop, and miss
forward to the hairpin pipe. This pipe serves as a root pipe.
Adding an example 5-tuple entry to the drop pipe with a counter as monitor to query
the entry later.

Waiting 5 seconds and querying the drop entry (total bytes and total packets).
Dumping the pipe information to a file.

Reference:

/opt/mellanox/doca/samples/doca_flow/flow_drop/flow_drop_sample_sample.c

/opt/mellanox/doca/samples/doca_flow/flow_drop/flow_drop_sample_main.c

/opt/mellanox/doca/samples/doca_flow/flow_drop/meson.build

14.4.2.10.3.7 Flow ECMP

This sample illustrates ECMP feature using a hash pipe.

The sample enables users to determine how many port are included in ECMP distribution:

The number of ports, n , is determined by DPDK device argument representor=sf[0-m]

where m=n-1 .

CLI example for running this samples with n=4 ports:

/tmp/build/doca_flow_ecmp -- -p 03:00.0 -r sf[0-3] -l 60 --sdk-log-level 60

n should be power of 2. Max supported value is n=8 .

The sample logic includes:

275

1.

2.

3.
4.

a.

b.

5.
6.

•

•

•

•

•

1.
2.
3.

a.

b.

c.

d.

e.

•

•

•

Calculate the number of SF representors (n) created by DPDK according to user input.

Initializing DOCA Flow by indicating mode_args="switch,hws" in the doca_flow_cfg struct
ure.
Starting DOCA Flow ports: Physical port and n SF representors.
On switch port:

Constructing a hash pipe that signifies the match_mask structure to compute the hash
based on the outer IPv6 flow label field.
Adding n entries to the created pipe, each of which forwards packets to a different
port representor.

Waiting 15 seconds and querying the entries.
Print the ECMP results per port (number packets in each port related to total packets).

Reference:

/opt/mellanox/doca/samples/doca_flow/flow_ecmp/flow_ecmp_sample.c

/opt/mellanox/doca/samples/doca_flow/flow_ecmp/flow_ecmp_main.c

/opt/mellanox/doca/samples/doca_flow/flow_ecmp/meson.build

14.4.2.10.3.8 Flow ESP

This sample illustrates how to match match ESP fields in two ways:

Exact match for both esp_spi and esp_en fields using the doca_flow_match structure.

Comparison match for esp_en field using the doca_flow_match_condition structure.

The sample logic includes:

Initializing DOCA Flow by indicating mode_args="vnf,hws" in the doca_flow_cfg struct.
Starting two DOCA Flow ports.
On each port:

Building a control pipe with entry that match esp_en > 3 (GT pipe).

Building a control pipe with entry that match esp_en < 3 (LT pipe).

Building a root pipe with changeable next_pipe FWD and esp_spi match along with

specific esp_sn match + IPv4 and ESP exitance (matching parser_meta).

Adding example esp_spi = 8 entry to the root pipe which forwards to GT pipe (and
miss condition).
Adding example esp_spi = 5 entry to the root pipe which forwards to LT pipe (and
hit condition).

Reference:

/opt/mellanox/doca/samples/doca_flow/flow_esp/flow_esp_sample.c

/opt/mellanox/doca/samples/doca_flow/flow_esp/flow_esp_main.c

/opt/mellanox/doca/samples/doca_flow/flow_esp/meson.build

This sample is supported for ConnectX-7, BlueField-3, and above.

276

1.
2.
3.

a.

b.
i.

ii.
c.

d.

e.

4.
5.

a.
b.

6.
a.

b.

7.
8.

a.
b.

•

•

•

1.

14.4.2.10.3.9 Flow Forward Miss

The sample illustrates how to use FWD miss query and update with or without miss counter.

The sample logic includes:

Initializing DOCA Flow by indicating mode_args="vnf,hws" in the doca_flow_cfg struct.
Starting two DOCA Flow ports.
On each port:

Building a copy pipe with a changeable outer L3 type match and forwarding traffic to
the second port.
Add entries doing different copy action depending on the outer L3 type:

IPv4 – copy IHL field into Type Of Service field.

IPv6 – copy Payload Length field into Traffic Class field.
Building a pipe with a IPv4 addresses match, forwarding traffic to the second port, and
miss forward to the copy pipe.
Building an IP selector pipe with outer L3 type match, forwarding IPv4 traffic to IPv4
pipe, and miss forward to the copy pipe with miss counter.
Building a root pipe with outer L3 type match, forwarding IPv4 and IPv6 traffic to IP
selector pipe, and dropping all other traffic by miss forward with miss counter.

Waiting 5 seconds for first batch of traffic.
On each port:

Querying the miss counters using doca_flow_query_pipe_miss API.
Printing the miss results.

On each port:
Building a push pipe that pushes VLAN header and forwarding traffic to the second
port.
Updating both IP selector and IPv4 pipes miss FWD pipe target to push pipe using
doca_flow_pipe_update_miss API.

Waiting 5 seconds for second batch of traffic, same flow as before.
On each port:

Querying again the miss counters using doca_flow_query_pipe_miss API.
Printing the miss results again, the results should include miss packets coming either
before or after miss action updating.

Reference:

/opt/mellanox/doca/samples/doca_flow/flow_fwd_miss/flow_fwd_miss_sample.c

/opt/mellanox/doca/samples/doca_flow/flow_fwd_miss/flow_fwd_miss_main.c

/opt/mellanox/doca/samples/doca_flow/flow_fwd_miss/meson.build

14.4.2.10.3.10 Flow Forward Target (DOCA_FLOW_TARGET_KERNEL)

The sample illustrates how to use DOCA_FLOW_FWD_TARGET type of forward, as well as the

doca_flow_get_target API to obtain an instance of struct doca_flow_target .

The sample logic includes:

Initializing DOCA Flow with "vnf,isolated,hws" .

277

2.
3.

4.
a.

i.
ii.

iii.

b.
i.
ii.
iii.

•

•

•

1.
2.
3.

a.

b.
•
•
•
•

c.

•

•

•

Initializing two ports.
Obtaining an instance of doca_flow_target by calling

doca_flow_get_target(DOCA_FLOW_TARGET_KERNEL, &kernel_target); .
On each port, creating:

Non-root basic pipe with 5 tuple match.
If hit – forward the packet to another port.
If miss – forward the packet to the kernel for processing by using the instance of
doca_flow_target obtained in previous steps.
Then add a single entry with a specific 5-tuple which is hit, and the rest is
forwarded to the kernel.

Root control pipe with a match on outer L3 type being IPv4.
If hit – forward the packet to the non-root pipe.
If miss – drop the packet.
Add a single entry that implements the logic described.

Reference:

/opt/mellanox/doca/samples/doca_flow/flow_fwd_target/flow_fwd_target_sample.c

/opt/mellanox/doca/samples/doca_flow/flow_fwd_target/flow_fwd_target_main.c

/opt/mellanox/doca/samples/doca_flow/flow_fwd_target/meson.build

14.4.2.10.3.11 Flow GENEVE Encap

This sample illustrates how to use DOCA Flow actions to create a GENEVE tunnel.

The sample logic includes:

Initializing DOCA Flow by indicating mode_args="vnf,hws" in the doca_flow_cfg struct.
Starting two DOCA Flow ports.
On each port:

Building ingress pipe with changeable 5-tuple match, copying to pkt_meta action, and
forwarding port action.
Building egress pipe with pkt_meta match and 4 different encapsulation actions:

L2 encap without options
L2 encap with options
L3 encap without options
L3 encap with options

Adding example 5-tuple and encapsulation values entries to the pipes.

Reference:

/opt/mellanox/doca/samples/doca_flow/flow_geneve_encap/

flow_geneve_encap_sample.c

/opt/mellanox/doca/samples/doca_flow/flow_geneve_encap/

flow_geneve_encap_main.c

/opt/mellanox/doca/samples/doca_flow/flow_geneve_encap/meson.build

278

1.
2.
3.

a.
b.
c.

•
•

d.

•

•

•

1.
2.
3.

a.
b.

•

•

•

14.4.2.10.3.12 Flow GENEVE Options

This sample illustrates how to prepare a GENEVE options parser, match on configured options, and
decap GENEVE tunnel.

The sample logic includes:

Initializing DOCA Flow by indicating mode_args="vnf,hws" in the doca_flow_cfg struct.
Starting two DOCA Flow ports.
On each port:

Building GENEVE options parser, same input for all ports.
Building match pipe with GENEVE VNI and options match and forwards decap pipe.
Building decap pipe with more GENEVE options match, and 2 different decapsulation
actions:

L2 decap
L3 decap with changeable mac addresses

Adding example GENEVE options and MAC address values entries to the pipes.

Reference:

/opt/mellanox/doca/samples/doca_flow/flow_geneve_opt/flow_geneve_opt_sample.c

/opt/mellanox/doca/samples/doca_flow/flow_geneve_opt/flow_geneve_opt_main.c

/opt/mellanox/doca/samples/doca_flow/flow_geneve_opt/meson.build

14.4.2.10.3.13 Flow Hairpin VNF

This sample illustrates how to build a pipe with 5-tuple match and to forward packets to the other
port.

The sample logic includes:

Initializing DOCA Flow by indicating mode_args="vnf,hws" in the doca_flow_cfg struct.
Starting two DOCA Flow ports.
On each port:

Building a pipe with changeable 5-tuple match and forwarding port action.
Adding example 5-tuple entry to the pipe.

Reference:

/opt/mellanox/doca/samples/doca_flow/flow_hairpin_vnf/

flow_hairpin_vnf_sample.c

/opt/mellanox/doca/samples/doca_flow/flow_hairpin_vnf/flow_hairpin_vnf_main.c

/opt/mellanox/doca/samples/doca_flow/flow_hairpin_vnf/meson.build

14.4.2.10.3.14 Flow Switch to Wire

This sample illustrates how to build a pipe with 5-tuple match and forward packets from the wire
back to the wire.

This sample works only with PF. VFs and SFs are not supported.

279

1.

2.
3.

a.

b.
c.

•

•

•

•

•

•

•

The sample shows how to build a basic pipe in a switch and hardware steering (HWS) mode. Each
pipe contains two entries, each of which forwards matched packets to two different representors.

The sample also demonstrates how to obtain the switch port of a given port using
doca_flow_port_switch_get() .

The sample logic includes:

Initializing DOCA Flow by indicating mode_args="switch,hws" in the doca_flow_cfg struct
.
Starting DOCA Flow ports with doca_dev in struct doca_flow_port_cfg .
On the switch's PF port:

Building ingress, egress, vport, and RSS pipes with changeable 5-tuple match and
forwarding port action.
Adding example 5-tuple entry to the pipe.
The matched traffic goes to its destination port, the missed traffic is handled by the
rx_tx function and is sent to a dedicate port based on the protocol.

Ingress pipe:

Entry 0: IP src 1.2.3.4 / TCP src 1234 dst 80 -> egress pipe
Entry 1: IP src 1.2.3.5 / TCP src 1234 dst 80 -> vport pipe

Egress pipe (test ingress to egress cross domain):

Entry 0: IP dst 8.8.8.8 / TCP src 1234 dst 80 -> port 0
Entry 1: IP dst 8.8.8.9 / TCP src 1234 dst 80 -> port 1
Entry 2: IP dst 8.8.8.10 / TCP src 1234 dst 80 -> port 2
Entry 3: IP dst 8.8.8.11 / TCP src 1234 dst 80 -> port 3

Vport pipe (test ingress direct to vport):

Entry 0: IP dst 8.8.8.8 / TCP src 1234 -> port 0
Entry 1: IP dst 8.8.8.9 / TCP src 1234 -> port 1
Entry 2: IP dst 8.8.8.10 / TCP src 1234-> port 2
Entry 3: IP dst 8.8.8.11 / TCP src 1234-> port 3

RSS pipe (test miss traffic port_id get and destination port_id set):

Entry 0: IPv4 / TCP -> port 0
Entry 0: IPv4 / UDP -> port 1
Entry 0: IPv4 / ICMP -> port 2

Reference:

/opt/mellanox/doca/samples/doca_flow/flow_switch_to_wire/

flow_switch_to_wire_sample.c

/opt/mellanox/doca/samples/doca_flow/flow_switch_to_wire/

flow_switch_to_wire_main.c

/opt/mellanox/doca/samples/doca_flow/flow_switch_to_wire/meson.build

The test requires one PF with three representors (either VFs or SFs).

280

1.

2.
3.

a.

b.

4.

•

•

•

1.
2.
3.

a.

b.

c.

d.

e.

f.
i.
ii.

14.4.2.10.3.15 Flow Hash Pipe

This sample illustrates how to build a hash pipe in hardware steering (HWS) mode.

The hash pipe contains two entries, each of which forwards "matched" packets to two different SF
representors. For each received packet, the hash pipe calculates the entry index to use based on
the IPv4 destination address.

The sample logic includes:

Initializing DOCA Flow by indicating mode_args="switch,hws" in the doca_flow_cfg struct
.
Starting DOCA Flow ports: Physical port and two SF representors.
On switch port:

Building a hash pipe while indicating which fields to use to calculate the hash in the
struct match_mask .
Adding two entries to the created pipe, each of which forwards packets to a different
port representor.

Printing the hash result calculated by the software with the following message: "hash value

for" for dest ip = 192.168.1.1 .

Reference:

/opt/mellanox/doca/samples/doca_flow/flow_hash_pipe/flow_hash_pipe_sample.c

/opt/mellanox/doca/samples/doca_flow/flow_hash_pipe/flow_hash_pipe_main.c

/opt/mellanox/doca/samples/doca_flow/flow_hash_pipe/meson.build

14.4.2.10.3.16 Flow IPv6 Flow Label

This sample shows how to use DOCA Flow actions to update IPv6 flow label field after encapsulation.

As a side effect, it shows also example for IPv6 + MPLS encapsulation.

The sample logic includes:

Initializing DOCA Flow by indicating mode_args="vnf,hws" in the doca_flow_cfg struct.
Starting two DOCA Flow ports.
On each port:

Building an ingress pipe with changeable L4 type and ports matching, which updates
metadata and goes to the peer port.
Adding example UDP/TCP type and ports and metadata values entries to the pipe. This
pipe is L3 type agnostic.
Building an egress pipe on the peer port with changeable metadata matching, which
encapsulates packets with IPv6 + MPLS headers, and goes to the next pipe.
Adding entries to the pipe, with different encapsulation values for different metadata
values.
Building another egress pipe on the peer port with changeable L3 inner type matching,
which copies value into outer IPv6 flow label field.
Adding two entries to the pipe:

L3 inner type is IPv6 - copy IPv6 flow label from inner to outer.
L3 inner type is IPv6 - copy outer IPv6 flow label from metadata.

281

•

•

•

1.
2.
3.

a.

b.

c.

d.

e.

f.

g.
•
•

•

•

•

Reference:

/opt/mellanox/doca/samples/doca_flow/flow_ipv6_flow_label/

flow_ipv6_flow_label_sample.c

/opt/mellanox/doca/samples/doca_flow/flow_ipv6_flow_label/

flow_ipv6_flow_label_main.c

/opt/mellanox/doca/samples/doca_flow/flow_ipv6_flow_label/meson.build

14.4.2.10.3.17 Flow Loopback

This sample illustrates how to implement packet re-injection, or loopback, in VNF mode.

The sample logic includes:

Initializing DOCA Flow by indicating mode_args="vnf,hws" in the doca_flow_cfg struct.
Starting two DOCA Flow ports.
On each port:

Building a UDP pipe that matches a changeable source and destination IPv4 address,
while the forwarding component is RSS to queues. Upon match, setting the packet
meta on this UDP pipe which is referred to as an RSS_UDP_IP pipe.

Adding one entry to the RSS_UDP_IP pipe that matches a packet with a specific
source and destination IPv4 address and setting the meta to 10.
Building a TCP pipe that matches changeable 4-tuple source and destination IPv4 and
port addresses, while the forwarding component is RSS to queues (this pipe is called
RSS_TCP_IP and it is the root pipe on ingress domain).

Adding one entry to the RSS_TCP_IP pipe, that matches a packet with a specific
source and destination port and IPv4 addresses.
On the egress domain, creating the loopback pipe, which is root, and matching TCP
over IPv4 with changeable 4-tuple source and destination port and IPv4 addresses,
while encapsulating the matched packets with VXLAN tunneling and setting the
destination and source MAC addresses to be changeable per entry.
Adding one entry to the loopback pipe with specific values for the match and actions
part while setting the destination MAC address to the port to which to inject the
packet (in this case, it is the ingress port where the packet arrived).
Starting to receive packets loop and printing the metadata

For packets that were re-injected, metadata equaling 10 is printed
Otherwise, 0 is be printed as metadata (indicating that it is the first time the
packet has been encountered)

Reference:

/opt/mellanox/doca/samples/doca_flow/flow_loopback/flow_loopback_sample.c

/opt/mellanox/doca/samples/doca_flow/flow_loopback/flow_loopback_main.c

/opt/mellanox/doca/samples/doca_flow/flow_loopback/meson.build

14.4.2.10.3.18 Flow LPM

This sample illustrates how to use LPM (Longest Prefix Match) pipe

The sample logic includes:

282

1.
2.
3.

a.
b.

i.
ii.

c.

•

•

•

1.
2.
3.

a.

b.
i.

ii.

iii.

iv.

v.

c.

d.

•

Initializing DOCA Flow by indicating mode_args="vnf,hws" in the doca_flow_cfg struct.
Starting two DOCA Flow ports.
On each port:

Building an LPM pipe that matches changeable source IPv4 address.
Adding two example 5-tuple entries:

The first entry with full mask and forward port action
The second entry with 16-bit mask and drop action

Building a control pipe with one entry that forwards IPv4 traffic to the LPM pipe.

Reference:

/opt/mellanox/doca/samples/doca_flow/flow_lpm/flow_lpm_sample.c

/opt/mellanox/doca/samples/doca_flow/flow_lpm/flow_lpm_main.c

/opt/mellanox/doca/samples/doca_flow/flow_lpm/meson.build

14.4.2.10.3.19 Flow LPM with exact match (EM)

This sample illustrates how to use LPM (Longest Prefix Match) pipe with exact match logic (EM)
enabled.

The sample logic includes:

Initializing DOCA Flow by indicating mode_args="vnf,hws" in the doca_flow_cfg struct.
Starting two DOCA Flow ports.
On each port:

Building LPM pipe that matches changeable source IPv4 address (using match) with

exact-match logic on meta.u32[1] and the inner destination MAC and VNI (using

match_mask).
Adding five entries to the LPM:

Default entry with IPv4 subnet 0 to drop the packets which are unmatched in
LPM with EM
Fully masked 1.2.3.4 IPv4 address with meta value 1 , inner destination mac

 1:1:1:1:1:1 , VNI 0xabcde1 to forward to the next port

Fully masked 1.2.3.4 IPv4 address with meta value 2 , inner destination mac

 2:2:2:2:2:2 , VNI 0xabcde2 to forward to the next port

Fully masked 1.2.3.4 IPv4 address with meta value 3 , inner destination mac

 3:3:3:3:3:3 , VNI 0xabcde3 to drop

First 16 bit masked 1.2.0.0 IPv4 address with meta value 3 , inner

destination mac 3:3:3:3:3:3 , VNI 0xabcde3 to forward to the next port

Building basic root pipe which matches everything, copies the outer.eth_vlan0.tci

value to the meta.u32[1] and forwards the packet to the LPM pipe.
Adding single entry to the main pipe.

The sample uses the counters to show the packets per entry. Here are the packets that can be used
for the test and the expected response of the sample to them:

Ether()/Dot1Q(vlan=1)/IP(src="1.2.3.4")/UDP(dport=4789)/VXLAN(vni=0xabcde1)/

Ether(dst="1:1:1:1:1:1") – to be forwarded to next port by entry number 1

283

•

•

•

•

•

•

•

•

•

1.
2.
3.

a.

•

b.

•

c.

•

Ether()/Dot1Q(vlan=2)/IP(src="1.2.3.4")/UDP(dport=4789)/VXLAN(vni=0xabcde2)/

Ether(dst="2:2:2:2:2:2") – to be forwarded to next port by entry number 2

Ether()/Dot1Q(vlan=3)/IP(src="1.2.3.4")/UDP(dport=4789)/VXLAN(vni=0xabcde3)/

Ether(dst="3:3:3:3:3:3") – to be dropped by entry number 3

Ether()/Dot1Q(vlan=3)/IP(src="1.2.125.125")/UDP(dport=4789)/

VXLAN(vni=0xabcde3)/Ether(dst="3:3:3:3:3:3") – to be forwarded to next port by entry
number 4
Ether()/Dot1Q(vlan=5)/IP(src="5.5.5.5")/UDP(dport=4789)/VXLAN(vni=0x424242)/

Ether(dst="42:42:42:42:42:42") – to be dropped by entry number 0 (default)

Ether()/Dot1Q(vlan=1)/IP(src="1.2.3.4")/UDP(dport=4789)/VXLAN(vni=0xabcde1)/

Ether(dst="1:1:1:1:1:2") – to be dropped by entry number 0 (default)

Ether()/Dot1Q(vlan=1)/IP(src="1.2.3.4")/UDP(dport=4789)/VXLAN(vni=0x424242)/

Ether(dst="1:1:1:1:1:1") – to be dropped by entry number 0 (default)

Reference:

/opt/mellanox/doca/samples/doca_flow/flow_lpm_em/flow_lpm_em_sample.c

/opt/mellanox/doca/samples/doca_flow/flow_lpm_em/flow_lpm_em_main.c

/opt/mellanox/doca/samples/doca_flow/flow_lpm_em/meson.build

14.4.2.10.3.20 Flow Modify Header

This sample illustrates how to use DOCA Flow actions to modify the specific packet fields.

The sample logic includes:

Initializing DOCA Flow by indicating mode_args="vnf,hws" in the doca_flow_cfg struct.
Starting two DOCA Flow ports.
On each port, creating serial pipes and jumping to the next pipe if traffic is unmatched:

Building a pipe with action dec_ttl=true and changeable mod_dst_mac . The pipe
matches IPv4 traffic with a changeable destination IP and forwards the matched
packets to the second port.

Adding an entry with an example destination IP (8.8.8.8) and mod_dst_mac valu
e.

Building a pipe with action-changeable mod_vxlan_tun_rsvd1 . The pipe matches IPv4
traffic with a changeable UDP destination port and VXLAN-GPE tunnel ID then forwards
the matched packets to the second port.

Adding an entry with an example VXLAN-GPE tunnel ID (100) and UDP
destination port (4790), then mod_vxlan_tun_rsvd1 value.

Building a pipe with action-changeable mod_vxlan_tun_rsvd1 . The pipe matches IPv4
traffic with a changeable UDP destination port and VXLAN tunnel ID then forwards the
matched packets to the second port.

Adding an entry with an example VXLAN tunnel ID (100) and UDP destination
port (4789), then mod_vxlan_tun_rsvd1 value.

Reference:

284

•

•

•

1.
2.
3.

a.

b.

•

•

•

1.
2.
3.

a.

•
•

b.
i.
ii.

•

•

/opt/mellanox/doca/samples/doca_flow/flow_modify_header/

flow_modify_header_sample.c

/opt/mellanox/doca/samples/doca_flow/flow_modify_header/

flow_modify_header_main.c

/opt/mellanox/doca/samples/doca_flow/flow_modify_header/meson.build

14.4.2.10.3.21 Flow Monitor Meter

This sample illustrates how to use DOCA Flow monitor meter.

The sample logic includes:

Initializing DOCA Flow by indicating mode_args="vnf,hws" in the doca_flow_cfg struct.
Starting two DOCA Flow ports.
On each port:

Building a pipe with monitor meter flag and changeable 5-tuple match. The pipe
forwards the matched packets to the second port.
Adding an entry with an example CIR and CBS values.

Reference:

/opt/mellanox/doca/samples/doca_flow/flow_monitor_meter/

flow_monitor_meter_sample.c

/opt/mellanox/doca/samples/doca_flow/flow_monitor_meter/

flow_monitor_meter_main.c

/opt/mellanox/doca/samples/doca_flow/flow_monitor_meter/meson.build

14.4.2.10.3.22 Flow Multi-actions

This sample shows how to use a DOCA Flow array of actions in a pipe.

The sample logic includes:

Initializing DOCA Flow by indicating mode_args="vnf,hws" in the doca_flow_cfg struct.
Starting two DOCA Flow ports.
On each port:

Building a pipe with changeable source IP match which forwards the matched packets
to the second port and sets different actions in the actions array:

Changeable modify source MAC address
Changeable modify source IP address

Adding two entries to the pipe with different source IP match:
The first entry with an example modify source MAC address.
The second with a modify source IP address.

Reference:

/opt/mellanox/doca/samples/doca_flow/flow_multi_actions/

flow_multi_actions_sample.c

/opt/mellanox/doca/samples/doca_flow/flow_multi_actions/

flow_multi_actions_main.c

285

•

1.
2.
3.

a.
b.

•
•

•

•

•

1.
2.
3.

a.

b.

c.
•
•

4.

•

•

•

/opt/mellanox/doca/samples/doca_flow/flow_multi_actions/meson.build

14.4.2.10.3.23 Flow Multi-fwd

This sample shows how to use a different forward in pipe entries.

The sample logic includes:

Initializing DOCA Flow by indicating mode_args="vnf,hws" in the doca_flow_cfg struct.
Starting two DOCA Flow ports.
On each port:

Building a pipe with changeable source IP match and sending NULL in the forward.
Adding two entries to the pipe with different source IP match, and different forward:

The first entry with forward to the second port
The second with drop

Reference:

/opt/mellanox/doca/samples/doca_flow/flow_multi_fwd/flow_multi_fwd_sample.c

/opt/mellanox/doca/samples/doca_flow/flow_multi_fwd/flow_multi_fwd_main.c

/opt/mellanox/doca/samples/doca_flow/flow_multi_fwd/meson.build

14.4.2.10.3.24 Flow Ordered List

This sample shows how to use a DOCA Flow ordered list pipe.

The sample logic includes:

Initializing DOCA Flow by indicating mode_args="vnf,hws" in the doca_flow_cfg struct.
Starting two DOCA Flow ports.
On each port:

Building a root pipe with changeable 5-tuple match and forwarding to an ordered list
pipe with a changeable index.
Adding two entries to the pipe with an example value sent to a different index in the
ordered list pipe.
Building ordered list pipe with two lists, one for each entry:

First list uses meter and then shared counter
Second list uses shared counter and then meter

Waiting 5 seconds and querying the entries (total bytes and total packets).

Reference:

/opt/mellanox/doca/samples/doca_flow/flow_ordered_list/

flow_ordered_list_sample.c

/opt/mellanox/doca/samples/doca_flow/flow_ordered_list/

flow_ordered_list_main.c

/opt/mellanox/doca/samples/doca_flow/flow_ordered_list/meson.build

14.4.2.10.3.25 Flow Parser Meta

This sample shows how to use some of match.parser_meta fields from 3 families:

286

•
•
•

1.
2.
3.

a.
•

•

b.
•
•

c.
•
•

4.

•

•

•

•
•

1.
2.
3.

a.

b.
•
•

c.

d.

IP fragmentation – matching on whether a packet is IP fragmented
Integrity bits – matching on whether a specific protocol is OK (length, checksum etc.)
Packet types – matching on a specific layer packet type

The sample logic includes:

Initializing DOCA Flow by indicating mode_args="vnf,hws" in the doca_flow_cfg struct.
Starting two DOCA Flow ports.
On each port:

Building a root pipe with outer IP fragmentation match:
If a packet is IP fragmented – forward it to the second port regardless of next
pipes in the pipeline
If a packet is not IP fragmented – proceed with the the pipeline by forwarding it
to integrity pipe

Building an "integrity" pipe with a single entry which continues to the next pipe when:
The outer IPv4 checksum is OK
The inner L3 is OK (incorrect length should be dropped)

Building a "packet type" pipe which forwards packets to the second port when:
The outer L3 type is IPv4
The inner L4 type is either TCP or UDP

Waiting 5 seconds for traffic to arrive.

Reference:

/opt/mellanox/doca/samples/doca_flow/flow_parser_meta/

flow_parser_meta_sample.c

/opt/mellanox/doca/samples/doca_flow/flow_parser_meta/flow_parser_meta_main.c

/opt/mellanox/doca/samples/doca_flow/flow_parser_meta/meson.build

14.4.2.10.3.26 Flow Random

This sample shows how to use match.parser_meta.random field for 2 different use-cases:

Sampling – sampling certain percentage of traffic regardless of flow content
Distribution – distributing traffic in 8 different queues

The sample logic includes:

Initializing DOCA Flow by indicating mode_args="vnf,hws" in the doca_flow_cfg struct.
Starting two DOCA Flow ports.
On each port:

Building a root pipe with changeable 5-tuple match and forwarding to specific use-case
pipe according to changeable source IP address.
Adding two entries to the pipe with different source IP match, and different forward:

The first entry with forward to the sampling pipe.
The second entry with forward to the distribution pipe.

Building a "sampling" pipe with a single entry and preparing the entry to sample 12.5%
of traffic.
Building a "distribution" hash pipe with 8 entries and preparing the entries to get 12.5%
of traffic for each queue.

287

4.

•

•

•

1.
2.
3.

a.

b.
4.
5.

a.
b.

•

•

•

1.
2.
3.

a.

b.
4.

•

Waiting 15 seconds and querying the entries (total packets after sampling/distribution related
to total packets before).

Reference:

/opt/mellanox/doca/samples/doca_flow/flow_random/flow_random_sample.c

/opt/mellanox/doca/samples/doca_flow/flow_random/flow_random_main.c

/opt/mellanox/doca/samples/doca_flow/flow_random/meson.build

14.4.2.10.3.27 Flow RSS ESP

This sample shows how to use DOCA Flow forward RSS according to ESP SPI field, and distribute the
traffic between queues.

The sample logic includes:

Initializing DOCA Flow by indicating mode_args="vnf,hws" in the doca_flow_cfg struct.
Starting two DOCA Flow ports.
On each port:

Building a pipe with both L3 and L4 types match, copy the SPI field into packet meta
data, and forwarding to RSS with 7 queues.
Adding an entry with both IPv4 and ESP existence matching.

Waiting 15 seconds for traffic to arrived.
On each port:

Calculates the traffic percentage distributed into each port and prints the result.
Printing for each packet its SPI value. (only in debug mode, -l ≥ 60)

Reference:

/opt/mellanox/doca/samples/doca_flow/flow_rss_esp/flow_rss_esp_sample.c

/opt/mellanox/doca/samples/doca_flow/flow_rss_esp/flow_rss_esp_main.c

/opt/mellanox/doca/samples/doca_flow/flow_rss_esp/meson.build

14.4.2.10.3.28 Flow RSS Meta

This sample shows how to use DOCA Flow forward RSS, set meta action, and then retrieve the
matched packets in the sample.

The sample logic includes:

Initializing DOCA Flow by indicating mode_args="vnf,hws" in the doca_flow_cfg struct.
Starting two DOCA Flow ports.
On each port:

Building a pipe with a changeable 5-tuple match, forwarding to RSS queue with index
0, and setting changeable packet meta data.
Adding an entry with an example 5-tuple and metadata value to the pipe.

Retrieving the packets on both ports from a receive queue, and printing the packet metadata
value.

Reference:

/opt/mellanox/doca/samples/doca_flow/flow_rss_meta/flow_rss_meta_sample.c

288

•

•

1.

2.
3.

a.
b.
c.
d.
e.

4.

•

•

•

1.
2.
3.

1.

2.
3.

4.

•

/opt/mellanox/doca/samples/doca_flow/flow_rss_meta/flow_rss_meta_main.c

/opt/mellanox/doca/samples/doca_flow/flow_rss_meta/meson.build

14.4.2.10.3.29 Flow Sampling

This sample shows how to sample certain percentage of traffic regardless of flow content using
doca_flow_match_condition structure with parser_meta.random.value field string.

The sample logic includes:

Initializing DOCA Flow by indicating mode_args="switch,hws" in the doca_flow_cfg struct
.
Starting DOCA Flow ports: Physical port and two SF representors.
On switch port:

Building a root pipe with changeable 5-tuple match and forwarding to sampling pipe.
Adding entry with an example 5-tuple to the pipe.
Building a "sampling" control pipe with a single entry.
calculating the requested random value for getting 35% of traffic.
Adding entry with an example condition random value to the pipe.

Waiting 15 seconds and querying the entries (total packets after sampling related to total
packets before).

Reference:

/opt/mellanox/doca/samples/doca_flow/flow_sampling/flow_sampling_sample.c

/opt/mellanox/doca/samples/doca_flow/flow_sampling/flow_sampling_main.c

/opt/mellanox/doca/samples/doca_flow/flow_sampling/meson.build

14.4.2.10.3.30 Flow Set Meta

This sample shows how to use the DOCA Flow set metadata action and then match on it.

The sample logic includes:

Initializing DOCA Flow by indicating mode_args="vnf,hws" in the doca_flow_cfg struct.
Starting two DOCA Flow ports.
On each port:

Building a pipe with a changeable match on metadata and forwarding the matched packets to
the second port.
Adding an entry that matches an example metadata value.
Building a pipe with changeable 5-tuple match, changeable metadata action, and fwd to the
first pipe.
Adding entry with an example 5-tuple and metadata value to the pipe.

Reference:

/opt/mellanox/doca/samples/doca_flow/flow_set_meta/flow_set_meta_sample.c

This sample is supported for ConnectX-7/BlueField-3 and above.

289

•

•

1.
2.
3.

a.
b.

c.
d.

e.
f.

•
•

4.

•

•

•

1.
2.
3.

a.
b.
c.

d.
e.

f.

/opt/mellanox/doca/samples/doca_flow/flow_set_meta/flow_set_meta_main.c

/opt/mellanox/doca/samples/doca_flow/flow_set_meta/meson.build

14.4.2.10.3.31 Flow Shared Counter

This sample shows how to use the DOCA Flow shared counter and query it to get the counter
statistics.

The sample logic includes:

Initializing DOCA Flow by indicating mode_args="vnf,hws" in the doca_flow_cfg struct.
Starting two DOCA Flow ports.
On each port:

Binding the shared counter to the port.
Building a pipe with changeable 5-tuple match with UDP protocol, changeable shared
counter ID and forwarding the matched packets to the second port.
Adding an entry with an example 5-tuple match and shared counter with ID= port_id .
Building a pipe with changeable 5-tuple match with TCP protocol, changeable shared
counter ID and forwarding the matched packets to the second port.
Adding an entry with an example 5-tuple match and shared counter with ID= port_id .
Building a control pipe with the following entries:

If L4 type is UDP, forwards the packets to the UDP pipe
If L4 type is TCP, forwards the packets to the TCP pipe

Waiting 5 seconds and querying the shared counters (total bytes and total packets).

Reference:

/opt/mellanox/doca/samples/doca_flow/flow_shared_counter/

flow_shared_counter_sample.c

/opt/mellanox/doca/samples/doca_flow/flow_shared_counter/

flow_shared_counter_main.c

/opt/mellanox/doca/samples/doca_flow/flow_shared_counter/meson.build

14.4.2.10.3.32 Flow Shared Meter

This sample shows how to use the DOCA Flow shared meter.

The sample logic includes:

Initializing DOCA Flow by indicating mode_args="vnf,hws" in the doca_flow_cfg struct.
Starting two DOCA Flow ports.
On each port:

Config a shared meter with specific cir and cbs values.
Binding the shared meter to the port.
Building a pipe with a changeable 5-tuple match with UDP protocol, changeable shared
meter ID and forwarding the matched packets to the second port.
Adding an entry with an example 5-tuple match and shared meter with ID= port_id .
Building a pipe with a changeable 5-tuple match with TCP protocol, changeable shared
meter ID and forwarding the matched packets to the second port.
Adding an entry with an example 5-tuple match and shared meter with ID= port_id .

290

g.
•
•

•

•

•

1.

2.
3.

a.
b.

c.

•

•

•

Building a control pipe with the following entries:
If L4 type is UDP, forwards the packets to the UDP pipe
If L4 type is TCP, forwards the packets to the TCP pipe

Reference:

/opt/mellanox/doca/samples/doca_flow/flow_shared_meter/

flow_shared_meter_sample.c

/opt/mellanox/doca/samples/doca_flow/flow_shared_meter/

flow_shared_meter_main.c

/opt/mellanox/doca/samples/doca_flow/flow_shared_meter/meson.build

14.4.2.10.3.33 Flow Switch Control Pipe

This sample shows how to use the DOCA Flow control pipe in switch mode.

The sample logic includes:

Initializing DOCA Flow by indicating mode_args="switch,hws" in the doca_flow_cfg struct
.
Starting two DOCA Flow ports.
On each port:

Building control pipe with match on VNI field.
Adding two entries to the control pipe, both matching TRANSPORT (UDP or TCP proto)
over IPv4 with source port 80 and forwarding to the other port, where the first entry
matches destination port 1234 and the second 12345.
Both entries have counters, so that after the successful insertions of both entries, the
sample queries those counters to check the number of matched packets per entry.

Reference:

/opt/mellanox/doca/samples/doca_flow/flow_switch_control_pipe/

flow_switch_control_pipe_sample.c

/opt/mellanox/doca/samples/doca_flow/flow_switch_control_pipe/

flow_switch_control_pipe_main.c

/opt/mellanox/doca/samples/doca_flow/flow_switch_control_pipe/meson.build

14.4.2.10.3.34 Flow Switch – Multiple Switches

This sample illustrates how to use two switches working concurrently on two different physical
functions.

It shows how to build a basic pipe in a switch and hardware steering (HWS) mode. Each pipe
contains two entries, each of which forwards matched packets to two different representors.

The sample also demonstrates how to obtain the switch port of a given port using
doca_flow_port_switch_get() .

The sample logic includes:

The test requires two PFs with two (either VF or SF) representors on each.

291

1.

2.
3.

a.

b.

•

•

•

•

•

•

•

•

Initializing DOCA Flow by indicating mode_args="switch,hws" in the doca_flow_cfg struct
.
Starting DOCA Flow ports: Two physical ports and two representors each (totaling six ports).
On the switch port:

Building a basic pipe while indicating which fields to match on using struct

doca_flow_match match .
Adding two entries to the created pipe, each of which forwards packets to a different
port representor.

Reference:

/opt/mellanox/doca/samples/doca_flow/flow_switch/flow_switch_sample.c

/opt/mellanox/doca/samples/doca_flow/flow_switch/flow_switch_main.c

/opt/mellanox/doca/samples/doca_flow/flow_switch/meson.build

14.4.2.10.3.35 Flow Switch – Single Switch

This sample is identical to the previous sample, before the flow switch sample was extended to take
advantage of the capabilities of DOCA to support multiple switches concurrently, each based on a
different physical device.

The reason we add this original version is that it removes the constraints imposed by the modified
flow switch version, allowing to use arbitrary number of representors in the switch configuration.

The logic of this sample is identical to that of the previous sample with 2 new pipes.

A user RSS pipe which receives the packets which missed TC rules (in the kernel domain in
this case)
A simple pipe forwarding packets to kernel domain by using DOCA_FLOW_FWD_TARGET

In the to_kernel_pipe , all the IPv4 packets are forwarded to the kernel (i.e., entry 0 in

to_kernel_pipe). In the kernel domain, all the IPv4 packets are missed to the NIC domain if there
is no TC rule. In the NIC domain, the IPv4 packets missed from the NIC domain are forwarded to
slow path (i.e., the representor of the PF/VF).

Root pipe:

Entry 0: IP src 1.2.3.4 / dst 8.8.8.8 / TCP src 1234 dst 80 -> port 0
Entry 1: IP src 1.2.3.5 / dst 8.8.8.9 / TCP src 1234 dst 80 -> port 1
Miss: -> To kernel pipe

To kernel pipe:

Entry 0: IPv4 -> send to kernel
IPv6 traffic would be dropped

RSS pipe:

Entry 0: IPv4 -> port 0 rss queue 0

Reference:

292

•

•

•

1.

2.
3.

a.
i.

ii.
•

•

b.
i.

ii.

c.
i.

ii.
•

•

•

/opt/mellanox/doca/samples/doca_flow/flow_switch_single/

flow_switch_single_sample.c

/opt/mellanox/doca/samples/doca_flow/flow_switch_single/

flow_switch_single_main.c

/opt/mellanox/doca/samples/doca_flow/flow_switch_single/meson.build

14.4.2.10.3.36 Flow Switch (Direction Info)

This sample illustrates how to give a hint to the driver for potential optimizations based on the
direction information.

The sample also demonstrates usage of the match.parser_meta.port_meta to detect by the
switch pipe the source from where the packet has arrived.

The sample logic includes:

Initializing DOCA Flow by indicating mode_args="switch,hws" in the doca_flow_cfg struct
.
Starting 3 DOCA Flow ports, 1 physical port and 2 representors.
On the switch port:

Network-to-host pipe:
Building basic pipe with a changeable ipv4.next_proto field and configuring

the pipe with the hint of direction by setting attr.dir_info =

DOCA_FLOW_DIRECTION_NETWORK_TO_HOST .
Adding two entries:

If ipv4.next_proto is TCP, the packet is forwarded to the first
representor, to the host.
If ipv4.next_proto is UDP, the packet is forwarder to the second
representor, to the host.

Host-to-network pipe:
Building a basic pipe with a match on aa:aa:aa:aa:aa:aa as a source MAC
address and configuring a pipe with the hint of direction by setting
attr.dir_info = DOCA_FLOW_DIRECTION_HOST_TO_NETWORK .
Adding an entry. If the source MAC is matched, forward the packet to the
physical port (i.e., to the network).

Switch pipe:
Building a basic pipe with a changeable parser_meta.port_meta to detect
where the packet has arrived from.
Adding 3 entries:

If the packet arrived from port 0 (i.e., the network), forward it to the
network-to-host pipe to decide for further logic
If the packet arrived from port 1 (i.e., the host's first representor),
forward it to the host-to-network pipe to decide for further logic
If the packet arrived from port 2, (i.e., the host's second representor),
forward it to the host-to-network pipe to decide for further logic

This sample requires a single PF with two representors (either VF or SF).

293

•

•

•

•

•

•

1.
•

2.
•
•

3.
a.

b.

c.

4.
•
•

1.

Reference:

/opt/mellanox/doca/samples/doca_flow/flow_switch_direction_info/

flow_switch_direction_info_sample.c

/opt/mellanox/doca/samples/doca_flow/flow_switch_direction_info/

flow_switch_direction_info_main.c

/opt/mellanox/doca/samples/doca_flow/flow_switch_direction_info/meson.build

14.4.2.10.3.37 Flow Switch Hot Upgrade

This sample demonstrates how to use the port operation state mechanism for a hot upgrade use
case. It shows how to configure the state of a port during initialization and how to modify the state
after the port has already been started.

Prerequisites

The test requires two physical functions (PFs) with two (either VFs or SFs) representors on each.

Command-line Arguments

The sample allows users to specify the operation state of the instance using the --state <value>
argument. The relevant values are:

0 for DOCA_FLOW_PORT_OPERATION_STATE_ACTIVE

1 for DOCA_FLOW_PORT_OPERATION_STATE_ACTIVE_READY_TO_SWAP

2 for DOCA_FLOW_PORT_OPERATION_STATE_STANDBY

Sample Logic

Initialize DOCA Flow:
Indicate mode_args="switch" in the doca_flow_cfg structure.

Start DOCA Flow ports:
Two physical ports and two representors each (totaling six ports) are started.
Both switch ports are configured with
DOCA_FLOW_PORT_OPERATION_STATE_UNCONNECTED state.

Configure each switch port:
Build a basic pipe with a miss counter matching on outer L3 type (specific IPv4) and
outer L4 type (changeable).
Add two entries to the created pipe with counters, each forwarding packets to a
different port representor.
Modify the port operation state from
DOCA_FLOW_PORT_OPERATION_STATE_UNCONNECTED to the required state.

Traffic handling:
Wait for traffic until a SIGQUIT signal (Ctrl+) is received.
While traffic is being received, traffic statistics are printed to stdout.

Hot Upgrade Use Case

To illustrate the hot upgrade use case, follow these steps:

Create two different instances in separate windows with different states.

294

2.

3.

•

•

•

•

•

•

1.
2.
3.

a.
b.

Close the active process by typing Ctrl+\ while traffic is being received. The traffic statistics
will start printing in the standby instance.
Restart the first instance. The traffic statistics will stop printing in the standby instance and
start printing in the active instance again.

Swap Use Case

When both instances are running, the swap use case can be demonstrated by typing Ctrl+C:

Typing Ctrl+C in the active instance changes its state to
DOCA_FLOW_PORT_OPERATION_STATE_ACTIVE_READY_TO_SWAP
Typing Ctrl+C in the standby instance changes its state to
DOCA_FLOW_PORT_OPERATION_STATE_ACTIVE
Typing Ctrl+C in the active instance again changes its state to
DOCA_FLOW_PORT_OPERATION_STATE_STANDBY

References

/opt/mellanox/doca/samples/doca_flow/flow_switch_hot_upgrade/

flow_switch_hot_upgrade_sample.c

/opt/mellanox/doca/samples/doca_flow/flow_switch_hot_upgrade/

flow_switch_hot_upgrade_main.c

/opt/mellanox/doca/samples/doca_flow/flow_switch_hot_upgrade/meson.build

14.4.2.10.3.38 Flow VXLAN Encap

This sample shows how to use DOCA Flow actions to create a VXLAN/VXLANGPE/VXLANGBP tunnel as
well as illustrating the usage of matching TCP and UDP packets in the same pipe.

The sample logic includes:

Initializing DOCA Flow by indicating mode_args="vnf,hws" in the doca_flow_cfg struct.
Starting two DOCA Flow ports.
On each port:

Building a pipe with changeable 5-tuple match, encap action, and forward port action.
Adding example 5-tuple and encapsulation values entry to the pipe. Every TCP or UDP
over IPv4 packet with the same 5-tuple is matched and encapsulated.

•

•

DPDK prevents users from creating two primary instances. To avoid this limitation,
use the --file-prefix EAL argument.

Example for the "active" instance:

/tmp/build/samples/doca_flow_switch_hot_upgrade -- -p 08:00.0 -p 08:00.1 -r vf[0-1] -r
vf[0-1] -l 70

Example for the "stand-by" instance:

/tmp/build/samples/doca_flow_switch_hot_upgrade --file-prefix standby -- -p 08:00.0 -p
08:00.1 -r vf[0-1] -r vf[0-1] -l 70 --state 2

295

•

•

•

1.
2.
3.

a.
b.
c.

d.
e.

f.
g.

•
•

h.

•

•

•

1.
2.
3.

Reference:

/opt/mellanox/doca/samples/doca_flow/flow_vxlan_encap/

flow_vxlan_encap_sample.c

/opt/mellanox/doca/samples/doca_flow/flow_vxlan_encap/flow_vxlan_encap_main.c

/opt/mellanox/doca/samples/doca_flow/flow_vxlan_encap/meson.build

14.4.2.10.3.39 Flow Shared Mirror

This sample shows how to use the DOCA Flow shared mirror.

The sample logic includes:

Initializing DOCA Flow by indicating mode_args="vnf,hws" in the doca_flow_cfg struct.
Starting two DOCA Flow ports.
On each port:

Configuring a shared mirror with a clone destination hairpin to the second port.
Binding the shared mirror to the port.
Building a pipe with a changeable 5-tuple match with UDP protocol, changeable shared
mirror ID, and forwarding the matched packets to the second port.
Adding an entry with an example 5-tuple match and shared mirror with ID= port_id+1 .
Building a pipe with a changeable 5-tuple match with TCP protocol, changeable shared
mirror ID, and forwarding the matched packets to the second port.
Adding an entry with an example 5-tuple match and shared mirror with ID= port_id+1 .
Building a control pipe with the following entries:

If L4 type is UDP, forwards the packets to the UDP pipe
If L4 type is TCP, forwards the packets to the TCP pipe

Waiting 15 seconds to clone any incoming traffic. Should see the same two packets
received on the second port (one from the clone and another from the original).

Reference:

/opt/mellanox/doca/samples/doca_flow/flow_shared_mirror/

flow_shared_mirror_sample.c

/opt/mellanox/doca/samples/doca_flow/flow_shared_mirror/

flow_shared_mirror_main.c

/opt/mellanox/doca/samples/doca_flow/flow_shared_mirror/meson.build

14.4.2.10.3.40 Flow Match Comparison

This sample shows how to use the DOCA Flow match with a comparison result.

The sample logic includes:

Initializing DOCA Flow by indicating mode_args="vnf,hws" in the doca_flow_cfg struct.
Starting two DOCA Flow ports.
On each port:

A current limitation does not allow using shared mirror IDs bearing the value zero.

296

a.

b.
c.
d.

e.

f.

•

•

•

1.

2.

3.

a.

b.

c.

Building a pipe with a changeable match on meta_data[0] and forwarding the
matched packets to the second port.
Adding an entry that matches on meta_data[0] equal with TCP header length.
Building a control pipe for comparison purpose.
Adding an entry to the control pipe match with comparison result the meta_data[0]

value greater than meta_data[1] and forwarding the matched packets to match with
the meta pipe.
Building a pipe with a changeable 5-tuple match, copying ipv4.total_len to

meta_data[1] , and accumulating ipv4.version_ihl << 2 tcp.data_offset << 2

to meta_data[1] , then forwarding to the second pipe.
Adding an example 5-tuple entry to the pipe.

Reference:

/opt/mellanox/doca/samples/doca_flow/flow_match_comparison/

flow_match_comparison_sample.c

/opt/mellanox/doca/samples/doca_flow/flow_match_comparison/

flow_match_comparison_main.c

/opt/mellanox/doca/samples/doca_flow/flow_match_comparison/meson.build

14.4.2.10.3.41 Flow Pipe Resize

This sample shows how the DOCA Flow pipe resize feature behaves as pipe size increases. The pipe
type under resize (basic or control) can be specified in the command line.

The sample logic includes:

Initializing DOCA Flow by indicating mode_args="switch,hws,cpds" in the doca_flow_cfg s
truct.

Starting a PF with two representors of SFs or VFs and selecting the pipe type under resize.
For example:

./doca_flow_pipe_resize -- --pipe-type <basic|control> -p 08:00.0 -r sf\[0-1\] -l 60 --sdk-log-level 50

Starting with a pipe of a max size of 10 entries then adding 80 entries. Instead of failing on
adding the 11th entry, the pipe continues increasing in the following manner:

Receiving a CONGESTION_REACHED callback whenever the number of current entries
exceeds a threshold level of 80%.
Calling doca_flow_pipe_resize() with threshold percentage of 50%. Roughly, the
new size is calculated as: (current entries) / (50%) rounded up to the nearest power of
2. A callback can indicate the exact number of entries.
Receiving a callback on the exact new calculated size of the pipe:

The CPDS (control pipe dynamic size) argument is relevant for a control pipe only. By
default, a control pipe's internal tables have a default size of 64 entries. Using the
CPDS mode, each table's initial size matches the control pipe size.

297

d.

e.

f.

g.

•

•
•

1.

2.
3.

4.
5.

•

typedef doca_error_t (*doca_flow_pipe_resize_nr_entries_changed_cb)(void *pipe_user_ctx, uint32_t
nr_entries);

Start calling doca_flow_entries_process() in a loop on each thread ID to trigger
the entry relocations.

Receiving a callback on each entry relocated to the new resized pipe:

typedef doca_error_t (*doca_flow_pipe_resize_entry_relocate_cb)(void *pipe_user_ctx, uint16_t
pipe_queue, void *entry_user_ctx, void **new_entry_user_ctx)

Receiving a PIPE_RESIZED callback upon completion of the resize process. At this

point, in case of a control pipe, calling doca_flow_entries_process() should stop.

In case of a basic pipe, continue calling doca_flow_entries_process() to process
the last entries being added to the pipe.

Waiting 5 seconds to send any traffic that matches the flows and seeing them on the
other port.

Reference:

/opt/mellanox/doca/samples/doca_flow/flow_pipe_resize/

flow_pipe_resize_sample.c

/opt/mellanox/doca/samples/doca_flow/flow_pipe_resize/flow_pipe_resize_main.c
/opt/mellanox/doca/samples/doca_flow/flow_pipe_resize/meson.build

14.4.2.10.3.42 Flow Entropy

This sample shows how to use the DOCA Flow entropy calculation.

The sample logic includes:

Initializing DOCA Flow by indicating mode_args="switch,hws" in the doca_flow_cfg struct
.
Starting one DOCA Flow port.
Configuring the doca_flow_entropy_format structure with 5-tuple values.

Calling to doca_flow_port_calc_entropy to get the calculated entropy.
Logging the calculated entropy.

Reference:

/opt/mellanox/doca/samples/doca_flow/flow_entropy/flow_entropy_sample.c

The loop should continue as long as the resize process was not ended.

The resize cycles described above repeats five times increasing the pipe sizes
in these steps: 10 -> 16 -> 32 -> 64 -> 128.

The pipe control entries define a match on increasing destination IP address.
The fwd action send packet to the other port.

298

•

•

1.
2.
3.

a.
b.

c.

•

•

•

/opt/mellanox/doca/samples/doca_flow/flow_entropy/flow_entropy_main.c

/opt/mellanox/doca/samples/doca_flow/flow_entropy/meson.build

14.4.2.10.3.43 Flow VXLAN Shared Encap

This sample shows how to use DOCA Flow actions to create a VXLAN tunnel as well as illustrating the
usage of matching TCP and UDP packets in the same pipe.

The VXLAN tunnel is created by shared_resource_encap .

The sample logic includes:

Initializing DOCA Flow by indicating mode_args="vnf,hws" in the doca_flow_cfg struct.
Starting two DOCA Flow ports.
On each port:

Configure and bind shared encap resources. The encap resources are for VXLAN encap.
Building a pipe with changeable 5-tuple match, shared_encap_id , and forward port
action.
Adding example 5-tuple and encapsulation values entry to the pipe. Every TCP or UDP
over IPv4 packet with the same 5-tuple is matched and encapsulated.

Reference:

/opt/mellanox/doca/samples/doca_flow/flow_vxlan_shared_encap/

flow_vxlan_shared_encap_sample.c

/opt/mellanox/doca/samples/doca_flow/flow_vxlan_shared_encap/

flow_vxlan_shared_encap_main.c

/opt/mellanox/doca/samples/doca_flow/flow_vxlan_shared_encap/meson.build

14.4.2.11 Field String Support Appendix

14.4.2.11.1 Supported Field String

The following is a list of all the API fields available for matching criteria and action execution.

String Field Path in The Structure S
e
t

Add Copy Cond
ition

Match Actions D
s
t

S
r
c

D
s
t

S
r
c

A B

meta.data (bit_offset < 32) meta.pkt_meta meta.pkt_meta ✔ ✔ ✔ ✔ ✔ ✔ ✔

meta.data (bit_offset ≥ 32) meta.u32[i] meta.u32[i] ✔ ✔ ✔ ✔ ✔ ✔ ✔

meta.mark meta.mark meta.mark ✘ ✘ ✘ ✘ ✘ ✘ ✘

parser_meta.hash.result None. See section "Copy Hash Result" for
details.

N/
A

N/
A
✔ N/

A
✔ ✘ ✘

parser_meta.port.id parser_meta.port_me

ta

N/
A

N/
A

✘ N/
A

✘ ✘ ✘

http://confluence.nvidia.com#Copy%20Hash%20Result

299

String Field Path in The Structure S
e
t

Add Copy Cond
ition

Match Actions D
s
t

S
r
c

D
s
t

S
r
c

A B

parser_meta.ipsec.syndro

me

parser_meta.ipsec_s

yndrome

N/
A

N/
A

✘ N/
A

✘ ✘ ✘

parser_meta.psp.syndrome parser_meta.psp_syn

drome

N/
A

N/
A

✘ N/
A

✘ ✘ ✘

parser_meta.random.value parser_meta.random N/
A

N/
A

✘ N/
A

✘ ✔ ✘

parser_meta.meter.color parser_meta.meter_c

olor

N/
A

N/
A

✘ N/
A

✘ ✘ ✘

parser_meta.packet_type.

l2_outer

parser_meta.outer_l

2_type

N/
A

N/
A

N/
A

N/
A

N/
A

N/
A

N/
A

parser_meta.packet_type.

l3_outer

parser_meta.outer_l

3_type

N/
A

N/
A

N/
A

N/
A

N/
A

N/
A

N/
A

parser_meta.packet_type.

l4_outer

parser_meta.outer_l

4_type

N/
A

N/
A

N/
A

N/
A

N/
A

N/
A

N/
A

parser_meta.packet_type.

l2_inner

parser_meta.inner_l

2_type

N/
A

N/
A

N/
A

N/
A

N/
A

N/
A

N/
A

parser_meta.packet_type.

l3_inner

parser_meta.inner_l

3_type

N/
A

N/
A

N/
A

N/
A

N/
A

N/
A

N/
A

parser_meta.packet_type.

l4_inner

parser_meta.inner_l

4_type

N/
A

N/
A

N/
A

N/
A

N/
A

N/
A

N/
A

parser_meta.outer_ip_fra

gmented.flag

parser_meta.outer_i

p_fragmented

N/
A

N/
A

N/
A

N/
A

N/
A

N/
A

N/
A

parser_meta.inner_ip_fra

gmented.flag

parser_meta.inner_i

p_fragmented

N/
A

N/
A

N/
A

N/
A

N/
A

N/
A

N/
A

parser_meta.outer_integr

ity.l3_ok

parser_meta.outer_l

3_ok

N/
A

N/
A

N/
A

N/
A

N/
A

N/
A

N/
A

parser_meta.outer_integr

ity.ipv4_checksum_ok

parser_meta.outer_i

p4_checksum_ok

N/
A

N/
A

N/
A

N/
A

N/
A

N/
A

N/
A

parser_meta.outer_integr

ity.l4_ok

parser_meta.outer_l

4_ok

N/
A

N/
A

N/
A

N/
A

N/
A

N/
A

N/
A

parser_meta.outer_integr

ity.l4_checksum_ok

parser_meta.outer_l

4_checksum_ok

N/
A

N/
A

N/
A

N/
A

N/
A

N/
A

N/
A

parser_meta.inner_integr

ity.l3_ok

parser_meta.inner_l

3_ok

N/
A

N/
A

N/
A

N/
A

N/
A

N/
A

N/
A

300

String Field Path in The Structure S
e
t

Add Copy Cond
ition

Match Actions D
s
t

S
r
c

D
s
t

S
r
c

A B

parser_meta.inner_integr

ity.ipv4_checksum_ok

parser_meta.inner_i

p4_checksum_ok

N/
A

N/
A

N/
A

N/
A

N/
A

N/
A

N/
A

parser_meta.inner_integr

ity.l4_ok

parser_meta.inner_l

4_ok

N/
A

N/
A

N/
A

N/
A

N/
A

N/
A

N/
A

parser_meta.inner_integr

ity.l4_checksum_ok

parser_meta.inner_l

4_checksum_ok

N/
A

N/
A

N/
A

N/
A

N/
A

N/
A

N/
A

outer.eth.dst_mac outer.eth.dst_mac outer.eth.dst_m

ac

✔ ✘ ✔ ✔ ✔ ✘ ✘

outer.eth.src_mac outer.eth.src_mac outer.eth.src_m

ac

✔ ✘ ✔ ✔ ✔ ✘ ✘

outer.eth.type outer.eth.type outer.eth.type ✔ ✘ ✔ ✔ ✔ ✘ ✘

outer.eth_vlan0.tci outer.eth_vlan[0].t

ci

outer.eth_vlan[

0].tci

✔ ✘ ✔ ✔ ✔ ✘ ✘

outer.eth_vlan1.tci outer.eth_vlan[1].t

ci

outer.eth_vlan[

1].tci

✘ ✘ ✘ ✘ ✘ ✘ ✘

outer.ipv4.src_ip outer.ip4.src_ip outer.ip4.src_i

p

✔ ✘ ✔ ✔ ✔ ✘ ✘

outer.ipv4.dst_ip outer.ip4.dst_ip outer.ip4.dst_i

p

✔ ✘ ✔ ✔ ✔ ✘ ✘

outer.ipv4.dscp_ecn outer.ip4.dscp_ecn outer.ip4.dscp_

ecn

✔ ✘ ✔ ✔ ✔ ✘ ✘

outer.ipv4.next_proto outer.ip4.next_prot

o

outer.ip4.next_

proto

✔ ✘ ✔ ✔ ✔ ✘ ✘

outer.ipv4.ttl outer.ip4.ttl outer.ip4.ttl ✔ ✔ ✔ ✔ ✔ ✘ ✘

outer.ipv4.version_ihl outer.ip4.version_i

hl

outer.ip4.versi

on_ihl

✔ ✔ ✔ ✔ ✔ ✘ ✘

outer.ipv4.total_len outer.ip4.total_len outer.ip4.total

_len

✔ ✔ ✔ ✔ ✔ ✘ ✘

outer.ipv6.src_ip outer.ip6.src_ip outer.ip6.src_i

p

✔ ✘ ✔ ✔ ✔ ✘ ✘

outer.ipv6.dst_ip outer.ip6.dst_ip outer.ip6.dst_i

p

✔ ✘ ✔ ✔ ✔ ✘ ✘

301

String Field Path in The Structure S
e
t

Add Copy Cond
ition

Match Actions D
s
t

S
r
c

D
s
t

S
r
c

A B

outer.ipv6.traffic_class outer.ip6.traffic_c

lass

outer.ip6.traff

ic_class

✔ ✘ ✔ ✔ ✔ ✘ ✘

outer.ipv6.flow_label outer.ip6.flow_labe

l

outer.ip6.flow_

label

✔ ✘ ✔ ✔ ✔ ✘ ✘

outer.ipv6.next_proto outer.ip6.next_prot

o

outer.ip6.next_

proto

✔ ✘ ✔ ✔ ✔ ✘ ✘

outer.ipv6.hop_limit outer.ip6.hop_limit outer.ip6.hop_l

imit

✔ ✔ ✔ ✔ ✔ ✘ ✘

outer.ipv6.payload_len outer.ip6.payload_l

en

outer.ip6.paylo

ad_len

✔ ✔ ✔ ✔ ✔ ✘ ✘

outer.udp.src_port outer.udp.l4_port.s

rc_port

outer.udp.l4_po

rt.src_port

✔ ✘ ✔ ✔ ✔ ✘ ✘

outer.udp.dst_port outer.udp.l4_port.d

st_port

outer.udp.l4_po

rt.dst_port

✔ ✘ ✔ ✔ ✔ ✘ ✘

outer.transport.src_port outer.transport.src

_port

outer.transport

.src_port

✔ ✘ ✔ ✔ ✔ ✘ ✘

outer.transport.dst_port outer.transport.dst

_port

outer.transport

.dst_port

✔ ✘ ✔ ✔ ✔ ✘ ✘

outer.tcp.src_port outer.tcp.l4_port.s

rc_port

outer.tcp.l4_po

rt.src_port

✔ ✘ ✔ ✔ ✔ ✘ ✘

outer.tcp.dst_port outer.tcp.l4_port.d

st_port

outer.tcp.l4_po

rt.dst_port

✔ ✘ ✔ ✔ ✔ ✘ ✘

outer.tcp.flags outer.tcp.flags outer.tcp.flags ✘ ✘ ✘ ✘ ✘ ✘ ✘

outer.tcp.data_offset outer.tcp.data_offs

et

outer.tcp.data_

offset

✘ ✔ ✔ ✔ ✔ ✘ ✘

outer.icmp4.type outer.icmp.type outer.icmp.type ✘ ✘ ✘ ✘ ✘ ✘ ✘

outer.icmp4.code outer.icmp.code outer.icmp.code ✘ ✘ ✘ ✘ ✘ ✘ ✘

outer.icmp4.ident outer.icmp.ident outer.icmp.iden

t

✘ ✘ ✘ ✘ ✘ ✘ ✘

outer.icmp6.type outer.icmp.type outer.icmp.type ✘ ✘ ✘ ✘ ✘ ✘ ✘

outer.icmp6.code outer.icmp.code outer.icmp.code ✘ ✘ ✘ ✘ ✘ ✘ ✘

tunnel.gre.protocol tun.protocol tun.protocol ✘ ✘ ✘ ✘ ✘ ✘ ✘

302

String Field Path in The Structure S
e
t

Add Copy Cond
ition

Match Actions D
s
t

S
r
c

D
s
t

S
r
c

A B

tunnel.gre_key.value tun.gre_key tun.gre_key ✘ ✘ ✘ ✘ ✘ ✘ ✘

tunnel.nvgre.protocol tun.protocol tun.protocol ✘ ✘ ✘ ✘ ✘ ✘ ✘

tunnel.nvgre.nvgre_vs_id tun.nvgre_vs_id tun.nvgre_vs_id ✘ ✘ ✘ ✘ ✘ ✘ ✘

tunnel.nvgre.nvgre_flow_

id

tun.nvgre_flow_id tun.nvgre_flow_

id

✘ ✘ ✘ ✘ ✘ ✘ ✘

tunnel.vxlan.vni tun.vxlan_tun_id tun.vxlan_tun_i

d

✔ ✘ ✔ ✔ ✔ ✘ ✘

tunnel.vxlan_gpe.vni tun.vxlan_tun_id tun.vxlan_tun_i

d

✔ ✘ ✔ ✔ ✔ ✘ ✘

tunnel.vxlan_gbp.vni tun.vxlan_tun_id tun.vxlan_tun_i

d

✔ ✘ ✔ ✔ ✔ ✘ ✘

tunnel.vxlan_gpe.next_pr

oto

tun.vxlan_next_prot

ocol

✘ ✘ ✘ ✘ ✘ ✘ ✘

tunnel.vxlan_gbp.policy_

id

tun.vxlan_group_pol

icy_id

✘ ✘ ✘ ✘ ✘ ✘ ✘

tunnel.vxlan.rsvd1 tun.vxlan_tun_r

svd1 1

✔ ✘ ✘ ✔ ✔ ✘ ✘

tunnel.vxlan_gpe.rsvd1 tun.vxlan_tun_r

svd1 1

✔ ✘ ✘ ✔ ✔ ✘ ✘

tunnel.vxlan_gbp.rsvd1 tun.vxlan_tun_rsvd
1 1

✔ ✘ ✘ ✔ ✔ ✘ ✘

tunnel.gtp.teid tun.gtp_teid tun.gtp_teid ✔ ✘ ✔ ✔ ✔ ✘ ✘

tunnel.esp.spi tun.esp_spi tun.esp_spi ✔ ✘ ✔ ✔ ✔ ✘ ✘

tunnel.esp.sn tun.esp_sn tun.esp_sn ✔ ✘ ✔ ✔ ✔ ✔ ✔

tunnel.psp.nexthdr tun.psp.nexthdr tun.psp.nexthdr ✔ ✘ ✔ ✔ ✔ ✘ ✘

tunnel.psp.hdrextlen tun.psp.hdrextlen tun.psp.hdrextl

en

✔ ✘ ✔ ✔ ✔ ✘ ✘

tunnel.psp.res_cryptofst tun.psp.res_cryptof

st

tun.psp.res_cry

ptofst

✔ ✘ ✔ ✔ ✔ ✘ ✘

tunnel.psp.s_d_ver_v tun.psp.s_d_ver_v tun.psp.s_d_ver

_v

✔ ✘ ✔ ✔ ✔ ✘ ✘

tunnel.psp.spi tun.psp.spi tun.psp.spi ✔ ✘ ✔ ✔ ✔ ✘ ✘

303

String Field Path in The Structure S
e
t

Add Copy Cond
ition

Match Actions D
s
t

S
r
c

D
s
t

S
r
c

A B

tunnel.psp.iv tun.psp.iv tun.psp.iv ✔ ✘ ✔ ✔ ✔ ✘ ✘

tunnel.psp.vc tun.psp.vc tun.psp.vc ✔ ✘ ✔ ✔ ✔ ✘ ✘

tunnel.mpls[0].label tun.mpls[0].label tun.mpls[0].lab

el

✘ ✘ ✔ ✘ ✔ ✘ ✘

tunnel.mpls[1].label tun.mpls[1].label tun.mpls[1].lab

el

✘ ✘ ✔ ✘ ✔ ✘ ✘

tunnel.mpls[2].label tun.mpls[2].label tun.mpls[2].lab

el

✘ ✘ ✔ ✘ ✔ ✘ ✘

tunnel.mpls[3].label tun.mpls[3].label tun.mpls[3].lab

el

✘ ✘ ✔ ✘ ✔ ✘ ✘

tunnel.mpls[4].label tun.mpls[4].label tun.mpls[4].lab

el

✘ ✘ ✔ ✘ ✔ ✘ ✘

tunnel.geneve.ver_opt_le

n

tun.geneve.ver_opt_

len

tun.geneve.ver_

opt_len

✘ ✘ ✘ ✘ ✘ ✘ ✘

tunnel.geneve.o_c tun.geneve.o_c tun.geneve.o_c ✘ ✘ ✘ ✘ ✘ ✘ ✘

tunnel.geneve.next_proto tun.geneve.next_pro

to

tun.geneve.next

_proto

✘ ✘ ✘ ✘ ✘ ✘ ✘

tunnel.geneve.vni tun.geneve.vni tun.geneve.vni ✔ ✘ ✔ ✔ ✔ ✘ ✘

tunnel.geneve_opt[i].typ

e

None. See section "Copy Geneve Options" for
details.

✔ ✘ ✔ ✔ ✔ ✘ ✘

tunnel.geneve_opt[i].cla

ss

✔ ✘ ✔ ✔ ✔ ✘ ✘

tunnel.geneve_opt[i].dat

a

✔ ✘ ✔ ✔ ✔ ✘ ✘

inner.eth.dst_mac inner.eth.dst_mac ✘ ✘ ✔ ✘ ✔ ✘ ✘

inner.eth.src_mac inner.eth.src_mac ✘ ✘ ✔ ✘ ✔ ✘ ✘

inner.eth.type inner.eth.type ✘ ✘ ✔ ✘ ✔ ✘ ✘

inner.eth_vlan0.tci inner.eth_vlan[0].t

ci

✘ ✘ ✘ ✘ ✘ ✘ ✘

inner.eth_vlan1.tci inner.eth_vlan[1].t

ci

✘ ✘ ✘ ✘ ✘ ✘ ✘

inner.ipv4.src_ip inner.ip4.src_ip ✘ ✘ ✔ ✘ ✔ ✘ ✘

http://confluence.nvidia.com#Copy%20GENEVE%20Options

304

String Field Path in The Structure S
e
t

Add Copy Cond
ition

Match Actions D
s
t

S
r
c

D
s
t

S
r
c

A B

inner.ipv4.dst_ip inner.ip4.dst_ip ✘ ✘ ✔ ✘ ✔ ✘ ✘

inner.ipv4.dscp_ecn inner.ip4.dscp_ecn ✘ ✘ ✔ ✘ ✔ ✘ ✘

inner.ipv4.next_proto inner.ip4.next_prot

o

✘ ✘ ✘ ✘ ✘ ✘ ✘

inner.ipv4.ttl inner.ip4.ttl ✘ ✘ ✔ ✘ ✔ ✘ ✘

inner.ipv4.version_ihl inner.ip4.version_i

hl

✘ ✘ ✔ ✘ ✔ ✘ ✘

inner.ipv4.total_len inner.ip4.total_len ✘ ✘ ✔ ✘ ✔ ✘ ✘

inner.ipv6.src_ip inner.ip6.src_ip ✘ ✘ ✔ ✘ ✔ ✘ ✘

inner.ipv6.dst_ip inner.ip6.dst_ip ✘ ✘ ✔ ✘ ✔ ✘ ✘

inner.ipv6.traffic_class inner.ip6.traffic_c

lass

✘ ✘ ✔ ✘ ✔ ✘ ✘

inner.ipv6.flow_label inner.ip6.flow_labe

l

✘ ✘ ✔ ✘ ✔ ✘ ✘

inner.ipv6.next_proto inner.ip6.next_prot

o

✘ ✘ ✘ ✘ ✘ ✘ ✘

inner.ipv6.hop_limit inner.ip6.hop_limit ✘ ✘ ✔ ✘ ✔ ✘ ✘

inner.ipv6.payload_len inner.ip6.payload_l

en

✘ ✘ ✔ ✘ ✔ ✘ ✘

inner.udp.src_port inner.udp.l4_port.s

rc_port

✘ ✘ ✔ ✘ ✔ ✘ ✘

inner.udp.dst_port inner.udp.l4_port.d

st_port

✘ ✘ ✔ ✘ ✔ ✘ ✘

inner.transport.src_port inner.transport.src

_port

✘ ✘ ✔ ✘ ✔ ✘ ✘

inner.transport.dst_port inner.transport.dst

_port

✘ ✘ ✔ ✘ ✔ ✘ ✘

inner.tcp.src_port inner.tcp.l4_port.s

rc_port

✘ ✘ ✔ ✘ ✔ ✘ ✘

inner.tcp.dst_port inner.tcp.l4_port.d

st_port

✘ ✘ ✔ ✘ ✔ ✘ ✘

inner.tcp.flags inner.tcp.flags ✘ ✘ ✘ ✘ ✘ ✘ ✘

305

•

•

•

String Field Path in The Structure S
e
t

Add Copy Cond
ition

Match Actions D
s
t

S
r
c

D
s
t

S
r
c

A B

inner.tcp.data_offset inner.tcp.data_offs

et

✘ ✘ ✔ ✘ ✔ ✘ ✘

inner.icmp4.type inner.icmp.type ✘ ✘ ✘ ✘ ✘ ✘ ✘

inner.icmp4.code inner.icmp.code ✘ ✘ ✘ ✘ ✘ ✘ ✘

inner.icmp4.ident inner.icmp.ident ✘ ✘ ✘ ✘ ✘ ✘ ✘

inner.icmp6.type inner.icmp.type ✘ ✘ ✘ ✘ ✘ ✘ ✘

inner.icmp6.code inner.icmp.code ✘ ✘ ✘ ✘ ✘ ✘ ✘

1. tun.vxlan_tun_rsvd1 modifications only work for traffic with the default UDP
destination port (i.e., 4789 for VXLAN and VXLAN-GBP and 4790 for VXLAN-GPE)

14.4.2.11.2 Supported Non-field String

Users can modify fields which are not included in doca_flow_match structure.

14.4.2.11.2.1 Copy Hash Result

Users can copy the the matcher hash calculation into other fields using the "parser_meta.hash"
string.

14.4.2.11.2.2 Copy GENEVE Options

User can copy GENEVE option type/class/data using the following strings:

"tunnel.geneve_opt[i].type" – Copy from/to option type (only for option configured with

DOCA_FLOW_PARSER_GENEVE_OPT_MODE_MATCHABLE).

"tunnel.geneve_opt[i].class" – Copy from/to option class (only for option configured

with DOCA_FLOW_PARSER_GENEVE_OPT_MODE_MATCHABLE).

"tunnel.geneve_opt[i].data" – Copy from/to option data, the bit offset is from the start
of the data.

i is the index of the option in tlv_list array provided in

doca_flow_parser_geneve_opt_create .

14.4.2.12 DOCA Flow Connection Tracking
This guide provides an overview and configuration instructions for DOCA Flow CT API.

306

•
•
•
•
•
•

•
•

•
•
•
•

14.4.2.12.1 Introduction

DOCA Flow Connection Tracking (CT) is a 5-tuple table which supports the following:

Track 5-tuple sessions (or 6-tuple when a zone is available)
Zone based – virtual tables
Aging (i.e., removes idle connections)
Sets metadata for a connection
Bidirectional packet handling
High rate of connections per second (CPS)

The CT module makes it simple and efficient to track connections by leveraging hardware resources.
The module supports both autonomous and managed mode.

14.4.2.12.2 Architecture

DOCA Flow CT pipe handles non-encapsulated TCP and UDP packets. The CT pipe only supports
forward to next pipe or miss to next pipe actions:

All packets matching known connection 6-tuples are forwarded to the CT's forward pipe
Non-matching packets are forwarded to the miss pipe

The user application must handle packets accordingly.

The DOCA Flow CT API is built around four major parts:

CT module manipulation – configuring CT module resources
CT connection entry manipulation – adding, removing, or updating connection entries
Callbacks – handling asynchronous entry processing result
Pipe and entry statistics

14.4.2.12.2.1 Aging

Aging time is a time in seconds that sets the maximum allowed time for a session to be maintained
without a packet seen. If that time elapses with no packet being detected, the session is
terminated.

307

•

•

•

•

•

•

To support aging, a dedicated aging thread is started to poll and check counters for all connections.

14.4.2.12.2.2 Autonomous Mode

In this mode, DOCA runs multiple CT workers internally, to handle connections in parallel.

A connection's lifecycle is controlled by the connection state encapsulated in the packet and time-
based aging.

CT workers establish and close connections automatically based on the connection's state stored in
packet meta.

Packet meta is defined as follows:

uint32_t src : 1; /**< Source port in multi-port E-Switch mode */
uint32_t hairpin : 1; /**< Subject to forward using hairpin. */
uint32_t type : 2; /**< CT packet type: New, End or Update */
uint32_t data : 28; /**< Zone set by user or reserved after CT pipe. */

data – CT table matches on packet meta (zone) and 5-tuples

type – can have the following values:

NONE – (known) if packet hit any connection rule

NEW – if new TCP or UDP connection

END – if TCP connection closed

src and hairpin – used for forwarding pipe and worker to deliver packet

14.4.2.12.2.3 Managed Mode

The application is responsible for managing the worker threads in this mode, parsing and handling
the connection's lifecycle.

Managed mode uses DOCA Flow CT management APIs to create or destroy the connections.

The CT aging module notifies on aged out connections by calling callbacks.

Users can create connection rules with a different pattern, meta, or counter, for each packet
direction.

308

•

•

1.
a.

b.
c.

2.

Users can create one rule of a connection first, then create another rule using API
doca_flow_ct_entry_add_dir() .

DOCA Flow API can be used to process CT entries with a CT-dedicated queue.

doca_flow_entries_process – process pipe entries in queue

doca_flow_aging_handle – handle pipe entries aging

14.4.2.12.3 Prerequisites

14.4.2.12.3.1 DPU

To enable DOCA Flow CT on the DPU, perform the following on the Arm:

Enable iommu.passthrough in Linux boot commands (or disable SMMU from the DPU BIOS):
Run:

sudo vim /etc/default/grub

Set GRUB_CMDLINE_LINUX="iommu.passthrough=1" .
Run:

sudo update-grub
sudo reboot

Configure DPU firmware with LAG_RESOURCE_ALLOCATION=1 :

Users are responsible for defining meta and mask to match and modify .

Other DOCA Flow APIs like CT entry status query and pipe miss query are not supported.

NVIDIA® BlueField®-3 and above is required to support IPv6.

309

3.

4.
5.

6.

7.

1.

2.
3.

sudo mlxconfig -d <device-id> s LAG_RESOURCE_ALLOCATION=1

Update /etc/mellanox/mlnx-bf.conf as follows:

ALLOW_SHARED_RQ="no"

Perform power cycle on the host and Arm sides.
If working with a single port, set the DPU into e-switch mode:

sudo devlink dev eswitch set pci/<pcie-address> mode switchdev
sudo devlink dev param set pci/<pcie-address> name esw_multiport value false cmode runtime

If working with two PF ports, set the DPU into multi-port e-switch mode (for the 2 PCIe
devices):

sudo devlink dev param set pci/<pcie-address> name esw_multiport value true cmode runtime

Define huge pages (see DOCA Flow prerequisites).

14.4.2.12.3.2 ConnectX

To enable DOCA Flow CT on the NVIDIA® ConnectX®, perform the following:

Configure firmware with LAG_RESOURCE_ALLOCATION=1 :

sudo mlxconfig -d <device-id> s LAG_RESOURCE_ALLOCATION=1

Perform power cycle.
If working with a single port:

sudo devlink dev eswitch set pci/<pcie-address> mode switchdev
sudo devlink dev param set pci/<pcie-address> name esw_multiport value false cmode runtime

Retrieve device-id from the output of the mst status -v command. If, under

the MST tab, the value is N/A, run the mst start command.

Retrieve pcie-address from the output of the mst status -v command.

Retrieve pcie-address from the output of the mst status -v command.

Retrieve device-id from the output of the mst status -v command. If, under

the MST tab, the value is N/A, run the mst start command.

Retrieve pcie-address from the output of the mst status -v command.

310

4.

5.

•
•

If working with two PF ports:

sudo devlink dev eswitch set pci/<pcie-address0> mode switchdev
sudo devlink dev eswitch set pci/<pcie-address1> mode switchdev
sudo devlink dev param set pci/<pcie-address0> name esw_multiport value true cmode runtime
sudo devlink dev param set pci/<pcie-address1> name esw_multiport value true cmode runtime

Define huge pages (see DOCA Flow prerequisites).

14.4.2.12.4 Actions

DOCA Flow CT supports actions based on meta and NAT operations. Each action can be defined as
either shared or non-shared.

14.4.2.12.4.1 Shared Actions

Actions that can be shared between entries. Shared actions are predefined and reused in multiple
entries.

The user gets a handle per shared action created and uses this handle as a reference to the action
where required.

Shared actions are defined using a control queue (see struct doca_flow_ct_cfg).

14.4.2.12.4.2 Non-shared Actions

Actions provided with their data during entry create/update.

These actions are completely managed by DOCA Flow CT and cannot be reused in multiple flows
(i.e., NAT operations).

14.4.2.12.4.3 Action Sets in Pipe Creation

Users must define action sets during DOCA Flow CT pipe creation (as with any other pipe).

During entry create/update, different actions can be provided per direction (different action
content and/or different type).

14.4.2.12.4.4 Feature Enable

To enable user actions, configure the following parameters:

User action templates during DOCA Flow CT pipe creation
Maximum number of user actions (nb_user_actions on DOCA Flow CT init)

Retrieve pcie-address from the output of the mst status -v command.

It is user responsibility to track shared actions and to remove them when they become
irrelevant.

Only actions for meta and NAT are accepted (according to struct doca_flow_ct_actions).

311

•

•

•

•
•

•

•

14.4.2.12.4.5 Using Actions in Autonomous Mode

Init

Configure the following parameters on doca_flow_ct_init() :

nb_ctrl_queues – number of control queues for defining shared actions

nb_user_actions – maximum number of actions (shared and non-shared)

worker_cb – callbacks required to communicate with the user

Create DOCA Flow CT Pipe

Configure actions sets on doca_flow_pipe_create() .

Create Shared Actions

Use doca_flow_ct_actions_add_shared() with one of the control queues.

Shared actions can be added at any time before use.

Implement Worker Callbacks

Callbacks are called from each worker thread to acquire synchronization with the user code and on
the first packet of a flow.

On doca_flow_ct_rule_pkt_cb :

Determine how the packet should be treated
If rules are required, return the actions handles to use

14.4.2.12.4.6 Using Actions in Managed Mode

Init

Configure the following parameters on doca_flow_ct_init() :

nb_ctrl_queues – number of control queues for defining shared actions

nb_user_actions – maximum number of user actions. Both shared control queues and non-
shared control queues cache actions IDs to speed up ID allocation, each queue cache max
1024 IDs. The user must configure expected number of actions + total queues * 1024. The
number can't exceed the number of actions hardware supported.

Create DOCA Flow CT Pipe

Configure actions sets on doca_flow_pipe_create() .

Create Shared Actions

Use doca_flow_ct_actions_add_shared() with one of the control queues.

Shared actions can be added at any time before use.

Add Entry

Entry can be created in one of the following ways:

312

•
•

•

•
•

•
•

•

1.

2.

1.

2.
•

3.

4.

•

5.

Using an action handle of a predefined shared action
Using action data, which is specific to the flow, not sharable (e.g., for NAT operations)

The entry can have different actions and/or different action types per direction.

Remove Entry

Non-shared actions associated with an entry are implicitly destroyed by DOCA Flow CT.

Shared actions are not destroyed. They can be used by the user until they decide to remove them.

Update Entry

Entry actions can be updated per direction. All combinations of shared/non-shared actions are
applicable (e.g., update from shared to non-shared).

14.4.2.12.5 Changeable Forward

DOCA Flow CT allows using a different forward pipe per flow direction.

DOCA Flow CT supports the forward pipe in two levels:

Pipe level – a single forward pipe defined during DOCA Flow CT pipe creation and used for all
entries
Entry level – forward pipe defined during entry create
DOCA Flow CT operates in one of the two levels

DOCA CT forward in entry level has the following characteristics:

Supports only DOCA_FLOW_FWD_PIPE (up to 4 different forward pipes)
Supports forward pipe per flow direction (both directions can have same/different forward
pipe)
Must set forward pipes on each entry create (no default forward pipe)

Turn on the feature:

Create DOCA Flow CT pipe with forward type = DOCA_FLOW_FWD_PIPE and next_pipe =

NULL .

Call to doca_flow_ct_fwd_register to register forward pipes and get fwd_handles in
return.

14.4.2.12.5.1 Using Changeable Forward in Managed Mode
Initialize DOCA Flow CT (doca_flow_ct_init).

Register forward pipes (doca_flow_ct_fwd_register).
Define pipes that can be used for forward

Create DOCA Flow CT pipe (doca_flow_pipe_create) with definition of possible forward
pipes.
Add entry (doca_flow_ct_add_entry).

Set origin and/or reply fwd_handles returned from doca_flow_ct_fwd_register .

Update forward for entry direction (doca_flow_ct_update_entry).

313

1.

2.
•

3.

4.
5.

•

14.4.2.12.5.2 Using Changeable Forward in Autonomous Mode
Initialize DOCA Flow CT (doca_flow_ct_init).

Register forward pipes (doca_flow_ct_fwd_register).
Define pipes that can be used for forward.

Create DOCA Flow CT pipe (doca_flow_pipe_create) with definition of possible forward
pipes.
CT workers start to handle traffic.
On the first flow packet, doca_flow_ct_rule_pkt callback is called.

In this callback, determine if the entry should be created, and which actions and/or
forward handles should be used for this entry.

14.4.2.12.6 API

For the library API reference, refer to DOCA Flow and CT API documentation in the NVIDIA DOCA
Library APIs.

The following sections provide additional details about the library API.

14.4.2.12.6.1 enum doca_flow_ct_flags

DOCA Flow CT configuration optional flags.

Flag Description

DOCA_FLOW_CT_FLAG_STATS = 1u << 0 Enable internal pipe counters for packet tracking purposes.
Call doca_flow_pipe_dump(<ct_pipe>) to dump counter
values. Each call dumps values changed.

DOCA_FLOW_CT_FLAG_WORKER_STATS = 1u

<< 1,

Enable worker thread internal debug counter periodical dump.
Autonomous mode only.

DOCA_FLOW_CT_FLAG_NO_AGING = 1u << 2,

Disable aging

DOCA_FLOW_CT_FLAG_SW_PKT_PARSING = 1u

<< 3,

Enable CT worker software packet parsing to support VLAN,
IPv6 options, or special tunnel types

Updating forward handle requires setting all other parameters with their previous
values.

Update forward for entry direction is not supported.

The pkg-config (*.pc file) for the Flow CT library is included in DOCA's regular

definitions : doca .

314

Flag Description

DOCA_FLOW_CT_FLAG_MANAGED = 1u << 4, Enable managed mode in which user application is responsible
for managing packet handling, and calling the CT API to
manipulate CT connection entries

DOCA_FLOW_CT_FLAG_ASYMMETRIC = 1u <<

5,

Allows different 6-tuple table definitions for the origin and
reply directions. Default to symmetric mode, uses same meta
and reverse 5-tuples for reply direction. Managed mode only.

DOCA_FLOW_CT_FLAG_ASYMMETRIC_COUNTER

= 1u << 6,

Enable different counters for the origin and reply directions.
Managed mode only.

DOCA_FLOW_CT_FLAG_NO_COUNTER = 1u <<

7,

Disable counter and aging to save aging thread CPU cycles

DOCA_FLOW_CT_FLAG_DEFAULT_MISS = 1u

<< 8,

Check TCP SYN flags and UDP in CT miss flow to identify ADD
type packets.

DOCA_FLOW_CT_FLAG_WIRE_TO_WIRE = 1u

<< 9,

Hint traffic comes from uplink wire and forwards to uplink
wire.

DOCA_FLOW_CT_FLAG_CALC_TUN_IP_CHKSUM

= 1u << 10,

Enable hardware to calculate and set the checksum on L3
header (IPv4)

DOCA_FLOW_CT_FLAG_DUP_FILTER_UDP_ONLY

= 1u << 11,

Apply the connection duplication filter for UDP connections
only

14.4.2.12.6.2 enum doca_flow_ct doca_flow_ct_entry_flags

DOCA Flow CT Entry optional flags.

Flag Description

DOCA_FLOW_CT_ENTRY_FLAGS_NO_WAIT = (1 << 0) Entry is not buffered; send to hardware immediately

DOCA_FLOW_CT_ENTRY_FLAGS_DIR_ORIGIN = (1 <<

1)

Apply flags to origin direction

DOCA_FLOW_CT_ENTRY_FLAGS_DIR_REPLY = (1 <<

2)

Apply flags to reply direction

DOCA_FLOW_CT_ENTRY_FLAGS_IPV6_ORIGIN = (1 <<

3)

Origin direction is IPv6; origin match union in struct
doca_flow_ct_match is IPv6

DOCA_FLOW_CT_ENTRY_FLAGS_IPV6_REPLY = (1 <<

4)

Reply direction is IPv6; reply match union in struct
doca_flow_ct_match is IPv6

DOCA_FLOW_CT_ENTRY_FLAGS_COUNTER_ORIGIN = (1

<< 5)

Apply counter to origin direction

DOCA_FLOW_CT_ENTRY_FLAGS_COUNTER_REPLY = (1

<< 6)

Apply counter to reply direction

If this flag is set, the direction info must be
DOCA_FLOW_DIRECTION_NETWORK_TO_HOST .

315

Flag Description

DOCA_FLOW_CT_ENTRY_FLAGS_COUNTER_SHARED = (1

<< 7)

Counter is shared for both direction (origin and reply)

DOCA_FLOW_CT_ENTRY_FLAGS_FLOW_LOG = (1 << 8) Enable flow log on entry removed

DOCA_FLOW_CT_ENTRY_FLAGS_ALLOC_ON_MISS = (1

<< 9)

Allocate on entry not found when calling
doca_flow_ct_entry_prepare() API

DOCA_FLOW_CT_ENTRY_FLAGS_DUP_FILTER_ORIGIN =

(1 << 10)

Enable duplication filter on origin direction

DOCA_FLOW_CT_ENTRY_FLAGS_DUP_FILTER_REPLY =

(1 << 11)

Enable duplication filter on reply direction

14.4.2.12.6.3 enum doca_flow_ct_rule_opr

Options for handling flows in autonomous mode with shared actions. The decision is taken on the
first flow packet.

Operation Description

DOCA_FLOW_CT_RULE_OK Flow should be defined in the CT pipe using the required
shared actions handles

DOCA_FLOW_CT_RULE_DROP Flow should not be defined in the CT pipe. The packet should
be dropped.

DOCA_FLOW_CT_RULE_TX_ONLY Flow should not be defined in the CT pipe. The packet should
be transmitted.

14.4.2.12.6.4 struct direction_cfg

Managed mode configuration for origin or reply direction.

Field Description

bool match_inner 5-tuple match pattern applies to packet inner layer

struct doca_flow_meta *zone_match_mask Mask to indicate meta field and bits to match

struct doca_flow_meta *meta_modify_mask Mask to indicate meta field and bits to modify on
connection packet match

14.4.2.12.6.5 struct doca_flow_ct_worker_callbacks

Set of callbacks for using shared actions in autonomous mode.

Field Description

doca_flow_ct_sync_acquire_cb worker_init Called at the start of a worker thread to sync with the
user context

316

Field Description

doca_flow_ct_sync_release_cb

worker_release

Called at the end of a worker thread

doca_flow_ct_rule_pkt_cb rule_pkt Called on the first packet of a flow

14.4.2.12.6.6 struct doca_flow_ct_cfg

DOCA Flow CT configuration.

uint32_t nb_arm_queues;
uint32_t nb_ctrl_queues;
uint32_t nb_user_actions;
uint32_t nb_arm_sessions[DOCA_FLOW_CT_SESSION_MAX];
uint32_t flags;
uint16_t aging_core;
uint16_t aging_query_delay_s;
doca_flow_ct_flow_log_cb flow_log_cb;
struct doca_flow_ct_aging_ops *aging_ops;
uint32_t base_core_id;
uint32_t dup_filter_sz;
union {
 /* Managed mode configuration for origin and reply direction. */
 struct direction_cfg direction[2];

 /* Below fields are dedicate for autonomous mode */
 struct {
 uint16_t tcp_timeout_s;
 uint16_t tcp_session_del_s;
 uint16_t udp_timeout_s;
 enum doca_flow_tun_type tunnel_type;
 uint16_t vxlan_dst_port;
 enum doca_flow_ct_hash_type hash_type;
 uint32_t meta_user_bits;
 uint32_t meta_action_bits;
 struct doca_flow_meta *meta_zone_mask;
 struct doca_flow_meta *connection_id_mask;
 struct doca_flow_ct_worker_callbacks worker_cb;
 };
 };

Where:

Field Description

uint32_t nb_arm_queues Number of CT queues. In autonomous mode, also the
number of worker threads.

uint32_t nb_ctrl_queues Number of CT control queues used for defining shared
actions

uint32_t nb_user_actions Maximum number of user actions supported (shared and
non-shared)
Minimum value is 1K * nb_ctrl_queues

uint32_t

nb_arm_sessions[DOCA_FLOW_CT_SESSION_MAX]

Maximum number of IPv4 and IPv6 CT connections

uint32_t flags CT configuration flags

uint16_t aging_core CPU core ID for CT aging thread to bind.

uint16_t aging_core_delay CT aging code delay.

doca_flow_ct_flow_log_cb flow_log_cb Flow log callback function, when set

struct doca_flow_ct_aging_ops *aging_ops User-defined aging logic callback functions. Fallback to
default aging logic

317

•

•
•
•

Field Description

uint32_t base_core_id Base core ID for the workers

uint32_t dup_filter_sz Number of connections to cache in the duplication filter

struct direction_cfg direction Managed mode configuration for origin or reply
direction

uint16_t tcp_timeout_s TCP timeout in seconds

uint16_t tcp_session_del_s Time to delay or kill TCP session after RST/FIN

enum doca_flow_tun_type tunnel_type Encapsulation tunnel type

uint16_t vxlan_dst_port VXLAN outer UDP destination port in big endian

enum doca_flow_ct_hash_type hash_type Type of connection hash table type: NONE or

SYMMETRIC_HASH

uint32_t meta_user_bits User packet meta bits to be owned by the user

uint32_t meta_action_bits User packet meta bits to be carried by identified
connection packet

struct doca_flow_meta *meta_zone_mask Mask to indicate meta field and bits saving zone
information

struct doca_flow_meta *connection_id_mask Mask to indicate meta field and bits for CT internal
connection ID

struct doca_flowct_worker_callbacks

worker_cb

Worker callbacks to use shared actions

14.4.2.12.6.7 struct doca_flow_ct_actions

This structure is used in the following cases:

For defining shared actions. In this case, action data is provided by the user. The action
handle is returned by DOCA Flow CT.
For defining an entry with actions. The structure can be filled with two options:

With action handle of a previously created shared action
With non-shared action data

DOCA Flow CT action structure.

enum doca_flow_resource_type resource_type;
union {
 /* Used when creating an entry with a shared action. */
 uint32_t action_handle;

 /* Used when creating an entry with non-shared action or when creating a shared action. */
 struct {
 uint32_t action_idx;
 struct doca_flow_meta meta;
 struct doca_flow_header_l4_port l4_port;
 union {
 struct doca_flow_ct_ip4 ip4;
 struct doca_flow_ct_ip6 ip6;
 };
 } data;
 };

Where:

318

1.
•

•

2.

3.

4.

Field Description

enum doca_flow_resource_type resource_type Shared/non-shared action

uint32_t action_handle Shared action handle

uint32_t action_idx Actions template index

struct doca_flow_meta meta Modify meta values

struct doca_flow_header_l4_port l4_port UDP or TCP source and destination port

struct doca_flow_ct_ip4 ip4 Source and destination IPv4 addresses

struct doca_flow_ct_ip6 ip6 Source and destination IPv6 addresses

14.4.2.12.7 DOCA Flow Connection Tracking Samples

This section describes DOCA Flow CT samples based on the DOCA Flow CT pipe.

The samples illustrate how to use the library API to manage TCP/UDP connections.

14.4.2.12.7.1 Running the Samples
Refer to the following documents:

NVIDIA DOCA Installation Guide for Linux for details on how to install BlueField-related
software.
NVIDIA DOCA Troubleshooting Guide for any issue you may encounter with the
installation, compilation, or execution of DOCA samples.

To build a given sample:

cd /opt/mellanox/doca/samples/doca_flow/flow_ct_udp
meson /tmp/build
ninja -C /tmp/build

Sample (e.g., doca_flow_ct_udp) usage:

Usage: doca_<sample_name> [DOCA Flags] [Program Flags]

DOCA Flags:
 -h, --help Print a help synopsis
 -v, --version Print program version information
 -l, --log-level Set the (numeric) log level for the program <10=DISABLE, 20=CRITI
CAL, 30=ERROR, 40=WARNING, 50=INFO, 60=DEBUG, 70=TRACE>
 --sdk-log-level Set the SDK (numeric) log level for the program <10=DISABLE, 20=C
RITICAL, 30=ERROR, 40=WARNING, 50=INFO, 60=DEBUG, 70=TRACE>
 -j, --json <path> Parse all command flags from an input json file

Program Flags:
 -p, --pci_addr <PCI-ADDRESS> PCI device address

For additional information per sample, use the -h option:

All the DOCA samples described in this section are governed under the BSD-3 software
license agreement.

The binary doca_flow_ct_udp is created under /tmp/build/samples/ .

319

5.

1.

2.
3.

4.
a.
b.
c.

d.
e.

/tmp/build/samples/<sample_name> -h

The following is a CLI example for running the samples when port 03:00.0 is configured
(multi-port e-switch) as manager port:

/tmp/build/samples/doca_<sample_name> -- -p 03:00.0 -l 60

14.4.2.12.7.2 Samples

Flow CT 2 Ports

This sample illustrates how to create a simple pipeline on two standalone e-switches. Multi-port e-
switch must be disabled.

sudo devlink dev eswitch set pci/<pcie-address0> mode switchdev
sudo devlink dev eswitch set pci/<pcie-address1> mode switchdev
sudo devlink dev param set pci/<pcie-address0> name esw_multiport value false cmode runtime

The sample logic includes:

Initializing DOCA Flow by indicating mode_args="switch,hws" in the doca_flow_cfg struct
.
Initializing DOCA Flow CT.
Starting two DOCA Flow uplink ports where port 0 and 1 each has a special role of being a
switch manager port.

Creating a pipeline on each port:
Building an UDP pipe to filter non-UDP packets.
Building a CT pipe to hold UDP session entries.
Building a counter pipe with an example 5-tuple entry to which non-unidentified UDP
sessions should be sent.
Building a hairpin pipe to send back packets.
Building an RSS pipe from which all packets are directed to the sample main thread for
parsing and processing.

•
•

To avoid the test being impacted by unexpected packets, it only accepts packets like
the following examples:

IPv4 destination address is "1.1.1.1"
IPv6 destination address is "0101:0101:0101:0101:0101:0101:0101:0101"

Duplication filter

All CT UDP samples demonstrate the usage of the connection's duplication filter. Duplication
filter is used if the user is interested in preventing same connection rule insertion in a high-
rate workload environment.

Ports are configured according to the parameters provided to
doca_dpdk_port_probe() in the main function.

320

5.
a.
b.
c.

d.

•

•

•

1.

2.
3.

4.
a.
b.
c.

d.
e.

5.
a.
b.
c.

d.

•

•

•

Packet processing on each port:
The first UDP packet triggers the miss flow as the CT pipe is empty.
Performing 5-tuple packet parsing.
Calling doca_flow_ct_add_entry() to create a hardware rule according to the
parsed 5-tuple info.
The second UDP packet based on the the same 5-tuple should be sent again. Packet
hits the hardware rule inserted before and sent back to egress.

Reference:

/opt/mellanox/doca/samples/doca_flow/flow_ct_udp/flow_ct_2_ports_sample.c

/opt/mellanox/doca/samples/doca_flow/flow_ct_udp/flow_ct_2_ports_main.c

/opt/mellanox/doca/samples/doca_flow/flow_ct_udp/meson.build

Flow CT UDP

This sample illustrates how to create a simple UDP pipeline with a CT pipe in it.

The sample logic includes:

Initializing DOCA Flow by indicating mode_args="switch,hws" in the doca_flow_cfg struct
.
Initializing DOCA Flow CT.
Starting two DOCA Flow uplink representor ports where port 0 has a special role of being a
switch manager port.

Creating a pipeline on the main port:
Building an UDP pipe to filter non-UDP packets.
Building a CT pipe to hold UDP session entries.
Building a counter pipe with an example 5-tuple entry to which non-unidentified UDP
sessions should be sent.
Building a VXLAN encapsulation pipe to encapsulate all identified UDP sessions.
Building an RSS pipe from which all packets are directed to the sample main thread for
parsing and processing.

Packet processing:
The first UDP packet triggers the miss flow as the CT pipe is empty.
5-tuple packet parsing is performed.
doca_flow_ct_add_entry() is called to create a hardware rule according to the
parsed 5-tuple info.
The second UDP packet based on the the same 5-tuple should be sent again. Packet
hits the HW rule inserted before and directed to port 0 after VXLAN encapsulation.

Reference:

/opt/mellanox/doca/samples/doca_flow/flow_ct_udp/flow_ct_udp_sample.c

/opt/mellanox/doca/samples/doca_flow/flow_ct_udp/flow_ct_udp_main.c

/opt/mellanox/doca/samples/doca_flow/flow_ct_udp/meson.build

Ports are configured according to the parameters provided to
doca_dpdk_port_probe() in the main function.

321

1.
2.

•
•
•
•

•

•

•

1.

2.

3.

•

•

•

Flow CT UDP Query

This sample illustrates how to query a Flow CT UDP session entry. The query can be done according
to session direction (origin or reply). The pipeline is identical to that of the Flow CT UDP sample.

This sample adds the following logic:

Dumping port 0 information into a file at ./port_0_info.txt .
Querying UDP session hardware entry created after receiving the first UDP packet:

Origin total bytes received
Origin total packets received
Reply total bytes received
Reply total packets received

Reference:

/opt/mellanox/doca/samples/doca_flow/flow_ct_udp_query/

flow_ct_udp_query_sample.c

/opt/mellanox/doca/samples/doca_flow/flow_ct_udp_query/

flow_ct_udp_query_main.c

/opt/mellanox/doca/samples/doca_flow/flow_ct_udp_query/meson.build

Flow CT UDP Update

This sample illustrates how a CT entry can be updated after creation.

The pipeline is identical to that of the Flow CT UDP sample. In case of non-active UDP sessions, a
relevant entry shall be updated with an aging timeout.

This sample adds the following logic:

Querying all UDP sessions for the total number of packets received in both the origin and
reply directions.
Updating entry aging timeout to 2 seconds once a session is not active (i.e., no packets
received on either side).
Waiting until all non-active session are aged and deleted.

Reference:

/opt/mellanox/doca/samples/doca_flow/flow_ct_udp_update/

flow_ct_udp_update_sample.c

/opt/mellanox/doca/samples/doca_flow/flow_ct_udp_update/

flow_ct_udp_update_main.c

/opt/mellanox/doca/samples/doca_flow/flow_ct_udp_update/meson.build

Flow CT UDP Single Match

This sample is based on the Flow CT UDP sample. The sample illustrates that a hardware entry can
be created with a single match (matching performed in one direction only) in the API call
doca_flow_ct_add_entry() .

Flow CT Aging

This sample illustrates the use of the DOCA Flow CT aging functionality. It demonstrates how to
build a pipe and add different entries with different aging times and user data.

322

1.

2.
3.

4.
5.
6.

7.
8.

•

•

•

1.

2.
3.

4.
a.
b.
c.

No packets need to be sent for this sample.

The sample logic includes:

Initializing DOCA Flow by indicating mode_args="switch,hws" in the doca_flow_cfg struct
.
Initializing DOCA Flow CT.
Starting two DOCA Flow uplink representor ports where port 0 has a special role of being a
switch manager port.

Building a UDP pipe to serve as the root pipe.
Building a counter pipe with an example 5-tuple entry to which CT forwards packets.
Adding 32 entries with a different 5-tuple match, different aging time (3-12 seconds), and
setting user data. User data will contain the port ID, entry number, and status.
Handling aging in small intervals and removing each entry after age-out.
Running these commands until all 32 entries age out.

Reference:

/opt/mellanox/doca/samples/doca_flow/flow_ct_aging/flow_ct_aging_sample.c

/opt/mellanox/doca/samples/doca_flow/flow_ct_aging/flow_ct_aging_main.c

/opt/mellanox/doca/samples/doca_flow/flow_ct_aging/meson.build

Flow CT TCP

This sample illustrates how to manage TCP flags with CT to achieve better control over TCP
sessions.

The sample logic includes:

Initializing DOCA Flow by indicating mode_args="switch,hws" in the doca_flow_cfg struct
.
Initializing DOCA Flow CT.
Starting two DOCA Flow uplink representor ports where port 0 has a special role of being a
switch manager port.

Creating a pipeline on the main port:
Building an TCP pipe to filter non-TCP packets.
Building a CT pipe to hold TCP session entries.
Building a CT miss pipe which forwards all packets to RSS pipe.

Ports are configured according to the parameters provided to
doca_dpdk_port_probe() in the main function.

The sample expects to receive at least SYN and FIN packets.

Ports are configured according to the parameters provided to
doca_dpdk_port_probe() in the main function.

323

d.

e.

f.
5.

a.
b.
c.

•

•

d.

•

•

•

•

•

•

Building an RSS pipe from which all packets are directed to the sample main thread for
parsing and processing.
Building a TCP flags filter pipe which identifies the TCP flag inside the packets. SYN ,

FIN , and RST packets are forwarded the to RSS pipe while all others are forwarded
to the EGRESS pipe.
Building an EGRESS pipe to forward packets to uplink representor port 1.

Packet processing:
The first TCP packet triggers the miss flow as the CT pipe is empty.
5-tuple packet parsing is performed.
TCP flag is examined.

In case of a SYN flag, a hardware entry is created.

For FIN or RST flags, the HW entry is removed and all packets are transferred

to uplink representor port 1 using rte_eth_tx_burst() on port 0 (proxy port)
by rte_flow_dynf_metadata_set() to 1.

From this point on, all TCP packets belonging to the above session are offloaded
directly to uplink port representor 1.

Reference:

/opt/mellanox/doca/samples/doca_flow/flow_ct_tcp/flow_ct_tcp_sample.c

/opt/mellanox/doca/samples/doca_flow/flow_ct_tcp/flow_ct_tcp_main.c

/opt/mellanox/doca/samples/doca_flow/flow_ct_tcp/meson.build

Flow CT TCP Actions

This sample illustrates how a to add shared and non-shared actions to CT TCP sessions. The pipeline
is identical to that of the Flow CT TCP sample.

This sample adds a shared action on one side of the session that placed the value 1 in the packet's
metadata, while on the other side of the session a non-shared action is placed. The non-shared
action simply flips the order of the source-destination IP addresses and port numbers.

Reference:

/opt/mellanox/doca/samples/doca_flow/flow_ct_tcp_actions/

flow_ct_tcp_actions_sample.c

/opt/mellanox/doca/samples/doca_flow/flow_ct_tcp_actions/

flow_ct_tcp_actions_main.c

/opt/mellanox/doca/samples/doca_flow/flow_ct_tcp_actions/meson.build

Flow CT TCP Flow Log

This sample illustrate how to use the flow log callback to alert when a session is aged/removed.

The sample expects to receive at least SYN and FIN packets.

The sample expects to receive at least SYN and FIN packets.

324

•

•

•

1.
2.
3.

•

•

•

•
•
•
•
•
•
•

•
•

This sample is based on the Flow CT TCP sample. Once a session is removed (after receiving FIN
packet), the callback is triggered and session counters are queried.

Reference:

/opt/mellanox/doca/samples/doca_flow/flow_ct_tcp_flow_log/

flow_ct_tcp_flow_log_sample.c

/opt/mellanox/doca/samples/doca_flow/flow_ct_tcp_flow_log/

flow_ct_tcp_flow_log_main.c

/opt/mellanox/doca/samples/doca_flow/flow_ct_tcp_flow_log/meson.build

Flow CT TCP IPv4/IPv6

This sample illustrates how to manage a flow with a different IP type per direction.

In case of a SYN flag:

A single HW entry of IPv4 is created as origin direction
An additional HW entry of IPv6 is created as reply direction
From this point on, all IPv4 TCP packets (belonging to the origin direction) and all IPv6 TCP
packets (belonging to the reply direction) are offloaded.

Reference:

/opt/mellanox/doca/samples/doca_flow/flow_ct_tcp/

flow_ct_tcp_sample_ipv4_ipv6.c

/opt/mellanox/doca/samples/doca_flow/flow_ct_tcp/flow_ct_tcp_ipv4_ipv6_main.c

/opt/mellanox/doca/samples/doca_flow/flow_ct_tcp/meson.build

14.4.2.13 DOCA Flow Tune Server
This guide provides an overview and configuration instructions for DOCA Flow Tune Server API.

14.4.2.13.1 Introduction

DOCA Flow Tune Server (TS), DOCA Flow subcomponent, exposes an API to collect predefined
internal key performance indicators (KPIs) and pipeline visualization of a running DOCA Flow
application.

Supported port KPIs:

Total add operations across all queues
Total update operations across all queues
Total remove operations across all queues
Pending operations number across all queues
Number of NO_WAIT flag operations across all queues
Number of shared resources and counters
Number of pipes

Supported application KPIs:

Number of ports
Number of queues

325

•

•
•

•
•
•
•
•
•
•
•

•
•

•
•
•
•
•

Queues depth

Pipeline information is saved to a JSON file to simplify its structure. Visualization is supported for
the following DOCA Flow pipes:

Basic
Control

Each pipe contains the following fields:

Type
Name
Domain
Is root
Match
Match mask
FWD
FWD miss

Supported entry information:

Basic
FWD

Control
FWD
Match
Match mask
Priority

14.4.2.13.2 Prerequisites

DOCA Flow Tune Server API is available only by using the DOCA Flow and DOCA Flow Tune Server
trace libraries.

14.4.2.13.3 API

The following subsections provide additional details about the library API.

14.4.2.13.3.1 enum doca_flow_tune_server_kpi_type

DOCA Flow TS KPI flags.

Flag Description

TUNE_SERVER_KPI_TYPE_NR_PORTS, Retrieve port number

For more detailed information, refer to section "DOCA Flow Debug and Trace" under DOCA
Flow.

For more detailed information on DOCA Flow API, refer to NVIDIA DOCA Library APIs.

326

Flag Description

TUNE_SERVER_KPI_TYPE_NR_QUEUES, Retrieve queue number

TUNE_SERVER_KPI_TYPE_QUEUE_DEPTH, Retrieve queue depth

TUNE_SERVER_KPI_TYPE_NR_SHARED_RESOURCES, Retrieve shared resource and counter numbers

TUNE_SERVER_KPI_TYPE_NR_PIPES, Retrieve number of pipes per port

TUNE_SERVER_KPI_TYPE_ENTRIES_OPS_ADD, Retrieve entry add operations per port

TUNE_SERVER_KPI_TYPE_ENTRIES_OPS_UPDATE, Retrieve entry update operations per port

TUNE_SERVER_KPI_TYPE_ENTRIES_OPS_REMOVE, Retrieve entry remove operations per port

TUNE_SERVER_KPI_TYPE_PENDING_OPS, Retrieve entry pending operations per port

TUNE_SERVER_KPI_TYPE_NO_WAIT_OPS, Retrieve entry NO_WAIT flag operations per port

14.4.2.13.3.2 struct doca_flow_tune_server_shared_resources_kpi_res

Holds the number of each shared resources and counters per port.

Field Description

uint64_t nr_meter Number of meters

uint64_t nr_counter Number of counters

uint64_t nr_rss Number of RSS

uint64_t nr_mirror Number of mirrors

uint64_t nr_psp Number of PSP

uint64_t nr_encap Number of encap

uint64_t nr_decap Number of decap

14.4.2.13.3.3 struct doca_flow_tune_server_kpi_res

Holds the KPI result.

Field Description

enum doca_flow_tune_server_kpi_type type KPI result type

struct

doca_flow_tune_server_shared_resources_kpi_res

shared_resources_kpi

Shared resource result values

This structure is required when calling doca_flow_tune_server_get_kpi or

doca_flow_tune_server_get_port_kpi .

327

Field Description

uint64_t val Result value

14.4.2.13.3.4 doca_flow_tune_server_cfg_create

Creates DOCA Flow Tune Server configuration structure.

doca_error_t doca_flow_tune_server_cfg_create(struct doca_flow_tune_server **cfg);

14.4.2.13.3.5 doca_flow_tune_server_cfg_set_bind_path

Adds local path to the configuration struct on which the DOCA Flow Tune Server AF_UNIX socket
binds.

doca_error_t doca_flow_tune_server_cfg_set_bind_path(struct doca_flow_tune_server *cfg, const char *path, size_t
path_len);

14.4.2.13.3.6 doca_flow_tune_server_cfg_destroy

Destroys DOCA Flow Tune Server configuration structure.

doca_error_t doca_flow_tune_server_cfg_destroy(struct doca_flow_tune_server *cfg);

14.4.2.13.3.7 doca_flow_tune_server_init

Initializes DOCA Flow Tune Server internal structures.

doca_error_t doca_flow_tune_server_init(void);

14.4.2.13.3.8 doca_flow_tune_server_destroy

Destroys DOCA Flow Tune Server internal structures.

void doca_flow_tune_server_destroy(void);

14.4.2.13.3.9 doca_flow_tune_server_query_pipe_line

Queries and dumps pipeline info for all ports to a JSON file pointed by fp.

doca_error_t doca_flow_tune_server_query_pipe_line(FILE *fp);

14.4.2.13.3.10 doca_flow_tune_server_get_port_ids

Retrieves ports identification numbers.

328

1.
•

•

2.

3.

doca_error_t doca_flow_tune_server_get_port_ids(uint16_t *port_id_arr, uint16_t port_id_arr_len, uint16_t
*nr_ports);

14.4.2.13.3.11 doca_flow_tune_server_get_kpi

Retrieves application scope KPI.

doca_error_t doca_flow_tune_server_get_kpi(enum doca_flow_tune_server_kpi_type kpi_type,
 struct doca_flow_tune_server_kpi_res *res)

14.4.2.13.3.12 doca_flow_tune_server_get_port_kpi

Retrieves port scope KPI.

doca_error_t doca_flow_tune_server_get_port_kpi(uint16_t port_id,
 enum doca_flow_tune_server_kpi_type kpi_type,
 struct doca_flow_tune_server_kpi_res *res);

14.4.2.13.4 DOCA Flow Tune Server Samples

This section describes DOCA Flow Tune Server samples.

The samples illustrate how to use the library API to retrieve KPIs or save pipeline information into a
JSON file.

14.4.2.13.4.1 Running the Samples
Refer to the following documents:

NVIDIA DOCA Installation Guide for Linux for details on how to install BlueField-related
software.
NVIDIA DOCA Troubleshooting Guide for any issue you may encounter with the
installation, compilation, or execution of DOCA samples.

To build a given sample:

cd /opt/mellanox/doca/samples/doca_flow/flow_tune_server_dump_pipeline
meson /tmp/build
ninja -C /tmp/build

Sample (e.g., doca_flow_tune_server_dump_pipeline) usage:

Usage: doca_<sample_name> [DOCA Flags] [Program Flags]

DOCA Flags:
 -h, --help Print a help synopsis
 -v, --version Print program version information

All the DOCA samples described in this section are governed under the BSD-3 software
license agreement.

The binary doca_flow_tune_server_dump_pipeline is created under /tmp/

build/samples/ .

329

4.

5.

1.
2.
3.

4.

5.

6.

•
•

7.
a.

8.

•

•

•

1.

 -l, --log-level Set the (numeric) log level for the program <10=DISABLE, 20=CRITI
CAL, 30=ERROR, 40=WARNING, 50=INFO, 60=DEBUG, 70=TRACE>
 --sdk-log-level Set the SDK (numeric) log level for the program <10=DISABLE, 20=C
RITICAL, 30=ERROR, 40=WARNING, 50=INFO, 60=DEBUG, 70=TRACE>
 -j, --json <path> Parse all command flags from an input json file

For additional information per sample, use the -h option:

/tmp/build/samples/<sample_name> -h

The following is a CLI example for running the samples:

/tmp/build/doca_<sample_name> -a auxiliary:mlx5_core.sf.2,dv_flow_en=2 -a
auxiliary:mlx5_core.sf.3,dv_flow_en=2 -- -l 60

14.4.2.13.4.2 Samples

Flow Tune Server KPI

This sample illustrates how to use DOCA Flow Tune Server API to retrieve KPIs.

The sample logic includes:

Initializing DOCA Flow by indicating mode_args="vnf,hws" in the doca_flow_cfg struct.
Starting a single DOCA Flow port.
Creating a server configuration struct using the doca_flow_tune_server_cfg_create
function.
Initializing DOCA Flow server using the doca_flow_tune_server_init function. This must

be done after calling the doca_flow_port_start function (or the init_doca_flow_ports
helper function).
Querying existing port IDs using the doca_flow_tune_server_get_port_ids function.

Querying application level KPIs using doca_flow_tune_server_get_kpi function. The
following KPI are read:

Number of queues
Queue depth

KPIs per port on which the basic pipe is created:
Add operation entries.

Adding 20 entries followed by a second call to query entries add operations.

Reference:

/opt/mellanox/doca/samples/doca_flow/flow_tune_server_kpi/

flow_tune_server_kpi_sample.c

/opt/mellanox/doca/samples/doca_flow/flow_tune_server_kpi/

flow_tune_server_kpi_main.c

/opt/mellanox/doca/samples/doca_flow/flow_tune_server_kpi/meson.build

Flow Tune Server Dump Pipeline

This sample illustrates how to use DOCA Flow Tune Server API to dump pipeline information into a
JSON file.

The sample logic includes:

Initializing DOCA Flow by indicating mode_args="vnf,hws" in the doca_flow_cfg struct.

330

2.
3.

4.

5.
6.

a.
b.
c.
d.
e.

7.

•

•

•

1.

Starting two DOCA Flow ports.
Creating server configuration struct using the doca_flow_tune_server_cfg_create
function.
Initializing DOCA Flow server using doca_flow_tune_server_init function.

Opening a file called sample_pipeline.json for writing.
For each port:

Creating a pipe to drop all traffic.
Creating a pipe to hairpin traffic from port 0 to port 1
Creating FWD pipe to forward traffic based on 5-tuple.
Adding two entries to FWD pipe, each entry with different 5-tuple.
Creating a control pipe and adding the FWD pipe as an entry.

Dumping the pipeline information into a file.

Reference:

/opt/mellanox/doca/samples/doca_flow/flow_tune_server_dump_pipeline/

flow_tune_server_dump_pipeline_sample.c

/opt/mellanox/doca/samples/doca_flow/flow_tune_server_dump_pipeline/

flow_tune_server_dump_pipeline_main.c

/opt/mellanox/doca/samples/doca_flow/flow_tune_server_dump_pipeline/

meson.build

14.4.2.13.5 Flow Visualization

Once a DOCA Flow application pipeline has been exported to a JSON file, it is easy to visualize it
using tools such as Mermaid.

Save the following Python script locally to a file named doca-flow-viz.py (or similar). This
script converts a given JSON file produced by DOCA Flow TS to a Mermaid diagram embedded
in a markdown document.

#!/usr/bin/python3

#
Copyright (c) 2024 NVIDIA CORPORATION & AFFILIATES, ALL RIGHTS RESERVED.
#
This software product is a proprietary product of NVIDIA CORPORATION &
AFFILIATES (the "Company") and all right, title, and interest in and to the
software product, including all associated intellectual property rights, are
and shall remain exclusively with the Company.
#
This software product is governed by the End User License Agreement
provided with the software product.
#

import glob
import json
import sys
import os.path

class MermaidConfig:
 def __init__(self):
 self.prefix_pipe_name_with_port_id = False
 self.show_match_criteria = False
 self.show_actions = False

class MermaidFormatter:
 def __init__(self, cfg):
 self.cfg = cfg

This must be done after calling init_foca_flow_ports function.

331

 self.syntax = ''
 self.prefix_pipe_name_with_port_id = cfg.prefix_pipe_name_with_port_id

 def format(self, data):
 self.prefix_pipe_name_with_port_id = self.cfg.prefix_pipe_name_with_port_id and len(data.get('ports
', [])) > 0

 if not 'ports' in data:
 port_id = data.get('port_id', 0)
 data = {
 'ports': [
 {
 'port_id': port_id,
 'pipes': data['pipes']
 }
]
 }

 self.syntax = ''
 self.append('```mermaid')
 self.append('graph LR')

 self.declare_terminal_states(data)

 for port in data['ports']:
 self.process_port(port)

 self.append('```')
 return self.syntax

 def append(self, text, endline = "\n"):
 self.syntax += text + endline

 def declare_terminal_states(self, data):
 all_fwd_types = self.get_all_fwd_types(data)
 if 'drop' in all_fwd_types:
 self.append(' drop[[drop]]')
 if 'rss' in all_fwd_types:
 self.append(' RSS[[RSS]]')

 def get_all_fwd_types(self, data):
 # Gather all 'fwd' and 'fwd_miss' types from pipes and 'fwd' types from entries
 all_fwd_types = {
 fwd_type
 for port in data.get('ports', [])
 for pipe in port.get('pipes', [])
 for tag in ['fwd', 'fwd_miss'] # Process both 'fwd' and 'fwd_miss' for each pipe
 for fwd_type in [pipe.get(tag, {}).get('type', None)] # Extract the 'type'
 if fwd_type
 } | {
 fwd_type
 for port in data.get('ports', [])
 for pipe in port.get('pipes', [])
 for tag in ['fwd']
 for entry in pipe.get('entries', []) # Process all entries in each pipe
 for fwd_type in [entry.get(tag, {}).get('type', None)]
 if fwd_type
 }
 return all_fwd_types

 def process_port(self, port):
 port_id = port['port_id']
 pipe_names = self.resolve_pipe_names(port)
 self.declare_pipes(port, pipe_names)
 for pipe in port.get('pipes', []):
 self.process_pipe(pipe, port_id)

 def resolve_pipe_names(self, port):
 pipe_names = {}

 port_id = port['port_id']
 for pipe in port.get('pipes', []):
 id = pipe['pipe_id']
 name = pipe['attributes'].get('name', f"pipe_{id}")
 if self.prefix_pipe_name_with_port_id:
 name = f"p{port_id}.{name}"
 pipe_names[id] = name
 return pipe_names

 def declare_pipes(self, port, pipe_names):
 port_id = port['port_id']
 for pipe in port.get('pipes', []):
 id = pipe['pipe_id']
 name = pipe_names[id]
 self.declare_pipe(port_id, pipe, name)

 def declare_pipe(self, port_id, pipe, pipe_name):
 id = pipe['pipe_id']
 attr = "\n(root)" if self.pipe_is_root(pipe) else ""
 if self.cfg.show_match_criteria and not self.pipe_is_ctrl(pipe):
 fields_matched = self.pipe_match_criteria(pipe, 'match')
 attr += f"\nmatch: {fields_matched}"
 self.append(f' p{port_id}.pipe_{id}{{{{"{pipe_name}{attr}"}}}}')

 def pipe_match_criteria(self, pipe, key: ['match', 'match_mask']):
 return "\n".join(self.extract_match_criteria_paths(None, pipe.get(key, {}))) or 'None'

 def extract_match_criteria_paths(self, prefix, match):
 for k,v in match.items():
 if isinstance(v, dict):
 new_prefix = f"{prefix}.{k}" if prefix else k
 for x in self.extract_match_criteria_paths(new_prefix, v):
 yield x

332

2.
•
•

•
3.

 else:
 # ignore v, the match value
 yield f"{prefix}.{k}" if prefix else k

 def pipe_is_ctrl(self, pipe):
 return pipe['attributes']['type'] == 'control'

 def pipe_is_root(self, pipe):
 return pipe['attributes'].get('is_root', False)

 def process_pipe(self, pipe, port_id):
 pipe_id = f"pipe_{pipe['pipe_id']}"
 is_ctrl = self.pipe_is_ctrl(pipe)
 self.declare_fwd(port_id, pipe_id, '-->', self.get_fwd_target(pipe.get('fwd', {}), port_id))
 self.declare_fwd(port_id, pipe_id, '-.->', self.get_fwd_target(pipe.get('fwd_miss', {}), port_id))

 for entry in pipe.get('entries', []):
 fields_matched = self.pipe_match_criteria(entry, 'match') if is_ctrl else None
 fields_matched = f'|"{fields_matched}"|' if fields_matched else ''
 self.declare_fwd(port_id, pipe_id, f'-->{fields_matched}', self.get_fwd_target(entry.get('fwd',
{}), port_id))

 if self.pipe_is_root(pipe):
 self.declare_fwd(port_id, None, '-->', f"p{port_id}.{pipe_id}")

 def get_fwd_target(self, fwd, port_id):
 fwd_type = fwd.get('type', None)
 if not fwd_type:
 return None
 if fwd_type == 'changeable':
 return None
 elif fwd_type == 'pipe':
 pipe_id = fwd.get('pipe_id', fwd.get('value', None))
 target = f"p{port_id}.pipe_{pipe_id}"
 elif fwd_type == 'port':
 port_id = fwd.get('port_id', fwd.get('value', None))
 target = f"p{port_id}.egress"
 else:
 target = f"{fwd_type}"
 return target

 def declare_fwd(self, port_id, pipe_id, arrow, target):
 if target:
 src = f"p{port_id}.{pipe_id}" if pipe_id else f"p{port_id}.ingress"
 self.append(f" {src} {arrow} {target}")

def json_to_md(infile, outfile, cfg):
 formatter = MermaidFormatter(cfg)
 data = json.load(infile)
 mermaid_syntax = formatter.format(data)
 outfile.write(mermaid_syntax)

def json_dir_to_md_inplace(dir, cfg):
 for infile in glob.glob(dir + '/**/*.json', recursive=True):
 outfile = os.path.splitext(infile)[0] + '.md'
 print(f"{infile} --> {outfile}")
 json_to_md(open(infile, 'r'), open(outfile, 'w'), cfg)

def main() -> int:
 cfg = MermaidConfig()
 cfg.show_match_criteria = True

 if len(sys.argv) == 2 and os.path.isdir(sys.argv[1]):
 json_dir_to_md_inplace(sys.argv[1], cfg)

 else:
 infile = open(sys.argv[1], 'r') if len(sys.argv) > 1 else sys.stdin
 outfile = open(sys.argv[2], 'w') if len(sys.argv) > 2 else sys.stdout
 json_to_md(infile, outfile, cfg)

if __name__ == '__main__':
 sys.exit(main())

The resulting Markdown can be viewed in several ways, including:
Microsoft Visual Studio Code (using an available Mermaid plugin, such as this one)
In the GitHub and GitLab built-in Markdown renderer (after committing the output to a
Git repo)
By pasting only the Flowchart content into the Online FlowChart and Diagram Editor

The Python script can be invoked as follows:

python3 doca-flow-viz.py sample_pipeline.json sample_pipeline.md

In the case of the flow_tune_server_dump_pipeline sample, the script produces the
following diagram:

https://marketplace.visualstudio.com/items?itemName=bierner.markdown-mermaid
https://mermaid.live/

333

14.4.3 DPA Subsystem
The NVIDIA® BlueField®-3 data-path accelerator (DPA) is an embedded subsystem designed to
accelerate workloads that require high-performance access to the NIC engines in certain packet and
I/O processing workloads. Applications leveraging DPA capabilities run faster on the DPA than on
host. Unlike other programmable embedded technologies, such as FPGAs, the DPA enables a high
degree of programmability using the C programming model, multi-process support, tools chains like
compilers and debuggers, SDKs, dynamic application loading, and management.

The DPA architecture is optimized for executing packet and I/O processing workloads. As such, the
DPA subsystem is characterized by having many execution units that can work in parallel to
overcome latency issues (such as access to host memory) and provide an overall higher throughput.

The following diagram illustrates the DPA subsystem. The application accesses the DPA through the
DOCA library (DOCA DPA) or the DOCA driver layer (FlexIO SDK). On the host or DPU side, the
application loads its code into the DPA (shown as "Running DPA Process") as well as allocates memory,
NIC queues, and more resources for the DPA process to access. The DPA process can use device side
libraries to access the resources. The provided APIs support signaling of the DPA process from the
host or DPU to explicitly pass control or to obtain results from the DPA.

334

The threads on the DPA can react independently to incoming messages via interrupts from the
hardware, thereby providing full bypass of DPU or Arm CPU for datapath operations.

The following sections provide an overview of the DPA platform design.

14.4.3.1 Multiple Processes on Multiple Execution Units
The DPA platform supports multiple processes with each process having multiple threads. Each
thread can be mapped to a different execution unit to achieve parallel execution. The processes
operate within their own address spaces and their execution contexts are isolated. Processes are
loaded and unloaded dynamically per the user's request. This is achieved by the platform's hardware
design (i.e., privilege layers, memory translation units, DMA engines) and a light-weight real-
time operating system (RTOS). The RTOS enforces the privileges and isolation among the different
processes.

335

14.4.3.2 DPA RTOS
The RTOS is designed to rely on hardware-based scheduling to enable low activation latency for the
execution handlers. The RTOS works in a cooperative run-to-completion scheduling model.

Under cooperative scheduling, an execution handler can use the execution unit without interrupts
until it relinquishes it. Once relinquished, the execution unit is handed back to the RTOS to schedule
the next handler. The RTOS sets a watchdog for the handlers to prevent any handler from unduly
monopolizing the execution units.

14.4.3.3 DPA Memory and Caches
The following diagram illustrates the DPA memory hierarchy. Memory accessed by the DPA can be
cached at three levels (L1, L2, and L3). Each execution unit has a private L1 data cache. The L1
code cache is shared among all the execution units in a DPA core. The L2 cache is shared among all
the DPA cores. The DPA execution units can access external memory via load/store operations
through the Memory Apertures.

The external memory that is fetched can be cached directly in L1. The DPA caches are backed by
NIC private memory, which is located in the DPU's DDR memory banks. Therefore, the address spaces
are scalable and bound only by the size of the NIC's private memory, which in turn is limited only by
the DPU's DDR capacity.

See "Memory Model" for more details.

14.4.3.4 DPA Access to NIC Accelerators
The DPA can send and receive any kind of packet toward the NIC and utilize all the accelerators that
reside on the BlueField DPU (e.g., encryption/decryption, hash computation, compression/
decompression).

The DPA platform has efficient DMA accelerators that enable the different execution units to access
any memory location accessible by the NIC in parallel and without contention. This includes both
synchronous and asynchronous DMA operations triggered by the execution units. In addition, the NIC

336

•
•

•

can DMA data to the DPA caches to enable low-latency access and fast processing. For example, a
packet received from the wire may be "DMA-gathered" directly to the DPA's last level caches.

14.4.3.5 DPA Development

14.4.3.5.1 Overview

14.4.3.5.1.1 DOCA Libs and Drivers

The NVIDIA DOCA framework is the key for unlocking the potential of NVIDIA® BlueField®-3
platforms.

DOCA's software environment allows developers to program the DPA to accelerate workloads.
Specifically, DOCA includes:

DOCA DPA SDK – a high-level SDK for application-level protocol acceleration
DOCA FlexIO SDK – a low-level SDK to load DPA programs into the DPA, manage the DPA
memory, create the execution handlers and the needed hardware rings and contexts
DPACC – DPA toolchain for compiling and ELF file manipulation of the DPA code

14.4.3.5.1.2 Programming Model

The DPA is intended to accelerate datapath operations for the DPU and host CPU. The accelerated
portion of the application using DPA is presented as a library for the host application. The code
within the library is invoked in an event-driven manner in the context of a process that is running on
the DPA. One or many DPA execution units may work to handle the work associated with network
events. The programmer specifies different conditions when each function should be called using
the appropriate SDK APIs on the host or DPU.

The DPA cannot be used as a standalone CPU.

Management of the DPA, such as loading processes and allocating memory, is performed from a host
or DPU process. The host process discovers the DPA capabilities on the device and drives the control
plane to set up the different DPA objects. The DPA objects exist as long as the host process exists.
When the host process is destroyed, the DPA objects are freed. The host process decides which
functions it wants to accelerate using the DPA: Either its entire data plane or only a part of it.

The following diagram illustrates the different processes that exist in the system:

337

Compiler

DPACC is a compiler for the DPA processor. It compiles code targeted for the DPA processor into an
executable and generates a DPA program. A DPA program is a host library with interfaces
encapsulating the DPA executable.

This DPA program is linked with the host application to generate a host executable. The host
executable can invoke the DPA code through the DPA SDK's runtime.

Compiler Keywords

DPACC implements the following keywords:

Keyword Application Usage Comment

__dpa_globa

l__

Annotate all event handlers that execute on the
DPA and all common user-defined datatypes
(including user-defined structures) which are
passed from the host to the DPA as arguments.

Used by the compiler to generate entry
points in the DPA executable and
automatically replicate user-defined
datatypes between the host and DPA.

__dpa_rpc__ Annotate all RPC calls which are invoked by the
host and execute on the DPA. RPC calls return a
value of uint64_t .

Used by the compiler to generate RPC
specific entry points.

Please refer to NVIDIA DOCA DPACC Compiler for more details.

338

1.

2.

FlexIO

Supported at beta level.

FlexIO is a low-level event-driven library to program and accelerate functions on the DPA.

FlexIO Execution Model

To load an application onto the DPA, the user must create a process on the DPA, called a FlexIO
process. FlexIO processes are isolated from each other like standard host OS processes.

FlexIO supports the following options for executing a user-defined function on the DPA:

FlexIO event hander – the event handler executes its function each time an event occurs. An
event on this context is a completion event (CQE) received on the NIC completion queue (CQ)
when the CQ was in the armed state. The event triggers an internal DPA interrupt that
activates the event handler. When the event handler is activated, it is provided with a user-
defined argument. The argument in most cases is a pointer to the software execution context
of the event handler.
The following pseudo-code example describes how to create an event handler and attach it
to a CQ:

// Device code
__dpa_global__ void myFunc(flexio_uintptr_t myArg){
 struct my_db *db = (struct my_db *)myArg;
 get_completion(db->myCq)
 work();
 arm_cq(myCq);
 // reschedule the thread
 flexio_dev_thread_reschedule();
}

// Host code
main() {

 /* Load the application code into the DPA */
 flexio_process_create(device, application, &myProcess);

 /* Create event handler to run my_func with my_arg */
 flexio_event_handler_create(myProcess, myFunc, myArg, &myEventHandler);

 /* Associate the event hanlder with a specific CQ */
 create_cq(&myCQ,… , myEventHandler)

 /* Start the event handler */
 flexio_event_handler_run(myEventHandler)
 …
}

RPC – remote, synchronous, one-time call of a specific function. RPC is mainly used for the
control path to update DPA memory contexts of a process. The RPC's return value is reported
back to the host application.
The following pseudo-code example describes how to use the RPC:

// Device code
__dpa_rpc__ uint64_t myFunc(myArg) {
 struct my_db *db = (struct my_db *)myArg;
 if (db->flag) return 1;
 db->flag = 1;
 return 0;
}

// Host code
main() {
 …

 /* Load the application code into the DPA */
 flexio_process_create(device, application, &myProcess);

 /* run the function */
 flexio_process_call(myProcess, myFunc, myArg, &returnValue);
 …
}

FlexIO Memory Management

339

•
•

•

•

The DPA process can access several memory locations:

Global variables defined in the DPA process.
Stack memory – local to the DPA execution unit. Stack memory is not guaranteed to be
preserved between different execution of the same handler.
Heap memory – this is the process' main memory. The heap memory contents are preserved as
long as the DPA process is active.
External registered memory – remote to the DPA but local to the server. The DPA can access
any memory location that can be registered to the local NIC using the provided API. This
includes BlueField DRAM, external host DRAM, GPU memory, and more.

The heap and external registered memory locations are managed from the host process. The DPA
execution units can load/store from stack/heap and external memory locations. Note that for
external memory locations, the window should be configured appropriately using FlexIO Window
APIs.

FlexIO allows the user to allocate and populate heap memory on the DPA. The memory can later be
used by in the DPA application as an argument to the execution context (RPC and event handler):

/* Load the application code into the DPA */
flexio_process_create(device, application, &myProcess);

/* allocate some memory */
flexio_buf_dev_alloc(process, size, ptr)

/* populate it with user defined data */
flexio_host2dev_memcpy(process, src, size, ptr)

/* run the function */
flexio_process_call(myProcess, function, ptr, &return value);

FlexIO allows accessing external registered memory from the DPA execution units using FlexIO
Window. FlexIO Window maps a memory region from the DPA process address space to an external
registered memory. A memory key for the external memory region is required to be associated with
the window. The memory key is used for address translation and protection. FlexIO window is
created by the host process and is configured and used by the DPA handler during execution. Once
configured, LD/ST from the DPA execution units access the external memory directly.

The access for external memory is not coherent. As such, an explicit memory fencing is required to
flush the cached data to maintain consistency. See section "Memory Fences" for more.

The following example code demonstrates the window management:

// Device code
__dpa_rpc__ uint64_t myFunc(arg1, arg2, arg3)
{
 struct flexio_dev_thread_ctx *dtctx;
 flexio_dev_get_thread_ctx(&dtctx);
 uint32_t windowId = arg1;
 uint32_t mkey = arg2;
 uint64_t *dev_ptr;
 flexio_dev_window_config(dtctx, windowId, mkey);
 /* get ptr to the external memory (arg3) from the DPA process address space */
 flexio_dev_status status = flexio_dev_window_ptr_acquire (dtctx, arg3, dev_ptr);
 /* will set the external memory */
 *dev_ptr = 0xff;
 /* flush the data out */
 __dpa_thread_window_writeback();
 return 0;
}

// Host code
main() {
 /* Load the application code into the DPA */
 flexio_process_create(device, application, &myProcess);
 /* define an array on host */
 uint64_t var= {0};
 /* register host buffer */
 mkey =ibv_reg_mr(&var, …)
 /* create the window */
 flexio_window_create(process, doca_device->pd, mkey, &window_ctx);
 /* run the function */

340

 flexio_process_call(myProcess, myFunc, flexio_window_get_id(window_ctx), mkey, &var, &returnValue);
}

Send and Receive Operation

A DPA process can initiate send and receive operations using the FlexIO outbox object. The FlexIO
outbox contains memory-mapped IO registers that enable the DPA application to issue device
doorbells to manage the send and receive planes. The DPA outbox can be configured during run time
to perform send and receive from a specific NIC function exposed by the DPU. This capability is not
available for Host CPUs that can only access their assigned NIC function.

Each DPA execution engine has its own outbox. As such, each handler can efficiently use the outbox
without needing to lock to protect against accesses from other handlers. To enforce the required
security and isolation, the DPA outbox enables the DPA application to send and receive only for
queues created by the DPA host process and only for NIC functions the process is allowed to access.

Like the FlexIO window, the FlexIO outbox is created by the host process and configured and used at
run time by the DPA process.

// Device code
__dpa_rpc__ uint64_t myFunc(arg1,arg2,arg3) {

 struct flexio_dev_thread_ctx *dtctx;

 flexio_dev_get_thread_ctx(&dtctx);

 uint32_t outbox = arg1;
 flexio_dev_outbox_config (dtctx, outbox);

 /* Create some wqe and post it on sq */

 /* Send DB on sq*/

 flexio_dev_qp_sq_ring_db(dtctx, sq_pi,arg3);

 /* Poll CQ (cq number is in arg2) */
 return 0;
}

// Host code
main() {

 /* Load the application code into the DPA */
 flexio_process_create(device, application, &myProcess);

 /* Allocate uar */
 uar = ibv_alloc_uar(ibv_ctx);

 /* Create queues*/
 flexio_cq_create(myProcess, ibv_ctx, uar, cq_attr, &myCQ);
 my_hwcq = flexio_cq_get_hw_cq (myCQ);

 flexio_sq_create(myProcess, ibv_ctx, myCQ, uar, sq_attr, &mySQ);
 my_hwsq = flexio_sq_get_hw_sq(mySQ);

 /* Outbox will allow access only for queues created with the same UAR*/
 flexio_outbox_create(process, ibv_ctx, uar, &myOutbox);

 /* Run the function */
 flexio_process_call(myProcess, myFunc, myOutbox, my_hwcq->cq_num, my_hwsq->sq_num, &return_value);
}

Synchronization Primitives

The DPA execution units support atomic instructions to protect from concurrent access to the DPA
process heap memory. Using those instructions, multiple synchronization primitives can be designed.

FlexIO currently supports basic spin lock primitives. More advanced thread pipelining can be
achieved using DOCA DPA events.

DOCA DPA

Supported at beta level.

341

The DOCA DPA SDK eases DPA code management by providing high-level primitives for DPA work
offloading, synchronization, and communication. This leads to simpler code but lacks the low-level
control that FlexIO SDK provides.

User-level applications and libraries wishing to utilize the DPA to offload their code may choose
DOCA DPA. Use-cases closer to the driver level and requiring access to low-level NIC features would
be better served using FlexIO.

The implementation of DOCA DPA is based on the FlexIO API. The higher level of abstraction enables
the user to focus on their program logic and not the low-level mechanics.

Memory Model

The DPA offers a coherent but weakly ordered memory model. The application is required to use
fences to impose the desired memory ordering. Additionally, where applicable, the application is
required to write back data for the data to be visible to NIC engines (see the coherency table).

The memory model offers "same address ordering" within a thread. This means that, if a thread
writes to a memory location and subsequently reads that memory location, the read returns the
contents that have previously been written.

The memory model offers 8-byte atomicity for aligned accesses to atomic datatypes. This means
that all eight bytes of read and write are performed in one indivisible transaction.

The DPA does not support unaligned accesses, such as accessing N bytes of data from an address

not evenly divisible by N .

The DPA processes memory can be divided into the following memory spaces:

Memory Space Definition

Heap Memory locations within the DPA process heap.
Referenced as __DPA_HEAP in the code.

Memory Memory locations belonging to the DPA process (including stack,
heap, BSS and data segment) except the memory-mapped IO.
Referenced as __DPA_MEMORY in the code.

MMIO (memory-mapped I/O) External memory outside the DPA process accessed via memory-
mapped IO. Window and Outbox accesses are considered MMIO.
Referenced as __DPA_MMIO in the code.

System All memory locations accessible to the thread within Memory and
MMIO spaces as described above.
Referenced as __DPA_SYSTEM in the code.

The coherency between the DPA threads and NIC engines is described in the following table:

Producer Observer Coherency Comments

DPA thread NIC engine Not coherent Data to be read by the NIC must be written
back using the appropriate intrinsic (see
section "Memory Fence and Cache Control
Usage Examples").

Refer to DOCA DPA documentation for more details.

342

Producer Observer Coherency Comments

NIC engine DPA Thread Coherent Data written by the NIC is eventually visible
to the DPA threads.
The order in which the writes are visible to
the DPA threads is influenced by the ordering
configuration of the memory region
(see IBV_ACCESS_RELAXED_ORDERING).
In a typical example of the NIC writing data
and generating a completion entry (CQE), it
is guaranteed that when the write to the CQE
is visible, the DPA thread can read the data
without additional fences.

DPA thread DPA thread Coherent Data written by a DPA thread is eventually
visible to the other DPA threads without
additional fences. The order in which writes
made by a thread are visible to other threads
is undefined when fences are not used.
Programmers can enforce ordering of updates
using fences (see section "Memory Fences").

Memory Fences

Fence APIs are intended to impose memory access ordering. The fence operations are defined on
the different memory spaces. See information on memory spaces under section "Memory Model".

The fence APIs apply ordering between the operations issued by the calling thread. As a
performance note, the fence APIs also have a side effect of writing back data to the memory space
used in the fence operation. However, programmers should not rely on this side effect. See section
"Cache Control" for explicit cache control operations. The fence APIs have an effect of a compiler-
barrier which means that memory accesses are not reordered around the fence API invocation by
the compiler.

A fence applies between the "predecessor" and the "successor" operations. The predecessor and
successor ops can be refenced using __DPA_R , __DPA_W , and __DPA_RW in the code.

The generic memory fence operation can operate on any memory space and any set of predecessor
and successor operations. The other fence operations are provided as convenient shortcuts that are
specific to the use case. It is preferable for programmers to use the shortcuts when possible.

Fence operations can be included using the dpaintrin.h header file.

Generic Fence

void __dpa_thread_fence(memory_space, pred_op, succ_op);

This fence can apply to any DPA thread memory space. Memory spaces are defined under section
"Memory Model". The fence ensures that all operations (pred_op) performed by the calling thread,

before the call to __dpa_thread_fence() , are performed and made visible to all threads in the

DPA, host, NIC engines, and peer devices as occurring before all operations (succ_op) to the

memory space after the call to __dpa_thread_fence() .

System Fence

343

void __dpa_thread_system_fence();

This is equivalent to calling __dpa_thread_fence(__DPA_SYSTEM, __DPA_RW, __DPA_RW) .

Outbox Fence

void __dpa_thread_outbox_fence(pred_op, succ_op);

This is equivalent to calling __dpa_thread_fence(__DPA_MMIO, pred_op, succ_op) .

Window Fence

void __dpa_thread_window_fence(pred_op, succ_op);

This is equivalent to calling __dpa_thread_fence(__DPA_MMIO, pred_op, succ_op) .

Memory Fence

void __dpa_thread_memory_fence(pred_op, succ_op);

This is equivalent to calling __dpa_thread_fence(__DPA_MEMORY, pred_op, succ_op) .

Cache Control

Cache control operations allow the programmer to exercise fine-grained control over data resident
in the DPA's caches. They have an effect of a compiler-barrier. The operations can be included using
the dpaintrin.h header file.

Window Read Contents Invalidation

void __dpa_thread_window_read_inv();

The DPA can cache data that was fetched from external memory using a window. Subsequent
memory accesses to the window memory location may return the data that is already cached. In
some cases, it is required by the programmer to force a read of external memory (see example
under "Polling Externally Set Flag"). In such a situation, the window read contents cached must be
dropped.

This function ensures that contents in the window memory space of the thread before the call
to __dpa_thread_window_read_inv() are invalidated before read operations made by the calling

thread after the call to __dpa_thread_window_read_inv() .

Window Writeback

void __dpa_thread_window_writeback();

Writes to external memory must be explicitly written back to be visible to external entities.

This function ensures that contents in the window space of the thread before the call
to __dpa_thread_window_writeback() are performed and made visible to all threads in the DPA,

344

host, NIC engines, and peer devices as occurring before any write operation after the call
to __dpa_thread_window_writeback() .

Memory Writeback

void __dpa_thread_memory_writeback();

Writes to DPA memory space may need to be written back. For example, the data must be written
back before the NIC engines can read it. Refer to the coherency table for more.

This function ensures that the contents in the memory space of the thread before the call
to __dpa_thread_writeback_memory() are performed and made visible to all threads in the DPA,
host, NIC engines, and peer devices as occurring before any write operation after the call
to __dpa_thread_writeback_memory() .

Memory Fence and Cache Control Usage Examples

These examples illustrate situations in which programmers must use fences and cache control
operations.

In most situations, such direct usage of fences is not required by the application using FlexIO or
DOCA DPA SDKs as fences are used within the APIs.

Issuing Send Operation

In this example, a thread on the DPA prepares a work queue element (WQE) that is read by the NIC
to perform the desired operation.

The ordering requirement is to ensure the WQE data contents are visible to the NIC engines read it.
The NIC only reads the WQE after the doorbell (MMIO operation) is performed. Refer to coherency
table.

User Code – WQE Present in DPA
Memory

Comment

1 Write WQE Write to memory locations in the
DPA (memory space = __DPA_MEMORY)

2 __dpa_thread_memory_writeback(); Cache control operation

3 Write doorbell MMIO operation via Outbox

In some cases, the WQE may be present in external memory. See the description of flexio_qmem
below. The table of operations in such a case is below.

User Code – WQE Present in External
Memory

Comment

1 Write WQE Write to memory locations in the
DPA (memory space = __DPA_MMIO)

2 __dpa_thread_window_writeback(); Cache control operation

3 Write doorbell MMIO operation via Outbox

Posting Receive Operation

345

•
•

In this example, a thread on the DPA is writing a WQE for a receive queue and advancing the queue's
producer index. The DPA thread will have to order its writes and writeback the doorbell record
contents so that the NIC engine can read the contents.

User Code – WQE Present in DPA
Memory

Comment

1 Write WQE Write to memory locations in the DPA (memory
space = __DPA_MEMORY)

2 __dpa_thread_memory_fence(__DPA_W,

__DPA_W);

Order the write to the doorbell record with
respect to WQE

3 Write doorbell record Write to memory locations in the DPA (memory
space = __DPA_MEMORY)

4 __dpa_thread_memory_writeback(); Ensure that contents of doorbell record are
visible to the NIC engine

Polling Externally Set Flag

In this example, a thread on the DPA is polling on a flag that will be updated by the host or other
peer device. The memory is accessed by the DPA thread via a window. The DPA thread must
invalidate the contents so that the underlying hardware performs a read.

User Code – Flag Present in External Memory Comment

while (!flag) {
 __dpa_thread_window_read_inv();
}

flag is a memory location read using a window

Thread-to-thread Communication

In this example, a thread on the DPA is writing a data value and communicating that the data is
written to another thread via a flag write. The data and flag are both in DPA memory.

User Code – Thread 1 User Code – Thread 2 Comment

Initial condition, flag = 0

var1 = x; while(*((volatile int

*)&flag) !=1);

Thread 1 - write to var1
Thread 2 - flag is accessed as a
volatile variable, so the compiler
preserves the intended program
order of reads

__dpa_thread_memory_fence(__

DPA_W, __DPA_W);

Thread 1 – write to flag cannot bypass
write to var1

var_t2 = var1;

flag = 1; assert(var_t2 == x); var_t2 must be equal to x

Setting Flag to be Read Externally

In this example, a thread on the DPA sets a flag that is observed by a peer device. The flag is written
using a window.

346

User Code – Flag Present in External Memory Comment

flag = data; flag is updated in local DPA memory

__dpa_thread_window_writeback(); Contents from DPA memory for the window are written
to external memory

Polling Completion Queue

In this example, a thread on the DPA reads a NIC completion queue and updates its consumer index.

First, the DPA thread polls the memory location for the next expected CQE. When the CQE is visible,
the DPA thread processes it. After processing is complete, the DPA thread updates the CQ's consumer
index. The consumer index is read by the NIC to determine whether a completion queue entry has
been read by the DPA thread. The consumer index is used by the NIC to monitor a potential
completion queue overflow situation.

User Code – CQE in DPA Memory Comment

while(*((volatile uint8_t *)&cq→op_own)

& 0x1 == hw_owner);

Poll CQ owner bit in DPA memory until the value indicates
the CQE is in software ownership.
Coherency model ensures update to the CQ is visible to
the DPA execution unit without additional fences or cache
control operations.
Coherency model ensures that data in the CQE or
referenced by it are visible when the CQE changes
ownership to software.

process_cqe(); User processes the CQE according to the application's
logic.

cq→cq_index++; // next CQ index. Handle

wraparound if necessary

Calculate the next CQ index taking into account any
wraparound of the CQ depth.

update_cq_dbr(cq, cq_index); // writes

cq_index to DPA memory

Memory operation to write the new consumer index.

__dpa_thread_memory_writeback(); Ensures that write to CQ's consumer index is visible to the
NIC. Depending on the application's logic,
the __dpa_thread_memory_writeback() may be
coalesced or eliminated if the CQ is configured in overrun
ignore mode.

arm_cq(); Arm the CQ to generate an event if this handler is going to
call flexio_dev_thread_reschedule() . Arming the CQ
is not required if the handler
calls flexio_dev_thread_finish() .

DPA-specific Operations

The DPA supports some platform-specific operations. These can be accessed using the functions
described in the following subsections. The operations can be included using the dpaintrin.h hea
der file.

Clock Cycles

uint64_t __dpa_thread_cycles();

347

Returns a counter containing the number of cycles from an arbitrary start point in the past on the
execution unit the thread is currently scheduled on.

Note that the value returned by this function in the thread is meaningful only for the duration of
when the thread remains associated with this execution unit.

This function also acts as a compiler barrier, preventing the compiler from moving instructions
around the location where it is used.

Timer Ticks

uint64_t __dpa_thread_time();

Returns the number of timer ticks from an arbitrary start point in the past on the execution unit the
thread is currently scheduled on.

Note that the value returned by this function in the thread is meaningful only for the duration of
when the thread remains associated with this execution unit.

This intrinsic also acts as a compiler barrier, preventing the compiler from moving instructions
around the location where the intrinsic is used.

Instructions Retired

uint64_t __dpa_thread_inst_ret();

Returns a counter containing the number of instructions retired from an arbitrary start point in the
past by the execution unit the thread is currently scheduled on.

Note that the value returned by this function in the software thread is meaningful only for the
duration of when the thread remains associated with this execution unit.

This intrinsic also acts as a compiler barrier, preventing the compiler from moving instructions
around the location where the intrinsic is used.

Fixed Point Log2

int __dpa_fxp_log2(unsigned int);

This function evaluates the fixed point Q16.16 base 2 logarithm. The input is an unsigned integer.

Fixed Point Reciprocal

int __dpa_fxp_rcp(int);

This function evaluates the fixed point Q16.16 reciprocal (1/x) of the value provided.

Fixed Point Pow2

int __dpa_fxp_pow2(int);

This function evaluates the fixed point Q16.16 power of 2 of the provided value.

348

•

•

•

1.

2.

14.4.3.5.2 FlexIO

This chapter provides an overview and configuration instructions for DOCA FlexIO SDK API.

The DPA processor is an auxiliary processor designed to accelerate packet processing and other data-
path operations. The FlexIO SDK exposes an API for managing the DPA device and executing native
code over it.

The DPA processor is supported on NVIDIA® BlueField®-3 DPUs and later generations.

After DOCA installation, FlexIO SDK headers may be found under /opt/mellanox/flexio/include

and libraries may be found under /opt/mellanox/flexio/lib/ .

14.4.3.5.2.1 Prerequisites

DOCA FlexIO applications can run either on the host machine or on the target DPU.

Developing programs over FlexIO SDK requires knowledge of DPU networking queue usage and
management.

14.4.3.5.2.2 Architecture

FlexIO SDK library exposes a few layers of functionality:

libflexio – library for Host-side operations. It is used for resource management.

libflexio_dev – library for DPA-side operations. It is used for data path implementation.

libflexio_libc – a lightweight C library for DPA device code. libflexio_libc may

expose very partial functionality compared to a standard libc .

A typical application is composed of two parts: One running on the host machine or the DPU target
and another running directly over the DPA.

14.4.3.5.2.3 API

Please refer to the NVIDIA DOCA Driver APIs.

14.4.3.5.2.4 Resource Management

DPA programs cannot create resources. The responsibility of creating resources, such as FlexIO
process, thread, outbox and window, as well as queues for packet processing (completion, receive
and send), lies on the DPU program. The relevant information should be communicated (copied) to
the DPA side and the address of the copied information should be passed as an argument to the
running thread.

Example

Host side:

Declare a variable to hold the DPA buffer address.

flexio_uintptr_t app_data_dpa_daddr;

Allocate a buffer on the DPA side.

349

3.

•
•

flexio_buf_dev_alloc(flexio_process, sizeof(struct my_app_data), &app_data_dpa_daddr);

Copy application data to the DPA buffer.

flexio_host2dev_memcpy(flexio_process, (uintptr_t)app_data, sizeof(struct my_app_data),
app_data_dpa_daddr);

struct my_app_data should be common between the DPU and DPA applications so the DPA
application can access the struct fields.
The event handler should get the address to the DPA buffer with the copied data:

flexio_event_handler_create(flexio_process, net_entry_point, app_data_dpa_daddr, NULL, flexio_outbox,
&app_ctx.net_event_handler)

DPA side:

__dpa_rpc__ uint64_t event_handler_init(uint64_t thread_arg)
{
 struct my_app_data *app_data;
 app_data = (my_app_data *)thread_arg;
 ...
}

14.4.3.5.2.5 DPA Memory Management

As mentioned previously, the DPU program is responsible for allocating buffers on the DPA side (same
as resources). The DPU program should allocate device memory in advance for the DPA program
needs (e.g., queues data buffer and rings, buffers for the program functionality, etc).

The DPU program is also responsible for releasing the allocated memory. For this purpose, the
FlexIO SDK API exposes the following memory management functions:

flexio_status flexio_buf_dev_alloc(struct flexio_process *process, size_t buff_bsize, flexio_uintptr_t
*dest_daddr_p);
flexio_status flexio_buf_dev_free(flexio_uintptr_t daddr_p);
flexio_status flexio_host2dev_memcpy(struct flexio_process *process, void *src_haddr, size_t buff_bsize,
flexio_uintptr_t dest_daddr);
flexio_status flexio_buf_dev_memset(struct flexio_process *process, int value, size_t buff_bsize, flexio_uintptr_t
dest_daddr);

Allocating NIC Queues for Use by DPA

The FlexIO SDK exposes an API for allocating work queues and completion queues for the DPA. This
means that the DPA may have direct access and control over these queues, allowing it to create
doorbells and access their memory.

When creating a FlexIO SDK queue, the user must pre-allocate and provide memory buffers for the
queue's work queue elements (WQEs). This buffer may be allocated on the DPU or the DPA memory.

To this end, the FlexIO SDK exposes the flexio_qmem struct, which allows the user to provide the
buffer address and type (DPA or DPU).

Memory Allocation Best Practices

To optimize process device memory allocation, it is recommended to use the following allocation
sizes (or closest to it):

Up to 1 page (4KB)
26 pages (256KB)

350

•
•

211 pages (8MB)
216 pages (256MB)

Using these sizes minimizes memory fragmentation over the process device memory heap. If other
buffer sizes are required, it is recommended to round the allocation up to one of the listed sizes
and use it for multiple buffers.

14.4.3.5.2.6 DPA Window

DPA windows are used to access external memory, such as on the DPU's DDR or host's memory. DPA
windows are the software mechanism to use the Memory Apertures mentioned in section "DPA
Memory and Caches". To use the window functionality, DPU or host memory must be registered for
the device using the ibv_reg_mr() call.

Both the address and size provided to this call must be 64 bytes aligned for the window to operate.
This alignment may be obtained using the posix_memalign() allocation call.

14.4.3.5.2.7 DPA Event Handler

Default Window/Outbox

The DPA event handler expects a DPA window and DPA outbox structs upon creation. These are used
as the default for the event handler thread. Users may choose to set one or both to NULL, in which
case there would be no valid default value for one/both of them.

Upon thread invocation on the DPA side, the thread context is set for the provided default IDs. If, at
any point, the outbox/window IDs are changed, then the thread context on the next invocation is
restored to the default IDs. This means that the DPA Window MKey must be configured each time the
thread is invoked, as it has no default value.

Execution Unit Management

DPA execution units (EUs) are the equivalent to logical cores. For a DPA program to execute, it must
be assigned an EU.

It is possible to set EU affinity for an event handler upon creation. This causes the event handler to
execute its DPA program over specific EUs (or a group of EUs).

DPA supports three types of affinity: none , strict , group .

The affinity type and ID, if applicable, are passed to the event handler upon creation using
the affinity field of the flexio_event_handler_attr struct.

For more information, please refer to NVIDIA DOCA DPA Execution Unit Management Tool.

Execution Unit Partitions

To work over DPA, an EU partition must be created for the used device. A partition is a selection of
EUs marked as available for a device. For the DPU ECPF, a default partition is created upon boot
with all EUs available in it. For any other device (i.e., function), the user must create a
partition. This means that running an application on a non-ECPF function without creating a
partition would result in failure.

351

1.

2.

FlexIO SDK uses strict and none affinity for internal threads, which require a partition with at
least one EU for the participating devices. Failing to comply with this assumption may cause
failures.

Virtual Execution Units

Users should be aware that beside the default EU partition, which is exposed to the real EU
numbers, all other partitions created use virtual EUs.

For example, if a user creates a partition with the range of EUs 20-40, querying the partition info
from one of its virtual HCAs (vHCAs) it would display EUs from 0-20. So, the real EU number, 39 in
this example, would correspond to the virtual EU number 19.

14.4.3.5.2.8 Version API and Backward Compatibility

FlexIO SDK supports partial backward compatibility. The may follow one of the following options:

Work only with the latest version. The user must align their entire code according to the
changes in the FlexIO SDK API listed in the document accompanying each version.
Ensure partial backward compatibility for the working code. The user must inform the SDK
which version they intend to work with. The SDK provides a set of tools that ensure backward
compatibility. The set consists of compile-time and runtime tools.

Version API Toolkit

To support backward compatibility, the FlexIO SDK uses the macros FLEXIO_VER for the host and

FLEXIO_DEV_VER for the DPA device. The macros have 3 parameters, where the first is the major
version (year), the second is the minor version (month), and the third is the sub-minor version (not
used, always 0).

Compile-time

This toolkit is available for both the host and DPA device. The header files flexio_ver.h and

flexio_dev_ver.h contain the macros FLEXIO_VER and FLEXIO_VER_LATEST for the host and

FLEXIO_DEV_VER and FLEXIO_DEV_VER_LATEST for the DPA device. For example, to set backward
compatibility for version 24.04, the user must declare the following construct for the host:

#include <libflexio/flexio_ver.h>
#define FLEXIO_VER_USED FLEXIO_VER(24, 4, 0)
#include <libflexio/flexio.h>

And the user must declare the following construct for the DPA device:

#include <libflexio-dev/flexio_dev_ver.h>
#define FLEXIO_DEV_VER_USED FLEXIO_DEV_VER(24, 4, 0)
#include <libflexio-dev/flexio_dev.h>

Where 24 is the major version, and 4 is the minor version.

352

•

•
•

Runtime

This toolkit is only present for the host. For backward compatibility in runtime, the user can call the
function flexio_status flexio_version_set(uint64_t version); in flexio.h once before
calling any other function from the API, with the version parameter they wish to work with. The
function returns an error in the following cases:

If the specified version is less than FLEXIO_LAST_SUPPORTED_VERSION

If it exceeds FLEXIO_CURRENT_VERSION
If the function is called again with a version value different from the previous one

status = flexio_version_set(FLEXIO_VER(24, 4, 0));
if (status == FLEXIO_STATUS_FAILED)
{
 return ERROR;
}

It is recommended to use the FLEXIO_VER_USED macro as a parameter:

flexio_version_set(FLEXIO_VER_USED);

End of Backward Compatibility

The backward compatibility tools are designed to have an endpoint. With each new version, it is
possible to gradually raise the value of FLEXIO_LAST_SUPPORTED_VERSION for the host and

FLEXIO_DEV_LAST_SUPPORTED_VERSION for the DPA device. If FLEXIO_VER_USED equals

FLEXIO_LAST_SUPPORTED_VERSION , then the compiler will issue a warning. This is a sign for the
user to start transitioning to a newer version. This way the user has time at least until the next
version to modify their code to comply with the older version. If FLEXIO_VER_USED is lower than

FLEXIO_LAST_SUPPORTED_VERSION , then the compiler will issue errors. This is a sign for the user
to immediately transition to a newer version. The same behavior for the DPA device.

14.4.3.5.2.9 Application Debugging

Because application execution is divided between the host side and the DPA processor services,
debugging may be somewhat challenging, especially since the DPA side does not have a terminal
allowing the use of the C stdio library printf services.

Using Device Messaging Stream API

Another logging (messaging) option is to use FlexIO SDK infrastructure to send strings or formatted
text in general, from the DPA side to the host side console or file. The host side's flexio.h file

provides the flexio_msg_stream_create API function for initializing the required infrastructures
to support this. Once initialized, the DPA side must have the thread context, which can be obtained
by calling flexio_dev_get_thread_ctx . flexio_dev_msg can then be called to write a string

The files flexio.h and flexio_dev.h have the macros FLEXIO_CURRENT_VERSION and

FLEXIO_LAST_SUPPORTED_VERSION for the host FLEXIO_DEV_CURRENT_VERSION and

FLEXIO_DEV_LAST_SUPPORTED_VERSION for the DPA device. These versions are provided
for internal use and user information. The user should not use these macros.

353

•

•

•

•

generated on the DPA side to the stream created (using its ID) on the host side, where it is directed
to the console or a file, according to user configuration in the creation stage.

It is important to call flexio_msg_stream_destroy when exiting the DPU application to ensure
proper clean-up of the print mechanism resources.

Device messages use an internal QP for communication between the DPA and the DPU. When running
over an InfiniBand fabric, the user must ensure that the subnet is well-configured, and that the
relevant device's port is in active state.

Message Stream Functionality

The user can create as many streams as they see fit, up to a maximum
of FLEXIO_MSG_DEV_MAX_STREAMS_AMOUNT as defined in flexio.h .

Every stream has its own messaging level which serves as a filter where messages with a level below
that of the stream are filtered out.

The first stream created is the default_stream gets stream ID 0, and it is created with messaging

level FLEXIO_MSG_DEV_INFO by default.

The stream ID defined by FLEXIO_MSG_DEV_BROADCAST_STREAM serves as a broadcast stream which
means it messagaes all open streams (with the proper messaging level).

A stream can be configured with a synchronization mode attribute according to the following
options:

sync – displays the messages as soon as they are sent from the device to the host side using
the verb SEND.
async – uses the verb RDMA write. When the programmer calls the stream's flush
functionality, all the messages in the buffer are displayed (unless there was a wraparound
due to the size of messages being bigger than the size allocated for them). In this
synchronization mode, the flush should be called at the end of the run.
batch – uses RDMA write and RDMA write with immediate. It works similarly to the async
mode, except the fact each batch size of messages is being flushed and therefore displayed
automatically in every batch. The purpose is to allow the host to use fewer resources for
device messaging.

Device Messaging Assumptions

Device messaging uses RPC calls to create, modify, and destroy streams. By default, these RPC calls
run with affinity none , which requires at least one available EU on the default group. If the user
wants to set the management affinity of a stream to a different option (any affinity option is
supported, including forcing none , which is the default behavior) they should specify this in the

stream attributes using the mgmt_affinity field.

Printf Support

Only limited functionality is implemented for printf. Not all libc printf is supported.

Please consult the following list for supported modifiers:

Formats – %c , %s , %d , %ld , %u , %lu , %i , %li , %x , %hx , %hxx , %lx , %X , %lX , %l

o , %p , %%

354

•
•

•
•

•
•

•
•

•

•

•

•

•

•
•
•
•
•
•

Flags – . , * , - , + , #
General supported modifiers:

"0" padding
Min/max characters in string

General unsupported modifiers:
Floating point modifiers – %e , %E , %f , %lf , %LF

Octal modifier %o is partially supported
Precision modifiers

Core Dump

If the DPA process encounters a fatal error, the user can create a core dump file to review the
application's status at that point using a GDB app.

Creating a core dump file can be done after the process has crashed (as indicated by
the flexio_err_status API) and before the process is destroyed by calling

the flexio_coredump_create API.

Recommendations for opening DPA core dump file using GDB:

Use the gdb-multiarch application

The Program parameter for GDB should be the device-side ELF file

Use the dpacc-extract tool (provided with the DPACC package) to extract the
device-side ELF file from the application's ELF file

14.4.3.5.2.10 FlexIO Samples

This section describes samples based on the FlexIO SDK. These samples illustrate how to use the
FlexIO API to configure and execute code on the DPA.

Running FlexIO Sample

The FlexIO SDK samples serve as a reference for building and running FlexIO-based DPA applications.
They provide a collection of out-of-the-box working DPA applications that encompass the basic
functionality of the FlexIO SDK.

Documentation

Refer to NVIDIA DOCA Installation Guide for Linux for details on how to install BlueField-
related software
Refer to NVIDIA DOCA Troubleshooting Guide for any issue you may encounter with the
installation, compilation, or execution of DOCA samples

Minimal Requirements

The user must have the following installed:

DOCA DPACC package
DOCA RDMA package
pkg-config package
Python3 package
Gcc with version 7.0 or higher
Meson package with version 0.53.0 or higher

355

•
•

•

•

•

•

Ninja package
DOCA FlexIO SDK

Sample Structure

Each sample is situated in its own directory and is accompanied by a corresponding description in
README files. Every sample comprises two applications:

The first, located in the device directory, is designed for DPA

The second, found in the host directory, is intended for execution on the DPU or host in a
Linux OS environment

Additionally, there is a common directory housing libraries for the examples. These libraries are

further categorized into device and host directories to facilitate linking with similar
applications. Beyond containing functions and macros, these libraries also serve as illustrative
examples for how to use them.

The list of the samples:

flexio_rpc – sample demonstrating how to run RPC functions from DPA

packet_processor – sample demonstrating how to process a package

Building the Samples

cd /opt/mellanox/fleio/samples/
./build.sh --check-compatibility --rebuild

Samples

flexio_rpc

This sample application executes FlexIO with a remote process call.

The device program calculates the sum of 2 input parameters, prints the result, and copies the
result back to the host application.

This sample demonstrates how applications are built (DPA and host), how to create processes and
message streams, how to open the IBV device, and how to use RPC from the host to DPA function.

Compilation

cd /opt/mellanox/flexio/samples/
./build.sh --check-compatibility --rebuild

The output path:

/opt/mellanox/flexio/samples/build/flexio_rpc/host/flexio_rpc

Usage

<sample_root>/build/flexio_rpc/host/flexio_rpc <mlx5_device> <arg1> <arg2>

Where:

356

•

•

•

•

•

mlx5_device – IBV device with DPA

arg1 – first numeric argument

arg2 – second numeric argument

Example:

$/opt/mellanox/flexio/samples/build/flexio_rpc/host/flexio_rpc mlx5_0 44 55
Welcome to 'Flex IO RPC' sample
Registered on device mlx5_0
/ 2/Calculate: 44 + 55 = 99
Result: 99
Flex IO RPC sample is done

flexio_packet_process

This example demonstrates packet processing handling.

The device application implements a handler for flexio_pp_dev that receives packets from the
network, swaps MAC addresses, inserts some text into the packet, and sends it back.

This allows the user to send UDP packets (with a packet length of 65 bytes) and check the content
of returned packets. Additionally, the console displays the execution of packet processing, printing
each new packet index. Device messaging operates in synchronous mode (i.e., each message from
the device received by the host is output immediately).

This sample illustrates how applications work with libraries (DPA and host), how to create SQ, RQ,
CQ, memory keys, and doorbell rings, how to create and use DPA memory buffers, how to use UAR,
and how to create and run event handlers.

Compilation

cd /opt/mellanox/flexio/samples/
./build.sh --check-compatibility --rebuild

The output path:

/opt/mellanox/flexio/samples/build/packet_processor/host/flexio_packet_processor

Usage

<sample_root>/build/packet_processor/host/flexio_packet_processor <mlx5_device>

Where:

mlx5_device – name of IB device with DPA

--nic-mode – optional parameter indicating that the application is run from the host. If the
application is run from DPU, then the parameter should not be used.

For example

$sudo /build/packet_processor/host/flexio_packet_processor mlx5_0

The application must run with root privileges.

Running with Traffic

357

Run host-side sample:

$ cd <sample_root>
$ sudo ./build/packet_processor/host/flexio_packet_processor mlx5_0

Use another machine connected to the setup running the application. Bring the interface used as
packet generator up:

$ sudo ifconfig my_interface up

Use scapy to run traffic to the device the application is running on:

$ python

>>> from scapy.all import *
>>> from scapy.layers.inet import IP, UDP, Ether

>>> sendp(Ether(src="02:42:7e:7f:eb:02", dst='52:54:00:79:db:d3')/IP()/UDP()/Raw(load="===============12345678"),
iface="my_interface")

The packets can be viewed using tcpdump :

$ sudo tcpdump -i my_interface -en host 127.0.0.1 -X

Example output

Example output:
11:53:51.422075 02:42:7e:7f:eb:02 > 52:54:00:12:34:56, ethertype IPv4 (0x0800), length 65: 127.0.0.1.domain > 127.0.0
.1.domain: 15677 op7+% [b2&3=0x3d3d] [15677a] [15677q] [15677n] [15677au][|domain]
 0x0000: 4500 0033 0001 0000 4011 7cb7 7f00 0001 E..3....@.|.....
 0x0010: 7f00 0001 0035 0035 001f 42c6 3d3d 3d3d 5.5..B.==== <-- Original data
 0x0020: 3d3d 3d3d 3d3d 3d3d 3d3d 3d31 3233 3435 ===========12345
 0x0030: 3637 38 678
11:53:51.700038 52:54:00:12:34:56 > 02:42:7e:7f:eb:02, ethertype IPv4 (0x0800), length 65: 127.0.0.1.domain > 127.0.0
.1.domain: 26144 op8+% [b2&3=0x4576] [29728a] [25966q] [25701n] [28015au][|domain]
 0x0000: 4500 0033 0001 0000 4011 7cb7 7f00 0001 E..3....@.|.....
 0x0010: 7f00 0001 0035 0035 001f 42c6 6620 4576 5.5..B.f.Ev <-- Modified data
 0x0020: 656e 7420 6465 6d6f 2a2a 2a2a 2a2a 2a2a ent.demo********
 0x0030: 2a2a 2a ***

14.4.3.5.3 DPA Application Authentication

DPA Application Authentication is supported at beta level for BlueField-3.

DPA Application Authentication is currently only supported with statically linked libraries.
Dynamically linked libraries are currently not supported.

This section provides instructions for developing, signing, and using authenticated BlueField-3 data-
path accelerator (DPA) applications. It includes information on:

Source MAC must be same as above as the application defines a steering rule for it.
Destination MAC can be anything.

The load should be kept the same as above, as the application looks for this pattern and
changes it during processing.

Interface name should be changed to the interfaced used for traffic generation.

358

•
•

•

Principles of root of trust and structures supporting it
Device ownership transfer/claiming flow (i.e., how the user should configure the device so
that it will authenticate the DPA applications coming from the user)
Crypto signing flow and ELF file structure and tools supporting it

14.4.3.5.3.1 Root of Trust Principles

Signing of 3rd Party DPA App Code

NVIDIA® BlueField®-3 introduces the ability for customers/device owners to sign applications
running on the DPA with their private key and have it authenticated by a device-embedded
certificate chain. This provides the benefit of ensuring that only code permitted by the customer
can run on the DPA. The customer can be any party writing code intended to run on the DPA (e.g., a
cloud service provider, OEM, etc).

The following figure illustrates the signature of customer code. This signature will allow
NVIDIA firmware to authenticate the source of the application's code.

Example of Customer DPA Code Signed by Customer for Authentication

359

1.
2.
3.

4.

5.

The high-level scheme is as follows (see figure "Loading of Customer Keys and CA Certificates and
Provision of DPA Firmware to BlueField-3 Device"):

The numbers of these steps correspond to the numbers indicated in the figure below.

Customer provides NVIDIA Enterprise Support the public key for device ownership.
NVIDIA signs the customer's public key and sends it back to the customer.
Customer uploads the NVIDIA-signed public key to the device, enabling "Transfer of
Ownership" to the customer (from NVIDIA).
Using the private key corresponding to the public key uploaded to the device, the customer
can now enable DPA authentication and load the root certificate used for authentication of
DPA App code.
DPA app code crypto-signed by the customer serves to authenticate the source of the app
code.
The public key used to authenticate the DPA app is provided as part of the certificate chain
(leaf certificate), together with the DPA firmware image.

360

6.

•

•

App code and the owner signature serves to authorize the app execution by the NVIDIA
firmware (similar to NVIDIA own signature).

Loading of Customer Keys and CA Certificates and Provision of DPA Firmware to BlueField-3 Device

The following sections provide more details about this high-level process.

Verification of Authenticity of DPA App Code

Authentication of application firmware code before authorization to execute shall consist of
validation of the customer certificate chain and customer signature using the customer's public key.

Public Keys (Infrastructure, Delivery, and Verification)

For the purposes of the authentication verification of the application firmware, the public key must
be securely provided to the hardware. To do so, a secure Management Component Control (MCC)
Flow shall be used. Using this, the content of the downloaded certificate is enveloped in an MCC
Download Container and signed by NVIDIA Private Key.

The following is an example of how to use the MCC flow describes in detail the procedures, tools
and structures supporting this (Section "Loading of CSP CA Certificates and Keys and Provisioning of
DPA Firmware to Device" describes the high-level flow for this).

The following command burns the certificate container:

flint -d <mst device> -i <signed-certificate-container> burn

Two use cases are possible:

The DPA application is developed internally in NVIDIA, and the authentication is based on
internal NVIDIA keys and signing infrastructure
The DPA application is developed by a customer, and the authentication is based on the
customer certificate chain

In either case, the customer must download the relevant CA certificate to the device.

https://docs.ndis.nvidia.com/Root%20CA%20Containers/DPA%20Root%20CA.html

361

•

•

ROT Certificate Chain

This figure illustrates the build of the certificate chain used for validation of DPA app images. The
leaf certificate of these chains is used to validate the DPA application supplied by the customer
(with ROT from customer CA). The NVIDIA certificate chain for validation of DPA applications (built
internally in NVIDIA) is structured in a very similar way. OEMDpaCert CA is the root CA which can be
used by the customer to span their certificate chain up to the customer leaf certificate which is
used for validating the signature of the application's image. Similarly, NVDADpaCert CA is the root
CA used internally in NVIDIA to build the DPA certificate chain for validation of NVIDIA DPA apps.

Customer private keys must be kept secure and are the sole responsibility of the customer to
maintain. It is recommended to have a set of keys ready and usable by customer for redundancy
purposes.The whole customer certificate chain, including root CA and leaf, must not exceed 4
certificates.

The NVDA_CACert_DPA and OEM_CACert_DPA certificates are self-signed and trusted because they
are loaded by the secure MCC flow and authenticated by the firmware.

The customer certificate chain beyond OEM_CACert_DPA is delivered with the DPA image, including
the leaf certificate that is used for validating the cryptographic signature of the DPA firmware (see
table "ELF Crypto Data Section Fields Description").

For more details on the certificates and their location in the flash, contact NVIDIA Enterprise
Support to obtain the Flash Application Note. The rest of the certificate chain used for the DPA
firmware authentication includes:

For NVIDIA-signed images (e.g., figure "ROT Certificate Chain"): NVDA DPA root certificate
(NVDA_CACert_DPA can be downloaded here)
For customer-signed images (e.g., figure "ROT Certificate Chain"): Customer CA certificate,
customer product, and customer leaf certificates

https://docs.ndis.nvidia.com/Root%20CA%20Containers/DPA%20Root%20CA.html

362

1.

a.

b.

c.

2.

3.

In both cases (NVIDIA internal and customer-signed) these parts of the certificate chain are attached
to the DPA firmware image.

Loading of CSP CA Certificates and Keys and Provisioning of DPA Firmware to Device

The figure "Loading of Customer Keys and CA Certificates and Provision of DPA Firmware to
BlueField-3 Device" shows, at high-level, the procedures for loading user public keys to the device,
signing and loading of customer certificates MCC container, and downloading the DPA firmware
images.

For clarity, the hierarchy of ROT validation is as follows:

Customer public key to be used for customer TLVs and CACert_DPA certificate

validation, PK_TLV (i.e., NV_LC_NV_PUBLIC_KEY):
For a device whose DPA authentication ability the customer wishes to enable for the
first time, the customer must get it signed and authenticated by NVIDIA keys by
reaching out to NVIDIA Enterprise Support. The complete flow is described in "Device
Ownership Claiming Flow".
After PK_TLV is loaded, it can be updated by authenticating the update using either

the same PK_TLV . The complete flow is described in "Device Ownership Claiming
Flow".
Authentication of TLV for enabling/disabling DPA authentication is also validated by
the PK_TLV . The complete flow is described in section "DPA Authentication
Enablement".

Loading of CA certificate (CACert_DPA) to be used for DPA code validation. It is

authenticated using the same PK_TLV .
The complete flow is described in "Uploading DPA Root CA Certificate".
The public key in the leaf of the certificate chain anchored by CACert_DPA is used for
authentication of the DPA firmware Image.
The structure of the ELF file containing the DPA app and the certificate chain is described in
"ELF File Structure".

A scalable and reliable infrastructure is required to support many users. The customer must also
have an infrastructure to support their own code signing process according to their organization's
security policy. Both matters are out of the scope of this document.

Device Ownership Claiming Flow

NVIDIA networking devices allow the user of the device to customize the configurations, and in some
cases change the behavior of the device. This set of available customizations is controlled by higher
level NVIDIA configurations that come either as part of the device firmware or as a separate update
file. To allow customers/device owners to change the set of available configurations and allowed
behaviors, each device can have a device owner who is allowed to change the default behaviors and
configurations of the device, and to change what configurations are exposed to the user.

The items controlled by the customer/device owner are:

Trying to utilize the DPA signing flow in a firmware version prior to DOCA 2.2.0 is not
supported.

363

•

•

•

•

1.
a.

b.

c.

Device configurations: The customer/device owner can change the default value of any
configuration available to users. They can also prevent users from changing the value.
Trusted root certificates: The customer/device owner can control what root certificates the
device trusts. These certificates control various behaviors (e.g., what 3rd party code the
BlueField DPA accepts).

After the device has the public key of the owner, whenever an NVconfig file is signed with this key,
one of two things must be true:

The nv_file_id field in the NVconfig file must have the parameter keep_same_priority a

s True ; or
The NVconfig file must contain the public key itself (so the public key is rewritten to the
device)

Otherwise, the public key is removed from the device, and as such will not accept files signed by
the matching private key.

Detailed Ownership Claiming Flow

Customer generates a private-public key pair, and a UUID for the key pair.
Generating UUID for the key pair:

uuidgen -t

Example output:

77dd4ef0-c633-11ed-9e20-001dd8b744ff

Generating an RSA key pair:

openssl genrsa -out OEM.77dd4ef0-c633-11ed-9e20-001dd8b744ff.pem 4096

Example output:

Generating RSA private key, 2048 bit long modulus
...........+++
..............+++
e is 65537 (0x10001)

Extracting the public key file from the RSA key pair:

openssl rsa -in OEM.77dd4ef0-c633-11ed-9e20-001dd8b744ff.pem -out OEM.77dd4ef0-
c633-11ed-9e20-001dd8b744ff.public -pubout -outform PEM

Output:

writing RSA key

The public key should look similar to the following:

-----BEGIN PUBLIC KEY-----
MIICIjANBgkqhkiG9w0BAQEFAAOCAg8AMIICCgKCAgEAxfijde+27A3pQ7MoZnlm
mtpyuHO1JY9AUeKaHUXkWRiopL9Puswx1KcGfWJSNzlEPZRevTHraYlLQCru4ofr
W9NBE/qIwS2n7kiFwCCvZK6FKUUqZAuMJTpfuNtv9o4C4v0ZiX4TQqWDND8hy+1L
hPf3QLRiJ/ux4G6uHIFwENSwagershuKD0RI6BaZ1g9S9IxdXcD0vTdEuDPqQ0m4
CwEs/3xnksNRLUM+TiPEZoc5MoEoKyJv4GFbGttabhDCt5sr9RqAqTNUSDI9B0jr
XoQBQQpqRgYd3lQ31Fhh3G9GjtoAcUQ6l0Gct3DXKFTAADV3Lyo1vjFNrOKUhdhT
pjDKzNmZAsxyIZI0buc24TCgj1yPyFboJtpnHmltyxfm9e+EJsdSIpRiX8YTWwkN

364

2.

3.

4.

1.
a.

aIzNj08VswULwbKow5Gu5FFpE/uXDE3cXjLOUNnKihszFv4qkqsQjKaK4GszXge+
jfiEwsDKwS+cuWd9ihnyLrIWF23+OX0S5xjFXDJE8UthOD+3j3gGmP3kze1Iz2YP
Qvh3ITPRsqQltaiYh+CivqaCHC0voIMOP1ilAEZ/rW85pi6LA8EsudNMG2ELrUyl
SznBzZI/OxMk4qKx9nGgjaP2YjmcPw2Ffc9zZcwl57ThEOhlyS6w3E9xwBvZINLe
gMuOIWsu1FK3lIGxMSCUZQsCAwEAAQ==
-----END PUBLIC KEY-----

Customer provides NVIDIA Enterprise Support the public key for device ownership with its
UUID.
NVIDIA generates a signed NVconfig file with this public key and sends it to the customer. This
key may only be applied to devices that do not have a device ownership key installed yet.
Customer uses mlxconfig to install the OEM key on the needed devices.

mlxconfig -d /dev/mst/<dev> apply oem_public_key_nvconfig.bin

To check if the upload process has been successful, the customer can use mlxconfig to query the
device and check if the new public key has been applied. The relevant parameters to query
are LC_NV_PUB_KEY_EXP , LC_NV_PUB_KEY_UUID , and LC_NV_PUB_KEY_0_255 .

Example of query command and expected response:

mlxconfig -d <dev>-e q LC_NV_PUB_KEY_0_255

Uploading DPA Root CA Certificate

After uploading a device ownership public key to the device, the owner can upload DPA root CA
certificates to the device. There can be multiple DPA root CA certificates on the device at the same
time.

If the owner wants to upload authenticated DPA apps developed by NVIDIA, they must upload the
NVIDIA DPA root CA certificate found here.

If the owner wants to sign their own DPA apps, they must create another public-private key pair (in
addition to the device ownership key pair), create a certificate containing the DPA root CA public
key, and create a container with this certificate using mlxdpa .

To upload a signed container with a DPA root CA certificate to the device, mlxdpa must be used.
This can be done both for either NVIDIA or customer-created certificates.

Generating DPA Root CA Certificate

Create a DER encoded certificate containing the public key used to validate DPA apps.
Generating a certificate and a new key pair:

openssl req -x509 -newkey rsa:4096 -keyout OEM-DPA-root-CA-key.pem -outform der -out OEM-DPA-root-
CA-cert.crt -sha256 -nodes -subj "/C=XX/ST=OEMStateName/L=OEMCityName/O=OEMCompanyName/
OU=OEMCompanySectionName/CN=OEMCommonName" -days 3650

Output:

Both SHA256 and SHA512 are supported in cert. Only a RSA 4096 key is
supported. The size of each certificate in DER format must be less than 1792
bytes.

https://docs.ndis.nvidia.com/Root%20CA%20Containers/DPA%20Root%20CA.html

365

2.
a.

b.

1.

2.

3.

4.

Generating a 4096 bit RSA private key
......++
......................++
writing new private key to 'OEM-DPA-root-CA-key.pem'

Create a container for the certificate and sign it with the device ownership private key.
To create and add a container:

mlxdpa --cert_container_type add -c <cert.der> -o <path to output> --life_cycle_priority <Nvidia/
OEM/User> create_cert_container

Output example:

Certificate container created successfully!

To sign a container:

mlxdpa --cert_container <path to container> -p <key file> --keypair_uuid <uuid> --cert_uuid <uuid>
--life_cycle_priority <Nvidia/OEM/User> -o <path-to-output> sign_cert_container

Certificate container signed successfully!

Manually Signing Container

If the server holding the private key cannot run mlxdpa , it is possible to manually sign the
certificate container and add the signature to the container. In that case, the following process
should be followed:

Generate unsigned cert container:

mlxdpa --cert_container_type add -c <.DER-formatted-certificate> -o <unsigned-container-path> --
keypair_uuid <uuid> --cert_uuid <uuid> --life_cycle_priority OEM create_cert_container

Generate signature field header:

echo "90 01 02 0C 10 00 00 00 00 00 00 00" | xxd -r -p - <signature-header-path>

Generate signature of container (in whatever way, this is an example only):

openssl dgst -sha512 -sign <private-key-pem-file> -out <container-signature-path> <unsigned-container-path>

Concatenate unsigned container, signature header, and signature into one file:

cat <unsigned-container-path> <signature-header-path> <container-signature-path> > <signed-container-path>

Uploading Certificates

Upload each signed container containing the desired certificates for the device.

flint -d <dev> -i <signed-container> -y b

Output example:

-I- Downloading FW ...
FSMST_INITIALIZE - OK
Writing DIGITAL_CACERT_REMOVAL component - OK
-I- Component FW burn finished successfully.

366

•
a.

i.

ii.

b.

•
a.

i.

ii.

Removing Certificates

To remove root CA certificates from the device, the user must apply a certificate removal container
signed by the device ownership private key.

There are two ways to remove certificates, either removing all certificates, or removing all installed
certificates:

Removing all root CA certificates from the device:
Generate a signed container to remove all certificates.

Created certificate container:

mlxdpa --cert_container_type remove --remove_all_certs -o <path-to-container> --
life_cycle_priority <Nvidia/OEM/User> create_cert_container

Output example:

Certificate container created successfully!

Sign certificate container:

mlxdpa --cert_container <path-to-container> -p <key-file> --keypair_uuid <uuid> --
life_cycle_priority <Nvidia/OEM/User> -o <path-to-signed-container> sign_cert_container

Output example:

Certificate container signed successfully!

Apply the container to the device.

flint -d <dev> -i <signed-container> -y b

Output example:

-I- Downloading FW ...
FSMST_INITIALIZE - OK
Writing DIGITAL_CACERT_REMOVAL component - OK
-I- Component FW burn finished successfully.

Removing specific root CA certificates according to their UUID:
Generate a signed container to remove certificate based on UUID.

Create the container.

mlxdpa --cert_container_type remove --cert_uuid <uuid> -o <path-to-container> --
life_cycle_priority <Nvidia/OEM/User> create_cert_container

Output example:

Certificate container created successfully!

Sign the container:

mlxdpa --cert_container <path-to-container> -p <key-file> --keypair_uuid <uuid> --cert_uuid
<uuid> --life_cycle_priority <Nvidia/OEM/User> -o <path to output> sign_cert_container

Output example:

Certificate container signed successfully!

367

b.

1.
a.

b.

c.

Apply the container to the device:

flint -d <dev> -i <signed container> -y b

Output:

-I- Downloading FW ...
FSMST_INITIALIZE - OK
Writing DIGITAL_CACERT_REMOVAL component - OK
-I- Component FW burn finished successfully.

DPA Authentication Enablement

After the device has a device ownership key and DPA root CA certificates installed, the owner of the
device can enable DPA authentication. To do this, they must create an NVconfig file, sign it with the
device ownership private key, and upload the NVconfig to the device.

Generating NVconfig Enabling DPA Authentication

Create XML with TLVs to enable DPA authentication.
Get list of available TLVs for this device:

mlxconfig -d /dev/mst/<dev> gen_tlvs_file enable_dpa_auth.txt

Output:

Saving output...
Done!

Example part of the generated text file:

file_applicable_to 0
file_comment 0
file_signature 0
file_dbg_fw_token_id 0
file_cs_token_id 0
file_btc_token_id 0
file_mac_addr_list 0
file_public_key 0
file_signature_4096_a 0
file_signature_4096_b 0
…

Edit the text file to contain the following TLVs:

file_applicable_to 1
nv_file_id_vendor 1
nv_dpa_auth 1

Convert the .txt file to XML format with another mlxconfig command:

mlxconfig -a gen_xml_template enable_dpa_auth.txt enable_dpa_auth.xml

Output:

Saving output...
Done!

The generated .xml file:

<?xml version="1.0" encoding="UTF-8"?>

368

d.

2.

<config xmlns="http://www.mellanox.com/config">
<file_applicable_to ovr_en='1' rd_en='1' writer_id='0'>
 <psid></psid>
 <psid_branch></psid_branch>
 </file_applicable_to>

<nv_file_id_vendor ovr_en='1' rd_en='1' writer_id='0'>

 <!-- Legal Values: False/True -->
 <disable_override></disable_override>

 <!-- Legal Values: False/True -->
 <keep_same_priority></keep_same_priority>

 <!-- Legal Values: False/True -->
 <per_tlv_priority></per_tlv_priority>

 <!-- Legal Values: False/True -->
 <erase_lower_priority></erase_lower_priority>
 <file_version></file_version>
 <day></day>
 <month></month>
 <year></year>
 <seconds></seconds>
 <minutes></minutes>
 <hour></hour>

</nv_file_id_vendor>

<nv_dpa_auth ovr_en='1' rd_en='1' writer_id='0'>
 <!-- Legal Values: False/True -->
 <dpa_auth_en></dpa_auth_en>

</nv_dpa_auth>
</config>

Edit the XML file and add the information for each of the TLVs, as seen in the following
example XML file:

<?xml version="1.0" encoding="UTF-8"?>
<config xmlns="http://www.mellanox.com/config">

<file_applicable_to ovr_en='0' rd_en='1' writer_id='0'>
 <psid>TODO</psid>
 <psid_branch>TODO</psid_branch>
</file_applicable_to>

<nv_file_id_vendor ovr_en='0' rd_en='1' writer_id='0'>
 <disable_override>False</disable_override>
 <keep_same_priority>True</keep_same_priority>
 <per_tlv_priority>False</per_tlv_priority>
 <erase_lower_priority>False</erase_lower_priority>
 <file_version>TODO</file_version>
 <day>TODO</day>
 <month>TODO</month>
 <year>TODO</year>
 <seconds>TODO</seconds>
 <minutes>TODO</minutes>
 <hour>TODO</hour>
</nv_file_id_vendor>

<nv_dpa_auth ovr_en='0' rd_en='1' writer_id='0'>
 <dpa_auth_en>True</dpa_auth_en>
</nv_dpa_auth>
</config>

Convert XML file to binary NVconfig file and sign it using mlxconfig :

mlxconfig -p OEM.77dd4ef0-c633-11ed-9e20-001dd8b744ff.pem -u 77dd4ef0-c633-11ed-9e20-001dd8b744ff
create_conf enable_dpa_auth.xml enable_dpa_auth.bin

Output of create_conf command:

In nv_file_id_vendor , keep_same_priority must be True to avoid
removing the ownership public key from the device. More information they
can be found in section "Device Ownership Claiming Flow".

The ovr_en should be set to 0. This can ignore user priority changing

nv_dpa_auth .

369

3.

4.

1.

2.

3.

4.

5.

Saving output...
Done!

Upload NVconfig file to device by writing the file to the device:

mlxconfig -d /dev/mst/<dev> apply enable_dpa_auth.bin

Output:

Saving output...
Done!

Verify that the device has DPA authentication enabled by reading the status of DPA
authentication from the device:

mlxconfig -d /dev/mst/<dev> -e q DPA_AUTHENTICATION

Output:

Device #1:

Device type: BlueField3
…
…
Configurations: Default Current Next Boot
 RO DPA_AUTHENTICATION True(1) True(1) True(1)

The DPU's factory default setting is configured with dpa_auth_en=0 (i.e., DPA applications
can run without authentication). To prevent configuration change by any user, it is strongly
recommended for the customer to generate and install NVconfig with dpa_auth_en=0/1 ,

according to their preferences, with ovr_en=0 .

Manually Signing NVconfig File

If the server holding the private key cannot run mlxconfig, it is possible to manually sign the binary
NVconfig file and add the signature to the file. In this case, the following process should be followed
instead of step 2:

Generate unsigned NVconfig bin file from the XML file:

mlxconfig create_conf <xml-nvconfig-path> <unsigned-nvconfig-path>

Generate random UUID for signature:

uuidgen -r | xxd -r -p - <signature-uuid-path>

Generate signature of NVconfig bin file (in whatever way, this is an example only):

openssl dgst -sha512 -sign <private-key-pem-file> -out <nvconfig-signature-path> <unsigned-nvconfig-path>

Split the signature into two parts:

head -c 256 <nvconfig-signature-path> > <signature-part-1-path> && tail -c 256 <nvconfig-signature-path> >
<signature-part-2-path>

Add signing key UUID:

370

6.

7.

1.

2.

3.

echo "<signing-key-UUID>" | xxd -r -p - <signing-key-uuid-path>

Use the signing key UUID, which must have a length of exactly 16 bytes, in a format
like aa9c8c2f-8b29-4e92-9b76-2429447620e0 .
Generate headers for signature struct:

echo "03 00 01 20 06 00 00 0B 00 00 00 00" | xxd -r -p - <signature-1-header-path>
echo "03 00 01 20 06 00 00 0C 00 00 00 00" | xxd -r -p - <signature-2-header-path>

Concatenate everything:

cat <unsigned-nvconfig-path> <signature-1-header-path> <signature-uuid-path> <signing-key-uuid-path>
<signature-part-1-path> <signature-2-header-path> <signature-uuid-path> <signing-key-uuid-path> <signature-
part-2-path> > <signed-nvconfig-path>

Device Ownership Transfer

The device owner may change the device ownership key to change the owner of the device or to
remove the owner altogether.

First Installation

To install the first OEM_PUBLIC_KEY on the device, the user must upload an NVCONFIG file signed

by NVIDIA. This file would contain the 3 FILE _OEM_PUBLIC_KEY TLVs of the current user.

Removing Device Ownership Key

Before removing the device ownership key completely, it is recommended that the device owner
reverts any changes made to the device since it is not possible to undo them after the key is
removed. Mainly, the root CA certificates installed by the owner should be removed.

To remove device ownership key completely, follow the steps in section "Generating NVconfig
Enabling DPA Authentication" to create an XML file with TLVs.
Edit the XML file to contain the following TLVs:

<?xml version="1.0" encoding="UTF-8"?>
<config xmlns="http://www.mellanox.com/config">

<file_applicable_to ovr_en='0' rd_en='1' writer_id='0'>
 <psid> MT_0000000911</psid>
 <psid_branch> </psid_branch>
</file_applicable_to>

<nv_file_id_vendor ovr_en='0' rd_en='1' writer_id='0'>
 <disable_override>False</disable_override>
 <keep_same_priority>False</keep_same_priority>
 <per_tlv_priority>False</per_tlv_priority>
 <erase_lower_priority>False</erase_lower_priority>
 <file_version>0</file_version>
 <day>17</day>
 <month>7</month>
 <year>7e7</year>
 <seconds>1</seconds>
 <minutes>e</minutes>
 <hour>15</hour>
</nv_file_id_vendor>
</config>

The TLVs in this file are the only TLVs that will have OEM priority after this file is applied, and
as the device ownership key will no longer be on the device, the OEM will no longer be able
to change the TLVs. To have OEM priority TLVs on the device after removing the device
ownership key, add to this XML any TLV that must stay as default on the device.
Convert the XML file to a binary NVconfig TLV file signed by the device ownership key as
described in section "Generating NVconfig Enabling DPA Authentication".

371

4. Apply the NVconfig file to the device as described in section "Generating NVconfig Enabling
DPA Authentication".

Changing Device Ownership Key

To transfer ownership of the device to another entity, the previous owner can change the device
ownership public key to the public key of the new owner.

To do this, they can use an NVconfig file, and include in it the following TLVs:

<nv_ls_nv_public_key_0 ovr_en='0' rd_en='1' writer_id='0'>
 <public_key_exp>65537</public_key_exp>
 <keypair_uuid>77dd4ef0-c633-11ed-9e20-001dd8b744ff</keypair_uuid>
</nv_ls_nv_public_key_0>

<nv_ls_nv_public_key_1 ovr_en='0' rd_en='1' writer_id='0'>
 <key>
 c5:f8:a3:75:ef:b6:ec:0d:e9:43:b3:28:66:79:
 66:9a:da:72:b8:73:b5:25:8f:40:51:e2:9a:1d:45:
 e4:59:18:a8:a4:bf:4f:ba:cc:31:d4:a7:06:7d:62:
 52:37:39:44:3d:94:5e:bd:31:eb:69:89:4b:40:2a:
 ee:e2:87:eb:5b:d3:41:13:fa:88:c1:2d:a7:ee:48:
 85:c0:20:af:64:ae:85:29:45:2a:64:0b:8c:25:3a:
 5f:b8:db:6f:f6:8e:02:e2:fd:19:89:7e:13:42:a5:
 83:34:3f:21:cb:ed:4b:84:f7:f7:40:b4:62:27:fb:
 b1:e0:6e:ae:1c:81:70:10:d4:b0:6a:07:ab:b2:1b:
 8a:0f:44:48:e8:16:99:d6:0f:52:f4:8c:5d:5d:c0:
 f4:bd:37:44:b8:33:ea:43:49:b8:0b:01:2c:ff:7c:
 67:92:c3:51:2d:43:3e:4e:23:c4:66:87:39:32:81:
 28:2b:22:6f:e0:61:5b:1a:db:5a:6e:10:c2:b7:9b:
 2b:f5:1a:80:a9:33:54:48:32:3d:07:48:eb:5e:84:
 01:41:0a:6a:46:06:1d:de:54:37:d4:58:61:dc:6f:
 46:8e:da:00:71:44:3a:97:41:9c:b7:70:d7:28:54:
 c0:00:35:77:2f:2a:35:be:31:4d:ac:e2:94:85:d8:
 53:a6:
 </key>
</nv_ls_nv_public_key_1>

<nv_ls_nv_public_key_2 ovr_en='0' rd_en='1' writer_id='0'>
 <key>
 30:ca:cc:d9:99:02:cc:72:21:92:34:6e:e7:
 36:e1:30:a0:8f:5c:8f:c8:56:e8:26:da:67:1e:69:
 6d:cb:17:e6:f5:ef:84:26:c7:52:22:94:62:5f:c6:
 13:5b:09:0d:68:8c:cd:8f:4f:15:b3:05:0b:c1:b2:
 a8:c3:91:ae:e4:51:69:13:fb:97:0c:4d:dc:5e:32:
 ce:50:d9:ca:8a:1b:33:16:fe:2a:92:ab:10:8c:a6:
 8a:e0:6b:33:5e:07:be:8d:f8:84:c2:c0:ca:c1:2f:
 9c:b9:67:7d:8a:19:f2:2e:b2:16:17:6d:fe:39:7d:
 12:e7:18:c5:5c:32:44:f1:4b:61:38:3f:b7:8f:78:
 06:98:fd:e4:cd:ed:48:cf:66:0f:42:f8:77:21:33:
 d1:b2:a4:25:b5:a8:98:87:e0:a2:be:a6:82:1c:2d:
 2f:a0:83:0e:3f:58:a5:00:46:7f:ad:6f:39:a6:2e:
 8b:03:c1:2c:b9:d3:4c:1b:61:0b:ad:4c:a5:4b:39:
 c1:cd:92:3f:3b:13:24:e2:a2:b1:f6:71:a0:8d:a3:
 f6:62:39:9c:3f:0d:85:7d:cf:73:65:cc:25:e7:b4:
 e1:10:e8:65:c9:2e:b0:dc:4f:71:c0:1b:d9:20:d2:
 de:80:cb:8e:21:6b:2e:d4:52:b7:94:81:b1:31:20:
 94:65:0b
 </key>
</nv_ls_nv_public_key_2>

If the transfer is internal, the owner should set keep_same_priority=True in

nv_file_id_vendor TLV and only include the 3 nv_ls_nv_public_key_* TLVs, file_applicable

_to and nv_file_id_vendor TLVs in the NVconfig file.

If the transfer is to another OEM/CSP, the owner should clean the device (similarly to removing the
device ownership key) and set keep_same_priority=False in nv_file_id_vendor TLV.

14.4.3.5.3.2 ELF File Structure

For maximal firmware code reuse, the format of the DPA image loaded from driver should be the
same as for the file loaded from flash. As for files loaded from the host, ELF is the default file
format. This is chosen as the format for the DPA image, both for flash and for files loaded from the
host.

The following figure shows, schematically, a generic ELF file structure.

372

•
•

1.
a.
b.

i.
ii.
iii.
iv.
v.

2.
•

To support DPA Code authentication additional information needs to be presented to firmware. This
info must include:

Cryptographic signature of the DPA code
Customer certificate chain including a Leaf Certificate with the public key to be used for
signature validation (as described in section "Public Keys (Infrastructure, Delivery, and
Verification)")

ELF File Structure Schematic

Crypto Signing Flow

The host ELF includes parts which run on the host, and those that run on DPA. DPA code files are
incorporated in the "big" host ELF as binaries. Each host file may include several DPA applications.

When it is required to sign the DPA applications, the following steps need to be performed by the
MFT Signing Tool (also see figure "Crypto Signing Flow"):

Using ELF manipulation library APIs of DPACC, extract Apps List Table
Input – host ELF
Output – apps list data table to include:

DPA app index
DPA app name
Offset in host ELF
Size of app
Name of corresponding crypto data section
For each DPA application (from i=1 to i=N, N- number of DPA apps in the host
ELF) run steps 2 and 3.

Fill hash list table:
Input: Dpa_App_i

https://docs.nvidia.com/networking/display/mftv4260/mlxdpa+%E2%80%93+dpa+applications+sign+tool

373

•
3.

•

•

4.
•
•

Output: Hash list table
Sign the crypto data:

Input: {Metadata, Hash List Table}, key handle (e.g., UUID from leaf of the Certificate
Chain)
Output: Crypto_Data "Blob", including: Metadata, Hash List Table, Crypto Signature,
Certificate Chain

Add crypto data section to host ELF:
Inputs: Host ELF, crypto data section name to use
Output: File name of host ELF with signature added

The structures used in the flow (hash list table, metadata, etc.) are described in sections "ELF
Crypto Data Section Content" and "Hash List Table Layout".

Signing the crypto data may be done using a signing server or a locally stored key.

Crypto Signing Flow

ELF Cryptographic Data Section

This figure shows, schematically, the layout of the cryptographic data section, and the following
subsections provide details about the ELF section header and the rest of the structures.

ELF Cryptographic Data Section Layout

374

Crypto Data ELF Section Header

Defined according to the ELF section header format.

ELF Section Header

Name Offset Range Description

sh_name 0x0 4B &("Cryptographic Data Section DPA App X")
An offset to a string (in the .shstrtab section
of ELF) which represents the name of this
section

sh_type 0x4 4B 0x70000666
SHT_CRYPTODATA – the section is proprietary
and holds crypto information defined in this
document

sh_flags 0X8 8B 0 – no flags

sh_addr 0x10 8B Virtual address of the section in memory, for
sections that are loaded

sh_offset 0x18 8B Offset of the section in the file image

sh_size 0x20 8B Size in bytes of the section in the file image.
Depends on the content (e.g., presence and type
of public key certificate chain and signature).

sh_link 0x28 4B 0 – =SHN_UNDEF , no link information

sh_info 0x2C 4B 0 – no extra information about the section

sh_addralign 0x30 8B Contains the required alignment of the section.
This field must be a power of two.

sh_entsize 0x38 8B 0

0x40 End of section header (size)

ELF Crypto Data Section Content

ELF Crypto Data Section Fields Description

https://en.wikipedia.org/wiki/Executable_and_Linkable_Format#File_layout

375

•
•
•

•

•

Name Offset Range Description

metadata_version 0x0 15:0 Version metadata structure
format. Initial version is 0.

Reserved
(DPA_fw_type)

0x4 15:8 Reserved

Reserved 0x8 31:0 Reserved

Reserved 0xC 31:0 Reserved. Shall be set to all
zeros.

Reserved 0x10 16B Reserved. Shall be set to all
zeros.

Reserved 0x20 4 bytes Reserved. Shall be set to all
zeros.

Reserved 0x24 24B Reserved. Shall be set to all
zeros.

signature_type 0x3c 15:0 Signature Type. Only relevant for
signed firmware:

0, 1 – Reserved
2 – RSA_ SHA_512
>3 – Reserved

Hash List Table 0x40 HashTableLength

Crypto Signature 0x40 + HashTableLength Signature_Length Signature_Length depends on the
signature_type.

Certificate_Chain 0x40 + HashTableLength +
Signature_Length

CrtChain_Length Structure given the table under
section "Certificate Chain
Layout".

Padding FF-padding to align the full size
of the data to multiples of
DWords (DWs)

The full length of the ELF crypto data section shall be a multiple of DWs (due to firmware legacy
implementation). Thus, the MFT (as part of the flow described in figure "Crypto Signing Flow") shall
add FF-padding for this structure to align to multiple of DW.

Hash List Table Layout

This table specifies the hash table layout (proposal).

The table contains two parts:

The 1st part corresponds to the segments of the ELF file, as referenced by the Program
Header Table of the EFL file
The 2nd part corresponds to the sections of the ELF file, as referenced by the Section Header
Table

The hash algorithm to be used is SHA-256.

Hash List Table Layout (Proposal)

376

Name Offset Range Description

Hash Table Magic Pattern 0x0 8 bytes ASCII "HASHLIST' string:
0x0: 31:24 – "H", 23:16 – "A", 15:8
– "S", 7:0 – "H"
0x4: 31:24 – "L", 23:16 – "I", 15:8
– "S", 7:0 – "T"

Number of Entries – Segments 0x8 7:0 Number of entries in Hashes
Segments part, N_Segments.

Reserved 0x8 31:8 Reserved

Number of Entries – Sections 0xc 7:0 Number of entries in Hashes
Sections part, N_Sections.
Minimum – 0

Reserved 0xc 31:8 Reserved

Reserved 0x10 16 bytes Reserved

DPA Application ELF Hash 0x20 32 bytes Hash of the full ELF App file

ELF Header Hash 0x40 32 bytes Hash of the ELF Header

Program Header Hash 0x60 32 bytes Hash of the program header

Hash of 1st Segment referenced
in the Program Header Table

0x80 32 bytes Hash of 1st segment referenced
in the Program Header Table

Hash of 2nd Segment referenced
in the Program Header Table

0xA0 32 bytes Hash of 2nd Segment referenced
in the Program Header Table

…… …… ….. ……

Hash of N_Segments (last)
Segment referenced in the
Program Header Table

0x60 +
N_Segments*0x20

32 bytes Hash of 2nd segment referenced
in the Program Header Table

Section Header Table Hash 0x80 +
N_Segments*0x20

32 bytes Hash of the Section Header Table

Hash of 1st Section referenced in
the Section Header Table

+ 0x20 32 bytes Hash of 1st section referenced in
the Section Header Table

Hash of 2nd Section referenced in
the Section Header Table

+ 0x20 32 bytes Hash of 2nd section referenced in
the Section Header Table

…… …… ….. ……

Hash of N_Sections (last) Section
referenced in the Section Header
Table

+ 0x20 32 bytes Hash of N_Sections (last) section
referenced in the Section Header
Table

The 32-bytes hash fields of different sections/segments in the previous table shall follow Big-Endian
convention, as illustrated here:

Hash Fields (Big Endian) Bytes Alignment

377

•

•

•
•

Certificate Chain Layout

The following table specifies the certificate chain layout. The leaf (the last certificate) of the chain
is used as the public key for authentication of the DPA code. This structure is aligned with the
certificate chain layout as defined in the Flash Application Note.

Certificate Chain Layout

Name Offset Range Description

Type 0x0 3:0 Chain type. Shall be set to 1. 3rd party code
authentication certificate chain.

Count 0x0 7:4 Number of certificates in this chain

Length 0x0 23:8 Total length of the certificate chain, in bytes,
including all fields in this table

Reserved 0x4 31:0 31:0 – Reserved

CRC 0x8 15:0 The CRC of the header, for header integrity
check, covering DWs in 0x0, 0x4

Certificates 0xC-0x1000 One or more ASN.1 DER-encoded X509v3
certificates. The ASN.1 DER encoding of each
individual certificate can be analyzed to
determine its length.
The certificates shall be listed in hierarchical
order, with the leaf certificate being the last
on the list.

14.4.3.5.4 Known Limitations

14.4.3.5.4.1 Supported Devices
BlueField-3 based DPUs

14.4.3.5.4.2 Supported Host OS
Windows is not supported

14.4.3.5.4.3 Supported SDKs
DOCA FlexIO at beta level
DOCA DPA at beta level

378

•
•

•

•
•

•

•
•

•
•
•

•

•

14.4.3.5.4.4 Toolchain
DPA image-signing and signature-verification are not currently supported
Debugger (GDB) is currently not supported

14.4.3.5.4.5 FlexIO
When flexio_dev_outbox_config_uar_extension API is called with a device_id
parameter different than PF/ECPF ID (i.e., move to SF/VF outbox) and the APIs
flexio_dev_yield() , flexio_dev_print() , or flexio_dev_msg() are called, then
when either of those 3 APIs return, the user cannot work with the SF/VF queues.

14.4.3.6 DOCA DPA

14.4.3.6.1 Introduction

This chapter provides an overview and configuration instructions for DOCA DPA API.

The DOCA DPA library offers a programming model for offloading communication-centric user code
to run on the DPA processor on NVIDIA® BlueField®-3 networking platform. DOCA DPA provides a
high-level programming interface to the DPA processor.

DOCA DPA offers:

Full control over DPA threads –
The user can control the thread function (kernel) that runs on DPA and their placement
on DPA EUs
The user can associate a DPA thread with a DPA Completion Context. When the
completion context receives a notification, the DPA thread is scheduled.

Abstraction to allow a DPA thread to issue asynchronous operations
Abstraction to execute a blocking one-time call from host application to execute the kernel
on the DPA from the host application (RPC)
Abstraction for memory services
Abstraction for remote communication primitives (integrated with remote event signaling)
Full control on execution-ordering and notifications/synchronization of the DPA and host/
Target BlueField
A set of debugging APIs that allow diagnosing and troubleshooting any issue on the device, as
well as accessing real-time information from the running application
C API for application developers

DPACC is used to compile and link kernels with DOCA DPA device libraries to get DPA applications
that can be loaded from the host program to execute on the DPA (similar to CUDA usage with
NVCC). For more information on DPACC, refer to the NVIDIA DOCA DPACC Compiler.

Supported at beta level.

379

•

•
•

•

1.

•

•
2.

•
•

3.
•
•
•

•

14.4.3.6.2 Prerequisites

DOCA DPA applications can run either on the host or on the Target BlueField. Running on the host
machine requires EU pre-configuration using the dpaeumgmt tool. For more information, please
refer to NVIDIA DOCA DPA EU Management Tool.

14.4.3.6.3 Library Changes From Previous Releases

14.4.3.6.3.1 Changes in 2.8.0

The following subsection(s) detail the doca_dpa library updates in version 2.8.0.

Added Features

doca_error_t doca_dpa_device_extend(struct doca_dpa *dpa, struct doca_dev

*other_dev, struct doca_dpa **extended_dpa)
Extended DPA with another device/GVMI

doca_error_t doca_dpa_get_dpa_handle(struct doca_dpa *dpa, doca_dpa_dev_t

*handle)

void doca_dpa_dev_device_set(doca_dpa_dev_t dpa_handle)

Development Flow

DOCA enables developers to program the DPA processor using both DOCA DPA library and a suite of
other tools (mainly DPACC).

The following are the main steps to start DPA offload programming:

Write DPA device code, or kernels, (.c files) with:

The __dpa_global__ keyword before DPA thread function (see "Examples" section)

The __dpa_rpc__ keyword before RPC function (see "Examples" section)
Use DPACC to build a DPA program (i.e., a host library which contains an embedded device
executable). Inputs for DPACC are:

Kernels from the previous step
DOCA DPA device libraries

Build host executable using a host compiler. Inputs for the host compiler are:
DPA program from the previous step
User host application source files
DOCA DPA host library

DPACC is provided by the DOCA SDK installation. For more information, please refer to the NVIDIA
DOCA DPACC Compiler.

14.4.3.6.4 Software Architecture

14.4.3.6.4.1 Deployment View

DOCA DPA is composed of the following libraries that come with the DOCA SDK installation:

Host/Target BlueField library and header file (used by user host application)

380

•

•
•

•

•

•

•

•

•

•

•

•

•

doca_dpa.h

libdoca_dpa.a / libdoca_dpa.so
Two device libraries and header files

doca_dpa_dev.h

doca_dpa_dev_rdma.h

doca_dpa_dev_sync_event.h

doca_dpa_dev_buf.h

libdoca_dpa_dev.a – DOCA DPA device library for common utilities (e.g., log, trace,
completion, sync event, etc.)
libdoca_dpa_dev_comm.a – DOCA DPA device library for communication utilities
(e.g., RDMA)

14.4.3.6.4.2 DPA Queries
Before invoking the DPA API, make sure that DPA is indeed supported on the relevant device.
The API which checks whether a device supports DPA is:

doca_error_t doca_devinfo_get_is_dpa_supported(const struct doca_devinfo *devinfo)

To use a valid EU ID for the DPA EU Affinity of a DPA thread, use the following APIs to query EU
ID and core valid values:

doca_error_t doca_dpa_get_core_num(struct doca_dpa *dpa, unsigned int *num_cores)
doca_error_t doca_dpa_get_num_eus_per_core(struct doca_dpa *dpa, unsigned int *eus_per_core)
doca_error_t doca_dpa_get_total_num_eus_available(struct doca_dpa *dpa, unsigned int *total_num_eus)

There is a limitation on the maximum number of DPA threads that can run a single kernel.
This can be retrieved by calling the host API:

doca_error_t doca_dpa_get_max_threads_per_kernel(struct doca_dpa *dpa, unsigned int *value)

Each kernel launched into the DPA has a maximum runtime limit. This can be retrieved by
calling the host API:

doca_error_t doca_dpa_get_kernel_max_run_time(struct doca_dpa *dpa, unsigned long long *value)

Only if this call returns DOCA_SUCCESS can the user invoke DOCA DPA API on the
device.

If the kernel execution time on the DPA exceeds this maximum runtime limit, it may
be terminated and cause a fatal error. To recover, the application must destroy the
DPA context and create a new one.

381

•

14.4.3.6.4.3 Overview of DOCA DPA Software Objects

Term Definition

DPA context Software construct for the host process that encapsulates the state associated
with a DPA process (on a specific device).

DPA Application Interface with the DPACC compiler to produce a DPA program (app) which is
obtained by the DPA context to begin working on DPA.

Kernel User function (and its arguments) to be executed on DPA.
A kernel may be executed by one or more DPA threads.

DPA EU Affinity An object used to control which EU to use for DPA thread.

DPA Thread DOCA DPA provides APIs to create/manage DPA thread which runs a given kernel.

DPA Completion Context An object used to receive/handle a completion notification.
The user can associate a DPA thread with a completion context. When the
completion context receives a notification, DPA thread is scheduled.

DPA Thread Notification A mechanism for one DPA thread to notify another DPA thread.

DPA Async Ops An object used to allow a DPA thread to issue asynchronous operations, like
memcpy or post_wait operations.

DPA RPC A blocking one-time call from host application to execute a kernel on DPA. RPC
is mainly used for control path. The RPC's return value is reported back to the
host application.

DPA Memory DOCA DPA provides an API to allocate/manage DPA memory, as well as handling
host/Target BlueField memory that has been exported to DPA.

Sync Event Data structure in either CPU, Target BlueField, GPU, or DPA-heap. An event
contains a counter that can be updated and waited on.

RDMA Abstraction around a network transport object. Allows executing various RDMA
operations.

DPA Hash Table DOCA DPA provides an API to create a Hash Table on DPA. This data structure is
managed on DPA using relevant device APIs.

DPA Logger/Tracer DOCA DPA provides a set of debugging APIs to allow the user to diagnose and
troubleshoot any issue on the device, as well as accessing real-time information
from the running application.

14.4.3.6.4.4 Initialization

The DPA context encapsulates the DPA device and a DPA process (program). Within this context, the
application creates various DPA SDK objects and controls them. After verifying DPA is supported for
the chosen device, the DPA context is created.

Use the following host-side APIs to create/set the DPA context and it is expected to be the first
programming step:

To create/destroy DPA context:

The DOCA DPA SDK does not use any means of multi-thread synchronization primitives. All
DOCA DPA objects are non-thread-safe. Developers should make sure the user program and
kernels are written to avoid race conditions.

382

•

•

•

•

doca_error_t doca_dpa_create(struct doca_dev *dev, struct doca_dpa **dpa)
doca_error_t doca_dpa_destroy(struct doca_dpa *dpa)

To start/stop DPA context:

doca_error_t doca_dpa_start(struct doca_dpa *dpa)
doca_error_t doca_dpa_stop(struct doca_dpa *dpa)

14.4.3.6.4.5 Interface to DPACC

DPA Application

To associate a DPA program (app) with a DPA context, use the following host-side APIs:

doca_error_t doca_dpa_set_app(struct doca_dpa *dpa, struct doca_dpa_app *app)
doca_error_t doca_dpa_get_app(struct doca_dpa *dpa, struct doca_dpa_app **app)
doca_error_t doca_dpa_app_get_name(struct doca_dpa_app *app, char *app_name, size_t *app_name_len)

The app variable name used in doca_dpa_set_app() API must be the token passed to DPACC --

app-name parameter.

Example (Pseudo Code)

For example, when using the following dpacc command line:

dpacc \
 kernels.c \
 -o dpa_program.a \
 -hostcc=gcc \
 -hostcc-options="..." \
 --devicecc-options="..." \
 -device-libs="-L/opt/mellanox/doca/include -ldoca_dpa_dev -ldoca_dpa_dev_comm" \
 --app-name="dpa_example_app"

The user must use the following commands to set the app of a DPA context:

extern struct doca_dpa_app *dpa_example_app;
doca_dpa_create(&dpa);
doca_dpa_set_app(dpa, dpa_example_app);
doca_dpa_start(dpa);

14.4.3.6.4.6 Affinity

The user can control which EU to use for a DPA thread using DPA EU affinity object.

A DPA EU affinity object can be configured for one EU ID at a time.

Use the following host-side APIs to manage it:

To create/destroy DPA EU affinity object:

doca_error_t doca_dpa_eu_affinity_create(struct doca_dpa *dpa, struct doca_dpa_eu_affinity **affinity)
doca_error_t doca_dpa_eu_affinity_destroy(struct doca_dpa_eu_affinity *affinity)

To set/clear EU ID in DPA EU affinity object:

doca_error_t doca_dpa_eu_affinity_set(struct doca_dpa_eu_affinity *affinity, unsigned int eu_id)
doca_error_t doca_dpa_eu_affinity_clear(struct doca_dpa_eu_affinity *affinity)

To get EU ID of a DPA EU affinity object:

383

1.
2.

•

•

•

•

•

•

doca_error_t doca_dpa_eu_affinity_get(struct doca_dpa_eu_affinity *affinity, unsigned int *eu_id)

14.4.3.6.4.7 Threading

DOCA DPA thread used to run a user function “DPA kernel” on DPA.

User can control on which EU to run DPA kernel by attaching a DPA EU affinity object to the thread.

The thread can be triggered on DPA using two methods:

DPA Thread Notification - Notifying one DPA thread from another DPA thread.
DPA Completion Context - A completion is arrived at a DPA completion context which is
attached to the thread.

DPA Thread

Host-side API

To create/destroy DPA thread:

doca_error_t doca_dpa_thread_create(struct doca_dpa *dpa, struct doca_dpa_thread **dpa_thread)

doca_error_t doca_dpa_thread_destroy(struct doca_dpa_thread *dpa_thread)

To set/get thread user function and it's argument:

doca_error_t doca_dpa_thread_set_func_arg(struct doca_dpa_thread *thread, doca_dpa_func_t *func, uint64_t
arg)

doca_error_t doca_dpa_thread_get_func_arg(struct doca_dpa_thread *dpa_thread, doca_dpa_func_t **func,
uint64_t *arg)

To set/get DPA EU Affinity:

doca_error_t doca_dpa_thread_set_affinity(struct doca_dpa_thread *thread, struct
doca_dpa_eu_thread_affinity *eu_affinity)

doca_error_t doca_dpa_thread_get_affinity(struct doca_dpa_thread *dpa_thread, const struct
doca_dpa_eu_affinity **affinity)

Thread Local Storage (TLS)
User can ask to store an opaque for a DPA thread in host side application using the following
API:

doca_error_t doca_dpa_thread_set_local_storage(struct doca_dpa_thread *dpa_thread, doca_dpa_dev_uintptr_t
dev_ptr)

doca_error_t doca_dpa_thread_get_local_storage(struct doca_dpa_thread *dpa_thread, doca_dpa_dev_uintptr_t
*dev_ptr)

dev_ptr is a pre-allocated DPA memory.
In kernel, user can retrieve the stored opaque using the relevant device API (see below API).
This opaque is stored/retrieved using the Thread Local Storage (TLS) mechanism.

To start/stop DPA thread:

doca_error_t doca_dpa_thread_start(struct doca_dpa_thread *thread)

doca_error_t doca_dpa_thread_stop(struct doca_dpa_thread *dpa_thread)

To run DPA thread:

384

a.
b.

•

•

•
•
•

•

•
•
•

•

doca_error_t doca_dpa_thread_run(struct doca_dpa_thread *dpa_thread)

This API sets the thread to run state.
This function must be called after DPA thread is:

Created, set and started.
In case of DPA thread is attached to DPA Completion Context, the completion context
must be started before, see below pseudo code example:

Device-side API

Device APIs are used by user-written kernels.

Thread Restart APIs
DPA thread can ends its run using one of the following device APIs:

Reschedule API:

void doca_dpa_dev_thread_reschedule(void)

DPA thread still active.
DPA thread resources are back to RTOS.
DPA thread can be triggered again.

Finish API:

void doca_dpa_dev_thread_finish(void)

DPA thread is marked as finished.
DPA thread resources are back to RTOS.
DPA thread can’t be triggered again.

To get TLS:

doca_dpa_dev_uintptr_t doca_dpa_dev_thread_get_local_storage(void)

This function returns DPA thread local storage which was set previously using host API
doca_dpa_thread_set_local_storage() .

Example (Host-side Pseudo Code)

385

•

•

•

•

extern doca_dpa_func_t hello_kernel;

// create DPA thread
doca_dpa_thread_create(&dpa_thread);

// set thread kernel
doca_dpa_thread_set_func_arg(dpa_thread, &hello_kernel, func_arg);

// set thread affinity
doca_dpa_eu_affinity_create(&eu_affinity);
doca_dpa_eu_affinity_set(eu_affinity, 10 /* EU ID */);
doca_dpa_thread_set_affinity(dpa_thread, eu_affinity);

// set thread local storage
doca_dpa_mem_alloc(&tls_dev_ptr);
doca_dpa_thread_set_local_storage(dpa_thread, tls_dev_ptr);

// start thread
doca_dpa_thread_start(dpa_thread);

// create and initialize DPA Completion Context
doca_dpa_completion_create(&dpa_comp);
doca_dpa_completion_set_thread(dpa_comp, dpa_thread);
doca_dpa_completion_start(dpa_comp);

// run thread only after both thread is started and the attached completion context is started
doca_dpa_thread_run(dpa_thread);

Completion Context

To tie the user application closely with the DPA native model of event-driven scheduling/
computation, we introduced DPA Completion Context.

User associates a DPA Thread with a completion context. When the completion context receives a
notification, DPA Thread is triggered.

User can choose not to associate it with DPA Thread and to poll it manually.

User has the option to continue receiving new notifications or ignore them.

DOCA DPA provides a generic completion context that can be shared for Message Queues, RDMA,
Ethernet and as well as DPA Async Ops.

Host-side API

To create/destroy DPA Completion Context:

doca_error_t doca_dpa_completion_create(struct doca_dpa *dpa, unsigned int queue_size, struct
doca_dpa_completion **dpa_comp)

doca_error_t doca_dpa_completion_destroy(struct doca_dpa_completion *dpa_comp)

To get queue size:

doca_error_t doca_dpa_completion_get_queue_size(struct doca_dpa_completion *dpa_comp, unsigned int *size)

To attach to a DPA Thread:

doca_error_t doca_dpa_completion_set_thread(struct doca_dpa_completion *dpa_comp, struct doca_dpa_thread
*thread)

doca_error_t doca_dpa_completion_get_thread(struct doca_dpa_completion *dpa_comp, struct doca_dpa_thread
**thread)

Attaching to a thread is only required if the user wants triggering of the thread when a
completion is arrived at the completion context.

To start/stop DPA Completion Context:

doca_error_t doca_dpa_completion_start(struct doca_dpa_completion *dpa_comp)

386

•

•

•

•

a.

b.

•

a.
b.

•

doca_error_t doca_dpa_completion_stop(struct doca_dpa_completion *dpa_comp)

To get DPA handle:

doca_error_t doca_dpa_completion_get_dpa_handle(struct doca_dpa_completion *dpa_comp,
doca_dpa_dev_completion_t *handle)

Use output parameter handle for below device APIs which can be used in thread kernel.

Device-side API

Device APIs are used by user-written kernels.

Kernels get doca_dpa_dev_completion_t handle and invoke the following API:

To get a completion element:

int doca_dpa_dev_get_completion(doca_dpa_dev_completion_t dpa_comp_handle,
doca_dpa_dev_completion_element_t *comp_element)

Use the returned comp_element to retrieve completion info using below APIs.

To get completion element type:

typedef enum {
 DOCA_DPA_DEV_COMP_SEND = 0x0, /**< Send completion */
 DOCA_DPA_DEV_COMP_RECV_RDMA_WRITE_IMM = 0x1, /**< Receive RDMA Write with Immediate completion */
 DOCA_DPA_DEV_COMP_RECV_SEND = 0x2, /**< Receive Send completion */
 DOCA_DPA_DEV_COMP_RECV_SEND_IMM = 0x3, /**< Receive Send with Immediate completion */
 DOCA_DPA_DEV_COMP_SEND_ERR = 0xD, /**< Send Error completion */
 DOCA_DPA_DEV_COMP_RECV_ERR = 0xE /**< Receive Error completion */
} doca_dpa_dev_completion_type_t;

doca_dpa_dev_completion_type_t doca_dpa_dev_get_completion_type(doca_dpa_dev_completion_element_t
comp_element)

To get completion element user data:

uint32_t doca_dpa_dev_get_completion_user_data(doca_dpa_dev_completion_element_t comp_element)

This API returns user data which was set previously in either host APIs:
doca_dpa_async_ops_create(..., user_data , ...)
When DPA Completion Context is attached to DPA Async Ops.
doca_ctx_set_user_data(..., user_data)
When DPA Completion Context is attached to DOCA context, such as DOCA RDMA
context.

To get completion element immediate data:

uint32_t doca_dpa_dev_get_completion_immediate(doca_dpa_dev_completion_element_t comp_element)

This API returns immediate data for a completion element of type:
DOCA_DPA_DEV_COMP_RECV_RDMA_WRITE_IMM
DOCA_DPA_DEV_COMP_RECV_SEND_IMM

Acknowledge that the completions have been read on DPA Completion Context:

void doca_dpa_dev_completion_ack(doca_dpa_dev_completion_t dpa_comp_handle, uint64_t num_comp)

387

•

•

•

•

This API releases resources of the acked completion elements in completion context.
This acknowledgment enables receiving new num_comp completions.

To request notification on DPA Completion Context:

void doca_dpa_dev_completion_request_notification(doca_dpa_dev_completion_t dpa_comp_handle)

This API enables requesting new notifications on DPA Completion Context.
Without calling this function, DPA Completion Context is not being notified on new arrived
completion elements, hence new completions are not populated in DPA Completion Context.

Example (Device-side Pseudo Code)

__dpa_global__ void hello_kernel(uint64_t arg)
{
 // User is expected to pass in some way the attached completion context handle "dpa_comp_handle" to kernel such
as func_arg or a shared memory.
 DOCA_DPA_DEV_LOG_INFO("Hello from kernel\n");

 doca_dpa_dev_completion_element_t comp_element;
 found = doca_dpa_dev_get_completion(dpa_comp_handle, &comp_element);
 if (found) {
 comp_type = doca_dpa_dev_get_completion_type(comp_element);
 // process the completion according to completion type...

 // ack on 1 completion
 doca_dpa_dev_completion_ack(dpa_comp_handle, 1);

 // enable getting more completions and triggering the thread
 doca_dpa_dev_completion_request_notification(dpa_comp_handle);
 }

 // reschedule thread
 doca_dpa_dev_thread_reschedule();
}

Thread Notification

Thread Activation is a mechanism for one DPA thread to trigger another DPA Thread.

Thread activation is done without receiving a completion on the attached thread. Therefore it is
expected that user of this method of thread activation passes the message in another fashion – such
as shared memory.

Thread Activation can be achieved using DPA Notification Completion object.

Host-side API

To create/destroy DPA Notification Completion:

doca_error_t doca_dpa_notification_completion_create(struct doca_dpa *dpa, struct doca_dpa_thread
*dpa_thread, struct doca_dpa_notification_completion **notify_comp)

doca_error_t doca_dpa_notification_completion_destroy(struct doca_dpa_notification_completion *notify_comp)

Attaching DPA Notification Completion to a DPA Thread is done using the given parameter
dpa_thread .

To get attached DPA Thread:

doca_error_t doca_dpa_notification_completion_get_thread(struct doca_dpa_notification_completion
*notify_comp, struct doca_dpa_thread **dpa_thread)

To start/stop DPA Notification Completion:

388

•

•

•

doca_error_t doca_dpa_notification_completion_start(struct doca_dpa_notification_completion *notify_comp)

doca_error_t doca_dpa_notification_completion_stop(struct doca_dpa_notification_completion *notify_comp)

To get DPA handle:

doca_error_t doca_dpa_notify_completion_get_dpa_handle(struct doca_dpa_notification_completion
*notify_comp, doca_dpa_dev_notification_completion_t *comp_handle)

Use output parameter comp_handle for below device API which can be used in thread
kernel.

Device-side API

Device API is used by user-written kernels.

Kernels get doca_dpa_dev_notification_completion_t handle and invoke the following API:

void doca_dpa_dev_thread_notify(doca_dpa_dev_notification_completion_t comp_handle)

Calling this API triggers the attached DPA Thread (the one that is specified in dpa_thread

parameter in host-side API doca_dpa_notification_completion_create()).

Example (Pseudo Code)

Host-side

extern doca_dpa_func_t hello_kernel;

// create DPA thread
doca_dpa_thread_create(&dpa_thread);

// set thread kernel
doca_dpa_thread_set_func_arg(dpa_thread, &hello_kernel, func_arg);

// start thread
doca_dpa_thread_start(dpa_thread);

// create and start DPA notification completion
doca_dpa_notification_completion_create(dpa, dpa_thread, ¬ify_comp);

doca_dpa_notification_completion_start(notify_comp);

// get its DPA handle
doca_dpa_notification_completion_get_dpa_handle(notify_comp, ¬ify_comp_handle);

// run thread only after both thread is started and attached notification completion is started
doca_dpa_thread_run(dpa_thread);

Device-side
Whenever some DPA Thread calls:

doca_dpa_dev_thread_notify(notify_comp_handle);

This call triggers dpa_thread .

Asynchronous Ops

DPA Async Ops allows DPA Thread to issue asynchronous operations, like memcpy or post_wait.

This feature requires the user to create an “asynchronous ops” context and attach to a completion
context.

User is expected to adhere to `queue_size` limit on the device when posting operations.

The completion context can raise activation if it is attached to a DPA Thread.

389

•

•

•

•

•

•

User can also choose to progress the completion context via polling it manually.

User can provide DPA Async Ops `user_data`, and retrieve this metadata in device using relevant
device API.

Host-side API

To create/destroy DPA Async Ops:

doca_error_t doca_dpa_async_ops_create(struct doca_dpa *dpa, unsigned int queue_size, uint64_t user_data,
struct doca_dpa_async_ops **async_ops)

doca_error_t doca_dpa_async_ops_destroy(struct doca_dpa_async_ops *async_ops)

Please use the following define for valid user_data values:

#define DOCA_DPA_COMPLETION_LOG_MAX_USER_DATA (24)

To get queue size/user_data:

doca_error_t doca_dpa_async_ops_get_queue_size(struct doca_dpa_async_ops *async_ops, unsigned int
 *queue_size)

doca_error_t doca_dpa_async_ops_get_user_data(struct doca_dpa_async_ops *async_ops, uint64_t *user_data)

To attach to a DPA Completion Context:

doca_error_t doca_dpa_async_ops_attach(struct doca_dpa_async_ops *async_ops, struct doca_dpa_completion
*dpa_comp)

To start/stop DPA Async Ops:

doca_error_t doca_dpa_async_ops_start(struct doca_dpa_async_ops *async_ops)

doca_error_t doca_dpa_async_ops_stop(struct doca_dpa_async_ops *async_ops)

To get DPA handle:

doca_error_t doca_dpa_async_ops_get_dpa_handle(struct doca_dpa_async_ops *async_ops,
doca_dpa_dev_async_ops_t *handle)

Use output parameter handle for below device API which can be used in thread kernel.

Device-side API

Device APIs are used by user-written kernels.

Kernels get doca_dpa_dev_async_ops_t handle and invoke the following API:

To post memcpy operation using doca_buf :

void doca_dpa_dev_post_buf_memcpy(doca_dpa_dev_async_ops_t async_ops_handle, doca_dpa_dev_buf_t
dst_buf_handle, doca_dpa_dev_buf_t src_buf_handle, bool completion_requested)

This API copies data between two DOCA buffers.
The destination buffer, specified by `dst_buf_handle` will contain the copied data after
memory copy is complete.
This is a non-blocking routine.
Use completion_requested to raise a completion when copy data operation is done (any
value greater than 0).

390

•

•

•

If completion_requested was set and the attached DPA Completion Context is attached to
a DPA Thread, then the thread is triggered once the memcpy operation is done.

To post memcpy operation using doca_mmap and an explicit addresses:

void doca_dpa_dev_post_memcpy(doca_dpa_dev_async_ops_t async_ops_handle,
 doca_dpa_dev_mmap_t dst_mmap_handle,
 uint64_t dst_addr,
 doca_dpa_dev_mmap_t src_mmap_handle,
 uint64_t src_addr,
 size_t length,
 uint32_t completion_requested)

This API copies data between two DOCA Mmaps.
The destination DOCA Mmap, specified by `dst_mmap_handle`, `dst_addr` will contain the
copied data in source DOCA Mmap specified by `src_mmap_handle`, `src_addr` and `length`
after memory copy is complete.
This is a non-blocking routine.
Use completion_requested to raise a completion when copy data operation is done (any
value greater than 0).
If completion_requested was set and the attached DPA Completion Context is attached to
a DPA thread, then the thread is triggered once the memcpy operation is done.

To post wait greater operation on a DOCA Sync Event:

void doca_dpa_dev_sync_event_post_wait_gt(doca_dpa_dev_async_ops_t async_ops_handle,
doca_dpa_dev_sync_event_t wait_se_handle, uint64_t value)

This function posts a wait operation on the DOCA Sync Event using DPA Async Ops to obtain a
DPA Thread activation.
Attached thread is activated when value of DOCA Sync Event is greater than a given value.
This is a non-blocking routine.

To post wait not equal operation on a DOCA Sync Event:

void doca_dpa_dev_sync_event_post_wait_ne(doca_dpa_dev_async_ops_t async_ops_handle,
doca_dpa_dev_sync_event_t wait_se_handle, uint64_t value)

This function posts a wait operation on the DOCA Sync Event using the DPA Async Ops to
obtain a DPA Thread activation.
Attached thread is activated when value of DOCA Sync Event is not equal to a given value.
This is a non-blocking routine.

Example (Host-side Pseudo Code)

doca_dpa_thread_create(&dpa_thread);
doca_dpa_thread_set_func_arg(dpa_thread);
doca_dpa_thread_start(dpa_thread);

Use this API for memcpy instead of using doca_buf memcpy API to gain better
performance.

Valid values must be in the range [0, 254] and can be called for event with value in
the range [0, 254]. Invalid values leads to undefined behavior.

391

•

•

•

•

1.
2.
3.
4.

•

doca_dpa_completion_create(&dpa_comp);
doca_dpa_completion_set_thread(dpa_comp, dpa_thread);
doca_dpa_completion_start(dpa_comp);

doca_dpa_thread_run(dpa_thread);

doca_dpa_async_ops_create(&async_ops);
doca_dpa_async_ops_attach(async_ops, dpa_comp);
doca_dpa_async_ops_start(async_ops);

doca_dpa_async_ops_get_dpa_handle(async_ops, &handle); // use this handle in relevant Async Ops device APIs

Thread Group

Thread group is used to aggregate individual DPA threads to a single group.

Please see below host-side APIs for creating/managing thread group.

To create/destroy DPA Thread Group:

doca_error_t doca_dpa_thread_group_create(struct doca_dpa *dpa, unsigned int num_threads, struct
doca_dpa_tg **tg)

doca_error_t doca_dpa_thread_group_destroy(struct doca_dpa_tg *tg)

To get number of threads:

doca_error_t doca_dpa_thread_group_get_num_threads(struct doca_dpa_tg *tg, unsigned int *num_threads);

To set DPA Thread at 'rank' in DPA Thread Group:

doca_error_t doca_dpa_thread_group_set_thread(struct doca_dpa_tg *tg, struct doca_dpa_thread *thread,
unsigned int rank)

Thread rank is an index of the thread (between 0 and (num_threads - 1)) within the group.

To start/stop DPA Thread Group:

doca_error_t doca_dpa_thread_group_start(struct doca_dpa_tg *tg)

doca_error_t doca_dpa_thread_group_stop(struct doca_dpa_tg *tg)

14.4.3.6.4.8 Memory Subsystem

The user can allocate (from the host API) and access (from both the host and device API) several
memory locations using the relevant DOCA DPA API.

DOCA DPA supports access from the host/Target BlueField to DPA heap memory and also enables
device access to host memory (e.g., kernel writes to host heap).

The normal memory usage flow would be to:

Allocate memory (Host/Target BlueField/DPA).
Register the memory.
Get a DPA handle for the registered memory so it can be accessed by DPA kernels.
Access/use the memory from the kernel (see relevant device-side APIs).

Host-side API

To allocate DPA heap memory:

392

•

•

•

•

•

•

•

•

•

1.

doca_dpa_mem_alloc(doca_dpa_t dpa, size_t size, doca_dpa_dev_uintptr_t *dev_ptr)

To free previously allocated DPA memory:

doca_dpa_mem_free(doca_dpa_dev_uintptr_t dev_ptr)

To copy previously allocated memory from a host pointer to a DPA heap device pointer:

doca_dpa_h2d_memcpy(doca_dpa_t dpa, doca_dpa_dev_uintptr_t src_ptr, void *dst_ptr, size_t size)

To copy previously allocated memory from a DOCA Buffer to a DPA heap device pointer:

doca_error_t doca_dpa_h2d_buf_memcpy(struct doca_dpa *dpa, doca_dpa_dev_uintptr_t dst_ptr, struct doca_buf
*buf, size_t size)

To copy previously allocated memory from a DPA heap device pointer to a host pointer:

doca_dpa_d2h_memcpy(doca_dpa_t dpa, void *dst_ptr, doca_dpa_dev_uintptr_t src_ptr, size_t size)

To copy previously allocated memory from a DPA heap device pointer to a DOCA Buffer:

doca_error_t doca_dpa_d2h_buf_memcpy(struct doca_dpa *dpa, struct doca_buf *buf, doca_dpa_dev_uintptr_t
src_ptr, size_t size)

To set memory:

doca_dpa_memset(doca_dpa_t dpa, doca_dpa_dev_uintptr_t dev_ptr, int value, size_t size)

To get a DPA handle to use in kernels, the user must use a DOCA Core Memory Inventory
Object in the following manner (refer to "DOCA Memory Subsystem"):

When the user wants to use device APIs with DOCA Buffer, use the following pseudo
code:

doca_buf_arr_create(&buf_arr);
doca_buf_arr_set_target_dpa(buf_arr, doca_dpa);
doca_buf_arr_start(buf_arr);
doca_buf_arr_get_dpa_handle(buf_arr, &handle);

Use output parameter handle in relevant device APIs in thread kernel.
When the user wants to use device APIs with DOCA Mmap, use the following pseudo
code:

doca_mmap_create(&mmap);
doca_mmap_set_dpa_memrange(mmap, doca_dpa, dev_ptr, dev_ptr_len); // dev-ptr is a pre-allocated DPA
memory
doca_mmap_start(mmap);
doca_mmap_dev_get_dpa_handle(mmap, doca_dev, &handle);

Use output parameter handle in relevant device APIs in thread kernel.

Device-side API

Device APIs are used by user-written kernels.

Memory APIs supplied by the DOCA DPA SDK are all asynchronous (i.e., non-blocking).

The user can acquire either:

Pre-configured DOCA Buffers (previously configured with doca_buf_arr_set_params).

393

2.

•

•

•

•

•

•

•

•

•

•

Non-configured DOCA Buffers and use below device setters to configure them.

Device-side API operations:

To obtain a single buffer handle from the buf array handle:

doca_dpa_dev_buf_t doca_dpa_dev_buf_array_get_buf(doca_dpa_dev_buf_arr_t buf_arr, const uint64_t buf_idx)

To set/get the address pointed to by the buffer handle:

void doca_dpa_dev_buf_set_addr(doca_dpa_dev_buf_t buf, uintptr_t addr)
uintptr_t doca_dpa_dev_buf_get_addr(doca_dpa_dev_buf_t buf)

To set/get the length of the buffer:

void doca_dpa_dev_buf_set_len(doca_dpa_dev_buf_t buf, size_t len)
uint64_t doca_dpa_dev_buf_get_len(doca_dpa_dev_buf_t buf)

To set/get the DOCA Mmap associated with the buffer:

void doca_dpa_dev_buf_set_mmap(doca_dpa_dev_buf_t buf, doca_dpa_dev_mmap_t mmap)
doca_dpa_dev_mmap_t doca_dpa_dev_buf_get_mmap(doca_dpa_dev_buf_t buf)

To get a pointer to external memory registered on the host using DOCA Buffer:

doca_dpa_dev_uintptr_t doca_dpa_dev_buf_get_external_ptr(doca_dpa_dev_buf_t buf)

To get a pointer to external memory registered on the host using an explicit address and
DOCA Mmap:

doca_dpa_dev_uintptr_t doca_dpa_dev_mmap_get_external_ptr(doca_dpa_dev_mmap_t mmap_handle, uint64_t addr)

14.4.3.6.4.9 Sync Events

Sync events fulfill the following roles:

DOCA DPA execution model is asynchronous and sync events are used to control various
threads running in the system (allowing order and dependency)
DOCA DPA supports remote sync events, so the programmer is capable of invoking remote
nodes by means of DOCA sync events

Host-side API

Please refer to "DOCA Sync Event".

Device-side API

To get the current event value:

doca_dpa_dev_sync_event_get(doca_dpa_dev_sync_event_t event, uint64_t *value)

To add/set to the current event value:

doca_dpa_dev_sync_event_update_<add|set>(doca_dpa_dev_sync_event_t event, uint64_t value)

394

•

•

•

•

•
•

To wait until event is greater than threshold:

doca_dpa_dev_sync_event_wait_gt(doca_dpa_dev_sync_event_t event, uint64_t value, uint64_t mask)

Use mask to apply (bitwise AND) on the DOCA sync event value for comparison with the wait
threshold.

14.4.3.6.4.10 Communication Model

DOCA DPA communication primitives allow sending data from one node to another.

The object used for the communication between nodes is called an RDMA DPA handle. RDMA DPA
handles can be used by kernels only.

RDMAs represent a unidirectional communication pipe between two nodes.

RDMA DPA handles are created when setting a DOCA RDMA context to DPA data path. For more
information, please refer to DOCA RDMA.

To track the completion of all communications, the user can attach DOCA RDMA context to a DPA
Completion Context.

DPA Completion Context can be associated with a DPA Thread. When the completion context
receives a completion on a communication operation, DPA Thread is triggered.

Host-side API

To create DOCA RDMA context on DPA, the user must use the following API for the DOCA RDMA
context:

doca_error_t doca_ctx_set_datapath_on_dpa(struct doca_ctx *ctx, struct doca_dpa *dpa)

To attach a DOCA RDMA context to a DPA Completion Context:

doca_error_t doca_rdma_dpa_completion_attach(struct doca_rdma *rdma, struct doca_dpa_completion *dpa_comp)

To obtain a DPA RDMA handle:

doca_error_t doca_rdma_get_dpa_handle(struct doca_rdma *rdma, doca_dpa_dev_rdma_t *dpa_rdma)

Use output parameter handle in relevant device APIs in the thread kernel.

Device-side API

DOCA DPA offers two work models for each device RDMA operation:

An API for RDMA operation using DOCA Buffer
An API for RDMA operation using DOCA Mmap and an explicit memory address

The user can choose not to associate it with a DPA Thread and to poll it manually.

DPA RDMAs are not thread safe and, therefore, must not be used from different
kernels/threads concurrently.

395

•

•

•

•

•

•
•

The user may choose to also raise a completion when the operation is done.

To read to a local buffer from the remote side buffer:

void doca_dpa_dev_rdma_post_read(doca_dpa_dev_rdma_t rdma,
 doca_dpa_dev_mmap_t dst_mmap_handle,
 uint64_t dst_addr,
 doca_dpa_dev_mmap_t src_mmap_handle,
 uint64_t src_addr,
 size_t length,
 uint32_t completion_requested)
void doca_dpa_dev_rdma_post_buf_read(doca_dpa_dev_rdma_t rdma,
 doca_dpa_dev_buf_t dst_buf_handle,
 doca_dpa_dev_buf_t src_buf_handle,
 uint32_t completion_requested)

To write local memory to the remote side buffer:

void doca_dpa_dev_rdma_post_write(doca_dpa_dev_rdma_t rdma,
 doca_dpa_dev_mmap_t dst_mmap_handle,
 uint64_t dst_addr,
 doca_dpa_dev_mmap_t src_mmap_handle,
 uint64_t src_addr,
 size_t length,
 uint32_t completion_requested)
void doca_dpa_dev_rdma_post_buf_write(doca_dpa_dev_rdma_t rdma,
 doca_dpa_dev_buf_t dst_buf_handle,
 doca_dpa_dev_buf_t src_buf_handle,
 uint32_t completion_requested)

To write local memory to the remote side buffer with an immediate data which can be
retrieved when receiving a completion on this operation:

void doca_dpa_dev_rdma_post_write_imm(doca_dpa_dev_rdma_t rdma,
 doca_dpa_dev_mmap_t dst_mmap_handle,
 uint64_t dst_addr,
 doca_dpa_dev_mmap_t src_mmap_handle,
 uint64_t src_addr,
 size_t length,
 uint32_t immediate,
 uint32_t completion_requested)
void doca_dpa_dev_rdma_post_buf_write_imm(doca_dpa_dev_rdma_t rdma,
 doca_dpa_dev_buf_t dst_buf_handle,
 doca_dpa_dev_buf_t src_buf_handle,
 uint32_t immediate,
 uint32_t completion_requested)
// use the following API to retrieve immediate data on completion
uint32_t doca_dpa_dev_get_completion_immediate(doca_dpa_dev_completion_element_t comp_element)

To send local memory:

void doca_dpa_dev_rdma_post_send(doca_dpa_dev_rdma_t rdma,
 doca_dpa_dev_mmap_t mmap_handle,
 uint64_t addr,
 size_t length,
 uint32_t completion_requested)
void doca_dpa_dev_rdma_post_buf_send(doca_dpa_dev_rdma_t rdma,
 doca_dpa_dev_buf_t send_buf_handle,
 uint32_t completion_requested)

To send local memory with an immediate data which can be retrieved when receiving a
completion on this operation:

void doca_dpa_dev_rdma_post_send_imm(doca_dpa_dev_rdma_t rdma,
 doca_dpa_dev_mmap_t mmap_handle,
 uint64_t addr,
 size_t length,
 uint32_t immediate,
 uint32_t completion_requested)
void doca_dpa_dev_rdma_post_buf_send_imm(doca_dpa_dev_rdma_t rdma,
 doca_dpa_dev_buf_t send_buf_handle,
 uint32_t immediate,
 uint32_t completion_requested)
// use the following API to retrieve immediate data on completion
uint32_t doca_dpa_dev_get_completion_immediate(doca_dpa_dev_completion_element_t comp_element)

To handle posting RDMA receive operation, use the following APIs:
To post RDMA receive operation:

396

•

•

•

void doca_dpa_dev_rdma_post_receive(doca_dpa_dev_rdma_t rdma, doca_dpa_dev_mmap_t mmap_handle,
uint64_t addr, size_t length)
void doca_dpa_dev_rdma_post_buf_receive(doca_dpa_dev_rdma_t rdma, doca_dpa_dev_buf_t
receive_buf_handle)

Acknowledge that post receive operations are done (data has been received on
associated data buffers). This acknowledgment enables DPA RDMA to repost
#num_acked new post receive operations.

void doca_dpa_dev_rdma_receive_ack(doca_dpa_dev_rdma_t rdma, uint32_t num_acked)

To perform an atomic add operation on the remote side buffer:

void doca_dpa_dev_rdma_post_atomic_fetch_add(doca_dpa_dev_rdma_t rdma,
 doca_dpa_dev_mmap_t dst_mmap_handle,
 uint64_t dst_addr,
 uint64_t value,
 uint32_t completion_requested)
void doca_dpa_dev_rdma_post_buf_atomic_fetch_add(doca_dpa_dev_rdma_t rdma,
 doca_dpa_dev_buf_t dst_buf_handle,
 uint64_t value,
 uint32_t completion_requested)

To signal a remote event:

doca_dpa_dev_rdma_signal_<add|set>(doca_dpa_dev_rdma_t rdma, doca_dpa_dev_sync_event_remote_t
remote_sync_event, uint64_t count)

As all DPA RDMA operations are non-blocking, the following API is provided to kernel launch
developers to wait until all previous RDMA operations are done (blocking call) to drain the
RDMA DPA handle:

doca_dpa_dev_rdma_synchronize(doca_dpa_dev_rdma_t rdma)

When this call returns, all previous non-blocking operations on the DPA RDMA have completed
(i.e., sent to the remote RDMA). It is expected that the doca_dpa_dev_rdma_synchronize()
call would use the same thread as the handle calls.
Since DPA RDMAs are non-thread safe, each DPA RDMA must be accessed by a single thread at
any given time. If user launches a kernel that should be executed by more than one thread
and this kernel includes RDMA communication, it is expected that a user will use array of
RDMAs so that each RDMA will be accessed by single thread (each thread can access it's RDMA
instance by using doca_dpa_dev_thread_rank() as its index in the array of RDMA handles).

When using the Remote Event Exchange API, void doca_dpa_dev_rdma_signal_<add|

set>(..., doca_dpa_dev_event_remote_t event_handle, ...) , within your kernel,

note that event is a remote event. That is, an event created on the remote node and

exported to a remote node (doca_dpa_event_dev_remote_export(event_handle)).

Multiple RDMA Contexts

To support attaching multiple DOCA RDMA contexts to a single DPA Completion Context, DOCA offers
the following APIs.

The following API is only relevant for a kernel used in kernel_launch APIs. This API
is not relevant for DPA RDMA which is attached to a DPA Completion Context.

397

•

•

•

RDMA user_data which is set using the host API:

doca_error_t doca_ctx_set_user_data(struct doca_ctx *ctx, union doca_data user_data)

And can be retrieved in device using the completion API:

uint32_t doca_dpa_dev_get_completion_user_data(doca_dpa_dev_completion_element_t comp_element)

user_data should be used to distinguish which DOCA RDMA context has triggered this
completion.
RDMA work request index using device API for an RDMA completion:

uint32_t doca_dpa_dev_rdma_completion_get_wr_index(doca_dpa_dev_completion_element_t comp_element)

work request index should be used to get operation index of DOCA RDMA context which
triggered this completion.

Example (Host-side Pseudo Code)

// create and start DPA Thread
doca_dpa_thread_create(&dpa_thread);
doca_dpa_thread_set_func_arg(dpa_thread);
doca_dpa_thread_start(dpa_thread);

// create and start DPA Completion Context which is attached to DPA Thread
doca_dpa_completion_create(&dpa_comp);
doca_dpa_completion_set_thread(dpa_comp, dpa_thread);
doca_dpa_completion_start(dpa_comp);

doca_dpa_thread_run(dpa_thread);

// create and start DPA RDMA context which is attached to DPA Completion Context
doca_rdma_create(doca_dev, &rdma);

doca_rdma_dpa_completion_attach(rdma, dpa_comp);

doca_rdma_ctx = doca_rdma_as_ctx(rdma);
doca_ctx_set_datapath_on_dpa(doca_rdma_ctx, doca_dpa);

doca_ctx_set_user_data(doca_rdma_ctx, user_data);

doca_ctx_start(doca_rdma_ctx);

doca_rdma_get_dpa_handle(rdma, &handle);

14.4.3.6.4.11 Data Structures

Hash Table

DOCA DPA provides an API to create a hash table on DPA. This data structure is managed on DPA using
relevant device APIs.

Host-side API

To create a hash table on DPA:

Each completion on an RDMA operation triggers dpa_thread .

Use output parameter handle in relevant RDMA device APIs in the thread kernel.

398

•

•

•

•

•

•

doca_error_t doca_dpa_hash_table_create(struct doca_dpa *dpa, unsigned int num_entries, struct
doca_dpa_hash_table **ht)

To destroy a hash table:

doca_error_t doca_dpa_hash_table_destroy(struct doca_dpa_hash_table *ht)

To obtain a DPA handle:

doca_error_t doca_dpa_hash_table_get_dpa_handle(struct doca_dpa_hash_table *ht, doca_dpa_dev_hash_table_t
*handle)

Use output parameter handle in relevant device APIs in the thread kernel.

Device-side API

To add a new entry to the hash table:

void doca_dpa_dev_hash_table_add(doca_dpa_dev_hash_table_t ht_handle, uint32_t key, uint64_t value)

To remove an entry from the hash table:

void doca_dpa_dev_hash_table_remove(doca_dpa_dev_hash_table_t ht_handle, uint32_t key)

To return the value to which the specified key is mapped in the hash table:

int doca_dpa_dev_hash_table_find(doca_dpa_dev_hash_table_t ht_handle, uint32_t key, uint64_t *value)

14.4.3.6.4.12 RPC and Kernel Launch

RPC

Host-side API

A blocking one-time call from the host application to execute a kernel on DPA.

The RPC's return value is reported back to the host application.

doca_error_t doca_dpa_rpc(struct doca_dpa *dpa, doca_dpa_func_t *func, uint64_t *retval, … /* func arguments */)

Example

Device-side – DPA device func must be annotated with __dpa_rpc__ annotation, such as:

__dpa_rpc__ uint64_t hello_rpc(int arg)
{
 ...

Adding a new key when the hash table is full causes anomalous behavior.

RPC is mainly used for control path.

399

•

•

•

•

•

•

•

•

•

}

Host-side:

extern doca_dpa_func_t hello_rpc;

uint64_t retval;
doca_dpa_rpc(dpa, &hello_rpc, &retval, 10);

Kernel Launch

DOCA DPA provides an API which enables full control for launching and monitoring kernels.

Since DOCA DPA libraries are not thread-safe, it is up to the programmer to make sure the kernel is
written to allow it to run in a multi-threaded environment. For example, to program a kernel that
uses RDMAs with 16 concurrent threads, the user should pass an array of 16 RDMAs to the kernel so
that each thread can access its RDMA using its rank (doca_dpa_dev_thread_rank()) as an index to
the array.

Host-side API

doca_dpa_kernel_launch_update_<add|set>(struct doca_dpa *dpa, struct doca_sync_event *wait_event, uint64_t
wait_threshold, struct doca_sync_event *comp_event, uint64_t comp_count, unsigned int num_threads, doca_dpa_func_t
func, ... / args */)

This function asks DOCA DPA to run func in DPA by num_threads and give it the supplied list
of arguments (variadic list of arguments).
This function is asynchronous so when it returns, it does not mean that func started/ended
its execution.
To add control or flow/ordering to these asynchronous kernels, two optional parameters for
launching kernels are available:

wait_event – the kernel does not start its execution until the event is signaled (if
NULL, the kernel starts once DOCA DPA has an available EU to run on it) which means
that DOCA DPA would not run the kernel until the event's counter is bigger than
wait_threshold .

comp_event – once the last thread running the kernel is done, DOCA DPA updates this

event (either sets or adds to its current counter value with comp_count).
DOCA DPA takes care of packing (on host/Target BlueField) and unpacking (in DPA) the kernel
parameters.
func must be prefixed with the __dpa_global__ macro for DPACC to compile it as a kernel
(and add it to DPA executable binary) and not as part of host application binary.
The programmer must declare func in their application also by adding the line extern

doca_dpa_func_t func .

Device-side API

Please note that the valid values for wait_threshold and wait_event coun
ter and are [0-254]. Values out of this range might cause anomalous behavior.

400

•

•

•

To retrieve the running thread's rank for a given kernel on the DPA. If, for example, a kernel
is launched to run with 16 threads, each thread running this kernel is assigned a rank ranging
from 0 to 15 within this kernel. This is helpful for making sure each thread in the kernel only
accesses data relevant for its execution to avoid data-races:

unsigned int doca_dpa_dev_thread_rank()

To return the number of threads running current kernel:

unsigned int doca_dpa_dev_num_threads()

To yield the thread which runs the kernel:

void doca_dpa_dev_yield(void)

Examples

Linear Execution Example

Kernel Code

#include "doca_dpa_dev.h"
#include "doca_dpa_dev_sync_event.h"

__dpa_global__ void
linear_kernel(doca_dpa_dev_sync_event_t wait_ev, doca_dpa_dev_sync_event_t comp_ev)
{
 if (wait_ev)
 doca_dpa_dev_sync_event_wait_gt(wait_ev, wait_th = 0);

 doca_dpa_dev_sync_event_update_add(comp_ev, comp_count = 1);
}

Host Application Pseudo Code

#include <doca_dev.h>
#include <doca_error.h>
#include <doca_sync_event.h>
#include <doca_dpa.h>

int main(int argc, char **argv)
{

 /*
 A
 |
 B
 |
 C
 */

 /* Open DOCA device */
 open_doca_dev(&doca_dev);
 /* Create doca dpa conext */
 doca_dpa_create(doca_dev, dpa_linear_app, &dpa_ctx, 0);

 /* Create event A - subscriber is DPA and publisher is CPU */
 doca_sync_event_create(&ev_a);
 doca_sync_event_add_publisher_location_cpu(ev_a, doca_dev);
 doca_sync_event_add_subscriber_location_dpa(ev_a, dpa_ctx);
 doca_sync_event_start(ev_a);

 /* Create event B - subscriber and publisher are DPA */
 doca_sync_event_create(&ev_b);
 doca_sync_event_add_publisher_location_dpa(ev_b, dpa_ctx);
 doca_sync_event_add_subscriber_location_dpa(ev_b, dpa_ctx);
 doca_sync_event_start(ev_b);

The following APIs are only relevant for a kernel used in kernel_launch APIs. These APIs

are not relevant in doca_dpa_thread kernel.

401

 /* Create event C - subscriber and publisher are DPA */
 doca_sync_event_create(&ev_c);
 doca_sync_event_add_publisher_location_dpa(ev_c, dpa_ctx);
 doca_sync_event_add_subscriber_location_dpa(ev_c, dpa_ctx);
 doca_sync_event_start(ev_c);

 /* Create completion event for last kernel - subscriber is CPU and publisher is DPA */
 doca_sync_event_create(&comp_ev);
 doca_sync_event_add_publisher_location_dpa(comp_ev, dpa_ctx);
 doca_sync_event_add_subscriber_location_cpu(comp_ev, doca_dev);
 doca_sync_event_start(comp_ev);

 /* Export kernel events and acquire their handles */
 doca_sync_event_get_dpa_handle(ev_b, dpa_ctx, &ev_b_handle);
 doca_sync_event_get_dpa_handle(ev_c, dpa_ctx, &ev_c_handle);
 doca_sync_event_get_dpa_handle(comp_ev, dpa_ctx, &comp_ev_handle);

 /* Launch kernels */
 doca_dpa_kernel_launch_update_add(wait_ev = ev_a, wait_threshold = 1, num_threads = 1, &linear_kernel,
kernel_args: NULL, ev_b_handle);
 doca_dpa_kernel_launch_update_add(wait_ev = NULL, num_threads = 1, &linear_kernel, kernel_args: ev_b_handle,
ev_c_handle);
 doca_dpa_kernel_launch_update_add(wait_ev = NULL, &linear_kernel, num_threads = 1, kernel_args: ev_c_handle,
comp_ev_handle);

 /* Update host event to trigger kernels to start executing in a linear manner */
 doca_sync_event_update_set(ev_a, 1)

 /* Wait for completion of last kernel */
 doca_sync_event_wait_gt(comp_ev, 0);

 /* Tear Down... */
 teardown_resources();
}

Diamond Execution Example

Kernel Code

#include "doca_dpa_dev.h"
#include "doca_dpa_dev_sync_event.h"

__dpa_global__ void
diamond_kernel(doca_dpa_dev_sync_event_t wait_ev, uint64_t wait_th, doca_dpa_dev_sync_event_t comp_ev1,
doca_dpa_dev_sync_event_t comp_ev2)
{
 if (wait_ev)
 doca_dpa_dev_sync_event_wait_gt(wait_ev, wait_th);

 doca_dpa_dev_sync_event_update_add(comp_ev1, comp_count = 1);
 if (comp_ev2) // can be 0 (NULL)
 doca_dpa_dev_sync_event_update_add(comp_ev2, comp_count = 1);
}

Host Application Pseudo Code

#include <doca_dev.h>
#include <doca_error.h>
#include <doca_sync_event.h>
#include <doca_dpa.h>

int main(int argc, char **argv)
{
 /*
 A
 / \
 C B
 / /
 D /
 \ /
 E
 */

 /* Open DOCA device */
 open_doca_dev(&doca_dev);
 /* Create doca dpa conext */
 doca_dpa_create(doca_dev, dpa_diamond_app, &dpa_ctx, 0);

 /* Create root event A that will signal from the host the rest to start */
 doca_sync_event_create(&ev_a);
 // set publisher to CPU, subscriber to DPA and start event

 /* Create events B,C,D,E */
 doca_sync_event_create(&ev_b);
 doca_sync_event_create(&ev_c);
 doca_sync_event_create(&ev_d);
 doca_sync_event_create(&ev_e);
 // for events B,C,D,E, set publisher & subscriber to DPA and start event

 /* Create completion event for last kernel */
 doca_sync_event_create(&comp_ev);
 // set publisher to DPA, subscriber to CPU and start event

 /* Export kernel events and acquire their handles */

402

•

•

•

•

•

•
•

 doca_sync_event_get_dpa_handle(&ev_b_handle, &ev_c_handle, &ev_d_handle, &ev_e_handle, &comp_ev_handle);

 /* wait threshold for each kernel is the number of parent nodes */
 constexpr uint64_t wait_threshold_one_parent {1};
 constexpr uint64_t wait_threshold_two_parent {2};

 /* launch diamond kernels */
 doca_dpa_kernel_launch_update_set(wait_ev = ev_a, wait_threshold = 1, num_threads = 1, &diamond_kernel,
kernel_args: NULL, 0, ev_b_handle, ev_c_handle);
 doca_dpa_kernel_launch_update_set(wait_ev = NULL, num_threads = 1, &diamond_kernel, kernel_args: ev_b_handle,
wait_threshold_one_parent, ev_e_handle, NULL);
 doca_dpa_kernel_launch_update_set(wait_ev = NULL, num_threads = 1, &diamond_kernel, kernel_args: ev_c_handle,
wait_threshold_one_parent, ev_d_handle, NULL);
 doca_dpa_kernel_launch_update_set(wait_ev = NULL, num_threads = 1, &diamond_kernel, kernel_args: ev_d_handle,
wait_threshold_one_parent, ev_e_handle, NULL);
 doca_dpa_kernel_launch_update_set(wait_ev = NULL, num_threads = 1, &diamond_kernel, kernel_args: ev_e_handle,
wait_threshold_two_parent, comp_ev_handle, NULL);

 /* Update host event to trigger kernels to start executing in a diamond manner */
 doca_sync_event_update_set(ev_a, 1);
 /* Wait for completion of last kernel */
 doca_sync_event_wait_gt(comp_ev, 0);

 /* Tear Down... */
 teardown_resources();
}

Performance Optimizations

The time interval between a kernel launch call from the host and the start of its execution on
the DPA is significantly optimized when the host application
calls doca_dpa_kernel_launch_update_<add|set>() repeatedly to execute with the same

number of DPA threads. So, if the application calls doca_dpa_kernel_launch_update_<add|

set>(..., num_threads = x) , the next call with num_threads = x would have a shorter
latency (as low as ~5-7 microseconds) for the start of the kernel's execution.
Applications calling for kernel launch with a wait event (i.e., the completion event of a
previous kernel) also have significantly lower latency in the time between the host launching
the kernel and the start of the execution of the kernel on the DPA. So, if the application
calls doca_dpa_kernel_launch_update_<add|set>(..., completion event =

m_ev, ...) and then doca_dpa_kernel_launch_update_<add|set>(wait event =

m_ev, ...) , the latter kernel launch call would have shorter latency (as low as ~3
microseconds) for the start of the kernel's execution.

Limitations

The order in which kernels are launched is important. If an application launches K1 and then
K2, K1 must not depend on K2's completion (e.g., wait on its wait event that K2 should
update).
Not following this guideline leads to unpredictable results (at runtime) for the application
and might require restarting the DOCA DPA context (i.e., destroying, reinitializing, and
rerunning the workload).
DPA threads are an actual hardware resource and are, therefore, limited in number to 256
(including internal allocations and allocations explicitly requested by the user as part of the
kernel launch API)

DOCA DPA does not check these limits. It is up to the application to adhere to this
number and track thread allocation across different DPA contexts.
Each doca_dpa_dev_rdma_t consumes one thread.

The DPA has an internal watchdog timer to make sure threads do not block indefinitely.
Kernel execution time must be finite and not exceed the time returned.
by doca_dpa_get_kernel_max_run_time .

403

•

•
•

•

•

•

•

•

•

The num_threads parameter in the doca_dpa_kernel_launch call cannot exceed the
maximum allowed number of threads to run a kernel returned.
by doca_dpa_get_max_threads_per_kernel .

14.4.3.6.4.13 Logging and Tracing

DOCA DPA provides a set of debugging APIs to allow diagnosing and troubleshooting any issues on the
device, as well as accessing real-time information from the running application.

Logging in the data path has significant impact on an application's performance. While the tracer
provided by the library is of high-frequency and is designed to prevent significant impact on the
application's performance.

Therefore its recommended to use:

Logging in the control path
Tracing in the data path

The user is able to control the log/trace file path and device log verbosity.

Host-side API

To set/get the trace file path:

doca_error_t doca_dpa_trace_file_set_path(struct doca_dpa *dpa, const char *file_path)
doca_error_t doca_dpa_trace_file_get_path(struct doca_dpa *dpa, char *file_path, uint32_t *file_path_len);

To set/get the log file path:

doca_error_t doca_dpa_log_file_set_path(struct doca_dpa *dpa, const char *file_path)
doca_error_t doca_dpa_log_file_get_path(struct doca_dpa *dpa, char *file_path, uint32_t *file_path_len)

To set/get device log verbosity:

doca_error_t doca_dpa_set_log_level(struct doca_dpa *dpa, doca_dpa_dev_log_level_t log_level)
doca_error_t doca_dpa_get_log_level(struct doca_dpa *dpa, doca_dpa_dev_log_level_t *log_level)

Device-side API

Log to host:

typedef enum doca_dpa_dev_log_level {
 DOCA_DPA_DEV_LOG_LEVEL_DISABLE = 10, /**< Disable log messages */
 DOCA_DPA_DEV_LOG_LEVEL_CRIT = 20, /**< Critical log level */
 DOCA_DPA_DEV_LOG_LEVEL_ERROR = 30, /**< Error log level */
 DOCA_DPA_DEV_LOG_LEVEL_WARNING = 40, /**< Warning log level */
 DOCA_DPA_DEV_LOG_LEVEL_INFO = 50, /**< Info log level */
 DOCA_DPA_DEV_LOG_LEVEL_DEBUG = 60, /**< Debug log level */
} doca_dpa_dev_log_level_t;

void doca_dpa_dev_log(doca_dpa_dev_log_level_t log_level, const char *format, ...)

Log macros:

DOCA_DPA_DEV_LOG_CRIT(...)
DOCA_DPA_DEV_LOG_ERR(...)
DOCA_DPA_DEV_LOG_WARN(...)
DOCA_DPA_DEV_LOG_INFO(...)
DOCA_DPA_DEV_LOG_DBG(...)

To create a trace message entry with arguments:

404

•

1.
2.

a.
b.

3.
a.
b.

4.

void doca_dpa_dev_trace(uint64_t arg1, uint64_t arg2, uint64_t arg3, uint64_t arg4, uint64_t arg5)

To flush the trace message buffer to host:

void doca_dpa_dev_trace_flush(void)

14.4.3.6.4.14 Error Handling

DPA context can enter an error state caused by the device flow. The application can check this error
state by calling the following host API:

doca_error_t doca_dpa_peek_at_last_error(const struct doca_dpa *dpa)

If a fatal error core dump and crash occur, data is written to the file path /tmp/doca_dpa_fatal

or to the file path set by the API doca_dpa_log_file_set_path() , with the suffixes .PID.core

and .PID.crash respectively, where PID is the process ID. The data written to the file would
include a memory snapshot at the time of the crash, which would contain information instrumental
in pinpointing the cause of a crash (e.g., the program's state, variable values, and the call stack).

14.4.3.6.5 Hello World Example

14.4.3.6.5.1 Procedure Outline
Write DPA device code (i.e., kernels or .c files).
Use DPACC to build a DPA program (i.e., a host library which contains an embedded device
executable). Input for DPACC:

Kernels from step 1.
DOCA DPA device library.

Build host executable using a host compiler. Input for the host compiler:
DPA program.
User host application .c / .cpp files.

Run host executable.

Creating core dump files can be done after the DPA application has crashed.

This call does not reset the error state.

If an error occurred, DPA context enters a fatal state and must be destroyed by the user.

405

•

•

14.4.3.6.5.2 Procedure Steps

The following code snippets show a basic DPA code that eventually prints "Hello World" to stdout .

This is achieved using:

A DPA Thread which prints the string and signals a DOCA Sync Event to indicate completion to
host application
A DPA RPC to notify DPA Thread

The steps are elaborated in the following subsections.

Prepare Kernels Code

#include "doca_dpa_dev.h"
#include "doca_dpa_dev_sync_event.h"

__dpa_global__ void hello_world_thread_kernel(uint64_t arg)
{
 DOCA_DPA_DEV_LOG_INFO("Hello World From DPA Thread!\n");
 doca_dpa_dev_sync_event_update_set(arg, 1);
 doca_dpa_dev_thread_finish();
}

__dpa_rpc__ uint64_t hello_world_thread_notify_rpc(doca_dpa_dev_notification_completion_t comp_handle)
{
 DOCA_DPA_DEV_LOG_INFO("Notifying DPA Thread From RPC\n");
 doca_dpa_dev_thread_notify(comp_handle);
 return 0;
}

Prepare Host Application Code

#include <stdio.h>
#include <unistd.h>
#include <doca_dev.h>
#include <doca_error.h>
#include <doca_sync_event.h>
#include <doca_dpa.h>

/**
 * A struct that includes all needed info on registered kernels and is initialized during linkage by DPACC.
 * Variable name should be the token passed to DPACC with --app-name parameter.
 */
extern struct doca_dpa_app *dpa_hello_world_app;

/**
 * kernel declaration that the user must declare for each kernel and DPACC is responsible to initialize.
 * Only then, user can use this variable in relevant host APIs
 */
doca_dpa_func_t hello_world_thread_kernel;
doca_dpa_func_t hello_world_thread_notify_rpc;

int main(int argc, char **argv)
{
 struct doca_dev *doca_dev = NULL;
 struct doca_dpa *dpa_ctx = NULL;
 struct doca_sync_event *cpu_se = NULL;

406

 doca_dpa_dev_sync_event_t cpu_se_handle = 0;
 struct doca_dpa_thread *dpa_thread = NULL;
 struct doca_dpa_notification_completion *notify_comp = NULL;
 doca_dpa_dev_notification_completion_t notify_comp_handle = 0;
 uint64_t retval = 0;

 printf("\n----> Open DOCA Device\n");
 /* Open appropriate DOCA device doca_dev */

 printf("\n----> Initialize DOCA DPA Context\n");
 doca_dpa_create(doca_dev, &dpa_ctx);
 doca_dpa_set_app(dpa_ctx, dpa_hello_world_app);
 doca_dpa_start(dpa_ctx);

 printf("\n----> Initialize DOCA Sync Event\n");
 doca_sync_event_create(&cpu_se);
 doca_sync_event_add_publisher_location_dpa(cpu_se, dpa_ctx);
 doca_sync_event_add_subscriber_location_cpu(cpu_se, doca_dev);
 doca_sync_event_start(cpu_se);
 doca_sync_event_get_dpa_handle(cpu_se, dpa_ctx, &cpu_se_handle);

 printf("\n----> Initialize DOCA DPA Thread\n");
 doca_dpa_thread_create(dpa_ctx, &dpa_thread);
 doca_dpa_thread_set_func_arg(dpa_thread, &hello_world_thread_kernel, cpu_se_handle);
 doca_dpa_thread_start(dpa_thread);

 printf("\n----> Initialize DOCA DPA Notification Completion\n");
 doca_dpa_notification_completion_create(dpa_ctx, dpa_thread, ¬ify_comp);
 doca_dpa_notification_completion_start(notify_comp);
 doca_dpa_notification_completion_get_dpa_handle(notify_comp, ¬ify_comp_handle);

 printf("\n----> Run DOCA DPA Thread\n");
 doca_dpa_thread_run(dpa_thread);

 printf("\n----> Trigger DPA RPC\n");
 doca_dpa_rpc(dpa_ctx, &hello_world_thread_notify_rpc, &retval, notify_comp_handle);

 printf("\n----> Waiting For hello_world_thread_kernel To Finish\n");
 doca_sync_event_wait_gt(cpu_se, 0, 0xFFFFFFFFFFFFFFFF);

 printf("\n----> Destroy DOCA DPA Notification Completion\n");
 doca_dpa_notification_completion_destroy(notify_comp);

 printf("\n----> Destroy DOCA DPA Thread\n");
 doca_dpa_thread_destroy(dpa_thread);

 printf("\n----> Destroy DOCA DPA event\n");
 doca_sync_event_destroy(cpu_se);

 printf("\n----> Destroy DOCA DPA context\n");
 doca_dpa_destroy(dpa_ctx);

 printf("\n----> Destroy DOCA device\n");
 doca_dev_close(doca_dev);

 printf("\n----> DONE!\n");
 return 0;
}

Build DPA Program

/opt/mellanox/doca/tools/dpacc \
 kernel.c \
 -o dpa_program.a \
 -hostcc=gcc \
 -hostcc-options="-Wno-deprecated-declarations -Werror -Wall -Wextra -W" \
 --devicecc-options="-D__linux__ -Wno-deprecated-declarations -Werror -Wall -Wextra -W" \
 --app-name="dpa_hello_world_app" \
 -ldpa \
 -I/opt/mellanox/doca/include/

Build Host Application

gcc hello_world.c -o hello_world \
 dpa_program.a \
 -I/opt/mellanox/doca/include/ \
 -DDOCA_ALLOW_EXPERIMENTAL_API \
 -L/opt/mellanox/doca/lib/x86_64-linux-gnu/ -ldoca_dpa -ldoca_common \
 -L/opt/mellanox/flexio/lib/ -lflexio \
 -lstdc++ -libverbs -lmlx5

Execution

$./hello_world

----> Open DOCA Device

----> Initialize DOCA DPA Context

407

1.
•

•

2.

3.

4.

----> Initialize DOCA Sync Event

----> Initialize DOCA DPA Thread

----> Initialize DOCA DPA Notification Completion

----> Run DOCA DPA Thread

----> Trigger DPA RPC
/ 10/[DOCA][DPA DEVICE][INF] Notifying DPA Thread From RPC
/ 8/[DOCA][DPA DEVICE][INF] Hello World From DPA Thread!

----> Waiting For hello_world_thread_kernel To Finish

----> Destroy DOCA DPA Notification Completion

----> Destroy DOCA DPA Thread

----> Destroy DOCA DPA event

----> Destroy DOCA DPA context

----> Destroy DOCA device

----> DONE!

14.4.3.6.6 Samples

This section provides DPA sample implementation on top of the BlueField-3 networking platform.

To run DPA samples:

Refer to the following documents:
NVIDIA DOCA Installation Guide for Linux for details on how to install BlueField-related
software.
NVIDIA DOCA Troubleshooting Guide for any issue you may encounter with the
installation, compilation, or execution of DOCA samples.

To build a given sample:

cd /opt/mellanox/doca/samples/doca_dpa/<sample_name>
meson /tmp/build
ninja -C /tmp/build

Sample (e.g., dpa_initiator_target) usage:

Usage: doca_dpa_initiator_target [DOCA Flags] [Program Flags]

DOCA Flags:
 -h, --help Print a help synopsis
 -v, --version Print program version information
 -l, --log-level Set the (numeric) log level for the program <10=DISABLE, 20=CRITI
CAL, 30=ERROR, 40=WARNING, 50=INFO, 60=DEBUG, 70=TRACE>
 --sdk-log-level Set the SDK (numeric) log level for the program <10=DISABLE, 20=C
RITICAL, 30=ERROR, 40=WARNING, 50=INFO, 60=DEBUG, 70=TRACE>
 -j, --json <path> Parse all command flags from an input json file

Program Flags:
 -d, --device <device name> device name that supports DPA (optional). If not provided then a
random device will be chosen

For additional information per sample, use the -h option:

/tmp/build/doca_<sample_name> -h

All the DOCA samples described in this section are governed under the BSD-3 software
license agreement.

The binary doca_<sample_name> is created under /tmp/build/ .

408

1.
2.
3.
4.
5.
6.
7.
8.

•

•

•

•

•

14.4.3.6.6.1 Basic Initiator Target

This sample illustrates how to trigger DPA Thread using DPA Completion Context attached to DOCA
RDMA.

This sample consists of initiator and target endpoints.

In the initiator endpoint, a DOCA RDMA executes RDMA post send operation using DPA RPC.

In the target endpoint, a DOCA RDMA, attached to DPA Completion Context, executes RDMA post
receive operation using DPA RPC.

Completion on the post receive operation triggers DPA Thread which prints completion info and sets
DOCA Sync Event to release the host application that waits on that event before destroying all
resources and finish.

The sample logic includes:

Allocating DOCA DPA & DOCA RDMA resources for both initiator and target endpoints.
Target: Attaching DOCA RDMA to DPA Completion Context which is attached to DPA Thread.
Run DPA Thread.
Target: DPA RPC to execute RDMA post receive operation.
Initiator: DPA RPC to execute RDMA post send operation.
The completion on the post receive operation triggers DPA Thread.
Waiting on completion event to be set from DPA Thread.
Destroying all resources.

Reference:

/opt/mellanox/doca/samples/doca_dpa/dpa_basic_initiator_target/

dpa_basic_initiator_target_main.c

/opt/mellanox/doca/samples/doca_dpa/dpa_basic_initiator_target/host/

dpa_basic_initiator_target_sample.c

/opt/mellanox/doca/samples/doca_dpa/dpa_basic_initiator_target/device/

dpa_basic_initiator_target_kernels_dev.c

/opt/mellanox/doca/samples/doca_dpa/dpa_basic_initiator_target/meson.build

/opt/mellanox/doca/samples/doca_dpa/dpa_common.h

409

•

•

1.
2.
3.
4.

1.
2.
3.
4.

1.
2.

3.
4.
5.
6.
7.
8.
9.

10.

/opt/mellanox/doca/samples/doca_dpa/dpa_common.c

/opt/mellanox/doca/samples/doca_dpa/build_dpacc_samples.sh

14.4.3.6.6.2 Advanced Initiator Target

This sample illustrates how to trigger DPA threads using both DPA Notification Completion and DPA
Completion Context which is attached to multiple DOCA RDMAs.

This sample consists of initiator and target endpoints.

In the initiator endpoint, two DOCA RDMAs execute an RDMA post send operation using DPA RPC in
the following order:

RDMA #1 executes the RDMA post send operation on buffer with value 1.
RDMA #2 executes the RDMA post send operation on buffer with value 2.
RDMA #1 executes the RDMA post send operation on buffer with value 3.
RDMA #2 executes the RDMA post send operation on buffer with value 4.

In the target endpoint, two DOCA RDMAs, RDMA #1 with user data 111 and RDMA #2 with user data

222 .

Target RDMAs are attached to a single DPA Completion Context which is attached to DPA Thread #1.

Target RDMAs execute the initial RDMA post receive operation using DPA RPC.

Completions on the post receive operations trigger DPA Thread #1 which:

Prints completion info including user data.
Updates a local data base with the receive buffer value.
Repost RDMA receive operation.
Ack, request completion and reschedule.

Once target DPA Thread #1 receives all expected values "1, 2, 3, 4", it notify DPA Thread #2 and
finish.

Once DPA Thread #2 is triggered, it sets DOCA Sync Event to release the host application that waits
on that event before destroying all resources and finishing.

The sample logic includes:

Allocating DOCA DPA and DOCA RDMA resources for both initiator and target endpoints.
Target: Attaching both DOCA RDMAs to DPA Completion Context which is attached to DPA
Thread #1.
Target: Attaching DPA Notification Completion to DPA Thread #2.
Run DPA threads.
Target: DPA RPC to execute the initial RDMA post receive operation.
Initiator: DPA RPC to execute all RDMA post send operations.
Completions on the post receive operations (4 completions) trigger DPA Thread #1.
Once all expected values are received, DPA Thread #1 notifies DPA Thread #2 and finishes.
Waiting on completion event to be set from DPA Thread #2.
Destroying all resources.

410

•

•

•

•

•

•

•

•
•
•

1.
2.
3.
4.
5.
6.
7.

Reference:

/opt/mellanox/doca/samples/doca_dpa/dpa_initiator_target/

dpa_initiator_target_main.c

/opt/mellanox/doca/samples/doca_dpa/dpa_initiator_target/host/

dpa_initiator_target_sample.c

/opt/mellanox/doca/samples/doca_dpa/dpa_initiator_target/device/

dpa_initiator_target_kernels_dev.c

/opt/mellanox/doca/samples/doca_dpa/dpa_initiator_target/meson.build

/opt/mellanox/doca/samples/doca_dpa/dpa_common.h

/opt/mellanox/doca/samples/doca_dpa/dpa_common.c

/opt/mellanox/doca/samples/doca_dpa/build_dpacc_samples.sh

14.4.3.6.6.3 Ping Pong

This sample illustrates the functionality of the following DPA objects:

DPA Thread
DPA Completion Context
DOCA RDMA

This sample consists of ping and pong endpoints which run for 100 iterations. On each iteration, DPA
threads (ping and pong) post RDMA receive and send operations for data buffers with values [0-99].

Once all expected values are received on each DPA thread, it sets a DOCA Sync Event to release the
host application waiting on that event before destroying all resources and finishes.

To trigger DPA threads, the sample uses a DPA RPC.

The sample logic includes:

Allocating DOCA DPA and DOCA RDMA resources.
Attaching DOCA RDMA to DPA completion context which is attached to DPA thread.
Run DPA threads.
DPA RPC to trigger DPA threads.
100 ping pong iterations of RDMA post receive and send operations.
Waiting on completion events to be set from DPA threads.
Destroying all resources.

411

•

•

•

•

•

•

•

1.
2.
3.
4.
5.
6.
7.

•

•

Reference:

/opt/mellanox/doca/samples/doca_dpa/dpa_ping_pong/dpa_ping_pong_main.c

/opt/mellanox/doca/samples/doca_dpa/dpa_ping_pong/host/dpa_ping_pong_sample.c

/opt/mellanox/doca/samples/doca_dpa/dpa_ping_pong/device/

dpa_ping_pong_kernels_dev.c

/opt/mellanox/doca/samples/doca_dpa/dpa_ping_pong/meson.build

/opt/mellanox/doca/samples/doca_dpa/dpa_common.h

/opt/mellanox/doca/samples/doca_dpa/dpa_common.c

/opt/mellanox/doca/samples/doca_dpa/build_dpacc_samples.sh

14.4.3.6.6.4 Kernel Launch

This sample illustrates how to launch a DOCA DPA kernel with wait and completion DOCA sync
events.

The sample logic includes:

Allocating DOCA DPA resources.
Initializing wait and completion DOCA sync events for the DOCA DPA kernel.
Running hello_world DOCA DPA kernel that waits on the wait event.
Running a separate thread that triggers the wait event.
hello_world DOCA DPA kernel prints "Hello from kernel".
Waiting for the completion event of the kernel.
Destroying the events and resources.

Reference:

/opt/mellanox/doca/samples/doca_dpa/dpa_wait_kernel_launch/

dpa_wait_kernel_launch_main.c

/opt/mellanox/doca/samples/doca_dpa/dpa_wait_kernel_launch/host/

dpa_wait_kernel_launch_sample.c

412

•

•

•

•

•

•
•
•
•
•
•

1.

2.

1.

/opt/mellanox/doca/samples/doca_dpa/dpa_wait_kernel_launch/device/

dpa_wait_kernel_launch_kernels_dev.c

/opt/mellanox/doca/samples/doca_dpa/dpa_wait_kernel_launch/meson.build

/opt/mellanox/doca/samples/doca_dpa/dpa_common.h

/opt/mellanox/doca/samples/doca_dpa/dpa_common.c

/opt/mellanox/doca/samples/doca_dpa/build_dpacc_samples.sh

14.4.3.7 DOCA PCC
This guide provides an overview and configuration instructions for DOCA Programmable Congestion
Control (PCC) API.

14.4.3.7.1 Introduction

The DOCA PCC library provides a high-level programming interface that allows users to implement
their own customized congestion control (CC) algorithm, facilitating efficient management of
network congestion in their applications.

The DOCA PCC library provides an API to:

Configure probe packets to send and receive
Get the CC event/packet and access its fields
Set a rate limit for a flow
Maintain a context for each flow
Initiate and configure CC algorithms
Obtain request packets arriving from the network and setup response packets in return

This library uses the NVIDIA® BlueField®-3 Platform hardware acceleration for CC management,
while providing an API that simplifies hardware complexity, allowing users to focus on the
functionality of the CC algorithm.

14.4.3.7.2 Prerequisites

DOCA PCC-based applications can run either on the host machine or on the NVIDIA® BlueField®-3
Platform (or later) target.

To enable DOCA PCC RP:

Run the following on the host/VM:

mlxconfig -d <mlx_device> -y s USER_PROGRAMMABLE_CC=1

Perform graceful shutdown then power cycle the host.

To enable DOCA PCC NP:

Run the following on the host/VM

Currently, DOCA PCC is only supported for ETHERNET link type.

413

2.

•

•

•

•

•

•

mlxconfig -d <mlx_device> -y s PCC_INT_EN=0

Perform graceful shutdown then power cycle the host.

The DPACC tool is used to compile and link user algorithm and device code with the DOCA PCC
device library to get applications that can be loaded from the host program.

DPACC is bundled as part of the DOCA SDK installation package. For more information on DPACC,
refer to NVIDIA DOCA DPACC Compiler.

14.4.3.7.3 Changes From Previous Releases

14.4.3.7.3.1 Changes in 2.8.0

Added

doca_pcc_dump_debug(const struct doca_pcc *pcc)

doca_pcc_enable_debug(const struct doca_pcc *pcc, bool enable)

Changed

DOCA_PCC_DEV_MAX_NUM_PARAMS_PER_ALGO (0x1E) → (0x26)

DOCA_PCC_DEV_MAX_NUM_COUNTERS_PER_ALGO (0xF) → (0x3F)

struct mlnx_cc_event_general_attr_t – port_num split to two fields (see diff below)

struct mlnx_cc_event_general_attr_t { /* Little Endian */
 uint32_t ev_type:8; /* event type */
 uint32_t ev_subtype:8; /* event subtype */
- uint32_t port_num:8; /* port id */
+ uint32_t port_num:4; /* port id */
+ uint32_t reserved:4;
 uint32_t flags:8; /* event flags */
 }

struct mlnx_cc_event_t – added 12B reserved

struct mlnx_cc_event_t { /* Little Endian */
+ uint32_t reserved[3]; /* reserved */
struct mlnx_cc_event_general_attr_t ev_attr; /* event general attributes */

Configuring PCC_INT_EN to 1 blocks the creation of DOCA PCC NP context and enables
legacy NP solution. In addition, it only supports DOCA PCC RP context to set Congestion
Control Message After Drop (CCMAD) probe packet format.

If IFA2.0 support is needed, user needs to enable DOCA PCC RP and DOCA PCC NP on all
nodes of the cluster.

If running from the host in NIC mode, users must have PRIVILIGED permission to configure
the above parameters. To check privileging level, run:

mlxprivhost -d <mlx_device> q

https://confluence.nvidia.com/display/doca220/NVIDIA+DOCA+DPACC+Compiler

414

•

uint32_t flow_tag; /* unique flow id */
uint32_t sn; /* serial number */
uint32_t timestamp; /* event timestamp */
union mlnx_cc_event_spec_attr_t ev_spec_attr; /* attributes which are different for different events */
};

14.4.3.7.4 Dependencies

The library requires firmware version 32.38.1000 and higher.

14.4.3.7.5 Architecture

DOCA PCC comprises three main components which are part of the DOCA SDK installation package:

14.4.3.7.5.1 Host Library

The host library offers a unified interface for managing the DOCA PCC context configuration.

As part of the control path, the host library integrates passively within the application,
orchestrating congestion control activities without directly handling data transmission.

Host/device library and header files:

14.4.3.7.5.2 Device Libraries

The DOCA PCC context assumes one of two roles:

Reaction point (RP): Monitors network conditions actively, dynamically adjusting data
transmission rates to alleviate congestion promptly. RP context is global per NIC.
Device library and header files:

415

•

1.

2.
•

•
3.

4.

5.

Notification point (NP): Passively receives congestion notifications from external sources,
processing them intelligently to facilitate informed decisions within the application. NP
context is global per e-switch owner.
Device library and header files:

Both RP and NP device libraries share common headers:

Currently, the device library and the user algorithm are implemented and managed over the
BlueField's data-path accelerator (DPA) subsystem.

For more info on DPA, refer to DPA Subsystem.

14.4.3.7.5.3 Development Flow

DOCA enables developers to program the congestion control algorithm into the system using the
DOCA PCC library.

The following are the required steps to start programming:

Implement CC algorithms and probe packet handling using the API provided by the device
header files.
Implement the user callbacks defined by the library for DataPath:

For RP: doca_pcc_dev_user_init() , doca_pcc_dev_user_set_algo_params() ,

doca_pcc_dev_user_algo() .

For NP: doca_pcc_dev_np_user_packet_handler()
Use DPACC to build a DPA application (i.e., a host library which contains an embedded device
executable). Input for DPACC are the files containing the implementation of the previous
steps.
Build host executable using a host compiler. Inputs for the host compiler are the DPA
application generated in the previous step and the user application host source files.
In the host executable, create and start a DOCA PCC context which is set with the DPA
application containing the device code.

416

For a more descriptive example, refer to NVIDIA DOCA PCC Application Guide.

14.4.3.7.5.4 System Design

DOCA PCC flow for implementing an RP program:

DOCA PCC flow for implementing an NP program:

417

•

•

14.4.3.7.6 API

For the library API reference, refer to PCC API documentation in the NVIDIA DOCA Library APIs.

The following sections provide additional details about the library API.

14.4.3.7.6.1 Host API

The host library API consists of calls to set the PCC context attributes and observe availability of the
process.

Selecting and Opening DOCA Device

To perform PCC operations, a device must be selected. To select a device, users may iterate over all
DOCA devices using doca_devinfo_list_create() and check whether the device supports the

desired PCC role either via doca_devinfo_get_is_pcc_supported() for RP, or

doca_pcc_np_cap_is_supported() for NP.

Setting Up and Starting DOCA PCC Context

After selecting a DOCA device, a PCC context can be created.

As described in the Architecture section, The DOCA PCC library provides APIs to leverage Reaction
Points (RP) and Notification Points (NP) to implement programmable congestion control strategies.

Call doca_pcc_create() to create a DOCA PCC RP context, and doca_pcc_np_create() to
create a DOCA PCC NP context.

Afterwards, the following attributes must be set for the PCC context:

Context app – the name of the DPA application compiled using DPACC, consisting of the device
algorithm and code. This is set using the call doca_pcc_set_app() .
Context threads – the affinity of DPA threads to be used to handle CC events. This is set using
the call doca_pcc_set_thread_affinity() . The number of threads to be used must be
constrained between the minimum and maximum number of threads allowed to run the PCC
process (see doca_pcc_get_min_num_threads() and doca_pcc_get_max_num_threads()).
The availability and usage of the threads for PCC is dependent on the complexity of the CC
algorithm, link rate, and other potential DPA users.

After setting up the context attributes, the context can be started using doca_pcc_start() .
Starting the context initiates the CC algorithm supplied by the user.

Configuring Probe Packets

The DOCA PCC library provides APIs to configure the probe packet settings to tailor congestion
control behaviors according to specific network conditions.

Users can manage DPA threads in the system using EU pre-configuration with the
dpaeumgmt tool. For more information, refer to NVIDIA DOCA DPA Execution Unit
Management Tool.

418

•

•

•

•
•

•

•

•

The probe packet serves to probe the network for congestion and gather essential feedback for
congestion control algorithms.

The DOCA PCC Library supports the following probe packet types:

CCMAD – Provides information about the network's round-trip time so the algorithm can
detect and adapt to congestion proactively
IFA1 – In-band Flow Analyzer 1 packets provide in-band congestion feedback for proactive
congestion control
IFA2 – In-band Flow Analyzer 2 packets offer an alternative method for in-band congestion
feedback, optimized for specific network environments

Configuring Dedicated Fields for Different Probe Types

The DOCA PCC library provides APIs to configure specific fields in different supported probe packet
types.

IFA1 – support to configure probe marker
IFA2 – support to configure gns and hop limit

Configuring Remote NP Handler

To enable Reaction Point contexts to interact with remote Notification Point contexts, the DOCA PCC
library provides an API to set the expected remote handler type.

When the DOCA PCC RP process expects CCMAD probe packet responses from a DOCA PCC NP
process, it should set it as so using the API doca_pcc_rp_set_ccmad_remote_sw_handler() . If not
set, the DOCA PCC RP process expects that no remote DOCA PCC NP process is activated, and that
responses are handled by the remote node's hardware. Note that if using other probe types than
CCMAD, probe packet responses are always expected to be generated from a remote DOCA
Notification Point process.

Debuggability

The DOCA PCC library provides a set of debugging APIs to allow the user to diagnose and
troubleshoot any issues on the device, as well as accessing real-time information from the running
application:

doca_pcc_set_dev_coredump_file() – API to set a filename to write crash data and core
dump into should a fatal error occur on the device side of the application. The data written
into the file would include a memory snapshot at the time of the crash, which would contain
information instrumental in pinpointing the cause of a crash (e.g., the program's state,
variable values, and the call stack).
doca_pcc_set_trace_message() – API to enable tracing on the device side of the
application by setting trace message formats that can be printed from the device. The tracer
provided by the library is of high-frequency and is designed to not have significant impact on
the application's performance. This API can help the user to monitor and gain insight into the
behavior of the running device algorithm, identify performance bottlenecks, and diagnose
issues, without incurring any notable performance degradation.
doca_pcc_set_print_buffer_size() – API to set the buffer size to be printed by the print
API provided by the device library.

Host - Device Mailbox

419

•

•

•

The DOCA PCC library provides a set of APIs for sending and receiving messages through a mailbox.
This service allows communication between the host and device:

doca_pcc_set_mailbox() – API to set the mailbox attributes for the process.

doca_pcc_mailbox_get_request_buffer() and

doca_pcc_mailbox_get_response_buffer() – API to get the buffers with which the
communication will be handled. User can set the request he wants to send to the device, and
get a response back.
doca_pcc_mailbox_send() – API to send the mailbox request to the device. This is a
blocking call which invokes a callback on the device
doca_pcc_dev_user_mailbox_handle() which user can handle.

 High Availability

The DOCA PCC library provides high availability, allowing fast recovery should the running PCC
process malfunction. High availability can be achieved by running multiple PCC processes in
parallel.

When calling doca_pcc_start() , the library registers the process with the BlueField firmware such
that the first PCC process to be registered becomes the ACTIVE PCC process (i.e., actually runs on
DPA and handles CC events).

The other processes operate in STANDBY mode. If the ACTIVE process stops processing events or hits
an error, the firmware replaces it with one of the standby processes, making it ACTIVE.

The defunct process should call doca_pcc_destroy() to free its resources.

The state of the process may be observed periodically using doca_pcc_get_process_state() . A

change in the state of the process returns the call doca_pcc_wait() .

The following values describe the state of the PCC process at any point:

typedef enum {
 DOCA_PCC_PS_ACTIVE = 0,
 /**< The process handles CC events (only one process is active at a given time) */
 DOCA_PCC_PS_STANDBY = 1,
 /**< The process is in standby mode (another process is already ACTIVE)*/
 DOCA_PCC_PS_DEACTIVATED = 2,
 /**< The process was deactivated by NIC FW and should be destroyed */
 DOCA_PCC_PS_ERROR = 3,
 /**< The process is in error state and should be destroyed */
} doca_pcc_process_state_t;

14.4.3.7.6.2 Device API

The device library API consists of calls to setup the CC algorithm to handle CC events arriving on
hardware.

Counter Sampling

The device libraries APIs provide an API to sample the NIC bytes counters. These counters help
monitor the amount of data transmitted and received through the NIC.

The user can prepare the list of counters to read using doca_pcc_dev_nic_counters_config()

and sample the new counters values with the call doca_pcc_dev_nic_counters_sample() .

 Algorithm Access

420

•

•

•

•

The Reaction Point (RP) device library API provides a set of functions to initiate and identify the
different CC algorithms.

The DOCA PCC library is designed to support more than one PCC algorithm. The library comes with a
default algorithm which can be used fully or partially by the user using
doca_pcc_dev_default_internal_algo() , alongside other CC algorithms supplied by the user.
This can be useful for fast comparative runs between the different algorithms. Each algorithm can
run on a different device port using doca_pcc_dev_init_algo_slot() .

The algorithm can supply its own identifier, initiate its parameter (using
doca_pcc_dev_algo_init_param()), counter (using doca_pcc_dev_algo_init_counter()), and

metadata base (using doca_pcc_dev_algo_init_metadata()).

 Events

The RP device library API provides a set of optimized CC event access functions. These functions
serve as helpers to build the CC algorithm and to provide runtime data to analyze and inspect CC
events arriving on hardware.

 Utilities

The device library APIs provide a set of optimized utility macros that are set to support
programming the CC algorithm. Such utilities are composed of fixed-point operations, memory space
fences, and more.

 User Callbacks

The device libraries API consists of specific user callbacks used by the library to initiate and run the
CC algorithm and handle input and output packets. These callbacks must be implemented by the
user and, to be part of the DPA application, compiled by DPACC to provide to the DOCA PCC context.

The set of callbacks to be implemented for RP:

doca_pcc_dev_user_init() – called on PCC process load and should initialize the data of
all user algorithms
doca_pcc_dev_user_algo() – entry point to the user algorithm handling code

doca_pcc_dev_user_set_algo_params() – called when the parameter change is set
externally

The set of callbacks to be implemented for NP:

doca_pcc_dev_np_user_packet_handler() – called on probe packets arrival

14.4.4 DOCA DMA
This guide provides instructions on building and developing applications that require copying
memory using Direct Memory Access (DMA).

14.4.4.1 Introduction
DOCA DMA provides an API to copy data between DOCA buffers using hardware acceleration,
supporting both local and remote memory regions.

421

•
•
•

•

•

•

The library provides an API for executing DMA operations on DOCA buffers, where these buffers
reside either in local memory (i.e., within the same host) or host memory accessible by the DPU.
See DOCA Core for more information about the memory subsystem.

Using DOCA DMA, complex memory copy operations can be easily executed in an optimized,
hardware-accelerated manner.

This document is intended for software developers wishing to accelerate their application's memory
I/O operations and access memory that is not local to the host.

14.4.4.2 Prerequisites
This library follows the architecture of a DOCA Core Context, it is recommended read the following
sections before:

DOCA Core Execution Model
DOCA Core Device
DOCA Core Memory Subsystem

14.4.4.3 Library Changes From Previous Releases

14.4.4.3.1 Changes in 2.8.0

The following subsection(s) detail the doca_comch library updates in version 2.8.0.

14.4.4.3.1.1 API Additions
doca_error_t doca_dma_get_gpu_handle(struct doca_dma *dma, struct

doca_gpu_dma **gpu_dma)
Provides the option to export DMA to GPU and use GPUNetIO for DMA datapath on the
GPU

14.4.4.4 Environment
DOCA DMA-based applications can run either on the host machine or on the NVIDIA® BlueField® DPU
target.

Copying from Host to DPU and vice versa only works with a DPU configured running in DPU mode as
described in NVIDIA BlueField Modes of Operation.

14.4.4.5 Architecture
DOCA DMA is a DOCA Context as defined by DOCA Core. See DOCA Core Context for more
information.

DOCA DMA leverages DOCA Core architecture to expose asynchronous tasks/events that are
offloaded to hardware.

DMA can be used to copy data as follows:

Copying from local memory to local memory:

422

•

•

Using DPU to copy memory between host and DPU:

Using host to copy memory between host and DPU:

14.4.4.5.1 Objects

14.4.4.5.1.1 Device and Device Representor

The DMA library needs a DOCA device to operate. The device is used to access memory and perform
the actual copy. See DOCA Core Device Discovery.

For same BlueField DPU, it does not matter which device is used (PF/VF/SF), as all these devices
utilize the same hardware component. If there are multiple DPUs, then it is possible to create a
DMA instance per DPU, providing each instance with a device from a different DPU.

423

•

•

•

•
•

To access memory that is not local (from the host to the DPU or vice versa), the DPU side of the
application must select a device with an appropriate representor. See DOCA Core Device
Representor Discovery.

The device must stay valid for as long as the DMA instance is not destroyed.

14.4.4.5.1.2 Memory Buffers

The memory copy task requires two DOCA buffers containing the destination and the source.
Depending on the allocation pattern of the buffers, refer to the table in the "Inventory Types"
section. To find what kind of memory is supported, refer to the table in section "Buffer Support".

Buffers must not be modified or read during the memory copy operation.

14.4.4.6 Configuration Phase
To start using the library, users must go through a configuration phase as described in DOCA Core
Context Configuration Phase.

This section describes how to configure and start the context, to allow execution of tasks and
retrieval of events.

14.4.4.6.1 Configurations

The context can be configured to match the application use case.

To find if a configuration is supported, or what the min/max value for it is, refer to section "Device
Support".

14.4.4.6.1.1 Mandatory Configurations

These configurations are mandatory and must be set by the application before attempting to start
the context:

At least one task/event type must be configured. See configuration of tasks and/or events in
sections "Tasks" and "Events" respectively for information.
A device with appropriate support must be provided upon creation

14.4.4.6.2 Device Support

DOCA DMA requires a device to operate. To picking a device, refer to "DOCA Core Device Discovery".

As device capabilities may change (see DOCA Core Device Support), it is recommended to select
your device using the following method:

doca_dma_cap_task_memcpy_is_supported

Some devices can allow different capabilities as follows:

The maximum number of tasks
The maximum buffer size

424

14.4.4.6.3 Buffer Support

Tasks support buffers with the following features:

Buffer Type Source Buffer Destination Buffer

Local mmap buffer Yes Yes

mmap from PCIe export buffer Yes Yes

mmap From RDMA export buffer No No

Linked list buffer Yes No

14.4.4.7 Execution Phase
This section describes execution on CPU using DOCA Core Progress Engine.

14.4.4.7.1 Tasks

DOCA DMA exposes asynchronous tasks that leverage the DPU hardware according to the DOCA Core
architecture. See DOCA Core Task.

14.4.4.7.1.1 Memory Copy Task

The memory copy task allows copying memory from one location to another. Using buffers as
described in Buffer Support.

Task Configuration

Description API to set the configuration API to query support

Enable the task doca_dma_task_memcpy_set_con

f

doca_dma_cap_task_memcpy_is_supp

orted

Number of tasks doca_dma_task_memcpy_set_con

f

doca_dma_cap_get_max_num_tasks

Maximal buffer size – doca_dma_cap_task_memcpy_get_max

_buf_size

Maximum buffer list size – doca_dma_cap_task_memcpy_get_max

_buf_list_len

Task Input

Common input as described in DOCA Core Task.

Name Description Notes

Source buffer Buffer that points to the memory to
be copied

Only the data residing in the data
segment is copied

Destination buffer Buffer that points to where memory
is copied

The data is copied to the tail segment
extending the data segment

425

•
•

•
•
•

•
•

•
•

•
•

•
•

Task Output

Common output as described in DOCA Core Task.

Task Completion Success

After the task is completed successfully:

The data is copied form source to destination
The destination buffer data segment is extended to include the copied data

Task Completion Failure

If the task fails midway:

The context may enter stopping state, if a fatal error occurs
The source and destination doca_buf objects are not modified
The destination buffer contents may be modified

Task Limitations

The operation is not atomic
Once the task has been submitted, then the source and destination should not be read/
written to
Source and destination must not overlap
Other limitations are described in DOCA Core Task

14.4.4.7.2 Events

DOCA DMA exposes asynchronous events to notify on changes that happen unexpectedly, according
to DOCA Core architecture.

The only event DMA exposes is common events as described in DOCA Core Event.

14.4.4.8 State Machine
The DOCA DMA library follows the Context state machine as described in DOCA Core Context State
Machine.

The following section describes how to move states and what is allowed in each state.

14.4.4.8.1 Idle

In this state it is expected that application:

Destroys the context
Starts the context

Allowed operations:

Configuring the context according to section "Configurations"
Starting the context

It is possible to reach this state as follows:

426

•
•

•
•
•

•
•

•

Previous State Transition Action

None Create the context

Running Call stop after making sure all tasks have been freed

Stopping Call progress until all tasks are completed and freed

14.4.4.8.2 Starting

This state cannot be reached.

14.4.4.8.3 Running

In this state it is expected that application:

Allocates and submits tasks
Calls progress to complete tasks and/or receive events

Allowed operations:

Allocating a previously configured task
Submitting a task
Calling stop

It is possible to reach this state as follows:

Previous State Transition Action

Idle Call start after configuration

14.4.4.8.4 Stopping

In this state it is expected that application:

Calls progress to complete all inflight tasks (tasks complete with failure)
Frees any completed tasks

Allowed operations:

Call progress

It is possible to reach this state as follows:

Previous State Transition Action

Running Call progress and fatal error occurs

Running Call stop without freeing all tasks

14.4.4.9 Alternative Datapath Options
DOCA DMA allows data path to be run on the CPU or GPU.

427

1.

2.

3.

•
•

1.
•

•

2.

3.

14.4.4.9.1 GPU Datapath

DOCA offers the DOCA GPUNetIO library which provides a programming model for offloading the
orchestration of the communication to a GPU CUDA kernel.

The user may run a DMA operation on the GPU data path by configuring the DOCA DMA context used
by the application in the following manner:

Obtain DOCA CTX by calling doca_dma_as_ctx() .

Set the datapath of the context to GPU by calling doca_ctx_set_datapath_on_gpu() . For
additional information, refer to DOCA Core Alternative Data Path.
Finish context configuration and start the context by calling doca_ctx_start() . For
additional information, refer to DOCA Core Context.

After configuring the datapath, the user can obtain a GPU handle for the DOCA RDMA context by
calling doca_dma_get_gpu_handle() . The GPU handle must be passed to a GPU CUDA kernel so
the DOCA GPUNetIO CUDA device functions can execute datapath operations. For additional
information, refer to section "GPU Functions – RDMA" under DOCA GPUNetIO library documentation.

14.4.4.10 DOCA DMA Samples
This section describes DOCA DMA samples based on the DOCA DMA library.

The samples illustrate how to use the DOCA DMA API to do the following:

Copy contents of a local buffer to another buffer
Use DPU to copy contents of buffer on the host to a local buffer

14.4.4.10.1 Running the Samples
Refer to the following documents:

NVIDIA DOCA Installation Guide for Linux for details on how to install BlueField-related
software.
NVIDIA DOCA Troubleshooting Guide for any issue you may encounter with the
installation, compilation, or execution of DOCA samples.

To build a given sample:

cd /opt/mellanox/doca/samples/doca_dma/dma_local_copy
meson /tmp/build
ninja -C /tmp/build

The binary doca_dma_local_copy is created under /tmp/build/ .

Sample (e.g., doca_dma_local_copy) usage:

For the CPU data path, see Execution Phase.

All the DOCA samples described in this section are governed under the BSD-3 software
license agreement.

428

4.

1.
2.
3.
4.
5.
6.
7.
8.
9.

•

•

•

1.
2.
3.
4.

Usage: doca_<sample_name> [DOCA Flags] [Program Flags]

DOCA Flags:
 -h, --help Print a help synopsis
 -v, --version Print program version information
 -l, --log-level Set the (numeric) log level for the program
<10=DISABLE, 20=CRITICAL, 30=ERROR, 40=WARNING, 50=INFO, 60=DEBUG, 70=TRACE>
 -j, --json <path> Parse all command flags from an input json file

Program Flags:
 -p, --pci_addr <PCI-ADDRESS> PCI device address
 -t, --text Text to DMA copy

For additional information per sample, use the -h option:

/tmp/build/<sample_name> -h

14.4.4.10.2 Samples

14.4.4.10.2.1 DMA Local Copy

This sample illustrates how to locally copy memory with DMA from one buffer to another on the
DPU. This sample should be run on the DPU.

The sample logic includes:

Locating DOCA device.
Initializing needed DOCA core structures.
Populating DOCA memory map with two relevant buffers.
Allocating element in DOCA buffer inventory for each buffer.
Initializing DOCA DMA memory copy task object.
Submitting DMA task.
Handling task completion once it is done.
Checking task result.
Destroying all DMA and DOCA core structures.

Reference:

/opt/mellanox/doca/samples/doca_dma/dma_local_copy/dma_local_copy_sample.c

/opt/mellanox/doca/samples/doca_dma/dma_local_copy/dma_local_copy_main.c

/opt/mellanox/doca/samples/doca_dma/dma_local_copy/meson.build

14.4.4.10.2.2 DMA Copy DPU

This sample illustrates how to copy memory (which contains user defined text) with DMA from the
x86 host into the DPU. This sample should be run on the DPU.

The sample logic includes:

Locating DOCA device.
Initializing needed DOCA core structures.
Reading configuration files and saving their content into local buffers.
Allocating the local destination buffer in which the host text is to be saved.

This sample should run only after DMA Copy Host is run and the required configuration files
(descriptor and buffer) have been copied to the DPU.

429

5.
6.
7.
8.
9.

10.
11.
12.
13.
14.
15.

•

•

•

1.
2.
3.
4.
5.

6.
7.

•

•

•

Populating DOCA memory map with destination buffer.
Creating the remote memory map with the export descriptor file.
Creating memory map to the remote buffer.
Allocating element in DOCA buffer inventory for each buffer.
Initializing DOCA DMA memory copy task object.
Submitting DMA task.
Handling task completion once it is done.
Checking DMA task result.
If the DMA task ends successfully, printing the text that has been copied to log.
Printing to log that the host-side sample can be closed.
Destroying all DMA and DOCA core structures.

Reference:

/opt/mellanox/doca/samples/doca_dma/dma_copy_dpu/dma_copy_dpu_sample.c

/opt/mellanox/doca/samples/doca_dma/dma_copy_dpu/dma_copy_dpu_main.c

/opt/mellanox/doca/samples/doca_dma/dma_copy_dpu/meson.build

14.4.4.10.2.3 DMA Copy Host

This sample illustrates how to allow memory copy with DMA from the x86 host into the DPU. This
sample should be run on the host.

The sample logic includes:

Locating DOCA device.
Initializing needed DOCA core structures.
Populating DOCA memory map with source buffer.
Exporting memory map.
Saving export descriptor and local DMA buffer information into files. These files should be
transferred to the DPU before running the DPU sample.
Waiting until DPU DMA sample has finished.
Destroying all DMA and DOCA core structures.

Reference:

/opt/mellanox/doca/samples/doca_dma/dma_copy_host/dma_copy_host_sample.c

/opt/mellanox/doca/samples/doca_dma/dma_copy_host/dma_copy_host_main.c

/opt/mellanox/doca/samples/doca_dma/dma_copy_host/meson.build

14.4.5 DOCA Comch

This sample should be run first. It is user responsibility to transfer the two configuration
files (descriptor and buffer) to the DPU and provide their path to the DMA Copy DPU
sample.

DOCA Comm Channel API will be deprecated in the next DOCA release (2.9.0).

430

•
•

•

•
•

DOCA Comch API introduces features such as high-performance data path over the consumer-
producer API, as well as working with DOCA progress engine and other standard DOCA Core objects.

14.4.5.1 DOCA Comch – New
This guide provides instructions on building and developing applications that require communication
channels between the x86 host and the BlueField Arm cores.

14.4.5.1.1 Introduction

DOCA Comch provides a communication channel between client applications on the host and servers
on the BlueField Arm.

Benefits of using DOCA Comch:

Security – the communication channel is isolated from the network
Network independent – the state of the communication channel does not depend on the state
and configuration of the network
Ease of use

DOCA Comch provides two different data path APIs:

Basic DOCA Comch send/receive for control messages
High bandwidth, low latency, zero-copy, multi-producer, multi-consumer API

The following table summarizes the differences between the two data path APIs:

Features Basic Send/Receive Fast Path (using
doca_comch_consumer/
doca_comch_producer)

Zero-copy No Yes

Takes network bandwidth Yes No

Isolated from network Yes Yes

Max msg size Fixed 1GB or more (depends on hardware
cap)

Multi-threaded Safe for a single thread Allows creation of consumer/producers
per thread.

Multi-consumer No Yes

Multi-producer Yes – allows multiple clients per
server

Yes – allow multiple producers/
consumers per connection

Requires doca_mmap and

doca_buf

No Yes

DOCA Comch does not support event-triggered completions.

431

•
•
•

•

•
•

•

•
•

•

•
•

•

•
•

•

•
•

•

•
•

•

•
•

•
•

•

•

•

14.4.5.1.2 Prerequisites

This library follows the architecture of a DOCA Core Context, it is recommended to read the
following sections before:

DOCA Core Execution Model
DOCA Core Device
DOCA Core Memory Subsystem (fast path only)

14.4.5.1.3 Changes From Previous Release

14.4.5.1.3.1 Modified

Function name and return type changes

doca_error_t doca_comch_server_get_device_rep(const struct doca_comch_server *comch_server, struct

doca_dev_rep **rep)

DOCA 2.7 version:
doca_error_t doca_comch_server_get_device_repr(const struct doca_comch_server

*comch_server, struct doca_dev_rep **repr)

doca_comch_server_event_connection_status_changed_register(server,

server_connection_status_callback, server_connection_status_callback)

DOCA 2.7 version:
doca_comch_server_event_connection_register(server, server_connection_status_callback,

server_connection_status_callback)

doca_error_t doca_comch_consumer_set_dev_max_num_recv(struct doca_comch_consumer *consumer, uint32_t

dev_num_recv)

DOCA 2.7 version:
doca_comch_consumer_set_dev_num_recv(struct doca_comch_consumer *consumer, uint32_t

dev_num_recv)

doca_error_t doca_comch_producer_set_dev_max_num_send(struct doca_comch_producer *producer, uint32_t

dev_num_send)

DOCA 2.7 version:
doca_comch_producer_set_dev_num_send(struct doca_comch_producer
*producer, uint32_t dev_num_send)

doca_error_t doca_comch_consumer_completion_get_max_num_consumers(const struct

doca_comch_consumer_completion *consumer_comp, uint32_t *max_num_consumers)

DOCA 2.7 version:
doca_comch_consumer_completion_get_max_num_consumers(struct

doca_comch_consumer_completion *consumer_comp, uint32_t *max_num_consumers)

doca_error_t doca_comch_consumer_completion_get_max_num_consumers(const struct

doca_comch_consumer_completion *consumer_comp, uint32_t *max_num_consumers)

DOCA 2.7 version:
doca_comch_consumer_completion_get_max_num_consumers(struct

doca_comch_consumer_completion *consumer_comp, uint32_t *max_num_consumers)

doca_error_t doca_comch_consumer_completion_get_max_num_recv(const struct

doca_comch_consumer_completion *consumer_comp, uint32_t *max_num_recv)

DOCA 2.7 version:
doca_comch_consumer_completion_get_max_num_recv(struct doca_comch_consumer_completion

*consumer_comp, uint32_t *max_num_recv)

 Adding const to getter API functions

doca_comch_consumer_task_post_recv_get_buf(const struct doca_comch_consumer_task_post_recv *task)

DOCA 2.7 version:
doca_comch_consumer_task_post_recv_get_buf(struct doca_comch_consumer_task_post_recv

*task)

doca_comch_consumer_task_post_recv_get_producer_id(const struct doca_comch_consumer_task_post_recv

*task)

DOCA 2.7 version:

432

•

•

•
•

•

•
•

•
•

•
•

•
•

•
•

•
•

•
•

•

•

doca_comch_consumer_task_post_recv_get_producer_id(struct

doca_comch_consumer_task_post_recv *task)

const uint8_t *doca_comch_consumer_task_post_recv_get_imm_data(const struct

doca_comch_consumer_task_post_recv *task)

DOCA 2.7 version:
uint8_t *doca_comch_consumer_task_post_recv_get_imm_data(struct

doca_comch_consumer_task_post_recv *task)

doca_comch_consumer_task_post_recv_get_imm_data_len(const struct doca_comch_consumer_task_post_recv

*task)

DOCA 2.7 version:
doca_comch_consumer_task_post_recv_get_imm_data_len(struct

doca_comch_consumer_task_post_recv *task)

doca_comch_producer_task_send_get_buf(const struct doca_comch_producer_task_send *task)

DOCA 2.7 version:
doca_comch_producer_task_send_get_buf(struct doca_comch_producer_task_send *task)

doca_comch_producer_task_send_get_consumer_id(const struct doca_comch_producer_task_send *task)

DOCA 2.7 version:
doca_comch_producer_task_send_get_consumer_id(struct doca_comch_producer_task_send

*task)

doca_comch_producer_task_send_get_imm_data(const struct doca_comch_producer_task_send *task)

DOCA 2.7 version:
doca_comch_producer_task_send_get_imm_data(struct doca_comch_producer_task_send *task)

doca_comch_producer_task_send_get_imm_data_len(const struct doca_comch_producer_task_send *task)

DOCA 2.7 version:
doca_comch_producer_task_send_get_imm_data_len(struct doca_comch_producer_task_send

*task)

14.4.5.1.4 Environment

DOCA Comch based applications can run either on the host machine or on the NVIDIA BlueField Arm.

Sending messages between the host and BlueField Arm can only be run with a BlueField configured
with a mode as described in NVIDIA BlueField Modes of Operation.

For basic DOCA Comch send and receive, the following configuration is required:

doca_comch_server context must run on the BlueField Arm cores

doca_comch_client context must run on the host machine

14.4.5.1.5 Architecture

DOCA Comch is comprised of four DOCA Core Contexts. All DOCA Comch contexts leverage DOCA
Core architecture to expose asynchronous tasks/events that are offloaded to hardware.

A doca_comch_server context runs on the BlueField Arm and listens for incoming connections from

the host side. Such host side connections are initiated by a doca_comch_client context.

Servers can receive connections from multiple clients in parallel, however, a client can only connect
with one server. An established 1-to-1 connection between a client and a server is represented by a
doca_comch_connection .

Once an established connection exists between a client and a server, the doca_comch_producer

and doca_comch_consumer contexts can be used to run fast path channels.

The following diagram provides examples of the contexts use:

Producer and consumer objects can run on both the host and BlueField Arm cores. However,
there must be a valid client/server connection already established on the channel.

433

14.4.5.1.5.1 Objects

Description Locati
on

Scope

doca_comch_s

erver

Allows applications on the BlueField Arm cores to listen
on a specific server name and accept new incoming
connection from the host

BlueFiel
d Arm
only

Per host PCIe function
(doca_dev +

doca_dev_rep)

doca_comch_c

lient

Allows client applications to connect to a specific
server name on the BlueField Arm cores

Host
only

Per host PCIe function
(doca_dev)

doca_comch_c

onnection

A connection handle created on the client side or the
server side when a new connection is established. This
handle is used to send/receive messages or to create
doca_comch_consumer s and doca_comch_producer s.

BlueFiel
d Arm
and
host

Per client server pair

doca_comch_p

roducer

A handle for a FIFO-like send queue that provides a
zero-copy API to send messages to a specific
doca_comch_consumer on the same

doca_comch_connection . Multiple

doca_comch_producer s can be created per

doca_comch_connection .

BlueFiel
d Arm
and
host

Per
doca_comch_connectio

n

doca_comch_c

onsumer

A handle for a FIFO-like receive queue that provides a
zero-copy API to receive messages from a
doca_comch_producer

BlueFiel
d Arm
and
host

Per
doca_comch_connectio

n

434

•
•

•

•
•

•

•

1.

2.

3.

4.

5.

1.

2.

3.

4.

14.4.5.1.5.2 Security Considerations
DOCA Comch guarantees:

The client is connected to the server by providing the exact server name on the client
side
Only clients on the PF/VF/SF represented by the doca_dev_rep provided upon server
creation can connect to the server
The connection requests and data path are isolated from the network

DOCA Comch does not provide security at the application level:
It is up to the user to implement application-level security and verify the identity of
the client application
A server handles applications from a single PF/VF/SF. If a server application detects a
compromised client application, the server app should consider all clients (from that
PF/VF/SF) compromised.

14.4.5.1.5.3 Initialization Flow

doca_comch_server Initialization Flow

A doca_comch_server is created on a specific doca_dev and a specific doca_dev_rep .

A doca_comch_server must have a unique name per doca_dev/doca_dev_rep (i.e., two

servers on the same doca_dev and doca_dev_rep cannot have the same name).

Once doca_ctx_start() is called, the doca_comch_server can start receiving new
connection requests.
For the doca_comch_server to process new connection requests and messages, the user

must periodically call doca_pe_progress() .

When a new connection request arrives, doca_comch_server calls the connection request

handler function and passes a doca_comch_connection object.

The server can now send and receive messages on the connection represented by
doca_comch_connection .

doca_comch_client Initialization Flow

A doca_comch_client is created on a specific doca_dev is targeting a specific

doca_comch_server .

Once doca_ctx_start() is called, doca_comch_client asynchronously tries to connect to
the server.
To establish the connection and receive messages, the user must periodically call
doca_pe_progress() .

When the connection is established, doca_comch_client calls the state change callback
indicating state change to "RUNNING".

The client can now send a receive messages.

The following diagram describes the initialization of a basic client/server connection on DOCA
Comch:

435

1.

2.

3.

a.

b.
c.

doca_comch_consumer Initialization Flow

A doca_comch_consumer is created on a specific doca_comch_connection .

doca_pe_progress() must be periodically called on the client/server PE to allow
registration of the consumer.
After the doca_comch_consumer moves to "RUNNING" state:

doca_comch_consumer notifies its existence to the peer (invoking a new consumer
event).
The application can start posting receive tasks.
A doca_comch_producer on the peer side can start sending messages to that
consumer.

The initialization flow is described in the following diagram:

436

1.
2.

a.

b.

1.
2.

14.4.5.1.5.4 Teardown Flow

The teardown flow must be executed in the following order, otherwise errors may occur.

Disconnecting Specific Connection

The proper disconnection process for a specific connection consists of the following steps:

Stop all consumers and producers linked to the connection.
Server/client:

For server, a connection can be disconnected using
doca_comch_server_disconnect() . If there are any active producers/consumers
linked to the connection, the disconnect would fail. A disconnection notifies the client
and initiates teardown on that side too.
For client, since there is only one connection at any given time, the connection can be
disconnected by calling doca_ctx_stop() . If there are any active producers/
consumers, the command would fail. Stopping the client context notifies the server of
the disconnection and causes a disconnection of the connection on it.

Tearing Down DOCA Comch

The proper teardown for a DOCA Comch context consists of the following:

Stop all consumers and producers linked to the context.
Call doca_ctx_stop() . If there are any active connections, they would all be disconnected.
If there are any active consumers/producers, the command would fail. Disconnecting/

437

3.

•
•

stopping the context informs all active peers of the disconnection, and causes teardown (on
clients) or disconnection (on server). Calling doca_ctx_stop() successfully moves the
context to "stopping" state.
After moving to stopping state, doca_pe_progress() must be called until the context
moves to idle state.

14.4.5.1.5.5 MsgQ (DPA Communication)

DOCA Comch MsgQ leverages the existing consumer/producer model to allow communication
between host/BlueField and DPA.

Since communication between the host/BlueField and DPA is local, there is no need to create a
server, client, or connection. Instead the user can create a MsgQ and use it to create producers and
consumers directly.

When creating a consumer/producer using the MsgQ, it becomes possible to use them in the DPA
application as well as the CPU application:

The CPU application can utilize existing consumer/producer APIs for communication
The DPA application has a different set of APIs that are usable within a DPA application

Communication Direction

438

•
•
•

•
•
•

•
•
•
•
•

•
•

•
•
•

•
•
•

•
•

Every instance of a MsgQ can only support a single communication direction as follows:

Communication from host/BlueField to DPA
This direction may be specified using doca_comch_msgq_set_dpa_consumer
Consumers created from this MsgQ are referred to as DPA consumers, while producers
are CPU producers

Communication from DPA to host/BlueField
This direction may be specified using doca_comch_msgq_set_dpa_producer
Consumers created from this MsgQ are referred to as CPU consumers, while producers
are DPA producers

To support bidirectional communication in an application, the user has to create 2 MsgQ instances,
as shown in the above diagram.

14.4.5.1.6 Configuration Phase

To start using the library, users must go through a configuration phase as described in DOCA Core
Context Configuration Phase.

This section describes how to configure and start the context to allow execution of tasks and
retrieval of events.

14.4.5.1.6.1 Configurations

The context can be configured to match the application use case.

To find out if a certain configuration is supported, or what the min/max value for it is, refer to
Device Support.

Mandatory Configurations

These configurations are mandatory and must be set by the application before attempting to start
the context:

For a basic send/receive client or server:
A send task callback
A receive event callback
A device with appropriate support must be provided on creation
A valid server name must be provided on creation (for clients this is the server to
connect to)
A connection event callback (server only)

For fast path producer or consumer:
A device with appropriate support must be provided on creation
An established client to server connection must be provided on creation
A doca_mmap with PCIe read/write permissions of where data should be received must
be provided on creation (consumer only)
A post receive task callback (consumer only)
A send task callback (producer only)
A new consumer callback (triggered upon creation/destruction of a remove consumer)

For MsgQ fast path producer or consumer:
A started MsgQ must be provided on creation

439

•
•
•
•
•
•
•

•

•

•

•
•

•
•

•

•

•
•
•
•
•
•
•

A DPA instance must be provided (DPA consumer/producer only)
A DPA consumer completion context must be connected (DPA consumer only)
A DPA completion context must be attached (DPA producer only)
A post receive task callback (CPU consumer only)
The number of receive operations (DPA consumer only)
A send task callback (CPU producer only)
The number of send operations (DPA producer only)

Optional Configurations

The following configurations are optional, if they are not set then a default value will be used:

For basic send/receive client:

doca_comch_(server|client)_set_max_msg_size – set the maximum size of message that
can be sent. If set, it must be matching between server and client.
doca_comch_(server|client)_set_recv_queue_size – set the size of the queue to receive
new messages on

For fast path consumers:

doca_comch_consumer_set_imm_data_len – set the length of immediate data that a
consumer can receive.

14.4.5.1.6.2 Device Support

DOCA Comch requires a device to operate. For instructions on picking a device, see DOCA Core
Device Discovery.

As device capabilities are subject to change (see DOCA Core Device Support), it is recommended to
select a device using the following methods:

For basic client and server:
doca_comch_cap_server_is_supported

doca_comch_cap_client_is_supported
For extended fast path functionality:

doca_comch_producer_cap_is_supported

doca_comch_consumer_cap_is_supported

Some devices can allow different capabilities as follows:

The maximum length server name
The maximum message size
The maximum receive queue length
The maximum clients that can connect to a server
The maximum number of send tasks or post receive tasks
The maximum buffer length for fast path
The maximum immediate data supported by a fast path consumer

440

•
•

14.4.5.1.6.3 Buffer Support

Basic send and receive between a client and server does not use DOCA buffers and so has no
restrictions on buffer type.

For producers, supplied buffers need only be from a local mmap
For consumers, post receive buffers are required to be from a PCIe export mmap

14.4.5.1.7 Execution Phase

This section describes execution on CPU using DOCA Core Progress Engine. For additional execution
environments, refer to section "Alternative Datapath Options".

14.4.5.1.7.1 Tasks

DOCA Comch exposes asynchronous tasks that leverage the BlueField hardware according to DOCA
Core architecture.

Control Channel Send Task

This task allows the sending of messages between connected client and server objects.

Task Configuration

Description API to Set the Configuration API to Query Support

Number of tasks doca_comch_server_task_send_set

_conf

doca_comch_client_task_send_set

_conf

doca_comch_cap_get_max_send_ta

sks

Maximal message size doca_comch_server_set_max_msg_s

ize

doca_comch_client_set_max_msg_s

ize

doca_comch_server_get_max_msg_

size

doca_comch_client_get_max_msg_

size

Task Input

Common input as described in DOCA Core Task.

Name Description Notes

Peer Established client/server connection –

Message Data string to send to remote client/
server

The is no requirement for the message to be
in DOCA mmap registered memory

Length Number of bytes in the message Must not exceed configured max size

Task Output

Chained buffers are not supported in DOCA Comch.

441

•
•

•
•

•
•
•

Common output as described in DOCA Core Task.

Task Completion Success

After the task completes successfully:

The message is delivered to the connections remote client/server
A receive event is triggered on the remote side

Task Completion Failure

If the task fails midway:

The context may enter stopping state if a fatal error occurs
The message is not delivered to the remote side

Task Limitations

The operation is not atomic
Once the task has been submitted, then the message should not be updated
Other limitations are described in DOCA Core Task

Consumer Post Receive Task

This task allows consumer objects to publish buffers which are available for remote producers to
write to.

Task Configuration

Description API to Set the Configuration API to Query Support

Enable the task doca_comch_consumer_task_post_r

ecv_set_conf

doca_comch_consumer_cap_is_sup

ported

Number of tasks doca_comch_consumer_task_post_r

ecv_set_conf

doca_comch_consumer_cap_get_ma

x_num_tasks

Maximal buffer size – doca_comch_consumer_cap_get_ma

x_buf_size

Task Input

Common input as described in DOCA Core Task.

Name Description Notes

Buffer Buffer that the consumer can receive data
on

Data is appended to the tail of the buffer

A Post Receive task may have a NULL buffer if it only wishes to receive immediate data.

Buffers doca_mmap must have

DOCA_ACCESS_FLAG_PCI_READ_WR

ITE flag set.

442

•
•

•
•
•
•
•
•

Task Output

Common output as described in DOCA Core Task.

Task Completion Success

The task only completes once a producer has written to the advertised buffer (or immediate data,
or both), not when the post receive has completed.

Upon successful completion, the buffer contains the data written by the producer and its length is
updated appropriately.

Task Completion Failure

Task failure occurs if a buffer has not been successfully posted to receive data.

If the task fails midway:

The context may enter stopping state if a fatal error occurs
Producers are not aware of the buffer so would not write to it

Task Limitations

The operation is not atomic
Once the task has been submitted, the buffer should not be read/written to
Buffer must come from memory with PCIe read/write access
Chained buffer lists are not supported
MsgQ consumer does not support providing doca_buf , and can only receive immediate data
Other limitations are described in DOCA Core Task

Producer Send Task

This task allows producer objects to copy buffers for use by remote consumers.

Task Configuration

Description API to Set the Configuration API to Query Support

Enable the task doca_comch_producer_task_send_s

et_conf

doca_comch_producer_cap_is_supp

orted

Number of tasks doca_comch_producer_task_send_s

et_conf

doca_comch_producer_cap_get_max

_num_tasks

Maximal buffer Size – doca_comch_producer_cap_get_max

_buf_size

Task Input

Common input as described in DOCA Core Task.

Name Description Notes

Buffer Buffer that should be copied to a
consumer

Only the data residing in the data
segment is copied

Immediate data Short byte array to add to the post
receive completion entry

This is not a zero copy operation but
does improve latency for small payloads

443

•
•

•
•
•

•
•
•

•
•

Name Description Notes

Immediate data length Length of data immediate data
pointed to

Maximum length is determined/set by
individual consumers

Consumer ID Identifier for the target consumer to
write to

Active consumers and their IDs are
advertised through consumer events

Task Output

Common output as described in DOCA Core Task.

Task Completion Success

After the task is completed successfully:

The data is copied form the buffer to the next free buffer posted by the given consumer
Consumers process buffers from a given consumer in the order they are sent

Task Completion Failure

If the task fails midway:

The context may enter stopping state if a fatal error occurs
The source and destination doca_buf objects are not modified
The destination memory may be modified

Task Limitations

The operation is not atomic
Once the task has been submitted, the buffer should not be read/written to
The buffer length should not be greater than consumer post receive buffers (an invalid value
is returned otherwise)
MsgQ producer does not support providing doca_buf , and can only send immediate data
All limitations described in DOCA Core Task

14.4.5.1.7.2 Events

DOCA Comch exposes asynchronous events to notify about changes that happen out of the blue,
according to the DOCA Core architecture. See DOCA Core Event.

Common events as described in DOCA Core Event.

Control Channel Receive Event

This event triggers whenever a remote client/server has sent a message to the local client/server
object.

Event Configuration

444

•

•
•

Description API to Set the Configuration API to Query Support

Register to the event doca_comch_server_event_msg_recv_

register

doca_comch_client_event_msg_recv_

register

–

Event Trigger Condition

The event is triggered when a remote message is received on any currently active connection
associated with the client or server.

Event Output

Upon event detection, the registered callback is triggered, passing the following parameters:

A pointer to the message data

The length in bytes of the message
The active connection on which the message was received

Connection Status Changed Event (Server Only)

This event provides asynchronous updates on the state of any connections associated with a server.

Event Configuration

Description API to Set the Configuration API to Query Support

Register to the event doca_comch_server_event_connection_

status_changed_register

–

Event Trigger Condition

The event is triggered when a new connection is either established or a current connection
disconnected on a server.

Event Output

Separate callbacks are registered for connection or disconnection events with the appropriate one
triggered based on the specific event.

Both callbacks contain a Boolean indicating if the connection or disconnection was successful.

Consumer Event

This event indicates that a new consumer object has been created or an existing consumer object
has been destroyed.

The data is only valid in the context of the callback.

A client object can only connect to a single server, so its connection state can be tracked
through its doca_ctx state and the generic doca_ctx_set_state_changed_cb function.

445

•

•

•
•

•
•

Event Configuration

Description API to Set the Configuration API to Query Support

Register to the event doca_comch_server_event_consumer_

register

doca_comch_client_event_consumer_

register

–

Event Trigger Condition

The event is triggered whenever a new consumer is created or a current consumer destroyed on the
remote side of an established DOCA Comch connection.

Event Output

The event hits a separate callback for either the creation or destruction of a consumer.

Callback parameters include:

The established DOCA Comch connection on which the consumer is connected (on the remote
side)
The ID of the consumer (a unique value per Comch connection)

14.4.5.1.8 State Machine

The DOCA Comch library follows the Context state machine described in DOCA Core Context State
Machine.

The following section describes how to move to the state and what is allowed in each state.

14.4.5.1.8.1 Idle

In this state it is expected that the application either:

Destroys the context
Starts the context

Allowed operations:

Configuring the context according to Configurations
Starting the context

It is possible to reach this state as follows:

Previous State Transition Action

None Create the context

Running Call stop after making sure all tasks have been freed

Stopping Call progress until all tasks are completed and freed

14.4.5.1.8.2 Starting

In this state it is expected that the application will:

446

•

•

•
•

•
•
•

•

•
•
•

Call progress to allow transition to next state (e.g., when a connection attempt completes)

Allowed operations:

Call progress

It is possible to reach this state as follows:

Previous State Transition Action

Idle Call start after configuration

14.4.5.1.8.3 Running

In this state, it is expected that the application:

Allocates and submit tasks
Calls progress to complete tasks and/or receive events

Allowed operations:

Allocate a previously configured task
Submit an allocated task
Call stop

It is possible to reach this state as follows:

Previous State Transition Action

Idle Call start after configuration

Starting Call progress until context state transitions

14.4.5.1.8.4 Stopping

In this state, it is expected that the application will:

Free any completed tasks

Allowed operations:

Allocate previously configured task
Submit an allocated task
Call stop

It is possible to reach this state as follows:

Previous State Transition Action

Running Call progress and fatal error occurs

Running Call stop without freeing all tasks

447

14.4.5.1.9 Alternative Datapath Options

DOCA Comch can be run on as part of DPA data path, using the MsgQ.

14.4.5.1.9.1 DPA

Using the MsgQ it is possible to create consumer/producer on the DPA. They follow the definition
described in DOCA Core DPA.

Since these objects can be used in DPA, they have DPA APIs that can be used to perform the data
path operations expanded on in the following subsections.

Consumer Ack

The doca_dpa_dev_comch_consumer_ack API prepares the DPA consumer to receive a number of
immediate messages from CPU producers.

Configuration

Description API to Set the Configuration API to Query Support

Queue Size doca_comch_consumer_set_dev_max_num

_recv

–

Input

Name Description Notes

Number of Messages A number describing how many additional
immediate messages this consumer can
receive

Must not exceed the queue size

Completion

Whenever a message is received from the CPU producer a completion element is generatedand can
be polled using doca_dpa_dev_comch_consumer_get_completion .

Using the generated completion, it is possible to get the following outputs:

Name Description Notes

Immediate Message A pointer to the immediate message
that the CPU producer sent

The message lifetime is the same as the
completion element lifetime. That is,
once the completion is acked using
doca_dpa_dev_comch_consumer_comple

tion_ack , the pointer is no longer valid.
To retain the message past the
completion lifetime, the user must copy
the contents of the message.

Immediate Message Length The length in bytes of the immediate
message that the CPU producer sent

Producer ID The ID of the CPU producer that sent
the message

User can find the IDs of each producer by
using doca_comch_producer_get_id

448

•

•
•

Limitations

The maximal immediate message size is 32 bytes

Producer Post Send Immediate Only

The doca_dpa_dev_comch_producer_post_send_imm_only API sends an immediate message to the
CPU consumer. Once the message arrives at the CPU consumer side, the CPU consumer receive task
completes.

The CPU producer must have posted a receive task prior to this. The user can verify if the consumer
can receive the message using doca_dpa_dev_comch_producer_is_consumer_empty . Note,
however, that this may add overhead.

Configuration

Description API to Set the Configuration API to Query Support

Queue Size doca_comch_producer_set_dev_max_num

_send

–

Input

Name Description Notes

Immediate Message Short byte array to be sent to the
CPU consumer

This is not a zero copy operation but
does improve latency for small payloads

Immediate Message Length Length of the message the immediate
message points to

The maximum length is 32 bytes

Consumer ID Identifier for the target CPU
consumer to write to

User can find the IDs of each consumer
by using
doca_comch_consumer_get_id

Completion Requested Flag indicating whether to generate a
completion once the send is
completed

This refers to the DPA producer
completion which is separate from the
completion the CPU consumer receives

0 – no completion
1 – otherwise

Completion

Once the message arrives to the CPU consumer, a completion element is generated, indicating that
the send is complete (this is separate from the completion the CPU consumer receives) and can be
polled using doca_dpa_dev_get_completion .

Using the generated completion, it is possible to get the following outputs:

Name Description Notes

Producer User Data Producer user data provided during
configuration of the producer

User data previously set using
doca_ctx_set_user_data when
configuring this producer. User data which is
returned belongs to the DPA producer this
completion has been generated for, and can
be used to identify the specific producer.

449

•

•
•

Limitations

The maximal immediate message size is 32 bytes

Producer DMA Copy

The doca_dpa_dev_comch_producer_dma_copy API performs a DMA copy operation and, once the
copy operation is done, sends an immediate message to the CPU consumer. Once the message
arrives at the CPU consumer side, the CPU consumer receive task completes.

The CPU producer must have posted a receive task prior to this. The user can verify if the consumer
can receive the message using doca_dpa_dev_comch_producer_is_consumer_empty . Note,
however, that this may add overhead.

Configuration

Description API to Set the Configuration API to Query Support

Queue Size doca_comch_producer_set_dev_num_rec

v

–

Input

Name Description Notes

Destination Mmap Mmap representing the memory to be
used as the destination of the copy
operation

This mmap must have
LOCAL_READ_WRITE access enabled

Destination Address The address to be used as the
destination of the copy operation

The address and copy length must be
within the range of the destination
mmap's memory range

Source Mmap Mmap representing the memory to be
used as the source of the copy
operation

This mmap must have LOCAL_READ
access enabled

Source Address The address to be used as the source
of the copy operation

The address and copy length must be
within the range of the source mmap's
memory range

Length The length of the copy operation Source and destination addresses must
not overlap

Immediate Message Short byte array to be sent to the CPU
consumer once the copy operation is
done

This is not a zero copy operation but
does improve latency for small payloads

Immediate Message Length Length of the message the immediate
message points to

The maximum length is 32 bytes

Consumer ID Identifier for the target CPU consumer
to write to

User can find the IDs of each consumer
using doca_comch_consumer_get_id

Completion Requested Flag indicating whether to generate a
completion once the send is
completed

This refers to the DPA producer
completion which is separate from the
completion the CPU consumer receives

0 – no completion
1 – otherwise

450

•

•
•

1.
•

•

2.

3.

Completion

Once copy is complete and the message arrives to the CPU consumer, a completion element is
generated, indicating that the copy is complete (this is separate from the completion the CPU
consumer receives) and can be polled using doca_dpa_dev_get_completion .

Using the generated completion, it is possible to get the following outputs:

Name Description Notes

Producer User Data Producer user data provided during
configuration of the producer

The user data set using
doca_ctx_set_user_data when configuring
this producer. The user data which is
returned belongs to the DPA producer this
completion has been generated for, and can
be used to identify the specific producer.

Limitations

The maximal immediate message size is 32 bytes

14.4.5.1.10 DOCA Comch Samples

This section describes DOCA Comch samples based on the DOCA Comch library.

The samples illustrate how to use the DOCA Comch API to do the following:

Set up a client/server between host and BlueField Arm cores and use it to send text messages
Configure fast path producers and consumers, and send messages between them

14.4.5.1.10.1 Running the Samples
Refer to the following documents:

NVIDIA DOCA Installation Guide for Linux for details on how to install BlueField-related
software.
NVIDIA DOCA Troubleshooting Guide for any issue you may encounter with the
installation, compilation, or execution of DOCA samples.

To build a given sample:

cd /opt/mellanox/doca/samples/doca_comch/<sample_name>
meson /tmp/build
ninja -C /tmp/build

The binary doca_<sample_name> is created under /tmp/build/ .
All DOCA Comch samples accept the same input arguments:

All the DOCA samples described in this section are governed under the BSD-3 software
license agreement.

451

4.

1.
2.
3.
4.
5.
6.
7.

•

•

•

•

•

•

Sample Argument Description

doca_comch_ctrl_path_server

doca_comch_ctrl_path_client

doca_comch_data_path_high_speed_

server

doca_comch_data_path_high_speed_

client

-p , --pci-addr DOCA Comch device PCIe address

-r , --rep-pci DOCA Comch device representor
PCIe address (required only on
BlueField Arm)

-t , --text Text to be sent to the other side of
channel (overwrites default)

For additional information per sample, use the -h option:

/tmp/build/<sample_name> -h

14.4.5.1.10.2 Samples

DOCA Comch Control Path Client/Server

This sample sets up a client server connection between the host and BlueField Arm cores.

The connection is used to pass two messages, the first sent by the client when the connection is
established and the second by the server on receipt of the client's message.

The sample logic includes:

Locating DOCA device.
Initializing the core DOCA structures.
Initializing and configuring client/server contexts.
Registering tasks and events for sending/receiving messages and tracking connection changes.
Allocating and submitting tasks for sending control path messages.
Handling event completions for receiving messages.
Stopping and destroying client/server objects.

References:

/opt/mellanox/doca/samples/doca_comch/comch_ctrl_path_client/

comch_ctrl_path_client_main.c

/opt/mellanox/doca/samples/doca_comch/comch_ctrl_path_client/

comch_ctrl_path_client_sample.c

/opt/mellanox/doca/samples/doca_comch/comch_ctrl_path_server/

comch_ctrl_path_server_main.c

/opt/mellanox/doca/samples/doca_comch/comch_ctrl_path_server/

comch_ctrl_path_server_sample.c

/opt/mellanox/doca/samples/doca_comch/comch_ctrl_path_common.c

/opt/mellanox/doca/samples/doca_comch/comch_ctrl_path_common.h

doca_comch_ctrl_path_server must be run on the BlueField Arm side and started before

doca_comch_ctrl_path_client is started on the host.

452

1.
2.
3.
4.
5.
6.
7.
8.

•

•

•

•

•

•

DOCA Comch Data Path Client/Server

This sample sets up a client server connection between host and BlueField Arm.

The connection is used to create a producer and consumer on both sides and pass a message across
the two fastpath connections.

The sample logic includes:

Locating DOCA device.
Initializing the core DOCA structures.
Initializing and configuring client/server contexts.
Initializing and configuring producer/consumer contexts on top of an established connection.
Submitting post receive tasks for population by producers.
Submitting send tasks from producers to write to consumers.
Stopping and destroying producer/consumer objects.
Stopping and destroying client/server objects.

References:

/opt/mellanox/doca/samples/doca_comch/comch_data_path_high_speed_client/

comch_data_path_high_speed_client_main.c

/opt/mellanox/doca/samples/doca_comch/comch_data_path_high_speedclient/

comch_data_path_high_speed_client_sample.c

/opt/mellanox/doca/samples/doca_comch/comch_data_path_high_speedserver/

comch_data_path_high_speed_server_main.c

/opt/mellanox/doca/samples/doca_comch/comch_data_path_high_speedserver/

comch_data_path_high_speed_server_sample.c

/opt/mellanox/doca/samples/doca_comch/comch_data_path_high_speed_common.c

/opt/mellanox/doca/samples/doca_comch/comch_data_path_high_speed_common.h

14.4.5.2 DOCA Comm Channel – Deprecated
This guide provides instructions on how to use the DOCA Comm Channel API.

14.4.5.2.1 Introduction

The DOCA Comm Channel (CC) provides a secure, network-independent communication channel
between the host and the DPU.

The communication channel allows the host to control services on the DPU or to activate certain
offloads.

The DOCA Comm Channel is reliable, message-based, and connecting multiple clients to a single
service. The API allows communication between a client using any PF/VF/SF on the host to a service
on the DPU.

doca_comch_data_path_high_speed_server should be run on the BlueField Arm cores

and should be started before doca_comch_data_path_high_speed_client is started on
the host.

453

•

•

•

14.4.5.2.2 Prerequisites

The CC service can only run on the DPU while the client can only run on a host connected to the
DPU.

Refer to NVIDIA DOCA Release Notes for the supported versions of firmware, OS, and MLNX_OFED.

14.4.5.2.3 API

14.4.5.2.3.1 Objects

struct doca_comm_channel_ep_t

Represents a Comm Channel endpoint either on the client or service side. The endpoint is needed
for every other Comm Channel API function.

struct doca_comm_channel_addr_t

Also referred to as peer_address , represents a connection and can be used to identify the source

of a received message. It is required to send a message using doca_comm_channel_ep_sendto() .

14.4.5.2.3.2 Query Device Capabilities

Querying the device capabilities allows users to know the derived Comm Channel limitation (see
section Limitations for more information), and to set the properties of an endpoint accordingly.

The capabilities under this section, apart from maximal service name length, may vary between
different devices. To select the device you wish to establish a connection upon, you may query each
of the devices for its capabilities.

doca_comm_channel_get_max_service_name_len()

As each connection requires a name, users must know the maximal length of the name and may use
this function to query it. This length includes the null-terminating character, and any name longer
than this length is not accepted when trying to establish a connection with Comm Channel.

doca_error_t doca_comm_channel_get_max_service_name_len(uint32_t *max_service_name_len);

max_service_name_len [out] – pointer to a parameter that will hold the max service name
length on success.
Returns – doca_error_t value. DOCA_SUCCESS if successful, or an error value upon failure.
Possible error values are documented in the header file.

doca_comm_channel_get_max_message_size()

Each connection has an upper limit for the messages size. This function returns the maximal value
that can be set for this property, for a given device. This limitation is important when trying to set
the max message size for an endpoint with doca_comm_channel_ep_set_max_msg_size().

doca_error_t doca_comm_channel_get_max_message_size(struct doca_devinfo *devinfo, uint32_t *max_message_size);

devinfo [in] – pointer to a doca_devinfo which should be queried for this capability.

454

•

•

•

•

•

•

•

•

•

•

max_message_size [out] – pointer to a parameter that on success holds the maximal value

that can be set for max message size when communicating on the provided devinfo .

Returns – doca_error_t value. DOCA_SUCCESS if successful, or an error value upon failure.
Possible error values are documented in the header file.

doca_comm_channel_get_max_send_queue_size()

Returns the maximum send queue size that can be set for a given device. This value describes the
maximum possible amount of outgoing in-flight messages for a connection. This limitation is
important when trying to set the max message size for an endpoint with
doca_comm_channel_ep_set_send_queue_size().

doca_error_t doca_comm_channel_get_max_send_queue_size(struct doca_devinfo *devinfo, uint32_t
*max_send_queue_size);

devinfo [in] – pointer to a doca_devinfo which should be queried for this capability.

max_send_queue_size [out] – pointer to a parameter that on success, holds the maximal

value that can be set for the send queue size when communicating upon the given devinfo .

Returns – doca_error_t value. DOCA_SUCCESS if successful, or an error value upon failure.
Possible error values are documented in the header file.

doca_comm_channel_get_max_recv_queue_size()

Returns the maximum receive queue size that can be set for a given device. This value describes the
maximum possible amount of incoming in-flight messages for a connection. This limitation is
important when trying to set the max message size for an endpoint with
doca_comm_channel_ep_set_recv_queue_size().

doca_error_t doca_comm_channel_get_max_recv_queue_size(struct doca_devinfo *devinfo, uint32_t
*max_recv_queue_size);

devinfo [in] – pointer to a doca_devinfo which should be queried for this capability.

max_ recv_queue_size [out] – pointer to a parameter that on success holds the maximal
value that can be set for the receive queue size when communicating upon the given
devinfo .

Returns – doca_error_t value. DOCA_SUCCESS if successful, or an error value upon failure.
Possible error values are documented in the header file.

doca_comm_channel_get_service_max_num_connections()

Returns the maximum amount of connections a service on the DPU can maintain for a given device.
If the maximum amount returned is zero, the number of connections is unlimited.

doca_error_t doca_comm_channel_get_service_max_num_connections(struct doca_devinfo *devinfo, uint32_t
*max_num_connections);

devinfo [in] – pointer to a doca_devinfo which should be queried for this capability.

max_num_connections [out] – pointer to a parameter that on success will hold the
maximal number of connections the DPU can maintain when communicating upon the given
devinfo .

455

•

•

•

•

•

•

•

•

•

Returns – doca_error_t value. DOCA_SUCCESS if successful, or an error value upon failure.
Possible error values are documented in the header file.

14.4.5.2.3.3 Creating and Configuring an Endpoint

doca_comm_channel_ep_create()

This function is used to create and initialize the endpoint used for all Comm Channel functions.

doca_error_t doca_comm_channel_ep_create(struct doca_comm_channel_ep_t **ep);

ep [out] – pointer to the created endpoint object.

Returns – doca_error_t value. DOCA_SUCCESS if successful, or an error value upon failure.
Possible error values are documented in the header file.

doca_comm_channel_ep_set_*() and doca_comm_channel_ep_get_*()

Use doca_comm_channel_ep_set_*() functions to set the properties of the endpoint, and

corresponding doca_comm_channel_ep_get_*() functions to retrieve the current properties of the
endpoint.

Mandatory Properties

To use the endpoint, the following properties must be set before calling
doca_comm_channel_ep_listen() and doca_comm_channel_ep_connect() .

doca_comm_channel_ep_set_device()

This function sets the local device through which the communication should be established.

doca_error_t doca_comm_channel_ep_set_device(struct doca_comm_channel_ep_t *local_ep, struct doca_dev *device);

local_ep [in] – pointer to the endpoint for which the property should be set.

device [in] – the doca_dev object which should be used for communication.

Returns – doca_error_t value. DOCA_SUCCESS if successful, or an error value upon failure.
Possible error values are documented in the header file.

doca_comm_channel_ep_set_device_rep()

This function sets the device representor through which the communication should be established
on the service side.

doca_error_t doca_comm_channel_ep_set_device_rep(struct doca_comm_channel_ep_t *local_ep, struct doca_dev_rep
*device_rep);

local_ep [in] – a pointer to the endpoint for which the property should be set.

device_rep [in] – the doca_dev_rep object which should be used for communication.

Returns – doca_error_t value. DOCA_SUCCESS if successful, or an error value upon failure.
Possible error values are documented in the header file.

Optional Properties

456

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

The following properties have a default value and may be set as long as the EP is not yet active.

doca_comm_channel_ep_set_max_msg_size()

This function sets an upper limit to the size of the messages the application wishes to handle in this
EP while communicating with a given endpoint. The actual max_msg_size may be increased by this
function. If this property was not set by the user, a default value is used and may be queried using
doca_comm_channel_ep_get_max_msg_size() function.

doca_error_t doca_comm_channel_ep_set_max_msg_size(struct doca_comm_channel_ep_t *local_ep, uint16_t max_msg_size);

local_ep [in] – a pointer to the endpoint for which the property should be set.

max_msg_size [in] – the preferred maximal message size.

Returns – doca_error_t value:

DOCA_SUCCESS if successful.

DOCA_ERROR_INVALID_VALUE if a null pointer to the endpoint has been given or if

max_msg_size is equal to 0 or above the maximal value possible for this property.

doca_comm_channel_ep_set_send_queue_size()

This function sets the send queue size used when communicating with a given endpoint. The actual
send_queue_size may be increased by this function. If this property has not been set by the user,
a default value is used which may be queried using the
doca_comm_channel_ep_get_send_queue_size() function.

doca_error_t doca_comm_channel_ep_set_send_queue_size(struct doca_comm_channel_ep_t *local_ep, uint16_t
send_queue_size);

local_ep [in] – pointer to the endpoint for which the property should be set.

send_queue_size [in] – the preferred send queue size.

Returns – doca_error_t value:

DOCA_SUCCESS if successful.

DOCA_ERROR_INVALID_VALUE if a null pointer to the endpoint has been given or if

send_queue_size is equal to 0 or above the maximal value possible for this property.
The rest of the error values that may be returned are documented in the header file.

doca_comm_channel_ep_set_recv_queue_size()

This function sets the receive queue size used when communicating with a given endpoint. The
actual recv_queue_size may be increased by this function. If this property has not been set by
the user, a default value is used which may be queried using
doca_comm_channel_ep_get_recv_queue_size() function.

doca_error_t doca_comm_channel_ep_set_recv_queue_size(struct doca_comm_channel_ep_t *local_ep, uint16_t
rcv_queue_size);

local_ep [in] – pointer to the endpoint for which the property should be set.

rcv_queue_size [in] – the preferred receive queue size.

Returns – doca_error_t value:

DOCA_SUCCESS if successful.

457

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•
•

DOCA_ERROR_INVALID_VALUE if a null pointer to the endpoint has been given or if

rcv_queue_size is equal to 0 or above the maximal value possible for this property.
The rest of the error values that may be returned are documented in the header file.

14.4.5.2.3.4 Establishing Connections over Endpoints

The Comm Channel connection is established between endpoints, one on the host and the other on
the DPU.

For a client, each connection requires its own EP. On the DPU side, all of the clients with the same
service name on a specific representor are connected to a single EP, through which the connections
are managed.

The following functions are relevant for the endpoint.

doca_comm_channel_ep_listen()

Used to listen on service endpoint, this function can only be called on the DPU. The service listens
on the DOCA device representor provided using doca_comm_channel_ep_set_device_rep() .
Calling listen allows clients to connect to the service.

doca_error_t doca_comm_channel_ep_listen(struct doca_comm_channel_ep_t *local_ep, const char *name);

local_ep [in] – pointer to an endpoint to listen on.

name [in] – the name for the service to listen on. Clients must provide the same name to
connect to the service.
Returns – doca_error_t value:

DOCA_SUCCESS if successful.

DOCA_ERROR_BAD_STATE if mandatory properties (doca_dev and doca_dev_rep)
have not been set.
DOCA_ERROR_NOT_PERMITTED if called on the host and not on the DPU.
The rest of the error values that may be returned are documented in the header file.

doca_comm_channel_ep_connect()

Used to create a connection between a client and a service. This function can only be called on the
host.

doca_error_t doca_comm_channel_ep_connect(struct doca_comm_channel_ep_t *local_ep,
 const char *name, struct doca_comm_channel_addr_t **peer_addr);

local_ep [in] – a pointer to an endpoint to connect from.

name [in] – the name of the service that the client connects to. Must be the same name
the service listens on.
peer_addr [out] – Contains the pointer to the new connection.

Returns – doca_error_t value:

DOCA_SUCCESS if successful.

DOCA_ERROR_BAD_STATE if a mandatory property (doca_dev) has not been set.

DOCA_ERROR_NOT_PERMITTED if called on the DPU and not on the host.
The rest of the error values that may be returned are documented in the header file.

458

•
•

•

•

•

•

•

•

•

•

•

•
•

14.4.5.2.3.5 Message Event Channel

Getting notifications for messages sent and received through an EP is managed by the event
channel, using the functions listed here.

doca_comm_channel_ep_get_event_channel()

After a connection is established through the EP, this function extracts send/receive handles which
can be used to get an interrupt when a new event happens using epoll() or a similar function.

A send event happens when at least one in-flight message processing ends.
A receive event happens when a new incoming message is received.

Users may decide to extract only one of the handles and send a NULL parameter for the other.

The event channels are owned by the endpoint and they are released when
doca_comm_channel_ep_destroy() is called.

doca_error_t doca_comm_channel_ep_get_event_channel(struct doca_comm_channel_ep_t *local_ep,
 doca_event_channel_t *send_event_channel, doca_event_channel_t
*recv_event_channel);

local_ep [in] – pointer to the endpoint for which a handle should be returned.

send_event_channel [out] – pointer that holds a handle for sent messages if successful.

recv_event_channel [out] – pointer that holds a handle for received messages if
successful.
Returns – doca_error_t value:

DOCA_SUCCESS if successful.

DOCA_ERROR_BAD_STATE if no connection has been established (i.e.,

doca_comm_channel_ep_listen() or doca_comm_channel_ep_connect() has not
been called beforehand).
The rest of the error values that may be returned are documented in the header file.

doca_comm_channel_ep_event_handle_arm_send()

After an interrupt caused by an event on the handle for sent messages, the handle should be re-
armed to enable interrupts on it:

doca_error_t doca_comm_channel_ep_event_handle_arm_send(struct doca_comm_channel_ep_t *local_ep);

local_ep [in] – pointer to the endpoint from which the handle has been extracted.

Returns – doca_error_t value:

DOCA_SUCCESS if successful.
The rest of the error values that may be returned are documented in the header file.

doca_comm_channel_ep_event_handle_arm_recv()

After an interrupt caused by an event on the handle for received messages, the handle should be re-
armed to enable interrupts on it:

doca_error_t doca_comm_channel_ep_event_handle_arm_recv(struct doca_comm_channel_ep_t *local_ep);

459

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

local_ep [in] – pointer to the endpoint from which the handle has been extracted.

Returns – doca_error_t value:

DOCA_SUCCESS if successful.
The rest of the error values that may be returned are documented in the header file.

14.4.5.2.3.6 doca_comm_channel_ep_sendto()

Used to send a message from one side to the other. The function runs in non-blocking mode. Refer
to section "Usage" for more details.

 doca_error_t doca_comm_channel_ep_sendto(struct doca_comm_channel_ep_t *local_ep, const void *msg
 size_t len, int flags, struct doca_comm_channel_addr_t *peer_addr);

local_ep [in] – pointer to an endpoint to send the message from.

msg [in] – pointer to the buffer that contains the data to be sent.

len [in] – length of data to be sent.

flags [in] – currently, only DOCA_CC_MSG_FLAG_NONE is a valid flag.

peer_addr [in] – Peer address to send the message to (see also struct

doca_comm_channel_addr_t) that has been returned by doca_comm_channel_ep_connect()

or doca_comm_channel_rp_recvfrom() .

Returns – doca_error_t value:

DOCA_SUCCESS if successful.

DOCA_ERROR_AGAIN if the send queue is full and this function should be called again.

DOCA_ERROR_CONNECTION_RESET if the provided peer_addr experienced an error
and must be disconnected.
The rest of the error values that may be returned are documented in the header file.

14.4.5.2.3.7 doca_comm_channel_ep_recvfrom()

Used to receive a packet of data on either the service or the host. The function runs in non-blocking
mode. Refer to Usage for more details.

doca_error_t doca_comm_channel_ep_recvfrom(struct doca_comm_channel_ep_t *local_ep, void *msg,
 size_t *len, int flags, struct doca_comm_channel_addr_t **peer_addr);

local_ep [in] – pointer to an endpoint to receive the message on.

msg [out] – pointer to a buffer that message should be written to.

len [in\out] – the input is the length of the given message buffer (msg). The output is
the actual length of the received message.
flags [in] – DOCA_CC_MSG_FLAG_NONE .

peer_addr [out] – handle to peer_addr that represents the connection the message
arrived from
Returns – doca_error_t value:

DOCA_SUCCESS if successful.

DOCA_ERROR_AGAIN if no message is received.

DOCA_ERROR_CONNECTION_RESET if the message received is from a peer_addr that
has an error.

460

•

•

•

•

•

•

•

•

•

•

•

•
•
•
•
•

The rest of the error values that may be returned are documented in the header file.

14.4.5.2.3.8 Information Regarding Each Connection

Each connection established over the EP is represented by a doca_comm_channel_addr_t

structure, which can also be referred to as a peer_addr . This structure is returned by either

doca_comm_channel_ep_connect() when a connection is established or by

doca_comm_channel_ep_recvfrom() to identify the connection from which the message has been
received.

doca_comm_channel_peer_addr_set_user_data() and doca_comm_channel_peer_addr_get_user_data()

Using doca_comm_channel_peer_addr_set_user_data() , users may give each connection a
context, similar to an ID, to identify it later, using
doca_comm_channel_peer_addr_get_user_data() . If a context is not set for a peer_addr , it is
given the default value "0".

doca_error_t doca_comm_channel_ep_recvfrom(struct doca_comm_channel_ep_t *local_ep, void *msg,
 size_t *len, int flags, struct doca_comm_channel_addr_t **peer_addr);

peer_addr [in] – pointer to doca_comm_channel_addr_t structure representing the
connection.
user_context [in] – context that should be set for the connection.

Returns – doca_error_t value:

DOCA_SUCCESS if successful.

DOCA_ERROR_INVALID_VALUE if peer_address is NULL .

doca_error_t doca_comm_channel_peer_addr_get_user_data(struct doca_comm_channel_addr_t *peer_addr, uint64_t
*user_context);

peer_addr [in] – pointer to doca_comm_channel_addr_t structure representing the
connection.
user_context [out] – pointer to a parameter that will hold the context on success.

Returns – doca_error_t value:

DOCA_SUCCESS if successful.

DOCA_ERROR_INVALID_VALUE if the parameters is NULL .

Querying Statistics for Connection

Using the peer_addr , users may gather and query the following statistics:

The number of messages sent.
The number of bytes sent.
The number of messages received.
The number of bytes received.
The number of outgoing messages yet to be sent.

doca_comm_channel_peer_addr_update_info()

461

•

•

•

•

•
•

•

•

•

•
•

•

•

•

•
•

Takes a snapshot with the current statistics of the connection. This function should be called prior
to any statistics querying function. It is also used to check the connection status. See Connection
Flow for more.

doca_error_t doca_comm_channel_peer_addr_update_info(struct doca_comm_channel_addr_t *peer_addr);

peer_addr [in] – pointer to doca_comm_channel_addr_t structure representing the
connection.
Returns – doca_error_t value:

DOCA_SUCCESS if successful.

DOCA_ERROR_CONNECTION_INPROGRESS if the connection has yet to be established.

DOCA_ERROR_CONNECTION_ABORTED if the connection is in an error state.
The rest of the error values that may be returned are documented in the header file.

doca_comm_channel_peer_addr_get_send_messages()

This function returns the total number of messages sent to a given peer_addr as measured

when doca_comm_channel_peer_addr_update_info() has been last called.

doca_error_t doca_comm_channel_peer_addr_get_send_messages(const struct doca_comm_channel_addr_t *peer_addr,
uint64_t *send_messages);

peer_addr [in] – pointer to doca_comm_channel_addr_t structure representing the
connection.
send_messages [out] – pointer to a parameter that holds the number of messages sent

through the peer_addr on success.

Returns – doca_error_t value:

DOCA_SUCCESS if successful.
The rest of the error values that may be returned are documented in the header file.

doca_comm_channel_peer_addr_get_send_bytes()

This function returns the total number of bytes sent to a given peer_addr as measured when

doca_comm_channel_peer_addr_update_info() has been last called.

doca_error_t doca_comm_channel_peer_addr_get_send_bytes(const struct doca_comm_channel_addr_t *peer_addr, uint64_t
*send_bytes);

peer_addr [in] – pointer to doca_comm_channel_addr_t structure representing the
connection.
send_bytes [out] – pointer to a parameter that holds the number of bytes sent through

the peer_addr on success.

Returns – doca_error_t value:

DOCA_SUCCESS if successful.
The rest of the error values that may be returned are documented in the header file.

doca_comm_channel_peer_addr_get_recv_messages()

462

•

•

•

•
•

•

•

•

•
•

•

•

•

•
•

This function return the total number of messages received from a given peer_addr as measured

when doca_comm_channel_peer_addr_update_info() has been last called.

doca_error_t doca_comm_channel_peer_addr_get_recv_messages(const struct doca_comm_channel_addr_t *peer_addr,
uint64_t *recv_messages);

peer_addr [in] – pointer to doca_comm_channel_addr_t structure representing the
connection.
recv_messages [out] – pointer to a parameter that holds the number of messages received

from the peer_addr on success.

Returns – doca_error_t value:

DOCA_SUCCESS if successful.
The rest of the error values that may be returned are documented in the header file.

doca_comm_channel_peer_addr_get_recv_bytes()

This function will return the total number of bytes received from a given peer_addr as measured

when doca_comm_channel_peer_addr_update_info() has been last called.

doca_error_t doca_comm_channel_peer_addr_get_recv_bytes(const struct doca_comm_channel_addr_t *peer_addr, uint64_t
*recv_bytes);

peer_addr [in] – pointer to doca_comm_channel_addr_t structure representing the
connection.
recv_bytes [out] – pointer to a parameter that holds the number of bytes sent through

the peer_addr on success.

Returns – doca_error_t value:

DOCA_SUCCESS if successful.
The rest of the error values that may be returned are documented in the header file.

doca_comm_channel_peer_addr_get_send_in_flight_messages()

This function returns the number of messages still in transmission to a specific peer_addr as

measured when doca_comm_channel_peer_addr_update_info() has been last called. This
function can be used to check if all messages are sent before disconnecting.

doca_error_t doca_comm_channel_peer_addr_get_send_in_flight_messages(const struct doca_comm_channel_addr_t
*peer_addr,
 uint64_t *send_in_flight_messages);

peer_addr [in] – pointer to doca_comm_channel_addr_t structure representing the
connection.
send_in_flight_messages [out] – pointer to a parameter that holds the number of in-

flight messages to the peer_addr on success.

Returns – doca_error_t value:

DOCA_SUCCESS if successful.
The rest of the error values that may be returned are documented in the header file.

463

•

•

•

•
•

•

•

•

•

•

14.4.5.2.3.9 Service State and Events

The service state and events API provides information about the state of the service including
current connected clients, pending connections, and service state. All the functions in this section
are relevant and can be run on the service side only.

doca_comm_channel_ep_get_service_event_channel()

After a service is created and starts listening, this function extracts a handle which can be used to
get an interrupt when a new service event happens using epoll() or a similar function.

The currently supported events are service failure, new client connection, and client disconnection.
After an event is triggered, the application can call
doca_comm_channel_ep_update_service_state_info() and the following getter functions to query
the service state and connections.

The service event channel is armed automatically when calling
doca_comm_channel_ep_update_service_state_info().

doca_error_t doca_comm_channel_ep_get_service_event_channel(struct doca_comm_channel_ep_t *local_ep,
doca_event_channel_t *service_event_channel);

local_ep [in] – pointer to the service endpoint that should be queried.

service_event_channel [out] – event handle for service events.

Returns – doca_error_t value:

DOCA_SUCCESS if successful.
The rest of the error values that may be returned are documented in the header file.

doca_comm_channel_ep_update_service_state_info()

Takes a snapshot of the current state of the service. The return value may indicate the service
state. If the service is in error state, then it is non-recoverable and the endpoint must be destroyed.

doca_error_t doca_comm_channel_ep_update_service_state_info(struct doca_comm_channel_ep_t *local_ep);

local_ep [in] – pointer to the service endpoint that should be queried.

Returns – doca_error_t value:

DOCA_SUCCESS if successful.

DOCA_ERROR_CONNECTION_RESET if the service is in error state and cannot be
recovered.
The rest of the error values that may be returned are documented in the header file.

doca_comm_channel_ep_get_peer_addr_list()

This function should be called prior to calling service status get functions.

Calling this function invalidates any array received using
doca_comm_channel_ep_get_peer_addr_list() .

464

•

•

•

•

•
•

•

•

•

•
•

•

This function returns the list of connected peer_addr s as present when

doca_comm_channel_ep_update_service_state_info() was last called.

The output array is only valid until doca_comm_channel_ep_update_service_state_info() is
called again.

doca_error_t doca_comm_channel_ep_get_peer_addr_list(const struct doca_comm_channel_ep_t *local_ep,
 struct doca_comm_channel_addr_t ***peer_addr_array,
 uint32_t *peer_addr_array_len);

local_ep [in] – pointer to the service endpoint that should be queried.

peer_addr_array [out] – pointer to array of peer addresses.

peer_addr_array_len [out] – the number of entries in peer_addr_array .

Returns – doca_error_t value:

DOCA_SUCCESS if successful.
The rest of the error values that may be returned are documented in the header file.

doca_comm_channel_ep_get_pending_connections()

This function returns the list of pending connections as present when
doca_comm_channel_ep_update_service_state_info() was last called. Pending connections are
connections that were initiated by the client side but not complete from the service side.

doca_error_t doca_comm_channel_ep_get_pending_connections(const struct doca_comm_channel_ep_t *local_ep,
 uint32_t *pending_connections);

local_ep [in] – pointer to the service endpoint that should be queried.

pending_connections [out] – the number of pending connections.

Returns – doca_error_t value:

DOCA_SUCCESS if successful.
The rest of the error values that may be returned are documented in the header file.

14.4.5.2.3.10 doca_comm_channel_ep_disconnect()

Disconnects an endpoint from a specific peer_address . The disconnection is one-sided and the
other side is unaware of it. New connections can be created afterwards. Refer to "Usage" for more
details.

doca_error_t doca_comm_channel_ep_disconnect(struct doca_comm_channel_ep_t *local_ep, struct
doca_comm_channel_addr_t *peer_addr);

local_ep [in] – pointer to the endpoint that should be disconnected.

This list includes only active peer_addr s which have not been disconnected from the
client side or the service side.

If a pending connection exists, the application is expected to call
doca_comm_channel_ep_recvfrom() to complete the connection. See section "Connection
Flow" for more.

465

•

•

•

•

•

•

•
•

peer_addr [in] – the connection from which the endpoint should be disconnected.

Returns – doca_error_t value:

DOCA_SUCCESS if successful.

DOCA_ERROR_NOT_CONNECTED if there is no connection between the endpoint and the
peer address.

14.4.5.2.3.11 doca_comm_channel_ep_destroy()

Disconnects all connections of the endpoint, destroys the endpoint object, and frees all related
resources.

doca_error_t doca_comm_channel_ep_destroy(struct doca_comm_channel_ep_t *ep);

local_ep [in] – pointer to the endpoint that should be destroyed.

Returns – doca_error_t value:

DOCA_SUCCESS if successful.
The rest of the error values that may be returned are documented in the header file.

14.4.5.2.4 Limitations

14.4.5.2.4.1 Endpoint Properties

The maximal values of all endpoint properties can be queried using the proper get functions (see
section "Query Device Capabilities"). The max_message_size , send_queue_size , and

recv_queue_size attributes may be increased internally. The updated property value can be
queried with the proper get functions.

See the following table and section "doca_comm_channel_ep_set_*() and
doca_comm_channel_ep_get_*()" for more details.

Property Get Function

Max message size doca_comm_channel_get_max_message_size()

Send queue size doca_comm_channel_get_max_send_queue_size()

Receive queue size doca_comm_channel_get_max_recv_queue_size()

Service name length doca_comm_channel_get_max_service_name_len()

14.4.5.2.4.2 Multi-client

A single service on the DPU can serve multiple clients but a client can only connect to a single
service.

The maximal number of clients connected to a single service can be queried using
doca_comm_channel_get_service_max_num_connections() .

466

•

•

14.4.5.2.4.3 Multiple Services

Multiple endpoints can be created on the same DPU but different services listening on the same
representor must have different names. Services listening on different representors can have the
same name.

14.4.5.2.4.4 Threads

The DOCA Comm Channel is not thread-safe. Using a single endpoint over multiple threads is
possible only with the use of locks to prevent parallel usage of the same resources. Different
endpoints can be used over different threads with no restriction as each endpoint has its own
resources.

14.4.5.2.5 Usage

14.4.5.2.5.1 Objects

While working with DOCA Comm Channel, the user must maintain two types of objects:

 struct doca_comm_channel_ep_t (referred to as "endpoint")

struct doca_comm_channel_addr_t (referred to as "peer_address")

Endpoint

The endpoint object represents the endpoint of the Comm Channel, either on the client or service
side. The endpoint is created by calling the doca_comm_channel_ep_create() function. It is
required for every other Comm Channel function.

Peer_address

The peer_address structure represents a connection. It is created when a new connection is made

(i.e., client calls doca_comm_channel_ep_connect() or a service receives a connection through

doca_comm_channel_ep_recvfrom()). Refer to section "Connection Flow" for more details on
connections.

The peer_address structure can be used to identify the source of a received message and is

necessary to send a message using doca_comm_channel_ep_sendto() . peer_address has an

identifier, user_data , which can be set by the user using

doca_comm_channel_peer_addr_user_data_set() and retrieved using

doca_comm_channel_peer_addr_user_data_get() . The default value for user_data is 0. The

user_data field can be used to identify the peer_address object.

14.4.5.2.5.2 Endpoint Initialization

To start using the DOCA Comm Channel, the user must create an endpoint object using the
doca_comm_channel_ep_create() function. After creating the endpoint object, the user must set

the mandatory endpoint properties: doca_dev for client and service, doca_dev_rep for service
only. The user may also set the optional endpoint properties.

467

1.

2.

1.

2.

For further information about endpoint initialization, refer to section "Establishing Connection over
Endpoint".

14.4.5.2.5.3 Connection Flow

The following diagram illustrates the process of establishing a connection between the host and a
service.

After initializing the endpoint on the service side, one should call
doca_comm_channel_ep_listen() with a legal service name (see "Limitations") to start
listening.
After the service starts listening and the client endpoint is created, the client calls
doca_comm_channel_ep_connect() with the same service name used for listening.

As part of the connect function, the client starts a handshake protocol with the server, which then
waits until the service completes the handshake. If connect is called before the service is listening
or the handshake process fails, then the connect function fails.

From the connect function, the client receives a peer_addr object representing the new
connection to the service:

To check whether the connection is complete or not, the client must call
doca_comm_channel_peer_addr_update_info() with the new peer_addr . Depending on
the function return code, the client would know whether the connection is complete
(DOCA_SUCCESS), rejected (DOCA_ERROR_CONNECTION_ABORTED) or still in progress

(DOCA_ERROR_CONNECTION_INPROGRESS).

The service receiving new connections is done using doca_comm_channel_ep_recvfrom() .
No indication is given that a new connection is made. The server keeps waiting to receive
packets. If the handshake fails or is done for an existing client, then the receive function
fails.

For more information, see section "doca_comm_channel_ep_listen()".

14.4.5.2.5.4 Data Transfer Flow

After a connection is established between client and service, both sides can send and receive data
using the doca_comm_channel_ep_sendto() and doca_comm_channel_ep_recvfrom() functions,
respectively.

468

•

•

If multiple clients are connected to the same service, then the
doca_comm_channel_ep_recvfrom() function reads the messages in the order of their arrival,
regardless of their source.

To send a message, the endpoint must obtain the target's peer_address object. This restriction
necessitates the client to start the communication (not including the handshake), by sending the
first message, for the server to obtain the client's peer_address object and send data back.

The doca_comm_channel_ep_sendto() function adds the message to an internal send queue where

it is processed asynchronously. This means that even if the doca_comm_channel_ep_sendto()

function returns with DOCA_SUCCESS , the message itself may fail to send (e.g., if the other side has

been disconnected). If a message fails to send, the relevant peer_address moves to error_state .
See section "Connection Errors" for more.

For more information, see section "doca_comm_channel_ep_sendto()".

14.4.5.2.5.5 Event Channel and Event Handling

When trying to send or receive messages, the application may face a situation where the resources
are not ready—send queue full or no new messages received. In this case, the Comm Channel
returns DOCA_ERROR_AGAIN for the call. This return value indicates that the function must be
called again later in order to complete. To know when to call the send/receive function again, the
application can use two approaches:

Active polling – that is, to use a loop to call the send/receive functions immediately or after
a certain time until the DOCA_SUCCESS return code is received.
Using CC event channel to know when to call the send/receive function again.
The CC event channel is a mechanism that enables getting an event when a new CC event
happens. It is divided to send and receive event channels which can be retrieved using
doca_comm_channel_ep_get_event_channel() . After retrieving the event channels, the

application can use poll in Linux or GetQueuedCompletionStatus in Windows to sleep and
wait for events.
When first using the event channels and after each event is received using the event channel,
it must be armed using doca_comm_channel_ep_event_handle_arm_send() or

doca_comm_channel_ep_event_handle_arm_recv() to receive more events.
For more information, see section "Event Channel".

14.4.5.2.5.6 Connection Errors

In certain cases, for example if a remote peer disconnects and the local endpoint tries sending a
message, a peer_addr can move to error state. In such cases, no new messages can be sent to or

received from the certain peer_addr .

The Comm Channel indicates a peer_addr is in an error state by returning

DOCA_ERROR_CONNECTION_RESET on doca_comm_channel_ep_sendto() if trying to send a message

to an errored peer_addr or on doca_comm_channel_ep_recvfrom() when receiving a message

from a peer_addr marked as errored, or when calling

doca_comm_channel_peer_addr_update_info() .

469

•

•

When a peer_addr is in an error state, it is the application's responsibility to disconnect the said

peer_addr using doca_comm_channel_ep_disconnect() .

14.4.5.2.5.7 Connection Statistics

The peer_addr object provides a statistics mechanism. To get the updated statistics, the

application should call doca_comm_channel_peer_addr_update_info() which saves a snapshot of
the current statistics.

After calling the update function, the application can query the following statistics which return the
data from that snapshot:

Statistic Function Returns

doca_comm_channel_peer_addr_get_send_messages

()

Number of messages sent to the specific peer_addr

doca_comm_channel_peer_addr_get_send_bytes() Number of bytes sent to the specific peer_addr

doca_comm_channel_peer_addr_get_recv_messages

()

Number of messages received from the specific
peer_addr

doca_comm_channel_peer_addr_get_recv_bytes() Number of bytes received from the specific
peer_addr

doca_comm_channel_peer_addr_get_send_in_fligh

t_messages()

Number of messages sent to the specific peer_addr
and without returning a confirmation yet

The in-flight messages can be used to make sure all messages have been successfully sent before
disconnecting or destroying the endpoint.

For more information, see section "Querying Statistics for Connection".

14.4.5.2.5.8 Service State and Connections

DOCA Comm Channel provides an API, doca_comm_channel_ep_update_service_state_info() , to
query for the service state and connections which an application can call.

The service state is returned as the return value from the update function:

If the return value is DOCA_SUCCESS the service state is operational.

If the return value is DOCA_ERROR_CONNECTION_RESET the service is down and cannot be
recovered, and the endpoint should be destroyed.

After calling the update function, the application can query the following functions which return the
connection data from that snapshot:

Information Function Returns

doca_comm_channel_ep_get_peer_addr_list() Returns the list of connected peer_addrs

doca_comm_channel_ep_get_pending_connecti

ons()

Number of pending connections waiting for the service. If
there are pending connections,
doca_comm_channel_ep_recvfrom() should be called to
handle them.

470

1.
•

•

2.

3.

14.4.5.2.5.9 Disconnection Flow

Disconnection can occur specifically by using doca_comm_channel_ep_disconnect() or when
destroying the whole endpoint.

Disconnection is one-sided, which means that the other side is unaware of the channel being closed
and experiences errors when sending data. It is up to the application to synchronize the connection
teardown.

Disconnection of a peer_addr destroys all of the resources related to it.

It is possible to perform another handshake and establish a new channel connection after
disconnection.

For more information, see section "doca_comm_channel_ep_disconnect()".

14.4.5.2.5.10 Endpoint Destruction

When calling doca_comm_channel_ep_destroy() , all resources related to the endpoint are freed
immediately which means that if there are any messages in the send queue that have not been sent
yet, they are aborted.

To make sure all messages have been successfully sent before disconnection, the application can use
the doca_comm_channel_peer_addr_get_send_in_flight_messages() statistics function. See
section "Connection Statistics" for more information.

14.4.5.2.6 DOCA Comm Channel Samples

This section provides Comm Channel sample implementation on top of the BlueField DPU.

14.4.5.2.6.1 Running the Sample
Refer to the following documents:

NVIDIA DOCA Installation Guide for Linux for details on how to install BlueField-related
software.
NVIDIA DOCA Troubleshooting Guide for any issue you may encounter with the
installation, compilation, or execution of DOCA samples.

To build a given sample:

cd /opt/mellanox/doca/samples/doca_comm_channel/<sample_name>
meson /tmp/build
ninja -C /tmp/build

Sample (e.g., comm_channel_server) usage:

Usage: doca_comm_channel_server [DOCA Flags] [Program Flags]

DOCA Flags:
 -h, --help Print a help synopsis
 -v, --version Print program version information
 -l, --log-level Set the (numeric) log level for the program <10=DISABLE, 20=CRITICAL,
30=ERROR, 40=WARNING, 50=INFO, 60=DEBUG, 70=TRACE>

The binary doca_<sample_name> is created under /tmp/build/ .

471

4.

1.
2.
3.
4.
5.
6.
7.
8.
9.

•

•

•

 -j, --json <path> Parse all command flags from an input json file

Program Flags:
 -p, --pci-addr DOCA Comm Channel device PCI address
 -r, --rep-pci DOCA Comm Channel device representor PCI address (needed only on DPU)
 -t, --text Text to be sent to the other side of channel

For additional information per sample, use the -h option:

/tmp/build/doca_<sample_name> -h

14.4.5.2.6.2 Samples

Comm Channel Server

This sample illustrate how to create a simple server on the DPU to communicate with a client on the
host.

The sample logic includes:

Creating Comm Channel endpoint.
Parsing PCIe address.
Opening Comm Channel DOCA device based on the PCIe address.
Opening Comm Channel DOCA device representor based on the PCIe address.
Setting Comm Channel endpoint properties.
Listening for new connections.
Waiting until new message arrives.
Sending the entered text message as a response.
Closing connection and freeing resources.

Reference:

/opt/mellanox/doca/samples/doca_comm_channel/comm_channel_server/

comm_channel_server_sample.c

/opt/mellanox/doca/samples/doca_comm_channel/comm_channel_server/

comm_channel_server_main.c

/opt/mellanox/doca/samples/doca_comm_channel/comm_channel_server/meson.build

Comm Channel Client

This sample illustrates how to create a simple client on the host to communicate with a server on
the DPU.

The sample logic includes:

The flag --rep-pci is relevant only on the DPU.

This sample should be run before "Comm Channel Client".

This sample should be run after "Comm Channel Server".

472

1.
2.
3.
4.
5.
6.
7.
8.

•

•

•

Creating Comm Channel endpoint.
Parsing PCIe address.
Opening Comm Channel DOCA device based on the PCIe address.
Setting Comm Channel endpoint properties.
Connecting current endpoint to server side.
Sending the entered text message.
Receiving server response.
Closing connection and freeing resources.

Reference:

/opt/mellanox/doca/samples/doca_comm_channel/comm_channel_client/

comm_channel_client_sample.c

/opt/mellanox/doca/samples/doca_comm_channel/comm_channel_client/

comm_channel_client_main.c

/opt/mellanox/doca/samples/doca_comm_channel/comm_channel_client/meson.build

14.4.6 DOCA UROM
This guide provides an overview and configuration instructions for DOCA Unified Resources and
Offload Manager (UROM) API.

14.4.6.1 Introduction

The DOCA Unified Resource and Offload Manager (UROM) offers a framework for offloading a portion
of parallel computing tasks, such as those related to HPC or AI workloads and frameworks, from the
host to the NVIDIA DPUs. This framework includes the UROM service which is responsible for
resource discovery, coordination between the host and DPU, and the management of UROM workers
that execute parallel computing tasks.

When an application utilizes the UROM framework for offloading, it consists of two main
components: the host part and the UROM worker on the DPU. The host part is responsible for
interacting with the DOCA UROM API and operates as part of the application with the aim of
offloading tasks to the DPU. This component establishes a connection with the UROM service and
initiates an offload request. In response to the offload request, the UROM service provides network
identifiers for the workers, which are spawned by the UROM service. If the UROM service is running
as a Kubernetes POD, the workers are spawned within the POD. Each worker is responsible for
executing either a single offload or multiple offloads, depending on the requirements of the host
application.

14.4.6.2 Prerequisites
UCX is required for the communication channel between the host and DPU parts of DOCA UROM
based on TCP socket transport. This is a mechanism to transfer commands from the host to the
UROM service on the DPU and receive responses from the DPU.

This library is currently supported at alpha level only.

473

1.
2.
3.

4.

5.
6.

By default, UCX scans all available devices on the machine and selects the best ones based on
performance characteristics. The environment variable UCX_NET_DEVICES=<dev1>,<dev2>,... woul
d restrict UCX to using only the specified devices. For example, UCX_NET_DEVICES=eth2 uses the
Ethernet device eth2 for TCP socket transport.

For more information about UCX, refer to DOCA UCX Programming Guide.

14.4.6.3 Architecture

14.4.6.3.1 UROM Deployment

The diagram illustrates a standard UROM deployment where each DPU is required to host both a
service process instance and a group of worker processes.

The typical usage of UROM services involves the following steps:

Every process in the parallel application discovers the UROM service.
UROM handles authentication and provides service details.
The host application receives the available offloading plugins on the local DPU through UROM
service.
The host application picks the desired plugin info and triggers UROM worker plugin instances
on the DPU through the UROM service.
The application delegates specific tasks to the UROM workers.
UROM workers execute these tasks and return the results.

14.4.6.3.2 UROM Framework

This diagram shows a high-level overview of the DOCA UROM framework.

474

A UROM offload plugin is where developers of AI/HPC offloads implement their own offloading logic
while using DOCA UROM as the transport layer and resource manager. Each plugin defines commands
to execute logic on the DPU and notifications that are returned to the host application. Each type of
supported offload corresponds to a distinct type of DOCA UROM plugin. For example, a developer
may need a UCC plugin to offload UCC functionality to the DPU. Each plugin implements a DPU-side
plugin API and exposes a corresponding host-side interface.

A UROM daemon loads the plugin DPU version (.so file) in runtime as part of the discovery of local
plugins.

475

•
•

•

•

14.4.6.3.2.1 Plugin Task Offloading Flow

14.4.6.3.3 UROM Installation

DOCA UROM is an integral part of the DOCA SDK installation package. Depending on your system
architecture and enabled offload plugins, UROM is comprised by several components, which can be
categorized into two main parts: those on the host and those on the DPU.

DOCA UROM library components:
libdoca_urom shared object – contains the DOCA UROM API

libdoca_urom_components_comm_ucp_am – includes the UROM communication
channel interface API

DOCA UROM headers:

The header files include definitions for DOCA UROM as described in the following:

476

•

•

•

•

•

•

•

•

•
•
•
•

•
•
•
•
•

DOCA UROM host interface (doca_urom.h) – this header includes three essential
components: contexts, tasks, and plugins.

Service context (doca_urom_service) – this context serves as an abstraction of
the UROM service process. Tasks posted within this context include the
authentication, spawning, and termination of workers on the DPU.
Worker context (doca_urom_worker) – this context abstracts the DPU UROM
worker, which operates on behalf of host application plugins (offload). Tasks
posted within this context involve relaying commands from the host application
to the worker on behalf of a specific offload plugin, such as offloaded
functionality for communication operations.
Domain context (doca_urom_domain) – this context encapsulates a group of
workers belonging to the same host application. This concept is similar to the
MPI (message passing interface) communicator in the MPI programming model or
PyTorch's process groups. Plugins are not required to use the UROM Domain.

DOCA UROM plugin interface (doca_urom_plugin.h) – this header includes the main
structure and definitions that the user can use to build both the host and DPU
components of their own offloading plugins

UROM plugin interface structure (urom_plugin_iface) – this interface includes
a set of operations to be executed by the UROM worker
UROM worker command structure (urom_worker_cmd) – this structure defines
the worker instance command format
UROM worker notification structure (urom_worker_notify) – this structure
defines the worker instance notification format

The following diagram shows various software components of DOCA UROM:

DOCA Core – involves DOCA device discovery, DOCA progress engine, DOCA context, etc.
DOCA UROM Core – includes the UROM library functionality
DOCA UROM Host SDK – UROM API for the host application to use
DOCA UROM DPU SDK – UROM API for the NVIDIA® BlueField® networking platform (DPU or
SuperNIC) to use
DOCA UROM Host Plugin – user plugin host version
DOCA UROM DPU Plugin – user plugin DPU version
DOCA UROM App – user UROM host application
DOCA UROM Worker – the offload functionality component that executes the offloading logic
DOCA UROM Daemon – is responsible for resource discovery, coordination between the host
and DPU, managing the workers on BlueField

477

14.4.6.4 API

The following sections provide additional details about the library API.

14.4.6.4.1 DOCA_UROM_SERVICE_FILE

This environment variable sets the path to the UROM service file. When creating the UROM service
object (see doca_urom_service_create), UROM performs a look-up using this file, the hostname
where an application is running, and the PCIe address of the associated DOCA device to identify the
network address, and network devices associated with the UROM service.

This file contains one entry per line describing the location of each UROM service that may be used
by UROM. The format of each line must be as follows:

<app_hostname> <service_type> <dev_hostname> <dev_pci_addr> <net,devs>

Example:

app_host1 dpu dpu_host1 03:00.0 dev1:1,dev2:1

Fields are described in the following table:

Field Description

app_hostname Network hostname (or IP address) for the node that this line applies
to

service_type The UROM service type. Valid type is dpu (used for all DOCA
devices).

More information is available on DOCA UROM API in the NVIDIA DOCA Library APIs.

The pkg-config (*.pc file) for the UROM library is doca-urom .

478

•

•

•

Field Description

dev_hostname Network hostname (or IP address) for the associated DOCA device

dev_pci_addr PCIe address of the associated DOCA device. This must match the PCIe
address provided by DOCA.

net,devs Comma-separated list of network devices shared between the host
and DOCA device

14.4.6.4.2 doca_urom_service

An opaque structure that represents a DOCA UROM service.

struct doca_urom_service;

14.4.6.4.3 doca_urom_service_plugin_info

DOCA UROM plugin info structure. UROM generates this structure for each plugin on the local DPU
where the UROM service is running and the service returns an array of available plugins to the host
application to pick which plugins to use.

struct doca_urom_service_plugin_info {
 uint64_t id;
 uint64_t version;
 char plugin_name[DOCA_UROM_PLUGIN_NAME_MAX_LEN];
};

id – Unique ID to send commands to the plugin, UROM generates this ID

version – Plugin DPU version to verify that the plugin host interface has the same version

plugin_name – The .so plugin file name without " .so ". The name is used to find the
desired plugin.

14.4.6.4.4 doca_urom_service_get_workers_by_gid_task

An opaque structure representing a DOCA service gets workers by group ID task.

struct doca_urom_service_get_workers_by_gid_task;

14.4.6.4.5 doca_urom_service_create

Before performing any UROM service operation (spawn worker, destroy worker, etc.), it is essential
to create a doca_urom_service object. A service object is created in state DOCA_CTX_STATE_IDLE .
After creation, the user may configure the service using setter methods (e.g.,
doca_urom_service_set_dev()).

Before use, a service object must be transitioned to state DOCA_CTX_STATE_RUNNING using the

doca_ctx_start() interface. A typical invocation looks like

doca_ctx_start(doca_urom_service_as_ctx(service_ctx)) .

479

•

•

•

•

•

•

•

•

•

doca_error_t doca_urom_service_create(struct doca_urom_service **service_ctx);

service_ctx [in/out] – doca_urom_service object to be created

Returns – DOCA_SUCCESS on success, error code otherwise

14.4.6.4.6 doca_urom_service_destroy

Destroy a doca_urom_service object.

doca_error_t doca_urom_service_destroy(struct doca_urom_service *service_ctx);

service_ctx[in] – doca_urom_service object to be destroyed. It is created by

doca_urom_service_create() .

Returns – DOCA_SUCCESS on success, error code otherwise

14.4.6.4.7 doca_urom_service_set_max_comm_msg_size

Set the maximum size for a message in the UROM communication channel. The default message size
is 4096B.

Once the service state is running, users cannot update the maximum size for the message.

doca_error_t doca_urom_service_set_max_comm_msg_size(struct doca_urom_service *service_ctx, size_t msg_size);

service_ctx[in] – a pointer to doca_urom_service object to set new message size

msg_size[in] – new message size to set

Returns – DOCA_SUCCESS on success, error code otherwise

14.4.6.4.8 doca_urom_service_as_ctx

Convert a doca_urom_service object into a DOCA object.

struct doca_ctx *doca_urom_service_as_ctx(struct doca_urom_service *service_ctx);

service_ctx[in] – a pointer to doca_urom_service object

Returns – a pointer to the doca_ctx object on success, NULL otherwise

14.4.6.4.9 doca_urom_service_get_plugins_list

Retrieve the list of supported plugins on the UROM service.

Multiple application processes could create different service objects that represent/
connect to the same worker on the DPU.

It is important to ensure that the combined size of the plugins' commands and notifications
and the UROM structure's size do not exceed this maximum size.

480

•

•

•

•

•

•

•

•

•

•

•

•

•

•

doca_error_t doca_urom_service_get_plugins_list(struct doca_urom_service *service_ctx, const struct
doca_urom_service_plugin_info **plugins, size_t *plugins_count);

service_ctx[in] – a pointer to doca_urom_service object

plugins[out] – an array of pointers to doca_urom_service_plugin_info object

plugins_count[out] – number of plugins

Returns – DOCA_SUCCESS on success, error code otherwise

14.4.6.4.10 doca_urom_service_get_cpuset

Get the allowed CPU set for the UROM service on BlueField, which can be used when spawning
workers to set processor affinity.

doca_error_t doca_urom_service_get_cpuset(struct doca_urom_service *service_ctx, doca_cpu_set_t *cpuset);

service_ctx[in] – a pointer to doca_urom_service object

cpuset[out] – set of allowed CPUs

Returns – DOCA_SUCCESS on success, error code otherwise

14.4.6.4.11 doca_urom_service_get_workers_by_gid_task_allocate_init

Allocate a get-workers-by-GID service task and set task attributes.

doca_error_t doca_urom_service_get_workers_by_gid_task_allocate_init(struct doca_urom_service *service_ctx,
 uint32_t gid,

doca_urom_service_get_workers_by_gid_task_completion_cb_t cb,
 struct
doca_urom_service_get_workers_by_gid_task **task);

service_ctx[in] – a pointer to doca_urom_service object

gid[in] – group ID to set

cb[in] – user task completion callback

task[out] – a new get-workers-by-GID service task

Returns – DOCA_SUCCESS on success, error code otherwise

14.4.6.4.12 doca_urom_service_get_workers_by_gid_task_release

Release a get-workers-by-GID service task and task resources.

doca_error_t doca_urom_service_get_workers_by_gid_task_release(struct doca_urom_service_get_workers_by_gid_task
*task);

task[in] – service task to release

Returns – DOCA_SUCCESS on success, error code otherwise

14.4.6.4.13 doca_urom_service_get_workers_by_gid_task_as_task

Convert a doca_urom_service_get_workers_by_gid_task object into a DOCA task object.

481

•

•

•
•

•

•

 After creating a service task and configuring it using setter methods (e.g.,
doca_urom_service_get_workers_by_gid_task_set_gid()) or as part of task allocation, the

user should submit the task by calling doca_task_submit .

 A typical invocation looks like
doca_task_submit(doca_urom_service_get_workers_by_gid_task_as_task(task)) .

struct doca_task *doca_urom_service_get_workers_by_gid_task_as_task(struct
doca_urom_service_get_workers_by_gid_task *task);

task[in] – get-workers-by-GID service task

Returns – a pointer to the doca_task object on success, NULL otherwise

14.4.6.4.14 doca_urom_service_get_workers_by_gid_task_get_workers_coun
t

Get the number of workers returned for the requested GID.

size_t doca_urom_service_get_workers_by_gid_task_get_workers_count(struct doca_urom_service_get_workers_by_gid_task
*task);

task[in] – get-workers-by-GID service task
Returns – workers ID's array size

14.4.6.4.15 doca_urom_service_get_workers_by_gid_task_get_worker_ids

Get service get workers task IDs array.

const uint64_t *doca_urom_service_get_workers_by_gid_task_get_worker_ids(struct
doca_urom_service_get_workers_by_gid_task *task);

task[in] – get-workers-by-GID service task

Returns – workers ID's array, NULL otherwise

14.4.6.4.16 doca_urom_worker

An opaque structure representing a DOCA UROM worker context.

struct doca_urom_worker;

14.4.6.4.17 doca_urom_worker_cmd_task

An opaque structure representing a DOCA UROM worker command task context.

struct doca_urom_worker_cmd_task;

14.4.6.4.18 doca_urom_worker_cmd_task_completion_cb_t

A worker command task completion callback type. It is called once the worker task is completed.

482

•

•

•

•

•

•

•

•

•

typedef void (*doca_urom_worker_cmd_task_completion_cb_t)(struct doca_urom_worker_cmd_task *task,
 union doca_data task_user_data,
 union doca_data ctx_user_data);

task[in] – a pointer to worker command task

task_user_data[in] – user task data

ctx_user_data[in] – user worker context data

14.4.6.4.19 doca_urom_worker_create

This method creates a UROM worker context.

A worker is created in a DOCA_CTX_STATE_IDLE state. After creation, a user may configure the

worker using setter methods (e.g., doca_urom_worker_set_service()). Before use, a worker

must be transitioned to state DOCA_CTX_STATE_RUNNING using the doca_ctx_start() interface. A

typical invocation looks like doca_ctx_start(doca_urom_worker_as_ctx(worker_ctx)) .

doca_error_t doca_urom_worker_create(struct doca_urom_worker **worker_ctx);

worker_ctx [in/out] – doca_urom_worker object to be created

Returns – DOCA_SUCCESS on success, error code otherwise

14.4.6.4.20 doca_urom_worker_destroy

Destroys a UROM worker context.

doca_error_t doca_urom_worker_destroy(struct doca_urom_worker *worker_ctx);

worker_ctx [in] – doca_urom_worker object to be destroyed. It is created by

doca_urom_worker_create() .

Returns – DOCA_SUCCESS on success, error code otherwise

14.4.6.4.21 doca_urom_worker_set_service

Attaches a UROM service to the worker context. The worker is launched on the DOCA device
managed by the provided service context.

doca_error_t doca_urom_worker_set_service(struct doca_urom_worker *worker_ctx, struct doca_urom_service
*service_ctx);

service_ctx [in] – service context to set

Returns – DOCA_SUCCESS on success, error code otherwise

14.4.6.4.22 doca_urom_worker_set_id

This method sets the worker context ID to be used to identify the worker. Worker IDs enable an
application to establish multiple connections to the same worker process running on a DOCA device.

Worker ID must be unique to a UROM service.

483

•

•

•

•

•

•

•

•

•

•

•

•

•

If DOCA_UROM_WORKER_ID_ANY is specified, the service assigns a unique ID for the newly
created worker.
If a specific ID is used, the service looks for an existing worker with matching ID. If one
exists, the service establishes a new connection to the existing worker. If a matching worker
does not exist, a new worker is created with the specified worker ID.

doca_error_t doca_urom_worker_set_id(struct doca_urom_worker *worker_ctx, uint64_t worker_id);

worker_ctx [in] – doca_urom_worker object

worker_id [in] – worker ID

Returns – DOCA_SUCCESS on success, error code otherwise

14.4.6.4.23 doca_urom_worker_set_gid

Set worker group ID. This ID must be set before starting the worker context.

Through service get workers by GID task, the application can have the list of workers' IDs which are
running on DOCA device and that belong to the same group ID.

doca_error_t doca_urom_worker_set_gid(struct doca_urom_worker *worker_ctx, uint32_t gid);

worker_ctx [in] – doca_urom_worker object

gid [in] – worker group ID

Returns – DOCA_SUCCESS on success, error code otherwise

14.4.6.4.24 doca_urom_worker_set_plugins

Adds a plugin mask for the supported plugins by the UROM worker on the DPU. The application can
use up to 62 plugins.

doca_error_t doca_urom_worker_set_plugins(struct doca_urom_worker *worker_ctx, uint64_t plugins);

worker_ctx[in] – doca_urom_worker object

plugins[in] – an ORing set of worker plugin IDs

Returns – DOCA_SUCCESS on success, error code otherwise

14.4.6.4.25 doca_urom_worker_set_env

Set worker environment variables when spawning worker on DPU side by DOCA UROM service. They
must be set before starting the worker context.

doca_error_t doca_urom_worker_set_env(struct doca_urom_worker *worker_ctx, char *const env[], size_t count);

worker_ctx [in] – doca_urom_worker object

env [in] – an array of environment variables

This call fails if the worker already spawned on the DPU.

484

•

•

•

•

•

•

•

•

•

•

•

•

count [in] – array size

Returns – DOCA_SUCCESS on success, error code otherwise

14.4.6.4.26 doca_urom_worker_as_ctx

Convert a doca_urom_worker object into a DOCA object.

struct doca_ctx *doca_urom_worker_as_ctx(struct doca_urom_worker *worker_ctx);

worker_ctx[in] – a pointer to doca_urom_worker object

Returns – a pointer to the doca_ctx object on success, NULL otherwise

14.4.6.4.27 doca_urom_worker_cmd_task_allocate_init

Allocate worker command task and set task attributes.

doca_error_t doca_urom_worker_cmd_task_allocate_init(struct doca_urom_worker *worker_ctx, uint64_t plugin, struct
doca_urom_worker_cmd_task **task);

worker_ctx [in] – a pointer to doca_urom_worker object

plugin [in] – task plugin ID

task [out] – set worker command new task

Returns – DOCA_SUCCESS on success, error code otherwise

14.4.6.4.28 doca_urom_worker_cmd_task_release

Release worker command task.

doca_error_t doca_urom_worker_cmd_task_release(struct doca_urom_worker_cmd_task *task);

task[in] – worker task to release

Returns – DOCA_SUCCESS on success, error code otherwise

14.4.6.4.29 doca_urom_worker_cmd_task_set_plugin

Set worker command task plugin ID. The plugin ID is created by the UROM service and the plugin
host interface should hold it to create UROM worker command tasks.

void doca_urom_worker_cmd_task_set_plugin(struct doca_urom_worker_cmd_task *task, uint64_t plugin);

task [in] – worker task

plugin [in] – task plugin to set

14.4.6.4.30 doca_urom_worker_cmd_task_set_cb

Set worker command task completion callback.

485

•

•

•

•

•

•

•
•

void doca_urom_worker_cmd_task_set_cb(struct doca_urom_worker_cmd_task *task,
doca_urom_worker_cmd_task_completion_cb_t cb);

task[in] – worker task

plugin[in] – task callback to set

14.4.6.4.31 doca_urom_worker_cmd_task_get_payload

Get worker command task payload. The plugin interface populates this buffer by plugin command
structure. The payload size is the maximum message size in the DOCA UROM communication channel
(the user can configure the size by calling doca_urom_service_set_max_comm_msg_size()). To

update the payload buffer, the user should call doca_buf_set_data() .

struct doca_buf *doca_urom_worker_cmd_task_get_payload(struct doca_urom_worker_cmd_task *task);

task [in] – worker task

Returns – a doca_buf that represents the task's payload

14.4.6.4.32 doca_urom_worker_cmd_task_get_response

Get worker command task response. To get the response's buffer, the user should call
doca_buf_get_data() .

struct doca_buf *doca_urom_worker_cmd_task_get_response(struct doca_urom_worker_cmd_task *task);

task [in] – worker task

Returns – a doca_buf that represents the task's response

14.4.6.4.33 doca_urom_worker_cmd_task_get_user_data

Get worker command user data to populate. The data refers to the reserved data inside the task
that the user can get when calling the completion callback. The maximum data size is 32 bytes.

void *doca_urom_worker_cmd_task_get_user_data(struct doca_urom_worker_cmd_task *task);

task [in] – worker task
Returns – a pointer to user data memory

14.4.6.4.34 doca_urom_worker_cmd_task_as_task

Convert a doca_urom_worker_cmd_task object into a DOCA task object.

 After creating a worker command task and configuring it using setter methods (e.g.,
doca_urom_worker_cmd_task_set_plugin()) or as part of task allocation, the user should submit

the task by calling doca_task_submit .

 A typical invocation looks like doca_task_submit(doca_urom_worker_cmd_task_as_task(task)) .

struct doca_task *doca_urom_worker_cmd_task_as_task(struct doca_urom_worker_cmd_task *task);

486

•

•

•

•

•

•

•

•

•

•

•

•

task[in] – worker command task

Returns – a pointer to the doca_task object on success, NULL otherwise

14.4.6.4.35 doca_urom_domain

An opaque structure representing a DOCA UROM domain context.

struct doca_urom_domain;

14.4.6.4.36 doca_urom_domain_allgather_cb_t

A callback for a non-blocking all-gather operation.

typedef doca_error_t (*doca_urom_domain_allgather_cb_t)(void *sbuf, void *rbuf, size_t msglen, void *coll_info,
void **req);

sbuf [in] – local buffer to send to other processes

rbuf [in] – global buffer to include other process's source buffer

msglen [in] – source buffer length

coll_info [in] – collection info

req [in] – allgather request data

Returns – DOCA_SUCCESS on success, error code otherwise

14.4.6.4.37 doca_urom_domain_req_test_cb_t

A callback to test the status of a non-blocking allgather request.

typedef doca_error_t (*doca_urom_domain_req_test_cb_t)(void *req);

req [in] – allgather request data to check status

Returns – DOCA_SUCCESS on success, DOCA_ERROR_IN_PROGRESS otherwise

14.4.6.4.38 doca_urom_domain_req_free_cb_t

A callback to free a non-blocking allgather request.

typedef doca_error_t (*doca_urom_domain_req_free_cb_t)(void *req);

req [in] – allgather request data to release.

Returns – DOCA_SUCCESS on success, error code otherwise

14.4.6.4.39 doca_urom_domain_oob_coll

Out-of-band communication descriptor for domain creation.

struct doca_urom_domain_oob_coll {
 doca_urom_domain_allgather_cb_t allgather;
 doca_urom_domain_req_test_cb_t req_test;
 doca_urom_domain_req_free_cb_t req_free;
 void *coll_info;
 uint32_t n_oob_indexes;

487

•

•

•

•

•

•

•

•

•

•

•

 uint32_t oob_index;
};

allgather – non-blocking allgather callback

req_test – request test callback

req_free – request free callback

coll_info – context or metadata required by the OOB collective

n_oob_indexes – number of endpoints participating in the OOB operation (e.g., number of
client processes representing domain workers)
oob_index – an integer value that represents the position of the calling processes in the

given OOB operation. The data specified by src_buf is placed at the offset " oob_index *siz

e" in the recv_buf .

14.4.6.4.40 doca_urom_domain_create

Creates a UROM domain context. A domain is created in state DOCA_CTX_STATE_IDLE . After
creation, a user may configure the domain using setter methods (e.g.,
doca_urom_domain_set_workers()). Before use, a domain must be transitioned to state

DOCA_CTX_STATE_RUNNING using the doca_ctx_start() interface. A typical invocation looks like

doca_ctx_start(doca_urom_domain_as_ctx(worker_ctx)) .

doca_error_t doca_urom_domain_create(struct doca_urom_domain **domain_ctx);

domain_ctx [in/out] – doca_urom_domain object to be created

Returns – DOCA_SUCCESS on success, error code otherwise

14.4.6.4.41 doca_urom_domain_destroy

Destroys a UROM domain context.

doca_error_t doca_urom_domain_destroy(struct doca_urom_domain *domain_ctx);

domain_ctx [in] – doca_urom_domain object to be destroyed; it is created by

doca_urom_domain_create()

Returns – DOCA_SUCCESS on success, error code otherwise

14.4.6.4.42 doca_urom_domain_set_workers

 Sets the list of workers in the domain.

doca_error_t doca_urom_domain_set_workers(struct doca_urom_domain *domain_ctx, uint64_t *domain_worker_ids, struct
doca_urom_worker **workers, size_t workers_cnt);

domain_ctx [in] – doca_urom_domain object

oob_index must be unique at every calling process and should be in the range

[0: n_oob_indexes).

488

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

domain_worker_ids [in] – list of domain worker IDs

workers [in] – an array of UROM worker contexts that should be part of the domain

workers_cnt [in] – the number of workers in the given array

Returns – DOCA_SUCCESS on success, error code otherwise

14.4.6.4.43 doca_urom_domain_add_buffer

Attaches local buffer attributes to the domain. It should be called after calling
doca_urom_domain_set_buffers_count() .

The local buffer will be shared with all workers belonging to the domain.

doca_error_t doca_urom_domain_add_buffer(struct doca_urom_domain *domain_ctx, void *buffer, size_t buf_len, void
 *memh, size_t memh_len, void *mkey, size_t mkey_len);

domain_ctx [in] – doca_urom_domain object

buffer [in] – buffer ready for remote access which is given to the domain

buf_len [in] – buffer length

memh [in] – memory handle for the exported buffer. (should be packed)

memh_len [in] – memory handle size

mkey [in] – memory key for the exported buffer. (should be packed)

mkey_len [in] – memory key size

Returns – DOCA_SUCCESS on success, error code otherwise

14.4.6.4.44 doca_urom_domain_set_oob

Sets OOB communication info to be used for domain initialization.

doca_error_t doca_urom_domain_set_oob(struct doca_urom_domain *domain_ctx, struct doca_urom_domain_oob_coll *oob);

domain_ctx [in] – doca_urom_domain object

oob [in] – OOB communication info to set

Returns – DOCA_SUCCESS on success, error code otherwise

14.4.6.4.45 doca_urom_domain_as_ctx

Convert a doca_urom_domain object into a DOCA object.

struct doca_ctx *doca_urom_domain_as_ctx(struct doca_urom_domain *domain_ctx);

domain_ctx[in] – a pointer to doca_urom_domain object

Returns – a pointer to the doca_ctx object on success, NULL otherwise

14.4.6.5 Execution Model
DOCA UROM uses the DOCA Core Progress Engine as an execution model for service and worker
contexts and tasks progress. For more details about it please refer to this guide.

489

1.

2.

3.

a.

b.

c.

4.

5.

14.4.6.6 UROM Building Blocks
This section explains the general concepts behind the fundamental building blocks to use when
creating a DOCA UROM application and offloading functionality.

14.4.6.6.1 Program Flow

14.4.6.6.1.1 DPU

Launching DOCA UROM Service

DOCA UROM service should be run before running the application on the host to offload commands
to BlueField. For more information, refer to the NVIDIA DOCA UROM Service Guide.

14.4.6.6.1.2 Host

Initializing UROM Service Context

Create service context: Establish a service context within the control plane alongside the
progress engine.
Set service context attributes: Specific attributes of the service context are configured. The
required attribute is doca_dev .

Start the service context: The service context is initiated by invoking the doca_ctx_start f
unction.

Discover BlueField availability: The UROM library identifies the available BlueField
device.
Connect to UROM service: The library establishes a connection to the UROM service.
The connection process is synchronized, meaning that the host process and the
BlueField service process are blocked until the connection is established.
Perform lookup using UROM service file: A lookup operation is executed using the UROM
service file. The path to this file should be specified in the DOCA_UROM_SERVICE_FILE

environment variable. More information can be found in doca_urom.h .

Switch context state to DOCA_CTX_STATE_RUNNING : The context state transitions to

DOCA_CTX_STATE_RUNNING at this point.
Service context waits for worker bootstrap requests: The service context is now in a state
where it awaits and handles worker bootstrap requests.

/* Create DOCA UROM service instance */
doca_urom_service_create(&service);

/* Connect service context to DOCA progress engine */
doca_pe_connect_ctx(pe, doca_urom_service_as_ctx(service));

/* Set service attributes */
doca_urom_service_set_max_workers(service, nb_workers)
doca_urom_service_set_dev(service, dev);

/* Start service context */
doca_ctx_start(doca_urom_service_as_ctx(service));

/* Handling workers bootstrap requests */
do {
 doca_pe_progress(pe);
} while (!are_all_workers_started);

Picking UROM Worker Offload Functionality

490

1.
2.
3.
4.

5.

a.

b.

1.
2.

Once the service context state is running, the application can call
doca_urom_service_get_plugins_list() to get the available plugins on the local BlueField
device where the UROM service is running.

The UROM service generates an identifier for each plugin and the application is responsible for
forwarding this ID to the host plugin interface for sending commands and receiving notifications by
calling urom_<plugin_name>_init(<plugin_id>, <plugin_version>) .

const char *plugin_name = "worker_rdmo";
struct doca_urom_service *service;
const struct doca_urom_service_plugin_info *plugins, *rdmo_info;

/* Create and Start UROM service context. */
..

/* Get worker plugins list. */
doca_urom_service_get_plugins_list(*service, &plugins, &plugins_count);

/* Check if RDMO plugin exists. */
for (i = 0; i < plugins_count; i++) {
 if (strcmp(plugin_name, plugins[i].plugin_name) == 0) {
 rdmo_info = &plugins[i];
 break;
 }
}

/* Attach RDMO plugin ID and DPU plugin version for compatibility check */
urom_rdmo_init(rdmo_info->id, rdmo_info->version);

Initializing UROM Worker Context

Create a service context and connect the worker context to DOCA Progress Engine (PE).
Set worker context attributes (in the example below worker plugin is RDMO).
Start worker context, submitting internally spawns worker requests on the service context.
Worker context state changes to DOCA_CTX_STATE_STARTING (this process is asynchronous).

Wait until the worker context state changes to DOCA_CTX_STATE_RUNNING :

When calling doca_pe_progress , check for a response from the service context that
the spawning worker on BlueField is done.
If the worker is spawned on BlueField, connect to it and change the status to running.

const struct doca_urom_service_plugin_info *rdmo_info;

/* Create DOCA UROM worker instance */
doca_urom_worker_create(&worker);

/* Connect worker context to DOCA progress engine */
doca_pe_connect_ctx(pe, doca_urom_worker_as_ctx(worker));

/* Set worker attributes */
doca_urom_worker_set_service(worker, service);
doca_urom_worker_set_id(worker, worker_id);
doca_urom_worker_set_max_inflight_tasks(worker, nb_tasks);
doca_urom_worker_set_plugins(worker, rdmo_info->id);
doca_urom_worker_set_cpuset(worker, cpuset);

/* Start UROM worker context */
doca_ctx_start(doca_urom_worker_as_ctx(worker));

/* Progress until worker state changes to running or error happened */
do {
 doca_pe_progress(pe);
 result = doca_ctx_get_state(doca_urom_worker_as_ctx(worker), &state);
} while (state == DOCA_CTX_STATE_STARTING);

Offloading Plugin Task

Once the worker context state is DOCA_CTX_STATE_RUNNING , the worker is ready to execute
offload tasks. The example below is for offloading an RDMO command.

Prepare RDMO task arguments (e.g., completion callback).
Call the task function from the plugin host interface.

491

3.
4.

1.
2.
3.

a.
4.

1.
2.

Poll for completion by calling doca_pe_progress .
Get completion notification through the user callback.

 int ret;
 struct doca_urom_worker *worker;
 struct rdmo_result res = {0};
 union doca_data cookie = {0};
 size_t server_worker_addr_len;
 ucp_address_t *server_worker_addr;

 cookie.ptr = &res;
 res.result = DOCA_SUCCESS;

 ucp_worker_create(*ucp_context, &worker_params, server_ucp_worker);
 ucp_worker_get_address(*server_ucp_worker, &server_worker_addr, &server_worker_addr_len);

 /* Create and submit RDMO client init task */
 urom_rdmo_task_client_init(worker, cookie, 0, server_worker_addr, server_worker_addr_len,
urom_rdmo_client_init_finished);

 /* Wait for completion */
 do {
 ret = doca_pe_progress(pe);
 ucp_worker_progress(*server_ucp_worker);
 } while (ret == 0 && res.result == DOCA_SUCCESS);

 /* Check task result */
 if (res.result != DOCA_SUCCESS)
 DOCA_LOG_ERR("Client init task finished with error");

Initializing UROM Domain Context

Create a domain context on the control plane PE.
Set domain context attributes.
Start the domain context by calling doca_ctx_start .

Exchange memory descriptors between all workers.
Wait until the domain context state is running.

/* Create DOCA UROM domain instance */
doca_urom_domain_create(&domain);

/* Connect domain context to DOCA progress engine */
doca_pe_connect_ctx(pe, doca_urom_domain_as_ctx(domain));;

/* Set domain attributes */
doca_urom_domain_set_oob(domain, oob);
doca_urom_domain_set_workers(domain, worker_ids, workers, nb_workers);
doca_urom_domain_set_buffers_count(domain, nb_buffers);
for each buffer:
 doca_urom_domain_add_buffer(domain);

/* Start domain context */
doca_ctx_start(doca_urom_domain_as_ctx(domain));

/* Loop till domain state changes to running */
do {
 doca_pe_progress(pe);
 result = doca_ctx_get_state(doca_urom_domain_as_ctx(domain), &state);
} while (state == DOCA_CTX_STATE_STARTING && result == DOCA_SUCCESS);

Destroying UROM Domain Context

Request the domain context to stop by calling doca_ctx_stop .
Clean up resources by destroying the domain context.

/* Request domain context stop */
doca_ctx_stop(doca_urom_domain_as_ctx(domain));

/* Destroy domain context */
doca_urom_domain_destroy(domain);

Destroying UROM Worker Context

492

1.

2.
a.

3.

1.
2.

3.
4.

1.

a.

Request the worker context stop by calling doca_ctx_stop and posting the destroy
command on the service context.
Wait until a completion for the destroy command is received.

Change worker state to idle.
Clean up resources.

/* Stop worker context */
doca_ctx_stop(doca_urom_worker_as_ctx(worker));

/* Progress till receiving a completion */
do {
 doca_pe_progress(pe);
 doca_ctx_get_state(doca_urom_worker_as_ctx(worker), &state);
} while (state != DOCA_CTX_STATE_IDLE);

/* Destroy worker context */
doca_urom_worker_destroy(worker);

Destroying UROM Service Context

Wait for the completion of the UROM worker context commands.
Once all UROM workers have been successfully destroyed, initiate service context stop by
invoking doca_ctx_stop .
Disconnect from the UROM service.
Perform resource cleanup.

/* Handling workers teardown requests*/
do {
 doca_pe_progress(pe);
} while (!are_all_workers_exited);

/* Stop service context */
doca_ctx_stop(doca_urom_service_as_ctx(service));

/* Destroy service context */
doca_urom_service_destroy(service);

14.4.6.6.2 Plugin Development

14.4.6.6.2.1 Developing Offload Plugin on DPU
Implement struct urom_plugin_iface methods.

The open() method initializes the plugin connection state and may create an
endpoint to perform communication with other processes/workers.

static doca_error_t urom_worker_rdmo_open(struct urom_worker_ctx *ctx)
{
 ucp_context_h ucp_context;
 ucp_worker_h ucp_worker;
 struct urom_worker_rdmo *rdmo_worker;

 rdmo_worker = calloc(1, sizeof(*rdmo_worker));
 if (rdmo_worker == NULL)
 return DOCA_ERROR_NO_MEMORY;

 ctx->plugin_ctx = rdmo_worker;

 /* UCX transport layer initialization */
 .
 .
 .

 /* Create UCX worker Endpoint */
 ucp_worker_create(ucp_context, &worker_params, &ucp_worker);
 ucp_worker_get_address(ucp_worker, &rdmo_worker->ucp_data.worker_address, &rdmo_worker-
>ucp_data.ucp_addrlen);

 /* Resources initialization */
 rdmo_worker->clients = kh_init(client);

493

b.

c.

d.

e.

2.

 rdmo_worker->eps = kh_init(ep);

 /* Init completions list, UROM worker checks completed requests by calling progress() method */
 ucs_list_head_init(&rdmo_worker->completed_reqs);

 return DOCA_SUCCESS;
}

The addr() method returns the address of the plugin endpoint generated during

open() if it exists (e.g., UCX endpoint to communicate with other UROM workers).

The worker_cmd() method is used to parse and start work on incoming commands to
the plugin.

static doca_error_t urom_worker_rdmo_worker_cmd(struct urom_worker_ctx *ctx, ucs_list_link_t
*cmd_list)
{
 struct urom_worker_rdmo_cmd *rdmo_cmd;
 struct urom_worker_cmd_desc *cmd_desc;
 struct urom_worker_rdmo *rdmo_worker = (struct urom_worker_rdmo *)ctx->plugin_ctx;

 while (!ucs_list_is_empty(cmd_list)) {
 /* Get new RDMO command from the list */
 cmd_desc = ucs_list_extract_head(cmd_list, struct urom_worker_cmd_desc, entry);

 /* Unpack and deserialize RDMO command */
 urom_worker_rdmo_cmd_unpack(&cmd_desc->worker_cmd, cmd_desc->worker_cmd.len, &cmd);

 rdmo_cmd = (struct urom_worker_rdmo_cmd *)cmd->plugin_cmd;
 /* Handle command according to it's type */
 switch (rdmo_cmd->type) {
 case UROM_WORKER_CMD_RDMO_CLIENT_INIT:
 /* Handle RDMO client init command */
 status = urom_worker_rdmo_client_init_cmd(rdmo_worker, cmd_desc);
 break;
 case UROM_WORKER_CMD_RDMO_RQ_CREATE:
 /* Handle RDMO RQ create command */
 status = urom_worker_rdmo_rq_create_cmd(rdmo_worker, cmd_desc);
 break;
 .
 .
 .
 default:
 DOCA_LOG_INFO("Invalid RDMO command type: %lu", rdmo_cmd->type);
 status = DOCA_ERROR_INVALID_VALUE;
 break;
 }
 free(cmd_desc);
 if (status != DOCA_SUCCESS)
 return status;
 }
 return status;
}

The progress() method is used to give CPU time to the plugin code to advance
asynchronous tasks.

static doca_error_t urom_worker_rdmo_progress(struct urom_worker_ctx *ctx, ucs_list_link_t
*notif_list)
{
 struct urom_worker_notif_desc *nd;
 struct urom_worker_rdmo *rdmo_worker = (struct urom_worker_rdmo *)ctx->plugin_ctx;

 /* RDMO UCP worker progress */
 ucp_worker_progress(rdmo_worker->ucp_data.ucp_worker);

 /* Check if completion list is empty */
 if (ucs_list_is_empty(&rdmo_worker->completed_reqs))
 return DOCA_ERROR_EMPTY;

 /* Pop completed commands from the list */
 while (!ucs_list_is_empty(&rdmo_worker->completed_reqs)) {
 nd = ucs_list_extract_head(&rdmo_worker->completed_reqs, struct urom_worker_notif_desc,
entry);
 ucs_list_add_tail(notif_list, &nd->entry);
 }
 return DOCA_SUCCESS;
}

The notif_pack() method is used to serialize notifications before they are sent back
to the host.

Implement and expose the following symbols:

494

a.

b.

3.

1.
2.
3.
4.
5.

•
•

doca_error_t urom_plugin_get_version(uint64_t *version);

Returns a compile-time constant value stored within the .so file and is used to verify
that the host and DPU plugin versions are compatible.
doca_error_t urom_plugin_get_iface(struct urom_plugin_iface *iface);

Get the urom_plugin_iface struct with methods implemented by the plugin.

Compile the user plugin as an .so file and place it where the UROM service can access it.
For more details, refer to section "Plugin Discovery and Reporting" under the NVIDIA DOCA
UROM Service Guide.

14.4.6.6.2.2 Creating Plugin Host Task
Allocate and init worker command task.
Populate payload buffer by task command.
Pack and serialize the command.
Set user data.
Submit the task.

doca_error_t urom_rdmo_task_client_init(struct doca_urom_worker *worker_ctx, union doca_data cookie,
uint32_t id, void *addr, uint64_t addr_len, urom_rdmo_client_init_finished cb)
{
 doca_error_t result;
 size_t pack_len = 0;
 struct doca_buf *payload;
 struct doca_urom_worker_cmd_task *task;
 struct doca_rdmo_task_data *task_data;
 struct urom_worker_rdmo_cmd *rdmo_cmd;

 /* Allocate task */
 doca_urom_worker_cmd_task_allocate_init(worker_ctx, rdmo_id, &task);

 /* Get payload buffer */
 payload = doca_urom_worker_cmd_task_get_payload(task);
 doca_buf_get_data(payload, (void **)&rdmo_cmd);
 doca_buf_get_data_len(payload, &pack_len);

 /* Populate commands attributes */
 rdmo_cmd->type = UROM_WORKER_CMD_RDMO_CLIENT_INIT;
 rdmo_cmd->client_init.id = id;
 rdmo_cmd->client_init.addr = addr;
 rdmo_cmd->client_init.addr_len = addr_len;

 /* Pack and serialize the command */
 urom_worker_rdmo_cmd_pack(rdmo_cmd, &pack_len, (void *)rdmo_cmd);

 /* Update payload data size */
 doca_buf_set_data(payload, rdmo_cmd, pack_len);

 /* Set user data */
 task_data = (struct doca_rdmo_task_data *)doca_urom_worker_cmd_task_get_user_data(task);
 task_data->client_init_cb = cb;
 task_data->cookie = cookie;

 /* Set task plugin callback */
 doca_urom_worker_cmd_task_set_cb(task, urom_rdmo_client_init_completed);

 /* Submit task */
 doca_task_submit(doca_urom_worker_cmd_task_as_task(task));

 return DOCA_SUCCESS;
}

14.4.6.7 DOCA UROM Samples
This section provides DOCA UROM library sample implementations on top of BlueField.

The samples illustrate how to use the DOCA UROM API to do the following:

Define and create a UROM plugin host and DPU versions for offloading HPC/AI tasks
Build host applications that use the plugin to execute jobs on BlueField by the DOCA UROM
service and workers

495

1.
•

•

2.

3.

4.

14.4.6.7.1 Sample Prerequisite
Sample Type Prerequisite

Sandbox Plugin A plugin which offloads the UCX tagged send/receive
API

Graph Plugin The plugin uses UCX data structures and UCX
endpoint

UROM Ping Pong Program The sample uses the Open MPI package as a launcher
framework to launch two processes in parallel

14.4.6.7.2 Running the Sample
Refer to the following documents:

NVIDIA DOCA Installation Guide for Linux for details on how to install BlueField-related
software
NVIDIA DOCA Troubleshooting Guide for any issue you may encounter with the
installation, compilation, or execution of DOCA samples

To build a given sample:

cd /opt/mellanox/doca/samples/doca_urom/<sample_name>
meson /tmp/build
ninja -C /tmp/build

UROM Sample arguments:

Sample Argument Description

UROM multi-workers bootstrap -d, --device <IB device

name>

IB device name

UROM Ping Pong -d, --device <IB device

name>

IB device name

-m, --message Specify ping pong message

For additional information per sample, use the -h option:

/tmp/build/doca_<sample_name> -h

All the DOCA samples described in this section are governed under the BSD-3 software
license agreement.

The binary doca_<sample_name> is created under /tmp/build/ .

496

•

•

•

•

•

•

•

•

14.4.6.7.3 UROM Plugin Samples

DOCA UROM plugin samples have two components. The first one is the host component which is
linked with UROM host programs. The second is the DPU component which is compiled as an .so
file and is loaded at runtime by the DOCA UROM service (daemon, workers).

To build a given plugin:

cd /opt/mellanox/doca/samples/doca_urom/plugins/worker_<plugin_name>
meson /tmp/build
ninja -C /tmp/build

14.4.6.7.3.1 Graph

This plugin provides a simple example for creating a UROM plugin interface. It exposes only a single
command loopback, sending a specific value in the command, and expects to receive the same
value in the notification from UROM worker.

References:

/opt/mellanox/doca/samples/doca_urom/plugins/worker_graph/meson.build

/opt/mellanox/doca/samples/doca_urom/plugins/worker_graph/urom_graph.h

/opt/mellanox/doca/samples/doca_urom/plugins/worker_graph/worker_graph.c

/opt/mellanox/doca/samples/doca_urom/plugins/worker_graph/worker_graph.h

14.4.6.7.3.2 Sandbox

This plugin provides a set of commands for using the offloaded ping pong communication operation.

References:

/opt/mellanox/doca/samples/doca_urom/plugins/worker_sandbox/meson.build

/opt/mellanox/doca/samples/doca_urom/plugins/worker_sandbox/urom_sandbox.h

/opt/mellanox/doca/samples/doca_urom/plugins/worker_sandbox/worker_sandbox.c

/opt/mellanox/doca/samples/doca_urom/plugins/worker_sandbox/worker_sandbox.h

14.4.6.7.4 UROM Program Samples

DOCA UROM program samples can run only on the host side and require at least one DOCA UROM
service instance to be running on BlueField.

The environment variable should be set DOCA_UROM_SERVICE_FILE to the path to the UROM service
file.

14.4.6.7.4.1 UROM Multi-worker Bootstrap

This sample illustrates how to properly initialize DOCA UROM interfaces and use the API to spawn
multiple workers on the same application process.

The binary worker_<sample_name>.so file is created under /tmp/build/ .

497

1.
2.
3.
4.
5.

a.
b.

c.
d.

6.
7.
8.

9.

•

•

•

•

•

1.
2.
3.
4.
5.
6.

The sample initiates four threads as UROM workers to execute concurrently, alongside the main
thread operating as a UROM service. It divides the workers into two groups based on their IDs, with
odd-numbered workers in one group and even-numbered workers in the other.

Each worker executes the data loopback command by using the Graph plugin, sends a specific value,
and expects to receive the same value in the notification.

The sample logic includes:

Opening DOCA IB device.
Initializing needed DOCA core structures.
Creating and starting UROM service context.
Initiating the Graph plugin host interface by attaching the generated plugin ID.
Launching 4 threads and for each of them:

Creating and starting UROM worker context.
Once the worker context switches to running, sending the loopback graph command to
wait until receiving a notification.
Verifying the received data.
Waiting until an interrupt signal is received.

The main thread checking for pending jobs of spawning workers (4 jobs, one per thread).
Waiting until an interrupt signal is received.
The main thread checking for pending jobs of destroying workers (4 jobs, one per thread) for
exiting.
Cleaning up and exiting.

References:

/opt/mellanox/doca/samples/doca_urom/urom_multi_workers_bootstrap/

urom_multi_workers_bootstrap_sample.c

/opt/mellanox/doca/samples/doca_urom/urom_multi_workers_bootstrap/

urom_multi_workers_bootstrap_main.c

/opt/mellanox/doca/samples/doca_urom/urom_multi_workers_bootstrap/meson.build

/opt/mellanox/doca/samples/doca_urom/urom_common.c

/opt/mellanox/doca/samples/doca_urom/urom_common.h

14.4.6.7.4.2 UROM Ping Pong

This sample illustrates how to properly initialize the DOCA UROM interfaces and use its API to create
two different workers and run ping pong between them by using Sandbox plugin-based UCX.

The sample is using Open MPI to launch two different processes, one process as server and the
second one as client, the flow is decided according to process rank.

The sample logic per process includes:

Initializing MPI.
Opening DOCA IB device.
Creating and starting UROM service context.
Initiating the Sandbox plugin host interface by attaching the generated plugin id.
Creating and starting UROM worker context.
Creating and starting domain context.

498

7.

8.

9.
10.
11.
12.

•

•

•

•

•

•
•
•

Through domain context, the sample processes exchange the worker's details to communicate
between them on the BlueField side for ping pong flow.
Starting ping pong flow between the processes, each process offloading the commands to its
worker on the BlueField side.
Verifying that ping pong is finished successfully.
Destroying the domain context.
Destroying the worker context.
Destroying the service context.

References:

/opt/mellanox/doca/samples/doca_urom/urom_ping_pong/urom_ping_pong_sample.c

/opt/mellanox/doca/samples/doca_urom/urom_ping_pong/urom_ping_pong_main.c

/opt/mellanox/doca/samples/doca_urom/urom_ping_pong/meson.build

/opt/mellanox/doca/samples/doca_urom/urom_common.c

/opt/mellanox/doca/samples/doca_urom/urom_common.h

14.4.7 DOCA RDMA
This guide provides an overview and configuration instructions for the DOCA RDMA API.

14.4.7.1 Introduction

DOCA RDMA enables direct access to the memory of remote machines, without interrupting the
processing of their CPUs or operating systems. Avoiding CPU interruptions reduces context switching
for I/O operations, leading to lower latency and higher bandwidth compared to traditional network
communication methods.

DOCA RDMA library provides an API to execute the various RDMA operations.

This document is intended for software developers wishing to improve their applications by utilizing
RDMA operations.

14.4.7.2 Prerequisites
This library follows the architecture of a DOCA Core Context, it is recommended read the following
sections before proceeding:

DOCA Core Execution Model
DOCA Core Device
DOCA Core Memory Subsystem

This library is currently supported at beta level only.

RDMA operations should be executed over a secure channel in a production deployment,
given the sensitivity that arises from the nature of the protocol.

499

•
•
•
•
•
•
•
•
•
•
•

•

14.4.7.3 Environment
DOCA RDMA-based applications can run either on the host machine or on the NVIDIA® BlueField®
networking platform (DPU or SuperNIC).

14.4.7.4 Architecture
DOCA RDMA is a DOCA Context as defined by DOCA Core. See NVIDIA DOCA Core Context for more
information.

DOCA RDMA consists of two connected sides, passing data between one another. This includes the
option for one side to access the remote side's memory if the granted permissions allow it.

The connection between the two sides can either be based on InfiniBand (IB) or based on Ethernet
using RoCE. Currently, only reliable connection (RC) transport type is supported.

DOCA RDMA leverages the Core architecture to expose asynchronous tasks/events that are offloaded
to hardware.

The supported operations that may be executed between the two sides, using DOCA RDMA, are:

Receive
Send
Send with immediate
Write
Write with immediate
Read
Atomic compare and swap
Atomic fetch and add
Get remote DOCA Sync Event
Set remote DOCA Sync Event
Add remote DOCA Sync Event

14.4.7.4.1 Objects

14.4.7.4.1.1 Device

The RDMA library requires a DOCA device to operate. This device is used to utilize the connection
between the peers in RDMA, access memory, and perform the different operations.

14.4.7.4.1.2 Memory Map

Executing any DOCA RDMA operation in which data is passed between the peers requires creating a
memory map (mmap) on each side.

The mmap's permissions must include the relevant RDMA permission, according to the
required RDMA operations. Tasks fail in case of insufficient permissions.

The device must stay valid until the RDMA instance is destroyed.

500

• To allow the peer to execute RDMA operations, the mmap must be exported, using
doca_mmap_export_rdma() , and passed to the peer (i.e., the side requesting the RDMA
operation) where the remote mmap is created and used to access the memory.

14.4.7.4.1.3 Buffer Inventory and Buffers

Executing any DOCA RDMA operation, in which data is passed between the peers, requires using
buffers, and thus requires a buffer inventory as well.

Each operation calls for a different set-up for the buffers in use, this is explicitly explained in the
"Tasks" section.

14.4.7.5 Configuration Phase
To start using the library you need to first go through a configuration phase as described in DOCA
Core Context Configuration Phase

This section describes how to configure and start the context, to allow execution of tasks and
retrieval of events.

14.4.7.5.1 Configurations

The context can be configured to match the application use case.

14.4.7.5.1.1 Mandatory Configurations

These configurations are mandatory and must be set by the application before attempting to start
the context:

 Task Configurations

At least one task/event type must be configured. See configuration of Tasks and/or Events.

Permissions

Different tasks require different permission to be set for both the RDMA and the mmap in use.

The following table summarizes the necessary RDMA and mmap permissions for each RDMA
operation:

DOCA RDMA task
Types

Minimal Permissions Should Export
MMAP? 1

The Side Submitting
the Task

 The Peer

RDMA MMAP RDMA MMAP

Read
Get Remote Sync

Event

– Local read
write

RDMA
read

Local read write |
RDMA read

Yes

Refer to section "Permissions" for more information.

501

•

•

Write
Write with
Immediate

Set Remote Sync
Event

– Local read
write

RDMA
write

Local read write |
RDMA write

Yes

Atomic Compare
and Swap

Atomic Fetch and
Add

Add Remote Sync
Event

– Local read
write

RDMA
atomic

Local read write |
RDMA atomic

Yes

Send
Send with
Immediate

– Local read
write

– Local read write No

Receive Depending
on the
received
task

Local read
write

Not relevant

1. Refers to the peer. A side that only submits tasks is never required to export an mmap.

14.4.7.5.1.2 Optional Configurations

If these configurations are not set, a default value is used.

Users may edit the default properties of the RDMA instance using
the doca_rdma_set_<property>() . The user may also query the default/set properties using

doca_rdma_cap_get_<property>(struct doca_rdma *, …) functions.

Refer to Library Capability for querying valid property values when configuring the library context.

14.4.7.5.2 Device Support

DOCA RDMA requires a device to operate. For picking a device, see DOCA Core Device Discovery.

As device capabilities may change in the future, it is recommended to query each doca_devinfo

for its capabilities relevant to RDMA operations, using doca_rdma_cap_*(struct doca_devinfo *,

…) functions, and check whether the device is suitable for the required RDMA task types, using

doca_rdma_task_<task_type>_is_supported() .

BlueField-2 and higher devices are supported:

On the host, any doca_dev is supported

On the BlueField Platform, applications must provide the library with SFs as a doca_dev .
See NVIDIA OpenvSwitch Acceleration (OVS in DOCA) and BlueField DPU Scalable Function to
see how to create SFs and connect them to the appropriate ports.

The number of tasks that can be submitted in bulk is dependent on the properties
max_send_buf_list_len and send_queue_size .

502

•
•
•

•

14.4.7.5.3 Buffer Support

The DOCA RDMA library utilizes different buffer types, depending on the task and the buffer's
purpose:

Local mmap buffer
Mmap from RDMA export buffer
Mmap from PCIe export buffers

Linked list buffer

For task-specific information, refer to section "Tasks".

14.4.7.5.4 Establishing RDMA Connections

To establish the communication between the peers and allow the execution of different DOCA RDMA
tasks, the RDMA instances must be connected.

There are two methods to establish RDMA connections as detailed in the following subsections.

14.4.7.5.4.1 Exporting and Connecting RDMA

Connecting the RDMA instances can be done by exporting each RDMA instance to the remote side to
a blob by using doca_rdma_export(), transferring the blob to the opposite side, out-of-band (OOB),
and providing it as input to the doca_rdma_connect() function on that side.

All in all, the configuration flow should be as presented in the following image:

An exception to this is when running RDMA on the DPA datapath, which currently only
supports PFs.

This type of buffer can be used in an equivalent manner to local mmap buffers.

This should be executed after doca_ctx_start() is called.

Refer to section "State Machine" for more information.

503

The exported data contains sensitive information. Make sure to pass this data through a
secure channel!

504

•

•

•

•

1.

2.

3.

4.

5.

•

14.4.7.5.4.2 Connecting Using RDMA CM Connection Flow

The RDMA CM (communication manager) flow uses the server/client scheme where one of the RDMA
instances acts as a server for the second RDMA instance (client). The process for both RDMA
instances is non-blocking, event driven, and governed by the progress engine (PE). The connection
process is reported to both instances by callbacks which should be set
with doca_rdma_set_connection_state_callbacks().

There are four state callbacks:

Connection request callback – This function is called by doca_pe_progress() when a
connection request is received by an RDMA instance acting as server
Connection established callback – This function is called by doca_pe_progress() when a
connection is successfully established between server/client RDMA instances
Connection failure callback – This function is called by doca_pe_progress() when a
connection fails to be established between server/client RDMA instances
Connection disconnection callback – This function is called by doca_pe_progress() when a
connection disconnects either server/client RDMA instances

A typical connection flow would be as follows:

Prior to initiating a connection, the RDMA instance acting as server (i.e., RDMA server) must
start active listening for a connection from a remote RDMA peer (using RDMA CM) to
a specific port using doca_rdma_start_listen_to_port(). An RDMA server can stop listening
for a connection from a remote RDMA peer (using RDMA CM) by
using doca_rdma_stop_listen_to_port().
The RDMA CM instance acting as client (i.e., RDMA client) can now perform an RDMA
connection to the RDMA server. As first step it must create an address object by
using doca_rdma_addr_create(). The parameters to this function correspond to the RDMA
server details required to perform a connection. This object can be destroyed by
using doca_rdma_addr_destroy(), and retrieve it from a connection
with doca_rdma_connection_get_addr().
The RDMA client can set the connection user data to include in each connection
using doca_rdma_connection_set_user_data(), and retrieve it from a connection
using doca_rdma_connection_get_user_data().
The RDMA client can now perform a connection to the RDMA server
using doca_rdma_connect_to_addr(). Depending on the network topology and
configuration, the connection can be established with IPv4, IPv6, or GID.
The RDMA server receives a notification with a connection request through the previously set
connection request callback function. The RDMA server can decide to accept the connection
with doca_rdma_connection_accept() or reject the connection
with doca_rdma_connection_reject().

If the RDMA server rejects the connection or the connection cannot be successfully
established, the RDMA server and RDMA client receive a notification through the
connection failure callback function.

This connection method is not currently available for DPA/GPU data paths.

505

•

6.

1.

2.

If the RDMA server accepts the connection and the connection can be successfully
established, the RDMA server and RDMA client receive a notification through the
connection established callback function.

After the RDMA operation is complete, either side can perform the disconnection process
using doca_rdma_connection_disconnect(). The RDMA instance that did not initiate the
disconnection process receives a notification through the disconnection callback function.

14.4.7.5.4.3 Using Bridge Functions to Accept CM Connection

DOCA RDMA offers connection functionality for user RDMA CM applications acting as a server that
maintains a CM event channel and performs the listen process itself (i.e., not using DOCA RDMA
connection flow functions).

The functionality must be executed as follows:

Server user application, using RDMA CM, must create an RDMA CM event channel, start active
listening for a connection from a remote RDMA peer, and monitor the created CM event
channel. These functions are performed without the use of the DOCA RDMA connection flow
functions explained in section "Connecting Using RDMA CM Connection Flow".
Once the server user application received a connection request from a remote RDMA peer
acting as client (using RDMA CM), it can call doca_rdma_bridge_accept(). This method acts
as a bridge to accept a connection request from an application that performs the listen
process by itself. The previously explained doca_rdma_connection_accept() cannot be used
for this connection step as the user application needs to provide the RDMA CM id to accept
the connection.

The connection process involves resolving the RDMA server connection address. This process
is limited to 5 seconds by default, but it can be set using
doca_rdma_set_connection_request_timeout() and retrieved using
doca_rdma_get_connection_request_timeout().

506

3. After the server side calls doca_rdma_bridge_accept() and confirms the client connection is
successfully established, it should call doca_rdma_bridge_established() to finish the
connection process from the server side. Only after a connection is established can DOCA
RDMA tasks be allocated and submitted.

14.4.7.6 Execution Phase
This section describes execution on CPU using DOCA Core PE. For additional execution environments
refer to section "Alternative Datapath Options".

14.4.7.6.1 Tasks

DOCA RDMA exposes asynchronous tasks that leverage the DPU hardware according to the DOCA Core
architecture. See DOCA Core Task.

507

•
•

•

•

14.4.7.6.1.1 Receive Task

This task should be submitted prior to an expected submission of a send/send with immediate/write
with immediate task on the remote side.

Task Configuration

Description API to Set the Configuration API to Query Support

Enable the task doca_rdma_task_receive_set_con

f

doca_rdma_cap_task_receive_is_s

upported

Number of tasks doca_rdma_task_receive_set_con

f

–

Destination buffer list length doca_rdma_task_receive_set_dst

_buf_list_len

doca_rdma_cap_task_receive_get_

max_dst_buf_list_len

Task Input

Common input as described in DOCA Core Task.

Name Description Notes

Destination buffer Buffer pointing to a local memory
address. The data is written to the
buffer upon successful completion
of the task.

Linked list buffers are supported
The given destination buffer/list of buffers
(given in dst_buf) must have a total
length sufficient for the expected message
size or the task would fail
The destination buffer is not mandatory
and may be NULL when the requested
DOCA RDMA task on the remote side is
"write with immediate" or when the
remote side is sending an empty message,
with or without immediate (these tasks are
presented later on in the "Tasks" section)
For the DOCA RDMA receive task, the
length of each buffer is considered as the
length from the end of the data section
until the end of the buffer, as this is the
available memory that can be written to in
each buffer. The data length is increased
in each buffer if data is written to it once
the task is successfully completed.

Task Output

Most DOCA RDMA operations are not atomic and therefore it is imperative that the
application handle synchronization appropriately. Moreover, successful completion of a
write task, with or without immediate, does not guarantee data has been fully written to
the remote address.

All buffers used in DOCA RDMA tasks must remain valid until the task result is retrieved.

508

•
•

•
•

•
•

•

•
•
•

•

Common output as described in DOCA Core Task.

Name Description Notes

Result
length

The length of data
received by the task

Valid only on successful completion of the task

Result
opcode

The opcode of the
operation executed by
the peer and received
by the task

Valid only after task completion, irrespective of success

Result
immediate
data

The immediate data
received by the task

Valid only on successful completion of the task
Valid only when an immediate value was received (i.e. when the
result opcode is DOCA_RDMA_OPCODE_RECV_SEND_WITH_IMM or

DOCA_RDMA_OPCODE_RECV_WRITE_WITH_IMM) – may be retrieved

using doca_rdma_task_receive_get_result_opcode())

Task Completion Success

After the task completes successfully, the following happens:

The received data is copied to the tail segment extending the original data segment
The data length is increased by the received data length

Task Completion Failure

If the task fails midway:

If a fatal error occurs, the context is stopped, and the task should be freed by the user
If a non-fatal error occurs, the task status is updated. Some buffers may be updated and
some may remain unchanged.

Task Limitations

The operation is not atomic and therefore it is imperative that the application handle
synchronization appropriately
The destination buffer must remain valid until task is completed
The total length of the message must not exceed the max_message_size device capability
The buffer list length must not exceed the dst_buf_list_len property of the DOCA RDMA
receive task
Other limitations are described in DOCA Core Task

14.4.7.6.1.2 Send Task

This task should be submitted to transfer a message to the remote side, and while the remote side
is expecting a message and had submitted a receive task beforehand.

Task Configuration

Description API to Set the Configuration API to Query Support

Enable the task doca_rdma_task_send_set_conf doca_rdma_cap_task_send_is_supp

orted

Number of tasks doca_rdma_task_send_set_conf –

509

•
•

•

•

•

•

•
•

•

•
•
•

•

Description API to Set the Configuration API to Query Support

Source buffer list length doca_rdma_set_max_send_buf_li

st_len 2

doca_rdma_cap_get_max_send_buf_

list_len

2. This configuration affects other tasks as well.

Task Input

Common input as described in DOCA Core Task.

Name Description Notes

Source buffer Buffer pointing to a local memory
address and holds the data to be sent
to the remote peer

Linked list buffers are supported
The total length of the given source
buffer/list of buffers (in src_buf) may
not exceed the expected message size
on the remote side or the task fails
The source buffer is not mandatory and
may be NULL when wishing to send an
empty message
For the DOCA RDMA send task, the
length of each buffer is considered as
its data length

Task Output

Common output as described in DOCA Core Task.

Task Completion Success

After the task completes successfully, the following happens:

On successful completion of the task, the data in the source buffer will be sent to the remote
side.
It doesn't indicate that the data is received by the remote side.

Task Completion Failure

If the task fails midway:

If a fatal error occurs, the context is stopped, and the task should be freed by the user
If a non-fatal error occurs, the task status is updated

Task Limitations

The operation is not atomic. Therefore, it is imperative for the application to handle
synchronization appropriately.
The source buffer must remain valid until the task completes
The total length of the message must not exceed the max_message_size device capability
The buffer list length must not exceed the max_send_buf_list_len property of the DOCA
RDMA instance
Other limitations are described in DOCA Core Task

510

•
•

•

•

•

•
•

14.4.7.6.1.3 Send With Immediate Task

This task should be submitted to transfer a message to the remote side with immediate data (a 32-
bit value sent to the remote side, out-of-band), and while the remote side is expecting a message
and had submitted a receive task beforehand.

Task Configuration

Description API to Set the Configuration API to Query Support

Enable the task doca_rdma_task_send_imm_set_c

onf

doca_rdma_cap_task_send_imm_is_

supported

Number of tasks doca_rdma_task_send_imm_set_c

onf

–

Source buffer list length doca_rdma_set_max_send_buf_li

st_len 3

doca_rdma_cap_get_max_send_buf_

list_len

3. This configuration affects other tasks as well.

Task Input

Common input as described in DOCA Core Task.

Name Description Notes

Source buffer Buffer pointing to a local memory
address and holding the data to be
sent to the remote peer

Linked list buffers are supported.
The total length of the given source
buffer/list of buffers (in src_buf) may
not exceed the expected message size on
the remote side or the task fails.
The source buffer is not mandatory and
may be NULL when wishing to send an
empty message (may be relevant when
wishing to keep a connection alive)
For the DOCA RDMA send task, the length
of each buffer is considered as its data
length

Immediate data 32-bit value sent to the remote
side, out-of-band

The immediate_data field should be in
Big-Endian format. This value is received
by the remote side only once a receive
task is completed successfully.

Task Output

Common output as described in DOCA Core Task.

Task Completion Success

After the task completes successfully, the following happens:

The data in the source buffer is sent to the remote side
It does not indicate that the data is received by the remote side

511

•
•

•

•
•
•

•

Task Completion Failure

If the task fails midway:

If a fatal error occurs, the context is stopped, and the task should be freed by the user
If a non-fatal error occurs, the task status is updated

Task Limitations

The operation is not atomic. Therefore, it is imperative for the application to handle
synchronization appropriately.
The source buffer must remain valid until the task completes
The total length of the message must not exceed the max_message_size device capability
The buffer list length must not exceed the max_send_buf_list_len property of the DOCA
RDMA instance
Other limitations are described in DOCA Core Task

14.4.7.6.1.4 Read Task

This task should be submitted when wishing to read data from remote memory (i.e., the memory on
the remote side of the connection).

Task Configuration

Description API to Set the Configuration API to Query Support

Enable the task doca_rdma_task_read_set_conf doca_rdma_cap_task_read_is_sup

ported

Number of tasks doca_rdma_task_read_set_conf –

Destination buffer list length doca_rdma_set_max_send_buf_li

st_len 4

doca_rdma_cap_get_max_send_buf

_list_len

4. This configuration affects other tasks as well.

Task Input

Common input as described in DOCA Core Task.

512

•
•

•

•

•
•

•

•

•

•
•

•

•
•

Name Description Notes

Source buffer Points to a remote memory address
and holds the data to be read

Linked list buffers are not supported
The source buffer (src_buf) is not
mandatory and may be NULL when wishing
to read zero bytes (may be relevant when
wishing to keep a connection alive)
The data is read only from the data section
of the source buffer
The length of the source buffer is
considered its data length. The length of
data read from the source buffer depends
on its data length yet can not exceed the
total length of the given destination
buffer/list of buffers. That is, the actual
length read depends on the minimal length
between the source and destination.

Destination buffer Points to a local memory address.
The data is written to the buffer
upon successful completion of the
task

Linked list buffers are supported
The length of each destination buffer is
considered as the length from the end of
the data section until the end of the buffer,
as this is the available memory that can be
written to in each buffer
May be NULL if the source buffer has been
set to NULL

Task Output

Common output as described in DOCA Core Task.

Name Description Notes

Result length The length of data read by the task Valid only on successful completion of
the task

Task Completion Success

After the task completes successfully, the following happens:

The read data is appended after the data section in the destination buffer, as it was prior to
the task submission
The data length is increased by the read data length

Task Completion Failure

If the task fails midway:

If a fatal error occurs, the context is stopped, and the task should be freed by the user
If a non-fatal error occurs, the task status is updated. Some destination buffers may be
updated and some may remain unchanged.

Task Limitations

The operation is not atomic. Therefore, it is imperative for the application to handle
synchronization appropriately.
The task buffers must remain valid until task is completed
The given source buffer length must not exceed the max_message_size device capability

513

•

•

•
•

•

•

The destination buffer list length must not exceed the max_send_buf_list_len property of
the DOCA RDMA instance
Other limitations are described in DOCA Core Task

14.4.7.6.1.5 Write Task

This task should be submitted when wishing to write data to remote memory (i.e., the memory on
the remote side of the connection).

Task Configuration

Description API to Set the Configuration API to Query Support

Enable the task doca_rdma_task_write_set_conf doca_rdma_cap_task_write_is_sup

ported

Number of tasks doca_rdma_task_write_set_conf –

Source buffer list length doca_rdma_set_max_send_buf_li

st_len 5

doca_rdma_cap_get_max_send_buf_

list_len

5. This configuration affects other tasks as well.

Task Input

Common input as described in DOCA Core Task.

Name Description Notes

Source buffer Buffer pointing to a local memory
address and holding the data to be
written to the remote peer.

Linked list buffers are supported
The source buffer should point to a local
memory address from which the data
should be read. The data is read only
from the data section of the source
buffer.
The source buffer (src_buf) is not
mandatory and may be NULL when
wishing to write zero bytes (may be
relevant when wishing to keep a
connection alive)
The length of the buffer is considered as
its data length

514

•
•

•

•

•

•

•

•

•
•

•

•
•

•

•

Name Description Notes

Destination buffer Points to a remote memory address.
The data is written to the buffer
upon successful completion of the
task.

Linked list buffers are not supported
The destination buffer (dst_buf) should
point to a remote memory address
The length of the buffer is considered as
its data length
The length of the destination buffer is
considered as the length from the end of
the data section until the end of the
buffer, as this is the available memory
that can be written to
The length of data written to the
destination buffer depends on the total
length of the given source buffer/list of
buffers
May be NULL if the source buffer was set
to NULL

Task Output

Common output as described in DOCA Core Task.

Task Completion Success

After the task completes successfully, the following happens:

The written data is appended after the data section in the destination buffer, as it was prior
to the task submission.
The data length is increased by the written data length

Task Completion Failure

If the task fails midway:

If a fatal error occurs, the context is stopped, and the task should be freed by the user
If a non-fatal error occurs, the task status is updated. Some destination buffers may be
updated and some may remain unchanged.

Task Limitations

The operation is not atomic. Therefore, it is imperative for the application to handle
synchronization appropriately.
The task buffers must remain valid until task is completed
The total length of the given source buffer/list of buffers must be not exceed
the max_message_size device capability
The source buffer list length must not exceed the max_send_buf_list_len property of the
DOCA RDMA instance
Other limitations are described in DOCA Core Task

14.4.7.6.1.6 Write With Immediate Task

This task should be submitted when wishing to write data to remote memory (i.e., the memory on
the remote side of the connection).

Task Configuration

515

•
•

•

•

•
•

•

•

•

•

•
•

Description API to Set the Configuration API to Query Support

Enable the task doca_rdma_task_write_imm_set_

conf

doca_rdma_cap_task_write_imm_is

_supported

Number of tasks doca_rdma_task_write_imm_set_

conf

–

Source buffer list length doca_rdma_set_max_send_buf_li

st_len 6

doca_rdma_cap_get_max_send_buf_

list_len

6. This configuration affects other tasks as well.

Task Input

Common input as described in DOCA Core Task.

Name Description Notes

Source buffer Buffer pointing to a local memory
address and holding the data to be
written to the remote peer

Linked list buffers are supported
The source buffer should point to a local
memory address from which the data
should be read. The data is read only
from the data section of the source
buffer.
The source buffer (src_buf) is not
mandatory and may be NULL when
wishing to write zero bytes
The length of the buffer is considered as
its data length

Destination buffer Points to a remote memory address.
The data is written to the buffer
upon successful completion of the
task.

Linked list buffers are not supported
The destination buffer (dst_buf) should
point to a remote memory address
The length of the buffer is considered as
its data length
The length of the destination buffer is
considered as the length from the end of
the data section until the end of the
buffer, as this is the available memory
that can be written to
The length of data written to the
destination buffer depends on the total
length of the given source buffer/list of
buffers
May be NULL if the source buffer was set
to NULL

Immediate data 32-bit value sent to the remote side,
out-of-band

Should be in a Big-Endian format
Value is received by the remote side only
once a receive task completes
successfully

Task Output

Common output as described in DOCA Core Task.

Task Completion Success

516

•

•

•
•

•

•
•

•

•

A write with immediate task succeeds only if the remote side is expecting the immediate and had
submitted a receive task beforehand.

After the task completes successfully, the following happens:

The written data is appended after the data section in the destination buffer, as it was prior
to the task submission
The data length is increased by the written data length.

Task Completion Failure

If the task fails midway:

If a fatal error occurs, the context is stopped, and the task should be freed by the user
If a non-fatal error occurs, the task status is updated. Some destination buffers may be
updated and some may remain unchanged.

Task Limitations

The operation is not atomic. Therefore, it is imperative for the application to handle
synchronization appropriately.
The tasks buffers must remain valid until task is completed
The total length of the given source buffer/list of buffers must be not exceed
the max_message_size device capability
The source buffer list length must not exceed the max_send_buf_list_len property of the
DOCA RDMA instance
Other limitations are described in DOCA Core Task

14.4.7.6.1.7 Atomic Compare and Swap Task

This task should be submitted when wishing to execute an 8-byte atomic read-modify-
write operation on the remote memory (i.e., the memory on the remote side of the connection), in
which the remote value is retrieved and updated if it is equal to a given value.

Task Configuration

Description API to Set the Configuration API to Query Support

Enable the task doca_rdma_task_atomic_cmp_swp_s

et_conf

doca_rdma_cap_task_atomic_cmp_swp

_is_supported

Number of tasks doca_rdma_task_atomic_cmp_swp_s

et_conf

–

Task Input

Common input as described in DOCA Core Task.

517

•
•

•

•

•
•

•

•
•

•

•
•

Name Description Notes

Destination buffer Buffer pointing to a remote memory
address

Linked list buffers are not supported
The destination buffer's data section
must begin in a memory address
aligned to 8-bytes
Only the first 8-bytes following the
data address are considered for
atomic operations

Compare data 64-bit value to be compared with the
value in the destination buffer

Swap data 64-bit value to be swapped with the
value in the destination buffer

The value in the destination buffer is
only swapped if the compared data
value is equal to the value in the
destination buffer. Otherwise, the
destination buffer remains
unchanged.

Result buffer Buffer pointing to a local memory
address. The original value of the
destination buffer (before executing the
atomic operation) is written to the
buffer upon success.

Linked list buffers are not supported
The result is written to the first 8-
bytes following the data address

Task Output

Common output as described in DOCA Core Task.

Task Completion Success

After the task completes successfully, the following happens:

If the compared values are equal, the value in the destination is swapped with the 64-bit
value in the task's swap data field (swap_data)
If the compared values are not equal, the value in the destination value remains unchanged
The original value of the destination buffer (before executing the atomic operation) is
written to the result buffer

Task Completion Failure

If the task fails midway:

The context is stopped, and the task should be freed by the user

Task Limitations

Task buffers must remain valid until task is completed
Other limitations are described in DOCA Core Task

14.4.7.6.1.8 Atomic Fetch and Add Task

This task should be submitted when wishing to execute an 8-byte atomic read-modify-write
operation on the remote memory (i.e., the memory on the remote side of the connection), in which
the remote value is retrieved and increased by a given value.

Task Configuration

518

•

•

•

•

•

•
•

•

•
•

Description API to Set the Configuration API to Query Support

Enable the task doca_rdma_task_atomic_fetch_add

_set_conf

doca_rdma_cap_task_atomic_fetch_a

dd_is_supported

Number of tasks doca_rdma_task_atomic_fetch_add

_set_conf

–

Task Input

Common input as described in DOCA Core Task.

Name Description Notes

Destination buffer Buffer that points to a remote memory
address

Linked list buffers are not
supported
The destination buffer's data
section must begin in a memory
address aligned to 8-bytes
Only the first 8-bytes following the
data address are considered for
atomic operations

Add data 64-bit value to be added to the value in
the destination buffer

Result buffer Buffer pointing to a local memory
address. The original value of the
destination buffer (before executing the
atomic operation) is written to the buffer
upon success.

Linked list buffers are not
supported
The result is written to the first 8-
bytes following the data address

Task Output

Common output as described in DOCA Core Task.

Task Completion Success

After the task completes successfully, the following happens:

The value in the destination is increased by the 64-bit value in the task's add data field
The original value of the destination buffer (before executing the atomic operation) is
written to the result buffer

Task Completion Failure

If the task fails midway:

The context is stopped, and the task should be freed by the user

Task Limitations

Task buffers must remain valid until task is completed
Other limitations are described in DOCA Core Task

14.4.7.6.1.9 Get Remote Sync Event Task

This task should be submitted when wishing to get the value of a remote sync event.

519

•
•

•

•

•
•

Task Configuration

Description API to Set the Configuration API to Query Support

Enable the task doca_rdma_task_remote_net_sync

_event_get_set_conf

doca_rdma_cap_task_remote_net_

sync_event_get_is_supported

Number of tasks doca_rdma_task_remote_net_sync

_event_get_set_conf

–

Destination buffer list length doca_rdma_set_max_send_buf_lis

t_len 7

doca_rdma_cap_get_max_send_buf

_list_len

7. This configuration affects other tasks as well.

Task Input

Common input as described in DOCA Core Task.

Name Description Notes

Sync Event The remote DOCA Sync Event to get
its value

Destination buffer Points to a local memory address.
The Sync Event value is written to
the buffer upon successful
completion of the task.

Linked list buffers are supported
The length of the each buffer is
considered as the length from the end of
the data section until the end of the
buffer, as this is the available memory
that can be written to in each buffer

Task Output

Common output as described in DOCA Core Task.

Name Description Notes

Result length The length of data received by the
task

Valid only on successful completion of
the task

Task Completion Success

After the task completes successfully, the following happens:

The remote Sync Event value is appended after the data section in the destination buffer, as
it was prior to the task submission
The data length is increased by the retrieved data length

Task Completion Failure

If the task fails midway:

If a fatal error occurs, the context is stopped, and the task should be freed by the user
If a non-fatal error occurs, the task status is updated. Some destination buffers may be
updated and some may remain unchanged.

Task Limitations

520

•

•
•

•

•
•

•

The operation is not atomic. Therefore, it is imperative for the application to handle
synchronization appropriately.
The destination buffer must remain valid until the task is completed
The destination buffer list length must not exceed the max_send_buf_list_len property of
the DOCA RDMA instance
Other limitations are described in DOCA Core Task

14.4.7.6.1.10 Set Remote Sync Event Task

This task should be submitted when wishing to set a remote sync event to a given value.

Task Configuration

Description API to Set the Configuration API to Query Support

Enable the task doca_rdma_task_remote_net_sync

_event_notify_set_set_conf

doca_rdma_cap_task_remote_net_sy

nc_event_notify_set_is_supported

Number of tasks doca_rdma_task_remote_net_sync

_event_notify_set_set_conf

–

Source buffer list length doca_rdma_set_max_send_buf_lis

t_len 8

doca_rdma_cap_get_max_send_buf_l

ist_len

8. This configuration affects other tasks as well.

Task Input

Common input as described in DOCA Core Task.

Name Description Notes

Source buffer Points to a local memory address
from which the Sync Event should
be retrieved

Linked list buffers are supported
The data is retrieved only from the buffer
data section, until 8-bytes
The length of the source buffer is
considered its data length. The length of
data retrieved from the source buffer will
not exceed the Sync Event value length (8-
bytes). Thus, the actual length retrieved
depends on the minimal length between
the source buffer and Sync Event value
length.

Sync Event The remote DOCA Sync Event to get
its value

Task Output

Common output as described in DOCA Core Task.

Task Completion Success

After the task completes successfully, the following happens:

521

•

•
•

•

•
•

•

•

•

The remote sync event value is set to the data in the source buffer

Task Completion Failure

If the task fails midway:

If a fatal error occurs, the context is stopped, and the task should be freed by the user
If a non-fatal error occurs, the task status is updated, and the Sync Event value is undefined

Task Limitations

The operation is not atomic. Therefore, it is imperative for the application to handle
synchronization appropriately.
The source buffer must remain valid until the task completes
The source buffer list length must not exceed the max_send_buf_list_len property of the
DOCA RDMA instance
Other limitations are described in DOCA Core Task

14.4.7.6.1.11 Add Remote Sync Event Task

This task should be submitted when wishing to atomically increase a remote sync event by a given
value.

Task Configuration

Description API to Set the Configuration API to Query Support

Enable the task doca_rdma_task_remote_net_sync_e

vent_notify_add_set_conf

doca_rdma_cap_task_remote_net_syn

c_event_notify_add_is_supported

Number of tasks doca_rdma_task_remote_net_sync_e

vent_notify_add_set_conf

–

Task Input

Common input as described in DOCA Core Task.

Name Description Notes

Sync event A remote Sync Event

Add data 64-bit value that is added to the Sync Event
value

Result buffer Buffer pointing to a local memory address.
The original Sync Event value of the
destination buffer (before executing the
atomic operation) is written to the buffer
upon success.

Linked list buffers are not
supported
The result is written to the first 8-
bytes following the data address

Task Output

Common output as described in DOCA Core Task.

Task Completion Success

522

•

•

•

•
•

•
•

•
•

After the task completes successfully, the following happens:

The value of the remote sync event is increased by the 64-bit value in the task's add data
field
The original value of the remote sync event (before executing the operation) is written to the
result buffer

Task Completion Failure

If the task fails midway:

The context is stopped, and the task should be freed by the user

Task Limitations

Result buffer must remain valid until task is completed
Other limitations are described in DOCA Core Task

14.4.7.6.2 Events

DOCA RDMA exposes asynchronous events to notify about changes that happen unexpectedly,
according to DOCA Core architecture.

The only event DOCA RDMA exposes is common events as described in DOCA Core Event.

14.4.7.7 State Machine
The DOCA RDMA library follows the Context state machine as described in DOCA Core Context State
Machine.

The following section describes how to move states and what is allowed in each state.

14.4.7.7.1 Idle

In this state, it is expected that application either:

Destroys the context
Starts the context

Allowed operations:

Configuring the context according to section "Configurations"
Starting the context

It is possible to reach this state as follows:

Previous State Transition Action

N/A Create the context

Running Call stop after making sure all tasks have been freed

Stopping Call progress until all tasks are completed and freed

523

1.

2.

3.

4.

5.
6.

•
•
•
•

1.
2.
3.

•

14.4.7.7.2 Starting

This state cannot be reached.

14.4.7.7.3 Running

In this state, it is expected that application:

Connects the RDMA instances on both peers. Refer to section "Establishing RDMA Connections"
for more information.
Performs an RDMA instance disconnection process if the connection was established using the
RDMA CM flow. Refer to section "Connecting Using RDMA CM Connection Flow" for more
information.
Performs a new connection of the RDMA instances on both peers after an RDMA instance
disconnection process if the connection was established using the RDMA CM flow. Refer to
section "Connecting Using RDMA CM Connection Flow" for more information.
Accepts and indicates an established RDMA connection if the listening and CM channel
monitoring was done by the user application. Refer to section "Connecting Using RDMA CM
Connection Flow" for more information.
Allocates and submits tasks.
Calls progress to complete tasks and/or receive events.

Allowed operations:

Performing a connection between 2 peers
Allocating previously configured task
Submitting an allocated task
Calling stop

It is possible to reach this state as follows:

Previous State Transition Action

Idle Call start after configuration

14.4.7.7.4 Stopping

In this state, it is expected that application:

Calls progress to complete all inflight tasks (tasks complete with failure)
Frees any completed tasks
Performs an RDMA instance disconnection process if the connection was established using the
RDMA CM flow. Refer to section "Connecting Using RDMA CM Connection Flow" for more
information.

Allowed operations:

Call progress

It is possible to reach this state as follows:

524

1.

2.

3.

1.

2.

3.

Previous State Transition Action

Running Call progress and fatal error occurs

Running Call stop without freeing all tasks

14.4.7.8 Alternative Datapath Options
DOCA RDMA allows data path to be run on DPA or GPU.

14.4.7.8.1 DPA Datapath

DOCA offers the DOCA DPA library which provides a programming model for offloading
communication-centric user code to run on the DPA processor on the BlueField DPU. For additional
information on the DOCA DPA library.

The user can choose to run an RDMA operation on the DPA datapath by configuring the DOCA RDMA
context used by the application in the following manner:

Obtain DOCA CTX by calling doca_rdma_as_ctx() .

Set the datapath of the context to DPA by calling doca_ctx_set_datapath_on_dpa() . For
additional information, refer to DOCA Core Alternative Data Path.
Finish context configuration and start the context by calling doca_ctx_start() . For
additional information, refer to DOCA Context.

After configuring the datapath, the user can obtain a DPA handle for the DOCA RDMA context by
calling doca_rdma_get_dpa_handle() .

The DPA handle can be used by the DOCA DPA library for datapath operations. For additional
information, refer to DOCA DPA Communication Model.

14.4.7.8.2 GPU Datapath

DOCA offers the DOCA GPUNetIO library which provides a programming model for offloading the
orchestration of the communication to a GPU CUDA kernel. For additional information on the DOCA
GPUNetIO library.

The user can choose to run an RDMA operation on the GPU datapath by configuring the DOCA RDMA
context used by the application in the following manner:

Obtain DOCA CTX by calling doca_rdma_as_ctx() .

Set the datapath of the context to GPU by calling doca_ctx_set_datapath_on_gpu() . For
additional information, refer to DOCA Core Alternative Data Path.
Finish context configuration and start the context by calling doca_ctx_start() . For
additional information, refer to DOCA Core Context.

After configuring the datapath, the user can obtain a GPU handle for the DOCA RDMA context by
calling doca_rdma_get_gpu_handle() .

DOCA RDMA on DPA datapath supports local networks only (i.e., cross-network or routing is
not supported).

525

1.
•

•

2.

3.
•

•

The GPU handle must be passed to a GPU CUDA kernel so the DOCA GPUNetIO CUDA device functions
can execute datapath operations. For additional information, refer to DOCA GPUNetIO device
functions.

14.4.7.9 DOCA RDMA Samples
These samples illustrate how to use the DOCA RDMA API to execute DOCA RDMA operations.

14.4.7.9.1 Running the Samples
Refer to the following documents:

NVIDIA DOCA Installation Guide for Linux for details on how to install BlueField-related
software.
NVIDIA DOCA Troubleshooting Guide for any issue you may encounter with the
installation, compilation, or execution of DOCA samples.

To build a given sample:

cd /opt/mellanox/doca/samples/doca_rdma/<sample_name>
meson /tmp/build
ninja -C /tmp/build

Sample usage:
Common arguments

Argument Description

-d , --device IB device name (optional). If not provided, a random IB
device is assigned.

-ld , --local-descriptor-path Local descriptor file path that includes the local
connection information to be copied to the remote
program

-re , --remote-descriptor-path Remote descriptor file path that includes the remote
connection information to be copied from the remote
program

-m , --mmap-descriptor-path Remote descriptor file path that includes the remote
mmap connection information to be copied from the
remote program

-g , --gid-index GID index for DOCA RDMA (optional)

Sample-specific arguments

All the DOCA samples described in this section are governed under the BSD-3 software
license agreement.

The binary doca_<sample_name> is created under /tmp/build/ .

526

4.

1.
a.

b.

c.
d.

e.
2.

a.
i.
ii.

1.
a.
b.
c.

Sample Argument Description

RDMA Read Responder -r , --read-string String to read (optional). If not
provided, "Hi DOCA RDMA!" is defined.

RDMA Send
RDMA Send Immediate

-s , --send-string

RDMA Write Requester
RDMA Write Immediate
Requester

-w , --write-string

For additional information per sample, use the -h option:

/tmp/build/<sample_name> -h

14.4.7.9.2 Samples

Each sample presents a connection between two peers, transferring data from one to another, using
a different RDMA operation in each sample. For more information on the available RDMA operations,
refer to section "Tasks".

Each sample is comprised of two executables, each running on a peer.

The samples can run on either DPU or host, as long as the chosen peers have a connection between
them.

Most of the samples follow the following main basic steps:

Allocating resources:
Locating and opening a device. The chosen device is one that supports the tasks
relevant for the sample. If the sample requires no task, any device may be chosen.
Creating a local MMAP and configuring it (including setting the MMAP memory range
and relevant permissions)
Creating a DOCA PE
Creating an RDMA instance and configuring it (including setting the relevant
permissions)
Connecting the RDMA context to the PE

Sample-specific configurations:
Configuring the tasks relevant to the sample, if any. Including:

Setting the number of tasks for each task type.
Setting callback functions for each task type, with the following logic:

Successful completion callback:
Verifying the data received from the remote, if any, is valid.
Printing the transferred data.
Freeing the task and task-specific resources (such as source/
destination buffers).

Prior to running the samples, ensure that the chosen devices, selected by the device name
and the GID index, are set correctly and have a connection between one another. In each
sample, it is the user's responsibility to copy the descriptors between the peers.

527

d.

e.

2.
a.

b.

c.

b.
•

•

•

•
a.

b.
c.

d.
•
•

1.
2.

3.
4.

If an error occurs in steps a. and b., update the error that was
encountered.

Decreasing the number of remaining tasks and stopping the context
once it reaches 0.

Failed completion callback:
Update the error that was encountered.

Freeing the task and task-specific resources (such as source/
destination buffers).
Decreasing the number of remaining tasks and stopping the context
once it reaches 0.

Setting a state change callback function, with the following logic:
Once the context moves to Starting state (can only be reached from Idle),
export and connect the RDMA and, in some samples, export the local mmap or
the sync event.

Once the context moves to Running state (can only be reached from Starting
state in RDMA samples):

In some samples, only print a log and wait for the peer, or synchronize
events
In other samples, prepare and submit a task:

If needed, create an mmap from the received exported mmap
descriptor, passed from the peer.
Request the required buffers from the buffer inventory.
Allocate and initiate the required task, together with setting the
number of remaining tasks parameter as the task's user data.
Submit the task.

Once the context moves to Stopping state, print a relevant log.
Once the context moves to Idle state:

Print a relevant log.
Send update that the main loop may be stopped.

Setting the program's resources as the context user data to be used in callbacks.
Creating a buffer inventory and starting it.

If the context is not in idle sate, only the first error in the
flow is saved.

If the context is not in idle sate, only the first error in the
flow is saved.

During this step, the user is responsible for copying the descriptors
between the two peers.

The descriptors are to be read and used only by the peer, using the
relevant DOCA functions (the descriptors contain encoded data).

528

5.

6.

7.

1.
2.
3.

4.
5.

•

•

•

1.

2.

3.

4.

Starting the context.

Progressing the PE until the context returns to Idle state and the main loop may be stooped,
either because of a run in which all tasks have been completed, or due to a fatal error.
Cleaning up the resources.

14.4.7.9.2.1 RDMA Read

RDMA Read Requester

This sample illustrates how to read from a remote peer (the responder) using DOCA RDMA.

The sample logic is as presented in the General Sample Steps, with attention to the following:

The permissions for the local mmap in this sample are set to local read and write.
A read task is configured for this sample.
In this sample, data is read from the peer, verified to be valid, and printed in the successful
task completion callback.
The local mmap is not exported as the peer does not intend to access it.
To read from the peer, a remote mmap is created from the peer's exported mmap.

Reference:

/opt/mellanox/doca/samples/doca_rdma/rdma_read_requester/

rdma_read_requester_sample.c

/opt/mellanox/doca/samples/doca_rdma/rdma_read_requester/

rdma_read_requester_main.c

/opt/mellanox/doca/samples/doca_rdma/rdma_read_requester/meson.build

RDMA Read Responder

This sample illustrates how to set up a remote peer for a DOCA RDMA read request.

The sample logic is as presented in the General Sample Steps, with attention to the following:

The permissions for both the local mmap and the RDMA instance in this sample allow for
RDMA read.
No tasks are configured for this sample, and thus no tasks are prepared and submitted, nor
are there task completion callbacks.
The local mmap is exported to the remote memory to allow it to be used by the peer for
RDMA read.
No remote mmap is created as there is no intention to access the remote memory in this
sample.

Reference:

After starting the context, the state change callback function is called by the PE
which executes the relevant steps.

In a successful run, each section is executed in the order they are presented in
section 2.b.

529

•

•

•

1.
2.
3.

4.
5.

•

•

•

1.

2.

3.

4.

•

/opt/mellanox/doca/samples/doca_rdma/rdma_read_responder/

rdma_read_responder_sample.c

/opt/mellanox/doca/samples/doca_rdma/rdma_read_responder/

rdma_read_responder_main.c

/opt/mellanox/doca/samples/doca_rdma/rdma_read_responder/meson.build

14.4.7.9.2.2 RDMA Write

RDMA Write Requester

This sample illustrates how to write to a remote peer (the responder) using DOCA RDMA.

The sample logic is as presented in the General Sample Steps, with attention to the following:

The permissions for the local mmap in this sample are set to local read and write.
A write task is configured for this sample.
In this sample, data is written to the peer and printed in the successful task completion
callback.
The local mmap is not exported as the peer does not intend to access it.
To write to the peer, a remote mmap is created from the peer's exported mmap.

Reference:

/opt/mellanox/doca/samples/doca_rdma/rdma_write_requester/

rdma_write_requester_sample.c

/opt/mellanox/doca/samples/doca_rdma/rdma_write_requester/

rdma_write_requester_main.c

/opt/mellanox/doca/samples/doca_rdma/rdma_write_requester/meson.build

RDMA Write Responder

This sample illustrates how to set up a remote peer for a DOCA RDMA write request.

The sample logic is as presented in the General Sample Steps, with attention to the following:

The permissions for both the local mmap and the RDMA instance in this sample allow for
RDMA write.
No tasks are configured for this sample, and thus no tasks are prepared and submitted, nor
are there task completion callbacks. In this sample, the data written to the memory of the
responder is printed once the context state is changed to Running, using the state change
callback. This is done only after receiving input from the user, indicating that the requester
had finished writing.
The local mmap is exported to the remote memory to allow it to be used by the peer for
RDMA write.
No remote mmap is created as there is no intention to access the remote memory in this
sample.

Reference:

/opt/mellanox/doca/samples/doca_rdma/rdma_write_responder/

rdma_write_responder_sample.c

530

•

•

1.
2.
3.

4.
5.

•

•

•

1.

2.

3.
a.

b.

4.

5.

/opt/mellanox/doca/samples/doca_rdma/rdma_write_responder/

rdma_write_responder_main.c

/opt/mellanox/doca/samples/doca_rdma/rdma_write_responder/meson.build

14.4.7.9.2.3 RDMA Write Immediate

RDMA Write Immediate Requester

This sample illustrates how to write to a remote peer (the responder) using DOCA RDMA along with a
32-bit immediate value which is sent OOB.

The sample logic is as presented in the General Sample Steps, with attention to the following:

The permissions for the local mmap in this sample is set to local read and write.
A write with immediate task is configured for this sample.
In this sample, data is written to the peer and printed in the successful task completion
callback.
The local mmap is not exported as the peer does not intend to access it.
To write to the peer, a remote mmap is created from the peer's exported mmap.

Reference:

/opt/mellanox/doca/samples/doca_rdma/rdma_write_immediate_requester/

rdma_write_immediate_requester_sample.c

/opt/mellanox/doca/samples/doca_rdma/rdma_write_immediate_requester/

rdma_write_immediate_requester_main.c

/opt/mellanox/doca/samples/doca_rdma/rdma_write_immediate_requester/

meson.build

RDMA Write Immediate Responder

This sample illustrates how the set up a remote peer for a DOCA RDMA write request whilst receiving
a 32-bit immediate value from the peer's OOB.

The sample logic is as presented in the General Sample Steps, with attention to the following:

The permissions for both the local mmap and the RDMA instance in this sample allow for
RDMA write.
A receive task is configured for this sample to retrieve the immediate value. Failing to submit
a receive task prior to the write with immediate task results in a fatal failure.
In this sample, the successful task completion callback also includes:

Checking the result opcode, to verify that the receive task has completed after
receiving a write with immediate request.
Verifying the data written to the memory of the responder is valid and printing it,
along with the immediate data received.

The local mmap is exported to the remote memory, to allow it to be used by the peer for
RDMA write.
No remote mmap is created as there is no intention to access the remote memory in this
sample.

Reference:

531

•

•

•

1.
2.
3.

4.
5.

•

•

•

1.
2.

3.

4.
5.

•

•

•

/opt/mellanox/doca/samples/doca_rdma/rdma_write_immediate_responder/

rdma_write_immediate_responder_sample.c

/opt/mellanox/doca/samples/doca_rdma/rdma_write_immediate_responder/

rdma_write_immediate_responder_main.c

/opt/mellanox/doca/samples/doca_rdma/rdma_write_immediate_responder/

meson.build

14.4.7.9.2.4 RDMA Send and Receive

RDMA Send

This sample illustrates how to send a message to a remote peer using DOCA RDMA.

The sample logic is as presented in the General Sample Steps, with attention to the following:

The permissions for the local mmap in this sample is set to local read and write.
A send task is configured for this sample.
In this sample, the data sent is printed during the task preparation, not in the successful task
completion callback.
The local mmap is not exported as the peer does not intend to access it.
No remote mmap is created as there is no intention to access the remote memory in this
sample.

Reference:

/opt/mellanox/doca/samples/doca_rdma/rdma_send/rdma_send_sample.c

/opt/mellanox/doca/samples/doca_rdma/rdma_send/rdma_send_main.c

/opt/mellanox/doca/samples/doca_rdma/rdma_send/meson.build

RDMA Receive

This sample illustrates how the remote peer can receive a message sent by the peer (the sender).

The sample logic is as presented in the General Sample Steps, with attention to the following:

The permissions for the local mmap in this sample is set to local read and write.
A receive task is configured for this sample to retrieve the sent data. Failing to submit a
receive task prior to the send task results in a fatal failure.
In this sample, data is received from the peer verified to be valid and printed in the
successful task completion callback.
The local mmap is not exported as the peer does not intend to access it.
No remote mmap is created as there is no intention to access the remote memory in this
sample.

Reference:

/opt/mellanox/doca/samples/doca_rdma/rdma_receive/rdma_receive_sample.c

/opt/mellanox/doca/samples/doca_rdma/rdma_receive/rdma_receive_main.c

/opt/mellanox/doca/samples/doca_rdma/rdma_receive/meson.build

532

1.
2.
3.

4.
5.

•

•

•

1.
2.

3.
a.

b.

4.

5.
6.

•

14.4.7.9.2.5 RDMA Send and Receive with Immediate

RDMA Send with Immediate

This sample illustrates how to send a message to a remote peer using DOCA RDMA along with a 32-
bit immediate value which is sent OOB.

The sample logic is as presented in the General Sample Steps, with attention to the following:

The permissions for the local mmap in this sample is set to local read and write.
A send with immediate task is configured for this sample.
In this sample, the data sent is printed during the task preparation, not in the successful task
completion callback.
The local mmap is not exported as the peer does not intend to access it.
No remote mmap is created as there is no intention to access the remote memory in this
sample.

Reference:

/opt/mellanox/doca/samples/doca_rdma/rdma_send_immediate/

rdma_send_immediate_sample.c

/opt/mellanox/doca/samples/doca_rdma/rdma_send_immediate/

rdma_send_immediate_main.c

/opt/mellanox/doca/samples/doca_rdma/rdma_send_immediate/meson.build

RDMA Receive with Immediate

This sample illustrates how the remote peer can receive a message sent by the peer (the sender)
while also receiving a 32-bit immediate value from the peer's OOB.

The sample logic is as presented in the General Sample Steps, with attention to the following:

The permissions for the local mmap in this sample is set to local read and write.
A receive task is configured for this sample to retrieve the sent data and the immediate
value. Failing to submit a receive task prior to the send with immediate task results in a fatal
failure.
In this sample, the successful task completion callback also includes:

Checking the result opcode, to verify that the receive task has completed after
receiving a sent message with an immediate.
Verifying the data received from the peer is valid and printing it along with the
immediate data received.

In this sample, data is received from the peer verified to be valid and printed in the
successful task completion callback.
The local mmap is not exported as the peer does not intend to access it.
No remote mmap is created as there is no intention to access the remote memory in this
sample.

Reference:

/opt/mellanox/doca/samples/doca_rdma/rdma_receive_immediate/

rdma_receive_immediate_sample.c

533

•

•

1.
2.

•
i.

ii.
1.
2.

•

3.
•

i.

ii.

1.
2.
3.

•

4.
5.

6.

7.

8.

•

/opt/mellanox/doca/samples/doca_rdma/rdma_receive_immediate/

rdma_receive_immediate_main.c

/opt/mellanox/doca/samples/doca_rdma/rdma_receive_immediate/meson.build

14.4.7.9.2.6 RDMA Remote Sync Event

This sample illustrates how to synchronize between local sync event and a remote sync event DOCA
RDMA.

RDMA Remote Sync Event Requester

The sample logic is as presented in the General Sample Steps, with attention to the following:

The permissions for the local mmap in this sample is set to local read and write.
A "remote net sync event notify set" task is configured for this sample.

For this task, the successful task completion callback has the following logic:
Printing an info log saying the task was successfully completed and a specific
successful completion log for the task.
Decreasing the number of remaining tasks. Once 0 is reached:

Freeing the task and task-specific resources.
Stopping the context.

For this task, the failed task completion callback stops the context even when the
number of remaining tasks is different than 0 (since the synchronization between the
peers would fail).

A "remote net sync event get" task is configured for this sample.
For this task, the successful task completion callback also includes:

Resubmitting the task, until a value greater than or equal to the expected value
is retrieved.
Once such value is retrieved, submitting a "remote net sync event notify set"
task to signal sample completion, including:

Updating the successful completion message accordingly.
Increasing the number of submitted tasks.
If an error was encountered, and the "remote net sync event notify set"
task was not submitted, the task and task resources are freed.

For this task, the failed task completion callback also includes freeing the "remote net
sync event notify set" task and task resources.

The local mmap is not exported as the peer does not intend to access it.
No remote mmap is created as there is no intention to access the remote memory in this
sample.
To synchronize events with the peer, a sync event remote net is created from the peer's
exported sync event.
Both tasks are prepared and submitted in the state change callback, once the context moves
from starting to running.
The user data of the "remote net sync event get" task points to the "remote net sync event
notify set" task.

Reference:

/opt/mellanox/doca/samples/doca_rdma/rdma_sync_event_requester/

rdma_sync_event_requester_sample.c

534

•

•

1.
2.

3.

a.
b.
c.

•

•

•

/opt/mellanox/doca/samples/doca_rdma/rdma_sync_event_requester/

rdma_sync_event_requester_main.c

/opt/mellanox/doca/samples/doca_rdma/rdma_sync_event_requester/meson.build

RDMA Remote Sync Event Responder

The sample logic is as presented in the General Sample Steps, with attention to the following:

The permissions for the local mmap in this sample is set to local read and write.
This sample includes creating a local sync event and exporting it to the remote memory to
allow the peer to create a remote handle.
No tasks are configured for this sample, and thus no tasks are prepared and submitted, nor
are there task completion callbacks. In this sample, the following steps are executed once
the context moves from starting to running, using the state change callback:

Waiting for the sync event to be signaled from the remote side.
Notifying the sync event from the local side.
Waiting for completion notification from the remote side.

Reference:

/opt/mellanox/doca/samples/doca_rdma/rdma_sync_event_responder/

rdma_sync_event_responder_sample.c

/opt/mellanox/doca/samples/doca_rdma/rdma_sync_event_responder/

rdma_sync_event_responder_main.c

/opt/mellanox/doca/samples/doca_rdma/rdma_sync_event_responder/meson.build

14.4.8 DOCA Ethernet
This guide provides an overview and configuration instructions for the DOCA ETH API.

14.4.8.1 Introduction

DOCA ETH comprises of two APIs, DOCA ETH RXQ and DOCA ETH TXQ. The control path is always
handled on the host/DPU CPU side by the library. The datapath can be managed either on the CPU
by the DOCA ETH library or on the GPU by the GPUNetIO library.

DOCA ETH RXQ is an RX queue. It defines a queue for receiving packets. It also supports receiving
Ethernet packets on any memory mapped by doca_mmap .

The memory location to which packets are scattered is agnostic to the processor which manages the
datapath (CPU/DPU/GPU). For example, the datapath may be managed on the CPU while packets
are scattered to GPU memory.

DOCA ETH TXQ is an TX queue. It defines a queue for sending packets. It also supports sending
Ethernet packets from any memory mapped by doca_mmap .

To free the CPU from managing the datapath, the user can choose to manage the datapath from the
GPU. In this mode of operation, the library collects user configurations and creates a receive/send

The DOCA Ethernet library is supported at alpha level.

535

•
•
•
•
•
•
•

•

•

•

•

•

•

•

queue object on the GPU memory (using the DOCA GPU sub-device) and coordinates with the
network card (NIC) to interact with the GPU processor.

14.4.8.2 Prerequisites
This library follows the architecture of a DOCA Core Context. It is recommended to read the
following sections:

DOCA Core Execution Model
DOCA Core Device
DOCA Core Memory Subsystem
DOCA Flow Programming Guide
OpenvSwitch Offload
BlueField DPU Scalable Function (for using SF on DPU)
DOCA GPUNetIO (for GPU datapath)

14.4.8.3 Changes From Previous Releases

14.4.8.3.1 Changes in 2.8.0

The following subsection(s) detail the doca_eth library updates in version 2.8.0.

14.4.8.3.1.1 Added
doca_error_t doca_eth_rxq_set_notification_moderation(struct doca_eth_rxq

*eth_rxq, uint16_t period_usec, uint16_t comp_count)

doca_error_t doca_eth_txq_task_send_num_expand(struct doca_eth_txq *eth_txq,

uint32_t task_send_num)

doca_error_t doca_eth_txq_task_lso_send_num_expand(struct doca_eth_txq

*eth_txq, uint32_t task_lso_send_num)

doca_error_t doca_eth_txq_task_batch_send_num_expand(struct doca_eth_txq

*eth_txq, uint16_t task_batches_num)

doca_error_t doca_eth_txq_task_batch_lso_send_num_expand(struct doca_eth_txq

*eth_txq, uint16_t task_batches_num)

14.4.8.3.1.2 Changed
doca_eth_rxq_task_recv_allocate_init(struct doca_eth_rxq *eth_rxq, union

doca_data user_data, struct doca_buf *pkt, struct doca_eth_rxq_task_recv

**task_recv)

→ doca_eth_rxq_task_recv_allocate_init(struct doca_eth_rxq *eth_rxq,

struct doca_buf *pkt, union doca_data user_data, struct

doca_eth_rxq_task_recv **task_recv)

https://confluence.nvidia.com/display/doca250/NVIDIA+BlueField+DPU+Scalable+Function+User+Guide

536

•
•

•

•
•
•

14.4.8.4 Environment
DOCA ETH based applications can run either on the Linux host machine or on the NVIDIA®
BlueField® DPU target. The following is required:

Applications should run with root privileges
To run DOCA ETH on the DPU, applications must supply the library with SFs as a doca_dev .
See OpenvSwitch Offload and BlueField DPU Scalable Function to see how to create SFs and
connect them to the appropriate ports.
Applications need to use DOCA Flow to forward incoming traffic to DOCA ETH RXQ's queue.
See DOCA Flow and DOCA ETH RXQ samples for reference.

14.4.8.5 Architecture
DOCA ETH is comprised of two parts: DOCA ETH RXQ and DOCA ETH TXQ.

14.4.8.5.1 DOCA ETH RXQ

14.4.8.5.1.1 Operating Modes

DOCA ETH RXQ can operate in the three modes, each exposing a slightly different control/datapath.

Regular Receive

In this mode, the received packet buffers are managed by the user. To receive a packet, the user
should submit a receive task containing a doca_buf to write the packet into.

The application uses this mode if it wants to:

Run on CPU
Manage the memory of received packet and the packet's exact place in memory
Forward the received packets to other DOCA libraries

Make sure the system has free huge pages for DOCA Flow.

This mode is supported only for CPU datapath.

https://confluence.nvidia.com/display/docadev/NVIDIA+BlueField+DPU+Scalable+Function+User+Guide

537

•
•

•

Cyclic Receive

In this mode, the library scatters packets to the packet buffer (supplied by the user as doca_mmap)
in a cyclic manner. Packets acquired by the user may be overwritten by the library if not processed
fast enough by the application.

In this mode, the user must provide DOCA ETH RXQ with a packet buffer to be managed by the
library (see doca_eth_rxq_set_pkt_buf()). The buffer should be large enough to avoid packet

loss (see doca_eth_rxq_estimate_packet_buf_size()).

The application uses this mode if:

It wants to run on GPU
It has a deterministic packet processing time, where a packet is guaranteed to be processed
before the library overwrites it with a new packet
It wants best performance

This mode is supported only for GPU datapath.

538

•
•

•
•

Managed Memory Pool Receive

In this mode, the library uses various optimizations to manage the packet buffers. Packets acquired
by the user cannot be overwritten by the library unless explicitly freed by the application. Thus, if
the application does not release the packet buffers fast enough, the library would run out of
memory and packets would start dropping.

Unlike Cyclic Receive mode, the user can pass the packet to other libraries in DOCA with the
guarantee that the packet is not overwritten while being processed by those libraries.

In this mode, the user must provide DOCA ETH RXQ with a packet buffer to be managed by the
library (see doca_eth_rxq_set_pkt_buf()). The buffer should be large enough to avoid packet

loss (see doca_eth_rxq_estimate_packet_buf_size()).

The application uses this mode if:

It wants to run on CPU
It has a deterministic packet processing time, where a packet is guaranteed to be processed
before the library runs out of memory and packets start dropping
It wants to forward the received packets to other DOCA libraries
It wants best performance

This mode is supported only for CPU datapath.

539

•
•
•

•

14.4.8.5.1.2 Working with DOCA Flow

In order to route incoming packets to the desired DOCA ETH RXQ, applications need to use DOCA
Flow. Applications need to do the following:

Create and start DOCA Flow on the appropriate port (device)
Create pipes to route packets into
Get the queue ID of the queue (inside DOCA ETH RXQ) using doca_eth_rxq_get_flow_queue

_id()
Add an entry to a pipe which routes packets into the RX queue (using the queue ID we
obtained)

540

For more details see DOCA ETH RXQ samples and DOCA Flow.

14.4.8.5.2 DOCA ETH TXQ

14.4.8.5.2.1 Operating Modes

DOCA ETH TXQ can only operate in one mode.

Regular Send

For the CPU datapath, the user should submit a send task containing a doca_buf of the packet to
send.

For information regarding the datapath on the GPU, see DOCA GPUNetIO.

541

•

•

•

•

14.4.8.5.2.2 Offloads

DOCA ETH TXQ supports:

Large Segment Offloading (LSO) – the hardware supports LSO on transmitted TCP packets over
IPv4 and IPv6. LSO enables the software to prepare a large TCP message for sending with a
header template (the application should provide this header to the library) which is updated
automatically for every generated segment. The hardware segments the large TCP message
into multiple TCP segments. Per each such segment, device updates the header template
accordingly (see LSO Send Task).
L3/L4 checksum offloading – the hardware supports calculation of checksum on transmitted
packets and validation of received packet checksum. Checksum calculation is supported for
TCP/UDP running over IPv4 and IPv6. (In case of tunneling, the hardware calculates the
checksum of the outer header.) The hardware does not require any pseudo header checksum
calculation, and the value placed in TCP/UDP checksum is ignored when performing the
calculation. See doca_eth_txq_set_l3_chksum_offload() / doca_eth_txq_set_l4_chksum

_offload() .

14.4.8.5.3 Objects
doca_mmap – in Cyclic Receive and Managed Memory Pool Receive modes, the user must
configure DOCA ETH RXQ with packet buffer to write the received packets into as a
doca_mmap (see DOCA Core Memory Subsystem)

doca_buf – in Regular Receive mode, the user must submit receive tasks that includes a

buffer to write the received packet into as a doca_buf . Also, In Regular Send mode, the user

must submit send tasks that include a buffer of the packet to send as a doca_buf (see DOCA
Core Memory Subsystem).

542

•

•

•

•
•

•

•

•

•
•

14.4.8.6 Configurations Phase
To start using the library, the user must first first go through a configuration phase as described
in DOCA Core Context Configuration Phase.

This section describes how to configure and start the context to allow execution of tasks and
retrieval of events.

14.4.8.6.1 Configurations

The context can be configured to match the application use case.

To find if a configuration is supported or the min/max value for it, refer to Device Support.

14.4.8.6.2 Mandatory Configurations

These configurations are mandatory and must be set by the application before attempting to start
the context.

14.4.8.6.2.1 DOCA ETH RXQ
At least one task/event/event_batch type must be configured. Refer to Tasks/Events/Event
Batch for more information.
Max packet size (the maximum size of packet that can be received) must be provided at
creation time of the DOCA ETH RXQ context
Max burst size (the maximum number of packets that the library can handle at the same
time) must be provided at creation time of the DOCA ETH RXQ context
A device with appropriate support must be provided upon creation
When in Cyclic Receive or Managed Memory Pool Receive modes, a doca_mmap must be

provided in-order write the received packets into (see doca_eth_rxq_set_pkt_buf())
In case of a GPU datapath, A DOCA GPU sub-device must be provided using
doca_ctx_set_datapath_on_gpu()

14.4.8.6.2.2 DOCA ETH TXQ
At least one task/task_batch type must be configured. Refer to Tasks/Task Batch for more
information.
Max burst size (the maximum number of packets that the library can handle at the same
time) must be provided at creation time of the DOCA ETH TXQ context
A device with appropriate support must be provided on creation
In case of a GPU datapath, a DOCA GPU sub-device must be provided using
doca_ctx_set_datapath_on_gpu()

DOCA ETH in GPU datapath does not need to be associated with a DOCA PE (since the
datapath is not on the CPU).

543

•

•

•

•

•

•

•

•
•
•
•
•
•

14.4.8.6.3 Optional Configurations

The following configurations are optional. If they are not set, then a default value is used.

14.4.8.6.3.1 DOCA ETH RXQ
RXQ mode – User can set the working mode using doca_eth_rxq_set_type() . The default
type is Regular Receive.
Max receive buffer list length – User can set the maximum length of buffer list/chain as a
receive buffer using doca_eth_rxq_set_max_recv_buf_list_len() . The default value is 1.

14.4.8.6.3.2 DOCA ETH TXQ
TXQ mode – User can set the working mode using doca_eth_txq_set_type() . The default
type is Regular Send.
Max send buffer list length – User can set the maximum length of buffer list/chain as a send
buffer using doca_eth_txq_set_max_send_buf_list_len() . The default value is 1.
L3/L4 offload checksum – User can enable/disable L3/L4 checksum offloading using
doca_eth_txq_set_l3_chksum_offload() / doca_eth_txq_set_l4_chksum_offload() .
They are disabled by default.
MSS – User can set MSS (maximum segment size) value for LSO send task/task_batch using
doca_eth_txq_set_mss() . The default value is 1500.
Max LSO headers size – User can set the maximum LSO headers size for LSO send task/
task_batch using doca_eth_txq_set_max_lso_header_size() . The default value is 74.

14.4.8.6.4 Device Support

DOCA ETH requires a device to operate. For picking a device, see DOCA Core Device Discovery.

To check if a device supports a specific mode, use the type capabilities functions (see
doca_eth_rxq_cap_is_type_supported() and doca_eth_txq_cap_is_type_supported()).

Devices can allow the following capabilities:

The maximum burst size
The maximum buffer chain list (only for Regular Receive/Regular Send modes)
The maximum packet size (only for DOCA ETH RXQ)
L3/L4 checksum offloading capability (only for DOCA ETH TXQ)
Maximum LSO message/header size (only for DOCA ETH TXQ)
Wait-on-time offloading capability (only for DOCA ETH TXQ in GPU datapath)

14.4.8.6.5 Buffer Support

DOCA ETH support buffers (doca_mmap or doca_buf) with the following features:

Buffer Type Send Task LSO Send Task Receive Task Managed Receive
Event

Local mmap buffer Yes Yes Yes Yes

544

Buffer Type Send Task LSO Send Task Receive Task Managed Receive
Event

Mmap from PCIe export
buffer

Yes Yes Yes Yes

Mmap from RDMA export
buffer

No No No No

Linked list buffer Yes Yes Yes No

For buffer support in the case of GPU datapath, see DOCA GPUNetIO Programming Guide.

14.4.8.7 Execution Phase
This section describes execution on CPU (unless stated otherwise) using DOCA Core Progress Engine.

14.4.8.7.1 Tasks

DOCA ETH exposes asynchronous tasks that leverage the DPU hardware according to the DOCA Core
architecture. See DOCA Core Task.

14.4.8.7.1.1 DOCA ETH RXQ

Receive Task

This task allows receiving packets from a doca_dev .

Task Configuration

Description API to Set the Configuration API to Query Support

Enable the task calling
doca_eth_rxq_task_recv_set_co

nf()

doca_eth_rxq_cap_is_type_suppo

rted() checking support for Regular
Receive mode

Number of tasks task_recv_num in

doca_eth_rxq_task_recv_set_co

nf()

–

Max receive buffer list length doca_eth_rxq_set_max_recv_buf

_list_len() (default value is 1)

doca_eth_rxq_cap_get_max_recv_

buf_list_len()

Maximal packet size max_packet_size in

doca_eth_rxq_create()

doca_eth_rxq_cap_get_max_packe

t_size()

Task Input

Common input as described in DOCA Core Task.

For information regarding GPU datapath, see DOCA GPUNetIO.

https://confluence.nvidia.com/pages/viewpage.action?pageId=2030805092
https://confluence.nvidia.com/pages/viewpage.action?pageId=2030805092

545

•
•

•
•
•

•
•

Name Description Notes

Packet buffer Buffer pointing to the memory where
received packet are to be written

The received packet is written to the tail
segment extending the data segment

Task Output

Common output as described in DOCA Core Task.

Additionally:

Name Description Notes

L3 checksum result Value indicating whether the L3 checksum
of the received packet is valid or not

Can be queried using
doca_eth_rxq_task_recv_get_l

3_ok()

L4 checksum result Value indicating whether the L4 checksum
of the received packet is valid or not

Can be queried using
doca_eth_rxq_task_recv_get_l

4_ok()

Task Completion Success

After the task is completed successfully the following will happen:

The received packet is written to the packet buffer
The packet buffer data segment is extended to include the received packet

Task Completion Failure

If the task fails midway:

The context enters stopping state
The packet buffer doca_buf object is not modified
The packet buffer contents may be modified

Task Limitations

All limitations described in DOCA Core Task

Additionally:

The operation is not atomic.
Once the task has been submitted, then the packet buffer should not be read/written to.

14.4.8.7.1.2 DOCA ETH TXQ

Send Task

This task allows sending packets from a doca_dev .

Task Configuration

546

•
•

•
•
•

Description API to Set the Configuration API to Query Support

Enable the task calling
doca_eth_txq_task_send_set_co

nf()

doca_eth_txq_cap_is_type_suppor

ted() checking support for Regular
Send mode

Number of tasks task_send_num in

doca_eth_txq_task_send_set_co

nf()

–

Max send buffer list length doca_eth_txq_set_max_send_buf

_list_len() (default value is 1)

doca_eth_txq_cap_get_max_send_b

uf_list_len()

L3/L4 offload checksum doca_eth_txq_set_l3_chksum_of

fload()

doca_eth_txq_set_l4_chksum_of

fload()
Disabled by default.

doca_eth_txq_cap_is_l3_chksum_o

ffload_supported()

doca_eth_txq_cap_is_l4_chksum_o

ffload_supported()

Task Input

Common input as described in DOCA Core Task.

Name Description Notes

Packet buffer Buffer pointing to the packet to send The sent packet is the memory in the
data segment

Task Output

Common output as described in DOCA Core Task.

Task Completion Success

The task finishing successfully does not guarantee that the packet has been transmitted onto the
wire. It only signifies that the packet has successfully entered the device's TX hardware and that the
packet buffer doca_buf is no longer in the library's ownership and it can be reused by the
application.

Task Completion Failure

If the task fails midway:

The context enters stopping state
The packet buffer doca_buf object is not modified

Task Limitations

The operation is not atomic
Once the task has been submitted, the packet buffer should not be written to
Other limitations are described in DOCA Core Task

LSO Send Task

547

This task allows sending "large" packets (larger than MTU) from a doca_dev (hardware splits the
packet into several packets smaller than the MTU and sends them).

Task Configuration

Description API to Set the Configuration API to Query Support

Enable the task calling
doca_eth_txq_task_lso_send_se

t_conf()

doca_eth_txq_cap_is_type_suppor

ted() checking support for Regular
Send mode

Number of tasks task_lso_send_num in

doca_eth_txq_task_lso_send_se

t_conf()

–

Max send buffer list length doca_eth_txq_set_max_send_buf

_list_len() (default value is 1)

doca_eth_txq_cap_get_max_send_b

uf_list_len()

L3/L4 offload checksum doca_eth_txq_set_l3_chksum_of

fload()

doca_eth_txq_set_l4_chksum_of

fload()
(disabled by default)

doca_eth_txq_cap_is_l3_chksum_o

ffload_supported()

doca_eth_txq_cap_is_l4_chksum_o

ffload_supported()

MSS doca_eth_txq_set_mss()
(default value is 1500)

–

Max LSO headers size doca_eth_txq_set_max_lso_head

er_size() (default value is 74)

doca_eth_txq_cap_get_max_lso_he

ader_size()

Task Input

Common input as described in DOCA Core Task.

Name Description Notes

Packet payload buffer Buffer that points to the "large" packet's
payload (does not include headers) to
send

The sent packet is the memory in
the data segment

Packet headers buffer Gather list that when combined includes
the "large" packet's headers to send

See struct doca_gather_list

Task Output

Common output as described in DOCA Core Task.

Task Completion Success

The task finishing successfully does not guarantee that the packet has been transmitted onto the
wire. It only means that the packet has successfully entered the device's TX hardware and that the
packet payload buffer and the packet headers buffer is no longer in the library's ownership and it
can be reused by the application.

Task Completion Failure

If the task fails midway:

548

•
•

•
•

•

•

•
•
•

The context enters stopping state
The packet payload buffer doca_buf object and the packet header buffer

doca_gather_list are not modified

Task Limitations

The operation is not atomic
Once the task has been submitted, the packet payload buffer and the packet headers buffer
should not be written to
Other limitations are described in DOCA Core Task

14.4.8.7.2 Events

DOCA ETH exposes asynchronous events to notify about changes that happen asynchronously,
according to the DOCA Core architecture. See DOCA Core Event.

In addition to common events as described in DOCA Core Event, DOCA ETH exposes an extra events:

14.4.8.7.2.1 DOCA ETH RXQ

Managed Receive Event

This event allows receiving packets from a doca_dev (without requiring the application to manage
the memory the packets are written to).

Event Configuration

Description API to Set the Configuration API to Query Support

Register to the event doca_eth_rxq_event_managed_rec

v_register()

doca_eth_rxq_cap_is_type_support

ed() checking support for Managed
Memory Pool Receive mode

Event Trigger Condition

The event is triggered every time a packet is received.

Event Success Handler

The success callback (provided in the event registration) is invoked and the user is expected to
perform the following:

Use the pkt parameter to process the received packet

Use event_user_data to get the application context
Query L3/L4 checksum results of the packet
Free the pkt (a doca_buf object) and return it to the library

Event Failure Handler

Not freeing the pkt may cause scenario where packets are lost.

549

•
•

•

•

•
•

The failure callback (provided in the event registration) is invoked, and the following happens:

The context enters stopping state
The pkt parameter becomes NULL

The event_user_data parameter contains the value provided by the application when
registering the event

14.4.8.7.2.2 DOCA ETH TXQ

Error Send Packet

This event is relevant when running DOCA ETH on GPU datapath (see DOCA GPUNetIO). It allows
detecting failure in sending packets.

Event Configuration

Description API to Set the Configuration API to Query Support

Register to the event doca_eth_txq_gpu_event_error_send_p

acket_register()

Always supported

Event Trigger Condition

The event is triggered when sending a packet fails.

Event Handler

The callback (provided in the event registration) is invoked and the user can:

Get the position (index) of the packet that TXQ failed to send

Notify Send Packet

This event is relevant when running DOCA ETH on GPU datapath (see DOCA GPUNetIO). It notifies
user every time a packet is sent successfully.

Event Configuration

Description API to Set the Configuration API to Query Support

Register to the event doca_eth_txq_gpu_event_notify_send_

packet_register()

Always supported

Event Trigger Condition

The event is triggered when sending a packet fails.

Event Handler

The callback (provided in the event registration) is invoked and the user can:

Get the position (index) of the packet was sent
Timestamp of sending the packet

https://confluence.nvidia.com/pages/viewpage.action?pageId=2030805092
https://confluence.nvidia.com/pages/viewpage.action?pageId=2030805092

550

14.4.8.7.3 Task Batch

DOCA ETH exposes asynchronous task batches that leverage the BlueField Platform hardware
according to the DOCA Core architecture.

14.4.8.7.3.1 DOCA ETH RXQ

There are no task batches in ETH RXQ at the moment.

14.4.8.7.3.2 DOCA ETH TXQ

Send Task Batch

This is an extended task batch for Send Task which allows batched sending of packets from
a doca_dev .

Task Configuration

Description API to Set the Configuration API to Query Support

Enable the task batch calling
doca_eth_txq_task_batch_send

_set_conf()

doca_eth_txq_cap_is_type_suppor

ted() checking support for Regular
Send mode

Number of task batches num_task_batches in

doca_eth_txq_task_batch_send

_set_conf()

–

Max number of tasks per task
batch

max_tasks_number in

doca_eth_txq_task_batch_send

_set_conf()

–

Max send buffer list length doca_eth_txq_set_max_send_bu

f_list_len() (default value is 1)

doca_eth_txq_cap_get_max_send_b

uf_list_len()

L3/L4 offload checksum doca_eth_txq_set_l3_chksum_o

ffload()

doca_eth_txq_set_l4_chksum_o

ffload()
Disabled by default.

doca_eth_txq_cap_is_l3_chksum_o

ffload_supported()

doca_eth_txq_cap_is_l4_chksum_o

ffload_supported()

Task Input

Name Description Notes

Tasks number Number of send tasks "behind" the task
batch

This number equals the number of
packets to send

Batch user data User data associated for the task batch –

Packets array Pointer to an array of buffers pointing at
the packets to send per task

The sent packet is the memory in the
data segment of each buffer

User data array Pointer to an array of user data per task –

551

•
•

•

Task Output

Name Description

Status array Pointer to an array of statuses per task of the finished task batch

Task Completion Success

A task batch is complete if all the send tasks finished successfully and all the packets entered the
device's TX hardware. All packets in the "Packet array" are now in the ownership of the user.

Task Completion Failure

If a task batch fails, then one (or more) of the tasks associated with the task batch failed. The user
can look at "Status array" to see which task/packet caused the failure.

Also, the following behavior is expected:

The context enters stopping state
The packet's doca_buf objects are not modified

Task Limitations

In addition to all the Send Task Limitations:

Task batch completion occurs only when all the tasks are completed (no partial completion)

LSO Send Task Batch

This is an extended task batch for LSO Send Task which allows batched sending of LSO packets from
a doca_dev .

Task Configuration

Description API to Set the Configuration API to Query Support

Enable the task batch Calling
doca_eth_txq_task_batch_lso_s

end_set_conf()

doca_eth_txq_cap_is_type_suppo

rted() checking support for Regular
Send mode

Number of task batches num_task_batches in

doca_eth_txq_task_batch_lso_s

end_set_conf()

–

Max number of tasks per task
batch

num_task_batches in

doca_eth_txq_task_batch_lso_s

end_set_conf()

–

Max send buffer list length doca_eth_txq_set_max_send_buf

_list_len() (default value is 1)

doca_eth_txq_cap_get_max_send_

buf_list_len()

L3/L4 offload checksum doca_eth_txq_set_l3_chksum_of

fload()

doca_eth_txq_set_l4_chksum_of

fload()
Disabled by default.

doca_eth_txq_cap_is_l3_chksum_

offload_supported()

doca_eth_txq_cap_is_l4_chksum_

offload_supported()

552

•
•

•

•

Description API to Set the Configuration API to Query Support

MSS doca_eth_txq_set_mss()
(default value is 1500)

–

Max LSO headers size doca_eth_txq_set_max_lso_head

er_size() (default value is 74)

doca_eth_txq_cap_get_max_lso_h

eader_size()

Task Input

Name Description Notes

Tasks number Number of send tasks "behind" the task
batch

This number equals the number of
packets to send

Batch user data User data associated for the task batch –

Packets payload array Pointer to an array of buffers pointing at
the "large" packet's payload to send per
task

The sent packet payload is the
memory in the data segment of each
buffer

Packets headers array Pointer to an array of gather lists, each of
which when combined assembles a "large"
packet's headers to send per task

See struct doca_gather_list

User data array Pointer to an array of user data per task –

Task Output

Name Description

Status array Pointer to an array of status per task of the finished task batch

Task Completion Success

A task batch is complete if all the LSO send tasks finished successfully and all the packets entered
the device's TX hardware. All packet payload in "Packets payload array" and packet headers in
"Packets headers array" are now in the ownership of the user.

Task Completion Failure

If a task batch fails, then one (or more) of the tasks associated with the task batch failed, and the
user can look at the "Status array" to try and figure out which task/packet caused the failure.

Also, the following behavior is expected:

The context enters stopping state
The packets payload doca_buf objects are not modified

The packets headers doca_gather_list objects are not modified

Task Limitations

In addition to all the LSO Send Task Limitations:

Task batch completion happens only when all the tasks are completed (no partial completion)

553

1.

2.

3.

4.

5.

•

•

14.4.8.7.4 Event Batch

DOCA ETH exposes asynchronous event batches to notify about changes that happen asynchronously.

14.4.8.7.4.1 DOCA ETH RXQ

Managed Receive Event Batch

This is an extended event batch for Managed Receive Event which allows receiving packets from
a doca_dev (without requiring the application to manage the memory the packets are written to).

Event Configuration

Description API to Set the Configuration API to Query Support

Register to the event batch Calling
doca_eth_rxq_event_batch_man

aged_recv_register()

doca_eth_rxq_cap_is_type_suppo

rted() checking support for
Managed Memory Pool Receive mode

Max events number: Equal to the
maximum number of completed
events per event batch completion

events_number_max in

doca_eth_rxq_event_batch_man

aged_recv_register()

–

Min events number: Equal to the
minimum number of completed
events per event batch completion

events_number_min in

doca_eth_rxq_event_batch_man

aged_recv_register()

–

Event Trigger Condition

The event batch is triggered every time a number of packets (number between "Min events number"
and "Max events number") are received.

Event Batch Success Handler

The success callback (provided in the event of batch registration) is invoked and the user is
expected to perform the following:

Identify the number of received packets by events_number .

Use the pkt_array parameter to process the received packets.

Use event_batch_user_data to get the application context.

Query the L3/L4 checksum results of the packets using l3_ok_array and l4_ok_array .

Free the buffers from pkt_array (a doca_buf object) and return it to the library. This can
be done in two ways:

Iterating over the buffers in pkt_array and freeing them using

doca_buf_dec_refcount() .

Freeing all the buffers in pkt_array together (gives better performance) using

doca_eth_rxq_event_batch_managed_recv_pkt_array_free() .

Event Batch Failure Handler

The failure callback (provided in the event batch registration) is invoked, and the following
happens:

554

•
•

•

•

•

•
•

•
•

•
•

•
•

The context enters stopping state
The pkt_array parameter is NULL

The l3_ok_array parameter is NULL

The l4_ok_array parameter is NULL

The event_batch_user_data parameter contains the value provided by the application
when registering the event

14.4.8.7.4.2 DOCA ETH TXQ

There are no event batches in ETH TXQ at the moment.

14.4.8.8 State Machine
The DOCA ETH library follows the Context state machine as described in DOCA Core Context State
Machine.

The following section describes how to move to the state and what is allowed in each state.

14.4.8.8.1 Idle

In this state it is expected that application either:

Destroys the context
Starts the context

Allowed operations:

Configuring the context according to Configurations
Starting the context

It is possible to reach this state as follows:

Previous State Transition Action

None Creating the context

Running Calling stop after:
All tasks are completed and freed
All doca_buf objects returned by Managed Receive Event
callback are freed

Stopping Calling progress until:
All tasks are completed and freed
All doca_buf objects returned by Managed Receive Event
callback are freed

14.4.8.8.2 Starting

This state cannot be reached.

14.4.8.8.3 Running

In this state it is expected that application will do the following:

555

•
•

•
•
•
•

•
•
•

•

•
•

Allocate and submit tasks
Call progress to complete tasks and/or receive events

Allowed operations:

Allocate previously configured task
Submit a task
Call doca_eth_rxq_get_flow_queue_id() to connect the RX queue to DOCA Flow
Call stop

It is possible to reach this state as follows:

Previous State Transition Action

Idle Call start after configuration

14.4.8.8.4 Stopping

In this state, it is expected that application:

Calls progress to complete all inflight tasks (tasks complete with failure)
Frees any completed tasks
Frees doca_buf objects returned by Managed Receive Event callback

Allowed operations:

Call progress

It is possible to reach this state as follows:

Previous State Transition Action

Running Call progress and fatal error occurs

Running Call stop without either:
Freeing all tasks
Freeing all doca_buf objects returned by Managed Receive
Event callback

14.4.8.9 Alternative Datapath Options
In addition to the CPU datapath (mentioned in Execution Phase), DOCA ETH supports running on GPU
datapath. This allows applications to release the CPU from datapath management and allow low
latency GPU processing of network traffic.

To export the handles, the application should call doca_ctx_set_datapath_on_gpu() before

doca_ctx_start() to program the library to set up a GPU operated context.

To get the GPU context handle, the user should call doca_rxq_get_gpu_handle() which returns a
pointer to a handle in the GPU memory space.

The datapath cannot be managed concurrently for the GPU and the CPU.

556

1.
2.
3.
4.
5.

The DOCA ETH context is configured on the CPU and then exported to the GPU:

The following example shows the expected flow for a GPU-managed datapath with packets being
scattered to GPU memory (for doca_eth_rxq):

Create a DOCA GPU device handler.
Create doca_eth_rxq and configure its parameters.
Set the datapath of the context to GPU.
Start the context.
Get a GPU handle of the context.

For more information regarding the GPU datapath see DOCA GPUNetIO.

14.4.8.10 DOCA ETH Samples
This section describes DOCA ETH samples based on the DOCA ETH library.

557

•
•
•
•

1.
•

•

2.

3.

4.

The samples illustrate how to use the DOCA ETH API to do the following:

Send "regular" packets (smaller than MTU) using DOCA ETH TXQ
Send "large" packets (larger than MTU) using DOCA ETH TXQ
Receive packets using DOCA ETH RXQ in Regular Receive mode
Receive packets using DOCA ETH RXQ in Managed Memory Pool Receive mode

14.4.8.10.1 Running the Samples
Refer to the following documents:

NVIDIA DOCA Installation Guide for Linux for details on how to install BlueField-related
software.
NVIDIA DOCA Troubleshooting Guide for any issue you may encounter with the
installation, compilation, or execution of DOCA samples.

To build a given sample (e.g., eth_txq_send_ethernet_frames):

cd /opt/mellanox/doca/samples/doca_eth/eth_txq_send_ethernet_frames
meson /tmp/build
ninja -C /tmp/build

The binary eth_txq_send_ethernet_frames is created under /tmp/build/ .
Sample (e.g., eth_txq_send_ethernet_frames) usage:

Usage: doca_eth_txq_send_ethernet_frames [DOCA Flags] [Program Flags]

DOCA Flags:
 -h, --help Print a help synopsis
 -v, --version Print program version information
 -l, --log-level Set the (numeric) log level for the program
<10=DISABLE, 20=CRITICAL, 30=ERROR, 40=WARNING, 50=INFO, 60=DEBUG, 70=TRACE>

 --sdk-log-level Set the SDK (numeric) log level for the program <10=DISABLE,
20=CRITICAL, 30=ERROR, 40=WARNING, 50=INFO, 60=DEBUG, 70=TRACE>

-j, --json <path> Parse all command flags from an input json file

Program Flags:
 -d, --device IB device name - default: mlx5_0
 -m, --mac-addr Destination MAC address to associate with the ethernet frames -
default: FF:FF:FF:FF:FF:FF

For additional information per sample, use the -h option:

/tmp/build/<sample_name> -h

14.4.8.10.2 Samples

14.4.8.10.2.1 ETH TXQ Send Ethernet Frames

This sample illustrates how to send a "regular" packet (smaller than MTU) using DOCA ETH TXQ.

All of the DOCA samples described in this section are governed under the BSD-3 software
license agreement.

The following samples are for the CPU datapath. For GPU datapath samples, see DOCA
GPUNetIO.

558

1.
2.
3.
4.
5.
6.
7.
8.
9.

10.
11.
12.
13.
14.

•

•

•

1.
2.
3.
4.
5.
6.
7.
8.
9.

10.
11.
12.
13.
14.
15.
16.

The sample logic includes:

Locating DOCA device.
Initializing the required DOCA Core structures.
Populating DOCA memory map with one buffer to the packet's data.
Writing the packet's content into the allocated buffer.
Allocating elements from DOCA buffer inventory for the buffer.
Initializing and configuring DOCA ETH TXQ context.
Starting the DOCA ETH TXQ context.
Allocating DOCA ETH TXQ send task.
Submitting DOCA ETH TXQ send task into progress engine.
Retrieving DOCA ETH TXQ send task from the progress engine.
Handling the completed task using the provided callback.
Stopping the DOCA ETH TXQ context.
Destroying DOCA ETH TXQ context.
Destroying all DOCA Core structures.

Reference:

/opt/mellanox/doca/samples/doca_eth/eth_txq_send_ethernet_frames/

eth_txq_send_ethernet_frames_sample.c

/opt/mellanox/doca/samples/doca_eth/eth_txq_send_ethernet_frames/

eth_txq_send_ethernet_frames_main.c

/opt/mellanox/doca/samples/doca_eth/eth_txq_send_ethernet_frames/meson.build

14.4.8.10.2.2 ETH TXQ LSO Send Ethernet Frames

This sample illustrates how to send a "large" packet (larger than MTU) using DOCA ETH TXQ.

The sample logic includes:

Locating DOCA device.
Initializing the required DOCA Core structures.
Populating DOCA memory map with one buffer to the packet's payload.
Writing the packet's payload into the allocated buffer.
Allocating elements from DOCA Buffer inventory for the buffer.
Allocating DOCA gather list consisting of one node to the packet's headers.
Writing the packet's headers into the allocated gather list node.
Initializing and configuring DOCA ETH TXQ context.
Starting the DOCA ETH TXQ context.
Allocating DOCA ETH TXQ LSO send task.
Submitting DOCA ETH TXQ LSO send task into progress engine.
Retrieving DOCA ETH TXQ LSO send task from the progress engine.
Handling the completed task using the provided callback.
Stopping the DOCA ETH TXQ context.
Destroying DOCA ETH TXQ context.
Destroying all DOCA Core structures.

Reference:

559

•

•

•

1.
2.
3.
4.
5.
6.
7.
8.
9.

10.
11.
12.
13.
14.
15.

•

•

•

1.
2.
3.
4.

/opt/mellanox/doca/samples/doca_eth/eth_txq_lso_send_ethernet_frames/

eth_txq_lso_send_ethernet_frames_sample.c

/opt/mellanox/doca/samples/doca_eth/eth_txq_lso_send_ethernet_frames/

eth_txq_lso_send_ethernet_frames_main.c

/opt/mellanox/doca/samples/doca_eth/eth_txq_lso_send_ethernet_frames/

meson.build

14.4.8.10.2.3 ETH TXQ Batch Send Ethernet Frames

This sample illustrates how to send a batch of "regular" packets (smaller than MTU) using DOCA ETH
TXQ.

The sample logic includes:

Locating DOCA device.
Initializing the required DOCA Core structures.
Populating DOCA memory map with multiple buffers, each representing a packet's data.
Writing the packets' content into the allocated buffers.
Allocating elements from DOCA Buffer inventory for the buffers.
Initializing and configuring DOCA ETH TXQ context.
Starting the DOCA ETH TXQ context.
Allocating DOCA ETH TXQ send task batch.
Copying all buffers' pointers to task batch's pkt_arry.
Submitting DOCA ETH TXQ send task batch into the progress engine.
Retrieving DOCA ETH TXQ send task batch from the progress engine.
Handling the completed task batch using the provided callback.
Stopping the DOCA ETH TXQ context.
Destroying DOCA ETH TXQ context.
Destroying all DOCA Core structures.

Reference:

/opt/mellanox/doca/samples/doca_eth/eth_txq_batch_send_ethernet_frames/

eth_txq_batch_send_ethernet_frames_sample.c

/opt/mellanox/doca/samples/doca_eth/eth_txq_batch_send_ethernet_frames/

eth_txq_batch_send_ethernet_frames_main.c

/opt/mellanox/doca/samples/doca_eth/eth_txq_batch_send_ethernet_frames/

meson.build

14.4.8.10.2.4 ETH TXQ Batch LSO Send Ethernet Frames

This sample illustrates how to send a batch of "large" packets (larger than MTU) using DOCA ETH
TXQ.

The sample logic includes:

Locating DOCA device.
Initializing the required DOCA Core structures.
Populating DOCA memory map with multiple buffers, each representing a packet's payload.
Writing the packets' payload into the allocated buffers.

560

5.
6.
7.
8.
9.

10.
11.
12.
13.
14.
15.
16.
17.
18.

•

•

•

1.
2.
3.
4.
5.
6.
7.
8.
9.

10.
11.
12.
13.
14.
15.
16.
17.
18.

Allocating elements from DOCA Buffer inventory for the buffers.
Allocating DOCA gather lists each consisting of one node for the packet's headers.
Writing the packets' headers into the allocated gather list nodes.
Initializing and configuring DOCA ETH TXQ context.
Starting the DOCA ETH TXQ context.
Allocating DOCA ETH TXQ LSO send task.
Copying all buffers' pointers to task batch's pkt_payload_arry.
Copying all gather lists' pointers to task batch's headers_arry.
Submitting DOCA ETH TXQ LSO send task batch into the progress engine.
Retrieving DOCA ETH TXQ LSO send task batch from the progress engine.
Handling the completed task batch using the provided callback.
Stopping the DOCA ETH TXQ context.
Destroying DOCA ETH TXQ context.
Destroying all DOCA Core structures.

Reference:

/opt/mellanox/doca/samples/doca_eth/eth_txq_batch_lso_send_ethernet_frames/

eth_txq_batch_lso_send_ethernet_frames_sample.c

/opt/mellanox/doca/samples/doca_eth/eth_txq_batch_lso_send_ethernet_frames/

eth_txq_batch_lso_send_ethernet_frames_main.c

/opt/mellanox/doca/samples/doca_eth/eth_txq_batch_lso_send_ethernet_frames/

meson.build

14.4.8.10.2.5 ETH RXQ Regular Receive

This sample illustrates how to receive a packet using DOCA ETH RXQ in Regular Receive mode.

The sample logic includes:

Locating DOCA device.
Initializing the required DOCA Core structures.
Populating DOCA memory map with one buffer to the packet's data.
Allocating element from DOCA Buffer inventory for each buffer.
Initializing DOCA Flow.
Initializing and configuring DOCA ETH RXQ context.
Starting the DOCA ETH RXQ context.
Starting DOCA Flow.
Creating a pipe connecting to DOCA ETH RXQ's RX queue.
Allocating DOCA ETH RXQ receive task.
Submitting DOCA ETH RXQ receive task into the progress engine.
Retrieving DOCA ETH RXQ receive task from the progress engine.
Handling the completed task using the provided callback.
Stopping DOCA Flow.
Stopping the DOCA ETH RXQ context.
Destroying DOCA ETH RXQ context.
Destroying DOCA Flow.
Destroying all DOCA Core structures.

561

•

•

•

1.
2.
3.
4.
5.
6.
7.
8.
9.

10.
11.
12.
13.
14.
15.
16.
17.

•

•

•

1.
2.

Reference:

/opt/mellanox/doca/samples/doca_eth/eth_rxq_regular_receive/

eth_rxq_regular_receive_sample.c

/opt/mellanox/doca/samples/doca_eth/eth_rxq_regular_receive/

eth_rxq_regular_receive_main.c

/opt/mellanox/doca/samples/doca_eth/eth_rxq_regular_receive/meson.build

14.4.8.10.2.6 ETH RXQ Managed Receive

This sample illustrates how to receive packets using DOCA ETH RXQ in Managed Memory Pool Receive
mode.

The sample logic includes:

Locating DOCA device.
Initializing the required DOCA Core structures.
Calculating the required size of the buffer to receive the packets from DOCA ETH RXQ.
Populating DOCA memory map with a packets buffer.
Initializing DOCA Flow.
Initializing and configuring DOCA ETH RXQ context.
Registering DOCA ETH RXQ managed receive event.
Starting the DOCA ETH RXQ context.
Starting DOCA Flow.
Creating a pipe connecting to DOCA ETH RXQ's RX queue.
Retrieving DOCA ETH RXQ managed receive events from the progress engine.
Handling the completed events using the provided callback.
Stopping DOCA Flow.
Stopping the DOCA ETH RXQ context.
Destroying DOCA ETH RXQ context.
Destroying DOCA Flow.
Destroying all DOCA Core structures.

Reference:

/opt/mellanox/doca/samples/doca_eth/eth_rxq_managed_mempool_receive/

eth_rxq_managed_mempool_receive_sample.c

/opt/mellanox/doca/samples/doca_eth/eth_rxq_managed_mempool_receive/

eth_rxq_managed_mempool_receive_main.c

/opt/mellanox/doca/samples/doca_eth/eth_rxq_managed_mempool_receive/

meson.build

14.4.8.10.2.7 ETH RXQ Batch Managed Receive

This sample illustrates how to receive batches of packets using DOCA ETH RXQ in Managed Memory
Pool Receive mode.

The sample logic includes:

Locating DOCA device.
Initializing the required DOCA Core structures.

562

3.
4.
5.
6.
7.
8.
9.

10.
11.
12.
13.
14.
15.
16.
17.

•

•

•

Calculating the required size of the buffer to receive the packets from DOCA ETH RXQ.
Populating DOCA memory map with a packets buffer.
Initializing DOCA Flow.
Initializing and configuring DOCA ETH RXQ context.
Registering DOCA ETH RXQ managed receive event batch.
Starting the DOCA ETH RXQ context.
Starting DOCA Flow.
Creating a pipe connecting to DOCA ETH RXQ's RX queue.
Retrieving DOCA ETH RXQ managed receive event batches from the progress engine.
Handling the completed event batches using the provided callback.
Stopping DOCA Flow.
Stopping the DOCA ETH RXQ context.
Destroying DOCA ETH RXQ context.
Destroying DOCA Flow.
Destroying all DOCA Core structures.

Reference:

/opt/mellanox/doca/samples/doca_eth/eth_rxq_batch_managed_mempool_receive/

eth_rxq_batch_managed_mempool_receive_sample.c

/opt/mellanox/doca/samples/doca_eth/eth_rxq_batch_managed_mempool_receive/

eth_rxq_batch_managed_mempool_receive_main.c

/opt/mellanox/doca/samples/doca_eth/eth_rxq_batch_managed_mempool_receive/

meson.build

14.4.9 DOCA GPUNetIO
This document provides an overview and configuration instructions for DOCA GPUNetIO API.

14.4.9.1 Introduction
Real-time GPU processing of network packets is a technique useful for application domains involving
signal processing, network security, information gathering, input reconstruction, and more. These
applications involve the CPU in the critical path (CPU-centric approach) to coordinate the network
card (NIC) for receiving packets in the GPU memory (GPUDirect RDMA) and notifying a packet-
processing CUDA kernel waiting on the GPU for a new set of packets. In lower-power platforms, the
CPU can easily become the bottleneck, masking GPU value. The aim is to maximize the zero-packet-
loss throughput at the the lowest latency possible.

A CPU-centric approach may not be scalable when increasing the number of clients connected to the
application as the time between two receive operations on the same queue (client) would increase
with the number of queues. The new DOCA GPUNetIO library allows developers to orchestrate these
kinds of applications while optimizing performance, combining GPUDirect RDMA for data-path
acceleration, GDRCopy library to give the CPU direct access to GPU memory, and GPUDirect async
kernel-initiated network (GDAKIN) communications to allow a CUDA kernel to directly control the
NIC.

CPU-centric approach:

563

•

•

•
•
•

•

•

•

•

GPU-centric approach:

DOCA GPUNetIO enables GPU-centric solutions that remove the CPU from the critical path by
providing the following features:

GPUDirect async kernel-initiated technology – a GPU CUDA kernel can directly control other
hardware components like the network card or NVIDIA® BlueField®'s DMA engine

GDAKIN communications – a GPU CUDA kernel can control network communications to
send or receive data

GPU can control Ethernet communications
GPU can control RDMA communications (InfiniBand or RoCE are supported)
CPU intervention is not needed in the application critical path

DMA engine – a GPU CUDA kernel can trigger a memory copy using BlueField's DMA
engine

GPUDirect RDMA – use a contiguous GPU memory to send or receive RDMA data or Ethernet
packets without CPU memory staging copies
Semaphores – provide a standardized low-latency message passing protocol between two
CUDA kernels or a CUDA kernel and a CPU thread
Smart memory allocation – allocate aligned GPU memory buffers, possibly exposing them to
direct CPU access

https://docs.nvidia.com/cuda/gpudirect-rdma/index.html

564

•

•

•

•

•

•

•

•

•

•

•

Combination of CUDA, DPDK gpudev library and GDRCopy library already embedded in
the DPDK released with DOCA

Accurate send scheduling – schedule Ethernet packets' send in the future according to a user-
provided timestamp

Aerial 5G SDK, Morpheus, and Holoscan Advanced Network Operator are examples of NVIDIA
applications actively using DOCA GPUNetIO.

For a deep dive into the technology and motivations, please refer to the NVIDIA blog posts Inline
GPU Packet Processing with NVIDIA DOCA GPUNetIO and Unlocking GPU-Accelerated RDMA with
NVIDIA DOCA GPUNetIO. Another NVIDIA blog post Realizing the Power of Real-time Network
Processing with NVIDIA DOCA GPUNetIO has been published to provide more use-case examples
where DOCA GPUNetIO has been useful to improve the execution.

14.4.9.2 Changes From Previous Releases

14.4.9.2.1 Changes in 2.8

The following subsection(s) detail the doca_gpunetio library updates in version 2.8.0.

14.4.9.2.1.1 Added
__device__ doca_error_t doca_gpu_dev_buf_get_mkey(const struct doca_gpu_buf

*buf, uint32_t *mkey)

__device__ doca_error_t doca_gpu_dev_buf_create(uintptr_t addr, uint32_t

mkey, struct doca_gpu_buf **buf)

__device__ doca_error_t doca_gpu_dev_dma_memcpy(struct doca_gpu_dma *dma,

struct doca_gpu_buf *src_buf, uint64_t src_offset, struct doca_gpu_buf

*dst_buf, uint64_t dst_offset, size_t length)

__device__ doca_error_t doca_gpu_dev_dma_commit(struct doca_gpu_dma *dma)

__device__ doca_error_t doca_gpu_dev_rdma_wait_all(struct doca_gpu_dev_rdma

*rdma, uint32_t *num_ops)

Changed

struct doca_gpu_buf – Added uint32_t mkey field after size field

struct doca_gpu_eth_rxq – Added bool need_flush

__device__ doca_error_t doca_gpu_dev_rdma_recv_weak(struct doca_gpu_dev_rdma_r

*rdma_r, size_t recv_length, uint64_t recv_offset, const uint32_t

flags_bitmask, uint32_t position, uint64_t *hdl);

__device__ doca_error_t doca_gpu_dev_rdma_recv_strong(struct

doca_gpu_dev_rdma_r *rdma_r, struct doca_gpu_buf *recv_buf, size_t

recv_length, uint64_t recv_offset, const uint32_t flags_bitmask, uint64_t *hdl)

;

RDMA on DOCA GPUNetIO is currently supported at alpha level.

https://github.com/DPDK/dpdk/blob/main/lib/gpudev/rte_gpudev.h
https://github.com/NVIDIA/gdrcopy
https://developer.nvidia.com/aerial-sdk
https://developer.nvidia.com/morpheus-cybersecurity
https://github.com/nvidia-holoscan/holohub/tree/main/operators/advanced_network
https://developer.nvidia.com/blog/inline-gpu-packet-processing-with-nvidia-doca-gpunetio/
https://developer.nvidia.com/blog/unlocking-gpu-accelerated-rdma-with-nvidia-doca-gpunetio/
https://developer.nvidia.com/blog/realizing-the-power-of-real-time-network-processing-with-nvidia-doca-gpunetio/

565

•

•

•

•

•

•

__device__ doca_error_t doca_gpu_dev_rdma_recv_wait_all(struct

doca_gpu_dev_rdma_r *rdma_r)

→ __device__ doca_error_t doca_gpu_dev_rdma_recv_wait_all(struct

doca_gpu_dev_rdma_r *rdma_r, uint64_t *hdl, const enum

doca_gpu_dev_rdma_recv_wait_flags flags, enum doca_rdma_opcode

*opcode, uint32_t *imm)

14.4.9.3 System Configuration
DOCA GPUNetIO requires a properly configured environment which depends on whether the
application should run on the x86 host or DPU Arm cores. The following subsections describe the
required configuration in both scenarios, assuming DOCA, CUDA Toolkit and NVIDIA driver are
installed on the system (x86 host or BlueField Arm) where the DOCA GPUNetIO is built and executed.

DOCA GPUNetIO is available for all DOCA for host and BFB packages downloadable here.

Assuming the DOCA package has been downloaded and installed on the system, to install all DOCA
GPUNetIO components, run:

For Ubuntu/Debian:

apt install doca-all doca-sdk-gpunetio libdoca-sdk-gpunetio-dev

For RHEL:

yum install doca-all doca-sdk-gpunetio doca-sdk-gpunetio-devel

Internal hardware topology of the system should be GPUDirect-RDMA-friendly to maximize the
internal throughput between the GPU and the NIC.

As DOCA GPUNetIO is present in both DOCA-for-Host and DOCA BFB (for BlueField Arm), a GPUNetIO
application can be executed either on the host CPU or on the BlueField's Arm cores. The following
subsections provide a description of both scenarios.

14.4.9.3.1 Application on Host CPU

Assuming the DOCA GPUNetIO application is running on the host x86 CPU cores, it is highly
recommended to have a dedicated PCIe connection between the GPU and the NIC. This topology can
be realized in two ways:

Adding an additional PCIe switch to one of the PCIe root complex slots and attaching to this
switch a GPU and a NVIDIA® ConnectX® adapter
Connecting an NVIDIA® Converged Accelerator DPU to the PCIe root complex and setting it to
NIC mode (i.e., exposing the GPU and NIC devices to the host)

KVM

DOCA GPUNetIO has been tested on bare-metal and in docker but never in a virtualized
environment. Using KVM is discouraged for now.

https://developer.nvidia.com/doca-downloads
https://docs.nvidia.com/cuda/gpudirect-rdma/index.html
https://developer.nvidia.com/blog/benchmarking-gpudirect-rdma-on-modern-server-platforms/

566

1.

2.

3.

You may check the topology of your system using lspci -tvvv or nvidia-smi topo -m .

14.4.9.3.1.1 Option 1: ConnectX Adapter in Ethernet Mode

DOCA GPUNetIO allows a CUDA kernel to control the NIC when working with Ethernet protocol. For
this reason, the ConnectX must be set to Ethernet mode.

To do that, follow these steps:

Start MST, check the status, and copy the MST device name:

Start MST
mst start
mst status -v

MST modules:

 MST PCI module is not loaded
 MST PCI configuration module loaded
PCI devices:

DEVICE_TYPE MST PCI RDMA NET
NUMA
ConnectX6DX(rev:0) /dev/mst/mt4125_pciconf0.1 b5:00.1 mlx5_1 net-ens6f1 0
ConnectX6DX(rev:0) /dev/mst/mt4125_pciconf0 b5:00.0 mlx5_0 net-ens6f0 0

Configure the NIC to Ethernet mode and enable Accurate Send Scheduling (if required on the
send side):

mlxconfig -d <mst_device> s KEEP_ETH_LINK_UP_P1=1 KEEP_ETH_LINK_UP_P2=1 KEEP_IB_LINK_UP_P1=0
KEEP_IB_LINK_UP_P2=0
mlxconfig -d <mst_device> --yes set ACCURATE_TX_SCHEDULER=1 REAL_TIME_CLOCK_ENABLE=1

Perform cold reboot to apply the configuration changes:

NVIDIA® ConnectX® firmware must be 22.36.1010 or later. It is highly recommended to only
use NVIDIA adapter from ConnectX-6 Dx and later.

The following example assumes that the adapter is dual-port. If single port, only P1
options apply.

567

1.

2.
•

•

3.

4.

5.

ipmitool power cycle

14.4.9.3.1.2 Option 2: DPU Converged Accelerator in NIC mode

To expose and use the GPU and the NIC on the converged accelerator DPU to an application running
on the Host x86, configure the DPU to operate in NIC mode.

To do that, follow these steps:

Start MST, check the status, and copy the MST device name:

Enable MST
sudo mst start
sudo mst status

MST devices:

/dev/mst/mt41686_pciconf0 - PCI configuration cycles access.
 domain:bus:dev.fn=0000:b8:00.0 addr.reg=88 data.reg=92
cr_bar.gw_offset=-1
 Chip revision is: 01

Expose the GPU on the converged accelerator DPU to the host.
For BlueField-2, the PCI_DOWNSTREAM_PORT_OWNER offset must be set to 4:

sudo mlxconfig -d <mst_device> --yes s PCI_DOWNSTREAM_PORT_OWNER[4]=0x0

For BlueField-3, the PCI_DOWNSTREAM_PORT_OWNER offset must be set to 8:

sudo mlxconfig -d <mst_device> --yes s PCI_DOWNSTREAM_PORT_OWNER[8]=0x0

Set BlueField to Ethernet mode, enable Accurate Send Scheduling (if required on the send
side), and set it to NIC mode:

sudo mlxconfig -d <mst_device> --yes set LINK_TYPE_P1=2 LINK_TYPE_P2=2 INTERNAL_CPU_MODEL=1
INTERNAL_CPU_PAGE_SUPPLIER=1 INTERNAL_CPU_ESWITCH_MANAGER=1 INTERNAL_CPU_IB_VPORT0=1
INTERNAL_CPU_OFFLOAD_ENGINE=DISABLED
sudo mlxconfig -d <mst_device> --yes set ACCURATE_TX_SCHEDULER=1 REAL_TIME_CLOCK_ENABLE=1

Perform cold reboot to apply the configuration changes:

ipmitool power cycle

Verify configuration:

sudo mlxconfig -d <mst_device> q LINK_TYPE_P1 LINK_TYPE_P2 INTERNAL_CPU_MODEL INTERNAL_CPU_PAGE_SUPPLIER
INTERNAL_CPU_ESWITCH_MANAGER INTERNAL_CPU_IB_VPORT0 INTERNAL_CPU_OFFLOAD_ENGINE ACCURATE_TX_SCHEDULER
REAL_TIME_CLOCK_ENABLE
 LINK_TYPE_P1 ETH(2)
 LINK_TYPE_P2 ETH(2)
 INTERNAL_CPU_MODEL EMBEDDED_CPU(1)
 INTERNAL_CPU_PAGE_SUPPLIER EXT_HOST_PF(1)
 INTERNAL_CPU_ESWITCH_MANAGER EXT_HOST_PF(1)
 INTERNAL_CPU_IB_VPORT0 EXT_HOST_PF(1)
 INTERNAL_CPU_OFFLOAD_ENGINE DISABLED(1)
 ACCURATE_TX_SCHEDULER True(1)
 REAL_TIME_CLOCK_ENABLE True(1)

Valid for both NVIDIA® BlueField®-2 and NVIDIA® BlueField®-3 converged accelerator DPUs.

568

1.

2.
a.

b.

14.4.9.3.2 Application on BlueField Converged Arm CPU

In this scenario, the DOCA GPUNetIO is running on the CPU Arm cores of the BlueField using the GPU
and NIC on the same BlueField.

The converged accelerator DPU must be set to CPU mode after flashing the right BFB image (refer to
NVIDIA DOCA Installation Guide for Linux for details). From the x86 host, configure the DPU as
detailed in the following steps:

Start MST, check the status, and copy the MST device name:

Enable MST
sudo mst start
sudo mst status

MST devices:

/dev/mst/mt41686_pciconf0 - PCI configuration cycles access.
 domain:bus:dev.fn=0000:b8:00.0 addr.reg=88 data.reg=92
cr_bar.gw_offset=-1
 Chip revision is: 01

Set the DPU as the GPU owner.
For BlueField-2 the PCI_DOWNSTREAM_PORT_OWNER offset must be set to 4:

sudo mlxconfig -d <mst_device> --yes s PCI_DOWNSTREAM_PORT_OWNER[4]=0xF

For BlueField-3 the PCI_DOWNSTREAM_PORT_OWNER offset must be set to 8:

sudo mlxconfig -d <mst_device> --yes s PCI_DOWNSTREAM_PORT_OWNER[8]=0xF

Valid for both BlueField-2 and BlueField-3 converged accelerator DPUs.

569

3.

4.

5.

Set BlueField to Ethernet mode and enable Accurate Send Scheduling (if required on the send
side):

sudo mlxconfig -d <mst_device> --yes set LINK_TYPE_P1=2 LINK_TYPE_P2=2 INTERNAL_CPU_MODEL=1
INTERNAL_CPU_PAGE_SUPPLIER=0 INTERNAL_CPU_ESWITCH_MANAGER=0 INTERNAL_CPU_IB_VPORT0=0
INTERNAL_CPU_OFFLOAD_ENGINE=ENABLED
sudo mlxconfig -d <mst_device> --yes set ACCURATE_TX_SCHEDULER=1 REAL_TIME_CLOCK_ENABLE=1

Perform cold reboot to apply the configuration changes:

ipmitool power cycle

Verify configuration:

mlxconfig -d <mst_device> q LINK_TYPE_P1 LINK_TYPE_P2 INTERNAL_CPU_MODEL INTERNAL_CPU_PAGE_SUPPLIER
INTERNAL_CPU_ESWITCH_MANAGER INTERNAL_CPU_IB_VPORT0 INTERNAL_CPU_OFFLOAD_ENGINE ACCURATE_TX_SCHEDULER
REAL_TIME_CLOCK_ENABLE
...
Configurations: Next Boot
 LINK_TYPE_P1 ETH(2)
 LINK_TYPE_P2 ETH(2)
 INTERNAL_CPU_MODEL EMBEDDED_CPU(1)
 INTERNAL_CPU_PAGE_SUPPLIER ECPF(0)
 INTERNAL_CPU_ESWITCH_MANAGER ECPF(0)
 INTERNAL_CPU_IB_VPORT0 ECPF(0)
 INTERNAL_CPU_OFFLOAD_ENGINE ENABLED(0)
 ACCURATE_TX_SCHEDULER True(1)
 REAL_TIME_CLOCK_ENABLE True(1)

At this point, it should be possible to SSH into BlueField to access the OS installed on it. Before
installing DOCA GPUNetIO as previously described, CUDA Toolkit (and NVIDIA driver) must be
installed.

14.4.9.3.3 PCIe Configuration

On some x86 systems, the Access Control Services (ACS) must be disabled to ensure direct
communication between the NIC and GPU, whether they reside on the same converged accelerator
DPU or on different PCIe slots in the system. The recommended solution is to disable ACS control via
BIOS (e.g., Supermicro or HPE). Alternatively, it is also possible to disable it via command line, but
it may not be as effective as the BIOS option. Assuming system topology Option 2, with a converged
accelerator DPU as follows:

$ lspci -tvvv...+-[0000:b0]-+-00.0 Intel Corporation Device 09a2
 | +-00.1 Intel Corporation Device 09a4
 | +-00.2 Intel Corporation Device 09a3
 | +-00.4 Intel Corporation Device 0998
 | \-02.0-[b1-b6]----00.0-[b2-b6]--+-00.0-[b3]--+-00.0 Mellanox Technologies MT42822 BlueField-2
integrated ConnectX-6 Dx network controller
 | | +-00.1 Mellanox Technologies MT42822 BlueField-2
integrated ConnectX-6 Dx network controller
 | | \-00.2 Mellanox Technologies MT42822 BlueField-2 SoC
Management Interface
 | \-01.0-[b4-b6]----00.0-[b5-b6]----08.0-[b6]----00.0 NVIDIA
Corporation Device 20b8

The PCIe switch address to consider is b2:00.0 (entry point of the DPU). ACSCtl must have all
negative values:

PCIe set

setpci -s b2:00.0 ECAP_ACS+6.w=0:fc

To verify that the setting has been applied correctly:

https://www.supermicro.com/support/faqs/faq.cfm?faq=22226
https://techlibrary.hpe.com/docs/iss/proliant-gen10-uefi/GUID-34A85970-B963-4518-8655-DA66170D52F2.html

570

PCIe check

$ sudo lspci -s b2:00.0 -vvvv | grep -i ACSCtl
ACSCtl: SrcValid- TransBlk- ReqRedir- CmpltRedir- UpstreamFwd- EgressCtrl- DirectTrans-

Please refer to this page and this page for more information.

If the application still does not report any received packets, try to disable IOMMU. On some systems,
it can be done from the BIOS looking for the the VT-d or IOMMU from the NorthBridge

configuration and change that setting to Disable and save it. The system may also require adding

intel_iommu=off or amd_iommu=off to the kernel options. That can be done through the grub
command line as follows:

IOMMU

$ sudo vim /etc/default/grub
GRUB_CMDLINE_LINUX_DEFAULT="iommu=off intel_iommu=off <more options>"
$ sudo update-grub
$ sudo reboot

14.4.9.3.4 Hugepages

A DOCA GPUNetIO application over Ethernet uses typically DOCA Flow to set flow steering rules to
the Ethernet receive queues. Flow-based programs require an allocation of huge pages and it can be
done temporarily as explained in the DOCA Flow or permanently via grub command line:

IOMMU

$ sudo vim /etc/default/grub
GRUB_CMDLINE_LINUX_DEFAULT="default_hugepagesz=1G hugepagesz=1G hugepages=4 <more options>"
$ sudo update-grub
$ sudo reboot

After rebooting, check huge pages info
$ grep -i huge /proc/meminfo
AnonHugePages: 0 kB
ShmemHugePages: 0 kB
FileHugePages: 0 kB
HugePages_Total: 4
HugePages_Free: 4
HugePages_Rsvd: 0
HugePages_Surp: 0
Hugepagesize: 1048576 kB
Hugetlb: 4194304 kB

14.4.9.3.5 GPU Configuration

CUDA Toolkit 12.1 or newer must be installed on the host. It is also recommended to enable
persistence mode to decrease initial application latency nvidia-smi -pm 1 .

To allow the CPU to access the GPU memory directly without the need for CUDA API, DPDK and DOCA
require the GDRCopy kernel module to be installed on the system:

GPU Configuration

Run nvidia-peermem kernel module
sudo modprobe nvidia-peermem

https://www.supermicro.com/support/faqs/faq.cfm?faq=20732
https://forums.developer.nvidia.com/t/multi-gpu-peer-to-peer-access-failing-on-tesla-k80/39748/15
https://developer.nvidia.com/cuda-downloads
https://github.com/NVIDIA/gdrcopy

571

•
•
•

Install GDRCopy
sudo apt install -y check kmod
git clone https://github.com/NVIDIA/gdrcopy.git /opt/mellanox/gdrcopy
cd /opt/mellanox/gdrcopy
make
Run gdrdrv kernel module
./insmod.sh

Double check nvidia-peermem and gdrdrv module are running
$ lsmod | egrep gdrdrv
gdrdrv 24576 0
nvidia 55726080 4 nvidia_uvm,nvidia_peermem,gdrdrv,nvidia_modeset

Export library path
export LD_LIBRARY_PATH=${LD_LIBRARY_PATH}:/opt/mellanox/gdrcopy/src

Ensure CUDA library path is in the env var
export PATH="/usr/local/cuda/bin:${PATH}"
export LD_LIBRARY_PATH="/usr/local/cuda/lib:/usr/local/cuda/lib64:${LD_LIBRARY_PATH}"
export CPATH="$(echo /usr/local/cuda/targets/{x86_64,sbsa}-linux/include | sed 's/ /:/'):${CPATH}"

14.4.9.3.5.1 BlueField-3 Specific Configuration

To run a DOCA GPUNetIO application on the BlueField Arm cores in a BlueField-3 converged card
(section "Application on DPU Converged Arm CPU"), it is mandatory to set an NVIDIA driver option at
the end of the driver configuration file:

Set NVIDIA driver option

cat <<EOF | sudo tee /etc/modprobe.d/nvidia.conf
options nvidia NVreg_RegistryDwords="RmDmaAdjustPeerMmioBF3=1;"
EOF

To make sure the option has been detected by the NVIDIA driver, run:

Check NVIDIA driver option

$ grep RegistryDwords /proc/driver/nvidia/params
RegistryDwords: "RmDmaAdjustPeerMmioBF3=1;"
RegistryDwordsPerDevice: ""

14.4.9.3.5.2 GPU Memory Mapping (nvidia-peermem vs. dmabuf)

To allow the NIC to send and receive packets using GPU memory, it is required to launch the NVIDIA
kernel module nvidia-peermem (using modprobe nvidia-peermem). It is shipped by default with
the CUDA Toolkit installation.

Mapping buffers through the nvidia-peermem module is the legacy mapping mode.

Alternatively, DOCA offers the ability to map GPU memory through the dmabuf providing a set high-
level functions. Prerequisites are DOCA installed on a system with:

Linux Kernel ≥ 6.2
libibverbs ≥ 1.14.44
CUDA Toolkit installed with the -m=kernel-open flag (which implies the NVIDIA driver in
Open Source mode)

An example can be found in the DOCA GPU Packet Processing application:

Installing DOCA on kernel 6.2 to enable the dmabuf is experimental.

572

GPU Configuration

/* Get from CUDA the dmabuf file-descriptor for the GPU memory buffer */
result = doca_gpu_dmabuf_fd(gpu_dev, gpu_buffer_addr, gpu_buffer_size, &(dmabuf_fd));
if (result != DOCA_SUCCESS) {
 /* If it fails, create a DOCA mmap for the GPU memory buffer with the nvidia-peermem legacy method */
 doca_mmap_set_memrange(gpu_buffer_mmap, gpu_buffer_addr, gpu_buffer_size);
} else {
 /* If it succeeds, create a DOCA mmap for the GPU memory buffer using the dmabuf method */
 doca_mmap_set_dmabuf_memrange(gpu_buffer_mmap, dmabuf_fd, gpu_buffer_addr, 0, gpu_buffer_size);
}

If the function doca_gpu_dmabuf_fd fails, it probably means the NVIDIA driver is not installed with
the open-source mode.

Later, when calling the doca_mmap_start , the DOCA library tries to map the GPU memory buffer

using the dmabuf file descriptor. If it fails (something incorrectly set on the Linux system), it

fallbacks trying to map the GPU buffer with the legacy mode (nvidia-peermem). If it fails, an
informative error is returned.

14.4.9.3.5.3 GPU BAR1 Size

Every time a GPU buffer is mapped to the NIC (e.g., buffers associated with send or receive
queues), a portion of the GPU BAR1 mapping space is used. Therefore, it is important to check that
the BAR1 mapping is large enough to hold all the bytes the DOCA GPUNetIO application is trying to
map. To verify the BAR1 mapping space of a GPU you can use nvidia-smi :

BAR1 mapping

$ nvidia-smi -q

==============NVSMI LOG==============
.....
Attached GPUs : 1
GPU 00000000:CA:00.0
 Product Name : NVIDIA A100 80GB PCIe
 Product Architecture : Ampere
 Persistence Mode : Enabled
.....
 BAR1 Memory Usage
 Total : 131072 MiB
 Used : 1 MiB
 Free : 131071 MiB

By default, some GPUs (e.g. RTX models) may have a very small BAR1 size:

BAR1 mapping

$ nvidia-smi -q | grep -i bar -A 3
 BAR1 Memory Usage
 Total : 256 MiB
 Used : 6 MiB
 Free : 250 MiB

If the BAR1 size is not enough, DOCA GPUNetIO applications may exit with errors because DOCA
mmap fails to map the GPU memory buffers to the NIC (e.g., Failed to start mmap DOCA Driver

call failure). To overcome this issue, the GPU BAR1 must be increased from the BIOS. The
system should have "Resizable BAR" option enabled. For further information, refer to this NVIDIA
forum post.

https://forums.developer.nvidia.com/t/doca-gpu-packet-processing-failed-to-start-mmap-doca-driver-call-failure/267827

573

•
•

1.
2.
3.

•

•

14.4.9.4 Architecture
A GPU packet processing network application can be split into two fundamental phases:

Setup on the CPU (devices configuration, memory allocation, launch of CUDA kernels, etc.)
Main data path where GPU and NIC interact to exercise their functions

DOCA GPUNetIO provides different building blocks, some of them in combination with the DOCA
Ethernet or DOCA RDMA library, to create a full pipeline running entirely on the GPU.

During the setup phase on the CPU, applications must:

Prepare all the objects on the CPU.
Export a GPU handler for them.
Launch a CUDA kernel passing the object's GPU handler to work with the object during the
data path.

For this reason, DOCA GPUNetIO is composed of two libraries:

libdoca_gpunetio with functions invoked by CPU to prepare the GPU, allocate memory and
objects
libdoca_gpunetio_device with functions invoked by GPU within CUDA kernels during the
data path

The following diagram presents the typical flow:

The pkgconfig file for the DOCA GPUNetIO shared library is doca-gpunetio.pc . However,

there is no pkgconfig file for the DOCA GPUNetIO CUDA device's static library /opt/

mellanox/doca/lib/x86_64-linux-gnu/libdoca_gpunetio_device.a , so it must be
explicitly linked to the CUDA application if DOCA GPUNetIO CUDA device functions are
required.

https://confluence.nvidia.com/display/docadev/DOCA+RDMA

574

•

•

•

•

•

•

•

Refer to the NVIDIA DOCA GPU Packet Processing Application Guide for an example of using DOCA
GPUNetIO to send and receive Ethernet packets.

14.4.9.5 API
This section details the specific structures and operations related to the main DOCA GPUNetIO API
on CPU and GPU. GPUNetIO headers are:

doca_gpunetio.h – CPU functions

doca_gpunetio_dev_buf.cuh – GPU functions to manage a DOCA buffer array

doca_gpunetio_dev_eth_rxq.cuh – GPU functions to manage a DOCA Ethernet receive
queue
doca_gpunetio_dev_eth_txq.cuh – GPU functions to manage a DOCA Ethernet send queue

doca_gpunetio_dev_sem.cuh – GPU functions to manage a DOCA GPUNetIO semaphore

doca_gpunetio_dev_rdma.cuh – GPU functions to manage a DOCA RDMA queue

doca_gpunetio_dev_dma.cuh – GPU functions to manage a DOCA DMA queue

This section lists the main functions of DOCA GPUNetIO. To better understand their usage, refer to
section "Building Blocks" which includes several code examples.

To better understand structures, objects, and functions related to Ethernet send and
receive, please refer to the DOCA Ethernet.

575

•

•

All DOCA Core and Ethernet object used with GPUNetIO have a GPU export function to obtain a GPU
handler for that object. The following are a few examples:

doca_buf_array is exported as doca_gpu_buf_arr :

DOCA buf array

struct doca_mmap *mmap;
struct doca_buf_arr *buf_arr_cpu;
struct doca_gpu_buf_arr *buf_arr_gpu;

doca_mmap_create(&(mmap));
/* Populate and start mmap */
doca_buf_arr_create(mmap, &buf_arr_cpu);
/* Populate and start buf arr attributes. Set datapath on GPU */
/* Export the buf array CPU handler to a buf array GPU handler */
doca_buf_arr_get_gpu_handle(buf_arr_cpu, &(buf_arr_gpu));
/* To use the GPU handler, pass it as parameter of the CUDA kernel */
cuda_kernel<<<...>>>(buf_arr_gpu, ...);

doca_eth_rxq is exported as doca_gpu_eth_rxq :

DOCA buf array

struct doca_mmap *mmap;
struct doca_eth_rxq *eth_rxq_cpu;
struct doca_gpu_eth_rxq *eth_rxq_gpu;
struct doca_dev *ddev;

/* Create DOCA network device ddev */
/* Create the DOCA Ethernet receive queue */
doca_eth_rxq_create(ddev, MAX_NUM_PACKETS, MAX_PACKET_SIZE, ð_rxq_cpu,);
/* Populate and start Ethernet receive queue attributes. Set datapath on GPU */
/* Export the Ethernet receive queue CPU handler to a Ethernet receive queue GPU handler */
doca_eth_rxq_get_gpu_handle(eth_rxq_cpu, &(eth_rxq_gpu));
/* To use the GPU handler, pass it as parameter of the CUDA kernel */
cuda_kernel<<<...>>>(eth_rxq_gpu, ...);

14.4.9.5.1 CPU Functions

In this section there is the list of DOCA GPUNetIO functions that can be used on the CPU only.

14.4.9.5.1.1 doca_gpu_mem_type

This enum lists all the possible memory types that can be allocated with GPUNetIO.

To better understand structures, objects, and functions related to RDMA operations, please
refer to the DOCA RDMA.

To better understand structures, objects, and functions related to DMA operations, please
refer to the DOCA DMA.

To better understand DOCA core objects like doca_mmap or doca_buf_array , please refer
to the DOCA Core.

576

•

•

•

•

•

•

•

•

•

•

•

enum doca_gpu_mem_type {
 DOCA_GPU_MEM_TYPE_GPU = 0,
 DOCA_GPU_MEM_TYPE_GPU_CPU = 1,
 DOCA_GPU_MEM_TYPE_CPU_GPU = 2,
};

DOCA_GPU_MEM_TYPE_GPU – memory resides on the GPU and is accessible from the GPU only

DOCA_GPU_MEM_TYPE_GPU_CPU – memory resides on the GPU and is accessible also by the
CPU
DOCA_GPU_MEM_TYPE_CPU_GPU – memory resides on the CPU and is accessible also by the
GPU

Typical usage of the DOCA_GPU_MEM_TYPE_GPU_CPU memory type is to send a notification from the
CPU to the GPU (e.g., a CUDA kernel periodically checking to see if the exit condition set by the
CPU is met).

14.4.9.5.1.2 doca_gpu_create

This is the first function a GPUNetIO application must invoke to create an handler on a GPU device.
The function initializes a pointer to a structure in memory with type struct doca_gpu * .

doca_error_t doca_gpu_create(const char *gpu_bus_id, struct doca_gpu **gpu_dev);

gpu_bus_id – <PCIe-bus>:<device>.<function> of the GPU device you want to use in
your application
gpu_dev [out] – GPUNetIO handler to that GPU device

To get the PCIe address, users can use the commands lspci or nvidia-smi .

14.4.9.5.1.3 doca_gpu_mem_alloc

This CPU function allocates different flavors of memory.

doca_error_t doca_gpu_mem_alloc(struct doca_gpu *gpu_dev, size_t size, size_t alignment, enum doca_gpu_mem_type
mtype, void **memptr_gpu, void **memptr_cpu)

gpu_dev – GPUNetIO device handler

size – Size, in bytes, of the memory area to allocate

alignment – Memory address alignment to use. If 0, default one will be used

mtype – Type of memory to allocate

memptr_gpu [out] – GPU pointer to use to modify that memory from the GPU if memory is
allocated on or is visible by the GPU
memptr_cpu [out] – CPU pointer to use to modify that memory from the CPU if memory is
allocated on or is visible by the CPU. Can be NULL if memory is GPU-only

With regards to the syntax, the text string after the DOCA_GPU_MEM_TYPE_ prefix

signifies <where-memory-resides>_<who-has-access> .

577

14.4.9.5.1.4 doca_gpu_semaphore_create

Creates a new instance of a DOCA GPUNetIO semaphore. A semaphore is composed by a list of items
each having, by default, a status flag, number of packets, and the index of a doca_gpu_buf in a

doca_gpu_buf_arr .

For example, a GPUNetIO semaphore can be used in applications where a CUDA kernel is responsible
for receiving packets in a doca_gpu_buf_arr array associated with an Ethernet receive queue

object, doca_gpu_eth_rxq (see section "doca_gpu_dev_eth_rxq_receive_*"), and dispatching
packet info to a second CUDA kernel which processes them.

Another way to use a GPUNetIO semaphore is to exchange data across different entities like two
CUDA kernels or a CUDA kernel and a CPU thread. The reason for this scenario may be that the CUDA
kernel needs to provide the outcome of the packet processing to the CPU which would in turn
compile a statistics report. Therefore, it is possible to associate a custom application-defined
structure to each item in the semaphore. This way, the semaphore can be used as a message passing
object.

Both situations are illustrated in the "Receive and Process" section.

Make sure to use the right pointer on the right device! If an application tries to access the
memory using the memptr_gpu address from the CPU, a segmentation fault will result.

578

•
a.

b.
•

a.
b.
c.

•

•

•

•
•

•

•

•

•

Entities communicating through a semaphore must adopt a poll/update mechanism according to the
following logic:

Update:
Populate the next item of the semaphore (packets' info and/or custom application-
defined info).
Set status flag to READY.

Poll:
Wait for the next item to have a status flag equal to READY .
Read and process info.
Set status flag to DONE .

doca_error_t doca_gpu_semaphore_create(struct doca_gpu *gpu_dev, struct doca_gpu_semaphore **semaphore)

gpu_dev – GPUNetIO handler

semaphore [out] – GPUNetIO semaphore handler associated to the GPU device

14.4.9.5.1.5 doca_gpu_semaphore_set_memory_type

This function defines the type of memory for the semaphore allocation.

doca_error_t doca_gpu_semaphore_set_memory_type(struct doca_gpu_semaphore *semaphore, enum doca_gpu_mem_type mtype)

semaphore – GPUNetIO semaphore handler

mtype – Type of memory to allocate the custom info structure
If the application must share packet info only across CUDA kernels, then
DOCA_GPU_MEM_GPU is the suggested memory type.
If the application must share info from a CUDA kernel to a CPU (e.g., to report
statistics or output of the pipeline computation), then DOCA_GPU_MEM_CPU_GPU is the
suggested memory type

14.4.9.5.1.6 doca_gpu_semaphore_set_items_num

This function defines the number of items in a semaphore.

doca_error_t doca_gpu_semaphore_set_items_num(struct doca_gpu_semaphore *semaphore, uint32_t num_items)

semaphore – GPUNetIO semaphore handler

num_items – Number of items to allocate

14.4.9.5.1.7 doca_gpu_semaphore_set_custom_info

This function associates an application-specific structure to semaphore items as explained under
"doca_gpu_semaphore_create".

doca_error_t doca_gpu_semaphore_set_custom_info(struct doca_gpu_semaphore *semaphore, uint32_t nbytes, enum
 doca_gpu_mem_type mtype)

semaphore – GPUNetIO semaphore handler

579

•

•
•

•

•

•

•

•

•

•

•

nbytes – Size of the custom info structure to associate

mtype – Type of memory to allocate the custom info structure
If the application must share packet info only across CUDA kernels, then
DOCA_GPU_MEM_GPU is the suggested memory type
If the application must share info from a CUDA kernel to a CPU (e.g., to report
statistics or output of the pipeline computation), then DOCA_GPU_MEM_CPU_GPU is the
suggested memory type

14.4.9.5.1.8 doca_gpu_semaphore_get_status

From the CPU, query the status of a semaphore item. If the semaphore is allocated with
DOCA_GPU_MEM_GPU , this function results in a segmentation fault.

doca_error_t doca_gpu_semaphore_get_status(struct doca_gpu_semaphore *semaphore_cpu, uint32_t idx, enum
 doca_gpu_semaphore_status *status)

semaphore_cpu – GPUNetIO semaphore CPU handler

idx – Semaphore item index

status [out] – Output semaphore status

14.4.9.5.1.9 doca_gpu_semaphore_get_custom_info_addr

From the CPU, retrieve the address of the custom info structure associated to a semaphore item. If
the semaphore or the custom info is allocated with DOCA_GPU_MEM_GPU this function results in a
segmentation fault.

doca_error_t doca_gpu_semaphore_get_custom_info_addr(struct doca_gpu_semaphore *semaphore_cpu, uint32_t idx, void
 **custom_info)

semaphore_cpu – GPUNetIO semaphore CPU handler

idx – Semaphore item index

custom_info [out] – Output semaphore custom info address

14.4.9.5.2 DOCA PE

A DOCA Ethernet Txq context, exported for GPUNetIO usage, can be tracked via DOCA PE on the CPU
side to check if there are errors when sending packets or to retrieve notification info after sending a
packet with any of the doca_gpu_dev_eth_txq_*_enqueue_* functions on the GPU. An example
can be found in the DOCA GPU packet processing application with ICMP traffic.

14.4.9.5.3 Strong Mode vs. Weak Mode

Some Ethernet and RDMA GPU functions present two modes of operation: Weak and strong.

In weak mode, the application calculates the next available position in the queue. With the
help of functions like doca_gpu_eth_txq_get_info , doca_gpu_rdma_get_info , or

doca_gpu_dev_rdma_recv_get_info it is possible to know the next available position in the
queue and the mask of the number of total entries in the queue (so the incremental
descriptor index can be wrapped). In this mode, the developer must specify a queue

580

•

•

•

•

•

•

descriptor number for where to enqueue the packet, ensuring that no descriptor in the queue
is left empty. It's a bit more complex to manage but it should result in better performance
and developer can emphasize GPU memory coalescing enqueuing sequential operations using
sequential memory locations.
In strong mode, the GPU function enqueues the Ethernet/RDMA operation in the next
available position in the queue. It is simpler to manage as developer does not have to worry
about operation's position, but it may introduce an extra latency to atomically guarantee the
access of multiple threads to the same queue. Moreover, it does not guarantee that
sequential operations refer to sequential memory locations.

In sections "Produce and Send" and "CUDA Kernel for RDMA Write", there are a few examples about
how to use the weak mode API.

14.4.9.5.4 GPU Functions – Ethernet

This section provides a list of DOCA GPUNetIO functions that can be used for Ethernet network
operations on the GPU only within a CUDA kernel.

14.4.9.5.4.1 doca_gpu_dev_eth_rxq_receive_*

To acquire packets in a CUDA kernel, DOCA GPUNetIO offers different flavors of the receive function
for different scopes: per CUDA block, per CUDA warp, and per CUDA thread.

__device__ doca_error_t doca_gpu_dev_eth_rxq_receive_block(struct doca_gpu_eth_rxq *eth_rxq, uint32_t max_rx_pkts,
uint64_t timeout_ns, uint32_t *num_rx_pkts, uint64_t *doca_gpu_buf_idx)
__device__ doca_error_t doca_gpu_dev_eth_rxq_receive_warp(struct doca_gpu_eth_rxq *eth_rxq, uint32_t max_rx_pkts,
uint64_t timeout_ns, uint32_t *num_rx_pkts, uint64_t *doca_gpu_buf_idx)
__device__ doca_error_t doca_gpu_dev_eth_rxq_receive_thread(struct doca_gpu_eth_rxq *eth_rxq, uint32_t max_rx_pkts,
uint64_t timeout_ns, uint32_t *num_rx_pkts, uint64_t *doca_gpu_buf_idx)

eth_rxq – Ethernet receive queue GPU handler

max_rx_pkts – Maximum number of packets to receive. It ensures the number of packets
returned by the function is lower or equal to this number.
timeout_ns – Nanoseconds to wait for packets before returning

num_rx_pkts [out] – Effective number of received packets. With CUDA block or warp
scopes, this variable should be visible in memory by all the other threads (shared or global
memory).
doca_gpu_buf_idx [out] – DOCA buffer index of the first packet received in this function.
With CUDA block or warp scopes, this variable should be visible in memory by all the other
threads (shared or global memory).

CUDA threads in the same scope (thread, warp, or block) must invoke the function on the same
receive queue. The output parameters num_rx_pkts and doca_gpu_buf_idx must be visible by all
threads in the scope (e.g., CUDA shared memory for warp and block).

All strong mode functions work at the CUDA block level. That is, it is not possible to
access the same Eth/RDMA queue at the same time from two different CUDA blocks.

If both max_rx_pkts and timeout_ns are 0, the function never returns.

581

•

Each packet received by this function goes to the doca_gpu_buf_arr internally created and
associated with the Ethernet queues (see section "Building Blocks").

The function exits when timeout_ns is reached or when the maximum number of packets is
received.

The output parameters indicate how many packets have been received (num_rx_pkts) and the

index of the first received packet in the doca_gpu_buf_arr internally associated with the Ethernet

receive queue. Packets are stored consecutively in the doca_gpu_buf_arr so if the function

returns num_rx_pkts=N and doca_gpu_buf_idx=X , this means that all the doca_gpu_buf in the

doca_gpu_buf_arr within the range [X, .. ,X + (N-1)] have been filled with packets.

The DOCA buffer array is treated in a circular fashion so that once the last DOCA buffer is filled by a
packet, the queue circles back to the first DOCA buffer. There is no need for the application to lock
or free doca_gpu_buf_arr buffers.

14.4.9.5.4.2 doca_gpu_send_flags

This enum lists all the possible flags for the txq functions. The usage of those flags makes sense if a
DOCA PE has been attached to the DOCA Ethernet Txq context with GPU data path and a CPU
thread, in a loop, keeps invoking doca_pe_progress .

enum doca_gpu_mem_type {
 DOCA_GPU_SEND_FLAG_NONE = 0,
 DOCA_GPU_SEND_FLAG_NOTIFY = 1 << 0,
};

DOCA_GPU_SEND_FLAG_NONE (default) – send is executed and no notification info is returned.
If an error occurs, an event is generated. This error can be detected from the CPU side using
DOCA PE.

For CUDA block scope, the block invoking the receive function must have at least 32 CUDA
threads (i.e., one warp).

It is the application's responsibility to consume packets before they are overwritten when
circling back, properly dimensioning the DOCA buffer array size and scaling across multiple
receive queues.

If no DOCA PE has been attached to the DOCA Ethernet Txq context, it's mandatory to use
the DOCA_GPU_SEND_FLAG_NONE flag.

582

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

DOCA_GPU_SEND_FLAG_NOTIFY – once the send (or wait) is executed, return a notification
with packet info. This notification can be detected from the CPU side using DOCA PE.

14.4.9.5.4.3 doca_gpu_dev_eth_txq_send_*

To send packets from a CUDA kernel, DOCA GPUNetIO offers a strong and weak modes for enqueuing
a packet in the Ethernet TXQ. For both modes, the scope is the single CUDA thread each populating
and enqueuing a different doca_gpu_buf from a doca_gpu_buf_arr in the send queue.

__device__ doca_error_t doca_gpu_dev_eth_txq_get_info(struct doca_gpu_eth_txq *eth_txq, uint32_t *curr_position,
uint32_t *mask_max_position)

eth_txq – Ethernet send queue GPU handler

curr_position – Next available position in the queue

mask_max_position – Mask of the total number of positions in the queue

__device__ doca_error_t doca_gpu_dev_eth_txq_send_enqueue_strong(struct doca_gpu_eth_txq *eth_txq, const struct
 doca_gpu_buf *buf_ptr, const uint32_t nbytes, const uint32_t flags_bitmask)

eth_txq – Ethernet send queue GPU handler

buf_ptr – DOCA buffer from a DOCA GPU buffer array to be sent

nbytes – Number of bytes to be sent in the packet

flags_bitmask – One of the flags in the doca_gpu_send_flags enum

__device__ doca_error_t doca_gpu_dev_eth_txq_send_enqueue_weak(const struct doca_gpu_eth_txq *eth_txq, const struct
 doca_gpu_buf *buf_ptr, const uint32_t nbytes, const uint32_t ndescr, const uint32_t flags_bitmask)

eth_txq – Ethernet send queue GPU handler

buf_ptr – DOCA buffer from a DOCA GPU buffer array to be sent

nbytes – Number of bytes to be sent in the packet

ndescr – Position in the queue to place the packet. Range: 0 - mask_max_position .

flags_bitmask – One of the flags in the doca_gpu_send_flags enum

14.4.9.5.4.4 doca_gpu_dev_eth_txq_wait_*

To enable Accurate Send Scheduling, the "wait on time" barrier (based on timestamp) must be set in
the send queue before enqueuing more packets. Like doca_gpu_dev_eth_txq_send_* , doca_gpu_

dev_eth_txq_wait_* also has a strong and weak mode.

__device__ doca_error_t doca_gpu_dev_eth_txq_wait_time_enqueue_strong(struct doca_gpu_eth_txq *eth_txq, const
uint64_t wait_on_time_value, const uint32_t flags_bitmask)

eth_txq – Ethernet send queue GPU handler

wait_on_time_value – Timestamp to specify when packets must be sent after this barrier

flags_bitmask – One of the flags in the doca_gpu_send_flags enum

__device__ doca_error_t doca_gpu_dev_eth_txq_wait_time_enqueue_weak(struct doca_gpu_eth_txq *eth_txq, const
 uint64_t wait_on_time_value, const uint32_t ndescr, const uint32_t flags_bitmask)

eth_txq – Ethernet send queue GPU handler

583

•

•

•

•

•

•

1.
2.
3.

•

1.
2.
3.
4.

wait_on_time_value – Timestamp to specify when packets must be sent after this barrier

ndescr – Position in the queue to place the packet. Range: 0 - mask_max_position .

flags_bitmask – One of the flags in the doca_gpu_send_flags enum

Please refer to section "GPUNetIO Samples" to understand how to enable and use Accurate Send
Scheduling.

14.4.9.5.4.5 doca_gpu_dev_eth_txq_commit_*

After enqueuing all the packets to be sent and time barriers, a commit function must be invoked on
the txq queue. The right commit function must be used according to the type of enqueue mode
(i.e., strong or weak) used in doca_gpu_dev_eth_txq_send_* and doca_gpu_dev_eth_txq_wait_

* .

__device__ doca_error_t doca_gpu_dev_eth_txq_commit_strong(struct doca_gpu_eth_txq *eth_txq)

eth_txq – Ethernet send queue GPU handler

__device__ doca_error_t doca_gpu_dev_eth_txq_commit_weak(struct doca_gpu_eth_txq *eth_txq, const uint32_t
descr_num)

eth_txq – Ethernet send queue GPU handler

descr_num – Number of queue items enqueued thus far

Only one CUDA thread in the scope (CUDA block or CUDA warp) can invoke this function on the send
queue after several enqueue operations. Typical flow is as follows:

All threads in the scope enqueue packets in the send queue.
Synchronization point.
Only one thread in the scope performs the send queue commit.

14.4.9.5.4.6 doca_gpu_dev_eth_txq_push

After committing, the items in the send queue must be actually pushed to the network card.

__device__ doca_error_t doca_gpu_dev_eth_txq_push(struct doca_gpu_eth_txq *eth_txq)

eth_txq – Ethernet send queue GPU handler

Only one CUDA thread in the scope (CUDA block or CUDA warp) can invoke this function on the send
queue after several enqueue or commit operations. Typical flow is as follows:

All threads in the scope enqueue packets in the send queue.
Synchronization point.
Only one thread in the scope does the send queue commit.
Only one thread in the scope does the send queue push.

Section "Produce and Send" provides an example where the scope is a block (e.g., each CUDA block
operates on a different Ethernet send queue).

584

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

14.4.9.5.5 GPU Functions – RDMA

This section provides a list of DOCA GPUNetIO functions that can be used on the GPU only within a
CUDA kernel to execute RDMA operations. These functions offer a strong and a weak mode.

__device__ doca_error_t __device__ doca_error_t doca_gpu_dev_rdma_get_info(struct doca_gpu_dev_rdma *rdma, uint32_t
*curr_position, uint32_t *mask_max_position)

rdma – RDMA queue GPU handler

curr_position – Next available position in the queue

mask_max_position – Mask of the total number of positions in the queue

__device__ doca_error_t __device__ doca_error_t doca_gpu_dev_rdma_recv_get_info(struct doca_gpu_dev_rdma_r *rdma_r,
uint32_t *curr_position, uint32_t *mask_max_position)

rdma_r – RDMA receive queue GPU handler

curr_position – Next available position in the queue

mask_max_position – Mask of the total number of positions in the queue

14.4.9.5.5.1 doca_gpu_dev_rdma_write_*

To RDMA write data onto a remote memory location from a CUDA kernel, DOCA GPUNetIO offers
strong and weak modes for enqueuing operations on the RDMA queue. For both modes, the scope is
the single CUDA thread.

__device__ doca_error_t doca_gpu_dev_rdma_write_strong(struct doca_gpu_dev_rdma *rdma,
 struct doca_gpu_buf *remote_buf, uint64_t remote_offset,
 struct doca_gpu_buf *local_buf, uint64_t local_offset,
 size_t length, uint32_t imm,
 const enum doca_gpu_dev_rdma_write_flags flags)

rdma – RDMA queue GPU handler

remote_buf – Remote DOCA buffer from a DOCA GPU buffer array to write data to

remote_offset – Offset, in bytes, to write data to in the remote buffer

local_buf – Local DOCA buffer from a DOCA GPU buffer array from which to fetch data to
write
local_offset – Offset, in bytes, to fetch data from in the local buffer

length – Number of bytes to write

imm – Immediate value uint32_t

flags – One of the flags in the doca_gpu_dev_rdma_write_flags enum

__device__ doca_error_t doca_gpu_dev_rdma_write_weak(struct doca_gpu_dev_rdma *rdma,
 struct doca_gpu_buf *remote_buf, uint64_t remote_offset,
 struct doca_gpu_buf *local_buf, uint64_t local_offset,
 size_t length, uint32_t imm,
 const enum doca_gpu_dev_rdma_write_flags flags,
 uint32_t position);

rdma – RDMA queue GPU handler

remote_buf – Remote DOCA buffer from a DOCA GPU buffer array to write data to

remote_offset – Offset, in bytes, to write data to in the remote buffer

local_buf – Local DOCA buffer from a DOCA GPU buffer array where to fetch data to write

585

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

local_offset – Offset, in bytes, to fetch data in the local buffer

length – Number of bytes to write

imm – Immediate value uint32_t

flags – One of the flags in the doca_gpu_dev_rdma_write_flags enum

position – Position in the queue to place the RDMA operation. Range: 0 -

mask_max_position .

14.4.9.5.5.2 doca_gpu_dev_rdma_read_*

To RDMA read data onto a remote memory location from a CUDA kernel, DOCA GPUNetIO offers
strong and weak modes to enqueue operations on the RDMA queue. For both modes, the scope is the
single CUDA thread.

__device__ doca_error_t doca_gpu_dev_rdma_read_strong(struct doca_gpu_dev_rdma *rdma,
 struct doca_gpu_buf *remote_buf, uint64_t remote_offset,
 struct doca_gpu_buf *local_buf, uint64_t local_offset,
 size_t length,
 const uint32_t flags_bitmask)

rdma – RDMA queue GPU handler

remote_buf – Remote DOCA buffer from a DOCA GPU buffer array where to read data

remote_offset – Offset in bytes to read data to in the remote buffer

local_buf – Local DOCA buffer from a DOCA GPU buffer array where to store remote data

local_offset – Offset in bytes to store data in the local buffer

length – Number of bytes to be read

flags_bitmask – Must be 0; reserved for future use

__device__ doca_error_t doca_gpu_dev_rdma_read_weak(struct doca_gpu_dev_rdma *rdma,
 struct doca_gpu_buf *remote_buf, uint64_t remote_offset,
 struct doca_gpu_buf *local_buf, uint64_t local_offset,
 size_t length,
 const uint32_t flags_bitmask,
 uint32_t position);

rdma – RDMA queue GPU handler

remote_buf – Remote DOCA buffer from a DOCA GPU buffer array where to read data

remote_offset – Offset in bytes to read data to in the remote buffer

local_buf – Local DOCA buffer from a DOCA GPU buffer array where to store remote data

local_offset – Offset in bytes to store data in the local buffer

length – Number of bytes to be read

flags_bitmask – Must be 0; reserved for future use

position – Position in the queue to place the RDMA operation. Range: 0 -

mask_max_position .

14.4.9.5.5.3 doca_gpu_dev_rdma_send_*

To RDMA send data from a CUDA kernel, DOCA GPUNetIO offers strong and weak modes for
enqueuing operations on the RDMA queue. For both modes, the scope is the single CUDA thread.

586

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

__device__ doca_error_t doca_gpu_dev_rdma_send_strong(struct doca_gpu_dev_rdma *rdma,
 struct doca_gpu_buf *local_buf, uint64_t local_offset,
 size_t length, uint32_t imm,
 const enum doca_gpu_dev_rdma_write_flags flags)

rdma – RDMA queue GPU handler

local_buf – Local DOCA buffer from a DOCA GPU buffer array from which to fetch data to
send
local_offset – Offset in bytes to fetch data in the local buffer

length – Number of bytes to send

imm – Immediate value uint32_t

flags – One of the flags in the doca_gpu_dev_rdma_write_flags enum

__device__ doca_error_t doca_gpu_dev_rdma_send_weak(struct doca_gpu_dev_rdma *rdma,
 struct doca_gpu_buf *local_buf, uint64_t local_offset,
 size_t length, uint32_t imm,
 const enum doca_gpu_dev_rdma_write_flags flags,
 uint32_t position);

rdma – RDMA queue GPU handler

local_buf – Local DOCA buffer from a DOCA GPU buffer array from which to fetch data to
send
local_offset – Offset in bytes to fetch data in the local buffer

length – Number of bytes to send

imm – Immediate value uint32_t

flags – One of the flags in the doca_gpu_dev_rdma_write_flags enum

position – Position in the queue to place the RDMA operation. Range: 0 -

mask_max_position .

14.4.9.5.5.4 doca_gpu_dev_rdma_commit_*

Once all RDMA write, send or read requests have been enqueue in the RDMA queue, a
synchronization point must be reached to consolidate and execute those requests. Only 1 CUDA
thread can invoke this function at a time.

__device__ doca_error_t doca_gpu_dev_rdma_commit_strong(struct doca_gpu_dev_rdma *rdma)

rdma – RDMA queue GPU handler

__device__ doca_error_t doca_gpu_dev_rdma_commit_weak(struct doca_gpu_dev_rdma *rdma, uint32_t num_ops)

rdma – RDMA queue GPU handler

num_ops – Number of RDMA requests enqueued since the last commit

14.4.9.5.5.5 doca_gpu_dev_rdma_wait_all

After a commit, RDMA requests are executed by the network card as applications move forward
doing other operations. If the application needs to verify all RDMA operations have been done by the
network card, this "wait all" function can be used to wait for all previous posted operations. Only 1
CUDA thread can invoke this function at a time.

587

•

•

•

•

•

•

•

•

•

•

•

•

__device__ doca_error_t doca_gpu_dev_rdma_wait_all(struct doca_gpu_dev_rdma *rdma, uint32_t *num_ops)

rdma – RDMA queue GPU handler

num_ops – Output parameter. Function reports number of completed operations.

14.4.9.5.5.6 doca_gpu_dev_rdma_recv_*

To receive data from an RDMA send, send with immediate, or write with immediate, the destination
peer should post a receive operation. DOCA GPUNetIO RDMA receive operations must be done with a
doca_gpu_dev_rdma_r handler. This handler can be obtained with the function

doca_gpu_dev_rdma_get_recv .

__device__ doca_error_t doca_gpu_dev_rdma_get_recv(struct doca_gpu_dev_rdma *rdma, struct doca_gpu_dev_rdma_r
**rdma_r)

rdma – RDMA queue GPU handler

rdma_r – RDMA receive queue GPU handler

Even for the receive side, in this case, DOCA GPUNetIO offers strong and weak modes for enqueuing
operations on the RDMA queue. For both modes, the scope is the single CUDA thread.

__device__ doca_error_t doca_gpu_dev_rdma_recv_strong(struct doca_gpu_dev_rdma_r *rdma_r,
 struct doca_gpu_buf *recv_buf,
 size_t recv_length,
 uint64_t recv_offset,
 const uint32_t flags_bitmask)

rdma_r – RDMA receive queue GPU handler

recv_buf – Local DOCA buffer from a DOCA GPU buffer array from which to fetch data to
send
recv_length – Number of bytes to send

recv_offset – Offset in bytes to fetch data in the local buffer

flags_bitmask – Must be 0; reserved for future use

__device__ doca_error_t doca_gpu_dev_rdma_recv_weak(struct doca_gpu_dev_rdma_r *rdma_r,
 struct doca_gpu_buf *recv_buf,
 size_t recv_length,
 uint64_t recv_offset,
 const uint32_t flags_bitmask,
 uint32_t position);

rdma_r – RDMA receive queue GPU handler

recv_buf – Local DOCA buffer from a DOCA GPU buffer array from which to fetch data to
send
recv_length – Number of bytes to send

This function is optional.

All receive operations must use this object.

588

•

•

•

•

•

•

•

•

•

•

recv_offset – Offset in bytes to fetch data in the local buffer

flags_bitmask - Must be 0; reserved for future use

position – Position in the queue to place the RDMA operation. Range: 0 -

mask_max_position .

14.4.9.5.5.7 doca_gpu_dev_rdma_recv_commit_*

After posting a number of RDMA receive, a commit function must be invoked to activate the receive
in the queue. Only 1 CUDA thread can invoke this function at a time.

__device__ doca_error_t doca_gpu_dev_rdma_recv_commit_strong(struct doca_gpu_dev_rdma_r *rdma_r)

rdma_r – RDMA receive queue GPU handler

__device__ doca_error_t doca_gpu_dev_rdma_recv_commit_weak(struct doca_gpu_dev_rdma_r *rdma_r, uint32_t num_ops)

rdma_r – RDMA receive queue GPU handler

num_ops – Number of RDMA receive requests enqueued since the last commit

14.4.9.5.5.8 doca_gpu_dev_rdma_recv_wait_all

This function waits for the completion of all previously posted RDMA receive operation. Only 1 CUDA
thread can invoke this function at a time. It works in blocking or non-blocking mode.

 enum doca_gpu_dev_rdma_recv_wait_flags {
 DOCA_GPU_RDMA_RECV_WAIT_FLAG_NB = 0, /**< Non-Blocking mode: the wait receive function
doca_gpu_dev_rdma_recv_wait
 * checks if the receive operation happened (data has been received)
 * and exit from the function. If nothing has been received,
 * the function doesn't block the execution.
 */
 DOCA_GPU_RDMA_RECV_WAIT_FLAG_B = 1, /**< Blocking mode: the wait receive function doca_gpu_dev_rdma_recv_wait
 * blocks the execution waiting for the receive operations to be
executed.
 */
};

Function:

__device__ doca_error_t doca_gpu_dev_rdma_recv_wait_all(struct doca_gpu_dev_rdma_r *rdma_r, const enum
 doca_gpu_dev_rdma_recv_wait_flags flags, uint32_t *num_ops, uint32_t *imm_val)

rdma_r – RDMA receive queue GPU handler

flags – receive flags

num_ops – Output parameter. Function reports number of completed operations.

imm_val – Output parameter. Application-provided buffer where the function can store
received immediate values, if any (or 0xFFFFFFFF if no immediate value is received). If
nullptr , the function ignores this parameter.

14.4.9.5.6 GPU Functions – DMA

This section provides a list of DOCA GPUNetIO functions that can be used on the GPU only within a
CUDA kernel to execute DMA operations.

589

•

•

•

•

•

•

•

14.4.9.5.6.1 doca_gpu_dev_dma_memcopy

This function allows a CUDA kernel to trigger a DMA memory copy operation through the DMA GPU
engine. There is no strong/weak mode here, the DMA is assuming the strong behavior by default.

__device__ doca_error_t doca_gpu_dev_dma_memcpy(struct doca_gpu_dma *dma, struct doca_gpu_buf *src_buf, uint64_t
src_offset, struct doca_gpu_buf *dst_buf, uint64_t dst_offset, size_t length);

dma – DMA queue GPU handler

src_buf – memcpy source buffer

src_offset – fetch data starting from this source buffer offset

dst_buf – memcpy destination buffer

dst_offset – copy data starting from this destination buffer offset

lenght – number of bytes to copy

14.4.9.5.6.2 doca_gpu_dev_dma_commit

After posting several DMA memory copies, a commit function must be invoked to execute the
operations enqueued in the DMA queue. Only 1 CUDA thread can invoke this function at a time.

__device__ doca_error_t doca_gpu_dev_dma_commit(struct doca_gpu_dma *dma);

dma – DMA queue GPU handler

14.4.9.6 Building Blocks
This section explains general concepts behind the fundamental building blocks to use when creating
a DOCA GPUNetIO application.

14.4.9.6.1 Initialize GPU and NIC

When DOCA GPUNetIO is used in combination with the NIC to send or receive Ethernet traffic, the
following must be performed to properly set up the application and devices:

GPUNetIO setup

uint16_t dpdk_port_id;
struct doca_dev *ddev;
struct doca_gpu *gdev;
char *eal_param[3] = {"", "-a", "00:00.0"};

/* Initialize DPDK with empty device. DOCA device will hot-plug the network card later. */
rte_eal_init(3, eal_param);
/* Create DOCA device on a specific network card */
doca_dpdk_port_probe(&ddev);
get_dpdk_port_id_doca_dev(&ddev, &dpdk_port_id);
/* Create GPUNetIO handler on a specific GPU */
doca_gpu_create(gpu_pcie_address, &gdev);

The application would may have to enable different items depending on the task at hand.

590

14.4.9.6.2 Semaphore

If the DOCA application must dispatch some packets' info across CUDA kernels or from the CUDA
kernel and some CPU thread, a semaphore must be created.

A semaphore is a list of items, allocated either on the GPU or CPU (depending on the use case)
visible by both the GPU and CPU. This object can be used to discipline communication across items
in the GPU pipeline between CUDA kernels or a CUDA kernel and a CPU thread.

By default, each semaphore item can hold info about its status (FREE , READY , HOLD , DONE ,

ERROR), the number of received packets, and an index of a doca_gpu_buf in a

doca_gpu_buf_arr .

If the semaphore must be used to exchange data with the CPU, a preferred memory layout would be
DOCA_GPU_MEM_CPU_GPU . Whereas, if the semaphore is only needed across CUDA kernels,

DOCA_GPU_MEM_GPU is the best memory layout to use.

As an optional feature, if the application must pass more application-specific info through the
semaphore items, it is possible to attach a custom structure to each item of the semaphore.

Semaphore

#define SEMAPHORE_ITEMS 1024

/* Application defined custom structure to pass info through semaphore items */
struct custom_info {
 int a;
 uint64_t b;
};

/* Semaphore to share info from the GPU to the CPU */
struct doca_gpu_semaphore *sem_to_cpu;
struct doca_gpu_semaphore_gpu *sem_to_cpu_gpu;

doca_gpu_semaphore_create(gdev, &sem_to_cpu);
doca_gpu_semaphore_set_memory_type(sem_to_cpu, DOCA_GPU_MEM_CPU_GPU);
doca_gpu_semaphore_set_items_num(sem_to_cpu, SEMAPHORE_ITEMS);
/* This is optional */
doca_gpu_semaphore_set_custom_info(sem_to_cpu, sizeof(struct custom_info), DOCA_GPU_MEM_CPU_GPU);
doca_gpu_semaphore_start(sem_to_cpu);
doca_gpu_semaphore_get_gpu_handle(sem_to_cpu, &sem_to_cpu_gpu);

/* Semaphore to share info across GPU CUDA kernels with no CPU involvment */
struct doca_gpu_semaphore *sem_to_gpu;
struct doca_gpu_semaphore_gpu *sem_to_gpu_gpu;

doca_gpu_semaphore_create(gdev, &sem_to_gpu);
doca_gpu_semaphore_set_memory_type(sem_to_gpu, DOCA_GPU_MEM_GPU);
doca_gpu_semaphore_set_items_num(sem_to_gpu, SEMAPHORE_ITEMS);
/* This is optional */
doca_gpu_semaphore_set_custom_info(sem_to_gpu, sizeof(struct custom_info), DOCA_GPU_MEM_GPU);
doca_gpu_semaphore_start(sem_to_gpu);
doca_gpu_semaphore_get_gpu_handle(sem_to_gpu, &sem_to_gpu_gpu);

14.4.9.6.3 Ethernet Queue with GPU Data Path

14.4.9.6.3.1 Receive Queue

If the DOCA application must receive Ethernet packets, receive queues must be created. The
receive queue works in a circular way: At creation time, each receive queue is associated with a
DOCA buffer array allocated on the GPU by the application. Each DOCA buffer of the buffer array
has a maximum fixed size.

591

GPUNetIO receive

/* Start DPDK device */
rte_eth_dev_start(dpdk_port_id);
/* Initialise DOCA Flow */
struct doca_flow_port_cfg port_cfg;
port_cfg.port_id = port_id;
doca_flow_init(port_cfg);
doca_flow_port_start();

struct doca_dev *ddev;
struct doca_eth_rxq *eth_rxq_cpu;
struct doca_gpu_eth_rxq *eth_rxq_gpu;
struct doca_mmap *mmap;
void *gpu_buffer;

/* Create DOCA Ethernet receive queues */
doca_eth_rxq_create(ddev, MAX_PACKETS_NUM, MAX_PACKETS_SIZE, ð_rxq_cpu);

/* Set Ethernet receive queue properties */
/* ... */

/* Create DOCA mmap in GPU memory to be used for the DOCA buffer array associated to this Ethernet queue */
doca_mmap_create(&mmap);
/* Set DOCA mmap properties */
doca_gpu_mem_alloc(gdev, buffer_size, alignment, DOCA_GPU_MEM_GPU, (void **)&gpu_buffer, NULL);
doca_mmap_start(mmap);
doca_eth_rxq_set_pkt_buffer(eth_rxq_cpu, mmap, 0, buffer_size);
/* This DOCA Ethernet Rxq object will be managed by the GPU */
doca_ctx_set_datapath_on_gpu();
/* Start the Ethernet queue object */
/* Export GPU handle for the receive queue */
doca_eth_rxq_get_gpu_handle(eth_rxq_cpu, ð_rxq_gpu);

It is mandatory to associate DOCA Flow pipe(s) to the receive queues. Otherwise, the application
cannot receive any packet.

14.4.9.6.3.2 Send Queue

If the DOCA application must send Ethernet packets, send queues must be created in combination
with doca_gpu_buf_arr to prepare and send packets from GPU memory.

GPUNetIO receive

struct doca_dev *ddev;
struct doca_eth_txq *eth_txq_cpu;
struct doca_gpu_eth_txq *eth_txq_gpu;

/* Create DOCA Ethernet send queues */
doca_eth_txq_create(ddev, QUEUE_DEPTH, ð_txq_cpu);
/* Set properties to send queues */

/* This DOCA Ethernet Rxq object will be managed by the GPU */
doca_ctx_set_datapath_on_gpu();
/* Start the Ethernet queue object */
/* Export GPU handle for the send queue */
doca_eth_txq_get_gpu_handle(eth_txq_cpu, ð_txq_gpu);

/* Create DOCA mmap to define memory layout and type for the DOCA buf array */
struct doca_mmap *mmap;
doca_mmap_create(&mmap);
/* Set DOCA mmap properties */

/* Create DOCA buf arr and export it to GPU */
struct doca_buf_arr *buf_arr;
struct doca_gpu_buf_arr *buf_arr_gpu;
doca_buf_arr_create(mmap, &buf_arr);
/* Set DOCA buf array properties */
...
/* Export GPU handle for the buf arr */
doca_buf_arr_get_gpu_handle(buf_arr, &buf_arr_gpu);

14.4.9.6.3.3 Receive and Process

At this point, the application has created and initialized all the objects required by the GPU to
exercise the data path to send or receive packets with GPUNetIO.

592

In this example, the application must receive packets from different queues with a receiver CUDA
kernel and dispatch packet info to a second CUDA kernel responsible for packet processing.

The CPU launches the CUDA kernels and waits on the semaphore for output:

CPU code

#define CUDA_THREADS 512
#define CUDA_BLOCKS 1
int semaphore_index = 0;
enum doca_gpu_semaphore_status status;
struct custom_info *gpu_info;

/* On the CPU */
cuda_kernel_receive_dispatch<<<CUDA_THREADS, CUDA_BLOCKS, ..., stream_0>>>(eth_rxq_gpu, sem_to_gpu_gpu)
cuda_kernel_process<<<CUDA_THREADS, CUDA_BLOCKS, ..., stream_1>>>(eth_rxq_gpu, sem_to_cpu_gpu, sem_to_gpu_gpu)

while(/* condition */) {
 doca_gpu_semaphore_get_status(sem_to_cpu, semaphore_index, &status);
 if (status == DOCA_GPU_SEMAPHORE_STATUS_READY) {
 doca_gpu_semaphore_get_custom_info_addr(sem_to_cpu, semaphore_index, (void **)&(gpu_info));
 report_info(gpu_info);
 doca_gpu_semaphore_set_status(sem_to_cpu, semaphore_index, DOCA_GPU_SEMAPHORE_STATUS_FREE);
 semaphore_index = (semaphore_index+1) % SEMAPHORE_ITEMS;
 }
}

On the GPU, the two CUDA kernels are running on different streams:

GPU code

cuda_kernel_receive_dispatch(eth_rxq_gpu, sem_to_gpu_gpu) {
 __shared__ uint32_t rx_pkt_num;
 __shared__ uint64_t rx_buf_idx;
 int semaphore_index = 0;

 while (/* exit condition */) {
 doca_gpu_dev_eth_rxq_receive_block(eth_rxq_gpu, MAX_NUM_RECEIVE_PACKETS, TIMEOUT_RECEIVE_NS, &rx_pkt_num,
&rx_buf_idx);
 if (threadIdx.x == 0 && rx_pkt_num > 0) {
 doca_gpu_dev_sem_set_packet_info(sem_to_gpu_gpu, semaphore_index, DOCA_GPU_SEMAPHORE_STATUS_READY,
rx_pkt_num, rx_buf_idx);
 semaphore_index = (semaphore_index+1) % SEMAPHORE_ITEMS;
 }
 }
}

cuda_kernel_process(eth_rxq_gpu, sem_to_cpu_gpu, sem_to_gpu_gpu) {
 __shared__ uint32_t rx_pkt_num;
 __shared__ uint64_t rx_buf_idx;
 int semaphore_index = 0;
 int thread_buf_idx = 0;
 struct doca_gpu_buf *buf_ptr;
 uintptr_t buf_addr;
 struct custom_info *gpu_info;

 while (/* exit condition */) {
 if (threadIdx.x == 0) {
 do {
 result = doca_gpu_dev_sem_get_packet_info_status(sem_to_gpu_gpu, semaphore_index,
DOCA_GPU_SEMAPHORE_STATUS_READY, &rx_pkt_num, &rx_buf_idx);
 } while(result != DOCA_ERROR_NOT_FOUND /* && other exit condition */);
 }
 __syncthreads();

 thread_buf_idx = threadIdx.x;
 while (thread_buf_idx < rx_pkt_num) {
 /* Get DOCA GPU buffer from the GPU buffer in the receive queue */
 doca_gpu_dev_eth_rxq_get_buf(eth_rxq_gpu, rx_buf_idx + thread_buf_idx, &buf_ptr);
 /* Get DOCA GPU buffer memory address */
 doca_gpu_dev_buf_get_addr(buf_ptr, &buf_addr);
 /*
 * Atomic here is has the entire CUDA block accesses the same semaphore to CPU.
 * Smarter implementation can be done at warp level, with multiple semaphores, etc.. to avoid this
atomic
 */
 int semaphore_index_tmp = atomicAdd_block(&semaphore_index, 1);
 semaphore_index_tmp = semaphore_index_tmp % SEMAPHORE_ITEMS;
 doca_gpu_dev_sem_get_custom_info_addr(sem_to_cpu_gpu, semaphore_index_tmp, (void **)&gpu_info);
 populate_custom_info(buf_addr, gpu_info);
 doca_gpu_dev_sem_set_status(sem_to_cpu_gpu, semaphore_index_tmp, DOCA_GPU_SEMAPHORE_STATUS_READY);
 }
 __syncthreads();

 if (threadIdx.x == 0) {
 doca_gpu_dev_sem_set_status(sem_to_gpu_gpu, semaphore_index, DOCA_GPU_SEMAPHORE_STATUS_READY);
 }
 }

593

}

This code can be represented with the following diagram when multiple queues and/or semaphores
are used:

Please note that receiving and dispatching packets to another CUDA kernel is not required. A simpler
scenario can have a single CUDA kernel receiving and processing packets:

The drawback of this approach is that the time between two receives depends on the time taken by
the CUDA kernel to process received packets.

The type of pipeline that must be built heavily depends on the specific use case.

14.4.9.6.3.4 Produce and Send

In this example, the GPU produces some data, stores it into packets and then sends them over the
network. The CPU launches the CUDA kernels and continues doing other work:

CPU code

#define CUDA_THREADS 512
#define CUDA_BLOCKS 1
int semaphore_index = 0;
enum doca_gpu_semaphore_status status;
struct custom_info *gpu_info;

594

/* On the CPU */
cuda_kernel_produce_send<<<CUDA_THREADS, CUDA_BLOCKS, ..., stream_0>>>(eth_txq_gpu, buf_arr_gpu)

/* do other stuff */

On the GPU, the CUDA kernel fills the packets with meaningful data and sends them. In the
following example, the scope is CUDA block so each block uses a different DOCA Ethernet send
queue:

GPU code

cuda_kernel_produce_send(eth_txq_gpu, buf_arr_gpu) {
 uint64_t doca_gpu_buf_idx = threadIdx.x;
 struct doca_gpu_buf *buf;
 uintptr_t buf_addr;
 uint32_t packet_len;
 uint32_t curr_position;
 uint32_t mask_max_position;
 uint32_t num_pkts_per_send = blockDim.x;

 /* Get last occupied position in the Tx queue */
 doca_gpu_dev_eth_txq_get_info(eth_txq_gpu, &curr_position, &mask_max_position);
 __syncthreads();

 while (/* exit condition */) {
 /* Each CUDA thread retrieves doca_gpu_buf from doca_gpu_buf_arr */
 doca_gpu_dev_buf_get_buf(buf_arr_gpu, doca_gpu_buf_idx, &buf);
 /* Get memory address of the packet in the doca_gpu_buf */
 doca_gpu_dev_buf_get_addr(buf, &buf_addr);

 /* Application produces data and crafts the packet in the doca_gpu_buf */
 populate_packet(buf_addr, &packet_len);

 /* Enqueue packet in the send queue with weak mode: each thread posts the packet in a different and
sequential position of the queue */
 doca_gpu_dev_eth_txq_send_enqueue_weak(eth_txq_gpu, buf, packet_len, ((curr_position + doca_gpu_buf_idx) &
mask_max_position), DOCA_GPU_SEND_FLAG_NONE);

 /* Synchronization point */
 __synchthreads();

 /* Only one CUDA thread in the block must commit and push the send queue */
 if (threadIdx.x == 0) {
 doca_gpu_dev_eth_txq_commit_weak(eth_txq_gpu, num_pkts_per_send);
 doca_gpu_dev_eth_txq_push(eth_txq_gpu);
 }
 /* Synchronization point */
 __synchthreads();

 /* Assume all threads in the block pushed a packet in the send queue */
 doca_gpu_buf_idx += blockDim.x;
 }
}

14.4.9.6.4 RDMA Queue with GPU Data Path

To execute RDMA operations from a GPU CUDA kernel, in the setup phase, the application must first
create a DOCA RDMA queue, export the RDMA as context, and then set the datapath of the context
on the GPU (as shown in the following code snippet).

The following is a pseudo-code to serve as a guide. Please refer to real function signatures in header
files (*.h) and documentation for a complete overview of the functions.

GPU code

struct doca_dev *doca_device; /* DOCA device */
struct doca_gpu *gpudev; /* DOCA GPU device */
struct doca_rdma *rdma; /* DOCA RDMA instance */
struct doca_gpu_dev_rdma *gpu_rdma; /* DOCA RDMA instance GPU handler */
struct doca_ctx *rdma_ctx;

// Initialize IBDev RDMA device
open_doca_device_with_ibdev_name(&doca_device)
// Initialize DPDK (hugepages not needed)
char *eal_param[4] = {"", "-a", "00:00.0", "--in-memory"};
rte_eal_init(4, eal_param);

// Initialize the GPU device
doca_gpu_create(&gpudev);

595

// Create the RDMA queue object with the DOCA device
doca_rdma_create(doca_device, &(rdma));
// Export the RDMA queue object context
rdma_ctx = doca_rdma_as_ctx(rdma)

// Set RDMA queue attributes

// Set GPU data path for the RDMA object
doca_ctx_set_datapath_on_gpu(ctx, gpudev)
doca_ctx_start(rdma_ctx);

At this point, the application has an RDMA queue usable from a GPU CUDA kernel. The next step
would be to establish a connection using some OOB (out-of-band) mechanism (e.g., Linux sockets)
to exchange RDMA queue info so each peer can connect to the other's queues.

To exchange data, users must create DOCA GPU buffer arrays to send or receive data. If the
application also requires read or write, then the GPU memory associated with the buffer arrays
must be exported and exchanged with the remote peers using the OOB mechanism.

GPU code

/* Create DOCA mmap to define memory layout and type for the DOCA buf array */
struct doca_mmap *mmap;
doca_mmap_create(&mmap);
/* Set DOCA mmap properties */
doca_mmap_start(mmap);
/* Export mmap info to share with remote peer */
doca_mmap_export_rdma(mmap, ...);

/* Exchange export info with remote peer */

/* Create DOCA buf arr and export it to GPU */
struct doca_buf_arr *buf_arr;
struct doca_gpu_buf_arr *buf_arr_gpu;
doca_buf_arr_create(mmap, &buf_arr);
/* Set DOCA buf array properties */
...
/* Export GPU handle for the buf arr */
doca_buf_arr_get_gpu_handle(buf_arr, &buf_arr_gpu);

Please refer to the "RDMA Client Server" sample as a basic layout to implement all the steps
described in this section.

14.4.9.6.4.1 CUDA Kernel for RDMA Write

Assuming the RDMA queues and buffer arrays are correctly created and exchanged across peers, the
application can launch a CUDA kernel to remotely write data. As typically applications use strong

mode, the following code snippet shows how to use weak mode to post multiple writes from
different CUDA threads in the same CUDA block.

GPU code

__global__ void rdma_write_bw(struct doca_gpu_dev_rdma *rdma_gpu, struct doca_gpu_buf_arr *local_buf_arr, struct
 doca_gpu_buf_arr *remote_buf_arr)
{
 struct doca_gpu_buf *remote_buf;
 struct doca_gpu_buf *local_buf;
 struct doca_gpu_dev_rdma *rdma_gpu;
 struct doca_gpu_buf_arr *server_local_buf_arr;
 struct doca_gpu_buf_arr *server_remote_buf_arr;
 uint32_t curr_position;
 uint32_t mask_max_position;
 uint32_t num_ops;

 doca_gpu_dev_buf_get_buf(server_local_buf_arr, threadIdx.x, &local_buf);
 doca_gpu_dev_buf_get_buf(server_remote_buf_arr, threadIdx.x, &remote_buf);

 /* Get RDMA queue current available position and mask of the max position number */
 doca_gpu_dev_rdma_get_info(rdma_gpu, &curr_position, &mask_max_position);

 doca_gpu_dev_rdma_write_weak(rdma_gpu,
 /* Write into this remote buffer at offset 0 */
 remote_buf, 0,
 /* Fetch data from this local buffer at offset 0 */

596

 local_buf, 0,
 /* Number of bytes to write */
 msg_size,
 /* Don't use immediate */
 0, DOCA_GPU_RDMA_WRITE_FLAG_NONE,
 /* Position in the RDMA queue to post the write */
 (curr_position + threadIdx.x) & mask_max_position);

 /* Wait all CUDA threads to post their RDMA Write */
 __syncthreads();

 if (threadIdx.x == 0) {
 /* Only 1 CUDA thread can push the write op just posted */
 doca_gpu_dev_rdma_commit_weak(rdma_gpu, blockDim.x);
 doca_gpu_dev_rdma_wait_all(rdma_gpu, &num_ops);
 }
 __syncthreads();
}

14.4.9.7 GPUNetIO Samples
This section contains two samples that show how to enable simple GPUNetIO features. Be sure to
correctly set the following environment variables:

Build the sample

export PATH=${PATH}:/usr/local/cuda/bin
export CPATH="$(echo /usr/local/cuda/targets/{x86_64,sbsa}-linux/include | sed 's/ /:/'):${CPATH}"
export PKG_CONFIG_PATH=${PKG_CONFIG_PATH}:/usr/lib/pkgconfig:/opt/mellanox/grpc/lib/{x86_64,aarch64}-linux-gnu/
pkgconfig:/opt/mellanox/dpdk/lib/{x86_64,aarch64}-linux-gnu/pkgconfig:/opt/mellanox/doca/lib/{x86_64,aarch64}-
linux-gnu/pkgconfigexport LD_LIBRARY_PATH=${LD_LIBRARY_PATH}:/usr/local/cuda/lib64:/opt/mellanox/gdrcopy/src:/opt/
mellanox/dpdk/lib/{x86_64,aarch64}-linux-gnu:/opt/mellanox/doca/lib/{x86_64,aarch64}-linux-gnu

14.4.9.7.1 Ethernet Send Wait Time

The sample shows how to enable Accurate Send Scheduling (or wait-on-time) in the context of a
GPUNetIO application. Accurate Send Scheduling is the ability of an NVIDIA NIC to send packets in
the future according to application-provided timestamps.

This DOCA GPUNetIO sample provides a simple application to send packets with Accurate Send
Scheduling from the GPU.

The code in the "RDMA Client Server" sample shows how to use write and send with
immediate flag set.

All the DOCA samples described in this section are governed under the BSD-3 software
license agreement.

GPU architecture

Please ensure the arch of your GPU is included in the meson.build file before building the

samples (e.g., sm_80 for Ampere, sm_89 for L40, sm_90 for H100, etc).

This feature is supported on ConnectX-6 Dx and later.

This NVIDIA blog post offers an example for how this feature has been used in 5G networks.

https://developer.nvidia.com/blog/inline-gpu-packet-processing-with-nvidia-doca-gpunetio/#:~:text=time%20(Figure%2017).-,Figure%2017,-.%20NVIDIA%20Aerial%205G

597

14.4.9.7.1.1 Synchronizing Clocks

Before starting the sample, it is important to properly synchronize the CPU clock with the NIC clock.
This way, timestamps provided by the system clock are synchronized with the time in the NIC.

For this purpose, at least the phc2sys service must be used. To install it on an Ubuntu system:

phc2sys

sudo apt install linuxptp

To start the phc2sys service properly, a config file must be created in /lib/systemd/system/

phc2sys.service :

phc2sys

[Unit]
Description=Synchronize system clock or PTP hardware clock (PHC)
Documentation=man:phc2sys

[Service]
Restart=always
RestartSec=5s
Type=simple
ExecStart=/bin/sh -c "taskset -c 15 /usr/sbin/phc2sys -s /dev/ptp$(ethtool -T ens6f0 | grep PTP | awk '{print $4}')
-c CLOCK_REALTIME -n 24 -O 0 -R 256 -u 256"

[Install]
WantedBy=multi-user.target

Now phc2sys service can be started:

phc2sys

sudo systemctl stop systemd-timesyncd
sudo systemctl disable systemd-timesyncd
sudo systemctl daemon-reload
sudo systemctl start phc2sys.service

To check the status of phc2sys :

phc2sys

$ sudo systemctl status phc2sys.service

● phc2sys.service - Synchronize system clock or PTP hardware clock (PHC)
 Loaded: loaded (/lib/systemd/system/phc2sys.service; disabled; vendor preset: enabled)
 Active: active (running) since Mon 2023-04-03 10:59:13 UTC; 2 days ago
 Docs: man:phc2sys
 Main PID: 337824 (sh)
 Tasks: 2 (limit: 303788)
 Memory: 560.0K
 CPU: 52min 8.199s
 CGroup: /system.slice/phc2sys.service
 ├─337824 /bin/sh -c "taskset -c 15 /usr/sbin/phc2sys -s /dev/ptp\$(ethtool -T enp23s0f1np1 | grep PTP
| awk '{print \$4}') -c CLOCK_REALTIME -n 24 -O 0 -R >
 └─337829 /usr/sbin/phc2sys -s /dev/ptp3 -c CLOCK_REALTIME -n 24 -O 0 -R 256 -u 256

Apr 05 16:35:52 doca-vr-045 phc2sys[337829]: [457395.040] CLOCK_REALTIME rms 8 max 18 freq +110532 +/- 27
delay 770 +/- 3
Apr 05 16:35:53 doca-vr-045 phc2sys[337829]: [457396.071] CLOCK_REALTIME rms 8 max 20 freq +110513 +/- 30
delay 769 +/- 3
Apr 05 16:35:54 doca-vr-045 phc2sys[337829]: [457397.102] CLOCK_REALTIME rms 8 max 18 freq +110527 +/- 30
delay 769 +/- 3

598

Apr 05 16:35:55 doca-vr-045 phc2sys[337829]: [457398.130] CLOCK_REALTIME rms 8 max 18 freq +110517 +/- 31
delay 769 +/- 3
Apr 05 16:35:56 doca-vr-045 phc2sys[337829]: [457399.159] CLOCK_REALTIME rms 8 max 19 freq +110523 +/- 32
delay 770 +/- 3
Apr 05 16:35:57 doca-vr-045 phc2sys[337829]: [457400.191] CLOCK_REALTIME rms 8 max 20 freq +110528 +/- 33
delay 770 +/- 3
Apr 05 16:35:58 doca-vr-045 phc2sys[337829]: [457401.221] CLOCK_REALTIME rms 8 max 19 freq +110512 +/- 38
delay 770 +/- 3
Apr 05 16:35:59 doca-vr-045 phc2sys[337829]: [457402.253] CLOCK_REALTIME rms 9 max 20 freq +110538 +/- 47
delay 770 +/- 4
Apr 05 16:36:00 doca-vr-045 phc2sys[337829]: [457403.281] CLOCK_REALTIME rms 8 max 21 freq +110517 +/- 38
delay 769 +/- 3
Apr 05 16:36:01 doca-vr-045 phc2sys[337829]: [457404.311] CLOCK_REALTIME rms 8 max 17 freq +110526 +/- 26
delay 769 +/- 3
...

At this point, the system and NIC clocks are synchronized so timestamps provided by the CPU are
correctly interpreted by the NIC.

14.4.9.7.1.2 Running the Sample

The sample is shipped with the source files that must be built:

phc2sys

Ensure DOCA and DPDK are in the pkgconfig environment variable
cd /opt/mellanox/doca/samples/doca_gpunetio/gpunetio_send_wait_time
meson build
ninja -C build

The sample sends 8 bursts of 32 raw Ethernet packets or 1kB to a dummy Ethernet
address, 10:11:12:13:14:15 , in a timed way. Program the NIC to send every t nanoseconds

(command line option -t).

The following example programs a system with GPU PCIe address ca:00.0 and NIC PCIe address

17:00.0 to send 32 packets every 5 milliseconds:

Run

Ensure DOCA and DPDK are in the LD_LIBRARY_PATH environment variable
$ sudo ./build/doca_gpunetio_send_wait_time -n 17:00.0 -g ca:00.0 -t 5000000[09:22:54:165778][1316878][DOCA][INF]
[gpunetio_send_wait_time_main.c:195][main] Starting the sample
[09:22:54:438260][1316878][DOCA][INF][gpunetio_send_wait_time_main.c:224][main] Sample configuration:
 GPU ca:00.0
 NIC 17:00.0
 Timeout 5000000ns
EAL: Detected CPU lcores: 128
...
EAL: Probe PCI driver: mlx5_pci (15b3:a2d6) device: 0000:17:00.0 (socket 0)
[09:22:54:819996][1316878][DOCA][INF][gpunetio_send_wait_time_sample.c:607][gpunetio_send_wait_time] Wait on time
 supported mode: DPDK
EAL: Probe PCI driver: gpu_cuda (10de:20b5) device: 0000:ca:00.0 (socket 1)
[09:22:54:830212][1316878][DOCA][INF][gpunetio_send_wait_time_sample.c:252][create_tx_buf] Mapping send queue
buffer (0x0x7f48e32a0000 size 262144B) with legacy nvidia-peermem mode
[09:22:54:832462][1316878][DOCA][INF][gpunetio_send_wait_time_sample.c:657][gpunetio_send_wait_time] Launching CUDA
kernel to send packets
[09:22:54:842945][1316878][DOCA][INF][gpunetio_send_wait_time_sample.c:664][gpunetio_send_wait_time] Waiting 10 sec
for 256 packets to be sent
[09:23:04:883309][1316878][DOCA][INF][gpunetio_send_wait_time_sample.c:684][gpunetio_send_wait_time] Sample
finished successfully
[09:23:04:883339][1316878][DOCA][INF][gpunetio_send_wait_time_main.c:239][main] Sample finished successfully

To verify that packets are actually sent at the right time, use a packet sniffer on the other side
(e.g., tcpdump):

The timestamps you get may not reflect the real time and day. To get that, you must
properly set the ptp4l service with an external grand master on the system. Doing that is
out of the scope of this sample.

599

phc2sys

$ sudo tcpdump -i enp23s0f1np1 -A -s 64

17:12:23.480318 IP5 (invalid)
Sent from DOCA GPUNetIO...........................
....
17:12:23.480368 IP5 (invalid)
Sent from DOCA GPUNetIO...........................
end of first burst of 32 packets, bump to +5ms
17:12:23.485321 IP5 (invalid)
Sent from DOCA GPUNetIO...........................
...
17:12:23.485369 IP5 (invalid)
Sent from DOCA GPUNetIO...........................
end of second burst of 32 packets, bump to +5ms
17:12:23.490278 IP5 (invalid)
Sent from DOCA GPUNetIO...........................
...

The output should show a jump of approximately 5 milliseconds every 32 packets.

14.4.9.7.2 Ethernet Simple Receive

This simple application shows the fundamental steps to build a DOCA GPUNetIO receiver application
with one queue for UDP packets and one CUDA kernel receiving those packets from the GPU,
printing packet info to the console.

To build and run the application:

Build the sample

Ensure DOCA and DPDK are in the pkgconfig environment variable
cd /opt/mellanox/doca/samples/doca_gpunetio/gpunetio_simple_receive
meson build
ninja -C build

To test the application, this guide assumes the usual setup with two machines: one with the DOCA
receiver application and the second one acting as packet generator. As UDP packet generator, this
example considers the nping application that can be easily installed easily on any Linux machine.

The command to send 10 UDP packets via nping on the packet generator machine is:

nping generator

$ nping --udp -c 10 -p 2090 192.168.1.1 --data-length 1024 --delay 500ms

Starting Nping 0.7.80 (https://nmap.org/nping) at 2023-11-20 11:05 UTC
SENT (0.0018s) UDP packet with 1024 bytes to 192.168.1.1:2090
SENT (0.5018s) UDP packet with 1024 bytes to 192.168.1.1:2090

tcpdump may increase latency in sniffing packets and reporting the receive timestamp, so
the difference between bursts of 32 packets reported may be less than expected, especially
with small interval times like 500 microseconds (-t 500000).

Invoking a printf from a CUDA kernel is not good practice for release software and should
be used only to print debug information as it slows down the overall execution of the CUDA
kernel.

600

SENT (1.0025s) UDP packet with 1024 bytes to 192.168.1.1:2090
SENT (1.5025s) UDP packet with 1024 bytes to 192.168.1.1:2090
SENT (2.0032s) UDP packet with 1024 bytes to 192.168.1.1:2090
SENT (2.5033s) UDP packet with 1024 bytes to 192.168.1.1:2090
SENT (3.0040s) UDP packet with 1024 bytes to 192.168.1.1:2090
SENT (3.5040s) UDP packet with 1024 bytes to 192.168.1.1:2090
SENT (4.0047s) UDP packet with 1024 bytes to 192.168.1.1:2090
SENT (4.5048s) UDP packet with 1024 bytes to 192.168.1.1:2090

Max rtt: N/A | Min rtt: N/A | Avg rtt: N/A
UDP packets sent: 10 | Rcvd: 0 | Lost: 10 (100.00%)
Nping done: 1 IP address pinged in 5.50 seconds

Assuming the DOCA Simple Receive sample is waiting on the other machine at IP address
192.168.1.1 .

The DOCA Simple Receive sample is launched on a system with NIC at 17:00.1 PCIe address and

GPU at ca:00.0 PCIe address:

DOCA Simple Receive

Ensure DOCA and DPDK are in the LD_LIBRARY_PATH environment variable
$ sudo ./build/doca_gpunetio_simple_receive -n 17:00.1 -g ca:00.0
[11:00:30:397080][2328673][DOCA][INF][gpunetio_simple_receive_main.c:159][main] Starting the sample
[11:00:30:652622][2328673][DOCA][INF][gpunetio_simple_receive_main.c:189][main] Sample configuration:
 GPU ca:00.0
 NIC 17:00.1

EAL: Detected CPU lcores: 128
EAL: Detected NUMA nodes: 2
EAL: Detected shared linkage of DPDK
EAL: Multi-process socket /var/run/dpdk/rte/mp_socket
EAL: Selected IOVA mode 'PA'
EAL: VFIO support initialized
TELEMETRY: No legacy callbacks, legacy socket not created
EAL: Probe PCI driver: mlx5_pci (15b3:a2d6) device: 0000:17:00.1 (socket 0)
[11:00:31:036760][2328673][DOCA][WRN][engine_model.c:72][adapt_queue_depth] adapting queue depth to 128.
[11:00:31:928926][2328673][DOCA][WRN][engine_port.c:321][port_driver_process_properties] detected representor used
in VNF mode (driver port id 0)
EAL: Probe PCI driver: gpu_cuda (10de:20b5) device: 0000:ca:00.0 (socket 1)
[11:00:31:977261][2328673][DOCA][INF][gpunetio_simple_receive_sample.c:425][create_rxq] Creating Sample Eth Rxq

[11:00:31:977841][2328673][DOCA][INF][gpunetio_simple_receive_sample.c:466][create_rxq] Mapping receive queue
buffer (0x0x7f86cc000000 size 33554432B) with nvidia-peermem mode
[11:00:32:043182][2328673][DOCA][INF][gpunetio_simple_receive_sample.c:610][gpunetio_simple_receive] Launching CUDA
kernel to receive packets
[11:00:32:055193][2328673][DOCA][INF][gpunetio_simple_receive_sample.c:614][gpunetio_simple_receive] Waiting for
 termination
Thread 0 received UDP packet with Eth src 10:70:fd:fa:77:f5 - Eth dst 10:70:fd:fa:77:e9
Thread 0 received UDP packet with Eth src 10:70:fd:fa:77:f5 - Eth dst 10:70:fd:fa:77:e9
Thread 0 received UDP packet with Eth src 10:70:fd:fa:77:f5 - Eth dst 10:70:fd:fa:77:e9
Thread 0 received UDP packet with Eth src 10:70:fd:fa:77:f5 - Eth dst 10:70:fd:fa:77:e9
Thread 0 received UDP packet with Eth src 10:70:fd:fa:77:f5 - Eth dst 10:70:fd:fa:77:e9
Thread 0 received UDP packet with Eth src 10:70:fd:fa:77:f5 - Eth dst 10:70:fd:fa:77:e9
Thread 0 received UDP packet with Eth src 10:70:fd:fa:77:f5 - Eth dst 10:70:fd:fa:77:e9
Thread 0 received UDP packet with Eth src 10:70:fd:fa:77:f5 - Eth dst 10:70:fd:fa:77:e9
Thread 0 received UDP packet with Eth src 10:70:fd:fa:77:f5 - Eth dst 10:70:fd:fa:77:e9
Thread 0 received UDP packet with Eth src 10:70:fd:fa:77:f5 - Eth dst 10:70:fd:fa:77:e9

Type Ctrl+C to kill the sample

[11:01:44:265141][2328673][DOCA][INF][gpunetio_simple_receive_sample.c:45][signal_handler] Signal 2 received,
preparing to exit!
[11:01:44:265189][2328673][DOCA][INF][gpunetio_simple_receive_sample.c:620][gpunetio_simple_receive] Exiting from
sample
[11:01:44:265533][2328673][DOCA][INF][gpunetio_simple_receive_sample.c:362][destroy_rxq] Destroying Rxq
[11:01:44:307829][2328673][DOCA][INF][gpunetio_simple_receive_sample.c:631][gpunetio_simple_receive] Sample
finished successfully
[11:01:44:307861][2328673][DOCA][INF][gpunetio_simple_receive_main.c:204][main] Sample finished successfully

14.4.9.7.3 RDMA Client Server

This sample exhibits how to use the GPUNetIO RDMA API to receive and send/write with immediate
using a single RDMA queue.

The server has a GPU buffer array A composed by GPU_BUF_NUM doca_gpu_buf elements, each

1kB in size. The client has two GPU buffer arrays, B and C, each composed by GPU_BUF_NUM

doca_gpu_buf elements, each 512B in size.

601

The goal is for the client to fill a single server buffer of 1kB with two GPU buffers of 512B as
illustrated in the following figure:

To show how to use RDMA write and send, even buffers are sent from the client with write
immediate, while odd buffers are sent with send immediate. In both cases, the server must pre-post
the RDMA receive operations.

For each buffer, the CUDA kernel code repeats the handshake:

Once all buffers are filled, the server double checks that all values are valid. The server output
should be as follows:

DOCA RDMA Server side

Ensure DOCA and DPDK are in the LD_LIBRARY_PATH environment variable
$ cd /opt/mellanox/doca/samples/doca_gpunetio/gpunetio_rdma_client_server_write
$./build/doca_gpunetio_rdma_client_server_write -gpu 17:00.0 -d mlx5_0

[14:11:43:000930][1173110][DOCA][INF][gpunetio_rdma_client_server_write_main.c:250][main] Starting the sample
EAL: Detected CPU lcores: 64
EAL: Detected NUMA nodes: 2
EAL: Detected shared linkage of DPDK
EAL: Selected IOVA mode 'VA'
EAL: No free 2048 kB hugepages reported on node 0
EAL: No free 2048 kB hugepages reported on node 1
EAL: VFIO support initialized
TELEMETRY: No legacy callbacks, legacy socket not created
EAL: Probe PCI driver: gpu_cuda (10de:2331) device: 0000:17:00.0 (socket 0)
[14:11:43:686581][1173110][DOCA][ERR][rdma_common.c:64][oob_connection_server_setup] Socket created successfully
[14:11:43:686598][1173110][DOCA][INF][rdma_common.c:83][oob_connection_server_setup] Done with binding
[14:11:43:686610][1173110][DOCA][INF][rdma_common.c:91][oob_connection_server_setup] Listening for incoming
connections
[14:11:45:681523][1173110][DOCA][INF][rdma_common.c:105][oob_connection_server_setup] Client connected at IP:
192.168.2.28 and port: 46274
[14:11:45:681557][1173110][DOCA][INF][gpunetio_rdma_client_server_write_sample.c:591][rdma_write_server] Send
connection details to remote peer size 216 str
[14:11:45:681613][1173110][DOCA][INF][gpunetio_rdma_client_server_write_sample.c:604][rdma_write_server] Receive
remote connection details
[14:11:45:682110][1173110][DOCA][INF][gpunetio_rdma_client_server_write_sample.c:622][rdma_write_server] Connect
DOCA RDMA to remote RDMA

602

[14:11:45:686065][1173110][DOCA][INF][gpunetio_rdma_client_server_write_sample.c:111]
[create_memory_local_remote_server] Create local server mmap A context
[14:11:45:686976][1173110][DOCA][INF][gpunetio_rdma_client_server_write_sample.c:143]
[create_memory_local_remote_server] Create local server mmap A context
[14:11:45:687907][1173110][DOCA][INF][gpunetio_rdma_client_server_write_sample.c:151]
[create_memory_local_remote_server] Send exported mmap A to remote client
[14:11:45:687966][1173110][DOCA][INF][gpunetio_rdma_client_server_write_sample.c:162]
[create_memory_local_remote_server] Receive client mmap F export
[14:11:45:771521][1173110][DOCA][INF][gpunetio_rdma_client_server_write_sample.c:195]
[create_memory_local_remote_server] Create local DOCA buf array context A
[14:11:45:771660][1173110][DOCA][INF][gpunetio_rdma_client_server_write_sample.c:207]
[create_memory_local_remote_server] Create local DOCA buf array context F
[14:11:45:771727][1173110][DOCA][INF][gpunetio_rdma_client_server_write_sample.c:219]
[create_memory_local_remote_server] Create remote DOCA buf array context F
[14:11:45:771807][1173110][DOCA][INF][gpunetio_rdma_client_server_write_sample.c:644][rdma_write_server] Before
launching CUDA kernel, buffer array A is:
[14:11:45:771822][1173110][DOCA][INF][gpunetio_rdma_client_server_write_sample.c:646][rdma_write_server] Buffer 0
-> offset 0: 1111 | offset 128: 1111
[14:11:45:771837][1173110][DOCA][INF][gpunetio_rdma_client_server_write_sample.c:646][rdma_write_server] Buffer 1
-> offset 0: 1111 | offset 128: 1111
[14:11:45:771851][1173110][DOCA][INF][gpunetio_rdma_client_server_write_sample.c:646][rdma_write_server] Buffer 2
-> offset 0: 1111 | offset 128: 1111
[14:11:45:771864][1173110][DOCA][INF][gpunetio_rdma_client_server_write_sample.c:646][rdma_write_server] Buffer 3
-> offset 0: 1111 | offset 128: 1111
RDMA Recv 2 ops completed with immediate values 0 and 1!
RDMA Recv 2 ops completed with immediate values 1 and 2!
RDMA Recv 2 ops completed with immediate values 2 and 3!
RDMA Recv 2 ops completed with immediate values 3 and 4!
[14:11:45:781561][1173110][DOCA][INF][gpunetio_rdma_client_server_write_sample.c:671][rdma_write_server] After
launching CUDA kernel, buffer array A is:
[14:11:45:781574][1173110][DOCA][INF][gpunetio_rdma_client_server_write_sample.c:673][rdma_write_server] Buffer 0
-> offset 0: 2222 | offset 128: 3333
[14:11:45:781583][1173110][DOCA][INF][gpunetio_rdma_client_server_write_sample.c:673][rdma_write_server] Buffer 1
-> offset 0: 2222 | offset 128: 3333
[14:11:45:781593][1173110][DOCA][INF][gpunetio_rdma_client_server_write_sample.c:673][rdma_write_server] Buffer 2
-> offset 0: 2222 | offset 128: 3333
[14:11:45:781602][1173110][DOCA][INF][gpunetio_rdma_client_server_write_sample.c:673][rdma_write_server] Buffer 3
-> offset 0: 2222 | offset 128: 3333
[14:11:45:781640][1173110][DOCA][INF][gpunetio_rdma_client_server_write_main.c:294][main] Sample finished
successfully

On the other side, assuming the server is at IP address 192.168.2.28 , the client output should be
as follows:

DOCA RDMA Client side

Ensure DOCA and DPDK are in the LD_LIBRARY_PATH environment variable

$ cd /opt/mellanox/doca/samples/doca_gpunetio/gpunetio_rdma_client_server_write
$./build/doca_gpunetio_rdma_client_server_write -gpu 17:00.0 -d mlx5_0 -c 192.168.2.28

[16:08:22:335744][160913][DOCA][INF][gpunetio_rdma_client_server_write_main.c:197][main] Starting the sample
EAL: Detected CPU lcores: 64
EAL: Detected NUMA nodes: 2
EAL: Detected shared linkage of DPDK
EAL: Selected IOVA mode 'PA'
EAL: No free 2048 kB hugepages reported on node 0
EAL: No free 2048 kB hugepages reported on node 1
EAL: VFIO support initialized
TELEMETRY: No legacy callbacks, legacy socket not created
EAL: Probe PCI driver: gpu_cuda (10de:2331) device: 0000:17:00.0 (socket 0)
[16:08:25:752916][160913][DOCA][INF][gpunetio_rdma_client_server_write_sample.c:716][rdma_write_client] Function
create_rdma_resources completed correctly
[16:08:25:752932][160913][DOCA][INF][gpunetio_rdma_client_server_write_sample.c:725][rdma_write_client] Got GPU
handle at 0x7f6596710000
[16:08:25:752944][160913][DOCA][INF][rdma_common.c:134][oob_connection_client_setup] Socket created successfully
[16:08:25:753316][160913][DOCA][INF][rdma_common.c:147][oob_connection_client_setup] Connected with server
successfully
......
Client waiting on flag 7f6596735000 for server to post RDMA Recvs
Thread 0 post rdma write imm 0
Thread 1 post rdma write imm 0
Client waiting on flag 7f6596735001 for server to post RDMA Recvs
Thread 0 post rdma send imm 1
Thread 1 post rdma send imm 1
Client waiting on flag 7f6596735002 for server to post RDMA Recvs
Thread 0 post rdma write imm 2
Thread 1 post rdma write imm 2
Client waiting on flag 7f6596735003 for server to post RDMA Recvs
Thread 0 post rdma send imm 3
Thread 1 post rdma send imm 3
[16:08:25:853454][160913][DOCA][INF][gpunetio_rdma_client_server_write_main.c:241][main] Sample finished
successfully

With RDMA, the network device must be specified by name (e.g., mlx5_0) instead of the
PCIe address (as is the case for Ethernet).

603

•
•
•

•

14.4.9.7.4 GPU DMA Copy

This sample exhibits how to use the DOCA DMA and DOCA GPUNetIO libraries to DMA copy a memory
buffer from the CPU to the GPU (with DOCA DMA CPU functions) and from the GPU to the CPU (with
DOCA GPUNetIO DMA device functions) from a CUDA kernel. This sample requires a DPU as it uses
the DMA engine on it.

DOCA RDMA Client side

$ cd /opt/mellanox/doca/samples/doca_gpunetio/gpunetio_dma_memcpy

Build the sample and then execute

$./build/doca_gpunetio_dma_memcpy -g 17:00.0 -n ca:00.0
[15:44:04:189462][862197][DOCA][INF][gpunetio_dma_memcpy_main.c:164][main] Starting the sample
EAL: Detected CPU lcores: 64
EAL: Detected NUMA nodes: 2
EAL: Detected shared linkage of DPDK
EAL: Selected IOVA mode 'VA'
EAL: No free 2048 kB hugepages reported on node 0
EAL: No free 2048 kB hugepages reported on node 1
EAL: VFIO support initialized
TELEMETRY: No legacy callbacks, legacy socket not created
EAL: Probe PCI driver: gpu_cuda (10de:2331) device: 0000:17:00.0 (socket 0)
[15:44:04:857251][862197][DOCA][INF][gpunetio_dma_memcpy_sample.c:211][init_sample_mem_objs] The CPU source buffer
value to be copied to GPU memory: This is a sample piece of text from CPU
[15:44:04:857359][862197][DOCA][WRN][doca_mmap.cpp:1743][doca_mmap_set_memrange] Mmap 0x55aec6206140: Memory range
isn't cache-line aligned - addr=0x55aec52ceb10. For best performance align address to 64B
[15:44:04:858839][862197][DOCA][INF][gpunetio_dma_memcpy_sample.c:158][init_sample_mem_objs] The GPU source buffer
value to be copied to CPU memory: This is a sample piece of text from GPU
[15:44:04:921702][862197][DOCA][INF][gpunetio_dma_memcpy_sample.c:570][submit_dma_memcpy_task] Success, DMA memcpy
job done successfully
CUDA KERNEL INFO: The GPU destination buffer value after the memcpy: This is a sample piece of text from CPU
CPU received message from GPU: This is a sample piece of text from GPU
[15:44:04:930087][862197][DOCA][INF][gpunetio_dma_memcpy_sample.c:364][gpu_dma_cleanup] Cleanup DMA ctx with GPU
data path
[15:44:04:932658][862197][DOCA][INF][gpunetio_dma_memcpy_sample.c:404][gpu_dma_cleanup] Cleanup DMA ctx with CPU
data path
[15:44:04:954156][862197][DOCA][INF][gpunetio_dma_memcpy_main.c:197][main] Sample finished successfully

14.4.10 DOCA App Shield
This guide provides instructions on using the DOCA App Shield API.

14.4.10.1 Introduction
DOCA App Shield API offers a solution for strong intrusion detection capabilities using the DPU
services to collect and analyze data from the host's (or a VM on the host) memory in real time. This
solution provides intrusion detection and forensics investigation in a way that is:

Robust against attacks on a host machine
Able to detect a wide range of attacks (including zero-day attacks)
Least disruptive to the execution of host application (where current detection solutions
hinder the performance of host applications)
Transparent to the host, such that the host does not need to install anything (other than
providing some files obtained from the doca_apsh_config.py tool)

App Shield uses a DMA device to access the host's memory and analyze it.

Printing from a CUDA kernel is not recommended for performance. It may make sense for
debugging purposes and for simple samples like this one.

604

1.
a.

b.

2.
•

•

•
3.

a.

The App Shield API provides multiple functions that help with gathering data extracted from
system's memory (e.g., processes list, modules list, connections). This data helps with detecting
attacks on critical services or processes in a system (e.g., services that enforce integrity or privacy
of the execution of different applications).

14.4.10.2 Prerequisites
Configure the NVIDIA® BlueField® networking platform's (DPU or SuperNIC) firmware.

On BlueField, configure the PF base address register and NVMe emulation. Run:

dpu> mlxconfig -d /dev/mst/mt41686_pciconf0 s PF_BAR2_SIZE=2 PF_BAR2_ENABLE=1

If working with VFs, configure NVME emulation, SR-IOV, and number of VFs. Run:

dpu> mlxconfig -d /dev/mst/mt41686_pciconf0 s NVME_EMULATION_ENABLE=1 SRIOV_EN=1 NUM_OF_VFS=<vf-
number>

Perform graceful shutdown and a cold boot from the host.

Download target system (host/VM) symbols.
For Ubuntu:

host> sudo tee /etc/apt/sources.list.d/ddebs.list << EOF
deb http://ddebs.ubuntu.com/ $(lsb_release -cs) main restricted universe multiverse
deb http://ddebs.ubuntu.com/ $(lsb_release -cs)-updates main restricted universe multiverse
deb http://ddebs.ubuntu.com/ $(lsb_release -cs)-proposed main restricted universe multiverse
EOF
host> sudo apt install ubuntu-dbgsym-keyring
host> sudo apt-get update
host> sudo apt-get install linux-image-$(uname -r)-dbgsym

For CentOS:

host> yum install --enablerepo=base-debuginfo kernel-devel-$(uname -r) kernel-debuginfo-$(uname -r)
kernel-debuginfo-common-$(uname -m)-$(uname -r)

No action is needed for Windows
Perform IOMMU passthrough. This stage is only necessary if IOMMU is not enabled by default
(e.g., when the host is using an AMD CPU).

Locate your OS's grub file (most likely /boot/grub/grub.conf , /boot/grub2/

grub.cfg , or /etc/default/grub) and open it for editing. Run:

These configurations can be checked using the following command:

dpu> mlxconfig -d /dev/mst/mt41686_pciconf0 q | grep -E "NVME|BAR|SRIOV|NUM_OF_VFS"

Skip this step if you are not sure whether it is needed. Return to it only if DMA fails
with a message similar to the following in dmesg :

host> dmesg
[3839.822897] mlx5_core 0000:81:00.0: AMD-Vi: Event logged [IO_PAGE_FAULT domain=0x0047
address=0x2a0aff8 flags=0x0000]

605

b.

c.

•

•

4.
a.
b.

host> vim /etc/default/grub

Search for the line defining GRUB_CMDLINE_LINUX_DEFAULT and add the

argument iommu=pt . For example:

GRUB_CMDLINE_LINUX_DEFAULT="iommu=pt <intel/amd>_iommu=on"

Run:

For Ubuntu:

host> sudo update-grub

For CentOS:

host> grub2-mkconfig -o /boot/grub2/grub.cfg

Prepare target:
Install DOCA on the target system.
Create the ZIP and JSON files. Run:

target-system> cd /opt/mellanox/doca/tools/
target-system> python3 doca_apsh_config.py --pid <pid-of-process-to-monitor> --os <windows/linux>
--path <path to dwarf2json executable or pdbparse-to-json.py>
target-system> cp /opt/mellanox/doca/tools/*.* <shared-folder-with-baremetal>
dpu> scp <shared-folder-with-baremetal>/* <path-to-app-shield-binary>

If the target system does not have DOCA installed, the script can be copied from
BlueField.
The required dwaf2json and pdbparse-to-json.py are not provided with DOCA.

14.4.10.3 Dependencies
The library requires firmware version 24.32.1010 or higher.

14.4.10.4 API
For the library API reference, refer to the DOCA APSH API documentation in the NVIDIA DOCA Library
APIs.

The following subsections provide more details about the library API.

Prior to performing a power cycle, make sure to do a graceful shutdown.

If the kernel and process .exe have not changed, there is no need to redo
this step.

The pkg-config (*.pc file) for the APSH library is doca-apsh .

606

•

•

•

•

•

•

•

•

•

•

•

14.4.10.4.1 doca_apsh_dma_dev_set

To attach a DOCA DMA device to App Shield, calling this function is mandatory and must be done
before calling doca_apsh_start .

doca_apsh_dma_dev_set(doca_apsh_ctx, doca_dev)

doca_apsh_ctx [in] – App Shield opaque context struct

doca_dev [in] – struct for DOCA Device with DMA capabilities

14.4.10.4.2 Capabilities Per System

For each initialized system, App Shield retrieves an array of the requested object according to the
getter's name:

Getter
Functio
n Name

Functions Information Functions Signature Return Type

Get
modules

Returns an array with
information about the system
modules (drivers) loaded into
the kernel of the OS.

doca_error_t doca_apsh_modules_get(struct
doca_apsh_system *system, struct
doca_apsh_module ***modules, int
 *modules_size);

Array
of struct

doca_apsh_

module

int – size
of the
returned
array
doca_error
 status

Get
processes

Returns an array with
information about each process
running on the system.

doca_error_t doca_apsh_processes_get(struct
doca_apsh_system *system, struct
doca_apsh_process ***processes, int
 *processes_size);

Array
of struct

doca_apsh_

process

int – size
of the
returned
array
doca_error
 status

Get
library

For a specified process, this
function returns an array with
information about each library
loaded into this process.

doca_error_t doca_apsh_libs_get(struct
doca_apsh_process *process, struct
doca_apsh_lib ***libs, int *libs_size);

Array
of struct
doca_apsh_lib

int – size
of the
returned
array
doca_error
 status

607

•

•

•

•

•

•

•

•

•

•

•

•

Getter
Functio
n Name

Functions Information Functions Signature Return Type

Get
threads

For a specified process, this
function returns an array with
information about each thread
running within this process.

doca_error_t doca_apsh_threads_get(struct
doca_apsh_process *process, struct
doca_apsh_thread ***threads, int
 *threads_size);

Array
of struct

doca_apsh_

thread

int – size
of the
returned
array
doca_error
 status

Get
virtual
memory
areas/
virtual
address
descripti
on

For a specified process, this
function returns an array with
information about each virtual
memory area within this
process.

doca_error_t doca_apsh_vads_get(struct
doca_apsh_process *process, struct
doca_apsh_vad ***vads, int *vads_size);

Array
of struct

doca_apsh_

vma

int – size
of the
returned
array
doca_error
 status

Get
privileges

For a specified process, this
function returns an array with
information about each possible
privilege for this process, as
described here.

doca_error_t
doca_apsh_privileges_get(struct
doca_apsh_process *process, struct
doca_apsh_privilege ***privileges, int
 *privileges_size);

Array
of struct

doca_apsh_

privilege

int – size
of the
returned
array
doca_error
 status

Get
environm
ent
variables

For a specified process, this
function returns an array with
information about each
environment variable within this
process.

doca_error_t doca_apsh_envars_get(struct
doca_apsh_process *process, struct
doca_apsh_envar ***envars, int
 *envars_size);

Array
of struct

doca_apsh_

envar

int – size
of the
returned
array
doca_error
 status

Available on a Windows
host only.

Available on a Windows
host only.

https://docs.microsoft.com/en-us/windows/win32/secauthz/privilege-constants

608

•

•

•

•

•

•

•

•

•

•

•

•

Getter
Functio
n Name

Functions Information Functions Signature Return Type

Get
handles

For a specified process, this
function returns an array with
information about each handle
this process holds.

doca_error_t doca_apsh_handles_get(struct
doca_apsh_process *process, struct
doca_apsh_handle ***handles, int
 *handles_size);

Array
of struct

doca_apsh_

handle

int – size
of the
returned
array
doca_error
 status

Get LDR
modules

For a specified process, this
function returns an array with
information about each loaded
module within this process.

doca_error_t
doca_apsh_ldrmodules_get(struct
doca_apsh_process *process, struct
doca_apsh_ldrmodule ***ldrmodules, int
 *ldrmodules_size);

Array
of struct

doca_apsh_

ldrmodule

int – size
of the
returned
array
doca_error
 status

Process
attestatio
n

For a specified process, this
function attests the memory
pages of the process according
to a precomputed golden hash
file given as an input.

doca_error_t
doca_apsh_attestation_get(struct
doca_apsh_process *process, const char
 *exec_hash_map_path, struct
doca_apsh_attestation ***attestation, int
 *attestation_size);

Array
of struct

doca_apsh_

attestatio

n

int – size
of the
returned
array
doca_error
 status

Attestati
on
refresh

Refreshes a single attestation
handler of a process with a new
snapshot.

doca_error_t doca_apsh_attst_refresh(struct
doca_apsh_attestation ***attestation, int
 *attestation_size);

Array
of struct

doca_apsh_

attestatio

n

int – size
of the
returned
array
doca_error
 status

Available on a Windows
host only.

Available on a Windows
host only.

Single-threaded
processes are
supported at beta
level.

609

•

•

•

•

•

Getter
Functio
n Name

Functions Information Functions Signature Return Type

Get
NetScan

This function scans the system's
physical memory and returns an
array with information about
each socket that resides in the
memory.

doca_error_t doca_apsh_netscan_get(struct
doca_apsh_system *system, struct
doca_apsh_netscan ***connections, int
 *connections_size);

Array
of struct

doca_apsh_

netscan

int – size
of the
returned
array
doca_error
 status

Get
process
paramete
rs

For a specified process, this
function returns a struct object
(not an array) with information
about the process' parameters
(ones not included in the "get
processes" capability).

doca_error_t
doca_apsh_process_parameters_get(struct
doca_apsh_process *process, struct
doca_apsh_process_parameters
**process_parameters);

An object of
struct

doca_apsh_

process_pa

ramters

doca_error
 status

Only available on hosts
with one of the
following Windows 10
OS builds:

Arch Build No.

x86 10240

10586

14393

15063

17134

19041

x64 15063

16299

17134

17763

18362

18363

19041

This feature is
currently supported at
beta level.

Available on a Windows
host only.

This feature is
currently supported at
beta level.

610

•

•

•

•

•

•

•

•

•

•

•

•

Getter
Functio
n Name

Functions Information Functions Signature Return Type

Get
security
identifier
(SID)

For a specified process, this
function returns an array with
information about each SID
(security identifier) included in
the process's security context.

doca_error_t doca_apsh_sids_get(struct
doca_apsh_process *process, struct
doca_apsh_sid ***sids, int *sids_size);

Array
of struct

doca_apsh_

sid

int – size
of the
returned
array
doca_error
 status

Perform
Yara scan

For a specified process, this
function returns an array with
information about each Yara rule
match found in the process's
memory.

doca_error_t doca_apsh_yara_get(struct
doca_apsh_process *process,
enum doca_apsh_yara_rule *yara_rules_arr,
uint32_t yara_rules_arr_size,
uint64_t scan_type, struct doca_apsh_yara
***yara_matches, int *yara_matches_size);

Array
of struct

doca_apsh_

yara

int – size
of the
returned
array
doca_error
 status

Get
container
s

Returns an array with
information about each
container running on the system.

doca_error_t
doca_apsh_containers_get(struct
doca_apsh_system *system, struct
doca_apsh_container ***containers, int
 *containers_size);

Array
of struct

doca_apsh_

container

int – size
of the
returned
array
doca_error
 status

Get
container'
s
processes

For a specified container, this
function returns an array with
information about each process
running within this container.

doca_error_t
doca_apsh_container_processes_get(struct
doca_apsh_container *container, struct
doca_apsh_process ***processes, int
 *processes_size);

Array
of struct

doca_apsh_

process

int – size
of the
returned
array
doca_error
 status

Available on a Windows
host only.

Available on a Windows
host and Ubuntu 22.04
DPU.

To get a better understanding of
the arguments, refer to
documentation in doca_apsh.h .

Available on a Linux
host only.

•
•

Only available for
containers on the
following runtimes:

runc
containerd

Available on a Linux
host only.

▪
▪

Only available for
containers on the
following runtimes:

runc
containerd

611

1.

2.

3.

4.

The following attribute getters return a specific attribute of an object, obtained from the array
returned from the getter functions listed above, depending on the requested attribute:

doca_apsh_process_info_get(struct doca_apsh_proccess *process, enum doca_apsh_process_attr attr);
doca_apsh_module_info_get(struct doca_apsh_module *module, enum doca_apsh_module_attr attr);
doca_apsh_lib_info_get(struct doca_apsh_lib *lib, enum doca_apsh_lib_attr attr);
doca_apsh_thread_info_get(struct doca_apsh_thread *thread, enum doca_apsh_lib_attr attr);
doca_apsh_vad_info_get(struct doca_apsh_vad *vad, enum doca_apsh_vad_attr attr);
doca_apsh_privilege_info_get(struct doca_apsh_privilege *privilege, enum doca_apsh_privilege_attr attr);
doca_apsh_envar_info_get(struct doca_apsh_envar *envar, enum doca_apsh_envar_attr attr);
doca_apsh_handle_info_get(struct doca_apsh_handle *handle, enum doca_apsh_handle_attr attr);
doca_apsh_ldrmodule_info_get(struct doca_apsh_ldrmodule *ldrmodule, enum doca_apsh_ldrmodule_attr attr);
doca_apsh_attst_info_get(struct doca_apsh_attestation *attestation, enum doca_apsh_attestation_attr attr);
doca_apsh_netscan_info_get(struct doca_apsh_netscan *connection, enum doca_apsh_netscan_attr attr)
doca_apsh_process_parameters_info_get(struct doca_apsh_process_parameters *process_parameters, enum
 doca_apsh_process_parameters_attr attr);
doca_apsh_sid_info_get(struct doca_apsh_sid *sid, enum doca_apsh_sid_attr attr);
doca_apsh_yara_info_get(struct doca_apsh_yara *yara, enum doca_apsh_yara_attr attr);
doca_apsh_container_info_get(struct doca_apsh_container *container, enum doca_apsh_container_attr attr);

The return type of the attribute getter can be found in doca_apsh_attr.h .

Usage example:

const uint pid = doca_apsh_process_info_get(processes[i], DOCA_APSH_PROCESS_PID);
const char *proc_name = doca_apsh_process_info_get(processes[i], DOCA_APSH_PROCESS_COMM);

14.4.10.5 App Shield Initialization and Teardown
To use App Shield, users must initialize and configure two main structs. This section presents these
structs and explains how to interact with them.

14.4.10.5.1 doca_apsh_ctx

doca_apsh_ctx is the basic struct used by App Shield which defines the DMA device used to
perform the memory forensics techniques required to run App Shield.

To acquire an instance of the doca_apsh_ctx struct, use the following function:

struct doca_apsh_ctx *doca_apsh_create(void);

To configure the doca_apsh_ctx instance with DMA device to use:

doca_error_t doca_apsh_dma_dev_set(struct doca_apsh_ctx *ctx, struct doca_dev *dma_dev);

To start the doca_apsh_ctx instance, call the following function:

doca_error_t doca_apsh_start(struct doca_apsh_ctx *ctx);

To destroy the doca_apsh_ctx instance when it is no longer needed, call:

void doca_apsh_destroy(struct doca_apsh_ctx *ctx);

The same doca_apsh_ctx struct may be used to run multiple App Shield instances over
different systems (e.g., two different VMs on the host).

612

1.

2.
•

•

•

•

•

14.4.10.5.2 doca_apsh_system

The doca_apsh_system struct is built on the doca_apsh_ctx instance. This struct is created per

system running App Shield. doca_apsh_system defines multiple attributes used by App Shield to
perform memory analysis over the specific system successfully.

To acquire an instance of the doca_apsh_system struct, use the following function:

const uint pid = doca_apsh_process_info_get(processes[i], DOCA_APSH_PROCESS_PID);
const char *proc_name = doca_apsh_process_info_get(processes[i], DOCA_APSH_PROCESS_COMM);

To configure different attributes for the system instance:
OS type – specifies the system's OS type.

doca_error_t doca_apsh_sys_os_type_set(struct doca_apsh_system *ctx, enum doca_apsh_system_os
os_type);

System representor – specifies the representor of the device connected to the system
for App Shield to run on (which can be a representor of VF/PF). For information on
querying the DOCA device, refer to the DOCA Core.
After acquiring the DOCA device, use the following function to configure it into the
system instance:

doca_error_t doca_apsh_sys_dev_set(struct doca_apsh_system *system, struct doca_dev_rep *dev);

System symbols map – includes information about the OS that App Shield is attempting
to run on (e.g., Window 10 Build 18363) and the size and fields of the OS structures,
which helps App Shield with the memory forensic techniques it uses to access and
analyze these structures in the system's memory. This can be obtained by running the
doca_apsh_config.py on the system machine.
After obtaining it, run:

doca_error_t doca_apsh_sys_os_symbol_map_set(struct doca_apsh_system *system, const char
*system_os_symbol_map_path);

Memory regions – includes the physical addresses of the memory regions which are
mapped for system memory RAM. This is needed to prevent App Shield from accessing
other memory regions, such as memory mapped I/O regions. This can be obtained by
running the doca_apsh_config.py tool on the system machine.
After obtaining it, run:

doca_error_t doca_apsh_sys_mem_region_set(struct doca_apsh_system *system, const char
*system_mem_region_path);

KPGD file (optional and relevant only for Linux OS) – contains the KPGD physical
address and the virtual address of init_task . This information is required since App
Shield extracts data from the kernel struct in the physical memory. Thus, the kernel
page directory table must translate the virtual addresses of these structs. This can be
obtained by running the doca_apsh_config.py tool on the system machine with the

Currently supported types: Windows or Linux.

613

3.

4.

•

•

•

flag find_kpgd=1 . Since setting this attribute is optional, App Shield can work
without it, but providing it speeds up App Shield's initialization process.
After obtaining it, run:

doca_error_t doca_apsh_sys_kpgd_file_set(struct doca_apsh_system *system, const char
*system_kpgd_file_path);

To start the doca_apsh_system :

doca_error_t doca_apsh_system_start(struct doca_apsh_system *system);

To destroy the doca_apsh_system instance when it is no longer needed, call:

void doca_apsh_system_destroy(struct doca_apsh_system *system);

14.4.10.5.3 doca_apsh_config.py Tool

The doca_apsh_config.py tool is a python3 script which can be used to obtain all the attributes

needed to run doca_apsh_system instance.

The following parameters are necessary to use the tool:

Parameter Description

pid (optional) The process ID of the process we want to run attestation capability
on

os (mandatory) The OS type of the machine (i.e., Linux or Windows)

find_kpgd (optional) Relevant for Linux OS only, AS flag to enable/disable creating
kpgd_file.conf . Default 0.

files (mandatory) A list of files for the tool to create. File options: hash , symbols ,

memregions , kpgd_file (only relevant for Linux).

path (mandatory) Linux – path to the dwarf2json executable. Default ./

dwarf2json . This file can be obtained by compiling the
following project using Go.
Windows – path to pdbparse-to-json.py . Default ./

pdbparse-to-json.py . This file can be found here.

The tool creates the following files:

Symbol map – this file changes once the system kernel is updated or a kernel module is
installed. The file does not change on system reboot.

Make sure that the value set is appropriate for your setup.

Make sure that the value set is appropriate for your setup.

https://github.com/volatilityfoundation/dwarf2json
https://go.dev/doc/install
https://raw.githubusercontent.com/volatilityfoundation/volatility3/stable/development/pdbparse-to-json.py

614

•

•

•

1.
•

•

2.

3.

Memory regions – this file changes when adding or removing hardware or drivers that affect
the system's memory map (e.g., when adding register addresses). The file does not change on
system reboot.
hash.zip – this file is required for attestation but is unnecessary for all other capabilities.
The ZIP file contains the required data to attest to a single process. The file changes on
library or executable update.
kpgd_file.conf (relevant for Linux OS only) – helps with faster initialization of the library.
The file changes on system reboot.

14.4.10.6 DOCA App Shield Samples
This section provides DOCA App Shield library sample implementations on top of BlueField.

14.4.10.6.1 Sample Prerequisites

Follow the guidelines in section "Prerequisites" then copy the generated JSON files, symbols.json

and mem_regions.json , to the /tmp/ directory.

14.4.10.6.2 Running the Sample
Refer to the following documents:

NVIDIA DOCA Installation Guide for Linux for details on how to install BlueField-related
software.
NVIDIA DOCA Troubleshooting Guide for any issue you may encounter with the
installation, compilation, or execution of DOCA samples.

To build a given sample:

cd /opt/mellanox/doca/samples/doca_apsh/<sample_name>
meson /tmp/build
ninja -C /tmp/build

Sample (e.g., apsh_libs_get) usage:

Usage: doca_apsh_libs_get [DOCA Flags] [Program Flags]

DOCA Flags:
 -h, --help Print a help synopsis
 -v, --version Print program version information
 -l, --log-level Set the (numeric) log level for the program <10=DISABLE, 20=CRITICAL,
30=ERROR, 40=WARNING, 50=INFO, 60=DEBUG, 70=TRACE>
 --sdk-log-level Set the SDK (numeric) log level for the program <10=DISABLE, 20=CRITICA
L, 30=ERROR, 40=WARNING, 50=INFO, 60=DEBUG, 70=TRACE>
 -j, --json <path> Parse all command flags from an input json file

Program Flags:
 -p, --pid Process ID of process to be analyzed
 -f, --vuid VUID of the System device
 -d, --dma DMA device name
 -s, --osty <windows|linux> System OS type - windows/linux

All the DOCA samples described in this section are governed under the BSD-3 software
license agreement.

The binary doca_<sample_name> will be created under /tmp/build/ .

615

4.

1.
2.
3.
4.
5.
6.
7.

8.

9.
10.
11.

•

•

•

•

1.
2.
3.
4.
5.
6.
7.

8.

For additional information per sample, use the -h option:

/tmp/build/doca_<sample_name> -h

14.4.10.6.3 Samples

14.4.10.6.3.1 Apsh Libs Get

This sample illustrates how to properly initialize DOCA App Shield and use its API to get the list of
loadable libraries of a specific process.

The sample logic includes:

Opening DOCA device with DMA ability.
Creating DOCA Apsh context.
Setting and starting the Apsh context.
Opening DOCA remote PCI device via given vendor unique identifier (VUID).
Creating DOCA Apsh system handler.
Setting fields and starting Apsh system handler.
Getting the list of system process using Apsh API and searching for a specific process with the
given PID.
Getting the list of process-loadable libraries using doca_apsh_libs_get Apsh API call.

Querying the libraries for 3 selected fields using doca_apsh_lib_info_get Apsh API call.
Printing libraries' attributes to the terminal.
Cleaning up.

References:

/opt/mellanox/doca/samples/doca_apsh/apsh_libs_get/apsh_libs_get_sample.c

/opt/mellanox/doca/samples/doca_apsh/apsh_libs_get/apsh_libs_get_main.c

/opt/mellanox/doca/samples/doca_apsh/apsh_libs_get/meson.build

/opt/mellanox/doca/samples/doca_apsh/apsh_common.c ; /opt/mellanox/doca/

samples/doca_apsh/apsh_common.h

14.4.10.6.3.2 Apsh Modules Get

This sample illustrates how to properly initialize DOCA App Shield and use its API to get the list of
installed modules on a monitored system.
The sample logic includes:

Opening DOCA device with DMA ability.
Creating DOCA Apsh context.
Setting and starting the Apsh context.
Opening DOCA remote PCI device via given VUID.
Creating DOCA Apsh system handler.
Setting fields and start Apsh system handler.
Getting the the list of system-installed modules using doca_apsh_modules_get Apsh API
call.
Querying the names of modules using doca_apsh_module_info_get Apsh API call.

616

9.
10.

•

•

•

•

1.
2.
3.
4.
5.
6.
7.

8.

9.
10.

•

•

•

•

1.
2.
3.
4.
5.

Printing the attributes of up to 5 modules attributes to the terminal.
Cleaning up.

References:

/opt/mellanox/doca/samples/doca_apsh/apsh_modules_get/

apsh_modules_get_sample.c

/opt/mellanox/doca/samples/doca_apsh/apsh_modules_get/apsh_modules_get_main.c

/opt/mellanox/doca/samples/doca_apsh/apsh_modules_get/meson.build

/opt/mellanox/doca/samples/doca_apsh/apsh_common.c ; /opt/mellanox/doca/

samples/doca_apsh/apsh_common.h

14.4.10.6.3.3 Apsh Pslist

This sample illustrates how to properly initialize DOCA App Shield and use its API to get the list of
running processes on a monitored system.
The sample logic includes:

Opening DOCA device with DMA ability.
Creating DOCA Apsh context.
Setting and starting the Apsh context.
Opening DOCA remote PCI device via given VUID.
Creating DOCA Apsh system handler.
Setting fields and starting Apsh system handler.
Getting the list of processes running on the system using doca_apsh_processes_get Apsh
API call.
Querying the processes for 4 chosen attributes using doca_apsh_proc_info_get Apsh API
call.
Printing the attributes of up to 5 processes to the terminal.
Cleaning up.

References:

/opt/mellanox/doca/samples/doca_apsh/apsh_pslist/apsh_pslist_sample.c

/opt/mellanox/doca/samples/doca_apsh/apsh_pslist/apsh_pslist_main.c

/opt/mellanox/doca/samples/doca_apsh/apsh_pslist/meson.build

/opt/mellanox/doca/samples/doca_apsh/apsh_common.c ; /opt/mellanox/doca/

samples/doca_apsh/apsh_common.h

14.4.10.6.3.4 Apsh Threads Get

This sample illustrates how to properly initialize DOCA App Shield and use its API to get the list of
threads of a specific process.
The sample logic includes:

Opening DOCA device with DMA ability.
Creating DOCA Apsh context.
Setting and starting the Apsh context.
Opening DOCA remote PCI device via given VUID.
Creating DOCA Apsh system handler.

617

6.
7.

8.

9.

10.
11.

•

•

•

•

1.
2.
3.
4.
5.
6.
7.

8.

9.
10.
11.

•

•

•

•

Setting fields and starting Apsh system handler.
Getting the list of system processes using Apsh API and searching for a specific process with
the given PID.
Getting the list of process threads using doca_apsh_threads_get Apsh API call.

Querying the threads for up to 3 selected fields using doca_apsh_thread_info_get Apsh API
call.
Printing thread attributes to the terminal.
Cleaning up.

References:

/opt/mellanox/doca/samples/doca_apsh/apsh_threads_get/

apsh_threads_get_sample.c

/opt/mellanox/doca/samples/doca_apsh/apsh_threads_get/apsh_threads_get_main.c

/opt/mellanox/doca/samples/doca_apsh/apsh_threads_get/meson.build

/opt/mellanox/doca/samples/doca_apsh/apsh_common.c ; /opt/mellanox/doca/

samples/doca_apsh/apsh_common.h

14.4.10.6.3.5 Apsh Vads Get

This sample illustrates how to properly initialize DOCA App Shield and use its API to get the list of
virtual address descriptors (VADs) of a specific process.
The sample logic includes:

Opening DOCA device with DMA ability.
Creating DOCA Apsh context.
Setting and start the Apsh context.
Opening DOCA remote PCI device via given VUID.
Creating DOCA Apsh system handler.
Setting fields and starting Apsh system handler.
Getting the list of system processes using Apsh API and searching for a specific process with
the given PID.
Getting the list of process VADs using doca_apsh_vads_get Apsh API call.

Querying the VADs for 3 selected fields using doca_apsh_vad_info_get Apsh API call.
Printing the attributes of up to 5 VADs to the terminal.
Cleaning up.

References:

/opt/mellanox/doca/samples/doca_apsh/apsh_vads_get/apsh_vads_get_sample.c

/opt/mellanox/doca/samples/doca_apsh/apsh_vads_get/apsh_vads_get_main.c

/opt/mellanox/doca/samples/doca_apsh/apsh_vads_get/meson.build

/opt/mellanox/doca/samples/doca_apsh/apsh_common.c ; /opt/mellanox/doca/

samples/doca_apsh/apsh_common.h

14.4.10.6.3.6 Apsh Envars Get

This sample illustrates how to properly initialize DOCA App Shield and use its API to get the list of
environment variables of a specific process.

618

1.
2.
3.
4.
5.
6.
7.

8.

9.
10.
11.

•

•

•

•

1.
2.
3.
4.
5.
6.
7.

8.

9.

10.
11.

The sample logic includes:

Opening DOCA device with DMA ability.
Creating DOCA Apsh context.
Setting and starting the Apsh context.
Opening DOCA remote PCIe device via given VUID.
Creating DOCA Apsh system handler.
Setting fields and starting Apsh system handler.
Getting the list of system processes using Apsh API and searching for a specific process with
the given PID.
Getting the list of process envars using doca_apsh_envars_get Apsh API call.

Querying the envars for 2 selected fields using doca_apsh_envar_info_get Apsh API call.
Printing the envars attributes to the terminal.
Cleaning up.

References:

/opt/mellanox/doca/samples/doca_apsh/apsh_envars_get/apsh_envars_get_sample.c

/opt/mellanox/doca/samples/doca_apsh/apsh_envars_get/apsh_envars_get_main.c

/opt/mellanox/doca/samples/doca_apsh/apsh_envars_get/meson.build

/opt/mellanox/doca/samples/doca_apsh/apsh_common.c ; /opt/mellanox/doca/

samples/doca_apsh/apsh_common.h

14.4.10.6.3.7 Apsh Privileges Get

This sample illustrates how to properly initialize DOCA App Shield and use its API to get the list of
privileges of a specific process.

The sample logic includes:

Opening DOCA device with DMA ability.
Creating DOCA Apsh context.
Setting and starting the Apsh context.
Opening DOCA remote PCIe device via given VUID.
Creating DOCA Apsh system handler.
Setting fields and starting Apsh system handler.
Getting the list of system processes using Apsh API and searching for a specific process with
the given PID.
Getting the list of process privileges using the doca_apsh_privileges_get Apsh API call.

Querying the privileges for 5 selected fields using the doca_apsh_privilege_info_get Apsh
API call.
Printing the privileges attributes to the terminal.
Cleaning up.

This sample works only on target systems with Windows OS.

This sample works only on target systems with Windows OS.

619

•

•

•

•

1.
2.
3.
4.
5.
6.
7.

8.

9.

10.
11.

•

•

•

•

References:

/opt/mellanox/doca/samples/doca_apsh/apsh_privileges_get/

apsh_privileges_get_sample.c

/opt/mellanox/doca/samples/doca_apsh/apsh_privileges_get/

apsh_privileges_get_main.c

/opt/mellanox/doca/samples/doca_apsh/apsh_privileges_get/meson.build

/opt/mellanox/doca/samples/doca_apsh/apsh_common.c ; /opt/mellanox/doca/

samples/doca_apsh/apsh_common.h

14.4.10.6.3.8 Apsh Containers Get

This sample illustrates how to properly initialize DOCA App Shield and use its API to get the list of
running containers on a monitored system, as well as getting a list of processes for each container.

The sample logic includes:

Opening DOCA device with DMA ability.
Creating DOCA Apsh context.
Setting and starting the Apsh context.
Opening DOCA remote PCIe device using specific VUID.
Creating DOCA Apsh system handler.
Setting fields and starting Apsh system handler.
Getting the list of containers running on the system using doca_apsh_containers_get Apsh
API call.
Querying the containers for container ID attribute using doca_apsh_container_info_get A
psh API call.
Getting list of processes for each container using doca_apsh_container_processes_get Ap
sh API call.
Printing the attributes of up to 5 processes to the terminal.
Cleaning up.

References:

/opt/mellanox/doca/samples/doca_apsh/apsh_containers_get/

apsh_containers_get_sample.c

/opt/mellanox/doca/samples/doca_apsh/apsh_containers_get/

apsh_containers_get_main.c

/opt/mellanox/doca/samples/doca_apsh/apsh_containers_get/meson.build

/opt/mellanox/doca/samples/doca_apsh/apsh_common.c ; /opt/mellanox/doca/

samples/doca_apsh/apsh_common.h

14.4.11 DOCA Compress
This guide provides instructions on how to use the DOCA Compress API.

This sample works only on target systems with Linux OS.

620

•
•
•

•

•

•

•

•

•

•

•

•

•

•

•

14.4.11.1 Introduction
DOCA Compress library provides an API to compress and decompress data using hardware
acceleration, supporting both host and NVIDIA® BlueField® DPU memory regions.

The library provides an API for executing compress operations on DOCA buffers, where these buffers
reside in either the DPU memory or host memory.

Using DOCA Compress, compress and decompress memory operations can be easily executed in an
optimized, hardware-accelerated manner.

This document is intended for software developers wishing to accelerate their application's
compress memory operations.

14.4.11.2 Prerequisites
The DOCA Compress library follows the architecture of a DOCA Core Context. It is recommended to
read the following sections before proceeding:

DOCA Core Execution Model
DOCA Core Device
DOCA Core Memory Subsystem

14.4.11.3 Changes From Previous Releases

14.4.11.3.1 Changes in 2.8

The following subsection(s) detail the doca_compress library updates in version 2.8.0.

14.4.11.3.1.1 Removed
doca_compress_cap_task_decompress_lz4_is_supported

doca_compress_cap_task_decompress_lz4_get_max_buf_size

doca_compress_cap_task_decompress_lz4_get_max_buf_list_len

doca_compress_task_decompress_lz4_set_conf

doca_compress_task_decompress_lz4_alloc_init

doca_compress_task_decompress_lz4_as_task

doca_compress_task_decompress_lz4_set_src

doca_compress_task_decompress_lz4_get_src

doca_compress_task_decompress_lz4_set_dst

doca_compress_task_decompress_lz4_get_dst

doca_compress_task_decompress_lz4_get_crc_cs

doca_compress_task_decompress_lz4_get_adler_cs

14.4.11.4 Environment
DOCA Compress-based applications can run either on the host machine or on the BlueField DPU
target.

621

•
•

•
•

•
•
•

Compress can only be run with a DPU configured with DPU mode as described in NVIDIA BlueField
Modes of Operation.

14.4.11.5 Architecture
DOCA Compress is a DOCA Context as defined by DOCA Core. See NVIDA DOCA Core Context for more
information.

DOCA Compress leverages DOCA Core architecture to expose asynchronous tasks that are offloaded
to hardware.

14.4.11.5.1 Supported Compress/Decompress Algorithms

For BlueField-2 devices, this library supports:

Compress operation using the deflate algorithm
Decompress operation using the deflate algorithm

For BlueField-3 devices, this library supports:

Decompress operation using the deflate algorithm
Decompress operation using the LZ4 algorithm

14.4.11.5.2 Supported Checksum Methods

Depending on the task type, the following checksum methods are produced and may be retrieved
using the relevant getter functions:

Adler – produced by the deflate compress and decompress tasks
CRC – produced by all tasks
xxHash – produced by the LZ4 decompress tasks

Refer to "Tasks" section for more information.

622

•
•
•

•
•
•

14.4.11.5.3 Objects

14.4.11.5.3.1 Device and Device Representor

The library requires a DOCA device to operate, the device is used to access memory and perform the
actual copy. See DOCA Core Device Discovery for information.

For same BlueField DPU, it does not matter which device is used (PF/VF/SF), as all these devices
utilize the same hardware component. If there are multiple DPUs, it is possible to create a
Compress instance per DPU, providing each instance with a device from a different DPU.

To access memory that is not local (from the host to the DPU or vice versa), then the DPU side of
the application must pick a device with an appropriate representor. See DOCA Core Device
Representor Discovery.

The device must stay valid as long as the Compress instance is not destroyed.

14.4.11.5.3.2 Memory Buffers

All compress/decompress tasks require two DOCA buffers containing the destination and the source.
Depending on the allocation pattern of the buffers, refer to the Inventory Types table.

Buffers must not be modified or read during the compress/decompress operation.

14.4.11.5.4 Source and Destination Location

DOCA Compress can process DOCA buffers that reside on the host, the DPU, or both.

14.4.11.5.4.1 Local Host

Source and destination buffers reside on the host and the compress library runs on the host.

14.4.11.5.4.2 Local DPU

Source and destination buffers reside on the DPU and the compress library runs on the DPU.

14.4.11.5.4.3 Remote

Source at Host, Destination at DPU

The source resides on the host and is exported (DOCA mmap export) to the DPU
The destination resides on the DPU
The compress library runs on the DPU and compresses/decompresses the host source to the
DPU destination

Source at DPU, Destination at Host

The source resides on the DPU
The destination resides on the host and is exported (DOCA mmap export) to the DPU
Compress library runs on the DPU and compresses/decompresses the DPU source to the host
destination

623

•
•

•

•

•

•

•

•

•

•

14.4.11.6 Configuration Phase
To start using the library, the user must go through a configuration phase as described in DOCA Core
Context Configuration Phase.

This section describes how to configure and start the context, to allow execution of tasks and
retrieval of events.

14.4.11.6.1 Configurations

The context can be configured to match the use case of the application.

To find if a configuration is supported or what its min/max value is, refer to Device Support.

14.4.11.6.1.1 Mandatory Configurations

The following configurations must be set by the application before attempting to start the context:

At least one task/event type must be configured. See configuration of Tasks.
A device with appropriate support must be provided upon creation

14.4.11.6.2 Device Support

DOCA Compress requires a device to operate. To pick a device, see DOCA Core Device Discovery.

As device capabilities may change in the future (see DOCA Core Device Support), it is recommended
to select your device using the following APIs:

14.4.11.6.2.1 Supported Tasks
doca_compress_cap_task_compress_deflate_is_supported

doca_compress_cap_task_decompress_deflate_is_supported

doca_compress_cap_task_decompress_lz4_stream_is_supported

doca_compress_cap_task_decompress_lz4_block_is_supported

14.4.11.6.2.2 Supported Buffer Size
doca_compress_cap_task_compress_deflate_get_max_buf_size

doca_compress_cap_task_decompress_deflate_get_max_buf_size

doca_compress_cap_task_decompress_lz4_stream_get_max_buf_size

doca_compress_cap_task_decompress_lz4_block_get_max_buf_size

14.4.11.6.3 Buffer Support

Tasks support buffers with the following features:

Buffer Type Source Buffer Destination Buffer

Linked List Buffer Yes No

Local mmap Buffer Yes Yes

624

Buffer Type Source Buffer Destination Buffer

mmap From PCI Export Buffer Yes Yes

mmap From RDMA Export Buffer No No

14.4.11.7 Execution Phase
This section describes execution on CPU or DPU using DOCA Core Progress Engine.

14.4.11.7.1 Tasks

14.4.11.7.1.1 Compress Deflate Task

This task facilitates compressing memory, with the deflate algorithm, using buffers as described in
section "Buffer Support".

Task Configuration

Description API to set the configuration API to query support

Enable the task doca_compress_task_compress_de

flate_set_conf

doca_compress_cap_task_compress_

deflate_is_supported

Number of tasks doca_compress_task_compress_de

flate_set_conf

doca_compress_get_max_num_tasks

(max total num tasks)

Maximal buffer size – doca_compress_cap_task_compress_

deflate_get_max_buf_size

Maximum buffer list size – doca_compress_cap_task_compress_

deflate_get_max_buf_list_len

Task Input

Common input as described in DOCA Core Task.

Name Description Notes

Source buffer Buffer pointing to the memory to be
compressed

Only the data residing in the data
segment is compressed

Destination buffer Buffer pointing to where compressed
memory will be stored

The data is compressed to the tail
segment extending the data segment

Task Output

Common output as described in DOCA Core Task.

Task Completion Success

DOCA compress returns only the payload. To create a compressed file, (e.g., gzip), the
developer must add a gzip header/trailer.

625

•
•
•

•

•
•
•

•
•
•
•

After the task completes successfully, the following happens:

The source data is compressed to destination
The destination buffer data segment is extended to include the compressed data
Adler can be retrieved by calling doca_compress_task_compress_deflate_get_adler_cs

CRC can be retrieved by calling doca_compress_task_compress_deflate_get_crc_cs

Task Completion Failure

If the task fails midway:

The context may enter stopping state if a fatal error occurs
The source and destination doca_buf objects are not modified
The destination buffer contents may be modified

Task Limitations

The operation is not atomic
Once the task has been submitted, the source and destination should not be read/written to
Source and destination must not overlap
Other limitations are described in DOCA Core Task

14.4.11.7.1.2 Decompress Deflate Task

This task facilitates decompressing memory, with the deflate algorithm, using buffers as described
in section "Buffer Support".

Task Configuration

Description API to Set the Configuration API to Query Support

Enable the task doca_compress_task_decompress_

deflate_set_conf

doca_compress_cap_task_decompres

s_deflate_is_supported

Number of tasks doca_compress_task_decompress_

deflate_set_conf

doca_compress_get_max_num_tasks

(max-total-num-tasks)

Maximal buffer size – doca_compress_cap_task_decompres

s_deflate_get_max_buf_size

Maximum buffer list size – doca_compress_cap_task_decompres

s_deflate_get_max_buf_list_len

Task Input

Common input as described in DOCA Core Task.

DOCA decompress expects the payload alone. To decompress a file (e.g. gzip), the
developer must strip the header/trailer.

626

•
•
•

•

•
•
•

•
•
•
•

•

•

Name Description Notes

source buffer Buffer pointing to the memory to be
decompressed

Only the data residing in the data
segment is decompressed

destination buffer Buffer pointing to where decompressed
memory will be stored

The data is decompressed to the tail
segment extending the data segment

Task Output

Common output as described in DOCA Core Task.

Task Completion Success

After the task completes successfully, the following happens:

The source data is decompressed to destination
The destination buffer data segment is extended to include the decompressed data
Adler can be retrieved by calling doca_compress_task_decompress_deflate_get_adler_cs

CRC can be retrieved by calling doca_compress_task_decompress_deflate_get_crc_cs

Task Completion Failure

If the task fails midway:

The context may enter stopping state if a fatal error occurs
The source and destination doca_buf objects are not modified
The destination buffer contents may be modified

Task Limitations

The operation is not atomic
Once the task has been submitted, the source and destination should not be read/written to
Source and destination must not overlap
Other limitations are described in DOCA Core Task

14.4.11.7.1.3 Decompress LZ4 Tasks

These tasks facilitate decompressing memory with the LZ4 algorithm, using buffers as described in
section "Buffer Support".

The main differences between the tasks is the input data format –

The decompress LZ4 stream task expects a stream of one or more blocks, without the frame
(i.e., the magic number, frame descriptor, and content checksum)
The decompress LZ4 block task expects a single, compressed, data-only block (i.e., without
block size or block checksum)

Decompress LZ4 Stream Task

This task facilitates decompressing memory with the LZ4 algorithm, using buffers as described in
section "Buffer Support".

627

•
•
•
•

Task Configuration

Description API to Set the Configuration API to Query Support

Enable the task doca_compress_task_decompress_

lz4_stream_set_conf

doca_compress_cap_task_decompres

s_lz4_stream_is_supported

Number of tasks doca_compress_task_decompress_

lz4_stream_set_conf

doca_compress_get_max_num_tasks

(max total num tasks)

Maximal buffer size – doca_compress_cap_task_decompres

s_lz4_stream_get_max_buf_size

Maximum buffer list size – doca_compress_cap_task_decompres

s_lz4_stream_get_max_buf_list_le

n

Task Input

Common input as described in DOCA Core Task.

Name Description Notes

Has block checksum Flag A flag to indicate whether or not the
blocks in the stream have a checksum

1 if the task should expect blocks in
the stream to have a checksum; 0
otherwise

Are blocks independent flag A flag to indicate whether or not each
block depends on previous blocks in
the stream

1 the the task should expect blocks to
be independent; 0 otherwise
(dependent blocks)

Source buffer Buffer pointing to the memory to be
decompressed

Only the data residing in the data
segment is decompressed

Destination buffer Buffer pointing to where
decompressed memory will be stored

The data is decompressed to the tail
segment extending the data segment

Task Output

Common output as described in DOCA Core Task.

Task Completion Success

After the task completes successfully:

The source data is decompressed to destination
The destination buffer data segment is extended to include the decompressed data
CRC can be retrieved by calling doca_compress_task_decompress_lz4_stream_get_crc_cs
xxHash can be retrieved by calling
doca_compress_task_decompress_lz4_stream_get_xxh_cs

Task Completion Failure

The decompress LZ4 stream task expects a stream of one or more blocks without the frame
(i.e., the magic number, frame descriptor, and content checksum).

628

•
•
•

•
•
•
•

If the task fails midway:

The context may enter stopping state if a fatal error occurs
The source and destination doca_buf objects are not modified
The destination buffer contents may be modified

Task Limitations

The operation is not atomic
Once the task has been submitted, the source and destination should not be read/written to
Source and destination must not overlap
Other limitations are described in DOCA Core Task

Decompress LZ4 Block Task

This task facilitates decompressing memory with the LZ4 algorithm, using buffers as described in
section "Buffer Support".

Task Configuration

Description API to Set the Configuration API to Query Support

Enable the task doca_compress_task_decompress_

lz4_block_set_conf

doca_compress_cap_task_decompres

s_lz4_block_is_supported

Number of tasks doca_compress_task_decompress_

lz4_block_set_conf

doca_compress_get_max_num_tasks

(max total num tasks)

Maximal buffer size – doca_compress_cap_task_decompres

s_lz4_block_get_max_buf_size

Maximum buffer list size – doca_compress_cap_task_decompres

s_lz4_block_get_max_buf_list_len

Task Input

Common input as described in DOCA Core Task.

Name Description Notes

Source
buffer

Buffer pointing to the
memory to be decompressed

Only the data residing in the data segment will be decompressed

Destina
tion
buffer

Buffer pointing to where
decompressed memory will
be stored

The data is decompressed to the tail segment extending the data
segment

Task Output

Common output as described in DOCA Core Task.

Task Completion Success

The decompress LZ4 block task expects a single, compressed, data-only block (i.e., without
block size or block checksum).

629

•
•
•
•

•
•
•

•
•
•
•

•
•

•
•

After the task completes successfully:

The source data is decompressed to destination
The destination buffer data segment is extended to include the decompressed data
CRC can be retrieved by calling doca_compress_task_decompress_lz4_block_get_crc_cs
xxHash can be retrieved by calling
doca_compress_task_decompress_lz4_bloxk_get_xxh_cs

Task Completion Failure

If the task fails midway:

The context may enter stopping state if a fatal error occurs
The source and destination doca_buf objects are not modified
The destination buffer contents may be modified

Task Limitations

The operation is not atomic
Once the task has been submitted, the source and destination should not be read/written to
Source and destination must not overlap
Other limitations are described in DOCA Core Task

14.4.11.7.2 Events

DOCA Compress exposes asynchronous events to notify about changes that happen unexpectedly
according to DOCA Core architecture.

The only events DOCA Compress expose are common events (DOCA CTX state changed). See more
info in DOCA Core Event.

14.4.11.8 State Machine
The DOCA Compress library follows the Context state machine described in DOCA Core Context State
Machine.

This section describes how to move states and what is allowed in each state.

14.4.11.8.1 States

14.4.11.8.1.1 Idle

In this state, it is expected that application:

Destroys the context
Starts the context

Allowed operations:

Configuring the context according to Configurations
Starting the context

It is possible to reach this state as follows:

630

•
•

•
•
•

•
•

•

Previous State Transition Action

None Create the context

Running Call stop after making sure all tasks have been freed

Stopping Call progress until all tasks are completed and freed

14.4.11.8.1.2 Starting

This state cannot be reached.

14.4.11.8.1.3 Running

In this state, it is expected that application:

Allocates and submit tasks
Calls progress to complete tasks and/or receive events

Allowed operations:

Allocate previously configured task
Submit a task
Call stop

It is possible to reach this state as follows:

Previous State Transition Action

Idle Call start after configuration

14.4.11.8.1.4 Stopping

In this state, it is expected that application:

Calls progress to complete all inflight tasks (tasks will complete with failure)
Frees any completed tasks

Allowed operations:

Call progress

It is possible to reach this state as follows:

Previous State Transition Action

Running Call progress and fatal error occurs

Running Call stop without freeing all tasks

14.4.11.9 Alternative Datapath Options
DOCA Compress only supports datapath on CPU, see Execution Phase.

631

1.
•

•

2.

3.
•

•

14.4.11.10 DOCA Compress Samples
The following samples illustrate how to use the DOCA Compress API to compress and decompress
files.

14.4.11.10.1 Running the Sample
Refer to the following documents:

NVIDIA DOCA Installation Guide for Linux for details on how to install BlueField-related
software.
NVIDIA DOCA Troubleshooting Guide for any issue you may encounter with the
installation, compilation, or execution of DOCA samples.

To build a given sample:

cd /opt/mellanox/doca/samples/doca_compress/<sample_name>
meson /tmp/build
ninja -C /tmp/build

Sample (e.g., doca_compress_deflate) usage:
Common arguments

Usage: doca_<sample_name> [DOCA Flags] [Program Flags]

DOCA Flags:
 -h, --help Print a help synopsis
 -v, --version Print program version information
 -l, --log-level Set the (numeric) log level for the program <10=DISABLE,
20=CRITICAL, 30=ERROR, 40=WARNING, 50=INFO, 60=DEBUG, 70=TRACE>
 --sdk-log-level Set the SDK (numeric) log level for the program <10=DISABLE,
20=CRITICAL, 30=ERROR, 40=WARNING, 50=INFO, 60=DEBUG, 70=TRACE>
 -j, --json <path> Parse all command flags from an input json file

Program Flags:
 -p, --pci-addr DOCA device PCI device address
 -f, --file Input file to compress/decompress
 -o, --output Output file
 -c, --output-checksum Output checksum

Sample-specific arguments

Sample Argument Description

Compress/Decompress
Deflate

-wf , -with-frame Write/read a file with a frame,
compatible with default zlib settings

DOCA Compress handles payload only unless the zc flag is used (available only for deflate
samples). In that case, a zlib header and trailer are added in compression and it is
considered as part of the input when decompressing.

All the DOCA samples described in this section are governed under the BSD-3 software
license agreement.

The binary doca_<sample_name> is created under /tmp/build/ .

632

4.

1.
2.
3.

4.
5.
6.
7.
8.
9.

•

•

•

•

•

•

•

•

Sample Argument Description

Decompress LZ4 Stream -bc , --has-block-

checksum

Flag to indicate if blocks have a
checksum

-bi , --are-blocks-

independent

Flag to indicate if blocks are
independent

-wf , -with-frame Read a file compatible with an LZ4
frame

For additional information per sample, use the -h option:

/tmp/build/doca_<sample_name> -h

14.4.11.10.2 Samples

14.4.11.10.2.1 Compress/Decompress Deflate

This sample illustrates how to use DOCA Compress library to compress or decompress a file.

The sample logic includes:

Locating a DOCA device.
Initializing the required DOCA Core structures.
Populating DOCA memory map with two relevant buffers; one for the source data and one for
the result.
Allocating elements in DOCA buffer inventory for each buffer.
Allocating and initializing a DOCA Compress deflate task or a DOCA Decompress deflate task.
Submitting the task.
Running the progress engine until the task is completed.
Writing the result into an output file, out.txt .
Destroying all DOCA Compress and DOCA Core structures.

References:

/opt/mellanox/doca/samples/doca_compress/compress_deflate/

compress_deflate_sample.c

/opt/mellanox/doca/samples/doca_compress/compress_deflate/

compress_deflate_main.c

/opt/mellanox/doca/samples/doca_compress/compress_deflate/meson.build

/opt/mellanox/doca/samples/doca_compress/decompress_deflate/

decompress_deflate_sample.c

/opt/mellanox/doca/samples/doca_compress/decompress_deflate/

decompress_deflate_main.c

/opt/mellanox/doca/samples/doca_compress/decompress_deflate/meson.build

/opt/mellanox/doca/samples/doca_compress/compress_common.h

/opt/mellanox/doca/samples/doca_compress/compress_common.c

633

1.
2.
3.

4.
5.
6.
7.
8.
9.

•

•

•

•

•

14.4.11.10.2.2 Decompress LZ4 Stream

This sample illustrates how to use DOCA Compress library to decompress a file using the LZ4 stream
decompress task.

The sample logic includes:

Locating a DOCA device.
Initializing the required DOCA Core structures.
Populating DOCA memory map with two relevant buffers; one for the source data and one for
the result.
Allocating elements in DOCA buffer inventory for each buffer.
Allocating and initializing an DOCA Decompress LZ4 stream task.
Submitting the task.
Running the progress engine until the task is completed.
Writing the result into an output file, out.txt .
Destroying all DOCA Compress and DOCA Core structures.

References:

/opt/mellanox/doca/samples/doca_compress/decompress_lz4_stream/

decompress_lz4_stream_sample.c

/opt/mellanox/doca/samples/doca_compress/decompress_lz4_stream/

decompress_lz4_stream_main.c

/opt/mellanox/doca/samples/doca_compress/decompress_lz4_stream/meson.build

/opt/mellanox/doca/samples/doca_compress/compress_common.h

/opt/mellanox/doca/samples/doca_compress/compress_common.c

14.4.11.10.3 Backward Compatibility

14.4.11.10.3.1 Decompress LZ4 Task

The decompress LZ4 task has been removed. To facilitates decompressing memory with the LZ4
algorithm, use the decompress LZ4 stream task or the decompress LZ4 block task instead.

14.4.12 DOCA SHA
This guide provides instructions on building and developing applications that calculate message
digest using the SHA1, SHA2-256 or SHA2-512 algorithms.

14.4.12.1 Introduction

The library provides an API for executing SHA operations on DOCA buffers, where the buffers reside
in either local memory (i.e., within the same host) or host memory accessible by the NVIDIA®
BlueField®-2 device (remote memory). Using DOCA SHA, complex cryptographic hash operations can
be easily executed in an optimized, hardware-accelerated manner.

The DOCA SHA library is currently supported at alpha level.

634

•
•
•

•

•

This document is intended for software developers wishing to accelerate their applications' SHA
calculations typically used in digital signature schemes or hash-based message authentication code
calculations.

14.4.12.2 Prerequisites
This library follows the architecture of a DOCA Core context, it is recommended to read the
following sections before:

DOCA Core Execution Model
DOCA Core Device
DOCA Core Memory Subsystem

14.4.12.3 Environment
DOCA SHA-based applications can run either on the host machine or on the BlueField-2 DPU target.

DOCA SHA calculations from the host to BlueField and vice versa can only be run when the DPU is
configured in DPU mode.

14.4.12.4 Architecture
DOCA SHA is a DOCA Core Context. This library leverages the DOCA Core architecture to expose
asynchronous tasks/events offloaded to hardware.

SHA can be used to calculate message digest as illustrated in the following diagrams:

SHA from local memory to local memory:

Using the DPU to do SHA using the memory between the host and the DPU:

NVIDIA® BlueField®-3 does not support this library because it has no SHA acceleration
engine.

635

• Using the host to do SHA calculation using memory between the host and the DPU:

14.4.12.4.1 Objects

14.4.12.4.1.1 Device and Representor

The library requires a DOCA device to operate. The device is used to access memory and perform
the actual SHA calculation. See DOCA Core Device Discovery.

For the same BlueField DPU, it does not matter which device is used (i.e., PF/VF/SF) as these
devices utilize the same hardware component. If there are multiple DPUs, then it is possible to
create a SHA instance per DPU, providing each instance with a device from a different DPU.

To access non-local memory (i.e., from the host to DPU or vice versa), the DPU side of the
application must choose a device with an appropriate representor (see DOCA Core Device
Representor Discovery). The device must stay valid for as long as the SHA instance is not destroyed.

14.4.12.4.1.2 Memory Buffers

The SHA task requires at least two DOCA buffers containing the destination and the
source. Depending on the allocation pattern of the buffers, refer to the DOCA Core Inventory Types
table.

636

•

•

•

•

•
•
•
•
•

Buffers must not be modified or read during the SHA operation. For information on what kind of
memory is supported, refer to the table in section "Buffer Support".

14.4.12.5 Configuration Phase
To start using the library, users must go through a configuration phase as described in DOCA Core
Context Configuration Phase.

This section describes how to configure and start the context to allow the execution of tasks and
retrieval of events.

14.4.12.5.1 Configurations

The context can be configured to match the application use case.

To find if a configuration is supported or its min/max value, refer to section "Device Support".

14.4.12.5.1.1 Mandatory Configurations

These configurations must be set by the application before attempting to start the context:

At least one task/event type must be configured. See configuration of tasks and/or events in
sections "Tasks" and "Events" respectively for information.
A device with appropriate support must be provided upon creation

14.4.12.5.2 Device Support

DOCA SHA requires a device to operate. For information on choosing a device, see DOCA Core Device
Discovery.

As device capabilities may change in the future (see DOCA Core Device Support) it is recommended
to select your device using the following methods:

doca_sha_cap_task_hash_get_supported

doca_sha_cap_task_partial_hash_get_supported

Some devices can allow different capabilities such as:

The maximum number of tasks
The maximum source buffer size
The minimum destination buffer size
The maximum supported number of elements in DOCA linked-list buffer
Check whether SHA1, SHA2-256 or SHA2-512 is supported

14.4.12.5.3 Buffer Support

Tasks support buffers with the following features:

Buffer Type Source Buffer Destination Buffer

Local mmap buffer Yes Yes

Mmap from PCIe export buffer Yes Yes

Mmap from RDMA export buffer No No

637

Buffer Type Source Buffer Destination Buffer

Linked list buffer Yes No

14.4.12.6 Execution Phase
This section describes execution on the CPU using DOCA Core Progress Engine.

14.4.12.6.1 Tasks

DOCA SHA exposes asynchronous tasks that leverage DPU hardware according to DOCA Core
architecture.

14.4.12.6.1.1 SHA Task

The SHA task doca_sha_task_hash allows one-shot SHA calculation using buffers as described in
section "Buffer Support". One-shot means that the source buffer is used as a whole input, therefore,
the SHA operation is completed after this task completion event arrives.

Task Configuration

Description API to Set Configuration API to Query Support

Enable the task doca_sha_task_hash_set_conf doca_sha_cap_task_hash_get_sup

ported

Number of tasks doca_sha_task_hash_set_conf

Maximal source buffer size – doca_sha_cap_get_max_src_buf_s

ize

Maximum source buffer list size – doca_sha_cap_get_max_list_buf_

num_elem

Minimum destination buffer size – doca_sha_cap_get_min_dst_buf_s

ize

Task Input

Common input as described in DOCA Core Task.

638

•

•

•
•
•

•
•
•

Name Description Notes

Source buffer Buffer pointing to the memory to be
used for SHA calculation

Only the data residing in the data
segment is to be used

Destination buffer Buffer pointing to the memory used for
writing the SHA calculation result

The SHA result is appended to the tail
segment

SHA algorithm type SHA algorithm to be used in SHA
calculation

Must be one of
DOCA_SHA_ALGORITHM_SHA1 ,

DOCA_SHA_ALGORITHM_SHA256 ,

DOCA_SHA_ALGORITHM_SHA512

Task Output

Common output as described in DOCA Core Task.

Task Completion Success

After the task completes successfully, the following happens:

The SHA calculation of data from the source buffer is successfully completed and the result is
written to the destination buffer
The destination buffer data segment is extended to include the SHA result data

Task Completion Failure

If the task fails midway:

The context may enter stopping state if a fatal error occurs
The source and destination doca_buf objects are not modified
The destination buffer contents may be modified

Task Limitations

The operation is not atomic
Once the task is submitted, the source and destination should not be read/written to
Other limitations are described in DOCA Core Task

14.4.12.6.1.2 Partial-SHA Task

The partial-SHA task doca_sha_task_partial_hash allows stateful SHA calculation for a collection
of messages. Using buffers as described in section "Buffer Support".

Stateful means that the input data is composed of many segments (may be spatial or timely non-
consecutive), therefore, its SHA calculation requires more than one one-shot SHA operation to
finish. During any stateful operation, other independent SHA tasks can also be executed.

639

Task Configuration

Description API to Set Configuration API to Query Support

Enable the task doca_sha_task_partial_hash_s

et_conf

doca_sha_cap_task_partial_hash

_get_supported

Number of tasks doca_sha_task_partial_hash_s

et_conf

Maximal source buffer size – doca_sha_cap_get_max_src_buf_s

ize

Maximum source buffer list size – doca_sha_cap_get_max_list_buf_

num_elem

Minimum destination buffer size – doca_sha_cap_get_min_dst_buf_s

ize

SHA block size doca_sha_cap_get_partial_hash_

block_size

Task Input

Common input as described in DOCA Core Task.

640

•

•

•
•
•

•
•
•

Name Description Notes

Source buffer Buffer pointing to the memory to be
used for SHA calculation

Only the data residing in the data
segment is to be used.
And the data length for the non-last
data segment must be multiple of the
SHA block size queried by
doca_sha_cap_get_partial_hash_b

lock_size

Destination buffer Buffer pointing to the memory is
used for writing the SHA calculation
result

The SHA result is appended to the tail
segment. During the whole
calculation process, this buffer
cannot be modified.

SHA algorithm type SHA algorithm to be used in SHA
calculation

Must be one of
DOCA_SHA_ALGORITHM_SHA1 ,

DOCA_SHA_ALGORITHM_SHA256 ,

DOCA_SHA_ALGORITHM_SHA512

Whether the current source
buffer is the last segment

Indicate whether the current source
Buffer is the last segment data to be
used for partial-SHA calculation

Use
doca_sha_task_partial_hash_set_

is_final_buf to set this property

Set source buffer Use to set the subsequent source
segment buffer after the initial
doca_sha_task_partial_hash
task is allocated

doca_sha_task_partial_hash_set_

src

Task Output

Common output as described in DOCA Core Task.

Task Completion Success

After the task completes successfully, the following happens:

The SHA calculation of data from the source buffer is successfully completed and the result is
written to the destination buffer
The destination buffer data segment is extended to include the SHA result data

Task Completion Failure

If the task fails midway:

The context may enter stopping state if a fatal error occurs
The source and destination doca_buf objects is not modified
The destination buffer contents may be modified

Task Limitations

The operation is not atomic
Once the task is submitted, the source and destination should not be read/written to
Other limitations are described in DOCA Core Task

641

•
•

•
•

•
•

•
•
•

14.4.12.6.2 Events

DOCA SHA exposes asynchronous events to notify about changes that happen unexpectedly according
to the DOCA Core architecture.

The only events SHA exposes are common events as described in DOCA Core Event.

14.4.12.7 State Machine
The DOCA SHA library follows the context state machine as described in DOCA Core Context State
Machine.

The following section describes moving states and what is allowed in each state.

14.4.12.7.1 Idle

In this state, it is expected that the application either:

Destroys the context
Starts the context

Allowed operations:

Configuring the context according to section "Configurations"
Starting the context

It is possible to reach this state as follows:

Previous State Transition Action

None Create the context

Running Call stop after making sure all tasks have been freed

Stopping Call progress until all tasks are completed and freed

14.4.12.7.2 Starting

This state cannot be reached.

14.4.12.7.3 Running

In this state, it is expected that the application:

Allocates and submits tasks
Calls progress to complete tasks and/or receive events

Allowed operations:

Allocating previously configured task
Submitting a task
Calling stop

It is possible to reach this state as follows:

642

•
•

•

•
•

1.
•

•

2.

Previous State Transition Action

Idle Call start after configuration

14.4.12.7.4 Stopping

In this state, it is expected that the application:

Calls progress to complete all inflight tasks (tasks complete with failure)
Frees any completed tasks

Allowed operations:

Calling progress

It is possible to reach this state as follows:

Previous State Transition Action

Running Call progress and fatal error occurs

Running Call stop without freeing all tasks

14.4.12.8 Alternative Datapath Options
DOCA SHA only supports datapath on the CPU. See section "Execution Phase".

14.4.12.9 DOCA SHA Samples
This section describes DOCA SHA samples based on the DOCA SHA library.

The samples in this section illustrate how to use the DOCA SHA API to do the following:

Do SHA calculation of contents of a buffer, and write result to another buffer
Chop the contents of a buffer into a collection of segments, and do partial-SHA calculation of
this collection of segments, and write result to another

14.4.12.9.1 Running the Samples
Refer to the following documents:

NVIDIA DOCA Installation Guide for Linux for details on how to install BlueField-related
software.
NVIDIA DOCA Troubleshooting Guide for any issue you may encounter with the
installation, compilation, or execution of DOCA samples.

To build a given sample:

All the DOCA samples described in this section are governed under the BSD-3 software
license agreement.

643

3.

4.

1.
2.
3.
4.
5.
6.
7.
8.

•

•

•

1.

cd /opt/mellanox/doca/samples/doca_sha/<sample_name>
meson/tmp/build
ninja -C/tmp/build

Sample (e.g., doca_sha_create) usage:

Usage: doca_sha_create [DOCA Flags] [Program Flags]

DOCA Flags:
 -h, --help Print a help synopsis
 -v, --version Print program version information
 -l, --log-level Set the (numeric) log level for the program <10=DISABLE, 20=CRITICAL,
30=ERROR, 40=WARNING, 50=INFO, 60=DEBUG, 70=TRACE>
 --sdk-log-level Set the SDK (numeric) log level for the program <10=DISABLE, 20=CRITICA
L, 30=ERROR, 40=WARNING, 50=INFO, 60=DEBUG, 70=TRACE>
 -j, --json <path> Parse all command flags from an input json file

Program Flags:
 -d, --data user data

For additional information per sample, use the -h option:

/tmp/build/doca_<sample_name>-h

14.4.12.9.2 Samples

14.4.12.9.2.1 SHA Create

This sample illustrates how to perform SHA calculation with DOCA SHA.

The sample logic includes:

Locating DOCA device.
Initializing required DOCA Core structures.
Setting the task_pool configuration for doca_sha_task_hash .
Populating DOCA memory map with two relevant buffers.
Allocating element in DOCA buffer inventory for each buffer.
Allocating and initializing a doca_sha_task_hash .
Submitting the task.
Retrieving task result once it is done.

Reference:

/opt/mellanox/doca/samples/doca_sha/sha_create/sha_create_sample.c

/opt/mellanox/doca/samples/doca_sha/sha_create/sha_create_main.c

/opt/mellanox/doca/samples/doca_sha/sha_create/meson.build

14.4.12.9.2.2 SHA-Partial Create

This sample illustrates how to perform partial-SHA calculation for a collection of data segments with
DOCA SHA.

The sample logic includes:

Locating DOCA device.

The binary doca_<sample_name> is created under /tmp/build/ .

644

2.
3.
4.

5.

6.
7.

8.
a.
b.
c.

d.

9.

10.

•

•

•

Initializing the required DOCA Core structures.
Setting the task_pool configuration for doca_sha_task_partial_hash .
Chopping the source data into a collection of data segments according to the selected SHA
algorithm's block size
Populating DOCA memory map with needed buffers for all source data segments and
destination buffer.
Allocating element in DOCA buffer inventory for the first source buffer and destination buffer.
Allocating and initializing a doca_sha_task_partial_hash with the first source buffer and
the destination buffer.
Iteratively repeating the following sub-steps until all data segments are consumed:

Submitting the doca_sha_task_partial_hash .
Waiting for the submitted task to finish.
Allocating a doca_buf for the next source segment and use

doca_sha_task_partial_hash_set_src to set it as source buffer of the above
allocated task.
If it is the final segment, use doca_sha_task_partial_hash_set_is_final_buf to
mark it in the allocate task.

Retrieving the result of the final iteration in the destination buffer as the full partial-SHA
calculation result.
Destroying all SHA and DOCA Core structures.

Reference:

/opt/mellanox/doca/samples/doca_sha/sha_partial_create/sha_partial_create_sam

ple.c

/opt/mellanox/doca/samples/doca_sha/sha_partial_create/sha_partial_create_mai

n.c

/opt/mellanox/doca/samples/doca_sha/sha_partial_create/meson.build

14.4.13 DOCA Erasure Coding
This guide provides instructions on how to use the DOCA Erasure Coding API.

14.4.13.1 Introduction

The DOCA Erasure Coding (known also as forward error correction or FEC) library provides an API to
encode and decode data using hardware acceleration, supporting both host and NVIDIA®
BlueField®-3 (and higher) DPU memory regions.

DOCA Erasure Coding recovers lost data fragments by creating generic redundancy fragments
(backup). Each redundancy block that the library creates can help recover any block in the original
data should a total loss of fragment occur. This increases data redundancy and reduces data
overhead.

The library provides an API for executing erasure coding (EC) operations on DOCA buffers residing in
either the DPU or host memory.

This library is currently supported at alpha version.

645

•
•
•

This document is intended for software developers wishing to accelerate their application's EC
memory operations.

14.4.13.1.1 Glossary

Familiarize yourself with the following terms to better understand the information in this document:

Term Definition

Data Original data, original blocks, blocks of original data to be
protected/preserved

Coding matrix Coefficients, the matrix used to generate the redundancy blocks
and recovery

Redundancy blocks Codes; encoded data; the extra blocks that help recover data loss

Encoding The process of creating the redundancy blocks. Encoded data is
referred to as the original blocks or redundancy blocks.

Decoding The process of recovering the data. Decoded data is referred to as
the original blocks alone.

14.4.13.2 Prerequisites
DOCA Erasure Coding library follows the architecture of a DOCA Core Context, it is recommended
read the following sections before:

DOCA Core Execution Model
DOCA Core Device
DOCA Core Memory Subsystem

14.4.13.3 Environment
DOCA Erasure Coding-based applications can run either on the host machine or on the DPU target
(NVIDIA® BlueField®-3 and above).

Erasure Coding can only be run with DPU configured in DPU mode as described in NVIDIA BlueField
Modes of Operation.

14.4.13.4 Architecture
DOCA Erasure Coding is a DOCA Context as defined by DOCA Core. This library leverages the DOCA
Core architecture to expose asynchronous tasks/events that are offloaded to hardware.

The following diagram presents a high-level view of the EC transmission flow:

646

1.
2.

3.

4.

1.
2.
3.

Before the source send them, the source encode the data by adding to it T redundancy
packets (4 in this case).
The packets are transmitted to the destination in UDP protocol. Some packets are lost and N'
packets are received (in this case 4 packets are lost and 8 are received).
The destination decodes the data using all the packets available (both original data in green
and redundancy data in red) and gets back the M original data packets.

14.4.13.4.1 Flows

Regular EC flow consists of the following elements:

Creating redundancy blocks from data (EC create).
Updating redundancy blocks from updated data (EC update).
Recovering data blocks from redundancy blocks (EC recover).

M packets are sent from the source (8 in this case).

647

1.

2.

3.
4.

The following sections examine an M:K (where M is the original data and K is redundancy) EC.

14.4.13.4.2 Create Redundancy Blocks

The user must perform the following:

Input M data blocks via doca_buf (filled with data, each block size B).

Output K empty blocks via doca_buf (each block size B).

Use DOCA Erasure Coding to create a coding matrix of M by K via doca_buf .
Use DOCA Erasure Coding Create task to get the K output redundancy blocks.

This step can be repeated in a stream use case, as the DPU would not be the
recovery or update point.

648

1.

2.

3.
4.

5.

6.

14.4.13.4.3 Recover Block

The user must perform the following:

Input M-L original blocks via doca_buf (blocks that were not impaired).

Input L≤K (any) redundancy blocks via doca_buf (redundancy blocks originating from
create/update tasks).
Input bitmask or array, indicating which blocks to recover.
Output L empty blocks via doca_buf (same size of data block).

Use DOCA Erasure Coding to create a recover coding matrix of M by L via doca_buf (unique
per bitmask).
Use DOCA Erasure Coding Recover task to get the L output recovered data blocks.

14.4.13.4.4 Objects

14.4.13.4.4.1 Device and Device Representor

The DOCA Erasure Coding library requires a DOCA device to operate. The device is used to access
memory and perform the encoding and decoding operations. See DOCA Core Device Discovery.

For same Bluefield card, it does not matter which device is used (PF/VF/SF), as all these devices
utilize the same HW component. If there are multiple DPUs, then it is possible to create an EC
instance per DPU, providing each instance with a device from a different DPU. To access memory
that is not local (from the host to the DPU and vice versa), the DPU side of the application must pick
a device with an appropriate representor. See DOCA Core Representor Device Discovery.

The device must stay valid until the EC instance is destroyed.

14.4.13.4.4.2 Memory Buffers

Executing any DOCA EC task requires two DOCA buffers, a source buffer and a destination buffer.

Depending on the allocation pattern of the buffers, refer to the Inventory Types table.

649

•
•

•

•

•

•

•
•

Buffers must not be modified or read during the execution of any task.

14.4.13.5 Configuration Phase
To start using the library, first, you need to go through a configuration phase as described in DOCA
Core Context Configuration Phase.

This section describes how to configure and start the context, to allow execution of tasks and
retrieval of events.

14.4.13.5.1 Configurations

The context can be configured to match the application use case.

To find if a configuration is supported, or what the min/max value, please refer to Device Support.

14.4.13.5.1.1 Mandatory Configurations

These configurations are mandatory and must be set by the application before attempting to start
the context:

At least 1 task/event type needs to be configured. See configuration of Tasks.
A device with appropriate support must be provided on creation.

14.4.13.5.2 Device Support

DOCA Erasure Coding needs a device to operate. For picking a device, see DOCA Core Device
Discovery.

Erasure Coding can be used in BlueField-3 with some limitations (see architecture). Any device can
be used PF/VF/SF.

As device capabilities may change in the future, it is recommended to choose your device using the
following methods:

doca_ec_cap_task_galois_mul_is_supported

doca_ec_cap_task_create_is_supported

doca_ec_cap_task_update_is_supported

doca_ec_cap_task_recover_is_supported

Some devices can allow different capabilities as follows:

The maximum buffer list length
The maximum block size

•
•
•

Current BlueField-3 limitations:
Data block count range: 1-128
Redundancy block count: 1-32
Block size: 64B-128MB

650

•
•
•

•

•
•

14.4.13.5.3 Buffer Support

Tasks support buffers with the following features:

Buffer Type Source Buffer Destination Buffer

Linked list buffer Depends on the device; check the
max_buf_list_len capability

No

Local mmap buffer Yes Yes

Mmap from PCIe export buffer Yes Yes

Mmap from RDMA export buffer No No

14.4.13.6 Execution Phase
This section describes execution on CPU or DPU using the DOCA Core Progress Engine.

14.4.13.6.1 Matrix Generate

All tasks require a coding matrix.

14.4.13.6.1.1 Matrix Type

DOCA EC provides 2 matrix types which are elaborated on in the following subsections.

Cauchy

Cauchy encoding matrix is constructed so that .

Where:

Vandermonde

Vandermonde encoding matrix is constructed so that .

Where:

Vandermonde matrix does not guarantee that every submatrix is invertible (i.e., the decode
task may fail in some settings).

651

14.4.13.6.1.2 Matrix Functionality

Create

An encoding matrix is necessary for executing the create task, to create redundancy blocks.

The matrices used for updates and recovery are based on an encoding matrix.

The following subsections describe the available options for creating matrices.

Generic

Generic creation, with the doca_ec_matrix_create() function, is used for simple setup using one
of matrix types provided by the library.

Input:

Name Description

Type One of matrix types provided by the library

Data block count The number of original data blocks

Redundancy block count The number of redundancy blocks

Custom

Custom creation, with the doca_ec_matrix_create_from_raw() function, is used if the desired
type of matrix is not provided by the library.

Input:

Name Description Notes

Data The data of a coding matrix The size of the data should be
data_block_count * rdnc_block_c

ount

Data block count The number of original data blocks –

Redundancy block count The number of redundancy blocks –

Update

This matrix is necessary for executing the update task, to update the redundancy blocks after a
change in the data blocks.

The matrix is created using the doca_ec_matrix_create_update() function.

Input:

Name Description Notes

Coding matrix A coding matrix created by
doca_ec_matrix_create() or

doca_ec_matrix_create_from_raw(

)

–

652

•

•

•

•

Name Description Notes

Update indices An array specifying the indices of the
updated data blocks

The indices must be in ascending
order
The indices should match the order
of the data blocks in the matrix
creation function

Number of updates The number of updated blocks. The
length of the update indices array.

–

Recover

This matrix is necessary for executing the recover task, to recover original data blocks.

The matrix is created using the doca_ec_matrix_create_recover() function.

Input:

Name Description Notes

Coding matrix A coding matrix created by
doca_ec_matrix_create() or

doca_ec_matrix_create_from_raw(

)

–

Missing indices An array specifying the indices of the
missing data blocks

The indices must be in ascending
order
The indices should match the order
of the data blocks in the matrix
creation function

Number of missing The number of updated blocks. The
length of the update indices array.

–

14.4.13.6.2 Tasks

14.4.13.6.2.1 Task Batching

DOCA Erasure Coding supports task batching mode, which is a task submit mode of work that allows
aggregating multiple DOCA tasks of the same type and handling them as a single unit.

DOCA Erasure Coding supports the flags DOCA_TASK_SUBMIT_FLAG_FLUSH and

DOCA_TASK_SUBMIT_FLAG_OPTIMIZE_REPORTS .

14.4.13.6.2.2 Galois Mul Task

This task executes Galois multiplication between the original blocks and the coding matrix.

Task Configuration

For more information on task batching, refer to DOCA Core Task.

653

•

•

•

•

•

•

Description API to Set the Configuration API to Query Support

Enable the task doca_ec_task_galois_mul_set_c

onf

doca_ec_cap_task_galois_mul_is

_supported

Maximum block size – doca_ec_cap_get_max_block_size

Maximum buffer list length – doca_ec_cap_get_max_buf_list_l

en

Task Input

Common input as described in DOCA Core Task.

Name Description Notes

coding matrix A coding matrix as created by
doca_ec_matrix_create() or

doca_ec_matrix_create_from_raw()

–

source buffer Source original data buffer, holding a
sequence containing all original blocks
(e.g., block_1 , block_2 , etc.); the
order matters

The data length of src_buf should
be a multiplication of the block size
The data length should also be
aligned to 64B and with a minimum
size of 64B

destination buffer A destination buffer for the
multiplication outcome blocks. The
sequence containing all multiplication
outcome blocks (dst_block_1 ,

dst_block_2 , etc.) is written to it
upon successful completion of the task.

The data is written to the tail
segment extending the data segment
The minimal available memory in
dst_buf should be the number of
redundancy blocks * the block size,
aligned to 64B and, in any case, at
least 64B.

Task Output

Common output as described in DOCA Core Task.

Task Completion Success

After the task completes successfully, the following happens:

The destination buffer holds a sequence containing all multiplication outcome blocks (e.g.,
dst_block_1 , dst_block_2 , etc.)
The destination buffer data segment is extended to include the outcome blocks

Task Completion Failure

•

•

Example for required buffer length

If a Galois multiplication task matrix is 10x4 (i.e., 10 original blocks, 4 multiplication
outcome blocks), and the block size is 64KB:

src_buf data length should be 10x64KB = 640KB

The available memory for writing in dst_buf should be at least 4x64KB = 256KB

654

•
•
•

•
•

•
•

•

•

•

•

If the task fails midway:

The context may enter stopping state if a fatal error occurs
The source and destination doca_buf objects are not modified
The destination buffer contents may be modified

Task Limitations

The operation is not atomic
Once the task has been submitted, the source and destination buffer should not be read
from/written to
Source and destination buffers must not overlap
Other limitations are described in DOCA Core Task

14.4.13.6.2.3 Create Task

This task creates redundancy blocks for the given original data blocks using a given coding matrix.

Task Configuration

Description API to Set the Configuration API to Query Support

Enable the task doca_ec_task_create_set_conf doca_ec_cap_task_create_is_supp

orted

Maximum block size – doca_ec_cap_get_max_block_size

Maximum buffer list length – doca_ec_cap_get_max_buf_list_le

n

Task Input

Common input as described in DOCA Core Task.

Name Description Notes

coding matrix A coding matrix created by
doca_ec_matrix_create() or

doca_ec_matrix_create_from_raw()

–

original data blocks Source original data buffer, holding a
sequence containing all original blocks
(block_1 , block_2 , etc.); the order
matters

The data length of
original_data_blocks should be
a multiplication of the block size
The data length should also be
aligned to 64B and with a minimum
size of 64B

redundancy blocks A destination buffer for the redundancy
blocks. The sequence containing all
redundancy blocks (rdnc_block_1 ,

rdnc_block_2 , etc.) is written to it
upon successful completion of the task.

The data will be written to the tail
segment extending the data
segment
The minimal available memory in
rdnc_blocks should be the
number of redundancy blocks * the
block size, aligned to 64B and, in
any case, at least 64B

655

•

•

•
•
•

•
•

•
•

Task Output

Common output as described in DOCA Core Task.

Task Completion Success

After the task completes successfully, the following happens:

The destination buffer holds a sequence containing all redundancy blocks (rdnc_block_1 ,

rdnc_block_2 , etc.)
The destination buffer data segment is extended to include the redundancy blocks

Task Completion Failure

If the task fails midway:

The context may enter stopping state if a fatal error occurs
The source and destination doca_buf objects are not modified
The destination buffer contents may be modified

Task Limitations

The operation is not atomic
Once the task is submitted, the source and destination buffers should not be read from/
written to
Source and destination buffers must not overlap
Other limitations are described in DOCA Core Task

14.4.13.6.2.4 Update Task

This task executes updates the redundancy blocks for the given original data blocks, using an update
coding matrix.

Task Configuration

Description API to Set the Configuration API to Query Support

Enable the task doca_ec_task_update_set_conf doca_ec_cap_task_update_is_supp

orted

Maximum block size – doca_ec_cap_get_max_block_size

Maximum buffer list length – doca_ec_cap_get_max_buf_list_le

n

•

•

Example for required buffer lengths

If a create task matrix is 10x4 (i.e., 10 original blocks, 4 redundancy blocks), and the block
size is 64KB:

original_data_blocks data length should be 10x64KB = 640KB

The available memory for writing in redundancy_blocks should be at least 4x64KB
= 256KB

656

•

•

•

•

•

•

Task Input

Common input as described in DOCA Core Task.

Name Description Notes

update matrix An update coding matrix created by
doca_ec_matrix_create_update() or

doca_ec_matrix_create_from_raw()

-

original updated and RDNC
blocks

A source buffer with data, holding a
sequence containing the original data
block and its updated data block, for
each block that was updated, followed by
the old redundancy blocks
(old_data_block_i ,

updated_data_block_i ,

old_data_block_j ,

updated_data_block_j , ...,

rdnc_block_1 , rdnc_block_2 , etc.)

The data length of
original_updated_and_rdnc_

blocks should be a
multiplication of the block size
The data length should also be
aligned to 64B and with a
minimum size of 64B

updated RDNC blocks A destination buffer for the updated
redundancy blocks. The sequence
containing the updated redundancy
blocks (rdnc_block_1 , rdnc_block_2 ,
etc.) is written to it upon successful
completion of the task

The data is written to the tail
segment extending the data
segment
The minimal available memory
in updated_rdnc_blocks
should be the number of
redundancy blocks * the block
size, aligned to 64B and, in any
case, at least 64B

Task Output

Common output as described in DOCA Core Task.

Task Completion Success

After the task completes successfully, the following happens:

The destination buffer holds a sequence containing the updated redundancy blocks
(rdnc_block_1 , rdnc_block_2 , etc.)
The destination buffer data segment is extended to include the updated redundancy blocks

Task Completion Failure

If the task fails midway:

•

•

Example for required buffer lengths

using an update task matrix, in which 3 data block were updated and there are 4
redundancy blocks, and the block size is 64KB:

original_updated_and_rdnc_blocks data length should be (3+3+4=10)x64KB =
640KB
The available memory for writing in updated_rdnc_blocks should be at least
4x64KB = 256KB

657

•
•
•

•
•

•
•

•

•

•

•

•

The context may enter stopping state if a fatal error occurs
The source and destination doca_buf objects is not modified
The destination buffer contents may be modified

Task Limitations

The operation is not atomic
Once the task has been submitted, the source and destination buffers should not be read
from/written to
Source and destination buffers must not overlap
Other limitations described in DOCA Core Task

14.4.13.6.2.5 Recover Task

This task executes recovers data blocks for, using given available original data blocks and
redundancy blocks and a given coding matrix.

Task Configuration

Description API to Set the Configuration API to Query Support

Enable the task doca_ec_task_recover_set_con

f

doca_ec_cap_task_recover_is_sup

ported

Maximum block size – doca_ec_cap_get_max_block_size

Maximum buffer list length – doca_ec_cap_get_max_buf_list_le

n

Task Input

Common input as described in DOCA Core Task.

Name Description Notes

recover matrix A coding matrix create by
doca_ec_matrix_create() or

doca_ec_matrix_create_from_raw()

–

available blocks A source buffer with data, holding a
sequence containing available data
blocks and redundancy blocks
(data_block_a , data_block_b ,

data_block_c , ..., rdnc_block_x ,

rdnc_block_y , etc.)

The total number of blocks given
should be equal to the number of
original data blocks
The data length
of available_blocks should be a
multiplication of the block size
The data length should also be
aligned to 64B and with a minimum
size of 64B

recovered data blocks A destination buffer for the recovered
data blocks. The sequence containing
the recovered data blocks
(data_block_i , data_block_j , etc.)
is written to it upon successful
completion of the task

The data is written to the tail
segment extending the data segment
The minimal available memory in
recovered_data_blocks should be
the number of missing data blocks *
the block size, aligned to 64B and, in
any case, at least 64B.

658

•
•
•

•
•

•
•

•

Task Output

Common output as described in DOCA Core Task.

Task Completion Success

After the task is completed successfully the data is transformed to destination.

Task Completion Failure

If the task fails midway:

The context may enter stopping state if a fatal error occurs
The source and destination doca_buf objects are not modified
The destination buffer contents may be modified

Task Limitations

The operation is not atomic
Once the task is submitted, the source and destination buffers should not be read from/
written to
Source and destination must not overlap
The amount of blocks that can be recovered are limited to the number of redundancy blocks
created
Other limitations are described in DOCA Core Task

14.4.13.7 DOCA Erasure Coding Samples
This section provides DOCA Erasure Coding sample implementation on top of the BlueField-3 DPU
(and higher).

14.4.13.7.1 Sample Prerequisites

N/A

•

•

•

Example for required buffer lengths

Using a recover task matrix, based on an original 10x4 coding matrix (i.e., 10 original
blocks, 4 redundancy blocks), and a block size of 64KB:

10 available blocks should be given in total (e.g., 7 data blocks and 3 redundancy
blocks)
available_blocks data length should be 10x64KB = 640KB

The available memory for writing in recovered_data_blocks should be at least
3x64KB = 192KB

All the DOCA samples described in this section are governed under the BSD-3 software
license agreement.

659

1.
•

•

2.

3.

4.

1.
2.

14.4.13.7.2 Running the Sample
Refer to the following documents:

NVIDIA DOCA Installation Guide for Linux for details on how to install BlueField-related
software.
NVIDIA DOCA Troubleshooting Guide for any issue you may encounter with the
installation, compilation, or execution of DOCA samples.

To build a given sample:

cd /opt/mellanox/doca/samples/doca_erasure_coding/<sample_name>
meson /tmp/build
ninja -C /tmp/build

Sample (e.g., doca_erasure_coding_recover) usage:

Usage: doca_erasure_coding_recover [DOCA Flags] [Program Flags]

DOCA Flags:
 -h, --help Print a help synopsis
 -v, --version Print program version information
 -l, --log-level Set the (numeric) log level for the program <10=DISABLE, 20=CRITICAL,
30=ERROR, 40=WARNING, 50=INFO, 60=DEBUG, 70=TRACE>
 --sdk-log-level Set the SDK (numeric) log level for the program <10=DISABLE,
20=CRITICAL, 30=ERROR, 40=WARNING, 50=INFO, 60=DEBUG, 70=TRACE>
 -j, --json <path> Parse all command flags from an input JSON file

Program Flags:
 -p, --pci-addr DOCA device PCI device address - default: 03:00.0
 -i, --input Input file/folder to ec - default: self
 -o, --output Output file/folder to ec - default: /tmp
 -b, --both Do both (encode & decode) - default: false
 -x, --matrix Matrix - {cauchy, vandermonde} - default: cauchy
 -t, --data Data block count - default: 2
 -r, --rdnc Redundancy block count - default: 2
 -d, --delete-index Indices of data blocks to delete; comma-separated (i.e., 0,3,4) -
default: 0

For additional information per sample, use the -h option:

/tmp/build/doca_<sample_name> -h

14.4.13.7.3 Samples

14.4.13.7.3.1 Erasure Coding Recover

This sample illustrates how to use DOCA Erasure Coding (EC) library to encode and decode a file
block (and entire file).

The sample logic includes 3 steps:

Encoding – create redundancy.
Deleting – simulating disaster.

The binary doca_<sample_name> is created under /tmp/build/ .

•
•
•

Current BlueField-3 limitations:
Data block count range – 1-128
Redundancy block count – 1-32
Block size – 64B-128MB

660

3.

1.
2.

3.

4.

5.
6.
7.
8.

•
•

9.

•
i.

ii.
iii.

iv.
•

i.
ii.
iii.

10.
11.
12.

13.

1.

1.
2.

3.

4.

5.

Decoding – recovering data.

The encode logic includes:

Locating a DOCA device.
Initializing the required DOCA Core structures, such as the progress engine (PE), memory
maps, and buffer inventory.
Reading source original data file and splitting it to a specified number of blocks, <data

block count> , specified for the sample to the output directory.
Populating two DOCA memory maps with a memory range, one for the source data and one
for the result.
Allocating buffers from DOCA buffer inventory for each memory range.
Creating an EC object.
Connecting the EC context to the PE.
Setting a state change callback function for the PE, with the following logic:

Printing a log with every state change
Indicating that the user may stop progress the PE once it is back in idle state

Setting the configuration to the EC create task, including setting callback functions as
follows:

Successful completion callback:
Writing the resulting redundancy blocks to the output directory (count is
specified by <redundancy block count>).
Freeing the task.
Saving the result of the task and the callback. If there was an error in step a.,
the relevant error value is saved.
Stopping the context.

Failed completion callback:
Saving the result of the task and the callback.
Freeing the task.
Stopping the context.

Creating EC encoding matrix by the matrix type specified to the sample.
Allocating and submitting an EC create task.
Progressing the PE until the context returns to idle state, either as a result of a successful run
in which all tasks have been successfully completed, or as a result of a fatal error.
Destroying all EC and DOCA Core structures.

The delete logic includes:

Deleting the block files specified with <indices of data blocks to delete> .

The decode logic includes:

Locating a DOCA device.
Initializing the required DOCA Core structures, such as the PE, memory maps, and buffer
inventory.
Reading the output directory (source remaining data) and determining the block size and
which blocks are missing (needing recovery).
Populating two DOCA memory maps with a memory range, one for the source data and one
for the result.
Allocating buffers from DOCA buffer inventory for each memory range.

661

6.
7.
8.

•
•

9.

•
i.
ii.
iii.
iv.

v.
•

i.
ii.
iii.

10.
11.

12.
13.

14.

•

•

•

Creating an EC object.
Connecting the EC context to the PE.
Setting a state change callback function for the PE, with the following logic:

Printing a log with every state change
Indicating that the user may stop progress the PE once it is back in idle state

Setting the configuration to the EC recover task, including setting callback functions as
following:

Successful completion callback:
Writing the resulting recovered blocks to the output directory.
Writing the recovered file to the output path.
Freeing the task.
Saving the result of the task and the callback. If there was an error in step a.,
the relevant error value is saved.
Stopping the context.

Failed completion callback:
Saving the result of the task and the callback.
Freeing the task.
Stopping the context.

Creating EC encoding matrix by the matrix type specified to the sample.
Creating EC decoding matrix, with doca_ec_matrix_create_recover() , using the encoding
matrix.
Allocating and submitting an EC recover task.
Progressing the PE until the context returns to idle state, either as a result of a successful run
in which all tasks have been successfully completed, or as a result of a fatal error.
Destroying all DOCA EC and DOCA Core structures.

References:

/opt/mellanox/doca/samples/doca_erasure_coding/doca_erasure_coding_recover/

erasure_coding_recover_sample.c

/opt/mellanox/doca/samples/doca_erasure_coding/doca_erasure_coding_recover/

erasure_coding_recover_main.c

/opt/mellanox/doca/samples/doca_erasure_coding/doca_erasure_coding_recover/

meson.build

14.4.14 DOCA AES-GCM
This guide provides instructions on building and developing applications that require data encryption
and decryption using the AES-GCM algorithm.

14.4.14.1 Introduction

The library provides an API for executing AES-GCM operations on DOCA buffers, where the buffers
reside in either local memory (i.e., within the same host) or host memory accessible by the DPU

The DOCA AES-GCM library is supported at alpha level.

662

•
•
•

•

•

(remote memory). Using DOCA AES-GCM, complex encrypt/decrypt operations can be easily
executed in an optimized, hardware-accelerated manner.

This document is intended for software developers wishing to accelerate their application's encrypt/
decrypt operations.

14.4.14.2 Prerequisites
This library follows the architecture of a DOCA Core context, it is recommended to read the
following sections before:

DOCA Core Execution Model
DOCA Core Device
DOCA Core Memory Subsystem

14.4.14.3 Environment
DOCA AES-GCM-based applications can run either on the host machine or on the NVIDIA® BlueField®
DPU target.

Encrypting/decrypting from the host to DPU and vice versa can only be run when the DPU is
configured in DPU mode.

14.4.14.4 Architecture
DOCA AES-GCM is a DOCA Core Context. This library leverages the DOCA Core architecture to expose
asynchronous tasks/events that are offloaded to hardware.

AES-GCM can be used to encrypt/decrypt data as illustrated in the following diagrams:

Encrypt/decrypt from local memory to local memory:

Using the DPU to copy memory between the host and the DPU:

663

• Using the host to copy memory between the host and the DPU:

14.4.14.4.1 Objects

14.4.14.4.1.1 Device and Representor

The library requires a DOCA device to operate. The device is used to access memory and perform
the actual encrypt/decrypt. See DOCA Core Device Discovery.

For the same BlueField DPU, it does not matter which device is used (i.e., PF/VF/SF) as all these
devices utilize the same hardware component. If there are multiple DPUs, then it is possible to
create a AES-GCM instance per DPU, providing each instance with a device from a different DPU.

To access memory that is not local (i.e., from the host to DPU or vice versa), the DPU side of the
application must pick a device with an appropriate representor (see DOCA Core Device Representor
Discovery). The device must stay valid as long as AES-GCM instance is not destroyed.

14.4.14.4.1.2 Memory Buffers

The encrypt/decrypt task, requires two DOCA buffers containing the destination and the source.

Depending on the allocation pattern of the buffers, consider the DOCA Core Inventory Types table.

To find what kind of memory is supported, refer to the following table.

Buffers must not be modified or read during the encrypt/decrypt operation.

664

•
•

•

•

•
•
•
•
•
•
•

14.4.14.5 Configuration Phase
To start using the library users must go through a configuration phase as described in DOCA Core
Context Configuration Phase.

This section describes how to configure and start the context to allow execution of tasks and
retrieval of events.

14.4.14.5.1 Configurations

The context can be configured to match the application use case.

To find if a configuration is supported or its min/max value, refer to Device Support.

14.4.14.5.1.1 Mandatory Configurations

These configurations must be set by the application before attempting to start the context:

At least one task/event type must be configured. See configuration of Tasks and/or Events.
A device with appropriate support must be provided upon creation

14.4.14.5.2 Device Support

DOCA AES-GCM requires a device to operate. For picking a device, see DOCA Core Device Discovery.

As device capabilities may change in the future (see DOCA Core Device Support) it is recommended
to select your device using the following method:

doca_aes_gcm_cap_task_encrypt_is_supported

doca_aes_gcm_cap_task_decrypt_is_supported

Some devices can allow different capabilities as follows:

The maximum number of tasks
The maximum buffer size
The maximum supported number of elements in DOCA linked-list buffer
The maximum initialization vector length
Check if authentication tag of size 96-bit is supported
Check if authentication tag of size 128-bit is supported
Check if a given AES-GCM key type is supported

14.4.14.5.3 Buffer Support

Tasks support buffers with the following features:

Buffer Type Source Buffer Destination Buffer

Local mmap buffer Yes Yes

Mmap from PCIe export buffer Yes Yes

Mmap from RDMA export buffer No No

Linked list buffer Yes No

665

14.4.14.6 Execution Phase
This section describes execution on the CPU using DOCA Core Progress Engine.

14.4.14.6.1 Tasks

DOCA AES-GCM exposes asynchronous tasks that leverage DPU hardware according to the DOCA Core
architecture.

14.4.14.6.1.1 Encrypt Task

The encrypt task allows data encryption using buffers as described in Buffer Support.

Task Configuration

Description API to Set Configuration API to Query Support

Enable the task doca_aes_gcm_task_encrypt_s

et_conf

doca_aes_gcm_cap_task_encrypt_i

s_supported

Number of tasks doca_aes_gcm_task_encrypt_s

et_conf

doca_aes_gcm_cap_get_max_num_ta

sks

Maximal buffer size – doca_aes_gcm_cap_task_encrypt_g

et_max_buf_size

Maximum buffer list size – doca_aes_gcm_cap_task_encrypt_g

et_max_list_buf_num_elem

Maximum initialization vector
length

– doca_aes_gcm_cap_task_encrypt_g

et_max_iv_length

Enable authentication tag size – doca_aes_gcm_cap_task_encrypt_i

s_tag_96_supported

doca_aes_gcm_cap_task_encrypt_i

s_tag_128_supported

Enable key type – doca_aes_gcm_cap_task_encrypt_i

s_key_type_supported

Task Input

Common input as described in DOCA Core Task

Name Description Notes

source buffer Buffer pointing to the memory to be
encrypted

Only the data residing in the data
segment is encrypted

destination buffer Buffer pointing to where memory is
encrypted to

The encrypted data is appended
to the tail segment

666

•
•

•
•
•

•
•
•

Name Description Notes

key Key to encrypt the data Created by the function
doca_aes_gcm_key_create
Users should use the same key to
encrypt and decrypt the data

initialization vector (IV) Initialization vector to be used by the AES-
GCM algorithm

Users should use the same IV to
encrypt and decrypt the data

initialization vector length Initialization vector length that must be
supplied for the AES-GCM algorithm

Represented in bytes, 0B-12B
values are supported

authentication tag size Authentication tag size to be supplied for
the AES-GCM algorithm. The tag is
automatically calculated and appended to
the result buffer.

Represented in bytes, only 12B
and 16B values are supported

additional authenticated
data size

Additional authenticated data size to be
supplied for the AES-GCM algorithm. This
data, which should be present at the
beginning of the source buffer, is will not
encrypted but is authenticated.

Represented in bytes

Task Output

Common output as described in DOCA Core Task.

Task Completion Success

After the task completes successfully, the following happens:

The data from the source buffer is encrypted and written to the destination buffer
The destination buffer data segment is extended to include the encrypted data

Task Completion Failure

If the task fails midway:

The context may enter stopping state if a fatal error occurs
The source and destination doca_buf objects are not modified
The destination buffer contents may be modified

Task Limitations

The operation is not atomic
Once the task is submitted, the source and destination should not be read/written to
Other limitations are described in DOCA Core Task

14.4.14.6.1.2 Decrypt Task

The decrypt task allows data decryption. Using buffers as described in Buffer Support.

Task Configuration

667

Description API to Set Configuration API to Query Support

Enable the task doca_aes_gcm_task_decrypt_s

et_conf

doca_aes_gcm_cap_task_decrypt_i

s_supported

Number of tasks doca_aes_gcm_task_decrypt_s

et_conf

doca_aes_gcm_cap_get_max_num_ta

sks

Maximal buffer size – doca_aes_gcm_cap_task_decrypt_g

et_max_buf_size

Maximum buffer list size – doca_aes_gcm_cap_task_decrypt_g

et_max_list_buf_num_elem

Maximum initialization vector
length

– doca_aes_gcm_cap_task_decrypt_g

et_max_iv_length

Enable authentication tag size – doca_aes_gcm_cap_task_decrypt_i

s_tag_96_supported

doca_aes_gcm_cap_task_decrypt_i

s_tag_128_supported

Enable key type – doca_aes_gcm_cap_task_decrypt_i

s_key_type_supported

Task Input

Common input as described in DOCA Core Task.

Name Description Notes

Source buffer Buffer pointing to the memory to be
decrypted

Only the data residing in the data
segment is decrypted

Destination buffer Buffer pointing to where memory is
decrypted to

The decrypted data is appended
to the tail segment extending the
data segment

Key Key to decrypt the data Created by the function
doca_aes_gcm_key_create
The user should use the same key
to encrypt and decrypt the data

Initialization vector (IV) Initialization vector to be used by the AES-
GCM algorithm

The user should use the same IV
to encrypt and decrypt the data

Initialization vector length Initialization vector length that must be
supplied for the AES-GCM algorithm

Represented in bytes, 0B-12B
values are supported

Authentication tag size Authentication tag size to be supplied for
the AES-GCM algorithm. The tag, present at
the end of the source buffer, is verified and
is not present in the destination buffer.

Represented in bytes, only 12B
and 16B values are supported

Additional authenticated
data size

Additional authenticated data size to be
supplied for the AES-GCM algorithm. This
data, present at the beginning of the
source buffer, is not encrypted but is
authenticated.

Represented in bytes

668

•
•

•
•
•

•
•
•

•
•

•
•

Task Output

Common output as described in DOCA Core Task.

Task Completion Success

After the task completes successfully, the following happens:

The data from the source buffer is decrypted and written to the destination buffer
The destination buffer data segment is extended to include the decrypted data

Task Completion Failure

If the task fails midway:

The context may enter stopping state if a fatal error occurs
The source and destination doca_buf objects is not modified
The destination buffer contents may be modified

Task Limitations

The operation is not atomic
Once the task is submitted, the source and destination should not be read/written to
Other limitations are described in DOCA Core Task

14.4.14.6.2 Events

DOCA AES-GCM exposes asynchronous events to notify about changes that happen unexpectedly
according to the DOCA Core architecture.

The only events AES-GCM exposes are common events as described in DOCA Core Event.

14.4.14.7 State Machine
The DOCA AES-GCM library follows the Context state machine as described in DOCA Core Context
State Machine.

The following section describes moving states and what is allowed in each state.

14.4.14.7.1 Idle

In this state, it is expected that the application either:

Destroys the context
Starts the context

Allowed operations:

Configuring the context according to Configurations
Starting the context

It is possible to reach this state as follows:

Previous State Transition Action

None Create the context

669

•
•

•
•
•

•
•

•

Previous State Transition Action

Running Call stop after making sure all tasks have been freed

Stopping Call progress until all tasks are completed and freed

14.4.14.7.2 Starting

This state cannot be reached.

14.4.14.7.3 Running

In this state, it is expected that the application:

Allocates and submits tasks
Calls progress to complete tasks and/or receive events

Allowed operations:

Allocating previously configured task
Submitting a task
Calling stop

It is possible to reach this state as follows:

Previous State Transition Action

Idle Call start after configuration

14.4.14.7.4 Stopping

In this state, it is expected that the application:

Calls progress to complete all inflight tasks (tasks complete with failure)
Frees any completed tasks

Allowed operations:

Calling progress

It is possible to reach this state as follows:

Previous State Transition Action

Running Call progress and fatal error occurs

Running Call stop without freeing all tasks

14.4.14.8 Alternative Datapath Options
DOCA AES-GCM only supports datapath on the CPU. See Execution Phase.

670

•
•

1.
•

•

2.

3.

4.

14.4.14.9 DOCA AES-GCM Samples
This section describes DOCA AES-GCM samples based on the DOCA AES-GCM library.

The samples in this section illustrate how to use the DOCA AES-GCM API to do the following:

Encrypt contents of a buffer to another buffer
Decrypt contents of a buffer to another buffer

14.4.14.9.1 Running the Samples
Refer to the following documents:

NVIDIA DOCA Installation Guide for Linux for details on how to install BlueField-related
software.
NVIDIA DOCA Troubleshooting Guide for any issue you may encounter with the
installation, compilation, or execution of DOCA samples.

To build a given sample:

cd /opt/mellanox/doca/samples/doca_aes_gcm/<sample_name>
meson/tmp/build
ninja -C/tmp/build

Sample (e.g., doca_aes_gcm_encrypt) usage:

Usage: doca_aes_gcm_encrypt [DOCA Flags] [Program Flags]

DOCA Flags:
 -h, --help Print a help synopsis
 -v, --version Print program version information
 -l, --log-level Set the (numeric) log level for the program <10=DISABLE, 20=CRITICAL,
30=ERROR, 40=WARNING, 50=INFO, 60=DEBUG, 70=TRACE>
 --sdk-log-level Set the SDK (numeric) log level for the program <10=DISABLE, 20=CRITICA
L, 30=ERROR, 40=WARNING, 50=INFO, 60=DEBUG, 70=TRACE>
 -j, --json <path> Parse all command flags from an input json file

Program Flags:
 -p, --pci-addr DOCA device PCI device address - default: 03:00.0
 -f, --file Input file to encrypt/decrypt
 -o, --output Output file - default: /tmp/out.txt
 -k, --key Raw key to encrypt/decrypt with, represented in hex format (32
 characters for 128-bit key, and 64 for 256-bit key) - default: 256-bit key, equals to zero
 -i, --iv Initialization vector, represented in hex format (0-24 characters for 0-9
6-bit IV) - default: 96-bit IV, equals to zero
 -t, --tag size Authentication tag size. Tag size is in bytes and can be 12B or 16B -
default: 12
 -a, --aad size Additional authenticated data size - default: 0

For additional information per sample, use the -h option:

/tmp/build/doca_<sample_name>-h

All the DOCA samples described in this section are governed under the BSD-3 software
license agreement.

The binary doca_<sample_name> is created under /tmp/build/ .

671

1.
2.
3.
4.
5.
6.
7.
8.
9.

10.
11.

•

•

•

1.
2.
3.
4.
5.
6.
7.
8.
9.

10.
11.

14.4.14.9.2 Samples

14.4.14.9.2.1 AES-GCM Encrypt

This sample illustrates how to encrypt data with AES-GCM.

The sample logic includes:

Locating DOCA device.
Initializing required DOCA Core structures.
Setting the AES-GCM encrypt tasks configuration.
Populating DOCA memory map with two relevant buffers.
Allocating element in DOCA buffer inventory for each buffer.
Creating DOCA AES-GCM key.
Allocating and initializing AES-GCM encrypt task.
Submitting AES-GCM encrypt task.
Retrieving AES-GCM encrypt task once it is done.
Checking task result.
Destroying all AES-GCM and DOCA Core structures.

Reference:

/opt/mellanox/doca/samples/doca_aes_gcm/aes_gcm_encrypt/

aes_gcm_encrypt_sample.c

/opt/mellanox/doca/samples/doca_aes_gcm/aes_gcm_encrypt/aes_gcm_encrypt_main.c

/opt/mellanox/doca/samples/doca_aes_gcm/aes_gcm_encrypt/meson.build

14.4.14.9.2.2 AES-GCM Decrypt

This sample illustrates how to decrypt data with AES-GCM.

The sample logic includes:

Locating DOCA device.
Initializing needed DOCA Core structures.
Setting the AES-GCM decrypt tasks configuration.
Populating DOCA memory map with two relevant buffers.
Allocating element in DOCA buffer inventory for each buffer.
Creating DOCA AES-GCM key.
Allocating and initializing AES-GCM decrypt task.
Submitting AES-GCM decrypt task.
Retrieving AES-GCM decrypt task once it is done.
Checking task result.
Destroying all AES-GCM and DOCA Core structures.

Reference:

672

•

•

•

•
•
•

•

•
•

/opt/mellanox/doca/samples/doca_aes_gcm/aes_gcm_decrypt/

aes_gcm_decrypt_sample.c

/opt/mellanox/doca/samples/doca_aes_gcm/aes_gcm_decrypt/aes_gcm_decrypt_main.c

/opt/mellanox/doca/samples/doca_aes_gcm/aes_gcm_decrypt/meson.build

14.4.15 DOCA Rivermax

This guide provides instructions on building and developing applications that require media/data
streaming.

14.4.15.1 Introduction
DOCA Rivermax (RMAX) is a DOCA API for NVIDIA® Rivermax®, an optimized networking SDK for
media and data streaming applications. Rivermax leverages NVIDIA® BlueField® DPU hardware
streaming acceleration technology which enables direct data transfers to and from the GPU,
delivering best-in-class throughput and latency with minimal CPU utilization for streaming
workloads.

This document is intended for software developers wishing to accelerate their networking
operations.

14.4.15.2 Prerequisites
This library follows the architecture of DOCA Core Context. it is recommended read the following
content before proceeding:

DOCA Core Execution Model
DOCA Core Device
DOCA Core Memory Subsystem

14.4.15.3 Environment

The Rivermax library must compile and run and Rivermax license to run applications. Refer
to NVIDIA Rivermax SDK page to obtain that license.
An IP address to the device being used must be set up.
It is recommended to have at least 800 huge pages enabled to achieve maximum
performance:

dpu> echo 1000000000 > /proc/sys/kernel/shmmax
dpu> echo 800 > /proc/sys/vm/nr_hugepages

DOCA Rivermax-based applications can run on the target DPU only.

DOCA Rivermax-based application must be run with root privileges.

https://developer.nvidia.com/networking/rivermax

673

•
•

•

•

•

•
•

•
•
•
•

•
•
•

14.4.15.4 Architecture
DOCA Rivermax Input Stream is a DOCA Context as defined by DOCA Core
DOCA Rivermax leverages DOCA Core architecture to expose asynchronous events that are
offloaded to hardware
DOCA Rivermax can be used to define input streams that allow packet acquisition on an IP
port. Furthermore, the input stream can be split to TCP/UDP 5-tuples to allow separate
handling of flows.

14.4.15.4.1 Objects
doca_rmax_flow – is a flow object that represents an IP/port tuple

doca_rmax_in_stream – is a doca_ctx that represents the input stream and can be
thought of as a receive queue which scatters the received data into memory. Each stream can
receive one or more flows.

14.4.15.5 Configuration Phase
To start using the library users must first go through a configuration phase as described in DOCA Core
Context Configuration Phase.

This section describes how to configure and start the context to allow execution of tasks and
retrieval of events.

14.4.15.5.1 Configurations

The context can be configured to match the application use case.

To find if a configuration is supported or its min/max value, refer to section "Device Support".

14.4.15.5.1.1 Mandatory Configurations

These configurations must be set by the application before attempting to start the context:

An event type must be configured. See configuration of Events.
CPU affinity and then Rivermax library global initialization in this order. The following APIs
can be used to achieve this doca_rmax_set_cpu_affinity_mask() and doca_rmax_init()
The memory block that holds packet memory
The number of stream elements
Minimal packet segment size(s)
Maximal packet segment size(s)

14.4.15.5.1.2 Optional Configurations

If the following configurations are not set, then a default value is used:

The input stream type – defaults to generic
The input stream packet's data scatter type – defaults to raw
The input stream timestamp format – defaults to raw counter

674

•

•

14.4.15.5.2 Device Support

DOCA Rivermax Input Stream requires a device to operate. For picking a device see DOCA Core
Device Discovery.

The device must be from within the DPU: Either a PF or SF.

It is recommended to choose your device using the following method:

doca_devinfo_get_ipv4_addr()

Some devices can allow different capabilities as follows:

PTP clock support.

14.4.15.5.3 Buffer Support

Memory block support buffers with the following features:

Buffer Type Memory Block

Local mmap buffer Yes

Mmap from PCIe export buffer Yes

Mmap from RDMA export buffer No

Linked list buffer Yes (header split mode)

14.4.15.6 Execution Phase
This section describes execution on CPU using DOCA Core Progress Engine.

14.4.15.6.1 Events

DOCA Rivermax exposes asynchronous events to notify about changes that happen unexpectedly
according to the DOCA Core architecture.

Common events are described in DOCA Core Event.

14.4.15.6.1.1 Rx Data

The Rx Data event is used by the stream to notify application that data has been received from the
network.

Event Configuration

Description API to Set the Configuration API to Query Support

Register to the event doca_rmax_in_stream_event_rx_data_

register

–

Event Trigger Condition

The event is triggered anytime packet(s) arrive.

675

•
•
•
•
•

•
•

•
•
•

•
•

•
•

Event Output

Common output as described in DOCA Core Event.

In case of success, the following is provided:

Number of packets received
Time of arrival of the first packet
Time of arrival of the last packet
Sequence number of the first packet
Array of memory blocks as configured by input stream

In case of error, the following is provided:

An error code
A human readable message

Event Handling

Once an event is triggered, the application may decide to process the received data.

14.4.15.6.2 Runtime Configurations

These configurations can be made after the context has been started:

The minimal number of packets that the input stream must return in Rx event.
The maximal number of packets that the input stream must return in Rx event.
The receive timeout. The number of μsecs that library would do busy wait (polling) for
reception of at least min_packets number of packets.

14.4.15.7 State Machine
The DOCA RMAX library follows the Context state machine as described in DOCA Core Context State
Machine

The following section describes how to move to the state and what is allowed in each state.

14.4.15.7.1 Idle

In this state, it is expected that application either:

Destroys the context
Starts the context

Allowed operations:

Configuring the context according to Configurations
Starting the context

It is possible to reach this state as follows:

The parameters are valid only inside the event callback.

676

•

•
•

•
•
•
•

•

1.

Previous State Transition Action

None Create the context

Running Call stop

14.4.15.7.2 Starting

This state is not expected to be reached.

14.4.15.7.3 Running

In this state, it is expected that application:

Calls progress to receive events

Allowed operations:

Calling stop
Changing runtime configurations as described in Runtime Configurations

It is possible to reach this state as follows:

Previous State Transition Action

Idle Call start after configuration

14.4.15.7.4 Stopping

This state is not expected to be reached.

14.4.15.8 DOCA Rivermax Samples
The samples illustrate how to use the DOCA Rivermax API to:

List available devices, including their IP and supported capabilities
Set CPU affinity for the internal Rivermax thread to achieve better performance
Set the PTP clock device to be used internally in DOCA Rivermax
Create a stream, create a flow and attach it to the created stream, and finally to start
receiving data buffers (based on the attached flow)
Create a stream in header-data split mode when packet headers and payload are split to
different RX buffers

14.4.15.8.1 Running the Samples
Refer to the following documents:

All the DOCA samples described in this section are governed under the BSD-3 software
license agreement.

677

•

•

2.

3.

4.

1.
2.
3.
4.
5.

NVIDIA DOCA Installation Guide for Linux for details on how to install BlueField-related
software
NVIDIA DOCA Troubleshooting Guide for any issue you may encounter with the
installation, compilation, or execution of DOCA samples

To build a given sample:

cd /opt/mellanox/doca/samples/doca_rmax/<sample_name>
meson /tmp/build
ninja -C /tmp/build

Sample (e.g., doca_rmax_create_stream) usage:

Usage: doca_rmax_create_stream [DOCA Flags] [Program Flags]

DOCA Flags:
 -h, --help Print a help synopsis
 -v, --version Print program version information
 -l, --log-level Set the (numeric) log level for the program <10=DISABLE,
20=CRITICAL, 30=ERROR, 40=WARNING, 50=INFO, 60=DEBUG, 70=TRACE>
 -j, --json <path> Parse all command flags from an input json file

Program Flags:
 -p, --pci_addr <PCI-ADDRESS> PCI device address

For additional information per sample, use the -h option:

/tmp/build/<sample_name> -h

14.4.15.8.2 Samples

14.4.15.8.2.1 List Devices

This sample illustrates how to list all available devices, dump their IPv4 addresses, and tell whether
or not the PTP clock is supported.

The sample logic includes:

Initializing DOCA Rivermax library.
Iterating over the available devices.
Dumping their IPv4 addresses
Dumping whether a PTP clock is supported for each device.
Releasing DOCA Rivermax library.

References:

The binary doca_<sample_name> is created under /tmp/build/ .

When running DOCA Rivermax samples, the IPv4 address 192.168.105.2 must be
configured to an available uplink prior to running it for the samples to run as
expected:

$ifconfig p0 192.168.105.2

http://NVIDIA DOCA Installation Guide for Linux

678

•

•

•

•

1.
2.
3.

•

•

•

•

1.
2.
3.
4.

•

•

•

•

/opt/mellanox/doca/samples/doca_rmax/rmax_list_devices/

rmax_list_devices_sample.c

/opt/mellanox/doca/samples/doca_rmax/rmax_list_devices/

rmax_list_devices_main.c

/opt/mellanox/doca/samples/doca_rmax/rmax_list_devices/meson.build

/opt/mellanox/doca/samples/doca_rmax/rmax_common.h ; /opt/mellanox/doca/

samples/doca_rmax/rmax_common.c

14.4.15.8.2.2 Set CPU Affinity

This sample illustrates how to set the CPU affinity mask for Rivermax internal thread to achieve
better performance. This parameter must be set before library initialization otherwise it will not be
applied.

The sample logic includes:

Setting CPU affinity using the DOCA Rivermax API.
Initializing DOCA Rivermax library.
Releasing DOCA Rivermax library.

References:

/opt/mellanox/doca/samples/doca_rmax/rmax_set_affinity/

rmax_set_affinity_sample.c

/opt/mellanox/doca/samples/doca_rmax/rmax_set_affinity/

rmax_set_affinity_main.c

/opt/mellanox/doca/samples/doca_rmax/rmax_set_affinity/meson.build

/opt/mellanox/doca/samples/doca_rmax/rmax_common.h ; /opt/mellanox/doca/

samples/doca_rmax/rmax_common.c

14.4.15.8.2.3 Set Clock

This sample illustrates how to set the PTP clock device to be used internally in DOCA Rivermax.

The sample logic includes:

Opening a DOCA device with a given PCIe address.
Initializing the DOCA Rivermax library.
Setting the device to use for obtaining PTP time.
Releasing the DOCA Rivermax library.

References:

/opt/mellanox/doca/samples/doca_rmax/rmax_set_clock/rmax_set_clock_sample.c

/opt/mellanox/doca/samples/doca_rmax/rmax_set_clock/rmax_set_clock_main.c

/opt/mellanox/doca/samples/doca_rmax/rmax_set_clock/meson.build

/opt/mellanox/doca/samples/doca_rmax/rmax_common.h ; /opt/mellanox/doca/

samples/doca_rmax/rmax_common.c

679

1.
2.
3.
4.
5.
6.
7.
8.
9.

•

•

•

•

1.
2.
3.
4.
5.
6.

7.
8.
9.

•

14.4.15.8.2.4 Create Stream

This sample illustrates how to create a stream, create a flow and attach it to the created stream,
and finally to start receiving data buffers (based on the attached flow).

The sample logic includes:

Opening a DOCA device with a given PCIe address.
Initializing the DOCA Rivermax library.
Creating an input stream.
Creating the context from the created stream.
Initializing DOCA Core related objects.
Setting the attributes of the created stream.
Creating a flow and attaching it to the created stream.
Starting to receive data buffers.
Clean up—detaches flow and destroys it, destroys created stream and DOCA Core related
objects.

References:

/opt/mellanox/doca/samples/doca_rmax/rmax_create_stream/

rmax_create_stream_sample.c

/opt/mellanox/doca/samples/doca_rmax/rmax_create_stream/

rmax_create_stream_main.c

/opt/mellanox/doca/samples/doca_rmax/rmax_create_stream/meson.build

/opt/mellanox/doca/samples/doca_rmax/rmax_common.h ; /opt/mellanox/doca/

samples/doca_rmax/rmax_common.c

14.4.15.8.2.5 Create Stream – Header-data Split Mode

This sample illustrates how to create a stream in header-data split mode when packet headers and
payload are split to different RX buffers.

The sample logic includes:

Opening a DOCA device with a given PCIe address.
Initialize the DOCA Rivermax library.
Creating an input stream.
Creating a context from the created stream.
Initializing DOCA Core related objects.
Setting attributes of the created stream. Chaining buffers and setting header size to non-zero
is essential to create a stream with header-data split mode.
Creating a flow and attaching it to the created stream.
Starting to receive data to split buffers.
Clean up—detaches flow and destroys it, destroys created stream and DOCA Core related
objects.

References:

/opt/mellanox/doca/samples/doca_rmax/rmax_create_stream_hds/

rmax_create_stream_hds_sample.c

680

•

•

•

•
•
•

•
•

•

/opt/mellanox/doca/samples/doca_rmax/rmax_create_stream_hds/

rmax_create_stream_hds_main.c

/opt/mellanox/doca/samples/doca_rmax/rmax_create_stream_hds/meson.build

/opt/mellanox/doca/samples/doca_rmax/rmax_common.h ; /opt/mellanox/doca/

samples/doca_rmax/rmax_common.c

14.4.16 DOCA Telemetry Exporter
This guide provides an overview and configuration instructions for DOCA Telemetry Exporter API.

14.4.16.1 Introduction
DOCA Telemetry Exporter API offers a fast and convenient way to transfer user-defined data to DOCA
Telemetry Service (DTS). In addition, the API provides several built-in outputs for user convenience,
including saving data directly to storage, NetFlow, Fluent Bit forwarding, and Prometheus endpoint.

The following figure shows an overview of the telemetry exporter API. The telemetry exporter client
side, based on the telemetry exporter API, collects user-defined telemetry and sends it to the DTS
which runs as a container on BlueField. DTS does further data routing, including export with
filtering. DTS can process several user-defined telemetry exporter clients and can collect pre-
defined counters by itself. Additionally, telemetry exporter API has built-in data outputs that can be
used from telemetry exporter client applications.

The following scenarios are available:

Send data via IPC transport to DTS. For IPC, refer to Inter-process Communication.
Write data as binary files to storage (for debugging data format).
Export data directly from DOCA Telemetry Exporter API application using the following
options:

Fluent Bit exports data through forwarding
NetFlow exports data from NetFlow API. Available from both API and DTS. See details
in Data Outputs.
Prometheus creates Prometheus endpoint and keeps the most recent data to be
scraped by Prometheus.

681

•
•
•

•

•

•
•

1.

Users can either enable or disable any of the data outputs mentioned above. See Data Outputs to
see how to enable each output.

The library stores data in an internal buffer and flushes it to DTS/exporters in the following
scenarios:

Once the buffer is full. Buffer size is configurable with different attributes.
When doca_telemetry_exporter_source_flush(void *doca_source) function is invoked.
When the telemetry exporter client terminates. If the buffer has data, it is processed before
the library's context cleanup.

14.4.16.2 Architecture
DOCA Telemetry Exporter API is fundamentally built around four major parts:

DOCA schema – defines a reusable structure (see doca_telemetry_exporter_type) of telemetry
data which can be used by multiple sources

Source – the unique identifier of the telemetry exporter source that periodically reports
telemetry data.
Report – exports the information to the DTS
Finalize – releases all the resources

14.4.16.2.1 DOCA Telemetry Exporter API Walkthrough

The NVIDIA DOCA Telemetry Exporter API's definitions can be found in the
doca_telemetry_exporter.h file.

The following is a basic walkthrough of the needed steps for using the DOCA Telemetry Exporter API.

Create doca_schema .

682

a.

b.
•

•

•
c.

d.

2.
a.

b.

c.

3.

4.
a.

Initialize an empty schema with default attributes:

struct doca_telemetry_exporter_schema *doca_schema;
doca_telemetry_exporter_schema_init("example_doca_schema_name", &doca_schema);

Set the following attributes if needed:
doca_telemetry_exporter_schema_set_buffer_attr_*(…)

doca_telemetry_exporter_schema_set_file_write_*(…)

doca_telemetry_exporter_schema_set_ipc_*(…)
Add user event types:
Event type (struct doca_telemetry_exporter_type) is the user-defined data
structure that describes event fields. The user is allowed to add multiple fields to the
event type. Each field has its own attributes that can be set (see example). Each event
type is allocated an index (doca_telemetry_exporter_type_index_t) which can be
used to refer to the event type in future API calls.

struct doca_telemetry_exporter_type *doca_type;
struct doca_telemetry_exporter_field *field1;

doca_telemetry_exporter_type_create(&doca_type);
doca_telemetry_exporter_field_create(&field1);

doca_telemetry_exporter_field_set_name(field1, "sport");
doca_telemetry_exporter_field_set_description(field1, "Source port")
doca_telemetry_exporter_field_set_type_name(field1, DOCA_TELEMETRY_EXPORTER_FIELD_TYPE_UINT16);
doca_telemetry_exporter_field_set_array_length(field1, 1);

/* The user loses ownership on field1 after a successful invocation of the function */
doca_telemetry_exporter_type_add_field(type, field1);

/* Add more fields if needed */

/* The user loses ownership on doca_type after a successful invocation of the function */
doca_telemetry_exporter_schema_add_type(doca_schema, "example_event", doca_type, &type_index);

Apply attributes and types to start using the schema:

doca_telemetry_exporter_schema_start(doca_schema)

Create doca_source :
Initialize:

struct doca_telemetry_exporter_source *doca_source;
doca_telemetry_exporter_source_create(doca_schema, &doca_source);

Set source ID and tag:

doca_telemetry_exporter_source_set_id(doca_source, "example id");
doca_telemetry_exporter_source_set_tag(doca_source, "example tag");

Apply attributes to start using the source:

doca_telemetry_exporter_source_start(doca_source)

You may optionally add more doca_sources if needed.
Collect the data per source and use:

doca_telemetry_exporter_source_report(source, type_index, &my_app_test_ev1, num_events)

Finalize:
For every source:

683

b.

1.

2.
•

•

•

•
3.

4.
5.

6.

7.

doca_telemetry_exporter_source_destroy(source)

Destroy:

doca_telemetry_exporter_schema_destroy(doca_schema)

Example implementation may be found in the telemetry_export DOCA sample

(telemetry_export_sample.c).

14.4.16.2.2 DOCA Telemetry Exporter NetFlow API Walkthrough

The DOCA telemetry exporter API also supports NetFlow using DOCA Telemetry Exporter NetFlow API.
This API is designed to allow customers to easily support the NetFlow protocol at the endpoint side.
Once an endpoint produces NetFlow data using the API, the corresponding exporter can be used to
send the data to a NetFlow collector.

The NVIDIA DOCA Telemetry Exporter Netflow API's definitions can be found in
the doca_telemetry_exporter_netflow.h file.

The following are the steps to use the NetFlow API:

Initiate the API with an appropriate source ID:

doca_telemetry_exporter_netflow_init(source_id)

Set the relevant attributes:
doca_telemetry_exporter_netflow_set_buffer_*(…)

doca_telemetry_exporter_netflow_set_file_write_*(…)

doca_telemetry_exporter_netflow_set_ipc_*(…)

doca_telemetry_exporter_netflow_source_set_*()
Start the API to use the configured attribute:

doca_telemetry_exporter_netflow_start();

Form a desired NetFlow template and the corresponding NetFlow records.
Collect the NetFlow data.

doca_telemetry_exporter_netflow_send(…)

(Optional) Flush the NetFlow data to send data immediately instead of waiting for the buffer
to fill:

doca_telemetry_exporter_netflow_flush()

Clean up the API:

doca_telemetry_exporter_netflow_destroy()

Example implementation may be found in the telemetry_export_netflow DOCA sample

(telemetry_export_netflow_sample.c).

684

•

•

•

•

•

14.4.16.3 API
Refer to NVIDIA DOCA Library APIs, for more detailed information on DOCA Telemetry Exporter API.

The following sections provide additional details about the library API.

Some attributes are optional as they are initialized with default values. Refer to the documentation
of the setter functions of respective attributes for more information.

14.4.16.3.1 DOCA Telemetry Exporter Buffer Attributes

Buffer attributes are used to set the internal buffer size and data root used by all DOCA sources in
the schema.

Configuring the attributes is optional as they are initialized with default values.

doca_telemetry_exporter_schema_set_buffer_size(doca_schema, 16 * 1024); /* 16KB - arbitrary value */
doca_telemetry_exporter_schema_set_buffer_data_root(doca_schema, "/opt/mellanox/doca/services/telemetry/data/");

buffer_size [in] – the size of the internal buffer which accumulates the data before
sending it to the outputs. Data is sent automatically once the internal buffer is full. Larger
buffers mean fewer data transmissions and vice versa.
data_root [in] – the path to where data is stored (if file_write_enabled is set to true).
See section "DOCA Telemetry Exporter File Write Attributes".

14.4.16.3.2 DOCA Telemetry Exporter File Write Attributes

File write attributes are used to enable and configure data storage to the file system in binary
format.

Configuring the attributes is optional as they are initialized with default values.

doca_telemetry_exporter_schema_set_file_write_enabled(doca_schema);
doca_telemetry_exporter_schema_set_file_write_max_size(doca_schema, 1 * 1024 * 1024); /* 1 MB */
doca_telemetry_exporter_schema_set_file_write_max_age(doca_schema, 60 * 60 * 1000000L); /* 1 Hour */

file_write_enable [in] – use this function to enable storage. Storage/FileWrite is
disabled by default.
file_write_max_size [in] – maximum file size (in bytes) before a new file is created.

file_write_max_age [in] – maximum file age (in microseconds) before a new file is
created.

14.4.16.3.3 DOCA Telemetry Exporter IPC Attributes

IPC attributes are used to enable and configure IPC transport. IPC is disabled by default.

Configuring the attributes is optional as they are initialized with default values.

The pkg-config (*.pc file) for the DOCA Telemetry Exporter library is doca-telemetry-

exporter .

685

•

•

•

•

•

•

•

•

doca_telemetry_exporter_schema_set_ipc_enabled(doca_schema);
doca_telemetry_exporter_schema_set_ipc_sockets_dir(doca_schema, "/path/to/sockets/");
doca_telemetry_exporter_schema_set_ipc_reconnect_time(doca_schema, 100); /* 100 milliseconds */
doca_telemetry_exporter_schema_set_ipc_reconnect_tries(doca_schema, 3);
doca_telemetry_exporter_schema_set_ipc_socket_timeout(doca_schema, 3 * 1000) /* 3 seconds */

ipc_enabled [in] – use this function to enable communication. IPC is disabled by default.

ipc_sockets_dir [in] – a directory that contains UDS for IPC messages. Both the
telemetry exporter program and DTS must use the same folder. DTS that runs on BlueField as
a container has the default folder /opt/mellanox/doca/services/telemetry/ipc_sockets .

ipc_reconnect_time [in] – maximum reconnection time in milliseconds after which the
client is considered disconnected.
ipc_reconnect_tries [in] – maximum reconnection attempts.

ipc_socket_timeout [in] – timeout for the IPC socket.

14.4.16.3.4 DOCA Telemetry Exporter Source Attributes

Source attributes are used to create proper folder structure. All the data collected from the same
host is written to the source_id folder under data root.

doca_telemetry_exporter_source_set_id(doca_source, "example_source");
doca_telemetry_exporter_source_set_tag(doca_source, "example_tag");

source_id [in] – describes the data's origin. It is recommended to set it to the hostname.

In later dataflow steps, data is aggregated from multiple hosts/DPUs and source_id helps
navigate in it.
source_tag [in] – a unique data identifier. It is recommended to set it to describe the
data collected in the application. Several telemetry exporter apps can be deployed on a
single node (host/DPU). In that case, each telemetry data would have a unique tag and all of
them would share a single source_id .

14.4.16.3.5 DOCA Telemetry Exporter Netflow Collector Attributes

DOCA Telemetry Exporter NetFlow API attributes are optional and should only be used for debugging
purposes. They represent the NetFlow collector's address while working locally, effectively enabling
the local NetFlow exporter.

doca_telemetry_exporter_netflow_set_collector_addr("127.0.0.1");
doca_telemetry_exporter_netflow_set_collector_port(6343);

collector_addr [in] – NetFlow collector's address (IP or name). Default value is NULL .

It is important to make sure that the IPC location matches the IPC location used by DTS,
otherwise IPC communication will fail.

Sources attributes are mandatory and must be configured before invoking
doca_telemetry_exporter_source_start() .

686

•

•

•

•

•

•

•

•

•

collector_port [in] – NetFlow collector's port. Default value is

DOCA_NETFLOW_DEFAULT_PORT (2055) .

14.4.16.3.6 doca_telemetry_exporter_source_report

The source report function is the heart of communication with the DTS. The report operation causes
event data to be allocated to the internal buffer. Once the buffer is full, data is forwarded onward
according to the set configuration.

doca_error_t doca_telemetry_exporter_source_report(struct doca_telemetry_exporter_source *doca_source,
 doca_telemetry_exporter_type_index_t index,
 void *data,
 int count);

doca_source [in] – a pointer to the doca_telemetry_exporter_source which reports
the event
index [in] – the event type index received when the schema was created

data [in] – a pointer to the data buffer that needs to be sent

count [in] – numbers of events to be written to the internal buffer

The function returns DOCA_SUCCESS if successful, or a doca_error_t if an error occurs. If a
memory-related error occurs, try a larger buffer size that matches the event's size.

14.4.16.3.7 doca_telemetry_exporter_schema_add_type

This function allows adding a reusable telemetry data struct, also known as a schema. The schema
allows sending a predefined data structure to the telemetry service. Note that it is mandatory to
define a schema for proper functionality of the library. After adding the schemas, one needs to
invoke the schema start function.

doca_error_t doca_telemetry_exporter_schema_add_type(struct doca_telemetry_exporter_schema *doca_schema,
 const char *new_type_name,
 struct doca_telemetry_exporter_type *type,
 doca_telemetry_exporter_type_index_t *type_index);

doca_schema [in] – a pointer to the schema to which the type is added

new_type_name [in] – name of the new type

fields [in] – user-defined fields to be used for the schema. Multiple fields can (and
should) be added.
type_index [out] – type index for the created type is written to this output variable

The function returns DOCA_SUCCESS if successful, or doca_error_t if an error occurs.

14.4.16.4 Telemetry Data Format
The internal data format consists of 2 parts: A schema containing metadata, and the actual binary
data. When data is written to storage, the data schema is written in JSON format, and the data is
written as binary files. In the case of IPC transport, both schema and binary data are sent to DTS. In
the case of export, data is converted to the formats required by exporter.

Adding custom event types to the schema can be done using
doca_telemetry_exporter_schema_add_type API call.

687

•
•
•
•

14.4.16.5 Data Outputs
This section describes available exporters:

IPC
NetFlow
Fluent Bit
Prometheus

Fluent Bit and Prometheus exporters are presented in both API and DTS. Even though DTS export is
preferable, the API has the same possibilities for development flexibility.

14.4.16.5.1 Inter-process Communication

IPC transport automatically transfers the data from the telemetry-exporter-based program to DTS
service.

It is implemented as a UNIX domain socket (UDS) sockets for short messages and shared memory for
data. DTS and the telemetry-exporter-based program must share the same ipc_sockets directory.

When IPC transport is enabled, the data is sent from the DOCA-telemetry-exporter-based
application to the DTS process via shared memory.

To enable IPC, use the doca_telemetry_exporter_schema_set_ipc_enabled API function.

To check the IPC status for the current context, use:

doca_error_t doca_telemetry_exporter_check_ipc_status(struct doca_telemetry_exporter_source *doca_source,
 doca_telemetry_exporter_ipc_status_t *status)

If IPC is enabled and for some reason connection is lost, it would try to automatically reconnect on
every report's function call.

See available DOCA_TELEMETRY_EXPORTER_FIELD_TYPE s in doca_telemetry_exporter.h .

See example of usage in /opt/mellanox/doca/samples/doca_telemetry_exporter/

telemetry_export/telemetry_export_sample.c .

It is highly recommended to have the timestamp field as the first field since it is required
by most databases. To get the current timestamp in the correct format use:

doca_error_t doca_telemetry_exporter_get_timestamp(doca_telemetry_exporter_timestamp_t *timestamp);

IPC transport relies on system folders. For the host's usage, run the DOCA-telemetry-
exporter-API-based application with sudo to be able to use IPC with system folders.

688

•

•

14.4.16.5.1.1 Using IPC with Non-container Application

When developing and testing a non-container DOCA Telemetry-Exporter-based program and its IPC
interaction with DTS, some modifications are necessary in DTS's deployment for the program to
interact with DTS over IPC:

Shared memory mapping should be removed: telemetry-ipc-shm

Host IPC should be enabled: hostIPC

File before the change:

spec:
 hostNetwork: true
 volumes:
 - name: telemetry-service-config
 hostPath:
 path: /opt/mellanox/doca/services/telemetry/config
 type: DirectoryOrCreate
 ...
 - name: telemetry-ipc-shm
 hostPath:
 path: /dev/shm/telemetry
 type: DirectoryOrCreate
 containers:
 ...
 volumeMounts:
 - name: telemetry-service-config
 mountPath: /config
 ...
 - name: telemetry-ipc-shm
 mountPath: /dev/shm

File after the change:

spec:
 hostNetwork: true
 hostIPC: true
 volumes:
 - name: telemetry-service-config
 hostPath:
 path: /opt/mellanox/doca/services/telemetry/config
 type: DirectoryOrCreate
 ...
 containers:
 ...
 volumeMounts:
 - name: telemetry-service-config
 mountPath: /config

These changes ensure that a DOCA-based program running outside of a container is able to
communicate with DTS over IPC.

14.4.16.5.2 NetFlow

When the NetFlow exporter is enabled (NetFlow Collector Attributes are set), it sends the NetFlow
data to the NetFlow collector specified by the attributes: Address and port. This exporter must be
used when using DOCA Telemetry Exporter NetFlow API.

14.4.16.5.3 Fluent Bit

Fluent Bit export is based on fluent_bit_configs with .exp files for each destination. Every

export file corresponds to one of Fluent Bit's destinations. All found and enabled .exp files are
used as separate export destinations. Examples can be found after running DTS container under its
configuration folder (/opt/mellanox/doca/services/telemetry/config/fluent_bit_configs/)
.

689

•

•

All .exp files are documented in-place.

DPU# ls -l /opt/mellanox/doca/services/telemetry/config/fluent_bit_configs/
/opt/mellanox/doca/services/telemetry/config/fluent_bit_configs/:
total 56
-rw-r--r-- 1 root root 528 Oct 11 07:52 es.exp
-rw-r--r-- 1 root root 708 Oct 11 07:52 file.exp
-rw-r--r-- 1 root root 1135 Oct 11 07:52 forward.exp
-rw-r--r-- 1 root root 719 Oct 11 07:52 influx.exp
-rw-r--r-- 1 root root 571 Oct 11 07:52 stdout.exp
-rw-r--r-- 1 root root 578 Oct 11 07:52 stdout_raw.exp
-rw-r--r-- 1 root root 2137 Oct 11 07:52 ufm_enterprise.fset

Fluent Bit .exp files have 2-level data routing:

source_tags in .exp files (documented in-place)

Token-based filtering governed by .fset files (documented in ufm_enterprise.fset)

To run with Fluent Bit exporter, set enable=1 in required .exp files and set the environment
variables before running the application:

export FLUENT_BIT_EXPORT_ENABLE=1
export FLUENT_BIT_CONFIG_DIR=/path/to/fluent_bit_configs
export LD_LIBRARY_PATH=/opt/mellanox/collectx/lib

14.4.16.5.4 Prometheus

Prometheus exporter sets up endpoint (HTTP server) which keeps the most recent events data as
text records.

The Prometheus server can scrape the data from the endpoint while the DOCA-Telemetry-Exporter-
API-based application stays active.

Check the generic example of Prometheus records:

event_name_1{label_1="label_1_val", label_2="label_2_val", label_3="label_3_val", label_4="label_4_val"}
counter_value_1 timestamp_1
event_name_2{label_1="label_1_val", label_2="label_2_val", label_3="label_3_val", label_4="label_4_val"}
counter_value_2 timestamp_2
...

Labels are customizable metadata which can be set from data file. Events names could be filtered
by token-based name-match according to .fset files.

Set the following environment variables before running.

Set the endpoint host and port to enable export.
export PROMETHEUS_ENDPOINT=http://0.0.0.0:9101

Set indexes as a comma-separated list to keep data for every index field. In
this example most recent data will be kept for every record with unique
`port_num`. If not set, only one data per source will be kept as the most
recent.
export PROMETHEUS_INDEXES=Port_num

Set path to a file with Prometheus custom labels. Use labels to store
information about data source and indexes. If not set, the default labels
will be used.
export CLX_METADATA_FILE=/path/to/labels.txt

Set the folder which contains fset-files. If set, Prometheus will scrape
only filtered data according to fieldsets.
export PROMETHEUS_CSET_DIR=/path/to/prometheus_cset

690

•
•

1.
•

•

2.

3.

14.4.16.6 DOCA Telemetry Exporter Samples
This section provides DOCA Telemetry Exporter sample implementations on top of the BlueField
DPU.

The telemetry exporter samples in this document demonstrate an initial recommended
configuration that covers two use cases:

Standard DOCA Telemetry Exporter data
DOCA Telemetry Exporter for NetFlow data

The telemetry exporter samples run on the BlueField. If write-to-file is enabled, telemetry data is
stored to BlueField's storage. If inter-process communication (IPC) is enabled, data is sent to the
DOCA Telemetry Service (DTS) running on the same BlueField.

For information on initializing and configuring DTS, refer to NVIDIA DOCA Telemetry Service Guide.

14.4.16.6.1 Running the Sample
Refer to the following documents:

NVIDIA DOCA Installation Guide for Linux for details on how to install BlueField-related
software.
NVIDIA DOCA Troubleshooting Guide for any issue you may encounter with the
installation, compilation, or execution of DOCA samples.

To build a given sample:

cd /opt/mellanox/doca/samples/doca_telemetry_exporter/<sample_name>
meson /tmp/build
ninja -C /tmp/build

Sample (e.g., telemetry_export) usage:

Usage: doca_telemetry_export [DOCA Flags]

DOCA Flags:
 -h, --help Print a help synopsis

To scrape the data without the Prometheus server, use:

curl -s http://0.0.0.0:9101/metrics

Or:

curl -s http://0.0.0.0:9101/{fset_name}

All the DOCA samples described in this section are governed under the BSD-3 software
license agreement.

The binary doca_<sample_name> will be created under /tmp/build/ .

691

4.

1.
2.
3.
4.
5.
6.

•

•

•

1.
2.
3.
4.
5.
6.
7.

•

 -v, --version Print program version information
 -l, --log-level Set the (numeric) log level for the program <10=DISABLE, 20=CRITICAL,
30=ERROR, 40=WARNING, 50=INFO, 60=DEBUG, 70=TRACE>
 --sdk-log-level Set the SDK (numeric) log level for the program <10=DISABLE, 20=CRITICA
L, 30=ERROR, 40=WARNING, 50=INFO, 60=DEBUG, 70=TRACE>
 -j, --json <path> Parse all command flags from an input json file

For additional information per sample, use the -h option:

/tmp/build/doca_<sample_name> -h

14.4.16.6.2 Samples

14.4.16.6.2.1 Telemetry Export

This sample illustrates how to use the telemetry exporter API. The sample uses a custom schema for
telemetry exporter.

The sample logic includes:

Configuring schema attributes.
Initializing schema.
Creating telemetry exporter source.
Creating example events.
Reporting example events via DOCA Telemetry Exporter.
Destroying source and schema.

Reference:

/opt/mellanox/doca/samples/doca_telemetry_exporter/telemetry_export/

telemetry_export_sample.c

/opt/mellanox/doca/samples/doca_telemetry_exporter/telemetry_export/

telemetry_export_main.c

/opt/mellanox/doca/samples/doca_telemetry_exporter/telemetry_export/

meson.build

14.4.16.6.2.2 Telemetry Export NetFlow

This sample illustrates how to use the NetFlow functionality of the telemetry exporter API.

The sample logic includes:

Configuring NetFlow attributes.
Initializing NetFlow.
Creating telemetry exporter source.
Starting NetFlow.
Creating example events.
Reporting example events via DOCA Telemetry Exporter.
Destroying NetFlow.

Reference:

/opt/mellanox/doca/samples/doca_telemetry_exporter/telemetry_export_netflow/

telemetry_export_netflow_sample.c

692

•

•

•

•
•

/opt/mellanox/doca/samples/doca_telemetry_exporter/telemetry_export_netflow/

telemetry_export_netflow_main.c

/opt/mellanox/doca/samples/doca_telemetry_exporter/telemetry_export_netflowt/

meson.build

14.4.17 DOCA Telemetry Diagnostics
This guide provides instructions on building and developing applications which require collecting
telemetry information provided by NVIDIA® BlueField and NVIDIA® ConnectX® families of
networking platforms.

14.4.17.1 Introduction

The doca_telemetry_diag provides programable access to an on-device mechanism which allows

sampling of diagnostic data (such as statistics and counters). The doca_telemetry_diag allows
configuring such parameters as required data IDs or sampling period, and retrieving the generated
information in several formats.

14.4.17.2 Architecture
Diagnostic data is stored in hardware as a cyclic buffer of samples. Each sample represents all the
requested diagnostic data IDs and their corresponding sampling timestamps. The sampling period
and the number of samples in the buffer can be configured.

The DOCA Telemetry Diagnostics library supports the following operational methods:

Single sampling – the samples are stored and once the samples buffer is filled, sampling is
terminated
Repetitive sampling – when the sample buffer is filled, new samples override old samples
On demand – the device does not collect samples. Upon query of the diagnostic data, the
device fetches a single sample of the data.

Samples are retrieved by calling the doca_telemetry_diag_query_counters function. Multiple
samples can be retrieved in a single call. The application defines the maximum number of samples
it wishes to retrieve and supplies a buffer large enough to contain these samples (sample size can
be received using a dedicated API). The library only retrieves new samples without duplications and
returns fewer samples than requested if there are no more new samples.

14.4.17.2.1 Synchronized Start

Diagnostics data is sampled by the device every given sampling period. When sampling this way,
each data entry in a sample may be recorded at a slightly different time.

Synchronized start mode enables diagnostics counters to begin all data measurements at the same
time (i.e., during the same clock cycle). This way, the sample period is guaranteed to be identical
for all samples.

In synchronized start mode, counters are stopped during the collection time of each
sample.

693

•

•

The following diagrams illustrate how synchronized start affects the sampling timeline:

14.4.17.2.2 Output Formats

doca_telemetry_diag supports the following layout modes of the sampled data:

Mode 0 – data_id is present in the output; data size is 64 bits; timestamp information per
data
Mode 1 – no data_id in the output; data size is 64 bits; timestamp information per sample
(start and end)

Not all data IDs can be sampled in synchronized start mode. Setting a data ID failure with
the error code DOCA_ERROR_BAD_CONFIG indicates that the given data ID does not support
synchronized start mode.

Synchronized start diagnostic counters can be cleared at the beginning of each sampling
period.

694

• Mode 2 – no data_id in the output; data size is 32 bits; timestamp information per sample
(start and end)

The sample layout of these modes is illustrated in the following diagrams:

14.4.17.2.3 Device and Ownership

doca_telemetry_diag requires a ConnectX/BlueField DOCA device to sample from. The device can
be accessed using any of its physical functions (PFs). If multiple devices exist in a setup, a
doca_telemetry_diag context should be created for each device.

695

1.

2.

3.
4.

•
•

•

doca_telemetry_diag , is designed to operate as a singleton per device. Upon creation, the

doca_telemetry_diag context assumes control of the associated hardware resources to prevent
conflicts and ensure accurate data sampling. In rare instances, ownership may be overridden (e.g.,
if a process crashed before releasing ownership). The force_ownership parameter may be used
when creating the context from a second process.

14.4.17.2.4 State Machine

The doca_telemetry_diag context goes through the following states as it is being set up:

Idle – context is created. Ownership is taken. Capabilities can be queried. All configuration
setters should be called except for configuring data IDs.
Configured – after calling apply_configuration . Internal initialization is called based on
the applied configuration. Data IDs should be configured.
Ready – after setting the data IDs. Context is ready to start sampling.
Running – samples are generated and can be retrieved.

14.4.17.2.5 Data IDs

The on-device mechanism provides the following diagnostic data classes:

Counter – monotonically increasing and counting different events in the device.
If doca_telemetry_diag_set_data_clear is set, the counters are cleared at the
beginning of each sampling period (valid only if synchronized start mode is used and
operational mode is set to single or repetitive sampling).

Statistic – other collected diagnostic data about the performance of the device. Statistic
diagnostic data is cleared on each sample.

Each diagnostic data is represented by a unique identifier, the data ID. Appendix "List of Supported
Data IDs" lists the currently supported data IDs.

After applying the configuration, the list of data IDs to be sampled can be applied by calling
doca_telemetry_diag_apply_counters_list_by_id . Not all combinations of data IDs can be

configured. If any of the_data_ids fail to be configured, the operation fails, returning the index
of the failed data ID and the reason of failure. The operation can be retried after omitting the
faulty data ID.

14.4.17.3 Telemetry Diagnostics Sample

This section describes a telemetry diagnostics sample based on the doca_telemetry_diag library.
The sample illustrates the utilization of DOCA telemetry diagnostics APIs to initialize and configure
the doca_telemetry_diag context, as well as querying and parsing diagnostic counters.

Sample usage:

Once ownership is enforced for one PF, it cannot be claimed by a different PF. It is
recommended to always use PF0 to prevent potential conflicts.

696

•

•
•

•

•
•

•

•
•

•

•

•

•

Usage: doca_telemetry_diag [DOCA Flags] [Program Flags]

DOCA Flags:
-h, --help Print a help synopsis
-v, --version Print program version information
-l, --log-level Set the (numeric) log level for the program <10=DISABLE, 20=CRITICAL, 30=ERROR,
40=WARNING, 50=INFO, 60=DEBUG, 70=TRACE>
--sdk-log-level Set the SDK (numeric) log level for the program <10=DISABLE, 20=CRITICAL, 30=ERRO
R, 40=WARNING, 50=INFO, 60=DEBUG, 70=TRACE>
-j, --json <path> Parse all command flags from an input json file

Program Flags:
-p, --pci-addr DOCA device PCI device address
-o, --output Output CSV file - default: "/tmp/out.csv"
-rt, --sample-run-time Total sample run time, in seconds
-sp, --sample-period Sample period, in nanoseconds
-ns, --log-num-samples Log max number of samples
-sr, --max-samples-per-read Max num samples per read
-sm, --sync-mode Enable sync mode

14.4.17.4 Appendix - List of Supported Data IDs
The following table lists the data IDs currently supported by DOCA:

Name Description Data Class Data ID

port_rx_bytes The number of received bytes on
the physical port 1

Counter 0x10200001000000XX
XX - Port ID

port_priority_rx_bytes The number of received bytes on
the physical port and priority 1

Counter 0x1020000200000YXX
XX - Port ID
Y - Priority

port_rx_packets The number of received packets
on the physical port 1

Counter 0x10200003000000XX
XX - Port ID

port_priority_rx_packet

s

The number of received packets
on the physical port and priority 1

Counter 0x1020000400000YXX
XX - Port ID
Y – Priority

port_rx_discard_buf_pac

kets

The number of received packets
dropped due to lack of buffers on
a physical port

Counter 0x10200005000000XX
XX - Port ID

port_priority_rx_pauses

_packets

The number of link-layer pause
packets received on a physical
port and priority

Counter 0x1020000600000YXX
XX - Port ID
Y - Priority

host_rx_transport_out_o

f_buffer_packets

The number of dropped packets
due to a lack of WQE for the
associated QPs/RQs (excluding
hairpin QPs/RQs)

Counter 0x10800002000000XX
XX - Host ID

host_rx_transport_out_o

f_buffer_hairpin_packet

s

The number of dropped packets
due to a lack of WQE for the
associated hairpin QPs/RQs

Counter 0x10800003000000XX
XX - Host ID

port_rx_transport_ecn_p

ackets

The number of RoCEv2 packets
received by the notification point
which were marked for
experiencing the congestion (i.e.,
ECN bits 11 on the ingress RoCE
traffic), per port

Counter 0x10800004000000XX
XX – Local port

port_rx_transport_cnp_h

andled_packets

The number of CNP received
packets handled by the Reaction
Point, per port

Counter 0x10800005000000XX
XX – Local port

697

•

•

•
•

•

•
•

•

•
•
•

•
•
•

•
•
•

•
•
•

•
•
•

•
•
•

Name Description Data Class Data ID

port_tx_transport_cnp_s

ent_packets

The number of CNP packets sent
by the Notification Point, per port

Counter 0x11000001000000XX
XX – Local port

tx_transport_done_due_t

o_cc_deschedule_events

The number of QP descheduled
due to congestion control rate
limitation

Counter 0x1100000200000000

port_tx_bytes The number of transmitted bytes
on the physical port (excluding
loopback traffic)

Counter 0x11400001000000XX
XX - Port ID

port_priority_tx_bytes The number of transmitted bytes
on the physical port and priority
(excluding loopback traffic)

Counter 0x1140000200000YXX
XX - Port ID
Y - Priority

port_tx_packets The number of transmitted
packets on the physical port
(excluding loopback traffic)

Counter 0x11400003000000XX
XX - Port ID

port_priority_tx_packet

s

The number of transmitted
packets on the physical port and
priority (excluding loopback
traffic)

Counter 0x1140000400000YXX
XX - Port ID
Y - Priority

port_priority_tx_pauses

_packets

The number of link-layer pause
packets transmitted on a physical
port and priority

Counter 0x1140000500000YXX
XX - Port ID

Y - Priority

pcie_link_inbound_bytes The number of bytes received
from the PCIe toward the device,
per PCIe link

Counter 0x1160000100ZZYYXX
XX – Node
YY – PCIe index
ZZ – Depth (0 – 63)

pcie_link_outbound_byte

s

The number of bytes transmitted
from the device toward the PCIe,
per PCIe link

Counter 0x1160000200ZZYYXX
XX – Node
YY – PCIe index
ZZ – Depth (0 – 63)

pcie_link_inbound_data_

bytes

The number of data bytes received
from the PCIe (excluding headers)
toward the device, per PCIe link

Counter 0x1160000200ZZYYXX
XX – Node
YY – PCIe index
ZZ – Depth (0 – 63)

pcie_link_outbound_data

_bytes

The number of data bytes
transmitted from the device
toward the PCI (excluding
headers), per PCIe link

Counter 0x1160000400ZZYYXX
XX – Node
YY – PCIe index
ZZ – Depth (0 – 63)

pcie_link_write_stalled

_time_no_posted_data_cr

edits_ns

The time period (in nanoseconds)
in which the device had outbound
posted write requests but stalled
due to insufficient data credits per
PCIe link

Counter 0x1160000500ZZYYXX
XX – Node
YY – PCIe index
ZZ – Depth (0 – 63)

pcie_link_write_stalled

_time_no_posted_header_

credits_ns

The time period (in nanoseconds)
in which the device had outbound
posted write requests but stalled
due to insufficient header credits
per PCIe link

Counter 0x1160000600ZZYYXX
XX – Node
YY – PCIe index
ZZ – Depth (0 – 63)

698

•
•
•

•
•
•

•
•
•

•
•
•

•
•
•

•
•
•

•
•
•

•
•
•

•

Name Description Data Class Data ID

pcie_link_read_stalled_

time_no_non_posted_data

_credits_ns

The time period (in nanoseconds)
in which the device had outbound
non-posted read requests but
stalled due to insufficient data
credits per PCIe link

Counter 0x1160000700ZZYYXX
XX – Node
YY – PCIe index
ZZ – Depth (0 – 63)

pcie_link_read_stalled_

time_no_non_posted_head

er_credits_ns

The time period (in nanoseconds)
in which the device had outbound
non-posted read requests but
stalled due to insufficient header
credits per PCIe link

Counter 0x1160000800ZZYYXX
XX – Node
YY – PCIe index
ZZ – Depth (0 – 63)

pcie_link_read_stalled_

time_no_completion_buff

ers_ns

The time period (in nanoseconds)
in which the device had outbound
non-posted read requests but
stalled due to no NIC completion
buffers per PCIe link

Counter 0x1160000900ZZYYXX
XX – Node
YY – PCIe index
ZZ – Depth (0 – 63)

pcie_link_tclass_read_s

talled_time_ordering_ns

The time period (in nanoseconds)
in which the device had outbound
non-posted read requests but
stalled due to PCIe ordering
semantics per PCIe link and PCIe
tclass

Counter 0x1160000aZZZZYYXX
XX – Node
YY – PCIe index
ZZZZ – (tclass (0 – 7)
<< 6) | (Depth (0 –
63))

pcie_link_latency_total

_read_ns

The total latency (in nanoseconds)
for all PCIe read from the device
per PCIe link

Counter 0x1160000b00ZZYYXX
XX – Node
YY – PCIe index
ZZ – Depth (0 – 63)

pcie_link_latency_total

_read_packets

The total number of packets used
for the
pcie_link_latency_total_read

_ns calculation

Counter 0x1160000c00ZZYYXX
XX – Node
YY – PCIe index
ZZ – Depth (0 – 63)

pcie_link_latency_max_r

ead_ns

The maximum latency (in
nanoseconds) for a single PCIe
read from the device per PCIe link

Statistic 0x1160000d00ZZYYXX
XX – Node
YY – PCIe index
ZZ – Depth (0 – 63)

pcie_link_latency_min_r

ead_ns

The maximum latency (in
nanoseconds) for a single PCIe
read from the device per PCIe link

Statistic 0x1160000e00ZZYYXX
XX – Node
YY – PCIe index
ZZ – Depth (0 – 63)

global_completion_engin

e_rx_cqes

Number of responder (RX) CQEs Counter 0x10c0000100000000

function_completion_eng

ine_rx_cqes

Number of RX CQEs per function Counter 0x10c000020000XXXX
XXXX – vhca_id

global_completion_engin

e_tx_cqes

Number of requestor (TX) CQEs Counter x10c0000400000000

Dividing this counter by
pcie_link_latency_tot

al_read_packets yields
the average PCIe read
latency of those reads.

699

•

Name Description Data Class Data ID

function_completion_eng

ine_tx_cqes

Number of TX CQEs per function Counter 0x10c000050000XXXX
XXXX – vhca_id

global_icmc_request Number of accesses to ICMC Counter 0x1180000100000000

global_icmc_hit Number of ICMC hits Counter 0x1180000200000000

global_icmc_miss Number of ICMC misses Counter 0x1180000300000000

1. This counter includes loopback traffic and does not include packets discarded due to FCS,
frame size, and similar errors.

14.4.17.5 Known Limitations

Currently, the doca_telemetry library is supported at alpha level and is intended to allow
developers to start testing applications using it.

The following table lists the currently known limitations:

Item Limitation

1 Output format Only DOCA_TELEMETRY_DIAG_OUTPUT_FORMAT_1 is
supported.

2 Sample mode Only
DOCA_TELEMETRY_DIAG_SAMPLE_MODE_REPETITIVE
is supported.

14.4.18 DOCA Device Emulation

14.4.18.1 Introduction
NVIDIA® BlueField® networking platforms (DPUs or SuperNICs) provide the ability to emulate a PCIe
device. The DOCA Device Emulation subsystem provides a low-level software API for users to develop
PCIe devices and their controllers. These APIs include discovery, configuration, hot plugging/
unplugging, management, and IO path handling. In simpler terms, the libraries enable the user to
implement a hardware PCIe function using software, such that the host is not aware that the PCIe
function is emulated, and all interactions from the host are routed to software on the BlueField
instead of actual hardware.

700

•

•

•
•
•

•

The diagram shows the potential for device emulation to replace a regular PCIe function of some
PCIe device.

On the left is a conventional setup where the host is connected to a PCIe device (e.g., NVMe
SSD). On the host, user applications interact with the kernel driver of that device, using some
software interface, and the driver communicates with the hardware/firmware of the device.
On the right is a setup where the PCIe device is replaced with a BlueField with an application
using DOCA Device Emulation. The application can use the DOCA DevEmu PCI library to
control the device, and intercept any IOs written by the host to the PCIe device. Additionally,
the application can use other DOCA libraries to perform IO processing (e.g., copying data
from host memory using DMA, sending RDMA/Ethernet traffic) and other acceleration libraries
for encryption, compression, etc.

14.4.18.2 Known Limitations
This library is supported at alpha level; backward compatibility is not guaranteed
VFs are not currently supported
Some limitations apply when creating a generic emulated function, for more details refer to
DOCA DevEmu PCI Generic Limitations.
Consult your NVIDIA representative for limitations on the emulated device's behavior

14.4.18.3 DOCA DevEmu PCI

14.4.18.3.1 Introduction

DOCA DevEmu PCI is part of the DOCA Device Emulation subsystem. It provides low-level software
APIs that allow management of an emulated PCIe device using the emulation capability of NVIDIA®
BlueField® networking platforms.

It is a common layer for all PCIe emulation modules, such as DOCA DevEmu PCIe Generic Emulation,
and DOCA DevEmu Virtio subsystem emulation.

This library is supported at alpha level; backward compatibility is not guaranteed.

701

•
•
•

•

•
•

1.

2.

3.

•

•

14.4.18.3.2 Prerequisites

This library follows the architecture of a DOCA Core Context. It is recommended read the following
sections beforehand:

DOCA Core Execution Model
DOCA Core Device
DOCA Core Memory Subsystem

Generic device emulation is part of DOCA device emulation. It is recommended to read the following
guides beforehand:

DOCA Device Emulation

14.4.18.3.3 Environment

DOCA DevEmu PCI Emulation is supported only on the BlueField target. The BlueField must meet the
following requirements

DOCA version 2.7.0 or greater
BlueField-3 firmware 32.41.1000 or higher

The library must be run with root privileges.

Perform the following:

Configure the BlueField to work in DPU mode as described in NVIDIA BlueField Modes of
Operation.
Enable the PCIe switch emulation capability needed for hot plugging emulated PCIe devices.
This can be done by running the following command on the host or BlueField:

host/bf> sudo mlxconfig -d /dev/mst/mt41692_pciconf0 s PCI_SWITCH_EMULATION_ENABLE=1

Perform a BlueField system-level reset for the mlxconfig settings to take effect.

To support hot-plug feature, the host must have the following boot parameters:

Intel CPU:

intel_iommu=on iommu=pt pci=realloc

AMD CPU:

iommu=pt pci=realloc

This can be done using the following steps:

Please refer to the DOCA Backward Compatibility Policy.

This process may vary depending on the host OS. Users can find multiple guides online
describing this process.

702

1.

2.
•

•

3.
4.

▪

▪

Add the boot parameters:

host> sudo nano /etc/default/grub
Find the variable
GRUB_CMDLINE_LINUX_DEFAULT="<existing-params>"
Add the params at the end
GRUB_CMDLINE_LINUX_DEFAULT="<existing-params> intel_iommu=on iommu=pt pci=realloc"

Update configuration.
For Ubuntu:

host> update-grub

For RHEL:

host> grub2-mkconfig -o /boot/grub2/grub.cfg

Perform warm boot.
Confirm that the parameters are in effect:

host> cat /proc/cmdline
<existing-params> intel_iommu=on iommu=pt pci=realloc

14.4.18.3.4 Architecture

The DOCA DevEmu PCI library provides 2 main software abstractions, the PCIe type, and the PCIe
device. The PCIe type represents the configurations of the emulated device, while the PCIe device
represents an instance of an emulated device. Furthermore, any PCIe device instance must be
associated with a single PCIe type, while PCIe type can be associated with many PCIe devices.

14.4.18.3.4.1 Pre Defined PCI Type vs. Generic PCI Type

A PCIe type object can be acquired in 2 different ways:

Acquire a pre-defined type, using emulation libraries of existing protocols such as DOCA
DevEmu Virtio FS library
Create from scratch using the DOCA DevEmu Generic library

In case of pre-defined type, the configurability of the type is limited.

14.4.18.3.4.2 PCIe Type Name

As part of the DOCA PCIe emulation, every type has a name assigned to it. This property is not part
of the PCIe specification, but rather it is a mechanism in DOCA that uniquely identifies the PCIe
type.

There cannot be 2 different PCIe types with the same name, even across different processes, unless
the type in the second process is configured in identical manner to the first one. Furthermore,
attempting to configure the second type with same name but with slight configuration difference
will fail.

703

14.4.18.3.4.3 Create Emulated Device

After configuring the desired DOCA Devemu PCIe type, it is possible to create an emulated device
based on the configured type using doca_devemu_pci_dev_create_rep . This sequential process
ensures that the DOCA DevEmu PCIe device is created with the specified parameters and
configuration defined by the PCIe type object. Furthermore, it is possible to destroy the emulated
device using doca_devemu_pci_dev_destroy_rep .

The created device representor starts in "power_off" state and is not visible to the host until hot-
plug sequence is issued by the user, see Hot-plug Emulated Device. The device can then be
destroyed only while in "power_off" state.

14.4.18.3.4.4 Hot-plug Emulated Device

Hot-plugging refers to the process of emulating the physical attachment of a PCIe device to the host
PCIe subsystem after the system has been powered on and initialized. Note that some operating
systems require additional settings to enable the process of hot-plugging a PCIe device. For
supported systems, this feature proves particularly advantageous for systems that need to remain
operational at all times while expanding their hardware resources, such as additional storage and
networking capabilities. DOCA DevEmu PCI provides software APIs that allow users to emulate this
process in an asynchronous manner.

The created emulated device may outlive the application that created it, see Objects
Lifecycle and Persistency.

704

When creating a PCIe device object, if it starts in "power off" state, then the device is not yet
visible to the host. It is possible then, from the BlueField, to hot-plug the device. This starts an
async process of the device getting hot-plugged towards the host. Once the process completes, the
emulated device transitions to "power on" and becomes visible to the host. Usually at this stage, the
emulated device receives its BDF address. The hot-unplug process works in similar async manner.

Using DOCA API, the BlueField Arm can register to any changes to the hot-plug state of each
emulated device using doca_devemu_pci_dev_event_hotplug_state_change_register .

705

•

•

•

•

•

•
•

•

•

•
•

•

•

•
•

14.4.18.3.4.5 Emulated Device Discovery

The emulated device is represented as a doca_devinfo_rep . It is possible to iterate through all
the emulated devices as explained in DOCA Core Representor Discovery.

There are 2 ways of filtering the list of emulated devices:

Get all emulated devices – use DOCA_DEVINFO_REP_FILTER_EMULATED as the filter argument

in doca_devinfo_rep_create_list
Get all emulated devices that belong to a certain type –
doca_devemu_pci_type_create_rep_list

14.4.18.3.4.6 Objects Lifecycle and Persistency

This section creates distinction between firmware resources and software resources:

Firmware resources persist until the next power cycle, and can be accessible from different
processes on the BlueField Arm. Such resources are not cleared once the application exits.
Software resources are representations of firmware resources, and are only relevant for the
same thread

Using this terminology, it is possible to describe the objects as follows:

The PCIe type object doca_devemu_pci_type represents a PCIe type firmware resource. The
resource persists if any of the following apply:

There is at least 1 process holding reference to the PCIe type
There is at least 1 PCIe device firmware resource belonging to this type

The emulated device representor, doca_devinfo_rep , represents an emulated PCIe function
firmware resource:

doca_devemu_pci_dev_create_rep can be used to create such firmware resource

To destroy the firmware resource, doca_devemu_pci_dev_destroy_rep can be used
For static functions, the representor resource persists until configured otherwise in
NVCONFIG
To find existing PCIe device firmware resources, use
doca_devemu_pci_type_create_rep_list

14.4.18.3.4.7 Function Level Reset

The created emulated devices support PCIe function level reset (FLR).

Using DOCA API, the BlueField Arm can register to FLR event using
doca_devemu_pci_dev_event_flr_register . Once the driver requests FLR, this event is
triggered, calling the user provided callback.

Once FLR is detected, it is expected for the BlueField Arm to do the following:

Destroy all resources related to the PCIe device. For information on such resources, refer to
the guide of concrete PCIe type (generic/virtiofs).
Stop the PCIe device
Start the PCIe device again

706

•

•

•
•

•

•

14.4.18.3.5 Device Support

DOCA PCIe Device emulation requires a device to operate. For picking a device, see DOCA Core
Device Discovery.

The device emulation library is only supported for BlueField-3.

As device capabilities may change in the future (see Capability Checking), it is recommended that
users choose a device using the following method:

doca_devemu_pci_cap_type_is_hotplug_supported – for create and hot-plug support

doca_devemu_pci_cap_type_is_mgmt_supported – for device discovery only

14.4.18.3.6 PCIe Device

14.4.18.3.6.1 Configuration Phase

To start using the DOCA DevEmu PCI Device, users must first go through a configuration phase as
described in DOCA Core Context Configuration Phase.

This section describes how to configure and start the context to allow retrieval of events.

Configurations

The context can be configured to match the application use case.

To find if a configuration is supported or what its min/max value is, refer to Device Support.

Mandatory Configurations

All mandatory configurations are provided during the creation of the PCIe device.

These configurations are as follows:

A DOCA DevEmu PCIe type object
A DOCA Device Representor, representing an emulated function with the same type as the
provided PCIe object type
A DOCA Progress Engine object

Optional Configurations

These configurations are optional. If not set, then a default value is used:

Registering to events as described in the "Events" section. By default, the user does not
receive events.

14.4.18.3.6.2 Execution Phase

This section describes execution on CPU using DOCA Core Progress Engine.

Events

The DOCA DevEmu PCI device exposes asynchronous events to notify about sudden changes
according to DOCA Core architecture.

Common events are described in DOCA Core Event.

707

•

•

•

•

•

•

Hotplug State Change

The hotplug state change event allows users to receive notifications whenever the hotplug state of
the emulated device changes. See section "Hot-plug Emulated Device".

Event Configuration

Description API to Set the Configuration API to Query Support

Register to the event doca_devemu_pci_dev_event_hotplu

g_state_change_register

doca_devemu_pci_cap_type_is_ho

tplug_supported

Event Trigger Condition

The event is triggered anytime an asynchronous transition happens as follows:

DOCA_DEVEMU_PCI_HP_STATE_PLUG_IN_PROGRESS →

DOCA_DEVEMU_PCI_HP_STATE_POWER_ON

DOCA_DEVEMU_PCI_HP_STATE_UNPLUG_IN_PROGRESS →

DOCA_DEVEMU_PCI_HP_STATE_POWER_OFF

DOCA_DEVEMU_PCI_HP_STATE_POWER_ON →

DOCA_DEVEMU_PCI_HP_STATE_UNPLUG_IN_PROGRESS (when initiated by the host)

Any transition initiated by user is not triggered (e.g., calling hotplug to transition from POWER_OFF

to PLUG_IN_PROGRESS).

The following APIs can be used to initiate hotplug or hot-unplug transition processes:

doca_devemu_pci_dev_hotplug

doca_devemu_pci_dev_hotunplug

Event Output

Common output as described in DOCA Core Event.

Additionally, the internal cached hotplug state is updated and can be fetched using
doca_devemu_pci_dev_get_hotplug_state .

Event Handling

Once the event is triggered, it means that the hotplug state has changed. The application is
expected to do the following:

Retrieve the new hotplug state using doca_devemu_pci_dev_get_hotplug_state

Function Level Reset

The FLR event allows users to receive notifications whenever the host initiates an FLR flow. See
section "Function Level Reset".

Event Configuration

Description API to Set the Configuration

Register to the event doca_devemu_pci_dev_event_flr_register

708

1.
2.
3.

4.

•

•
•

•
•

•

Event Trigger Condition

The event is triggered anytime the host driver initiates an FLR flow. See section "Function Level
Reset".

Event Output

Common output as described in DOCA Core Event.

Additionally, the internal cached FLR indicator is updated and can be fetched using
doca_devemu_pci_dev_is_flr .

Event Handling

Once the event is triggered, it means that the host driver has initiated the FLR flow.

The user must handle the FLR flow by doing the following:

Flush all the outstanding requests back to the associated resource
Release all the PCIe device resources dynamically created after device start
Stop the PCIe device – doca_ctx_stop

Start the PCIe device again – doca_ctx_start

Call doca_pe_progress repeatedly until the PCIe device transitions to "running" state

For more information on starting the PCIe device again, refer to section "State Machine".

14.4.18.3.6.3 State Machine

The DOCA DevEmu PCI device object follows the context state machine as described in DOCA Core
Context State Machine.

The following section describes how to transition to any state and what is allowed in each state.

Idle

In this state, it is expected that application either:

Destroys the context
Starts the context

Allowed operations:

Configuring the context according to section "Configurations"
Starting the context

It is possible to reach this state as follows:

Previous State Transition Action

None Create the context

Running Call stop after making sure all resources have been destroyed

Stopping Call progress until all resources have been destroyed

Starting

In this state, it is expected that application:

Calls progress to allow transition to next state

709

•

•
•

•

•

Keeps context in this state until FLR flow is complete

It is possible to reach this state as follows:

Previous State Transition Action

Idle Call start after receiving FLR event (i.e., while FLR is in progress)

Running

In this state, it is expected that application:

Calls progress to receive events
Creates/destroys PCIe device resources

It is possible to reach this state as follows:

Previous State Transition Action

Idle Call start after configuration

Starting Call progress until FLR flow is completed

Stopping

In this state, it is expected that application:

Destroys all emulated device resources as described in section "Function Level Reset".

Allowed operations:

Destroying PCIe device resources

It is possible to reach this state as follows:

Previous State Transition Action

Running Call stop without freeing emulated device resources

14.4.18.3.7 DOCA DevEmu PCI Generic

This guide provides instructions on building and developing applications that require emulation of a
generic PCIe device.

14.4.18.3.7.1 Introduction

DOCA DevEmu PCI Generic is part of the DOCA Device Emulation subsystem. It provides low-level
software APIs that allow creation of a custom PCIe device using the emulation capability of NVIDIA®
BlueField®.

For example, it enables emulating an NVMe device by creating a generic emulated device,
configuring its capabilities and BAR to be compliant with the NVMe spec, and operating it from the
DPU as necessary.

This library is supported at alpha level; backward compatibility is not guaranteed.

710

•
•
•

▪
▪

•
•

14.4.18.3.7.2 Prerequisites

This library follows the architecture of a DOCA Core Context. It is recommended read the following
sections beforehand:

DOCA Core Execution Model
DOCA Core Device
DOCA Core Memory Subsystem

Generic device emulation is part of DOCA PCIe device emulation. It is recommended to read the
following guides beforehand:

DOCA Device Emulation
DOCA DevEmu PCI

14.4.18.3.7.3 Environment

DOCA DevEmu PCI Generic Emulation is supported only on the BlueField target. The BlueField must
meet the following requirements:

DOCA version 2.7.0 or greater
BlueField-3 firmware 32.41.1000 or higher

Library must be run with root privileges.

Please refer to DOCA DevEmu PCI Environment, for further necessary configurations.

14.4.18.3.7.4 Architecture

DOCA DevEmu PCI Generic allows the creation of a generic PCI type. The PCI Type is part of the
DOCA DevEmu PCI library. It is the component responsible for configuring the capabilities and bar
layout of emulated devices.

The PCI Type can be considered as the template for creating emulated devices. Such that the user
first configures a type, and then they can use it to create multiple emulated devices that have the
same configuration.

For a more concrete example, consider that you would like to emulate an NVMe device, then you
would create a type and configure its capabilities and BAR to be compliant with the NVMe spec,
after that you can use the same type, to generate multiple NVMe emulated devices.

PCIe Configuration Space

The PCIe configuration space is 256 bytes long and has a header that is 64 bytes long. Each field can
be referred to as a register (e.g., device ID).

Every PCIe device is required to implement the PCIe configuration space as defined in the PCIe
specification.

The host can then read and/or write to registers in the PCIe configuration space. This allows the
PCIe driver and the BIOS to interact with the device and perform the required setup.

Please refer to the DOCA Backward Compatibility Policy.

711

It is possible to configure registers in the PCIe configuration space header as shown in the following
diagram:

The following registers are read-only, and they are used to identify the device:

Register Name Description Example

Class Code Defines the functionality of the
device
Can be further split into 3 values
{class : subclass: prog IF}

0x020000
Class: 0x02 (Network Controller)
Subclass: 0x00 (Ethernet Controller)
Prog IF: 0x00 (N/A)

Revision ID Unique identifier of the device
revision
Vendor allocates ID by itself

0x01
(Rev 01)

Vendor ID Unique identifier of the chipset
vendor
Vendor allocates ID from the PCI-SIG

0x15b3
Nvidia

Device ID Unique identifier of the chipset
Vendor allocates ID by itself

0xa2dc
BlueField-3 integrated ConnectX-7
network controller

Subsystem Vendor ID Unique identifier of the card vendor
Vendor allocates ID from the PCI-SIG

0x15b3
Nvidia

Subsystem ID Unique identifier of the card
Vendor allocates ID by itself

0x0051

BAR

While the PCIe configuration space can be used to interact with the PCIe device, it is not enough to
implement the functionality that is targeted by the device. Rather, it is only relevant for the PCIe
layer.

To enable protocol-specific functionality, the device configures additional memory regions referred
to as base address registers (BARs) that can be used by the host to interact with the device.

0x0 is the only supported header type (general device).

712

Different from the PCIe configuration space, BARs are defined by the device and interactions with
them is device-specific. For example, the PCIe driver interacts with an NVMe device's PCIe
configuration space according to the PCIe spec, while the NVMe driver interacts with the BAR
regions according to the NVMe spec.

Any read/write requests on the BAR are typically routed to the hardware, but in case of an
emulated device, the requests are routed to the software.

The DOCA DevEmu PCI type library provides APIs that allow software to pick the mechanism used for
routing the requests to software, while taking into consideration common design patterns utilized in
existing devices.

Each PCIe device can have up to 6 BARs with varying properties. During the PCIe bus enumeration
process, the PCIe device must be able to advertise information about the layout of each BAR. Based
on the advertised information, the BIOS/OS then allocates a memory region for each BAR and
assigns the address to the relevant BAR in the PCIe configuration space header. The driver can then
use the assigned memory address to perform reads/writes to the BAR.

BAR Layout

The PCIe device must be able to provide information with regards to each BAR's layout.

The layout can be split into 2 types, each with their own properties as detailed in the following
subsections.

I/O Mapped

According to the PCIe specification, the following represents the I/O mapped BAR:

Additionally, the BAR register is responsible for advertising the requested size during enumeration.

Users can use the following API to set a BAR as I/O mapped:

The size must be a power of 2.

713

•

•

•

•

•

•

doca_devemu_pci_type_set_io_bar_conf(struct doca_devemu_pci_type *pci_type, uint8_t id, uint8_t log_sz)

id – the BAR ID

log_sz – the log of the BAR size

Memory Mapped

According to the PCIe specification, the following represents the memory mapped BAR:

Additionally, the BAR register is responsible for advertising the requested size during enumeration.

The memory mapped BAR allows a 64-bit address to be assigned. To achieve this, users must specify
the bar Memory Type as 64-bit, and then set the next BAR's (BAR ID + 1) size to be 0.

Setting the pre-fetchable bit indicates that reads to the BAR have no side-effects.

Users can use the following API to set a BAR as memory mapped:

doca_devemu_pci_type_set_memory_bar_conf(struct doca_devemu_pci_type *pci_type, uint8_t id, uint8_t log_sz, enum
 doca_devemu_pci_bar_mem_type memory_type, uint8_t prefetchable)

id – the BAR ID

log_sz – the log of the BAR size. If set to 0, then the size is considered as 0 (instead of 1).

memory_type – specifies the memory type of the BAR. If set to 64-bit, then the next BAR

must have log_sz set to 0.

prefetchable – indicates whether the BAR memory is pre-fetchable or not (a value of 1 or 0
respectively)

BAR Regions

BAR regions refer to memory regions that make up a BAR layout. This is not something that is part of
the PCIe specification, rather it is a DOCA concept that allows the user to customize behavior of the
BAR when interacted with by the host.

The BAR region defines the behavior when the host performs a read/write to an address within the
BAR, such that every address falls in some memory region as defined by the user.

The size must be a power of 2.

714

•

•

•

▪
▪
▪
▪
▪

Common Configuration

All BAR regions have these configurations in common:

id – the BAR ID that the region is part of

start_addr – the start address of the region within the BAR layout relative to the BAR. 0
indicates the start of the BAR layout.
size – the size of the BAR region

Currently, there are 4 BAR region types, defining different behavior:

Stateful
DB by offset
DB by data
MSIX table
MSIX PBA

Generic Control Path (Stateful BAR Region)

Stateful region can be used as a shared memory, such that the contents are maintained in firmware.
A read from the driver returns the latest value, while a write updates the value and triggers an
event to software running on the DPU.

This can be useful for communication between the driver and the device, during the control path
(e.g., exposing capabilities, initialization).

Driver Read

A read from the driver returns the latest value written to the region, whether written by the host or
by the driver itself.

Some limitations apply, please see Limitations section

715

Driver Write

A write from the driver updates the value at the written address and notifies software running on
the Arm that a write has occurred. The notification on the Arm arrives as an asynchronous event
(see doca_devemu_pci_dev_event_bar_stateful_region_driver_write).

DPU Read

The DPU can read the values of the stateful region using
doca_devemu_pci_dev_query_bar_stateful_region_values . This returns the latest snapshot of
the stateful region values. It can be particularly useful to find what was written by the driver after
the "stateful region driver write event" occurs.

DPU Write

The DPU can write the values of the stateful region using
doca_devemu_pci_dev_modify_bar_stateful_region_values . This updates the values such that
subsequent reads from the driver or the DPU returns these values.

Default Values

The DPU is able to set default values to the stateful region. Default values come in 2 layers:

The event that arrives to Arm software is asynchronous such that it may arrive after the
driver has completed the write.

716

•

•

1.
2.
3.
4.

Type default values – these values are set for all devices that have the same type. This can be
set only if no device currently exists.
Device default values – these values are set for a specific device and take affect on the next
FLR cycle or the next hotplug of the device

A read of the stateful region follows the following hierarchy:

Return the latest value as written by the host or driver (whichever was done last).
Return the device default values.
Return the type default values.
Return 0.

717

718

•
•
•

•
•

Generic Data Path (DB BAR Region)

Doorbell (DB) regions can be used to implement a consumer-producer queue between the driver and
the DPU, such that a write from the driver would trigger an event on the DPU through DPA, allowing
it to fetch the written value. This can be useful for communication between the driver and the
device, during the data path allowing IO processing.

While DBs are not part of the PCIe specification, it is a widely used mechanism by vendors (e.g.,
RDMA QP, NVMe SQ, virtio VQ, etc).

The same DB region can be used to manage multiple DBs, such that each DB can be used to
implement a queue.

The DPU software can utilize DB resources individually:

Each DB resource has a unique zero-based index referred to as DB ID
DB resource can be managed (create/destroy/modify/query) individually
Each DB resource has a separate notification mechanism. That is, the notification on DPU is
triggered for each DB separately.

Driver Write

The DB usually consists of a numeric value (e.g., uint32_t) representing the consumer/producer
index of the queue.

When the driver writes to the DB region, the related DB resource gets updated with the written
value, and a notification is sent to the DPU.

When driver writes to the DB BAR region it must adhere to the following:

The size of the write must match the size of the DB value (e.g., uint32_t)
The offset within the region must be aligned to the DB stride size or the DB size

The flow would look something as the following:

719

•
•

•

•
•
•

•

•

Driver performs a write of the DB value at some offset within the DB BAR region
DPU calculates the DB ID that the write is intended for. Depending on the region type:

DB by offset – DPU calculates the DB ID based on the write offset relative to the DB
BAR region
DB by data – DPU parses the written DB value and extracts the DB ID from it

DPU updates the DB resource with the matching DB ID to the value written by the driver
DPU sends a notification to the DPA application, informing it that the value of DB with DB ID
has been updated by the driver

Driver Read

The driver should not attempt to read from the DB region. Doing so results in anomalous behavior.

BlueField Write

The BlueField can update the value of each DB resource individually using
doca_devemu_pci_db_modify_value . This produces similar side effects as though the driver
updated the value using a write to the DB region.

BlueField Read

The BlueField can read the value of each DB resource individually using one of the following
methods:

Read the value from the BlueField Arm using doca_devemu_pci_db_query_value

Read the value from the DPA using doca_dpa_dev_devemu_pci_db_get_value

The first option is a time consuming operation and is only recommended for the control path. In the
data path, it is recommended to use the second option only.

DB by Offset

The API doca_devemu_pci_type_set_bar_db_region_by_offset_conf can be used to set up DB
by offset region. When the driver writes a DB value using this region, the DPU receives a notification
for the relevant DB resource, based on the write offset, such that the DB ID is calculated as follows:
db_id = write_offset / db_stride_size .

The area that is part of the stride but not part of the doorbell, should not be used for any
read/write operation, doing so will result in undefined anomalous.

720

•
•
•

•
•

•

•

•

•

•

•
•

DB by Data

The API doca_devemu_pci_type_set_bar_db_region_by_data_conf can be used to set up DB by
data region. When the driver writes a DB value using this region, the DPU receives a notification for
the relevant DB resource based on the written DB value, such that there is no relation between the
write offset and the DB triggered. This DB region assumes that the DB ID is embedded within the DB
value written by the driver. When setting up this region, the user must specify where the Most
Significant Byte (MSB) and Least Significant Byte (LSB) of the DB ID are embedded in the DB value.

The DPU follows these steps to extract the DB ID from the DB value:

Driver writes the DB value
BlueField extracts the bytes between MSB and LSB
DPU compares MSB index with LSB index

If MSB index greater than LSB index: The extracted value is interpreted as Little Endian
If LSB index greater than MSB index: The extracted value is interpreted as Big Endian

Example:

DB size is 4 bytes, LSB is 1, and MSB is 3.

Driver writes value 0xCCDDEEFF to DB region at index 0 in Little Endian

The value is written to memory as follows: [0]=FF [1]=EE [2]=DD [3]=CC

The relevant bytes, are the following: [1]=EE [2]=DD [3]=CC

Since MSB (3) is greater than LSB (1), the value is interpreted as Little Endian: db_id =

0xCCDDEE

MSI-X Capability (MSI-X BAR Region)

Message signaled interrupts extended (MSI-X) is commonly used by PCIe devices to send interrupts
over the PCIe bus to the host driver. DOCA APIs allow users to expose the MSI-X capability as per the
PCIe specification, and to later use it to send interrupts to the host driver.

To configure it, users must provide the following:

The number of MSI-X vectors which can be done using
doca_devemu_pci_type_set_num_msix
Define an MSI-X table
Define an MSI-X PBA

MSI-X Table BAR Region

721

•
•
•

•
•
•
•

•

•

•

As per the PCIe specification, to expose the MSI-X capability, the device must designate a memory
region within its BAR as an MSI-X table region. In DOCA, this can be done using
doca_devemu_pci_type_set_bar_msix_table_region_conf .

MSI-X PBA BAR Region

As per the PCIe specification, to expose the MSI-X capability, the device must designate a memory
region within its BAR as an MSI-X pending bit array (PBA) region. In DOCA, this can be done using
doca_devemu_pci_type_set_bar_msix_pba_region_conf .

Raising MSI-X From DPU

It is possible to raise an MSI-X for each vector individually. This can be done only using the DPA API
doca_dpa_dev_devemu_pci_msix_raise .

DMA Memory

Some operations require accessing memory which is set up by the host driver. DOCA's device
emulation APIs allow users to access such I/O memory using the DOCA mmap (see DOCA Core
Memory Subsystem).

After starting the PCIe device, it is possible to acquire an mmap that references the host memory
using doca_devemu_pci_mmap_create . After creating this mmap, it is possible to configure it by
providing:

Access permissions
Host memory range
DOCA devices that can access the memory

The mmap can then be used to create buffers that reference memory on the host. The buffers'
addresses would not be locally accessible (i.e., CPU cannot dereference the address), instead the
addresses would be I/O addresses as defined by the host driver.

The buffers created from the mmap can then be used with other DOCA libraries and accept a
doca_buf as an input. This includes:

DOCA DMA
DOCA RDMA
DOCA Ethernet
DOCA AES-GCM

Function Level Reset

FLR can be handled as described in DOCA DevEmu PCI FLR. Additionally, users must ensure that the
following resources are destroyed before stopping the PCIe device:

Doorbells created using doca_devemu_pci_db_create_on_dpa

MSI-X vectors created using doca_devemu_pci_msix_create_on_dpa

Memory maps created using doca_devemu_pci_mmap_create

Limitations

Based on explanation in "Driver Write", user can assume that DOCA DevEmu PCI Generic supports
creating emulated PCI devices with the limitation that when a driver writes to a register, the value
is immediately available for subsequent reads from the same register. However, this immediate

722

•
•
•
•
•
•
•

•
•
•
•
•

availability does not ensure that any required internal actions triggered by the write have been
completed. It is recommended to rely on specific different register values to confirm completion of
the write action. For instance, when implementing a write-to-clear operation, e.g. writing 1 to
register A to clear register B, it is advisable to poll register B until it indicates the desired state.
This approach ensures that the write action has been successfully executed. If a device specification
requires certain actions to be completed before exposing written values for subsequent reads, such
a device cannot be emulated using the DOCA DevEmu PCI generic framework.

14.4.18.3.7.5 Device Support

DOCA PCI Device emulation requires a device to operate. For information on picking a device, see
DOCA DevEmu PCI Device Support.

Some devices can allow different capabilities as follows:

The maximum number of emulated devices
The maximum number of different PCIe types
The maximum number of BARs
The maximum BAR size
The maximum number of doorbells
The maximum number of MSI-X vectors
For each BAR region type there are capabilities for:

Whether the region is supported
The maximum number of regions with this type
The start address alignment of the region
The size alignment of the region
The min/max size of the region

As the list of capabilities can be long, it is recommended to use the NVIDIA DOCA
Capabilities Print Tool to get an overview of all the available capabilities.

Run the tool as root user as follows:

$ sudo /opt/mellanox/doca/tools/doca_caps -p <pci-address> -b devemu_pci
Example output: PCI: 0000:03:00.0
 devemu_pci
 max_hotplug_devices 15
 max_pci_types 2
 type_log_min_bar_size 12
 type_log_max_bar_size 30
 type_max_num_msix 11
 type_max_num_db 64
 type_log_min_db_size 1
 type_log_max_db_size 2
 type_log_min_db_stride_size 2
 type_log_max_db_stride_size 12
 type_max_bars 2
 bar_max_bar_regions 12
 type_max_bar_regions 12
 bar_db_region_identify_by_offset supported
 bar_db_region_identify_by_data supported
 bar_db_region_block_size 4096
 bar_db_region_max_num_region_blocks 16
 type_max_bar_db_regions 2
 bar_max_bar_db_regions 2
 bar_db_region_start_addr_alignment 4096
 bar_stateful_region_block_size 64
 bar_stateful_region_max_num_region_blocks 4
 type_max_bar_stateful_regions 1
 bar_max_bar_stateful_regions 1
 bar_stateful_region_start_addr_alignment 64
 bar_msix_table_region_block_size 4096
 bar_msix_table_region_max_num_region_blocks 1
 type_max_bar_msix_table_regions 1
 bar_max_bar_msix_table_regions 1
 bar_msix_table_region_start_addr_alignment 4096
 bar_msix_pba_region_block_size 4096

723

•

•
•
•
•
•
•
•
•
•
•
•
•

14.4.18.3.7.6 PCI Type

Configurations

This section describes the configurations of the DOCA DevEmu PCI Type object, that can be provided
before start.

To find if a configuration is supported or what its min/max value is, refer to Device Support.

Mandatory Configurations

The following are mandatory configurations and must be provided before starting the PCI type:

A DOCA device that is an emulation manager or hotplug manager. See Device Support.

Optional Configurations

The following configurations are optional:

The PCIe device ID
The PCIe vendor ID
The PCIe subsystem ID
The PCIe subsystem vendor ID
The PCIe revision ID
The PCIe class code
The number of MSI-X vectors for MSI-X capability
One or more memory mapped BARs
One or more I/O mapped BARs
One or more DB region
An MSI-X table and PBA regions
One or more stateful regions

14.4.18.3.7.7 PCI Device

Configuration Phase

This section describes additional configuration options, on top of the ones already described in
DOCA DevEmu PCI Device Configuration Phase.

Configurations

The context can be configured to match the application's use case.

To find if a configuration is supported or what its min/max value is, refer to Device Support.

 bar_msix_pba_region_max_num_region_blocks 1
 type_max_bar_msix_pba_regions 1
 bar_max_bar_msix_pba_regions 1
 bar_msix_pba_region_start_addr_alignment 4096
 bar_is_32_bit_supported unsupported
 bar_is_1_mb_supported unsupported
 bar_is_64_bit_supported supported
 pci_type_hotplug supported
 pci_type_mgmt supported

If these configurations are not set then a default value is used.

724

•

Optional Configurations

The following configurations are optional:

Setting the stateful regions' default values – If not set, then the type default values are used.
See stateful region default values for more.

Execution Phase

This section describes additional events, on top of the ones already described in DOCA DevEmu PCI
Device Events.

Events

DOCA DevEmu PCI Device exposes asynchronous events to notify about changes that happen
suddenly according to the DOCA Core architecture.

Common events are described in DOCA Core Event.

BAR Stateful Region Driver Write

The stateful region driver write event allows you to receive notifications whenever the host driver
writes to the stateful BAR region. See section "Driver Write" for more information.

Configuration

Description API to Set the Configuration API to Query Support

Register to the event doca_devemu_pci_dev_event_bar_st

ateful_region_driver_write_regist

er

doca_devemu_pci_cap_type_get_ma

x_bar_stateful_regions

If there are multiple stateful regions for the same device, then registration is done separately for
each region. The details provided on registration (i.e., bar_id and start address) must match a
region previously configured for PCIe type.

Trigger Condition

The event is triggered anytime the host driver writes to the stateful region. See section "Driver
Write" for more information.

Output

Common output as described in DOCA Core Event.

Additionally, the event callback receives an event object of type struct

doca_devemu_pci_dev_event_bar_stateful_region_driver_write which can be used to
retrieve:

725

▪

▪

▪

•

•

1.

2.

3.

The DOCA DevEmu PCI Device representing the emulated device that triggered the event –
doca_devemu_pci_dev_event_bar_stateful_region_driver_write_get_pci_dev
The ID of the BAR containing the stateful region –
doca_devemu_pci_dev_event_bar_stateful_region_driver_write_get_bar_id
The start address of the stateful region –
doca_devemu_pci_dev_event_bar_stateful_region_driver_write_get_bar_region_sta

rt_addr

Event Handling

Once the event is triggered, it means that the host driver has written to someplace in the region.

The user must perform either of the following:

Query the new values of the stateful region –
doca_devemu_pci_dev_query_bar_stateful_region_values
Modify the values of the stateful region –
doca_devemu_pci_dev_modify_bar_stateful_region_values

It is possible also to do both. However, it is important that the memory areas that the host wrote to
are either queried or overwritten with a modify operation.

14.4.18.3.7.8 PCI Device DB

After the PCIe device has been created, it can be used to create DB objects, each DB object
represents a DB resources identified by a DB ID. See Generic Data Path (DB BAR Region).

When creating the DB, the DB ID must be provided, this can hold different meaning for DB by offset
and DB by data. The DB object can then be used to get a notification to the DPA once a driver write
occurs, and to fetch the latest value using the DPA.

Configuration

The flow for creating and configuring a DB should be as follows:

Create the DB object:

arm> doca_devemu_pci_db_create_on_dpa

(Optional) Query the DB value:

arm> doca_devemu_pci_db_query_value

(Optional) Modify the DB value:

arm> doca_devemu_pci_db_modify_value

Failure to do so results in a recurring event. For example, if the host wrote to the first half
of the region, but BlueField Arm only queries the second half of the region after receiving
the event. Then the library retriggers the event, assuming that the user did not handle the
event.

726

4.

5.

6.

1.

2.

3.

4.

Get the DB DPA handle for referencing the DB from the DPA:

arm> doca_devemu_pci_db_get_dpa_handle

Bind the DB to the DB completion context using the handle from the previous step:

dpa> doca_dpa_dev_devemu_pci_db_completion_bind_db

Start the DB to start receiving completions on DPA:

arm> doca_devemu_pci_db_start

Similarly the flow for destroying a DB would look as follows:

Stop the DB to stop receiving completions:

arm> doca_devemu_pci_db_stop

Acknowledge all completions related to this DB:

dpa> doca_dpa_dev_devemu_pci_db_completion_ack

Unbind the DB from the DB completion context:

dpa> doca_dpa_dev_devemu_pci_db_completion_unbind_db

Destroy the DB object:

arm> doca_devemu_pci_db_destroy

Fetching DBs on DPA

To fetch DBs on DPA, a DB completion context can be used. The DB completion context serves the
following purposes:

It is important to perform this step before the next one. Otherwise, the DB
completion context will start receiving completions for an unbound DB.

Once DB is started, a completion is immediately generated on the DPA.

This step ensures that no additional completions will arrive for this DB

This step ensures that existing completions have been processed.

Make sure to not perform this step more than once.

727

•
•

1.

2.

3.
4.
5.

6.

7.
a.

b.

Notifying a DPA thread that a DB value has been updated (wakes up thread)
Providing information about which DB has been updated

The following flow shows how to use the same DB completion context to get notified whenever any
of the DBs are updated, and to find which DBs were actually updated, and finally to get the DBs'
values:

Get DB completion element:

doca_dpa_dev_devemu_pci_get_db_completion

Get DB from completion:

doca_dpa_dev_devemu_pci_db_completion_element_get_db_properties

Store the DB (e.g., in an array).
Repeat steps 1-3 until there are no more completions.
Acknowledge the number of received completions:

doca_dpa_dev_devemu_pci_db_completion_ack

Request notification on DPA for the next completion:

doca_dpa_dev_devemu_pci_db_completion_request_notification

Go over the DBs stored in step 3 and for each DB:
Request a notification for the next time the host driver writes to this DB:

doca_dpa_dev_devemu_pci_db_request_notification

Get the most recent value of the DB:

doca_dpa_dev_devemu_pci_db_get_value

Query/Modify DB from Arm

It is possible to query the DB value of a particular DB using doca_devemu_pci_db_query_value on

the Arm. Similarly, it is possible to modify the DB value using doca_devemu_pci_db_modify_value .
When modifying the DB value, the side effects of such modification is the same as if the host driver
updated the DB value.

14.4.18.3.7.9 PCIe Device MSI-X Vector

After the PCIe device has been created, it can be used to create MSI-X objects. Each MSI-X object
represents an MSI-X vector identified by the vector index.

The MSI-X object can be used to send a notification to the host driver from the DPA.

Querying and modifying operations from the Arm are time consuming and should be used in
the control path only. Fetching DBs on DPA is the recommended approach for retrieval of DB
values in the data path.

728

•
•
•
•
•
•

•

a.

i.

ii.

b.

1.

Configuration

The MSI-X object can be created using doca_devemu_pci_msix_create_on_dpa . An MSI-X vector

index must be provided during creation, this is a value in the range [0, num_msix), such that

num_msix is the value previously set using doca_devemu_pci_type_set_num_msix .

Once the MSI-X object is created, doca_devemu_pci_msix_get_dpa_handle can be used to get a
DPA handle for use within the DPA.

Raising MSI-X

The MSI-X object can be used on the DPA to raise an MSI-X vector using
doca_dpa_dev_devemu_pci_msix_raise .

14.4.18.3.7.10 DOCA DevEmu Generic Samples

This section describes DOCA DevEmu Generic samples.

The samples illustrate how to use the DOCA DevEmu Generic API to do the following:

List details about emulated devices with same generic type
Create and hot-plug/hot-unplug an emulated device with a generic type
Handle Host driver write using stateful region
Handle Host driver write using DB region
Raise MSI-X to the Host driver
Perform DMA operation to copy memory buffer between the Host driver and the DPU Arm

Structure

All the samples utilize the same generic PCI type. The configurations of the type reside in /opt/

mellanox/doca/samples/doca_devemu/devemu_pci_type_config.h

The structure for some samples is as follows:

/opt/mellanox/doca/samples/doca_devemu/<sample directory>

dpu

host

device

host

Samples following this structure will have two binaries: dpu (1) and host (2), the former should
be run on the BlueField and represents the controller of the emulated device, while the latter
should be run on the host and represents the host driver.

For simplicity, the host (2) side is based on the VFIO driver, allowing development of a driver in
user-space.

Within the dpu (a) directory, there is a host (a) and device (b) directories. host in this case

refers to the BlueField Arm processor, while device refers to the DPA processor. Both directories
are compiled into a single binary.

Running the Samples

Refer to the following documents:

729

•

•

2.

3.

a.

b.

4.

•
•
•

•

NVIDIA DOCA Installation Guide for Linux for details on how to install BlueField-related
software.
NVIDIA DOCA Troubleshooting Guide for any issue you may encounter with the
installation, compilation, or execution of DOCA samples.

To build a given sample:

cd /opt/mellanox/doca/samples/doca_devemu/<sample_name>[/dpu or /host]
meson /tmp/build
ninja -C /tmp/build

Sample (e.g., doca_devemu_pci_device_db) usage:

BlueField side (doca_devemu_pci_device_db_dpu):

Usage: doca_devemu_pci_device_db_dpu [DOCA Flags] [Program Flags]

DOCA Flags:
 -h, --help Print a help synopsis
 -v, --version Print program version information
 -l, --log-level Set the (numeric) log level for the program <10=DISABLE,
20=CRITICAL, 30=ERROR, 40=WARNING, 50=INFO, 60=DEBUG, 70=TRACE>
 --sdk-log-level Set the SDK (numeric) log level for the program <10=DISABLE,
20=CRITICAL, 30=ERROR, 40=WARNING, 50=INFO, 60=DEBUG, 70=TRACE>
 -j, --json <path> Parse all command flags from an input json file

Program Flags:
 -p, --pci-addr The DOCA device PCI address. Format: XXXX:XX:XX.X or XX:XX.X
 -u, --vuid DOCA Devemu emulated device VUID. Sample will use this device
to handle Doorbells from Host
 -r, --region-index The index of the DB region as defined in
 devemu_pci_type_config.h. Integer
 -i, --db-id The DB ID of the DB. Sample will listen on DBs related to this
DB ID. Integer

Host side (doca_devemu_pci_device_db_host):

Usage: doca_devemu_pci_device_db_host [DOCA Flags] [Program Flags]

DOCA Flags:
 -h, --help Print a help synopsis
 -v, --version Print program version information
 -l, --log-level Set the (numeric) log level for the program <10=DISABLE,
20=CRITICAL, 30=ERROR, 40=WARNING, 50=INFO, 60=DEBUG, 70=TRACE>
 --sdk-log-level Set the SDK (numeric) log level for the program <10=DISABLE,
20=CRITICAL, 30=ERROR, 40=WARNING, 50=INFO, 60=DEBUG, 70=TRACE>
 -j, --json <path> Parse all command flags from an input json file

Program Flags:
 -p, --pci-addr PCI address of the emulated device. Format: XXXX:XX:XX.X
 -g, --vfio-group VFIO group ID of the device. Integer
 -r, --region-index The index of the DB region as defined in
 devemu_pci_type_config.h. Integer
 -d, --db-index The index of the Doorbell to write to. The sample will write at
byte offset (db-index * db-stride)
 -w, --db-value A 4B value to write to the Doorbell. Will be written in Big
Endian

For additional information per sample, use the -h option:

/tmp/build/<sample_name> -h

Additional sample setup:

The BlueField samples require the emulated device to be already hot-plugged:
Such samples expect the VUID of the hot-plugged device (-u, --vuid)
The list sample can be used to find if any hot-plugged devices exist and what their
VUID is
The hot-plug sample can be used to hot plug a device if no such device already exists

The binary doca_<sample_name>[_dpu or _host] is created under /tmp/build/ .

730

•

•

•

•

•

•
•

•
•

•

1.

2.
3.
4.
5.
6.

•

•

•

•

•

The host samples require the emulated device to be already hot-plugged and that the device
is bound to the VFIO driver:

The samples expect 2 parameters -p (--pci-addr) and -g (--vfio-group) of the
emulated device as seen by the host
The PCI Device List sample can be used from the BlueField to find the PCIe address of
the emulated device on the host
Once the PCIe address is found, the host can use the script /opt/mellanox/doca/

samples/doca_devemu/devemu_pci_vfio_bind.py to bind the VFIO driver

$ sudo python3 /opt/mellanox/doca/samples/doca_devemu/devemu_pci_vfio_bind.py <pcie-address-of-
emulated-dev>

The script is a python3 script which expects the PCIe address of the emulated
device as a positional argument (e.g., 0000:3e:00.0)
The script outputs the VFIO group ID
The script must be used only once after the device is hot-plugged towards the
host for the first time

The hot-unplug sample requires that the device be unbound from the VFIO driver:
Use the script located at /opt/mellanox/doca/samples/doca_devemu/

devemu_pci_vfio_bind.py from the host to unbind the VFIO driver as follows:

$ sudo python3 /opt/mellanox/doca/samples/doca_devemu/devemu_pci_vfio_bind.py <pcie-address-of-
emulated-dev> --unbind

This python3 script expects the PCIe address of the emulated device as a
positional argument (e.g., 0000:3e:00.0) along with the --unbind argument

Samples

PCI Device List

This sample illustrates how to list all emulated devices that have the generic type configured in /

opt/mellanox/doca/samples/doca_devemu/devemu_pci_type_config.h .

The sample logic includes:

Initializing the generic PCIe type based on /opt/mellanox/doca/samples/doca_devemu/

devemu_pci_type_config.h .
Creating a list of all emulated devices belonging to this type.
Iterating over the emulated devices.
Dumping their VUID.
Dumping their PCIe address as seen by the host.
Releasing the resources.

References:

/opt/mellanox/doca/samples/doca_devemu/

devemu_pci_device_list/

devemu_pci_device_list_sample.c

devemu_pci_device_list_main.c

meson.build

731

•

•

1.

2.
•

•

3.

4.
5.

a.
b.

6.
7.
8.

•
•

•

•

•

•

•

•

•

devemu_pci_common.h ; devemu_pci_common.c

devemu_pci_type_config.h

PCI Device Hot-Plug

This sample illustrates how to create and hot-plug/hot-unplug an emulated device that has the
generic type configured in /opt/mellanox/doca/samples/doca_devemu/

devemu_pci_type_config.h .

The sample logic includes:

Initializing the generic PCIe type based on /opt/mellanox/doca/samples/doca_devemu/

devemu_pci_type_config.h .
Acquiring the emulated device representor:

If the user did not provide VUID as input, then creating and using a new emulated
device.
If the user provided VUID as an input, then searching for an existing emulated device
with a matching VUID and using it.

Creating a PCIe device context to manage the emulated device and connecting it to a
progress engine (PE).
Registering to the PCIe device's hot-plug state change event.
Initializing hot-plug/hot-unplug of the device:

If the user did not provide VUID as input, then initializing hot-plug flow of the device.
If the user provided VUID as input, then initializing hot-unplug flow of the device.

Using the PE to poll for hot-plug state change event.
Waiting until hot-plug state transitions to expected state (power on or power off).
Cleaning up resources.

If hot-unplug was requested, then the emulated device is destroyed as well.
Otherwise, the emulated device persists.

References:

/opt/mellanox/doca/samples/doca_devemu/

devemu_pci_device_hotplug/

devemu_pci_device_hotplug_sample.c

devemu_pci_device_hotplug_main.c

meson.build

devemu_pci_common.h ; devemu_pci_common.c

devemu_pci_type_config.h

PCI Device Stateful Region

This sample illustrates how the host driver can write to a stateful region, and how the BlueField Arm
can handle the write operation.

This sample consists of a host sample and BlueField sample. It is necessary to follow the additional
sample setup detailed previously.

The BlueField sample logic includes:

732

1.

2.
3.

4.

5.
•

i.
ii.

•
6.

1.
2.
3.

•

•

•

•

•

•

•

•

•

•

•

•

•
a.

b.

Initializing the generic PCIe type based on /opt/mellanox/doca/samples/doca_devemu/

devemu_pci_type_config.h .
Acquiring the emulated device representor that matches the provided VUID.
Creating a PCIe device context to manage the emulated device, and connecting it to a
progress engine (PE).
For each stateful region configured in /opt/mellanox/doca/samples/doca_devemu/

devemu_pci_type_config.h , registering to the PCIe device's stateful region write event.
Using the PE to poll for driver write to any of the stateful regions.

Every time the host driver writes to the stateful region, the handler is invoked and
performs the following:

Queries the values of the stateful region that the host wrote to.
Logs the values of the stateful region.

The sample polls indefinitely until the user presses [Ctrl+c] to close the sample.
Cleaning up resources.

The host sample logic includes:

Initializing the VFIO device with a matching PCIe address and VFIO group.
Mapping the stateful memory region from the BAR to the process address space.
Writing the values provided as input to the beginning of the stateful region.

References:

/opt/mellanox/doca/samples/doca_devemu/

devemu_pci_device_stateful_region/dpu/

devemu_pci_device_stateful_region_dpu_sample.c

devemu_pci_device_stateful_region_dpu_main.c

meson.build

devemu_pci_device_stateful_region/host/

devemu_pci_device_stateful_region_host_sample.c

devemu_pci_device_stateful_region_host_main.c

meson.build

devemu_pci_common.h ; devemu_pci_common.c

devemu_pci_host_common.h ; devemu_pci_host_common.c

devemu_pci_type_config.h

PCI Device DB

This sample illustrates how the host driver can ring the doorbell and how the BlueField can retrieve
the doorbell value. The sample also demonstrates how to handle FLR.

This sample consists of a host sample and BlueField sample. It is necessary to follow the additional
sample setup detailed previously.

The BlueField sample logic includes:

Host (BlueField Arm) logic:
Initializing the generic PCIe type based on /opt/mellanox/doca/samples/

doca_devemu/devemu_pci_type_config.h .
Initializing DPA resources:

733

i.
ii.
iii.

c.
d.

e.
f.
g.

i.

1.
2.

ii.

1.
2.

iii.

1.
2.
3.

iv.

h.

•
a.

i.
ii.

b.
i.

c.
i.
ii.
iii.
iv.
v.

vi.

1.
2.
3.

Creating DPA instance, and associating it with the DPA application.
Creating DPA thread and associating it with the DPA DB handler.
Creating DB completion context and associating it with the DPA thread.

Acquiring the emulated device representor that matches the provided VUID.
Creating a PCIe device context to manage the emulated device, and connecting it to
progress engine (PE).
Registering to the context state changes event.
Registering to the PCIe device FLR event.
Using the PE to poll for any of the following:

Every time the PCIe device context state transitions to running, the handler
performs the following:

Creates a DB object.
Makes RPC to DPA, to initialize the DB object.

Every time the PCIe device context state transitions to stopping, the handler
performs the following:

Makes RPC to DPA, to un-initialize the DB object.
Destroys the DB object.

Every time the host driver initializes or destroys the VFIO device, an FLR event
is triggered. The FLR handler performs the following:

Destroys DB object.
Stops the PCIe device context.
Starts the PCIe device context again.

The sample polls indefinitely until the user presses [Ctrl+c] to close the sample.

Cleaning up resources.

Device (BlueField DPA) logic:
Initializing application RPC:

Setting the global context to point to the DB completion context DPA handle.
Binding DB to the doorbell completion context.

Un-initializing application RPC:
Unbinding DB from the doorbell completion context.

DB handler:
Getting DB completion element from completion context.
Getting DB handle from the DB completion element.
Acknowledging the DB completion element.
Requesting notification from DB completion context.
Requesting notification from DB.
Getting DB value from DB.

The host sample logic includes:

Initializing the VFIO device with its matching PCIe address and VFIO group.
Mapping the DB memory region from the BAR to the process address space.
Writing the value provided as input to the DB region at the given offset.

References:

During this time, the DPA may start receiving DBs from the host.

734

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
a.

b.
i.
ii.

c.
d.

e.
f.
g.

•
a.

1.
2.
3.

a.

/opt/mellanox/doca/samples/doca_devemu/

devemu_pci_device_db/dpu/

host/

devemu_pci_device_db_dpu_sample.c

device/

devemu_pci_device_db_dpu_kernels_dev.c

devemu_pci_device_db_dpu_main.c

meson.build

devemu_pci_device_db/host/

devemu_pci_device_db_host_sample.c

devemu_pci_device_db_host_main.c

meson.build

devemu_pci_common.h ; devemu_pci_common.c

devemu_pci_host_common.h ; devemu_pci_host_common.c

devemu_pci_type_config.h

PCI Device MSI-X

This sample illustrates how BlueField can raise an MSI-X vector, sending a signal towards the host,
and shows how the host can retrieve this signal.

This sample consists of a host sample and a BlueField sample. It is necessary to follow the additional
sample setup detailed previously.

The BlueField sample logic includes:

Host (BlueField Arm) logic:
Initializing the generic PCIe type based on /opt/mellanox/doca/samples/

doca_devemu/devemu_pci_type_config.h .
Initializing DPA resources:

Creating a DPA instance and associating it with the DPA application.
Creating a DPA thread and associating it with the DPA DB handler.

Acquiring the emulated device representor that matches the provided VUID.
Creating a PCIe device context to manage the emulated device and connecting it to a
progress engine (PE).
Creating an MSI-X vector and acquiring its DPA handle.
Sending an RPC to the DPA to raise the MSI-X vector.
Cleaning up resources.

Device (BlueField DPA) logic:
Raising the MSI-X RPC by using the MSI-X vector handle.

The host sample logic includes:

Initializing the VFIO device with the matching PCIe address and VFIO group.
Mapping each MSI-X vector to a different FD.
Reading events from the FDs in a loop.

Once the DPU raises MSI-X, the FD matching the MSI-X vector returns an event which is
then printed to the screen.

735

b.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

1.

2.
3.

4.
5.
6.
7.
8.
9.

1.
2.
3.

4.

The sample polls the FDs indefinitely until the user presses [Ctrl+c] to close the
sample.

References:

/opt/mellanox/doca/samples/doca_devemu/

devemu_pci_device_msix/dpu/

host/

devemu_pci_device_msix_dpu_sample.c

device/

devemu_pci_device_msix_dpu_kernels_dev.c

devemu_pci_device_msix_dpu_main.c

meson.build

devemu_pci_device_msix/host/

devemu_pci_device_msix_host_sample.c

devemu_pci_device_msix_host_main.c

meson.build

devemu_pci_common.h ; devemu_pci_common.c

devemu_pci_host_common.h ; devemu_pci_host_common.c

devemu_pci_type_config.h

PCI Device DMA

This sample illustrates how the host driver can set up memory for DMA, then the DPU can use that
memory to copy a string from the BlueField to the host and from the host to the BlueField.

This sample consists of a host sample and a BlueField sample. It is necessary to follow the additional
sample setup detailed previously.

The BlueField sample logic includes:

Initializing the generic PCIe type based on /opt/mellanox/doca/samples/doca_devemu/

devemu_pci_type_config.h .
Acquiring the emulated device representor that matches the provided VUID.
Creating a PCIe device context to manage the emulated device and connecting it to a
progress engine (PE).
Creating a DMA context to use for copying memory across the host and BlueField.
Setting up an mmap representing the host driver memory buffer.
Setting up an mmap representing a local memory buffer.
Use the DMA context to copy memory from host to BlueField.
Use the DMA context to copy memory from BlueField to host.
Cleaning up resources.

The host sample logic includes:

Initializing the VFIO device with the matching PCIe address and VFIO group.
Allocating memory buffer.
Mapping the memory buffer to I/O memory. The BlueField can now access the memory using
the I/O address through DMA.
Copying the string provided by user to the memory buffer.

736

5.
6.
7.

•

•

•

•

•

•

•

•

•

Waiting for the BlueField to write to the memory buffer.
Un-mapping the memory buffer.
Cleaning up resources.

References:

/opt/mellanox/doca/samples/doca_devemu/

devemu_pci_device_dma/dpu/

devemu_pci_device_dma_dpu_sample.c

devemu_pci_device_dma_dpu_main.c

meson.build

devemu_pci_device_dma/host/

devemu_pci_device_dma_host_sample.c

devemu_pci_device_dma_host_main.c

meson.build

14.4.18.4 DOCA DevEmu Virtio

14.4.18.4.1 Introduction

DOCA DevEmu Virtio, which is part of the DOCA Device Emulation subsystem, introduces low-level
software APIs that provide building blocks for developing and manipulating virtio devices using the
device emulation capability of NVIDIA® BlueField®. This subsystem incorporates a core library that
handles a common logic for various types of virtio devices, such as virtio-FS. One of its key
responsibilities is managing the standard "device reset" procedure outlined in the virtio
specification. This core library serves as a foundation for implementing shared functionalities across
different virtio device types, ensuring consistency and efficiency in device operations and
behaviors.

DOCA provides support for emulating virtio devices over the PCIe bus. The PCIe transport is
commonly used for virtio devices. Configuration, discovery, and features related to PCIe (such as
MSI-X and PCIe device hot plug/unplug) are managed through the DOCA DevEmu PCI APIs. This
modular design enables each layer within the DOCA Device Emulation subsystem to manage its own
business logic and facilitates seamless integration with the other layers, ensuring independent
functionality and operation throughout the system.

This subsystem also includes device-specific libraries for various virtio device types (e.g., a library
for a virtio-FS device).

From the host's perspective, there is no difference between para-virtual, DOCA-emulated, and
actual hardware devices. The host uses the same virtio device drivers to operate the device under
all circumstances.

14.4.18.4.2 Prerequisites

Virtio device emulation is part of the DOCA Device Emulation subsystem. It is, therefore,
recommended to read the following guides beforehand:

This library is supported at alpha level; backward compatibility is not guaranteed.

737

•
•

•
•

•

•
•

DOCA Device Emulation
DOCA DevEmu PCI

14.4.18.4.3 Environment

DOCA DevEmu Virtio is supported on the BlueField target only.

The BlueField must meet the following requirements

DOCA version 2.7.0 or greater
BlueField-3 firmware 32.41.1000 or higher

Library must be run with root privileges.

14.4.18.4.4 Architecture

The DOCA DevEmu Virtio core library provides the following software abstractions:

Virtio type – extends the PCIe type, represents common/default virtio configurations of
emulated virtio devices
Virtio device – extends the PCIe device, represents an instance of an emulated virtio device
Virtio IO context – represents a progress context which is responsible for processing virtio
descriptors and their associated virtio queues

DOCA DevEmu Virtio library does not provide APIs to configure the entire BAR layout of the virtio
device as this configuration is done internally. However, the library offers APIs to configure some of
the registers within the common configuration structure (see Virtio Device).

14.4.18.4.4.1 Virtio Common Configuration

According to the virtio specification, the common PCIe configuration structure layout is as follows:

virtio_pci_common_cfg

struct virtio_pci_common_cfg {
 /* About the whole device. */
 le32 device_feature_select; /* read-write */
 le32 device_feature; /* read-only for driver */
 le32 driver_feature_select; /* read-write */
 le32 driver_feature; /* read-write */
 le16 config_msix_vector; /* read-write */
 le16 num_queues; /* read-only for driver */
 u8 device_status; /* read-write */
 u8 config_generation; /* read-only for driver */

 /* About a specific virtqueue. */
 le16 queue_select; /* read-write */
 le16 queue_size; /* read-write */
 le16 queue_msix_vector; /* read-write */
 le16 queue_enable; /* read-write */
 le16 queue_notify_off; /* read-only for driver */
 le64 queue_desc; /* read-write */
 le64 queue_driver; /* read-write */
 le64 queue_device; /* read-write */
 le16 queue_notify_data; /* read-only for driver */
 le16 queue_reset; /* read-write */
};

Please refer to the DOCA Backward Compatibility Policy.

738

•

•

•

•

•

•

The DOCA DevEmu Virtio core library provides the ability to configure some of the listed registers
using the appropriate setters.

14.4.18.4.4.2 Virtio Type

The virtio type extends the PCIe type and describes the common/default configuration of emulated
virtio devices, including the common virtio configuration space registers (such as num_queues ,

queue_size , and others).

Virtio type is currently read-only (i.e., only getter APIs are available to retrieve information). The
following methods can be used for this purpose:

doca_devemu_virtio_type_get_num_queues – for getting the default initial value of the

num_queues register for the associated virtio devices

doca_devemu_virtio_type_get_queue_size – for getting the default initial value of the

queue_size register for the associated virtio devices

doca_devemu_virtio_type_get_device_features_63_0 – for getting the default initial

values of the device_feature bits (0-63) for the associated virtio devices

doca_devemu_virtio_type_get_config_generation – for getting the default initial value

of the config_generation register for the associated virtio devices

The default virtio type is extended by a virtio device's specific type (e.g., virtio-FS type) and cannot
be created on demand.

14.4.18.4.4.3 Virtio Device

The virtio device extends the PCIe device. Before using the DOCA DevEmu Virtio device, it is
recommended to read the guidelines of DOCA DevEmu PCI device and DOCA Core context
configuration phase.

The virtio device is extended by a virtio-specific device (e.g., virtio FS device) and cannot be
created on demand.

Virtio Device Configurations

The virtio device context can be configured to match the application use case and optimize the
utilization of system resources.

Mandatory Configurations

The mandatory configurations are as follows:

doca_devemu_virtio_dev_set_num_required_running_virtio_io_ctxs – to set the
number of required running virtio IO contexts to be bound to the virtio device context. The
virtio device context does not move to running state (according to the DOCA Core context
state machine) before having this amount of running virtio IO contexts bound to it.
doca_devemu_virtio_dev_event_reset_register – to register to the virtio device reset
event. This configuration is mandatory

Optional Configurations

The optional configurations are as follows:

https://confluence.nvidia.com/display/docadev/.DOCA+Devemu+PCI+v2.7.0#id-.DOCADevemuPCIv2.7.0-PCIDevice

739

•

•

•

1.
2.

•
•

i.

ii.

doca_devemu_virtio_dev_set_device_features_63_0 – to set the values of the

device_feature bits (0-63). If not set, the default value is taken from the virtio type
configuration.
doca_devemu_virtio_dev_set_num_queues – to set the value of the num_queues register.
If not set, the default value is taken from the virtio type configuration.
doca_devemu_virtio_dev_set_queue_size – to set the value of the queue_size register
for all virtio queues. If not set, the default value is taken from the virtio type configuration.

Events

DOCA DevEmu Virtio device exposes asynchronous events to notify about sudden changes, according
to DOCA Core architecture.

Reset Event

The reset event allows users to receive notifications whenever the device reset flow is initialized by
the device driver. Upon receiving this event, it is guaranteed that no further requests are routed to
the user via any associated virtio IO context until the reset flow is completed.

To complete the reset flow the user must:

Flush all outstanding requests back to the virtio IO context associated with the request.
Perform one of the following:

Call doca_devemu_virtio_dev_reset_complete .
Follow FLR flow:

doca_ctx_stop – stop the virtio device with its associated virtio IO contexts
and wait until the device and its associated virtio IO contexts transition to
idle state

doca_ctx_start – start the virtio device with its associated virtio IO contexts
and wait until the device and its associated virtio IO contexts transition to
running state

Now, the device and its associated virtio IO contexts should be fully operational again, the device is
allowed to route new requests via any associated virtio IO context.

14.4.18.4.4.4 Virtio IO

The virtio IO context extends the DOCA Core context. Before using the DOCA DevEmu Virtio IO, it is
recommended to read the guidelines of DOCA Core context configuration phase.

This context is associated with a single DOCA virtio device and is bound to the virtio device context
upon start. The virtio IO context is a thread-unsafe object and is progressed by a single DOCA Core
progress engine. Usually, users configure a single virtio IO context per BlueField core used by the
application service.

The virtio IO context is responsible to route new incoming virtio requests towards the application
and to complete handled requests back to the device driver. It can only route requests while in
running state and when its associated virtio device is also in running state.

Common events are described in DOCA DevEmu PCI Device events and in DOCA Core Event.

740

•
•
•

•
•

14.4.18.4.5 DOCA DevEmu Virtio-FS

14.4.18.4.5.1 Introduction

The DOCA DevEmu Virtio-FS library is part of the DOCA DevEmu Virtio subsystem. It provides low-
level software APIs that provide building blocks for developing and manipulating virtio filesystem
devices using the device emulation capability of NVIDIA® BlueField® DPUs.

DOCA supports emulating virtio-FS devices over the PCIe bus. The PCIe transport is the common
transport used for virtio devices. Configuration, discovery, and features related to PCIe (e.g., MSI-X
and PCIe device hot plug/unplug) are managed through the DOCA DevEmu PCI APIs. Configuring
common virtio registers and handling generic virtio logic (e.g., virtio device reset flow) is handled
by the DOCA Virtio common library. This modular design enables each layer within the DOCA Device
Emulation subsystem to manage its own business logic. It facilitates seamless integration with the
other layers, ensuring independent functionality and operation throughout the system.

The DOCA Devemu Virtio-FS library efficiently handles virtio descriptors, carrying FUSE requests,
sent by the device driver, and translating them into abstract virtio-FS requests which are then
routed to the user. This translation process ensures that the underlying device-specific acceleration
details are abstracted away, allowing applications to interact with abstracted virtio-FS requests.

Users of this library are responsible for developing a virtio-FS controller, which manages the
underlying DOCA Devemu Virtio-FS device alongside an external backend file system which is outside
DOCA's scope. The controller application is designed to receive DOCA Virtio-FS requests and process
them according to virtio-FS and FUSE specifications, translating FUSE-based commands into the
appropriate backend filesystem protocol.

14.4.18.4.5.2 Prerequisites

Virtio-FS device emulation is part of DOCA DevEmu Virtio subsystem. It is, therefore, recommended
to read the following guides before proceeding:

DOCA Device Emulation
DOCA DevEmu PCI
DOCA DevEmu Virtio

14.4.18.4.5.3 Environment

DOCA DevEmu Virtio-FS is supported on the BlueField target only. The BlueField must meet the
following requirements:

DOCA version 2.7.0 or greater
BlueField-3 firmware 32.41.1000 or higher

This library is supported at alpha level; backward compatibility is not guaranteed.

Please refer to the DOCA Backward Compatibility Policy.

741

1.

2.

3.

4.

•

•

•

•

Perform the following:

Configure BlueField to work in DPU mode as described in NVIDIA BlueField Modes of
Operation.
Enable emulation by running the following on the host or DPU:

host/dpu> sudo mlxconfig -d /dev/mst/mt41692_pciconf0 s VIRTIO_FS_EMULATION_ENABLE=1

Configure the number of static virtio-FS physical functions and the number of MSIX for each
physical function to expose. This can be done by running the following command on the DPU:

host/dpu> sudo mlxconfig -d /dev/mst/mt41692_pciconf0 s VIRTIO_FS_EMULATION_NUM_PF=2
VIRTIO_FS_EMULATION_NUM_MSIX=18

Perform a BlueField system reboot for the mlxconfig settings to take effect.

14.4.18.4.5.4 Architecture
The DOCA DevEmu Virtio-FS library provides the following main software abstractions:

The virtio-FS type – extends the virtio type; represents common/default virtio-FS
configurations of emulated virtio-FS devices
The virtio-FS device – extends the virtio device; represents an instance of an emulated virtio-
FS device
The virtio-FS IO context – extends the virtio IO context; represents a progress context
responsible for processing virtio descriptors, carrying FUSE requests, and their associated
virtio queues (e.g., hiprio, request, admin, and notification queues).
The virtio-FS request

Virtio-FS Feature Bits

According to the virtio specification, a virtio-FS device may report support for
VIRTIO_FS_F_NOTIFICATION which indicates the ability to handle FUSE notify messages sent via
the notification queue.

Virtio-FS Configuration Layout

According to the virtio specification, the virtio-FS configuration structure layout is as follows:

Library must be run with root privileges.

DOCA does not support hot plugging virtio-FS PF devices into the host PCIe subsystem or SR-
IOV for virtio-FS devices.

Currently, DOCA does not support reporting the VIRTIO_FS_F_NOTIFICATION feature to
the driver.

742

•

•

•

•

•

virtio_fs_config

struct virtio_fs_config {
 char tag[36];
 le32 num_request_queues;
 le32 notify_buf_size;
};

The tag and num_request_queues fields are always available. The notify_buf_size field is

only available when VIRTIO_FS_F_NOTIFICATION is set.

Virtio-FS Type

The virtio-FS type extends the virtio type and describes the common/default configuration of
emulated virtio-FS devices, including some of the virtio-FS configuration space registers (e.g.,
num_request_queues).

Currently, the virtio-FS type is read-only (i.e., only getter APIs are available to retrieve
information). The following method can be used for this purpose:

doca_devemu_vfs_type_get_num_request_queues – to get the default initial value of the

num_request_queues register for the associated virtio-FS devices

DOCA supports the default virtio-FS type. To retrieve the default virtio-FS type, users use the
following method:

doca_devemu_vfs_is_default_vfs_type_supported – check if the default DOCA Virtio-FS
type is supported by the device. If supported:

doca_dev_open – open supported DOCA device

doca_devemu_vfs_find_default_vfs_type_by_dev – get the default DOCA Virtio-FS
type associated with the device

Virtio-FS Device

The virtio-FS device extends the virtio device. Before using the DOCA DevEmu Virtio-FS device, it is
recommended to read the guidelines of DOCA DevEmu Virtio device, DOCA DevEmu PCI
device, and DOCA Core context configuration phase.

This section describes how to create, configure, and operate the virtio-FS device.

Virtio-FS Device Configurations

The virtio-FS emulated device might be in several different visibility levels from the host point of
view:

Visible/non-visible to the PCIe subsystem – If the device is visible to the PCIe subsystem, the
user is not able to configure PCIe-related parameters (e.g., number of MSI-X vector,
subsystem_id).

Currently, there is no support for reporting the VIRTIO_FS_F_NOTIFICATION feature to the

driver. Therefore, notify_buf_size field is not available.

743

•

1.

2.

3.

4.

5.

6.
7.

•

•

•

•

•

Visible/non-visible to the virtio subsystem – If the device is visible to the virtio subsystem,
the user is not be able to configure virtio-related parameters (e.g., number of queues,
queue_size).

The flow for creating and configuring a virtio-FS device is as follows:

doca_devemu_vfs_dev_create – Create a new DOCA DevEmu Virtio-FS device instance.

doca_devemu_vfs_dev_set_tag – Set a unique tag for the device according to the virtio
specification.
doca_devemu_vfs_dev_set_num_request_queues – Set the number of request queues for
the device.
doca_devemu_vfs_dev_set_vfs_req_user_data_size – Set the user data size of the virtio-
FS request. If set, a buffer with this size is allocated for each DOCA DevEmu Virtio-FS on
behalf of the user.
Configure virtio-related parameters as described in DOCA Virtio configurations.

Configure PCIe-related parameters as described in DOCA DevEmu PCI configurations.
doca_ctx_start – Start the virtio-FS device context to finalize the configuration phase.

The virtio-FS device object follows the DOCA context state machine as described
in DOCA Core context state machine
The virtio-FS device context moves to running state after the initial number of virtio

IO contexts is bound to it and turns to running state, as described at DOCA DevEmu
Virtio configurations

At this point, the DOCA Devemu Virtio-FS context is fully operational.

Mandatory Configurations

The following are mandatory configurations:

doca_devemu_vfs_dev_set_tag – set a unique tag for the device

Optional Configurations

The optional configurations are as follows:

doca_devemu_vfs_dev_set_num_request_queues – set the number of request queues for
the device. If not set, the default value is taken from the virtio-FS type configuration.
doca_devemu_vfs_dev_set_vfs_req_user_data_size – set the user data size of the virtio-
FS request. If not set, user data size defaults to 0.

Virtio-FS Device Events

DOCA DevEmu Virtio-FS device exposes asynchronous events to notify about changes that happen out
of the blue, according to the DOCA Core architecture.

doca_devemu_virtio_dev_set_num_queues should be equal to the number of

request queues +1 (for the hiprio queue) since DOCA does not currently support
the virtio-FS notification queue.

744

1.

2.

3.

•

1.

2.

Common events are described in DOCA DevEmu Virtio device events, DOCA DevEmu PCI device
events and in DOCA Core event.

Virtio-FS IO

The virtio-FS IO context extends the Virtio IO Context. To start using the DOCA DevEmu Virtio-FS IO
it is recommended to read the guidelines of DOCA DevEmu Virtio IO and DOCA Core context
configuration phase.

This section describes how to create, configure and operate the virtio-FS IO context.

Virtio-FS IO Configurations

The flow for creating and configuring a virtio-FS IO context should be as follows:

doca_devemu_vfs_io_create – Create a new DOCA DevEmu Virtio-FS IO instance.

doca_devemu_vfs_io_event_vfs_req_notice_register – Register event handler for
incoming virtio-FS requests.
doca_ctx_start – Start the virtio-FS IO context to finalize the configuration phase. The
virtio-FS IO object follows the DOCA Core context state machine. The virtio-FS device context
moves to running state after the initial number of virtio-FS IO contexts is bound to it and

moves to running state (as described at DOCA DevEmu Virtio configurations).

Mandatory Configurations

The following are mandatory configurations:

doca_devemu_vfs_io_event_vfs_req_notice_register – Register event handler for
incoming virtio-FS requests is mandatory

Virtio-FS Request

The virtio-FS request object serves as an abstraction for handling requests arriving on virtio-FS
queues, including high-priority, request, or notification queues. These requests are initially
generated by the device driver through created virtio queues and then routed to the user via a
registered event handler, which is set up using
doca_devemu_vfs_io_event_vfs_req_notice_register , on the associated virtio IO context. This
event handler, issued by the DOCA Virtio FS library, ensures that users can receive and process
virtio-FS requests effectively within their application. Once the event handler is called, the
ownership of the virtio-FS request and the associated request user data move to the user. The
request ownership moves back to the associated virtio IO context once it is completed by the user
by calling doca_devemu_vfs_req_complete .

The following APIs operate a virtio-FS request:

doca_devemu_vfs_req_get_datain – Get a DOCA buffer representing the data-in of the
virtio-FS request. This DOCA buffer represents the host memory for the device-readable part
of the request according to the virtio specification.
doca_devemu_vfs_req_get_dataout – Get a DOCA buffer representing the data-out of the
virtio-FS request. This DOCA buffer represents the host memory for the device-writable part
of the request according to the virtio specification.

745

3.

1.

2.

3.
a.

b.

c.

d.

4.

1.
2.
3.
4.

5.

6.

doca_devemu_vfs_req_complete – Complete the virtio-FS request. The associated virtio-FS
IO context completes the request toward the device driver according to the virtio-FS
specification.

14.4.18.4.5.5 Discovery

Emulated virtio-FS PCIe functions are represented by a doca_devinfo_rep . To find the suitable

doca_devinfo_rep that is used as the input parameter for doca_devemu_vfs_dev_create , users
should first discover the existing device representors using the below:

doca_devinfo_create_list – Get a list of all DOCA devices.

doca_devemu_vfs_is_default_vfs_type_supported – Check whether the device can
manage device associated to virtio-FS type.
If supported:

doca_dev_open – Get an instance of the DOCA device that can be used as virtio-FS
emulation manager.
doca_devemu_vfs_find_default_vfs_type_by_dev – Get the default virtio-FS
device type.
doca_devemu_vfs_type_as_pci_type – Cast virtio-FS type to PCIe type.

doca_devemu_pci_type_rep_list_create – Create a list of all available representor
devices for the virtio-FS type.

At this point, the user can choose the preferred representor device, open it using
doca_dev_rep_open , and proceed with the flow described in section "Virtio-FS Device
Configurations".

14.4.18.4.5.6 Initialization

This section describes the initialization flow of a DOCA DevEmu Virtio-FS device and one or more
DOCA DevEmu Virtio-FS IO contexts (4 in this example). In this procedure, the user sets up and
prepares the environment before starting to receive control path events (from the virtio-FS device
context) and IO requests (from the virtio-FS IO contexts). During initialization, the user should
configure various essential components to ensure correct behavior.

The user should perform the following:

Choose 4 Arm cores to run the application threads on.
Create 4 DOCA Core progress engine (PE) objects (pe1 , pe2 , pe3 , pe4).
Find the suitable representor device according to the Discovery flow or any other method.
Create, configure, and start a new virtio-FS device according to the virtio-FS device
configuration flow. Assume pe1 is associated with the virtio-FS device and

doca_devemu_virtio_dev_set_num_required_running_virtio_io_ctxs is set to 4.
Create, configure, and start 4 new virtio-FS IO contexts according to the virtio-FS IO
configuration flow. Assume pe1 , pe2 , pe3 , and pe4 are associated with each of the 4
virtio-FS IO contexts respectively.
At this point, the 4 virtio-FS IO contexts transition to running state, followed by the virtio-

FS device context transitioning to running state.

746

1.

2.

3.

4.

5.

6.

1.
2.

3.
4.

14.4.18.4.5.7 Teardown

This section describes the teardown flow of DOCA DevEmu Virtio-FS device and one or more DOCA
DevEmu Virtio-FS IO contexts (4 in this example). In this procedure, the user cleans all the resources
allocated in the initialization flow and all the outstanding events and requests.

The user should perform the following:

Start the teardown flow by calling doca_ctx_stop . This causes the DOCA Virtio-FS device

context to transition to stopping state. It is guaranteed that no virtio/PCIe control path
events is generated during this state.
Call doca_ctx_stop for any DOCA Virtio-FS IO context. This causes the DOCA Virtio-FS IO

context to transition to stopping state. It is guaranteed that no IO path events are
generated during this state.
Flush all outstanding virtio-FS requests to the associated virtio-FS IO contexts by calling
doca_devemu_vfs_req_complete . Upon completing all the requests associated with a virtio-

FS IO context, the DOCA Virtio-FS IO context transitions to idle state.
At this point, it is safe to destroy the virtio-FS IO context by calling
doca_devemu_vfs_io_destroy . Destroying a virtio-FS IO context not in idle state will fail.

Once all 4 virtio-FS IO contexts associated with the virtio-FS device transition to idle state,

the DOCA Virtio-FS device context transitions to idle state as well.
At this point, it is safe to destroy the virtio-FS device context by calling
doca_devemu_vfs_dev_destroy . Destroying a virtio-FS device context not in idle state
will fail.

14.4.18.4.5.8 Execution Phase

This section describes execution on BlueField Arm cores using several DOCA Core PE objects (one per
core):

Choose 4 Arm cores to run the application threads on.
Create 4 DOCA Core PE objects. The application threads should periodically call
doca_pe_progress to advance all DOCA contexts associated with the PE.
Create, configure, and start the DOCA Virtio-FS device.
Create, configure, and start 4 DOCA Virtio-FS IO contexts.

The progress of DOCA Virtio-FS objects is illustrated by the following diagram:

During the initialization flow, it is guaranteed that no virtio/PCIe control path or IO path
events are generated until the virtio-FS device has transitioned to running state.

747

•

•
•

•

Control Path

The DOCA Virtio-FS device context extends the DOCA Virtio device context (which extends the DOCA
PCIe device context). This means that the DOCA Virtio-FS device control path is comprised by all the
object it extends (i.e., DOCA Context, DOCA DevEmu PCI device, and DOCA DevEmu Virtio device).

The following events can be triggered by a virtio-FS device context:

DOCA context state change events as described in DOCA Core context state machine and in
DOCA DevEmu PCI state machine
DOCA DevEmu PCI FLR flow
DOCA DevEmu Virtio reset flow

The DOCA Virtio-FS IO context extends the DOCA Virtio IO context (which extends the DOCA core
context). This means that the DOCA Virtio-FS IO context control path is comprised by all the object
it extends (i.e., DOCA Context and DOCA DevEmu Virtio IO).

The following events can be triggered by a Virtio-FS IO context:

DOCA context state change events as described in DOCA Core context state machine

In addition to the control path events, the DOCA DevEmu Virtio-FS IO context also produces IO path
events as described in IO path.

IO Path

This section describes the flow for a single virtio-FS request sent by the device driver until its
completion.

It is assumed that the user properly configured an event handler for an incoming virtio-FS request as
explained in section "Virtio-FS IO Configurations".

It is also assumed that the user is familiar with the virtio-FS specification and has the ability to
perform DMA operations to/from the host using DOCA DMA or any other suitable method.

The DOCA virtio-FS flow is illustrated in the following diagram:

748

•

•

•
•

14.5 DOCA Utils
This section includes modules that may be used by application developers to speed up their
development process.

This section contains the following pages:

DOCA Arg Parser

14.5.1 DOCA Arg Parser
This guide provides an overview and configuration instructions for DOCA Arg Parser API.

14.5.1.1 Introduction
The Arg Parser module makes it simple to create a user command-line interface to supply program
arguments. The module supports both regular command-line arguments and flags from a JSON file.

It also creates help and usage messages for all possible flags when the user provides invalid inputs to
the program.
General notes about DOCA Arg Parser:

Arg Parser checks a variety of errors including invalid arguments and invalid types, and it
prints the error along with program usage and exits when it encounters an error
The module uses long flags as JSON keys
The options -j and --json are reserved for Arg Parser JSON and cannot be used

14.5.1.2 API
For the library API reference, refer to ARGP API documentation in NVIDIA DOCA Library APIs.

749

•

•

•

The following sections provide additional details about the library API.

14.5.1.2.1 doca_argp_param

The data structure contains the program flag details needed to process DOCA ARGP. These details
are used to generate usage information for the flag, identify if the user passed the flag in the
command line and notify the program about the flag's value.

struct doca_argp_param;

14.5.1.2.2 doca_argp_param_create

Creates a DOCA ARGP parameter instance. The user is required to update the param attributes by
calling the respective setter functions and registering the param by
calling doca_argp_register_param() .

doca_error_t doca_argp_param_create(struct doca_argp_param **param);

param [out] – DOCA ARGP param structure with unset attributes

14.5.1.2.3 doca_argp_register_param

Calling this function registers the program flags in the Arg Parser database. The registration includes
flag details. Those details are used to parse the input arguments and generate usage print.

doca_error_t doca_argp_register_param(struct doca_argp_param *input_param);

input_param [in] – program flag details

14.5.1.2.4 doca_argp_set_dpdk_program

Marks the programs as a DPDK program. Once ARGP is finished with the parsing, DPDK (EAL) flags are
forwarded to the program by calling the given callback function.

void doca_argp_set_dpdk_program(dpdk_callback callback);

callback [in] - callback function to handle DPDK (EAL) flags.

The pkg-config (*.pc file) for the Arg Parser library is doca-argp .

The user must register all program flags before calling doca_argp_start() .

750

•

•

1.

2.

3.

4.

5.

6.

14.5.1.2.5 doca_argp_start

Calling this function starts the classification of command-line mode or JSON mode and is responsible
for parsing DPDK flags if needed. If the program is triggered with a JSON file, the DPDK flags are
parsed from the file and constructed in the correct format. DPDK flags are forwarded back to the
program by calling the registered callback.

doca_error_t doca_argp_start(int argc, char **argv);

argc [in] - number of input arguments

argv [in] - program command-line arguments

14.5.1.3 DPDK Flags
The following table lists the supported DPDK flags:

Short
Flag

Long Flag/
JSON Key

Flag Description JSON Content JSON Content
Description

a devices Add a PCIe device to
the list of devices to
probe

"devices": [
 {
 "device": "regex",
 "id": "03:00.0"
 },
 {
 "device": "sf",
 "id": "4",
 "sft": true
 },
 {
 "device": "sf",
 "id": "5",
 "hws": true
 },
 {
 "device": "vf",
 "id": "b1:00.3"
 },
 {
 "device": "pf",
 "id": "03:00.0",
 "sft": true
 },
 {
 "device": "gpu",
 "id": "06:00.0"
 }
]

Passing configuration
for 6 devices:

RegEx device
with PCIe address
03:00.0 .
SF device with
number 4, SFT
enabled.
SF device with
number 5, HW
steering enabled.
VF device with
PCIe b1:00.3 .
PF device with
PCIe address
03:00.0 , SFT
enabled.
GPU device with
PCIe address
06:00.0 .

c core-mask Hexadecimal bitmask
of cores to run on

"core-mask": "0xff"

Set core mask with
value 0xff

l core-list List of cores to run
on

"core-list": "0-4"

Limit program to use
five cores (core-0 to
core-4)

Additional DPDK flags may be added in the "flags" JSON field.

751

•
•
•
•
•
•
•

•
•
•
•
•
•
•

14.5.1.4 DOCA General Flags
The following table lists the supported DOCA general flags:

Short
Flag

Long
Flag/

JSON Key

Flag Description JSON Content JSON Content Description

h help Print a help synopsis N/A Supported only on CLI

v version Print program version
information

N/A Supported only on CLI

l log-level Sets the log level for the
program:

DISABLE=10
CRITICAL=20
ERROR=30
WARNING=40
INFO=50
DEBUG=60
TRACE=70

"log-level": 60

Set the log level to DEBUG mode

N/A sdk-log-

level

Sets the log level for the
program:

DISABLE=10
CRITICAL=20
ERROR=30
WARNING=40
INFO=50
DEBUG=60
TRACE=70

"sdk-log-level": 40

Set the SDK log level to WARNING
mode

j json Parse all command flags
from an input json file

N/A Supported only on CLI

14.5.1.5 DOCA Program Flags
The flags for each program can be found in the document dedicated to that program, including
instructions on how to run it, whether by providing a JSON file or by using the command-line
interface.

14.5.1.6 JSON File Example

An application JSON file can be found under /opt/mellanox/applications/[APP name]/bin/[APP

name]_params.json .

{
 "doca_dpdk_flags": {
 // -a - Add a device to the allow list.
 "devices": [
 {
 "device": "sf",
 "id": "4",
 "sft": true
 },
 {
 "device": "sf",
 "id": "5",
 "sft": true
 }

752

•
•

],
 // -c - Hexadecimal bitmask of cores to run on
 "core-mask": "0xff",
 // Additional DPDK (EAL) flags (if needed)
 "flags": ""
 },
 "doca_general_flags": {
 // -l - Set the (numeric) log level for the program <10=DISABLE, 20=CRITICAL, 30=ERROR, 40=WARNING, 50=INFO,
60=DEBUG, 70=TRACE>
 "log-level": 60,
 // --sdk-log-level - Set the SDK (numeric) log level for the program <10=DISABLE, 20=CRITICAL, 30=ERROR,
40=WARNING, 50=INFO, 60=DEBUG, 70=TRACE>
 "sdk-log-level": 40,
 },
 // flags below are for DMA Copy application.
 "doca_program_flags":{
 // -f - Full path for file to be copied/saved
 "file": "/tmp/dma_copy_test.txt",
 // -p - commm channel doca device pci address
 "pci-addr": "03:00.0",
 // -r - comm channel doca device representor pci address
 "rep-pci": "b1:00.0"
 }
}

14.6 DOCA Drivers
This section describes underlying drivers included in DOCA and includes the following pages:

DOCA UCX
MLX Drivers (MLNX_OFED)

14.6.1 DOCA UCX
This guide provides instructions for developing applications on top of the UCX library.

14.6.1.1 Introduction
Unified Communication X (UCX) is an optimized point-to-point communication framework.

UCX exposes a set of abstract communication primitives that utilize the best available hardware
resources and offloads, such as active messages, tagged send/receive, remote memory read/write,
atomic operations, and various synchronization routines. The supported hardware types include
RDMA (InfiniBand and RoCE), TCP, GPUs, and shared memory.

UCX facilitates rapid development by providing a high-level API, masking the low-level details, while
maintaining high-performance and scalability.

UCX implements best practices for transfer of messages of all sizes, based on the accumulated
experience gained from applications running on the world's largest datacenters and supercomputers.

14.6.1.2 Prerequisites
UCX runtime libraries are installed as part of the DOCA installation.

UCX is used the same way from the host and the DPU side.

Any active network device available on the system might be used by UCX, including network devices
that might be unreachable to the remote peer.

If one of the destinations is not reachable via a certain network device (e.g., a BlueField cannot
reach another BlueField via tmfifo_net0), UCX communication may fail.

To resolve this, use the UCX environment variable UCX_NET_DEVICES to specify which devices UCX
can use. For example:

753

export UCX_NET_DEVICES=enp3s0f0s0,enp3s0f1s0

Or:

env UCX_NET_DEVICES=enp3s0f0s0,enp3s0f1s0 <UCX-program>

Using the command show_gids on the BlueField one can obtain the mlx device name and the port
of an SF. Then that can be used to limit the UCX network interfaces and allow IB. For example:

dpu> show_gids
DEV PORT INDEX GID IPv4 VER DEV
--- ---- ----- --- ------------ --- ---
mlx5_2 1 0 fe80:0000:0000:0000:0052:72ff:fe63:1651 v2 enp3s0f0s0
mlx5_3 1 0 fe80:0000:0000:0000:0032:6bff:fe13:f13a v2 enp3s0f1s0
dpu> env UCX_NET_DEVICES=mlx5_2:1,mlx5_3:1 <UCX-program>

When RDMACM is not available, it is also required to list the Ethernet devices in UCX_NET_DEVICES
configuration, so they could be used for TCP-based connection establishment. For example:

dpu> env UCX_NET_DEVICES=enp3s0f0s0,enp3s0f1s0,mlx5_2:1,mlx5_3:1 <UCX-program>

14.6.1.3 Architecture
The following image describes the software layers of UCX middleware.

On the upper layer, various applications that utilize high-speed communications are built on top of
the UCX high-level API (UCP).

UCP layer implements the business logic to utilize, combine, and manipulate different transports to
achieve the best possible performance for different use cases. This logic decides which transports
must be used for each message, which types of basic hardware communication primitives to use,
how to fragment messages, etc.

UCT, the transport API, is a hardware abstraction layer that brings different types of communication
devices to a common denominator. There are multiple communication primitives defined by UCT
API, but each transport service may implement only some of them—preferably the ones that are
natively supported by the underlying hardware. UCT users (e.g., UCP) are expected to handle the
missing communication primitives defined by UCT API but not implemented by a transport service.

754

14.6.1.3.1 UCP Objects

This section describes the high-level communication objects that are used by most applications
written on top of UCX.

14.6.1.3.1.1 UCP Context (ucp_context_h)

The context is the top-level object and it defines the scope of all other UCX objects. It is possible to
create multiple contexts in the same process to have a complete separation of hardware and
memory resources.

14.6.1.3.1.2 UCP Worker (ucp_worker_h)

The worker represents a communication state and its associated network resources. It is responsible
for sending and processing incoming messages and handling all network-related events. All point-to-
point connections are created in the scope of a particular worker.

A worker object can be defined to support usage from multiple threads. However, due to lock
contention, the performance is better when a given worker is used most of the time from one
thread.

The worker progresses communications either by active polling, waiting for asynchronous events, or
a combination of both.

14.6.1.3.1.3 UCP Endpoint (ucp_ep_h)

The endpoint represents a connection from a local worker to a remote worker. That remote worker
may be created in any place that is reachable by one of the communication networks supported by
UCT layer. That could be, for example, on a different host in the fabric, the same host, on the DPU,
or even in the same process.

755

•

14.6.1.3.1.4 UCP Listener (ucp_listener_h)

The listener binds to a network port number on the underlying operating system, and dispatches
incoming connection requests. The incoming connection request can be used to create a matching
endpoint on the server (passive) side or rejected and released.

14.6.1.3.1.5 UCP Request (ucp_request_h)

The request object is created by one of the non-blocking communications primitives in a case where
the operation could not be completed immediately in-place. The application is expected to check
the request for completion, either by testing it directly, or by associating a custom callback with the
request.

14.6.1.4 API
This section describes the main UCX APIs for high-speed communications. For the full reference,
refer to UCX API specification.

UCX exposes two kinds of API: the high-level UCP API and the low-level UCT (transport) API. For most
applications, it is recommended to use only the UCP API, since it relieves much of the burden of
handling each transport's capabilities, limitations, and performance traits.

Many of the APIs accept a structure pointer with a field_mask as an argument. This method is
used to provide backward ABI/API compatibility: If new function arguments are introduced, they are
added as new fields in the struct, so the function signature does not change. In
addition, field_mask specifies which struct fields are valid from the caller's (user application)
perspective. UCX only accesses the fields enabled by this bitmask and uses default values for the
remaining struct fields.

Some APIs require passing user-defined callbacks as a method to get notifications about specific
events. Unless otherwise specified, such callbacks are called from the context of
the ucp_worker_progress() call (detailed below), and are expected to complete quickly or defer
some of their tasks to another thread (to avoid timeouts and starvation of processing from other
network events).

The following sections provide additional details about the library API.

14.6.1.4.1 ucs_status_t

An enum type that holds all UCX error codes.

14.6.1.4.2 ucp_init

ucs_status_t ucp_init(const ucp_params_t *params, const ucp_config_t *config, ucp_context_h *context_p)

params [in] – points to a structure with optional parameters. All fields are optional
except features, which must be set.

The pkg-config (*.pc file) for the UCX library is named ucx .

https://openucx.readthedocs.io/en/master/api.html

756

•

•

•

•

•

•

•

•

•

config [in] – optional, can be NULL for default behavior. Configuration can be obtained by
calling ucp_config_read().

context_p [out] – a pointer to a location in memory for the created UCP context

The function returns an error code as defined by ucs_status_t .

This function creates a new UCP top-level context and returns it by value in the context_p argume
nt.

14.6.1.4.3 ucp_cleanup

void ucp_cleanup(ucp_context_h context_p)

context_p [in] – a UCP context instance

This function destroys a previously created context. Prior to calling this function, any other
resources created on this context (e.g., workers or endpoints) must be destroyed.

14.6.1.4.4 ucp_worker_create

ucs_status_t ucp_worker_create(ucp_context_h context, const ucp_worker_params_t *params, ucp_worker_h *worker_p)

context [in] – an existing UCP context

params [in] – points to a structure with configuration parameters. All fields are optional.

Commonly, only the field thread_mode is used. Possible thread_mode values are as follows:

UCS_THREAD_MODE_SINGLE – only one specific thread (typically, the one that created
the worker) is used to access the worker and its associated endpoints.
UCS_THREAD_MODE_SERIALIZED – multiple threads can access the worker and its
associated endpoints, but only one at a time. This implies an exclusion mechanism
(e.g., locking) implemented in the application. Sometimes, more expensive bus
flushing instructions are needed with serialized mode, compared to single thread
mode.
UCS_THREAD_MODE_MULTI – multiple threads can access the worker at any given time.
UCX takes care of the locking internally. As of version 1.12, it is implemented as a
global lock on the worker.

worker_p [out] – a pointer to a location in memory for the created worker

The function returns an error code as defined by ucs_status_t .

This function creates a new UCP worker on a previously created context and returns it by value in
the worker_p argument.

The supported configuration options can change between UCX versions. The full list
can be obtained by running the ucx_info CLI tool:
ucx_info -c -f

757

•

•

•

•

•

•

14.6.1.4.5 ucp_worker_destroy

void ucp_worker_destroy(ucp_worker_h worker)

context_p [in] – an UCP worker instance

This function destroys a previously created worker. Prior to calling this function, all associated
endpoints and listeners must be destroyed.

Destroying the worker may cause communication errors on any remote peer that has an open
endpoint to this worker. These errors are handled according to that endpoint's error handling
configuration (detailed in section ucp_ep_create).

14.6.1.4.6 ucp_listener_create

ucs_status_t ucp_listener_create(ucp_worker_h worker, const ucp_listener_params_t *params, ucp_listener_h
*listener_p)

worker [in] – an existing UCP worker

params [in] – points to a structure with configuration parameters. The fields sockaddr an

d conn_handler are mandatory, but the rest of the fields are optional.

sockaddr – specifies IPv4/IPv6 address to listen for connections. The semantics are

similar to the built-in bind() function. INADDR_ANY/INADDR6_ANY can be used to listen
on all network interfaces. If the port number is set to 0, a random unused port is
selected. The actual port number can be obtained by calling
the ucp_listener_query() API.

conn_handler – a callback for handling incoming connection requests along with an
associated user-defined argument. The callback type is defined as:

void (*ucp_listener_conn_callback_t) (ucp_conn_request_h conn_request, void *arg)

Whenever a remote endpoint is created through this listener, this callback is called on
the listener side with a new conn_request object representing the incoming

connection, and the user-defined argument arg that is passed

to ucp_listener_create() .
The callback is expected to process this connection request by either creating an
endpoint for it (pass conn_request as a parameter to ucp_ep_create , including on

a different worker), or rejecting and destroying it (call ucp_listener_reject). This
does not have to happen immediately. The callback may put the connection request on
an internal application queue and process it later.

listener_p [out] – a pointer to a location in memory for the created listener

When ucp_worker_create() succeeds, the caller is still expected to check the actual

thread mode the worker was created with by calling ucp_worker_query() API, and take
the necessary actions (for example, report an error or fallback) if the returned thread mode
is not as expected to be.

758

•

•

•

•

•

•

•

The function returns an error code as defined by ucs_status_t .

This function creates a new listener object to accept incoming connections on a specific network
port, and returns it by value in the listener_p argument.

14.6.1.4.7 ucp_listener_destroy

void ucp_listener_destroy(ucp_listener_h listener_p)

listener_p [in] – a listener instance

This function destroys a previously created listener. Prior to calling this function, any connection
requests that were reported by conn_handler are expected to be processed. Pending connection
requests that have not been reported to the application yet, or new connection requests that arrive
after this function is called, are rejected.

14.6.1.4.8 ucp_ep_create

ucs_status_t ucp_ep_create(ucp_worker_h worker, const ucp_ep_params_t *params, ucp_ep_h *ep_p)

worker [in] – an existing UCP worker

params [in] – Points to a structure with configuration parameters. A creation mode
field must be set. Other fields are optional. Commonly used fields are described in the
following subsections.
ep_p [in] – a pointer to a location in memory for the created endpoint

The function returns an error code as defined by ucs_status_t .

This function creates a new connection to a remote peer and returns it by value in the ep_p param
eter. The new endpoint can be used for communication immediately after it is created, though some
operations may be queued internally and sent after the underlying connection is established.

14.6.1.4.8.1 Create Modes (ucp_ep_params_t)

There are three ways the endpoint can be created:

Client connects to a remote listener
In this case, the sockaddr field specifies the remote IPv4/IPv6 address and port number.
The flags field must be enabled and must include

the UCP_EP_PARAMS_FLAGS_CLIENT_SERVER flag. Optionally, from UCX version 1.13 on,

the local_sockaddr field may be used to specify a local source device address to bind to.
Server creates an endpoint due to an incoming connection request
In this case, the conn_request field must be set to this connection request. Such endpoint
can optionally be created on a different worker, not the same one this connection request
was accepted on.
Create an endpoint to a specific worker address
In this case, the field address must be set to point to a remote worker's address. That

address (and its length) must be obtained on the remote side by calling ucp_worker_query() a
nd sent using an application-defined method (e.g., TCP socket, or other existing

759

•

•

•

•

•

•

•

communication mechanism). The internal structure of the address is opaque and may change
in different versions.

14.6.1.4.8.2 User-Defined Error Handling (ucp_ep_params_t)

By default, unexpected errors on the connection (e.g., network disconnection or aborted remote
process) generate a fatal failure. To enable graceful error handing, several parameters must be set
during endpoint creation:

The err_mode field must be set to UCP_ERR_HANDLING_MODE_PEER . This guarantees that send
requests are always completed (successfully or error). Otherwise, network errors are
considered fatal and abort the application without giving it a chance to perform cleanup or
fallback flows.
The err_handler.cb field must be set to a user-defined callback which is called if a
connection error occurs. The error handler is defined as follows:

void (*ucp_err_handler_cb_t)(void *arg, ucp_ep_h ep, ucs_status_t status)

The callback parameters are the user-defined argument (passed in user_data), the endpoint
handle on which the error happened, and the error code.
After this callback, no more communications should be done on the endpoint. The application
is expected to close the endpoint.
The user_data field must be set to a user-defined argument passed to the err_handler c
allback

14.6.1.4.9 ucs_status_ptr_t

typedef void* ucs_status_ptr_t;

This function is commonly used as a return value for non-blocking operations.

The return value of ucs_status_ptr_t combines a status code and a request pointer which may
be one of the following:

A NULL pointer indicating that the operation has completed successfully in-place. The user-
provided callback, if there is one, is not called.
An error status, that can be detected by the UCS_PTR_IS_ERR(status) macro and extracted

by UCS_PTR_STATUS(status) .
Otherwise, the status is a request pointer which can also be detected by
the UCS_PTR_IS_PTR(status) macro. This means that the communication operation has
started (or was queued) but not yet completed. The completion is reported by calling the
user-provided callback (in ucp_request_param_t) or through an explicit check on the

request status by calling ucp_request_check_status() .

14.6.1.4.10 ucp_ep_close_nbx

ucs_status_ptr_t ucp_ep_close_nbx(ucp_ep_h ep, const ucp_request_param_t *param)

ep [in] – an existing UCP endpoint

760

•

•

•

•

•

•

•

•

param [in] – points to a structure that defines how the closing operation is performed.

The flags field of the param structure specifies which method to use to close the
endpoint:

UCP_EP_CLOSE_MODE_FORCE – close the endpoint immediately without attempting to
flush outstanding operation. Some requests already completed on the transport level
may complete successfully, others may be completed with an error status. In the latter
case, it is not known whether they have reached the destination process or completed
there.
Closing an endpoint this way is equivalent to calling close() on a TCP socket and can
generate a connection error on the remote side. Therefore, to use this mode, both the
local and remote endpoints must be created with the err_mode parameter set

to UCP_ERR_HANDLING_MODE_PEER .

UCP_EP_CLOSE_MODE_FLUSH – synchronize with the remote peer and flush outstanding
operations. Some operations may be canceled and complete with the
status UCS_ERR_CANCELED . However, it is guaranteed that they did not complete on
the remote peer as well.

The function returns a status pointer to check the operation's status. NULL means success.

This function starts the process of closing a previously created endpoint. The function is non-
blocking, and the returned value is a status pointer used to indicate when the endpoint is fully
destroyed. For more information, refer to section Communications.

14.6.1.4.11 ucp_request_param_t

struct ucp_request_param_t {
 uint32_t op_attr_mask;
 uint32_t flags;
 union ucp_request_param_t cb;
 void *user_data;
 ucp_datatype_t datatype;
 /* Some other fields that are rarely used */
 …
}

op_attr_mask [in] – mask of enabled fields and several control flags.

flags [in] – operation-specific flags. Each API method defines its own set of flags for this
field.
cb [in] – callback for when the operation is completed.

user_data [in] – user-defined argument passed to the completion callback.

datatype [in] – may be used to specify a custom data layout for the data buffer (not

user_data) that is provided to the communication API. If this parameter is not set, the data
buffer is treated as a contiguous byte buffer.

The fields of ucp_request_param_t specify several common attributes and flags that are used to
control how the communications request is allocated and completed. This is aimed to optimize
different use-cases.

761

•

•

•

•

•

•

•

•

•

•

•

14.6.1.4.12 ucp_worker_progress

unsigned ucp_worker_progress(ucp_worker_h worker)

worker [in] – an existing UCP worker

The function returns a non-zero value if any communication has been progressed. Otherwise, it
returns zero.

This function progresses outstanding communications on the worker. This includes polling hardware
and shared memory queues, calling callbacks, pushing pending operations to the network devices,
advancing the state of complex protocols, progressing connection establishment process, and more.

Though some transports, such as RDMA, offload do much of the heavy lifting, the initiation and
completion of communication operations still must be performed explicitly by the process. UCX does
not spawn additional progress threads. Instead, it is expected that the upper-layer application
spawns its own progress thread, as needed, to call ucp_worker_progress() .

14.6.1.4.13 ucp_am_send_nbx

ucs_status_ptr_t ucp_am_send_nbx(ucp_ep_h ep, unsigned id, const void *header,
 size_t header_length, const void *buffer,
 size_t count, const ucp_request_param_t *param)

ep [in] – connection to send the active message on. Previously returned

from ucp_ep_create() .

id [in] – active message identifier. This is an arbitrary 16-bit integer value defined by the
application and used to select the active message callback to call on the receiver side. This
allows handling different types of messages by different callback functions.
header [in] – pointer to a user-defined header for an active message

header_length [in] – length of the header to send. Usually, the header is small and, in any

case, it should be no larger than the max_am_header worker attribute, as returned

from ucp_worker_query() . The header size could vary depending on the available
transports and is usually expected to be at least 256 bytes.
buffer [in] – pointer to the active message payload

count [in] – number of elements in the payload buffer. By default, each element is a single
byte, so this is the byte-length of the buffer. Other data layouts, such as IO vector (IOV) list,
could be specified by param->datatype .

param [in] – additional parameters controlling request completion semantics. The relevant

field is only flags and it can be set to a combination of the following flags:

UCP_AM_SEND_FLAG_REPLY – force passing reply_ep to the callback on the receiver
side. This can increase the internal header size and add some overhead.
UCP_AM_SEND_FLAG_EAGER – force using eager protocol (details below).

UCP_AM_SEND_FLAG_RNDV – force using rendezvous protocol (details below).

This function cannot be used from inside a callback.

762

•

•

•

•

•

•

•

•

The active message can be sent either by the eager or rendezvous protocol. Eager
protocol means the data buffer is available on the receiver immediately during the
callback, while the rendezvous protocol requires fetching the data using an additional
call to ucp_am_recv_data_nbx() , allowing it to be placed directly to an application-
selected buffer. By default, smaller messages are sent via eager protocol, and larger
messages use rendezvous protocol. This can be overridden
using UCP_AM_SEND_FLAG_EAGER or UCP_AM_SEND_FLAG_RNDV .

The function returns a status pointer to check the operation's status. NULL means success.

This function initiates sending of an active message from the initiator side. As a result, a designated
callback (registered by ucp_worker_set_am_recv_handler) is called on the receiver side to
handle this message. The function is non-blocking, so if the send operation is not completed
immediately, a request handle is retuned.

14.6.1.4.14 ucp_worker_set_am_recv_handler

ucs_status_t ucp_worker_set_am_recv_handler(ucp_worker_h worker, const ucp_am_handler_param_t *param)

worker [in] – an existing UCP worker.

param [in] – set callback configurations. See more below.

The function returns a non-zero value if any communication has been progressed. Otherwise, it
returns zero.

This function registers a callback for processing active messages on the given worker.

The following are the mandatory fields to set in param :

id – active message identifier to bind with the registered callback. Callback is invoked when
receiving incoming messages with the same ID.
arg – a user-defined argument to pass to the active message callback.

cb – a user-defined callback to invoke when an active message arrives. The callback is
defined as:

ucs_status_t (*ucp_am_recv_callback_t)(void *arg, const void *header,
 size_t header_length, void *data,
 size_t length,
 const ucp_am_recv_param_t *param)

The following are the parameters passed from UCX to the callback:

arg – the same user-defined argument passed to ucp_worker_set_am_recv_handler .

header – points to the active message header as defined by the sender side while sending
the active message. The header should be consumed by the callback since it is not valid after
the callback returns.
header_length – valid size of the buffer pointer by header .

UCP_AM_SEND_FLAG_EAGER and UCP_AM_SEND_FLAG_RNDV are mutually exclusive.

763

•

•

•

•

•

•

•

•

•

•

data – pointer to the data or an opaque handle that can be used to fetch the data according

to the UCP_AM_RECV_ATTR_FLAG_RNDV flag in the field param->recv_attr . When flag is on,
this is an opaque handle.
length – length of the active message data (even if the data argument is an opaque handle
and not the actual data).
param – pointer to additional parameters of the incoming message. The relevant fields are:

recv_attr – flags providing more information about the incoming message.

reply_ep – if UCP_AM_RECV_ATTR_FIELD_REPLY_EP is set in recv_attr , then this
field holds a handle to an endpoint that can be used to send replies to the active
message sender.

The callback is expected to return UCS_OK if the message data has been consumed or

if UCP_AM_RECV_ATTR_FLAG_RNDV is set in recv_attr . Otherwise, the

if UCP_AM_RECV_ATTR_FLAG_DATA is set in recv_attr , the callback is allowed to keep the data for
later processing (by adding it to an internal application queue, for example). In this case, the
callback should return UCS_INPROGRESS as indication that the data should persist.

When a message arrives with UCP_AM_RECV_ATTR_FLAG_RNDV flag, the

function ucp_am_recv_data_nbx must be used to fetch the data from the sender.

14.6.1.4.15 ucp_am_recv_data_nbx

ucs_status_ptr_t ucp_am_recv_data_nbx(ucp_worker_h worker, void *data_desc,
 void *buffer, size_t count,
 const ucp_request_param_t *param)

worker [in] – UCP worker object to use for initiating the receive operation.

data_desc [in] – handle for the data to receive. Obtained from the data argument for
the active message callback.
buffer [in] – receive buffer for the incoming data.

count [in] – number of elements in the payload buffer. By default, each element is a single
byte, so this is the byte-length of the buffer. Other data layouts, such as the IOV list, may be
specified by param->datatype .

param [in] – additional parameters that control request allocation and completion
reporting. No specific flags are needed for this function.

The function returns a status pointer to check the operation's status. NULL means success.

This function is used for rendezvous active messages. The function initiates the process of fetching
data from the sender side into an application-defined receive buffer. It is expected to be used when
an active message callback is called with the UCP_AM_RECV_ATTR_FLAG_RNDV flag set in params-

>recv_attr field.

The connection handle (endpoint) is not needed.

https://docs.nvidia.com/networking/display/doca20review1/NVIDIA+DOCA+UCX+Programming+Guide

764

•
•

•

•

14.6.1.5 UCX Best Practices

14.6.1.5.1 Initialization

An application using UCX will usually create one global context (ucp_context_h) then create one

or more workers (ucp_worker_h). Each worker consumes some memory for send/receive buffers,
so it is not recommended to create too many workers. The rule of thumb is that the number of
workers should be roughly tied to the number of CPU cores/threads.

The mapping of workers to threads is defined by the application's use case, for example:

A single-threaded application does not need more than one worker
A simple implementation of a multi-threaded application can create one or more workers in
multi-threaded mode. These workers can be used by any thread.
A multi-threaded application with a strong affinity between the thread and CPU core can
create a dedicated worker per thread. These workers can be created in a single-threaded
mode.
Applications with many threads can implement a pool of workers and use one randomly or
assign some to threads temporarily.

To initiate communications, the application should create endpoints (ucp_ep_h) connected to the
remote peers. There are two main methods to create an endpoint: Either by connecting directly to
a remote worker's address, or by creating a listener object (ucp_listener_h) and connecting to

remote IP address and port. These methods are described in more detail in the ucp_ep_create() s
ection.

14.6.1.5.2 Communications

After initializing the UCP context, worker, and endpoints, the application can start using the
endpoint for communications. Usually, endpoints are associated with application-level object that
represents a connection.

Most communication operations follow a similar pattern: A non-blocking function (with _nbx suffix)

receives a pointer to the ucp_request_param_t structure and returns ucs_status_ptr_t . Using
a struct pointer allows extending the operations and while maintaining backward compatibility.

There are several types of communication methods supported by UCP intended for different kinds of
applications. The recommended method for most applications is active messages which mean that
the initiator can send arbitrary data to the responder, and the responder invokes a callback that can
access this data.

14.6.2 MLX Drivers (MLNX_OFED)

Unable to render include or excerpt-include. Could not retrieve page.

If there are multiple workers, each of them needs to create its own set of endpoints, since
every endpoint connects a specific pair of workers.

765

•
•
•
•
•
•
•

•
•
•
•
•
•
•
•
•
•
•

•
•

•

The chapter contains the following sections:

InfiniBand Network
Storage Protocols
Virtualization
Resiliency
Docker Containers
HPC-X
Fast Driver Unload

14.6.2.1 InfiniBand Network
The chapter contains the following sections:

InfiniBand Interface
NVIDIA SM
QoS - Quality of Service
IP over InfiniBand (IPoIB)
Advanced Transport
Optimized Memory Access
NVIDIA PeerDirect
CPU Overhead Distribution
Out-of-Order (OOO) Data Placement
IB Router
MAD Congestion Control

14.6.2.1.1 InfiniBand Interface

14.6.2.1.1.1 Port Type Management

For information on port type management of ConnectX-4 and above adapter cards, please refer to
Port Type Management/VPI Cards Configuration section.

14.6.2.1.1.2 RDMA Counters
RDMA counters are available only through sysfs located under:

/sys/class/infiniband/<device>/ports/*/hw_counters/

/sys/class/infiniband/<device>/ports/*/counters

For mlx5 port and RDMA counters, refer to the Understanding mlx5 Linux Counters Community post.

14.6.2.1.2 NVIDIA SM

NVIDIA SM is an InfiniBand compliant Subnet Manager (SM). It is provided as a fixed flow executable
called "opensm", accompanied by a testing application called osmtest. NVIDIA SM implements an
InfiniBand compliant SM according to the InfiniBand Architecture Specification chapters:
Management Model, Subnet Management, and Subnet Administration.

https://enterprise-support.nvidia.com/s/article/understanding-mlx5-linux-counters-and-status-parameters

766

•

•

14.6.2.1.2.1 OpenSM Application

OpenSM is an InfiniBand compliant Subnet Manager and Subnet Administrator that runs on top of the
NVIDIA OFED stack. OpenSM performs the InfiniBand specification's required tasks for initializing
InfiniBand hardware. One SM must be running for each InfiniBand subnet.
OpenSM defaults were designed to meet the common case usage on clusters with up to a few
hundred nodes. Thus, in this default mode, OpenSM will scan the IB fabric, initialize it, and sweep
occasionally for changes.
OpenSM attaches to a specific IB port on the local machine and configures only the fabric connected
to it. (If the local machine has other IB ports, OpenSM will ignore the fabrics connected to those
other ports). If no port is specified, opensm will select the first "best" available port. opensm can
also present the available ports and prompt for a port number to attach to.
By default, the OpenSM run is logged to/var/log/opensm.log. All errors reported in this log file
should be treated as indicators of IB fabric health issues. (Note that when a fatal and non-
recoverable error occurs, OpenSM will exit). opensm.log should include the message "SUBNET UP" if
OpenSM was able to set up the subnet correctly.

Syntax

opensm [OPTIONS]

For the complete list of OpenSM options, please run:

opensm --help / -h / -?

Environment Variables

The following environment variables control OpenSM behavior:

OSM_TMP_DIR - controls the directory in which the temporary files generated by OpenSM are
created. These files are: opensm-subnet.lst, opensm.fdbs, and opensm.mcfdbs. By default,
this directory is /var/log.
OSM_CACHE_DIR - opensm stores certain data to the disk such that subsequent runs are
consistent. The default directory used is /var/cache/opensm. The following file is included in
it:
guid2lid – stores the LID range assigned to each GUID

Signaling

When OpenSM receives a HUP signal, it starts a new heavy sweep as if a trap has been received or a
topology change has been found.
Also, SIGUSR1 can be used to trigger a reopen of /var/log/opensm.log for logrotate purposes.

Running OpenSM as Daemon

OpenSM can also run as daemon. To run OpenSM in this mode, enter:

host1# service opensmd start

767

•
•
•
•
•

14.6.2.1.2.2 osmtest

osmtest is a test program for validating the InfiniBand Subnet Manager and Subnet Administrator.
osmtest provides a test suite for opensm. It can create an inventory file of all available nodes,
ports, and PathRecords, including all their fields. It can also verify the existing inventory with all
the object fields and matches it to a pre-saved one.
osmtest has the following test flows:

Multicast Compliancy test
Event Forwarding test
Service Record registration test
RMPP stress test
Small SA Queries stress test

For further information, please refer to the tool's man page.

14.6.2.1.2.3 Partitions

OpenSM enables the configuration of partitions (PKeys) in an InfiniBand fabric. By default, OpenSM
searches for the partitions configuration file under the name /etc/opensm/partitions.conf. To
change this filename, you can use opensm with the '--Pconfig' or '-P' flags.
The default partition is created by OpenSM unconditionally, even when a partition configuration file
does not exist or cannot be accessed.
The default partition has a P_Key value of 0x7fff. The port out of which runs OpenSM is assigned full
membership in the default partition. All other end-ports are assigned partial membership.

File Format

General File Format

 <Partition Definition>:\[<newline>\]<Partition Properties>

•

•

Adding a new partition to the partition.conf file, does not require SM restart, but
signalling SM process via a HUP signal (e.g pkill -HUP opensm).
The default partition cannot be removed.

Adjustments to the Port GUIDs, including additions, removals, or membership alterations
(denoted as "<PortGUID>=[full|limited|both]" in the "Partition Definition") can be applied
with a HUP signal to the Subnet Manager process (e.g pkill -HUP opensm).

Performing changes in the ipoib_bc_flags (ipoib/sl/scope/rate/mtu) and mgroup flags of an
existing partition requires a restart of the Subnet Manager to take effect.

Line content followed after '#' character is comment and ignored by parser.

768

•

•

•

•

<Partition Definition>:

[PartitionName][=PKey][,indx0][,ipoib_bc_flags][,defmember=full|limited]

where:

PartitionName String, will be used with logging. When omitted empty string will

be used.

PKey P_Key value for this partition. Only low 15 bits will be used.

When omitted will be auto-generated.

indx0 Indicates that this pkey should be inserted in block 0 index 0.

ipoib_bc_flags Used to indicate/specify IPoIB capability of this partition.

defmember=full|

limited|both

Specifies default membership for port GUID list. Default is

limited.

ipoib_bc_flags are:

ipoib Indicates that this partition may be used for IPoIB, as

a result the IPoIB broadcast group will be created with

the flags given, if any.

rate=<val> Specifies rate for this IPoIB MC group (default is 3

(10GBps))

mtu=<val> Specifies MTU for this IPoIB MC group (default is 4

(2048))

sl=<val> Specifies SL for this IPoIB MC group (default is 0)

scope=<val> Specifies scope for this IPoIB MC group (default is 2

(link local))

<Partition Properties>:

 \[<Port list>|<MCast Group>\]* | <Port list>

<Port List>:

<Port Specifier>[,<Port Specifier>]

<Port Specifier>:

<PortGUID>[=[full|limited|both]]

where

769

•

PortGUID GUID of partition member EndPort. Hexadecimal

numbers should start from 0x, decimal numbers

are accepted too.

full, limited Indicates full and/or limited membership for

this both port. When omitted (or unrecognized)

limited membership is assumed. Both indicate

full and limited membership for this port.

<MCast Group>:

mgid=gid[,mgroup_flag]*<newline>

where:

mgid=gi

d

gid specified is verified to be a Multicast address IP groups

are verified to match the rate and mtu of the broadcast group.

The P_Key bits of the mgid for IP groups are verified to either

match the P_Key specified in by "Partition Definition" or if

they are 0x0000 the P_Key will be copied into those bits.

mgroup_

flag

rate=<

val>

Specifies rate for this MC group (default is 3

(10GBps))

mtu=<v

al>

Specifies MTU for this MC group (default is 4 (2048))

sl=<va

l>

Specifies SL for this MC group (default is 0)

scope=

<val>

Specifies scope for this MC group (default is 2 (link

local)). Multiple scope settings are permitted for a

partition.

NOTE: This overwrites the scope nibble of the

specified mgid. Furthermore specifying multiple scope

settings will result in multiple MC groups being

created.

qkey=<

val>

Specifies the Q_Key for this MC group (default: 0x0b1b

for IP groups, 0 for other groups)

tclass

=<val>

Specifies tclass for this MC group (default is 0)

FlowLa

bel=<va

l>

Specifies FlowLabel for this MC group (default is 0)

Note that values for rate, MTU, and scope should be specified as defined in the IBTA specification
(for example, mtu=4 for 2048). To use 4K MTU, edit that entry to "mtu=5" (5 indicates 4K MTU to
that specific partition).

770

•
•
•
•
•

•
•

•

PortGUIDs list:

PortGUID GUID of partition member EndPort. Hexadecimal numbers should start from 0x, decimal numbers are
accepted too.
full or limited indicates full or limited membership for this port. When omitted (or unrecognized) limited
membership is assumed.

There are some useful keywords for PortGUID definition:

'ALL_CAS' means all Channel Adapter end ports in this subnet
'ALL_VCAS' means all virtual end ports in the subnet
'ALL_SWITCHES' means all Switch end ports in this subnet
'ALL_ROUTERS' means all Router end ports in this subnet
'SELF' means subnet manager's port. An empty list means that there are no ports in this
partition

Notes:

White space is permitted between delimiters ('=', ',',':',';').
PartitionName does not need to be unique, PKey does need to be unique. If PKey is repeated
then those partition configurations will be merged and the first PartitionName will be used
(see the next note).
It is possible to split partition configuration in more than one definition, but then PKey should
be explicitly specified (otherwise different PKey values will be generated for those
definitions).

Examples:

Default=0x7fff : ALL, SELF=full ;
Default=0x7fff : ALL, ALL_SWITCHES=full, SELF=full ;

NewPartition , ipoib : 0x123456=full, 0x3456789034=limi, 0x2134af2306 ;

YetAnotherOne = 0x300 : SELF=full ;
YetAnotherOne = 0x300 : ALL=limited ;

ShareIO = 0x80 , defmember=full : 0x123451, 0x123452;
0x123453, 0x123454 will be limited
ShareIO = 0x80 : 0x123453, 0x123454, 0x123455=full;
0x123456, 0x123457 will be limited
ShareIO = 0x80 : defmember=limited : 0x123456, 0x123457, 0x123458=full;
ShareIO = 0x80 , defmember=full : 0x123459, 0x12345a;
ShareIO = 0x80 , defmember=full : 0x12345b, 0x12345c=limited, 0x12345d;

multicast groups added to default
Default=0x7fff,ipoib:
mgid=ff12:401b::0707,sl=1 # random IPv4 group
mgid=ff12:601b::16 # MLDv2-capable routers
mgid=ff12:401b::16 # IGMP
mgid=ff12:601b::2 # All routers
mgid=ff12::1,sl=1,Q_Key=0xDEADBEEF,rate=3,mtu=2 # random group
ALL=full;

The following rule is equivalent to how OpenSM used to run prior to the partition manager:

Default=0x7fff,ipoib:ALL=full;

14.6.2.1.2.4 Effect of Topology Changes

If a link is added or removed, OpenSM may not recalculate the routes that do not have to change. A
route has to change if the port is no longer UP or no longer the MinHop. When routing changes are
performed, the same algorithm for balancing the routes is invoked.
In the case of using the file-based routing, any topology changes are currently ignored. The 'file'

771

1.

2.

3.

4.

5.

6.

1.

2.

routing engine just loads the LFTs from the file specified, with no reaction to real topology.
Obviously, this will not be able to recheck LIDs (by GUID) for disconnected nodes, and LFTs for non-
existent switches will be skipped. Multicast is not affected by 'file' routing engine (this uses min hop
tables).

14.6.2.1.2.5 Routing Algorithms

OpenSM offers the following routing engines:

Min Hop Algorithm
Based on the minimum hops to each node where the path length is optimized.
UPDN Algorithm
Based on the minimum hops to each node, but it is constrained to ranking rules. This
algorithm should be chosen if the subnet is not a pure Fat Tree, and a deadlock may occur
due to a loop in the subnet.
Fat-tree Routing Algorithm
This algorithm optimizes routing for a congestion-free "shift" communication pattern. It
should be chosen if a subnet is a symmetrical Fat Tree of various types, not just a K-ary-N-
Tree: non-constant K, not fully staffed, and for any CBB ratio. Similar to UPDN, Fat Tree
routing is constrained to ranking rules.
DOR Routing Algorithm
Based on the Min Hop algorithm, but avoids port equalization except for redundant links
between the same two switches. This provides deadlock free routes for hypercubes when the
fabric is cabled as a hypercube and for meshes when cabled as a mesh.
Torus-2QoS Routing Algorithm
Based on the DOR Unicast routing algorithm specialized for 2D/3D torus topologies. Torus-
2QoS provides deadlock-free routing while supporting two quality of service (QoS) levels.
Additionally, it can route around multiple failed fabric links or a single failed fabric switch
without introducing deadlocks, and without changing path SL values granted before the
failure.
Routing Chains
Allows routing configuration of different parts of a single InfiniBand subnet by different
routing engines. In the current release, minhop/updn/ftree/dor/torus-2QoS/pqft can be
combined.

MINHOP/UPDN/DOR routing algorithms are comprised of two stages:

MinHop matrix calculation. How many hops are required to get from each port to each LID.
The algorithm to fill these tables is different if you run standard (min hop) or Up/Down. For
standard routing, a "relaxation" algorithm is used to propagate min hop from every
destination LID through neighbor switches. For Up/Down routing, a BFS from every target is
used. The BFS tracks link direction (up or down) and avoid steps that will perform up after a
down step was used.
Once MinHop matrices exist, each switch is visited and for each target LID a decision is made
as to what port should be used to get to that LID. This step is common to standard and Up/

Please note that LASH Routing Algorithm is not supported.

772

a.
b.

c.
d.

1.

2.

3.

Down routing. Each port has a counter counting the number of target LIDs going through it.
When there are multiple alternative ports with same MinHop to a LID, the one with less
previously assigned ports is selected.
If LMC > 0, more checks are added. Within each group of LIDs assigned to same target port:

Use only ports which have same MinHop
First prefer the ones that go to different systemImageGuid (then the previous LID of
the same LMC group)
If none, prefer those which go through another NodeGuid
Fall back to the number of paths method (if all go to same node).

Min Hop Algorithm

The Min Hop algorithm is invoked by default if no routing algorithm is specified. It can also be
invoked by specifying '-R minhop'.
The Min Hop algorithm is divided into two stages: computation of min-hop tables on every switch
and LFT output port assignment. Link subscription is also equalized with the ability to override
based on port GUID. The latter is supplied by:

-i <equalize-ignore-guids-file>
-ignore-guids <equalize-ignore-guids-file>

This option provides the means to define a set of ports (by GUIDs) that will be ignored by the link
load equalization algorithm.
LMC awareness routes based on a (remote) system or on a switch basis.

UPDN Algorithm

The UPDN algorithm is designed to prevent deadlocks from occurring in loops of the subnet. A loop-
deadlock is a situation in which it is no longer possible to send data between any two hosts
connected through the loop. As such, the UPDN routing algorithm should be sent if the subnet is not
a pure Fat Tree, and one of its loops may experience a deadlock (due, for example, to high
pressure).
The UPDN algorithm is based on the following main stages:

Auto-detect root nodes - based on the CA hop length from any switch in the subnet, a
statistical histogram is built for each switch (hop num vs the number of occurrences). If the
histogram reflects a specific column (higher than others) for a certain node, then it is marked
as a root node. Since the algorithm is statistical, it may not find any root nodes. The list of
the root nodes found by this auto-detect stage is used by the ranking process stage.

Ranking process - All root switch nodes (found in stage 1) are assigned a rank of 0. Using the
BFS algorithm, the rest of the switch nodes in the subnet are ranked incrementally. This
ranking aids in the process of enforcing rules that ensure loop-free paths.
Min Hop Table setting - after ranking is done, a BFS algorithm is run from each (CA or switch)
node in the subnet. During the BFS process, the FDB table of each switch node traversed by

The user can override the node list manually.

If this stage cannot find any root nodes, and the user did not specify a GUID list file,
OpenSM defaults back to the Min Hop routing algorithm.

773

•
•

•

•

•
•

•

•

•

•

•
•

BFS is updated, in reference to the starting node, based on the ranking rules and GUID
values.

At the end of the process, the updated FDB tables ensure loop-free paths through the subnet.

UPDN Algorithm Usage

Activation through OpenSM:

Use '-R updn' option (instead of old '-u') to activate the UPDN algorithm.
Use '-a <root_guid_file>' for adding an UPDN GUID file that contains the root nodes for
ranking. If the `-a' option is not used, OpenSM uses its auto-detect root nodes algorithm.

Notes on the GUID list file:

A valid GUID file specifies one GUID in each line. Lines with an invalid format will be
discarded
The user should specify the root switch GUIDs

Fat-tree Routing Algorithm

The fat-tree algorithm optimizes routing for "shift" communication pattern. It should be chosen if a
subnet is a symmetrical or almost symmetrical fat-tree of various types. It supports not just K- ary-
N-Trees, by handling for non-constant K, cases where not all leafs (CAs) are present, any Constant
Bisectional Ratio (CBB)ratio. As in UPDN, fat-tree also prevents credit-loop-dead- locks.
If the root GUID file is not provided ('a' or '-root_guid_file' options), the topology has to be pure fat-
tree that complies with the following rules:

Tree rank should be between two and eight (inclusively)
Switches of the same rank should have the same number of UP-going port groups, unless they
are root switches, in which case the shouldn't have UP-going ports at all.
Note: Ports that are connected to the same remote switch are referenced as ‘port group’.
Switches of the same rank should have the same number of DOWN-going port groups, unless
they are leaf switches.
Switches of the same rank should have the same number of ports in each UP-going port
group.
Switches of the same rank should have the same number of ports in each DOWN-going port
group.
All the CAs have to be at the same tree level (rank).

If the root GUID file is provided, the topology does not have to be pure fat-tree, and it should only
comply with the following rules:

Tree rank should be between two and eight (inclusively)
All the Compute Nodes have to be at the same tree level (rank). Note that non-compute node
CAs are allowed here to be at different tree ranks.
Note: List of compute nodes (CNs) can be specified using ‘-u’ or ‘--cn_guid_file’ OpenSM
options.

Topologies that do not comply cause a fallback to min-hop routing. Note that this can also occur on
link failures which cause the topology to no longer be a "pure" fat-tree.
Note that although fat-tree algorithm supports trees with non-integer CBB ratio, the routing will not
be as balanced as in case of integer CBB ratio. In addition to this, although the algorithm allows leaf

774

switches to have any number of CAs, the closer the tree is to be fully populated, the more effective
the "shift" communication pattern will be. In general, even if the root list is provided, the closer the
topology to a pure and symmetrical fat-tree, the more optimal the routing will be.
The algorithm also dumps the compute node ordering file (opensm-ftree-ca-order.dump) in the same
directory where the OpenSM log resides. This ordering file provides the CN order that may be used
to create efficient communication pattern, that will match the routing tables.

Routing between non-CN Nodes
The use of the io_guid_file option allows non-CN nodes to be located on different levels in the fat
tree. In such case, it is not guaranteed that the Fat Tree algorithm will route between two non-CN
nodes. In the scheme below, N1, N2 , and N3 are non-CN nodes. Although all the CN have routes to
and from them, there will not necessarily be a route between N1,N2 and N3. Such routes would
require to use at least one of the switches the wrong way around.

To solve this problem, a list of non-CN nodes can be specified by \'-G\' or \'--io_guid_file\' option.
These nodes will be allowed to use switches the wrong way around a specific number of times
(specified by \'-H\' or \'--max_reverse_hops\'. With the proper max_reverse_hops and io_guid_file
values, you can ensure full connectivity in the Fat Tree. In the scheme above, with a
max_reverse_hop of 1, routes will be instantiated between N1<->N2 and N2<->N3. With a
max_reverse_hops value of 2, N1,N2 and N3 will all have routes between them.

Activation through OpenSM

Use '-R ftree' option to activate the fat-tree algorithm.

DOR Routing Algorithm

The Dimension Order Routing algorithm is based on the Min Hop algorithm and so uses shortest
paths. Instead of spreading traffic out across different paths with the same shortest distance, it
chooses among the available shortest paths based on an ordering of dimensions. Each port must be
consistently cabled to represent a hypercube dimension or a mesh dimension. Paths are grown from
a destination back to a source using the lowest dimension (port) of available paths at each step.
This provides the ordering necessary to avoid deadlock. When there are multiple links between any

Using max_reverse_hops creates routes that use the switch in a counter-stream way. This
option should never be used to connect nodes with high bandwidth traffic between them! It
should only be used to allow connectivity for HA purposes or similar. Also having routes the
other way around can cause credit loops.

LMC > 0 is not supported by fat-tree routing. If this is specified, the default routing
algorithm is invoked instead.

775

•
•
•

•
•

•

two switches, they still represent only one dimension and traffic is balanced across them unless port
equalization is turned off. In the case of hypercubes, the same port must be used throughout the
fabric to represent the hypercube dimension and match on both ends of the cable. In the case of
meshes, the dimension should consistently use the same pair of ports, one port on one end of the
cable, and the other port on the other end, continuing along the mesh dimension.
Use '-R dor' option to activate the DOR algorithm.

Torus-2QoS Routing Algorithm

Torus-2QoS is a routing algorithm designed for large-scale 2D/3D torus fabrics. The torus-2QoS
routing engine can provide the following functionality on a 2D/3D torus:

Free of credit loops routing
Two levels of QoS, assuming switches support 8 data VLs
Ability to route around a single failed switch, and/or multiple failed links, without:

introducing credit loops
changing path SL values

Very short run times, with good scaling properties as fabric size increases

Unicast Routing

Torus-2 QoS is a DOR-based algorithm that avoids deadlocks that would otherwise occur in a torus
using the concept of a dateline for each torus dimension. It encodes into a path SL which datelines
the path crosses as follows:

sl = 0;
for (d = 0; d < torus_dimensions; d++)
/* path_crosses_dateline(d) returns 0 or 1 */
sl |= path_crosses_dateline(d) << d;

For a 3D torus, that leaves one SL bit free, which torus-2 QoS uses to implement two QoS levels.
Torus-2 QoS also makes use of the output port dependence of switch SL2VL maps to encode into one
VL bit the information encoded in three SL bits. It computes in which torus coordinate direc- tion
each inter-switch link "points", and writes SL2VL maps for such ports as follows:

for (sl = 0; sl < 16; sl ++)
/* cdir(port) reports which torus coordinate direction a switch port
* "points" in, and returns 0, 1, or 2 */
sl2vl(iport,oport,sl) = 0x1 & (sl >> cdir(oport));

Thus, on a pristine 3D torus, i.e., in the absence of failed fabric switches, torus-2 QoS consumes 8
SL values (SL bits 0-2) and 2 VL values (VL bit 0) per QoS level to provide deadlock-free routing on a
3D torus. Torus-2 QoS routes around link failure by "taking the long way around" any 1D ring
interrupted by a link failure. For example, consider the 2D 6x5 torus below, where switches are
denoted by [+a-zA-Z]:

776

For a pristine fabric the path from S to D would be S-n-T-r-D. In the event that either link S-n or n-T
has failed, torus-2QoS would use the path S-m-p-o-T-r-D.
Note that it can do this without changing the path SL value; once the 1D ring m-S-n-T-o-p-m has
been broken by failure, path segments using it cannot contribute to deadlock, and the x-direction
dateline (between, say, x=5 and x=0) can be ignored for path segments on that ring. One result of
this is that torus-2QoS can route around many simultaneous link failures, as long as no 1D ring is
broken into disjoint segments. For example, if links n-T and T-o have both failed, that ring has been
broken into two disjoint segments, T and o-p-m-S-n. Torus-2QoS checks for such issues, reports if
they are found, and refuses to route such fabrics.
Note that in the case where there are multiple parallel links between a pair of switches, torus-2QoS
will allocate routes across such links in a round-robin fashion, based on ports at the path destination
switch that are active and not used for inter-switch links. Should a link that is one of several such
parallel links fail, routes are redistributed across the remaining links. When the last of such a set of
parallel links fails, traffic is rerouted as described above.
Handling a failed switch under DOR requires introducing into a path at least one turn that would be
otherwise "illegal", i.e. not allowed by DOR rules. Torus-2QoS will introduce such a turn as close as
possible to the failed switch in order to route around it. n the above example, suppose switch T has
failed, and consider the path from S to D. Torus-2QoS will produce the path S-n-I-r-D, rather than
the S-n-T-r-D path for a pristine torus, by introducing an early turn at n. Normal DOR rules will cause
traffic arriving at switch I to be forwarded to switch r; for traffic arriving from I due to the "early"
turn at n, this will generate an "illegal" turn at I.
Torus-2QoS will also use the input port dependence of SL2VL maps to set VL bit 1 (which would be
otherwise unused) for y-x, z-x, and z-y turns, i.e., those turns that are illegal under DOR. This
causes the first hop after any such turn to use a separate set of VL values, and prevents deadlock in
the presence of a single failed switch. For any given path, only the hops after a turn that is illegal
under DOR can contribute to a credit loop that leads to deadlock. So in the example above with
failed switch T, the location of the illegal turn at I in the path from S to D requires that any credit
loop caused by that turn must encircle the failed switch at T. Thus the second and later hops after
the illegal turn at I (i.e., hop r-D) cannot contribute to a credit loop because they cannot be used to
construct a loop encircling T. The hop I-r uses a separate VL, so it cannot contribute to a credit loop
encircling T. Extending this argument shows that in addition to being capable of routing around a
single switch failure without introducing deadlock, torus-2QoS can also route around multiple failed
switches on the condition they are adjacent in the last dimension routed by DOR. For example,
consider the following case on a 6x6 2D torus:

777

Suppose switches T and R have failed, and consider the path from S to D. Torus-2QoS will generate
the path S-n-q-I-u-D, with an illegal turn at switch I, and with hop I-u using a VL with bit 1 set. As a
further example, consider a case that torus-2QoS cannot route without deadlock: two failed
switches adjacent in a dimension that is not the last dimension routed by DOR; here the failed
switches are O and T:

In a pristine fabric, torus-2QoS would generate the path from S to D as S-n-O-T-r-D. With failed
switches O and T, torus-2QoS will generate the path S-n-I-q-r-D, with an illegal turn at switch I, and
with hop I-q using a VL with bit 1 set. In contrast to the earlier examples, the second hop after the
illegal turn, q-r, can be used to construct a credit loop encircling the failed switches.

Multicast Routing

Since torus-2QoS uses all four available SL bits, and the three data VL bits that are typically
available in current switches, there is no way to use SL/VL values to separate multicast traffic from
unicast traffic. Thus, torus-2QoS must generate multicast routing such that credit loops cannot arise
from a combination of multicast and unicast path segments. It turns out that it is possible to
construct spanning trees for multicast routing that have that property. For the 2D 6x5 torus

778

example above, here is the full-fabric spanning tree that torus-2QoS will construct, where "x" is the
root switch and each "+" is a non-root switch:

For multicast traffic routed from root to tip, every turn in the above spanning tree is a legal DOR
turn. For traffic routed from tip to root, and some traffic routed through the root, turns are not
legal DOR turns. However, to construct a credit loop, the union of multicast routing on this spanning
tree with DOR unicast routing can only provide 3 of the 4 turns needed for the loop. In addition, if
none of the above spanning tree branches crosses a dateline used for unicast credit loop avoidance
on a torus, and if multicast traffic is confined to SL 0 or SL 8 (recall that torus-2QoS uses SL bit 3 to
differentiate QoS level), then multicast traffic also cannot contribute to the "ring" credit loops that
are otherwise possible in a torus. Torus-2QoS uses these ideas to create a master spanning tree.
Every multicast group spanning tree will be constructed as a subset of the master tree, with the
same root as the master tree. Such multicast group spanning trees will in general not be optimal for
groups which are a subset of the full fabric. However, this compromise must be made to enable
support for two QoS levels on a torus while preventing credit loops. In the presence of link or switch
failures that result in a fabric for which torus-2QoS can generate credit-loop-free unicast routes, it
is also possible to generate a master spanning tree for multicast that retains the required
properties. For example, consider that same 2D 6x5 torus, with the link from (2,2) to (3,2) failed.
Torus-2QoS will generate the following master spanning tree:

Two things are notable about this master spanning tree. First, assuming the x dateline was between
x=5 and x=0, this spanning tree has a branch that crosses the dateline. However, just as for unicast,
crossing a dateline on a 1D ring (here, the ring for y=2) that is broken by a failure cannot contribute
to a torus credit loop. Second, this spanning tree is no longer optimal even for multicast groups that
encompass the entire fabric. That, unfortunately, is a compromise that must be made to retain the
other desirable properties of torus-2QoS routing. In the event that a single switch fails, torus-2QoS

779

will generate a master spanning tree that has no "extra" turns by appropriately selecting a root
switch. In the 2D 6x5 torus example, assume now that the switch at (3,2) (i.e., the root for a
pristine fabric), fails. Torus-2QoS will generate the following master spanning tree for that case:

Assuming the dateline was between y=4 and y=0, this spanning tree has a branch that crosses a
dateline. However, this cannot contribute to credit loops as it occurs on a 1D ring (the ring for x=3)
that is broken by failure, as in the above example.

Torus Topology Discovery

The algorithm used by torus-2QoS to construct the torus topology from the undirected graph
representing the fabric requires that the radix of each dimension be configured via torus-2QoS.conf.
It also requires that the torus topology be "seeded"; for a 3D torus this requires configuring four
switches that define the three coordinate directions of the torus. Given this starting information,
the algorithm is to examine the cube formed by the eight switch locations bounded by the corners
(x,y,z) and (x+1,y+1,z+1). Based on switches already placed into the torus topology at some of these
locations, the algorithm examines 4-loops of inter-switch links to find the one that is consistent with
a face of the cube of switch locations and adds its switches to the discovered topology in the
correct locations.
Because the algorithm is based on examining the topology of 4-loops of links, a torus with one or
more radix-4 dimensions requires extra initial seed configuration. See torus-2QoS.conf(5) for details.
Torus-2QoS will detect and report when it has an insufficient configuration for a torus with radix-4
dimensions.
In the event the torus is significantly degraded, i.e., there are many missing switches or links, it
may happen that torus-2QoS is unable to place into the torus some switches and/or links that were
discovered in the fabric, and will generate a warning in that case. A similar condition occurs if
torus-2QoS is misconfigured, i.e., the radix of a torus dimension as configured does not match the
radix of that torus dimension as wired, and many switches/links in the fabric will not be placed into
the torus.

Quality Of Service Configuration

OpenSM will not program switches and channel adapters with SL2VL maps or VL arbitration
configuration unless it is invoked with -Q. Since torus-2QoS depends on such functionality for correct
operation, always invoke OpenSM with -Q when torus-2QoS is in the list of routing engines. Any
quality of service configuration method supported by OpenSM will work with torus-2QoS, subject to
the following limitations and considerations. For all routing engines supported by OpenSM except
torus-2QoS, there is a one-to-one correspondence between QoS level and SL. Torus-2QoS can only

780

support two quality of service levels, so only the high-order bit of any SL value used for unicast QoS
configuration will be honored by torus-2QoS. For multicast QoS configuration, only SL values 0 and 8
should be used with torus-2QoS.
Since SL to VL map configuration must be under the complete control of torus-2QoS, any
configuration via qos_sl2vl, qos_swe_sl2vl, etc., must and will be ignored, and a warning will be
generated. Torus-2QoS uses VL values 0-3 to implement one of its supported QoS levels, and VL
values 4-7 to implement the other. Hard-to-diagnose application issues may arise if traffic is not
delivered fairly across each of these two VL ranges. Torus-2QoS will detect and warn if VL
arbitration is configured unfairly across VLs in the range 0-3, and also in the range 4-7. Note that
the default OpenSM VL arbitration configuration does not meet this constraint, so all torus-2QoS
users should configure VL arbitration via qos_vlarb_high, qos_vlarb_low, etc.

Operational Considerations
Any routing algorithm for a torus IB fabric must employ path SL values to avoid credit loops. As a
result, all applications run over such fabrics must perform a path record query to obtain the correct
path SL for connection setup. Applications that use rdma_cm for connection setup will automatically
meet this requirement.
If a change in fabric topology causes changes in path SL values required to route without credit
loops, in general, all applications would need to repath to avoid message deadlock. Since torus-
2QoS has the ability to reroute after a single switch failure without changing path SL values,
repathing by running applications is not required when the fabric is routed with torus-2QoS.
Torus-2QoS can provide unchanging path SL values in the presence of subnet manager failover
provided that all OpenSM instances have the same idea of dateline location. See torus- 2QoS.conf(5)
for details. Torus-2QoS will detect configurations of failed switches and links that prevent routing
that is free of credit loops and will log warnings and refuse to route. If "no_fall- back" was
configured in the list of OpenSM routing engines, then no other routing engine will attempt to route
the fabric. In that case, all paths that do not transit the failed components will continue to work,
and the subset of paths that are still operational will continue to remain free of credit loops.
OpenSM will continue to attempt to route the fabric after every sweep interval and after any
change (such as a link up) in the fabric topology. When the fabric components are repaired, full
functionality will be restored. In the event OpenSM was configured to allow some other engine to
route the fabric if torus-2QoS fails, then credit loops and message deadlock are likely if torus-2QoS
had previously routed the fabric successfully. Even if the other engine is capable of routing a torus
without credit loops, applications that built connections with path SL values granted under
torus-2QoS will likely experience message deadlock under routing generated by a different engine,
unless they repath. To verify that a torus fabric is routed free of credit loops, use ibdmchk to

analyze data collected via ibdiagnet - vlr.

Torus-2QoS Configuration File Syntax

The file torus-2QoS.conf contains configuration information that is specific to the OpenSM routing
engine torus-2QoS. Blank lines and lines where the first non-whitespace character is "#" are ignored.
A token is any contiguous group of non-whitespace characters. Any tokens on a line following the
recognized configuration tokens described below are ignored.

[torus|mesh] x_radix[m|M|t|T] y_radix[m|M|t|T] z_radix[m|M|t|T]

Either torus or mesh must be the first keyword in the configuration and sets the topology that
torus-2QoS will try to construct. A 2D topology can be configured by specifying one of x_radix,
y_radix, or z_radix as 1. An individual dimension can be configured as mesh (open) or torus (looped)
by suffixing its radix specification with one of m, M, t, or T. Thus, "mesh 3T 4 5" and "torus 3 4M 5M"

781

both specify the same topology.
Note that although torus-2QoS can route mesh fabrics, its ability to route around failed components
is severely compromised on such fabrics. A failed fabric components very likely to cause a disjoint
ring; see UNICAST ROUTING in torus-2QoS(8).

xp_link sw0_GUID sw1_GUID
yp_link sw0_GUID sw1_GUID
zp_link sw0_GUID sw1_GUID
xm_link sw0_GUID sw1_GUID
ym_link sw0_GUID sw1_GUID
zm_link sw0_GUID sw1_GUID

These keywords are used to seed the torus/mesh topology. For example, "xp_link 0x2000 0x2001"
specifies that a link from the switch with node GUID 0x2000 to the switch with node GUID 0x2001
would point in the positive x direction, while "xm_link 0x2000 0x2001" specifies that a link from the
switch with node GUID 0x2000 to the switch with node GUID 0x2001 would point in the negative x
direction. All the link keywords for a given seed must specify the same "from" switch.
In general, it is not necessary to configure both the positive and negative directions for a given
coordinate; either is sufficient. However, the algorithm used for topology discovery needs extra
information for torus dimensions of radix four (see TOPOLOGY DISCOVERY in torus-2QoS(8)). For such
cases, both the positive and negative coordinate directions must be specified.
Based on the topology specified via the torus/mesh keyword, torus-2QoS will detect and log when it
has insufficient seed configuration.

GUIDx_dateline position
y_dateline position
z_dateline position

In order for torus-2QoS to provide the guarantee that path SL values do not change under any
conditions for which it can still route the fabric, its idea of dateline position must not change
relative to physical switch locations. The dateline keywords provide the means to configure such
behavior.

The dateline for a torus dimension is always between the switch with coordinate 0 and the switch
with coordinate radix-1 for that dimension. By default, the common switch in a torus seed is taken
as the origin of the coordinate system used to describe switch location. The position parameter for
a dateline keyword moves the origin (and hence the dateline) the specified amount relative to the
common switch in a torus seed.

next_seed

If any of the switches used to specify a seed were to fail torus-2QoS would be unable to complete
topology discovery successfully. The next_seed keyword specifies that the following link and
dateline keywords apply to a new seed specification.
For maximum resiliency, no seed specification should share a switch with any other seed
specification. Multiple seed specifications should use dateline configuration to ensure that
torus-2QoS can grant path SL values that are constant, regardless of which seed was used to initiate
topology discovery.
portgroup_max_ports max_ports - This keyword specifies the maximum number of parallel inter-
switch links, and also the maximum number of host ports per switch, that torus-2QoS can
accommodate. The default value is 16. Torus-2QoS will log an error message during topology
discovery if this parameter needs to be increased. If this keyword appears multiple times, the last
instance prevails.
port_order p1 p2 p3 ... - This keyword specifies the order in which CA ports on a destination switch

782

1.
2.
3.
4.

are visited when computing routes. When the fabric contains switches connected with multiple
parallel links, routes are distributed in a round-robin fashion across such links, and so changing the
order that CA ports are visited changes the distribution of routes across such links. This may be
advantageous for some specific traffic patterns.
The default is to visit CA ports in increasing port order on destination switches. Duplicate values in
the list will be ignored.

Example:

Look for a 2D (since x radix is one) 4x5 torus.
torus 1 4 5
y is radix-4 torus dimension, need both
ym_link and yp_link configuration.
yp_link 0x200000 0x200005 # sw @ y=0,z=0 -> sw @ y=1,z=0
ym_link 0x200000 0x20000f # sw @ y=0,z=0 -> sw @ y=3,z=0
z is not radix-4 torus dimension, only need one of
zm_link or zp_link configuration.
zp_link 0x200000 0x200001 # sw @ y=0,z=0 -> sw @ y=0,z=1
next_seed
yp_link 0x20000b 0x200010 # sw @ y=2,z=1 -> sw @ y=3,z=1
ym_link 0x20000b 0x200006 # sw @ y=2,z=1 -> sw @ y=1,z=1
zp_link 0x20000b 0x20000c # sw @ y=2,z=1 -> sw @ y=2,z=2
y_dateline -2 # Move the dateline for this seed
z_dateline -1 # back to its original position.
If OpenSM failover is configured, for maximum resiliency
one instance should run on a host attached to a switch
from the first seed, and another instance should run
on a host attached to a switch from the second seed.
Both instances should use this torus-2QoS.conf to ensure
path SL values do not change in the event of SM failover.
port_order defines the order on which the ports would be
chosen for routing.
port_order 7 10 8 11 9 12 25 28 26 29 27 30

Routing Chains

The routing chains feature is offering a solution that enables one to configure different parts of the
fabric and define a different routing engine to route each of them. The routings are done in a
sequence (hence the name "chains") and any node in the fabric that is configured in more than one
part is left with the routing updated by the last routing engine it was a part of.

Configuring Routing Chains

To configure routing chains:

Define the port groups.
Define topologies based on previously defined port groups.
Define configuration files for each routing engine.
Define routing engine chains over previously defined topologies and configuration files.

Defining Port Groups

The basic idea behind the port groups is the ability to divide the fabric into sub-groups and give
each group an identifier that can be used to relate to all nodes in this group. The port groups is a
separate feature from the routing chains but is a mandatory prerequisite for it. In addition, it is
used to define the participants in each of the routing algorithms.

Defining a Port Group Policy File

In order to define a port group policy file, set the parameter 'pgrp_policy_file' in the OpenSM
configuration file.
pgrp_policy_file /etc/opensm/conf/port_groups_policy_file

Configuring a Port Group Policy

783

•
•

•

•

•

The port groups policy file details the port groups in the fabric. The policy file should be composed
of one or more paragraphs that define a group. Each paragraph should begin with the line 'port-
group' and end with the line 'end-port-group'.
For example:

port-group
…port group qualifiers…
end-port-group

Port Group Qualifiers

Rule Qualifier

Parame
ter

Description Example

name Each group must have a name. Without a name qualifier, the policy fails. name: grp1

use 'use' is an optional qualifier that one can define in order to describe the usage
of this port group (if undefined, an empty string is used as a default).

use: first

port group

There are several qualifiers used to describe a rule that determines which ports will be added to the
group. Each port group may include one or more rules out of the rules described in the below table
(at least one rule must be defined for each port group).

Param
eter

Description Example

guid

list

Comma separated list of GUIDs to include in the group.
If no specific physical ports were configured, all physical ports of the guid are
chosen. However, for each guid, one can detail specific physical ports to be
included in the group. This can be done using the following syntax:

Specify a specific port in a guid to be chosen port-guid: 0x283@3
Specify a specific list of ports in a guid to be chosen
port-guid: 0x286@1/5/7
Specify a specific range of ports in a guid to be chosen
port-guid: 0x289@2-5
Specify a list of specific ports and ports ranges in a guid to be chosen
port-guid: 0x289@2-5/7/9-13/18
Complex rule
port-guid: 0x283@5-8/12/14, 0x286, 0x289/6/ 8/12

port-guid:

0x283, 0x286,

0x289

Unlike the port group's beginning and end which do not require a colon, all qualifiers must
end with a colon (':'). Also - a colon is a predefined mark that must not be used inside
qualifier values. The inclusion of a colon in the name or the use of a port group will result
in the policy's failure.

784

•
•
•
•

Param
eter

Description Example

port

guid

range

It is possible to configure a range of guids to be chosen to the group. However,
while using the range qualifier, it is impossible to detail specific physical ports.
Note: A list of ranges cannot be specified. The below example is invalid and
will cause the policy to fail:
port-guid-range: 0x283-0x289, 0x290- 0x295

port-guid-

range:

0x283-0x289

port

name

One can configure a list of hostnames as a rule. Hosts with a node description
that is built out of these hostnames will be chosen. Since the node description
contains the network card index as well, one might also specify a network card
index and a physical port to be chosen. For example, the given configuration
will cause only physical port 2 of a host with the node description ‘kuku HCA-1’
to be chosen. port and hca_idx parameters are optional. If the port is
unspecified, all physical ports are chosen. If hca_idx is unspecified, all card
numbers are chosen. Specifying a hostname is mandatory.
One can configure a list of hostname/ port/hca_idx sets in the same qualifier
as follows:
port-name: hostname=kuku; port=2; hca_idx=1 , hostname=host1; port=3,
hostname=host2
Note: port-name qualifier is not relevant for switches, but for HCA’s only.

port-name:

host-

name=kuku;

port=2;

hca_idx=1

port

regexp

One can define a regular expression so that only nodes with a matching node
description will be chosen to the group.
Note: This example shows how to choose nodes which their node description
starts with 'SW'.

port-regexp:

SW

It is possible to specify one physical port to be chosen for matching nodes
(there is no option to define a list or a range of ports). The given example will
cause only nodes that match physical port 3 to be added to the group.

port-regexp:

SW:3

union

rule

It is possible to define a rule that unites two different port groups. This means
that all ports from both groups will be included in the united group.

union-rule:

grp1, grp2

subtrac

t rule

One can define a rule that subtracts one port group from another. The given
rule, for example, will cause all the ports which are a part of grp1, but not
included in grp2, to be chosen.
In subtraction (unlike union), the order does matter, since the purpose is to
subtract the second group from the first one.
There is no option to define more than two groups for union/subtraction.
However, one can unite/subtract groups which are a union or a subtraction
themselves, as shown in the port groups policy file example.

subtract-rule:

grp1, grp2

Predefined Port Groups

There are 3 predefined, automatically created port groups that are available for use, yet cannot be
defined in the policy file (if a group in the policy is configured with the name of one of these
predefined groups, the policy fails) -

ALL - a group that includes all nodes in the fabric
ALL_SWITCHES - a group that includes all switches in the fabric
ALL_CAS - a group that includes all HCAs in the fabric
ALL_ROUTERS - a group that includes all routers in the fabric (supported in OpenSM starting
from v4.9.0)

Port Groups Policy Examples

785

port-group
name: grp3
use: Subtract of groups grp1 and grp2
subtract-rule: grp1, grp2
end-port-group

port-group
name: grp1
port-guid: 0x281, 0x282, 0x283
end-port-group

port-group
name: grp2
port-guid-range: 0x282-0x286
port-name: hostname=server1 port=1
end-port-group

port-group
name: grp4
port-name: hostname=kika port=1 hca_idx=1
end-port-group

port-group
name: grp3
union-rule: grp3, grp4
end-port-group

Defining a Topologies Policy File

In order to define a topology policy file, set the parameter 'topo_policy_file' in the OpenSM
configuration file.

topo_policy_file /etc/opensm/conf/topo_policy_file.cfg

Configuring a Topology Policy

The topologies policy file details a list of topologies. The policy file should be composed of one or
more paragraphs which define a topology. Each paragraph should begin with the line 'topol- ogy' and
end with the line 'end-topology'.
For example:

topology
…topology qualifiers…
end-topology

Topology Qualifiers

All topology qualifiers are mandatory. Absence of any of the below qualifiers will cause the policy
parsing to fail.

Topology Qualifiers

Parameter Description Example

id Topology ID.
Legal Values – any positive value. Must be unique.

id: 1

sw-grp Name of the port group that includes all switches and switch ports to
be used in this topology.

sw-grp:

ys_switches

hca-grp Name of the port group that includes all HCA's to be used in this
topology.

hca-grp:

ys_hosts

Unlike topology and end-topology which do not require a colon, all qualifiers must end with
a colon (':'). Also - a colon is a predefined mark that must not be used inside qualifier
values. An inclusion of a column in the qualifier values will result in the policy's failure.

786

•

•

•
•
•

•
•

Configuration File per Routing Engine

Each engine in the routing chain can be provided by its own configuration file. Routing engine
configuration file is the fraction of parameters defined in the main OpenSM configuration file.
Some rules should be applied when defining a particular configuration file for a routing engine:

Parameters that are not specified in specific routing engine configuration file are inherited
from the main OpenSM configuration file.
The following configuration parameters are taking effect only in the main OpenSM
configuration file:

qos and qos_* settings like (vl_arb, sl2vl, etc.)
lmc
routing_engine

Defining a Routing Chain Policy File

In order to define a port group policy file, set the parameter 'rch_policy_file' in the OpenSM
configuration file.

rch_policy_file /etc/opensm/conf/chains_policy_file

First Routing Engine in the Chain

The first unicast engine in a routing chain must include all switches and HCAs in the fabric (topology
id must be 0). The path-bit parameter value is path-bit 0 and it cannot be changed.

Configuring a Routing Chains Policy

The routing chains policy file details the routing engines (and their fallback engines) used for the
fabric's routing. The policy file should be composed of one or more paragraphs which defines an
engine (or a fallback engine). Each paragraph should begin with the line 'unicast-step' and end with
the line 'end-unicast-step'.
For example:

unicast-step
…routing engine qualifiers…
end-unicast-step

Routing Engine Qualifiers

Parameter Description Example

id 'id' is mandatory. Without an ID qualifier for each engine, the policy fails.
Legal values – size_t value (0 is illegal).
The engines in the policy chain are set according to an ascending id order,
so it is highly crucial to verify that the id that is given to the engines
match the order in which you would like the engines to be set.

is: 1

 Unlike unicast-step and end-unicast-step which do not require a colon, all qualifiers must
end with a colon (':'). Also - a colon is a predefined mark that must not be used inside
qualifier values. An inclusion of a colon in the qualifier values will result in the policy's
failure.

787

•

•

•

•
•

•
•

•
•
•
•

Parameter Description Example

engine This is a mandatory qualifier that describes the routing algorithm used within
this unicast step.
Currently, on the first phase of routing chains, legal values are minhop/ftree/
updn.

engine:

minhop

use This is an optional qualifier that enables one to describe the usage of this
unicast step. If undefined, an empty string is used as a default.

use: ftree

routing for

for yellow

stone nodes

config This is an optional qualifier that enables one to define a separate OpenSM
config file for a specific unicast step. If undefined, all parameters are taken
from main OpenSM configuration file.

config: /

etc/config/

opensm2.cfg

topology Define the topology that this engine uses.
Legal value – id of an existing topology that is defined in topologies policy
(or zero that represents the entire fabric and not a specific topology).
Default value – If unspecified, a routing engine will relate to the entire
fabric (as if topology zero was defined).
Notice: The first routing engine (the engine with the lowest id) MUST be
configured with topology: 0 (entire fabric) or else, the routing chain parser
will fail.

topology: 1

fallback-

to

This is an optional qualifier that enables one to define the current unicast step
as a fallback to another unicast step. This can be done by defining the id of
the unicast step that this step is a fallback to.

If undefined, the current unicast step is not a fallback.
If the value of this qualifier is a non-existent engine id, this step will be
ignored.
A fallback step is meaningless if the step it is a fallback to did not fail.
It is impossible to define a fallback to a fall- back step (such definition will
be ignored)

-

path-bit This is an optional qualifier that enables one to define a specific lid offset to
be used by the current unicast step. Setting lmc > 0 in main OpenSM
configuration file is a prerequisite for assigning specific path-bit for the
routing engine.
Default value is 0 (if path-bit is not specified)

Path-bit: 1

Dump Files per Routing Engine

Each routing engine on the chain will dump its own data files if the appropriate log_flags is set (for
instance 0x43).

The files that are dumped by each engine are:

opensm-lid-matrix.dump
opensm-lfts.dump
opensm.fdbs
opensm-subnet.lst

These files should contain the relevant data for each engine topology.

sl2vl and mcfdbs files are dumped only once for the entire fabric and NOT by every routing
engine.

788

•

•
•
•

•

•
•
•
•

•

•

Each engine concatenates its ID and routing algorithm name in its dump files names, as
follows:

opensm-lid-matrix.2.minhop.dump
opensm.fdbs.3.ftree
opensm-subnet.4.updn.lst

In case that a fallback routing engine is used, both the routing engine that failed and the
fallback engine that replaces it, dump their data.
If, for example, engine 2 runs ftree and it has a fallback engine with 3 as its id that runs
minhop, one should expect to find 2 sets of dump files, one for each engine:

opensm-lid-matrix.2.ftree.dump
opensm-lid-matrix.3.minhop.dump
opensm.fdbs.2.ftree
opensm.fdbs.3.munhop

14.6.2.1.2.6 Unicast Routing Cache

Unicast routing cache prevents routing recalculation (which is a heavy task in a large cluster) when
no topology change was detected during the heavy sweep, or when the topology change does not
require new routing calculation (for example, when one or more CAs/RTRs/leaf switches going
down, or one or more of these nodes coming back after being down).

14.6.2.1.2.7 Quality of Service Management in OpenSM

When Quality of Service (QoS) in OpenSM is enabled (using the ‘-Q’ or ‘--qos’ flags), OpenSM looks
for a QoS Policy file. During fabric initialization and at every heavy sweep, OpenSM parses the QoS
policy file, applies its settings to the discovered fabric elements, and enforces the provided policy
on client requests. The overall flow for such requests is as follows:

The request is matched against the defined matching rules such that the QoS Level definition
is found
Given the QoS Level, a path(s) search is performed with the given restrictions imposed by
that level

There are two ways to define QoS policy:

789

•

•

1.

2.

3.

•

Advanced – the advanced policy file syntax provides the administrator various ways to match
a PathRecord/MultiPathRecord (PR/MPR) request, and to enforce various QoS constraints on
the requested PR/MPR
Simple – the simple policy file syntax enables the administrator to match PR/MPR requests by
various ULPs and applications running on top of these ULPs

Advanced QoS Policy File

The QoS policy file has the following sections:

Port Groups (denoted by port-groups) - this section defines zero or more port groups that can
be referred later by matching rules (see below). Port group lists ports by:
- Port GUID
- Port name, which is a combination of NodeDescription and IB port number
- PKey, which means that all the ports in the subnet that belong to partition with a given
PKey belong to this port group
- Partition name, which means that all the ports in the subnet that belong to partition with a
given name belong to this port group
- Node type, where possible node types are: CA, SWITCH, ROUTER, ALL, and SELF (SM's port).

QoS Setup (denoted by qos-setup) - this section describes how to set up SL2VL and VL
Arbitration tables on various nodes in the fabric. However, this is not supported in OFED.
SL2VL and VLArb tables should be configured in the OpenSM options file (default location - /
var/cache/opensm/opensm.opts).

QoS Levels (denoted by qos-levels) - each QoS Level defines Service Level (SL) and a few
optional fields:
- MTU limit
- Rate limit
- PKey
- Packet lifetime

When path(s) search is performed, it is done with regards to restriction that these QoS Level
parameters impose. One QoS level that is mandatory to define is a DEFAULT QoS level. It is
applied to a PR/MPR query that does not match any existing match rule. Similar to any other
QoS Level, it can also be explicitly referred by any match rule.

QoS Matching Rules (denoted by qos-match-rules) - each PathRecord/MultiPathRecord query
that OpenSM receives is matched against the set of matching rules. Rules are scanned in
order of appearance in the QoS policy file such as the first match takes precedence.
Each rule has a name of QoS level that will be applied to the matching query. A default QoS
level is applied to a query that did not match any rule.
Queries can be matched by:
- Source port group (whether a source port is a member of a specified group)
- Destination port group (same as above, only for destination port)
- PKey
- QoS class

790

•

•
•
•
•

•

- Service ID
To match a certain matching rule, PR/MPR query has to match ALL the rule's criteria.
However, not all the fields of the PR/MPR query have to appear in the matching rule.
For instance, if the rule has a single criterion - Service ID, it will match any query that has
this Service ID, disregarding rest of the query fields. However, if a certain query has only
Service ID (which means that this is the only bit in the PR/MPR component mask that is on), it
will not match any rule that has other matching criteria besides Service ID.

Simple QoS Policy Definition

Simple QoS policy definition comprises of a single section denoted by qos-ulps. Similar to the
advanced QoS policy, it has a list of match rules and their QoS Level, but in this case a match rule
has only one criterion - its goal is to match a certain ULP (or a certain application on top of this
ULP) PR/MPR request, and QoS Level has only one constraint - Service Level (SL).
The simple policy section may appear in the policy file in combine with the advanced policy, or as a
stand-alone policy definition. See more details and list of match rule criteria below.

Policy File Syntax Guidelines

Leading and trailing blanks, as well as empty lines, are ignored, so the indentation in the
example is just for better readability.
Comments are started with the pound sign (#) and terminated by EOL.
Any keyword should be the first non-blank in the line, unless it's a comment.
Keywords that denote section/subsection start have matching closing keywords.
Having a QoS Level named "DEFAULT" is a must - it is applied to PR/MPR requests that did not
match any of the matching rules.
Any section/subsection of the policy file is optional.

Examples of Advanced Policy Files

As mentioned earlier, any section of the policy file is optional, and the only mandatory part of the
policy file is a default QoS Level.
Here is an example of the shortest policy file:

 qos-levels
 qos-level
 name: DEFAULT
 sl: 0
 end-qos-level
 end-qos-levels

Port groups section is missing because there are no match rules, which means that port groups are
not referred anywhere, and there is no need defining them. And since this policy file doesn't have
any matching rules, PR/MPR query will not match any rule, and OpenSM will enforce default QoS
level. Essentially, the above example is equivalent to not having a QoS policy file at all.
The following example shows all the possible options and keywords in the policy file and their
syntax:

 #
 # See the comments in the following example.
 # They explain different keywords and their meaning.
 #
 port-groups

 port-group # using port GUIDs
 name: Storage
 # "use" is just a description that is used for logging
 # Other than that, it is just a comment
 use: SRP Targets

791

 port-guid: 0x10000000000001, 0x10000000000005-0x1000000000FFFA
 port-guid: 0x1000000000FFFF
 end-port-group

 port-group
 name: Virtual Servers
 # The syntax of the port name is as follows:
 # "node_description/Pnum".
 # node_description is compared to the NodeDescription of the node,
 # and "Pnum" is a port number on that node.
 port-name: “vs1 HCA-1/P1, vs2 HCA-1/P1”
 end-port-group

 # using partitions defined in the partition policy
 port-group
 name: Partitions
 partition: Part1
 pkey: 0x1234
 end-port-group

 # using node types: CA, ROUTER, SWITCH, SELF (for node that runs SM)
 # or ALL (for all the nodes in the subnet)
 port-group
 name: CAs and SM
 node-type: CA, SELF
 end-port-group

 end-port-groups

 qos-setup
 # This section of the policy file describes how to set up SL2VL and VL
 # Arbitration tables on various nodes in the fabric.
 # However, this is not supported in OFED - the section is parsed
 # and ignored. SL2VL and VLArb tables should be configured in the
 # OpenSM options file (by default - /var/cache/opensm/opensm.opts).
 end-qos-setup

 qos-levels

 # Having a QoS Level named "DEFAULT" is a must - it is applied to
 # PR/MPR requests that didn't match any of the matching rules.
 qos-level
 name: DEFAULT
 use: default QoS Level
 sl: 0
 end-qos-level

 # the whole set: SL, MTU-Limit, Rate-Limit, PKey, Packet Lifetime
 qos-level
 name: WholeSet
 sl: 1
 mtu-limit: 4
 rate-limit: 5
 pkey: 0x1234
 packet-life: 8
 end-qos-level

 end-qos-levels

 # Match rules are scanned in order of their appearance in the policy file.
 # First matched rule takes precedence.
 qos-match-rules

 # matching by single criteria: QoS class
 qos-match-rule
 use: by QoS class
 qos-class: 7-9,11
 # Name of qos-level to apply to the matching PR/MPR
 qos-level-name: WholeSet
 end-qos-match-rule

 # show matching by destination group and service id
 qos-match-rule
 use: Storage targets
 destination: Storage
 service-id: 0x10000000000001, 0x10000000000008-0x10000000000FFF
 qos-level-name: WholeSet
 end-qos-match-rule

 qos-match-rule
 source: Storage
 use: match by source group only
 qos-level-name: DEFAULT
 end-qos-match-rule
 qos-match-rule
 use: match by all parameters
 qos-class: 7-9,11
 source: Virtual Servers
 destination: Storage
 service-id: 0x0000000000010000-0x000000000001FFFF
 pkey: 0x0F00-0x0FFF
 qos-level-name: WholeSet
 end-qos-match-rule
 end-qos-match-rules

Simple QoS Policy - Details and Examples

Simple QoS policy match rules are tailored for matching ULPs (or some application on top of a ULP)
PR/MPR requests. This section has a list of per-ULP (or per-application) match rules and the SL that

792

•

•
•
•
•
•

should be enforced on the matched PR/MPR query.
Match rules include:

Default match rule that is applied to PR/MPR query that didn't match any of the other match
rules
IPoIB with a default PKey
IPoIB with a specific PKey
Any ULP/application with a specific Service ID in the PR/MPR query
Any ULP/application with a specific PKey in the PR/MPR query
Any ULP/application with a specific target IB port GUID in the PR/MPR query

Since any section of the policy file is optional, as long as basic rules of the file are kept (such as no
referring to nonexistent port group, having default QoS Level, etc), the simple policy section (qos-
ulps) can serve as a complete QoS policy file.
The shortest policy file in this case would be as follows:

qos-ulps
 default : 0 #default SL
end-qos-ulps

It is equivalent to the previous example of the shortest policy file, and it is also equivalent to not
having policy file at all. Below is an example of simple QoS policy with all the possible keywords:

qos-ulps
default :0 # default SL
sdp, port-num 30000 :0 # SL for application running on
 # top of SDP when a destination
 # TCP/IPport is 30000
sdp, port-num 10000-20000 : 0
sdp :1 # default SL for any other
 # application running on top of SDP
rds :2 # SL for RDS traffic
ipoib, pkey 0x0001 :0 # SL for IPoIB on partition with
 # pkey 0x0001
ipoib :4 # default IPoIB partition,
 # pkey=0x7FFF
any, service-id 0x6234:6 # match any PR/MPR query with a
 # specific Service ID
any, pkey 0x0ABC :6 # match any PR/MPR query with a
 # specific PKey
srp, target-port-guid 0x1234 : 5 # SRP when SRP Target is located
 # on a specified IB port GUID
any, target-port-guid 0x0ABC-0xFFFFF : 6 # match any PR/MPR query
 # with a specific target port GUID
end-qos-ulps

Similar to the advanced policy definition, matching of PR/MPR queries is done in order of
appearance in the QoS policy file such as the first match takes precedence, except for the "default"
rule, which is applied only if the query didn't match any other rule. All other sections of the QoS
policy file take precedence over the qos-ulps section. That is, if a policy file has both qos-match-
rules and qos-ulps sections, then any query is matched first against the rules in the qos-match-rules
section, and only if there was no match, the query is matched against the rules in qos-ulps section.
Note that some of these match rules may overlap, so in order to use the simple QoS definition
effectively, it is important to understand how each of the ULPs is matched.

IPoIB

IPoIB query is matched by PKey or by destination GID, in which case this is the GID of the multicast
group that OpenSM creates for each IPoIB partition.
Default PKey for IPoIB partition is 0x7fff, so the following three match rules are equivalent:

793

•
•
•
•
•

•
•
•
•

ipoib:<SL>ipoib, pkey 0x7fff : <SL>
any, pkey 0x7fff : <SL>

SRP

Service ID for SRP varies from storage vendor to vendor, thus SRP query is matched by the target IB
port GUID. The following two match rules are equivalent:

srp, target-port-guid 0x1234 : <SL>
any, target-port-guid 0x1234 : <SL>

Note that any of the above ULPs might contain target port GUID in the PR query, so in order for
these queries not to be recognized by the QoS manager as SRP, the SRP match rule (or any match
rule that refers to the target port GUID only) should be placed at the end of the qos-ulps match
rules.

MPI

SL for MPI is manually configured by an MPI admin. OpenSM is not forcing any SL on the MPI traffic,
which explains why it is the only ULP that did not appear in the qos-ulps section.

SL2VL Mapping and VL Arbitration

OpenSM cached options file has a set of QoS related configuration parameters, that are used to
configure SL2VL mapping and VL arbitration on IB ports. These parameters are:

Max VLs: the maximum number of VLs that will be on the subnet
High limit: the limit of High Priority component of VL Arbitration table (IBA 7.6.9)
VLArb low table: Low priority VL Arbitration table (IBA 7.6.9) template
VLArb high table: High priority VL Arbitration table (IBA 7.6.9) template
SL2VL: SL2VL Mapping table (IBA 7.6.6) template. It is a list of VLs corresponding to SLs 0-15
(Note that VL15 used here means drop this SL).

There are separate QoS configuration parameters sets for various target types: CAs, routers, switch
external ports, and switch's enhanced port 0. The names of such parameters are prefixed by
"qos_<type>_" string. Here is a full list of the currently supported sets:

qos_ca_ —QoS configuration parameters set for CAs.
qos_rtr_ —parameters set for routers.
qos_sw0_ —parameters set for switches' port 0.
qos_swe_ —parameters set for switches' external ports.

Here's the example of typical default values for CAs and switches' external ports (hard-coded in
OpenSM initialization):

qos_ca_max_vls 15
qos_ca_high_limit 0
qos_ca_vlarb_high 0:4,1:0,2:0,3:0,4:0,5:0,6:0,7:0,8:0,9:0,10:0,11:0,12:0,13:0,14:0
qos_ca_vlarb_low 0:0,1:4,2:4,3:4,4:4,5:4,6:4,7:4,8:4,9:4,10:4,11:4,12:4,13:4,14:4
qos_ca_sl2vl 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,7
qos_swe_max_vls 15
qos_swe_high_limit 0
qos_swe_vlarb_high 0:4,1:0,2:0,3:0,4:0,5:0,6:0,7:0,8:0,9:0,10:0,11:0,12:0,13:0,14:0
qos_swe_vlarb_low 0:0,1:4,2:4,3:4,4:4,5:4,6:4,7:4,8:4,9:4,10:4,11:4,12:4,13:4,14:4
qos_swe_sl2vl 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,7

VL arbitration tables (both high and low) are lists of VL/Weight pairs. Each list entry contains a VL
number (values from 0-14), and a weighting value (values 0-255), indicating the number of 64 byte

794

units (credits) which may be transmitted from that VL when its turn in the arbitration occurs. A
weight of 0 indicates that this entry should be skipped. If a list entry is programmed for VL15 or for
a VL that is not supported or is not currently configured by the port, the port may either skip that
entry or send from any supported VL for that entry.
Note, that the same VLs may be listed multiple times in the High or Low priority arbitration tables,
and, further, it can be listed in both tables. The limit of high-priority VLArb table
(qos_<type>_high_limit) indicates the number of high-priority packets that can be transmitted
without an opportunity to send a low-priority packet. Specifically, the number of bytes that can be
sent is high_limit times 4K bytes.
A high_limit value of 255 indicates that the byte limit is unbounded.

A value of 0 indicates that only a single packet from the high-priority table may be sent before an
opportunity is given to the low-priority table.
Keep in mind that ports usually transmit packets of size equal to MTU. For instance, for 4KB MTU a
single packet will require 64 credits, so in order to achieve effective VL arbitration for packets of
4KB MTU, the weighting values for each VL should be multiples of 64.
Below is an example of SL2VL and VL Arbitration configuration on subnet:

qos_ca_max_vls 15
qos_ca_high_limit 6
qos_ca_vlarb_high 0:4
qos_ca_vlarb_low 0:0,1:64,2:128,3:192,4:0,5:64,6:64,7:64
qos_ca_sl2vl 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,7
qos_swe_max_vls 15
qos_swe_high_limit 6
qos_swe_vlarb_high 0:4
qos_swe_vlarb_low 0:0,1:64,2:128,3:192,4:0,5:64,6:64,7:64
qos_swe_sl2vl 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,7

In this example, there are 8 VLs configured on subnet: VL0 to VL7. VL0 is defined as a high priority
VL, and it is limited to 6 x 4KB = 24KB in a single transmission burst. Such configuration would suilt
VL that needs low latency and uses small MTU when transmitting packets. Rest of VLs are defined as
low priority VLs with different weights, while VL4 is effectively turned off.

Deployment Example

The figure below shows an example of an InfiniBand subnet that has been configured by a QoS
manager to provide different service levels for various ULPs.

QoS Deployment on InfiniBand Subnet Example

If the 255 value is used, the low priority VLs may be starved.

795

•
•
•

•
•

•
•

•

•

QoS Configuration Examples

The following are examples of QoS configuration for different cluster deployments. Each example
provides the QoS level assignment and their administration via OpenSM configuration files.

Typical HPC Example: MPI and Lustre

Assignment of QoS Levels

MPI
Separate from I/O load
Min BW of 70%

Storage Control (Lustre MDS)
Low latency

Storage Data (Lustre OST)
Min BW 30%

Administration

MPI is assigned an SL via the command line
host1# mpirun –sl 0

OpenSM QoS policy file

 qos-ulps
 default :0 # default SL (for MPI)
 any, target-port-guid OST1,OST2,OST3,OST4 :1 # SL for Lustre OST
 any, target-port-guid MDS1,MDS2 :2 # SL for Lustre MDS
 end-qos-ulps

796

•

•
•
•
•

•
•
•

•

•

•
•
•

•

Note: In this policy file example, replace OST* and MDS* with the real port GUIDs.

OpenSM options file

qos_max_vls 8
qos_high_limit 0
qos_vlarb_high 2:1
qos_vlarb_low 0:96,1:224
qos_sl2vl 0,1,2,3,4,5,6,7,15,15,15,15,15,15,15,15

EDC SOA (2-tier): IPoIB and SRP

The following is an example of QoS configuration for a typical enterprise data center (EDC) with
service oriented architecture (SOA), with IPoIB carrying all application traffic and SRP used for
storage.

QoS Levels

Application traffic
IPoIB (UD and CM) and SDP
Isolated from storage
Min BW of 50%

SRP
Min BW 50%
Bottleneck at storage nodes

Administration

OpenSM QoS policy file

 qos-ulps
 default :0
 ipoib :1
 sdp :1
 srp, target-port-guid SRPT1,SRPT2,SRPT3 :2
 end-qos-ulps

Note: In this policy file example, replace SRPT* with the real SRP Target port GUIDs.
OpenSM options file

qos_max_vls 8
qos_high_limit 0
qos_vlarb_high 1:32,2:32
qos_vlarb_low 0:1,
qos_sl2vl 0,1,2,3,4,5,6,7,15,15,15,15,15,15,15,15

EDC (3-tier): IPoIB, RDS, SRP

The following is an example of QoS configuration for an enterprise data center (EDC), with IPoIB
carrying all application traffic, RDS for database traffic, and SRP used for storage.

QoS Levels

Management traffic (ssh)
IPoIB management VLAN (partition A)
Min BW 10%

Application traffic

797

•
•
•

•
•
•

•
•
•

•

•

•

•
•

IPoIB application VLAN (partition B)
Isolated from storage and database
Min BW of 30%

Database Cluster traffic
RDS
Min BW of 30%

SRP
Min BW 30%
Bottleneck at storage nodes

Administration

OpenSM QoS policy file

 qos-ulps
 default :0
 ipoib, pkey 0x8001 :1
 ipoib, pkey 0x8002 :2
 rds :3
 srp, target-port-guid SRPT1, SRPT2, SRPT3 :4
 end-qos-ulps

Note: In the following policy file example, replace SRPT* with the real SRP Initiator port
GUIDs.

OpenSM options file

qos_max_vls 8
qos_high_limit 0
qos_vlarb_high 1:32,2:96,3:96,4:96
qos_vlarb_low 0:1
qos_sl2vl 0,1,2,3,4,5,6,7,15,15,15,15,15,15,15,15

Partition configuration file

Default=0x7fff,ipoib : ALL=full;PartA=0x8001, sl=1, ipoib : ALL=full;

Enhanced QoS

Enhanced QoS provides a higher resolution of QoS at the service level (SL). Users can configure rate
limit values per SL for physical ports, virtual ports, and port groups, using enhanced_qos_policy_file
configuration parameter.
Valid values of this parameter:

Full path to the policy file through which Enhanced QoS Manager is configured
"null" - to disable the Enhanced QoS Manager (default value)

Enhanced QoS Policy File

The policy file is comprised of three sections:

To enable Enhanced QoS Manager, QoS must be enabled in OpenSM.

798

•

•

•

•

•

•

•

BW_NAMES: Used to define bandwidth setting and name (currently, rate limit is the only
setting). Bandwidth names can be used in BW_RULES and VPORT_BW_RULES sections.
Bandwidth names are defined using the syntax:
<name> = <rate limit in 1Mbps units>

Example: My_bandwidth = 50
BW_RULES: Used to define the rules that map the bandwidth setting to a specific SL of a
specific GUID.
Bandwidth rules are defined using the syntax:
<guid>|<port group name> = <sl id>:<bandwidth name>, <sl id>:<bandwidth

name>…
Examples:
0x2c90000000025 = 5:My_bandwidth, 7:My_bandwidth

Port_grp1 = 3:My_bandwidth, 9:My_bandwidth
VPORT_BW_RULES: Used to define the rules that map the bandwidth setting to a specific SL
of a specific virtual port GUID.
Bandwidth rules are defined using the syntax:
<guid>= <sl id>:<bandwidth name>, <sl id>:<bandwidth name>…
Examples:
0x2c90000000026= 5:My_bandwidth, 7:My_bandwidth

Special Keywords

Keyword “all” allows setting a rate limit of all SLs to some BW for a specific physical or
virtual port. It is possible to combine “all” with specific SL rate limits.
Example:
0x2c90000000025 = all:BW1,SL3:BW2
In this case, SL3 will be assigned BW2 rate limit, while the rest of SLs get BW1 rate limit.
"default" is a well-known name which can be used to define a default rule used for any GUID
with no defined rule.
If no default rule is defined, any GUID without a specific rule will be configured with
unlimited rate limit for all SLs.
Keyword “all” is also applicable to the default rule. Default rule is local to each section.

Special Subnet Manager Configuration Options

New SM configuration option enhanced_qos_vport0_unlimit_default_rl was added to opensm.conf.

The possible values for this configuration option are:

TRUE: For specific virtual port0 GUID, SLs not mentioned in bandwidth rule will be set to
unlimited bandwidth (0) regardless of the default rule of the VPORT_BW_RULES section.
Virtual port0 GUIDs not mentioned in VPORT_BW_SECTION will be set to unlimited BW on all
SLs.

FALSE: The GUID of virtual port0 is treated as any other virtual port in VPORT_BW_SECTION.
SM should be signaled by HUP once the option is changed.

Default: TRUE

799

•
•

•

•

•
•

•

Notes

When rate limit is set to 0, it means that the bandwidth is unlimited.
Any unspecified SL in a rule will be set to 0 (unlimited) rate limit automatically if no default
rule is specified.
Failure to complete policy file parsing leads to an undefined behavior. User must confirm no
relevant error messages in SM log in order to ensure Enhanced QoS Manager is configured
properly.
A file with only 'BW_NAMES' and 'BW_RULES' keywords configures the network with an
unlimited rate limit.
HCA physical port GUID can be specified in BW_RULES and VPORT_BW_RULES sections.
In BW_RULES section, the rate limit assigned to a specific SL will limit the total BW that can
be sent through the PF on a given SL.
In VPORT_BW_RULES section, the rate limit assigned to a specific SL will limit only the traffic
sent from the IB interface corresponding to the physical port GUID (virtual port0 IB
interface). The traffic sent from other virtual IB interfaces will not be limited if no specific
rules are defined.

Policy File Example

All physical ports in the fabric are with a rate limit of 50Mbps on SL1, except for GUID
0x2c90000000025, which is configured with rate limit of 25Mbps on SL1. In this example, the traffic
on SLs (other than SL1) is unlimited.
All virtual ports in the fabric (except virtual port0 of all physical ports) will be rate-limited to
15Mbps for all SLs because of the default rule of VPORT_BW_RULES section.
Virtual port GUID 0x2c90000000026 is configured with a rate limit of 10Mbps on SL3. The rest of the
SLs on this virtual port will get a rate limit of 15 Mbps because of the default rule of
VPORT_BW_RULES section.

BW_NAMES
bw1 = 50
bw2 = 25
bw3 = 15
bw4 = 10

BW_RULES
default= 1:bw1
0x2c90000000025= 1:bw2

VPORT_BW_RULES
default= all:bw3
0x2c90000000026= 3:bw4

--

14.6.2.1.2.8 Adaptive Routing Manager and Self-Healing Networking

Adaptive Routing Manager supports advanced InfiniBand features; Adaptive Routing (AR) and Self-
Healing Networking.

For information on how to set up AR and Self-Healing Networking, please refer to HowTo Configure
Adaptive Routing and Self-Healing Networking Community post.

DOS MAD Prevention

DOS MAD prevention is achieved by assigning a threshold for each agent's RX. Agent's RX threshold
provides a protection mechanism to the host memory by limiting the agents' RX with a threshold.
Incoming MADs above the threshold are dropped and are not queued to the agent's RX.

https://enterprise-support.nvidia.com/s/article/How-To-Configure-Adaptive-Routing-and-Self-Healing-Networking-New

800

1.
2.

•

•
•
•
•

To enable DOS MAD Prevention:

Go to /etc/modprobe.d/mlnx.conf.
Add to the file the option below.

ib_umad enable_rx_threshold 1

The threshold value can be controlled from the user-space via libibumad.

To change the value, use the following API:

int umad_update_threshold(int fd, int threshold);

@fd: file descriptor, agent's RX associated to this fd.
@threshold: new threshold value

14.6.2.1.2.9 IB Router Support in OpenSM

In order to enable the IB router in OpenSM, the following parameters should be configured:

IB Router Parameters for OpenSM

Parameter Description Default Value

rtr_pr_flow_

label

Defines whether the SM should create alias GUIDs required for
router support for each port.
Defines flow label value to use in response for path records
related to the router.

0 (Disabled)

rtr_pr_tclass Defines TClass value to use in response for path records related
to the router

0

rtr_pr_sl Defines sl value to use in response for path records related to
router.

0

rtr_p_mtu Defines MTU value to use in response for path records related
to the router.

4 (IB_MTU_LEN_2048)

rtr_pr_rate Defines rate value to use in response for path records related
to the router.

16 (IB_PATH_RE-
CORD_RATE_100_GBS)

14.6.2.1.2.10 OpenSM Activity Report

OpenSM can produce an activity report in a form of a dump file which details the different activities
done in the SM. Activities are divided into subjects. The OpenSM Supported Activities table below
specifies the different activities currently supported in the SM activity report.
Reporting of each subject can be enabled individually using the configuration
parameter activity_report_subjects :

Valid values:
Comma separated list of subjects to dump. The current supported subjects are:

"mc" - activity IDs 1, 2 and 8
"prtn" - activity IDs 3, 4, and 5
"virt" - activity IDs 6 and 7
"routing" - activity IDs 8-12

801

•
•

•

•
•
•
•

•
•
•

•
•
•
•

•

•
•

•
•

•
•
•
•
•

•
•

Two predefined values can be configured as well:

"all" - dump all subjects
"none" - disable the feature by dumping none of the subjects

Default value: "none"

OpenSM Supported Activities

ACtivity ID Activity Name Additional Fields Comments Description

1 mcm_member MLid
MGid
Port Guid
Join State

Join state:
1 - Join
-1 - Leave

Member joined/ left
MC group

2 mcg_change MLid
MGid
Change

Change:
0 - Create
1 - Delete

MC group created/
deleted

3 prtn_guid_add Port Guid
PKey
Block index
Pkey Index

Guid added to
partition

4 prtn_create -PKey
Prtn Name

Partition created

5 prtn_delete PKey
Delete Reason

Delete Reason:
0 - empty prtn
1 - duplicate prtn
2 - sm shutdown

Partition deleted

6 port_virt_discover Port Guid
Top Index

Port virtualization
discovered

7 vport_state_change Port Guid
VPort Guid
VPort Index
VNode Guid
VPort State

VPort State:
1 - Down
2 - Init
3 - ARMED
4 - Active

Vport state changed

8 mcg_tree_calc mlid MCast group tree
calculated

9 routing_succeed routing engine name Routing done
successfully

10 routing_failed routing engine name Routing failed

11 ucast_cache_invali-
dated

ucast cache
invalidated

12 ucast_cache_rout-
ing_done

ucast cache routing
done

14.6.2.1.2.11 Offsweep Balancing

When working with minhop/dor/updn, subnet manager can re-balance routing during idle time
(between sweeps).

offsweep_balancing_enabled - enables/disables the feature. Examples:
offsweep_balancing_enabled = TRUE

802

•
•

•

•
•

•

offsweep_balancing_enabled = FALSE (default)
offsweep_balancing_window - defines window of seconds to wait after sweep before starting
the re-balance process. Applicable only if offsweep_balancing_enabled=TRUE. Example:
offsweep_balancing_window = 180 (default)

14.6.2.1.3 QoS - Quality of Service

Quality of Service (QoS) requirements stem from the realization of I/O consolidation over an IB
network. As multiple applications and ULPs share the same fabric, a means is needed to control
their use of network resources.

The basic need is to differentiate the service levels provided to different traffic flows, such that a
policy can be enforced and can control each flow utilization of fabric resources.
The InfiniBand Architecture Specification defines several hardware features and management
interfaces for supporting QoS:

Up to 15 Virtual Lanes (VL) carry traffic in a non-blocking manner

Arbitration between traffic of different VLs is performed by a two-priority-level weighted
round robin arbiter. The arbiter is programmable with a sequence of (VL, weight) pairs and a
maximal number of high priority credits to be processed before low priority is served
Packets carry class of service marking in the range 0 to 15 in their header SL field
Each switch can map the incoming packet by its SL to a particular output VL, based on a
programmable table VL=SL-to-VL-MAP(in-port, out-port, SL)
The Subnet Administrator controls the parameters of each communication flow by providing
them as a response to Path Record (PR) or MultiPathRecord (MPR) queries

803

1.

2.

3.

4.

5.

6.

DiffServ architecture (IETF RFC 2474 & 2475) is widely used in highly dynamic fabrics. The following
subsections provide the functional definition of the various software elements that enable a
DiffServ-like architecture over the NVIDIA OFED software stack.

14.6.2.1.3.1 QoS Architecture

QoS functionality is split between the SM/SA, CMA and the various ULPs. We take the "chronology
approach" to describe how the overall system works.

The network manager (human) provides a set of rules (policy) that define how the network is
being configured and how its resources are split to different QoS-Levels. The policy also
define how to decide which QoS-Level each application or ULP or service use.
The SM analyzes the provided policy to see if it is realizable and performs the necessary fab-
ric setup. Part of this policy defines the default QoS-Level of each partition. The SA is
enhanced to match the requested Source, Destination, QoS-Class, Service-ID, PKey against
the policy, so clients (ULPs, programs) can obtain a policy enforced QoS. The SM may also set
up partitions with appropriate IPoIB broadcast group. This broadcast group carries its QoS
attributes: SL, MTU, RATE, and Packet Lifetime.
IPoIB is being setup. IPoIB uses the SL, MTU, RATE and Packet Lifetime available on the
multicast group which forms the broadcast group of this partition.
MPI which provides non IB based connection management should be configured to run using
hard coded SLs. It uses these SLs for every QP being opened.
ULPs that use CM interface (like SRP) have their own pre-assigned Service-ID and use it while
obtaining PathRecord/MultiPathRecord (PR/MPR) for establishing connections. The SA
receiving the PR/MPR matches it against the policy and returns the appropriate PR/MPR
including SL, MTU, RATE and Lifetime.
ULPs and programs (e.g. SDP) use CMA to establish RC connection provide the CMA the target
IP and port number. ULPs might also provide QoS-Class. The CMA then creates Service-ID for
the ULP and passes this ID and optional QoS-Class in the PR/MPR request. The resulting PR/
MPR is used for configuring the connection QP.

PathRecord and Multi Path Record Enhancement for QoS:

As mentioned above, the PathRecord and MultiPathRecord attributes are enhanced to carry the
Service-ID which is a 64bit value. A new field QoS-Class is also provided.
A new capability bit describes the SM QoS support in the SA class port info. This approach provides
an easy migration path for existing access layer and ULPs by not introducing new set of PR/MPR
attributes.

14.6.2.1.3.2 Supported Policy

The QoS policy, which is specified in a stand-alone file, is divided into the following four
subsections:

Port Group

A set of CAs, Routers or Switches that share the same settings. A port group might be a partition
defined by the partition manager policy, list of GUIDs, or list of port names based on
NodeDescription.

Fabric Setup

804

•
•
•

•
•

Defines how the SL2VL and VLArb tables should be set up.

QoS-Levels Definition

This section defines the possible sets of parameters for QoS that a client might be mapped to. Each
set holds SL and optionally: Max MTU, Max Rate, Packet Lifetime and Path Bits.

Matching Rules

A list of rules that match an incoming PR/MPR request to a QoS-Level. The rules are processed in
order such as the first match is applied. Each rule is built out of a set of match expressions which
should all match for the rule to apply. The matching expressions are defined for the following fields:

SRC and DST to lists of port groups
Service-ID to a list of Service-ID values or ranges
QoS-Class to a list of QoS-Class values or ranges

14.6.2.1.3.3 CMA Features

The CMA interface supports Service-ID through the notion of port space as a prefix to the port
number, which is part of the sockaddr provided to rdma_resolve_add(). The CMA also allows the ULP
(like SDP) to propagate a request for a specific QoS-Class. The CMA uses the provided QoS-Class and
Service-ID in the sent PR/MPR.

IPoIB

IPoIB queries the SA for its broadcast group information and uses the SL, MTU, RATE and Packet
Lifetime available on the multicast group which forms this broadcast group.

SRP

The current SRP implementation uses its own CM callbacks (not CMA). So SRP fills in the Service-ID
in the PR/MPR by itself and use that information in setting up the QP.
SRP Service-ID is defined by the SRP target I/O Controller (it also complies with IBTA Service- ID
rules). The Service-ID is reported by the I/O Controller in the ServiceEntries DMA attribute and
should be used in the PR/MPR if the SA reports its ability to handle QoS PR/MPRs.

14.6.2.1.4 IP over InfiniBand (IPoIB)

14.6.2.1.4.1 Upper Layer Protocol (ULP)

The IP over IB (IPoIB) ULP driver is a network interface implementation over InfiniBand. IPoIB
encapsulates IP datagrams over an InfiniBand Datagram transport service. The IPoIB driver, ib_ipoib,
exploits the following capabilities:

VLAN simulation over an InfiniBand network via child interfaces
High Availability via Bonding

In OFED this part of the policy is ignored. SL2VL and VLArb tables should be configured in
the OpenSM options file (opensm.opts).

Path Bits are not implemented in OFED.

805

•
•

•
•
•
•

•
•
•

•
•
•
•
•
•
•

Varies MTU values:
up to 4k in Datagram mode

Uses any ConnectX® IB ports (one or two)
Inserts IP/UDP/TCP checksum on outgoing packets
Calculates checksum on received packets
Support net device TSO through ConnectX® LSO capability to defragment large data- grams to
MTU quantas.

IPoIB also supports the following software based enhancements:

Giant Receive Offload
NAPI
Ethtool support

14.6.2.1.4.2 Enhanced IPoIB

Enhanced IPoIB feature enables offloading ULP basic capabilities to a lower vendor specific driver, in
order to optimize IPoIB data path. This will allow IPoIB to support multiple stateless offloads, such
as RSS/TSS, and better utilize the features supported, enabling IPoIB datagram to reach peak
performance in both bandwidth and latency.

Enhanced IPoIB supports/performs the following:

Stateless offloads (RSS, TSS)
Multi queues
Interrupt moderation
Multi partitions optimizations
Sharing send/receive Work Queues
Vendor specific optimizations
UD mode only

14.6.2.1.4.3 Port Configuration
The physical port MTU (indicates the port capability) default value is 4k, whereas the IPoIB port MTU
("logical" MTU) default value is 2k as it is set by the OpenSM.
To change the IPoIB MTU to 4k, edit the OpenSM partition file in the section of IPoIB setting as
follow:

Default=0xffff, ipoib, mtu=5 : ALL=full;

where:

"mtu=5" indicates that all IPoIB ports in the fabric are using 4k MTU, ("mtu=4" indi- cates 2k MTU)

14.6.2.1.4.4 IPoIB Configuration

Unless you have run the installation script mlnxofedinstall with the flag '-n', then IPoIB has not been
configured by the installation. The configuration of IPoIB requires assigning an IP address and a
subnet mask to each HCA port, like any other network adapter card (i.e., you need to prepare a file
called ifcfg-ib<n> for each port). The first port on the first HCA in the host is called interface ib0,
the second port is called ib1, and so on.

806

•

•

IPoIB configuration can be based on DHCP or on a static configuration that you need to supply (see
below). You can also apply a manual configuration that persists only until the next reboot or driver
restart (see below).

IPoIB Configuration Based on DHCP

Setting an IPoIB interface configuration based on DHCP is performed similarly to the configuration of
Ethernet interfaces. In other words, you need to make sure that IPoIB configuration files include the
following line:

For RedHat:

BOOTPROTO=dhcp

For SLES:

BOOTPROTO='dchp'

Standard DHCP fields holding MAC addresses are not large enough to contain an IPoIB hardware
address. To overcome this problem, DHCP over InfiniBand messages convey a client identifier field
used to identify the DHCP session. This client identifier field can be used to associate an IP address
with a client identifier value, such that the DHCP server will grant the same IP address to any client
that conveys this client identifier.
The length of the client identifier field is not fixed in the specification. For the NVIDIA OFED for
Linux package, it is recommended to have IPoIB use the same format that FlexBoot uses for this
client identifier.

DHCP Server

In order for the DHCP server to provide configuration records for clients, an appropriate
configuration file needs to be created. By default, the DHCP server looks for a configuration file
called dhcpd.conf under /etc. You can either edit this file or create a new one and provide its full

If IPoIB configuration files are included, ifcfg-ib<n> files will be installed under:

/etc/sysconfig/network-scripts/ on a RedHat machine
/etc/sysconfig/network/ on a SuSE machine.

A patch for DHCP may be required for supporting IPoIB. For further information,
please see the REAME file available under the docs/dhcp/ directory.

Red Hat Enterprise Linux 7 supports assigning static IP addresses to InfiniBand IPoIB
interfaces. However, as these interfaces do not have a normal hardware Ethernet
address, a different method of specifying a unique identifier for the IPoIB interface
must be used. The standard is to use the option dhcp-client-identifier= construct to
specify the IPoIB interface’s dhcp-client-identifier field. The DHCP server host
construct supports at most one hardware Ethernet and one dhcp-client-identifier
entry per host stanza. However, there may be more than one fixed-address entry and
the DHCP server will automatically respond with an address that is appropriate for
the network that the DHCP request was received on.

807

•
•

path to the DHCP server using the -cf flag (See a file example at docs/dhcpd.conf).
The DHCP server must run on a machine which has loaded the IPoIB module. To run the DHCP server
from the command line, enter:

dhcpd <IB network interface name> -d

Example:

host1# dhcpd ib0 -d

DHCP Client (Optional)

 In order to use a DHCP client identifier, you need to first create a configuration file that defines the
DHCP client identifier.

Then run the DHCP client with this file using the following command:

dhclient –cf <client conf file> <IB network interface name>

Example of a configuration file for the ConnectX (PCI Device ID 26428), called dhclient.conf :

The value indicates a hexadecimal number interface "ib1" {
send dhcp-client-identifier
ff:00:00:00:00:00:02:00:00:02:c9:00:00:02:c9:03:00:00:10:39;
}

Example of a configuration file for InfiniHost III Ex (PCI Device ID 25218), called dhclient.conf :

The value indicates a hexadecimal number interface "ib1" {
send dhcp-client-identifier
20:00:55:04:01:fe:80:00:00:00:00:00:00:00:02:c9:02:00:23:13:92;
}

In order to use the configuration file, run:

host1# dhclient –cf dhclient.conf ib1

Static IPoIB Configuration

If you wish to use an IPoIB configuration that is not based on DHCP, you need to supply the
installation script with a configuration file (using the ‘-n’ option) containing the full IP
configuration. The IPoIB configuration file can specify either or both of the following data for an
IPoIB interface:

A static IPoIB configuration
An IPoIB configuration based on an Ethernet configuration
See your Linux distribution documentation for additional information about configuring IP
addresses.

The following code lines are an excerpt from a sample IPoIB configuration file:

A DHCP client can be used if you need to prepare a diskless machine with an IB driver.

808

1.

2.

3.

•
•

Static settings; all values provided by this file
IPADDR_ib0=10.4.3.175
NETMASK_ib0=255.255.0.0
NETWORK_ib0=10.4.0.0
BROADCAST_ib0=10.4.255.255
ONBOOT_ib0=1
Based on eth0; each '*' will be replaced with a corresponding octet
from eth0.
LAN_INTERFACE_ib0=eth0
IPADDR_ib0=10.4.'*'.'*'
NETMASK_ib0=255.255.0.0
NETWORK_ib0=10.4.0.0
BROADCAST_ib0=10.4.255.255
ONBOOT_ib0=1
Based on the first eth<n> interface that is found (for n=0,1,...);
each '*' will be replaced with a corresponding octet from eth<n>.
LAN_INTERFACE_ib0=
IPADDR_ib0=10.4.'*'.'*'
NETMASK_ib0=255.255.0.0
NETWORK_ib0=10.4.0.0
BROADCAST_ib0=10.4.255.255
ONBOOT_ib0=1

Manually Configuring IPoIB

 To manually configure IPoIB for the default IB partition (VLAN), perform the following steps:
Configure the interface by entering the ifconfig command with the following items:
- The appropriate IB interface (ib0, ib1, etc.)
- The IP address that you want to assign to the interface
- The netmask keyword
- The subnet mask that you want to assign to the interface
The following example shows how to configure an IB interface:

host1$ ifconfig ib0 10.4.3.175 netmask 255.255.0.0

(Optional) Verify the configuration by entering the ifconfig command with the appropriate
interface identifier ib# argument.
The following example shows how to verify the configuration:

host1$ ifconfig ib0
b0 Link encap:UNSPEC HWaddr 80-00-04-04-FE-80-00-00-00-00-00-00-00-00-00-00
inet addr:10.4.3.175 Bcast:10.4.255.255 Mask:255.255.0.0
UP BROADCAST MULTICAST MTU:65520 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:128
RX bytes:0 (0.0 b) TX bytes:0 (0.0 b)

Repeat the first two steps on the remaining interface(s).

14.6.2.1.4.5 Sub-interfaces

You can create sub-interfaces for a primary IPoIB interface to provide traffic isolation. Each such
sub-interface (also called a child interface) has a different IP and network addresses from the
primary (parent) interface. The default Partition Key (PKey), ff:ff, applies to the primary (parent)
interface.
This section describes how to:

Create a subinterface
Remove a subinterface

This manual configuration persists only until the next reboot or driver restart.

809

1.

2.

3.

4.

5.

Creating a Subinterface

In the following procedure, ib0 is used as an example of an IB sub-interface.

To create a child interface (sub-interface), follow this procedure:
Decide on the PKey to be used in the subnet (valid values can be 0 or any 16-bit unsigned
value). The actual PKey used is a 16-bit number with the most significant bit set. For
example, a value of 1 will give a PKey with the value 0x8001.
Create a child interface by running:

host1$ echo <PKey> > /sys/class/net/<IB subinterface>/create_child

Example:

host1$ echo 1 > /sys/class/net/ib0/create_child

This will create the interface ib0.8001.
Verify the configuration of this interface by running:

host1$ ifconfig <subinterface>.<subinterface PKey>

Using the example of the previous step:

host1$ ifconfig ib0.8001
ib0.8001 Link encap:UNSPEC HWaddr 80-00-00-4A-FE-80-00-00-00-00-00-00-00-00-00-00
BROADCAST MULTICAST MTU:2044 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:128
RX bytes:0 (0.0 b) TX bytes:0 (0.0 b)

As can be seen, the interface does not have IP or network addresses. To configure those, you
should follow the manual configuration procedure described in "Manually Configuring IPoIB"
section above.
To be able to use this interface, a configuration of the Subnet Manager is needed so that the
PKey chosen, which defines a broadcast address, be recognized.

Removing a Subinterface

To remove a child interface (subinterface), run:

echo <subinterface PKey> /sys/class/net/<ib_interface>/delete_child

Using the example of the second step from the previous chapter:

echo 0x8001 > /sys/class/net/ib0/delete_child

Note that when deleting the interface you must use the PKey value with the most significant bit set
(e.g., 0x8000 in the example above).

14.6.2.1.4.6 Verifying IPoIB Functionality

To verify your configuration and IPoIB functionality are successful, perform the following steps:

810

1.

2.
3.

•
•

•

•

•

•

•

Verify the IPoIB functionality by using the ifconfig command.
The following example shows how two IB nodes are used to verify IPoIB functionality. In the
following example, IB node 1 is at 10.4.3.175, and IB node 2 is at 10.4.3.176:

host1# ifconfig ib0 10.4.3.175 netmask 255.255.0.0
host2# ifconfig ib0 10.4.3.176 netmask 255.255.0.0

Enter the ping command from 10.4.3.175 to 10.4.3.176.
The following example shows how to enter the ping command:

host1# ping -c 5 10.4.3.176
PING 10.4.3.176 (10.4.3.176) 56(84) bytes of data.
64 bytes from 10.4.3.176: icmp_seq=0 ttl=64 time=0.079 ms
64 bytes from 10.4.3.176: icmp_seq=1 ttl=64 time=0.044 ms
64 bytes from 10.4.3.176: icmp_seq=2 ttl=64 time=0.055 ms
64 bytes from 10.4.3.176: icmp_seq=3 ttl=64 time=0.049 ms
64 bytes from 10.4.3.176: icmp_seq=4 ttl=64 time=0.065 ms
--- 10.4.3.176 ping statistics ---
5 packets transmitted, 5 received, 0% packet loss, time 3999ms rtt min/avg/max/mdev = 0.044/0.058/0.079/
0.014 ms, pipe 2

14.6.2.1.4.7 Bonding IPoIB

To create an interface configuration script for the ibX and bondX interfaces, you should use the
standard syntax (depending on your OS).
Bonding of IPoIB interfaces is accomplished in the same manner as would bonding of Ethernet
interfaces: via the Linux Bonding Driver.

Network Script files for IPoIB slaves are named after the IPoIB interfaces (e.g: ifcfg- ib0)
The only meaningful bonding policy in IPoIB is High-Availability (bonding mode number 1, or
active-backup)
Bonding parameter "fail_over_mac" is meaningless in IPoIB interfaces, hence, the only
supported value is the default: 0

For a persistent bonding IPoIB Network configuration, use the same Linux Network Scripts semantics,
with the following exceptions/ additions:

In the bonding master configuration file (e.g: ifcfg-bond0), in addition to Linux bonding
semantics, use the following parameter: MTU=65520
COND

Dynamically Connected Transport (DCT)
In the bonding slave configuration file (e.g: ifcfg-ib0), use the same Linux Network Scripts
semantics. In particular: DEVICE=ib0
In the bonding slave configuration file (e.g: ifcfg-ib0.8003), the line TYPE=InfiniBand is
necessary when using bonding over devices configured with partitions (p_key)
For RHEL users:
In /etc/modprobe.b/bond.conf add the following lines:

alias bond0 bonding

For IPoIB slaves, use MTU=2044. If you do not set the correct MTU or do not set MTU
at all, performance of the interface might decrease.

811

• For SLES users:
It is necessary to update the MANDATORY_DEVICES environment variable in /etc/sysconfig/
network/config with the names of the IPoIB slave devices (e.g. ib0, ib1, etc.). Otherwise,
bonding master may be created before IPoIB slave interfaces at boot time.
It is possible to have multiple IPoIB bonding masters and a mix of IPoIB bonding master and
Ethernet bonding master. However, It is NOT possible to mix Ethernet and IPoIB slaves under
the same bonding master.

14.6.2.1.4.8 Dynamic PKey Change

Dynamic PKey change means the PKey can be changed (add/removed) in the SM database and the
interface that is attached to that PKey is updated immediately without the need to restart the
driver.
If the PKey is already configured in the port by the SM, the child-interface can be used immediately.
If not, the interface will be ready to use only when SM adds the relevant PKey value to the port
after the creation of the child interface. No additional configuration is required once the child-
interface is created.

14.6.2.1.4.9 Precision Time Protocol (PTP) over IPoIB

This feature allows for accurate synchronization between the distributed entities over the network.
The synchronization is based on symmetric Round Trip Time (RTT) between the master and slave
devices.

This feature is enabled by default, and is also supported over PKey interfaces.

For more on the PTP feature, refer to Running Linux PTP with ConnectX-4/ConnectX-5/ConnectX-6
Community post.

For further information on Time-Stamping, follow the steps in "Time-Stamping Service".

14.6.2.1.4.10 One Pulse Per Second (1PPS) over IPoIB

1PPS is a time synchronization feature that allows the adapter to be able to send or receive 1 pulse
per second on a dedicated pin on the adapter card using an SMA connector (SubMiniature version A).
Only one pin is supported and could be configured as 1PPS in or 1PPS out.
For further information, refer to HowTo Test 1PPS on NVIDIA Adapters Community post.

14.6.2.1.5 Advanced Transport

14.6.2.1.5.1 Atomic Operations

Atomic Operations in mlx5 Driver

Restarting openibd does no keep the bonding configuration via Network Scripts. You have to
restart the network service in order to bring up the bonding master. After the configuration
is saved, restart the network service by running: /etc/init.d/network restart.

https://enterprise-support.nvidia.com/s/article/Running-Linux-PTP-with-ConnectX-4-ConnectX-5-ConnectX-6
https://enterprise-support.nvidia.com/s/article/howto-test-1pps-on-mellanox-adapters

812

•
•
•
•
•

To enable atomic operation with this endianness contradiction, use the ibv_create_qp to create

the QP and set the IBV_QP_CREATE_ATOMIC_BE_REPLY flag on create_flags .

14.6.2.1.5.2 XRC - eXtended Reliable Connected Transport Service for InfiniBand

XRC allows significant savings in the number of QPs and the associated memory resources required
to establish all to all process connectivity in large clusters.
It significantly improves the scalability of the solution for large clusters of multicore end-nodes by
reducing the required resources.
For further details, please refer to the "Annex A14 Supplement to InfiniBand Architecture
Specification Volume 1.2.1"
A new API can be used by user space applications to work with the XRC transport. The legacy API is
currently supported in both binary and source modes, however it is deprecated. Thus we
recommend using the new API.
The new verbs to be used are:

ibv_open_xrcd/ibv_close_xrcd
ibv_create_srq_ex
ibv_get_srq_num
ibv_create_qp_ex
ibv_open_qp

Please use ibv_xsrq_pingpong for basic tests and code reference. For detailed information
regarding the various options for these verbs, please refer to their appropriate man pages.

14.6.2.1.5.3 Dynamically Connected Transport (DCT)

Dynamically Connected transport (DCT) service is an extension to transport services to enable a
higher degree of scalability while maintaining high performance for sparse traffic. Utilization of DCT
reduces the total number of QPs required system wide by having Reliable type QPs dynamically
connect and disconnect from any remote node. DCT connections only stay connected while they are
active. This results in smaller memory footprint, less overhead to set connections and higher on-chip
cache utilization and hence increased performance. DCT is supported only in mlx5 driver.

14.6.2.1.5.4 MPI Tag Matching and Rendezvous Offloads

Tag Matching and Rendezvous Offloads is a technology employed by NVIDIA to offload the processing
of MPI messages from the host machine onto the network card. Employing this technology enables a
zero copy of MPI messages, i.e. messages are scattered directly to the user's buffer without
intermediate buffering and copies. It also provides a complete rendezvous progress by NVIDIA
devices. Such overlap capability enables the CPU to perform the application's computational tasks
while the remote data is gathered by the adapter.

Please note that ConnectX-4 supports DCT v0 and ConnectX-5 and above support DCT v1.
DCTv0 and DCT v1 are not interoperable.

Supported in ConnectX®-5 and above adapter cards.

813

For more information Tag Matching Offload, please refer to the Understanding MPI Tag Matching and
Rendezvous Offloads (ConnectX-5) Community post.

14.6.2.1.6 Optimized Memory Access

14.6.2.1.6.1 Memory Region Re-registration

Memory Region Re-registration allows the user to change attributes of the memory region. The user
may change the PD, access flags or the address and length of the memory region. Memory
region supports contagious pages allocation. Consequently, it de-registers memory region followed
by register memory region. Where possible, resources are reused instead of de-allocated and
reallocated.

Example:

int ibv_rereg_mr(struct ibv_mr *mr, int flags, struct ibv_pd *pd, void *addr, size_t length, uint64_t access,
struct ibv_rereg_mr_attr *attr);

@mr: The memory region to modify.

@flags: A bit-mask used to indicate which of the following properties of the memory region
are being modified. Flags should be one of:
IBV_REREG_MR_CHANGE_TRANSLATION /* Change translation (location and length) */
IBV_REREG_MR_CHANGE_PD/* Change protection domain*/
IBV_REREG_MR_CHANGE_ACCESS/* Change access flags*/

@pd: If IBV_REREG_MR_CHANGE_PD is set in flags, this field specifies the new protection
domain to associated with the memory region, otherwise, this parameter is ignored.

@addr: If IBV_REREG_MR_CHANGE_TRANSLATION is set in flags, this field specifies the start of
the virtual address to use in the new translation, otherwise, this parameter is
ignored.

@length: If IBV_REREG_MR_CHANGE_TRANSLATION is set in flags, this field specifies the length
of the virtual address to use in the new translation, otherwise, this parameter is
ignored.

@access: If IBV_REREG_MR_CHANGE_ACCESS is set in flags, this field specifies the new memory
access rights, otherwise, this parameter is ignored. Could be one of the following:
IBV_ACCESS_LOCAL_WRITE
IBV_ACCESS_REMOTE_WRITE
IBV_ACCESS_REMOTE_READ
IBV_ACCESS_ALLOCATE_MR /* Let the library allocate the memory for * the user, tries
to get contiguous pages */

@attr: Future extensions

ibv_rereg_mr returns 0 on success, or the value of an errno on failure (which indicates the error
reason). In case of an error, the MR is in undefined state. The user needs to call ibv_dereg_mr in
order to release it.

Please note that if the MR (Memory Region) is created as a Shared MR and a translation is requested,
after the call, the MR is no longer a shared MR. Moreover, Re-registration of MRs that uses NVIDIA
PeerDirect™ technology are not supported.

https://enterprise-support.nvidia.com/s/article/understanding-mpi-tag-matching-and-rendezvous-offloads--connectx-5-x

814

•

•

14.6.2.1.6.2 Memory Window

Memory Window allows the application to have a more flexible control over remote access to its
memory. It is available only on physical functions/native machines The two types of Memory
Windows supported are: type 1 and type 2B.
Memory Windows are intended for situations where the application wants to:

Grant and revoke remote access rights to a registered region in a dynamic fashion with less of
a performance penalty
Grant different remote access rights to different remote agents and/or grant those rights
over different ranges within registered region

For further information, please refer to the InfiniBand specification document.

Query Capabilities

Memory Windows are available if and only the hardware supports it. To verify whether Memory
Windows are available, run ibv_query_device .
For example:

struct ibv_device_attr device_attr = {.comp_mask = IBV_DEVICE_ATTR_RESERVED - 1};
ibv_query_device(context, & device_attr);
if (device_attr.exp_device_cap_flags & IBV_DEVICE_MEM_WINDOW ||
 device_attr.exp_device_cap_flags & IBV_DEVICE_MW_TYPE_2B) {
/* Memory window is supported */

Memory Window Allocation

Allocating memory window is done by calling the ibv_alloc_mw verb.

type_mw = IBV_MW_TYPE_2/ IBV_MW_TYPE_1
mw = ibv_alloc_mw(pd, type_mw);

Binding Memory Windows

After being allocated, memory window should be bound to a registered memory region. Memory
Region should have been registered using the IBV_ACCESS_MW_BIND access flag.

For further information on how to bind memory windows, please see rdma-core man page.

Invalidating Memory Window

Before rebinding Memory Window type 2, it must be invalidated using ibv_post_send - see here.

Deallocating Memory Window

Deallocating memory window is done using the ibv_dealloc_mw verb.

ibv_dealloc_mw(mw);

Memory Windows API cannot co-work with peer memory clients (PeerDirect).

https://github.com/linux-rdma/rdma-core/blob/master/libibverbs/man/ibv_bind_mw.3
https://github.com/linux-rdma/rdma-core/blob/master/libibverbs/man/ibv_wr_post.3.md

815

•

•

•

•

14.6.2.1.6.3 User-Mode Memory Registration (UMR)

User-mode Memory Registration (UMR) is a fast registration mode which uses send queue. The UMR
support enables the usage of RDMA operations and scatters the data at the remote side through the
definition of appropriate memory keys on the remote side.
UMR enables the user to:

Create indirect memory keys from previously registered memory regions, including creation
of KLM's from previous KLM's. There are not data alignment or length restrictions associated
with the memory regions used to define the new KLM's.
Create memory regions, which support the definition of regular non-contiguous memory
regions.

14.6.2.1.6.4 On-Demand-Paging (ODP)

On-Demand-Paging (ODP) is a technique to alleviate much of the shortcomings of memory
registration. Applications no longer need to pin down the underlying physical pages of the address
space, and track the validity of the mappings. Rather, the HCA requests the latest translations from
the OS when pages are not present, and the OS invalidates translations which are no longer valid
due to either non-present pages or mapping changes. ODP does not support contiguous pages.
ODP can be further divided into 2 subclasses: Explicit and Implicit ODP.

Explicit ODP
In Explicit ODP, applications still register memory buffers for communication, but this
operation is used to define access control for IO rather than pin-down the pages. ODP Memory
Region (MR) does not need to have valid mappings at registration time.

Implicit ODP
In Implicit ODP, applications are provided with a special memory key that represents their
complete address space. This all IO accesses referencing this key (subject to the access rights
associated with the key) does not need to register any virtual address range.

Query Capabilities

On-Demand Paging is available if both the hardware and the kernel support it. To verify whether
ODP is supported, run ibv_query_device.

For further information, please refer to the ibv_query_device manual page.

Registering ODP Explicit and Implicit MR

ODP Explicit MR is registered after allocating the necessary resources (e.g. PD, buffer), while ODP
implicit MR registration provides an implicit lkey that represents the complete address space.

For further information, please refer to the ibv_reg_mr manual page.

De-registering ODP MR

ODP MR is deregistered the same way a regular MR is deregistered:

ibv_dereg_mr(mr);

Advice MR Verb

https://github.com/linux-rdma/rdma-core/blob/master/libibverbs/man/ibv_query_device_ex.3
https://github.com/linux-rdma/rdma-core/blob/master/libibverbs/man/ibv_reg_mr.3

816

The driver can pre-fetch a given range of pages and map them for access from the HCA. The advice
MR verb is applicable for ODP MRs only.
For further information, please refer to the ibv_advise_mr manual page.

ODP Statistics

To aid in debugging and performance measurements and tuning, ODP support includes an extensive
set of statistics.

For further information, please refer to rdma-statistics manual page.

14.6.2.1.6.5 Inline-Receive

The HCA may write received data to the Receive CQE. Inline-Receive saves PCIe Read transaction
since the HCA does not need to read the scatter list. Therefore, it improves performance in case of
short receive-messages.

On poll CQ, the driver copies the received data from CQE to the user's buffers.

Inline-Receive is enabled by default and is transparent to the user application. To disable it globally,
set MLX5_SCATTER_TO_CQE environment variable to the value of 0. Otherwise, disable it on a
specific QP using mlx5dv_create_qp() with MLX5DV_QP_CREATE_DISABLE_SCATTER_TO_CQE.

For further information, please refer to the manual page of mlx5dv_create_qp().

14.6.2.1.7 NVIDIA PeerDirect

NVIDIA PeerDirect™ uses an API between IB CORE and peer memory clients, (e.g. GPU cards) to
provide access to an HCA to read/write peer memory for data buffers. As a result, it allows RDMA-
based (over InfiniBand/RoCE) application to use peer device computing power, and RDMA
interconnect at the same time without copying the data between the P2P devices.

For example, PeerDirect is being used for GPUDirect RDMA.

Detailed description for that API exists under MLNX OFED installation, please see docs/

readme_and_user_manual/PEER_MEMORY_API.txt .

14.6.2.1.7.1 PeerDirect Async

Mellanox PeerDirect Async sub-system gives PeerDirect hardware devices, such as GPU cards,
dedicated AS accelerators, and so on, the ability to take control over HCA in critical path offloading
CPU. To achieve this, there is a set of verb calls and structures providing application with abstract
description of operation sequences intended to be executed by peer device.

14.6.2.1.7.2 Relaxed Ordering (RSYNC)

In GPU systems with relaxed ordering, RSYNC callback will be invoked to ensure memory
consistency. The registration and implementation of the callback will be done using an external
module provided by the system vendor. Loading the module will register the callback in MLNX_OFED
to be used later to guarantee memory operations order.

This feature is only supported on ConnectX-5 adapter cards and above.

https://github.com/linux-rdma/rdma-core/blob/master/libibverbs/man/ibv_advise_mr.3.md
https://man7.org/linux/man-pages/man8/rdma-statistic.8.html

817

•
•

•
•
•
•

14.6.2.1.8 CPU Overhead Distribution

When creating a CQ using the ibv_create_cq() API, a " comp_vector " argument is sent. If the
value set for this argument is 0, while the CPU core executing this verb is not equal to zero, the
driver assigns a completion EQ with the least CQs reporting to it. This method is used to distribute
CQs amongst available completions EQ. To assign a CQ to a specific EQ, the EQ needs to be specified
in the comp_vector argument.

14.6.2.1.9 Out-of-Order (OOO) Data Placement

14.6.2.1.9.1 Overview

In certain fabric configurations, InfiniBand packets for a given QP may take up different paths in a
network from source to destination. This results into packets being received in an out-of-order
manner. These packets can now be handled instead of being dropped, in order to avoid
retransmission, by:

Achieving better network utilization
Decreasing latency

Data will be placed into host memory in an out-of-order manner when out-of-order messages are
received.

For information on how to set up out-of-order processing by the QP, please refer to HowTo Configure
Adaptive Routing and SHIELD Community post.

14.6.2.1.10 IB Router

IB router provides the ability to send traffic between two or more IB subnets thereby potentially
expanding the size of the network to over 40k end-ports, enabling separation and fault resilience
between islands and IB subnets, and enabling connection to different topologies used by different
subnets.
The forwarding between the IB subnets is performed using GRH lookup. The IB router's basic
functionality includes:

Removal of current L2 LRH (local routing header)
Routing
table lookup – using GID from GRH
Building new LRH according to the destination according to the routing table

The DLID in the new LRH is built using simplified GID-to-LID mapping (where LID = 16 LSB bits of GID)
thereby not requiring to send for ARP query/lookup.

Local Unicast GID Format

•
•
•

This feature is only supported on:
ConnectX-5 adapter cards and above
RC and XRC QPs
DC transport

https://enterprise-support.nvidia.com/s/article/How-To-Configure-Adaptive-Routing-and-Self-Healing-Networking-New

818

•

•

For this to work, the SM allocates an alias GID for each host in the fabric where the alias GID =
{subnet prefix[127:64], reserved[63:16], LID[15:0}. Hosts should use alias GIDs in order to transmit
traffic to peers on remote subnets.

Host-to-Host IB Router Unicast Flow

For information on the architecture and functionality of IB Router, refer to IB Router
Architecture and Functionality Community post.
For information on IB Router configuration, refer to HowTo Configure IB Routers Community
post.

14.6.2.1.11 MAD Congestion Control

The SA Management Datagrams (MAD) are General Management Packets (GMP) used to communicate
with the SA entity within the InfiniBand subnet. SA is normally part of the subnet manager, and it is
contained within a single active instance. Therefore, congestion on the SA communication level may
occur.
Congestion control is done by allowing max_outstanding MADs only, where outstanding MAD means
that is has no response yet. It also holds a FIFO queue that holds the SA MADs that their sending is
delayed due to max_outstanding overflow.
The length of the queue is queue_size and meant to limit the FIFO growth beyond the machine

https://enterprise-support.nvidia.com/s/article/ib-router-architecture-and-functionality
https://enterprise-support.nvidia.com/s/article/howto-configure-ib-routers

819

memory capabilities. When the FIFO is full, SA MADs will be dropped, and the drops counter will
increment accordingly.
When time expires (time_sa_mad) for a MAD in the queue, it will be removed from the queue and
the user will be notified of the item expiration.
This features is implemented per CA port.
The SA MAD congestion control values are configurable using the following sysfs entries:

/sys/class/infiniband/mlx5_0/mad_sa_cc/
├── 1
│ ├── drops
│ ├── max_outstanding
│ ├── queue_size
│ └── time_sa_mad
└── 2
├── drops
├── max_outstanding
├── queue_size
└── time_sa_mad

To print the current value:

cat /sys/class/infiniband/mlx5_0/mad_sa_cc/1/max_outstanding 16

To change the current value:

echo 32 > /sys/class/infiniband/mlx5_0/mad_sa_cc/1/max_outstanding
cat /sys/class/infiniband/mlx5_0/mad_sa_cc/1/max_outstanding
32

To reset the drops counter:

echo 0 > /sys/class/infiniband/mlx5_0/mad_sa_cc/1/drops

Parameters' Valid Ranges

Parameter Range Default Values

MIN MAX

max_oustanding 1 2^20 16

queue_size 16 2^20 16

time_sa_mad 1 milliseconds 10000 20 milliseconds

14.6.2.2 Storage Protocols
There are several storage protocols that use the advantage of InfiniBand and RDMA for performance
reasons (high throughput, low latency and low CPU utilization). In this chapter we will discuss the
following protocols:

820

•

•

•

•
•

•

•

•

SCSI RDMA Protocol (SRP) is designed to take full advantage of the protocol off-load and RDMA
features provided by the InfiniBand architecture.
iSCSI Extensions for RDMA (iSER) is an extension of the data transfer model of iSCSI, a storage
networking standard for TCP/IP. It uses the iSCSI components while taking the advantage of
the RDMA protocol suite. ISER is implemented on various stor- age targets such as TGT, LIO,
SCST and out of scope of this manual.
For various ISER targets configuration steps, troubleshooting and debugging, as well as other
implementation of storage protocols over RDMA (such as Ceph over RDMA, nbdX and more)
refer to Storage Solutions on the Community website.
Lustre is an open-source, parallel distributed file system, generally used for large-scale
cluster computing that supports many requirements of leadership class HPC simulation
environments.
NVM Express™ over Fabrics (NVME-oF)

NVME-oF is a technology specification for networking storage designed to enable NVMe
message-based commands to transfer data between a host computer and a target
solid-state storage device or system over a network such as Ethernet, Fibre Channel,
and InfiniBand. Tunneling NVMe commands through an RDMA fabric provides a high
throughput and a low latency. This is an alternative to the SCSi based storage
networking protocols.
NVME-oF Target Offload is an implementation of the new NVME-oF standard Target
(server) side in hardware. Starting from ConnectX-5 family cards, all regular IO
requests can be processed by the HCA, with the HCA sending IO requests directly to a
real NVMe PCI device, using peer-to-peer PCI communications. This means that
excluding connection management and error flows, no CPU utilization will be observed
during NVME-oF traffic.
For further information, please refer to Storage Solutions on the Community website
(enterprise-support.nvidia.com/s/).

14.6.2.2.1 SRP - SCSI RDMA Protocol

The SCSI RDMA Protocol (SRP) is designed to take full advantage of the protocol offload and RDMA
features provided by the InfiniBand architecture. SRP allows a large body of SCSI software to be
readily used on InfiniBand architecture. The SRP Initiator controls the connection to an SRP Target in
order to provide access to remote storage devices across an InfiniBand fabric. The kSRP Target
resides in an IO unit and provides storage services.

14.6.2.2.1.1 SRP Initiator

This SRP Initiator is based on open source from OpenFabrics (www.openfabrics.org) that implements
the SCSI RDMA Protocol-2 (SRP-2). SRP-2 is described in Document # T10/1524-D available from
http://www.t10.org.

The SRP Initiator supports

Basic SCSI Primary Commands -3 (SPC-3)
(www.t10.org/ftp/t10/drafts/spc3/spc3r21b.pdf)
Basic SCSI Block Commands -2 (SBC-2)
(www.t10.org/ftp/t10/drafts/sbc2/sbc2r16.pdf)

https://enterprise-support.nvidia.com/s/
http://www.openfabrics.org
http://www.t10.org
http://www.t10.org/ftp/t10/drafts/spc3/spc3r21b.pdf
http://www.t10.org/ftp/t10/drafts/sbc2/sbc2r16.pdf

821

•

•

1.

2.

•
•

Basic functionality, task management and limited error handling

Loading SRP Initiator

To load the SRP module either:

Execute the modprobe ib_srp command after the OFED driver is up.

or

Change the value of SRP_LOAD in /etc/infiniband/openib.conf to “ yes ”.

Run /etc/init.d/openibd restart for the changes to take effect.

SRP Module Parameters

When loading the SRP module, the following parameters can be set (viewable by the "modinfo
ib_srp" command):

cmd_sg_entr

ies

Default number of gather/scatter entries in the SRP command (default is 12, max 255)

allow_ext_s

g

Default behavior when there are more than cmd_sg_entries S/G entries after mapping; fails
the request when false (default false)

topspin_wor

karounds

Enable workarounds for Topspin/Cisco SRP target bugs

reconnect_d

elay

Time between successive reconnect attempts. Time between successive reconnect attempts
of SRP initiator to a disconnected target until dev_loss_tmo timer expires (if enabled), after
that the SCSI target will be removed

fast_io_fai

l_tmo

Number of seconds between the observation of a transport layer error and failing all I/O.
Increasing this timeout allows more tolerance to transport errors, however, doing so increases
the total failover time in case of serious transport failure.
Note: fast_io_fail_tmo value must be smaller than the value of recon- nect_delay

dev_loss_tm

o

Maximum number of seconds that the SRP transport should insulate transport layer errors.
After this time has been exceeded the SCSI target is removed. Normally it is advised to set
this to -1 (disabled) which will never remove the scsi_host. In deployments where different
SRP targets are connected and disconnected frequently, it may be required to enable this
timeout in order to clean old scsi_hosts representing targets that no longer exists

Constraints between parameters:

dev_loss_tmo, fast_io_fail_tmo, reconnect_delay cannot be all disabled or negative values.
reconnect_delay must be positive number.

This package, however, does not include an SRP Target.

When loading the ib_srp module, it is possible to set the module parameter

srp_sg_tablesize. This is the maximum number of gather/scatter entries per I/O
(default: 12).

822

•
•

•

•

•
•
•

•
•
•

•
•

fast_io_fail_tmo must be smaller than SCSI block device timeout.
fast_io_fail_tmo must be smaller than dev_loss_tmo.

SRP Remote Ports Parameters

Several SRP remote ports parameters are modifiable online on existing connection.

To modify dev_loss_tmo to 600 seconds:

echo 600 > /sys/class/srp_remote_ports/port-xxx/dev_loss_tmo

To modify fast_io_fail_tmo to 15 seconds:

echo 15 > /sys/class/srp_remote_ports/port-xxx/fast_io_fail_tmo

To modify reconnect_delay to 10 seconds:

echo 20 > /sys/class/srp_remote_ports/port-xxx/reconnect_delay

Manually Establishing an SRP Connection

The following steps describe how to manually load an SRP connection between the Initiator and an
SRP Target. “Automatic Discovery and Connection to Targets” section explains how to do this
automatically.

Make sure that the ib_srp module is loaded, the SRP Initiator is reachable by the SRP Target,
and that an SM is running.
To establish a connection with an SRP Target and create an SRP (SCSI) device for that target
under /dev, use the following command:

echo -n id_ext=[GUID value],ioc_guid=[GUID value],dgid=[port GID value],\
pkey=ffff,service_id=[service[0] value] > \
/sys/class/infiniband_srp/srp-mlx[hca number]-[port number]/add_target

See “SRP Tools - ibsrpdm, srp_daemon and srpd Service Script” section for instructions on how the
parameters in this echo command may be obtained.

Notes:

Execution of the above “echo” command may take some time
The SM must be running while the command executes
It is possible to include additional parameters in the echo command:

max_cmd_per_lun - Default: 62
max_sect (short for max_sectors) - sets the request size of a command
io_class - Default: 0x100 as in rev 16A of the specification (In rev 10 the default was
0xff00)
tl_retry_count - a number in the range 2..7 specifying the IB RC retry count. Default: 2
comp_vector, a number in the range 0..n-1 specifying the MSI-X completion vector.
Some HCA's allocate multiple (n) MSI-X vectors per HCA port. If the IRQ affinity masks
of these interrupts have been configured such that each MSI-X interrupt is handled by a

823

•

•

•

•

•

different CPU then the comp_vector parameter can be used to spread the SRP
completion workload over multiple CPU's.
cmd_sg_entries, a number in the range 1..255 that specifies the maximum number of
data buffer descriptors stored in the SRP_CMD information unit itself. With
allow_ext_sg=0 the parameter cmd_sg_entries defines the maximum S/G list length for
a single SRP_CMD, and commands whose S/G list length exceeds this limit after S/G list
collapsing will fail.
initiator_ext - see "Multiple Connections from Initiator InfiniBand Port to the Target"
section.

To list the new SCSI devices that have been added by the echo command, you may use either
of the following two methods:

Execute “fdisk -l”. This command lists all devices; the new devices are included in this
listing.
Execute “dmesg” or look at /var/log/messages to find messages with the names of the
new devices.

SRP sysfs Parameters

Interface for making ib_srp connect to a new target. One can request ib_srp to connect to a new
target by writing a comma-separated list of login parameters to this sysfs attribute. The supported
parameters are:

id_ext A 16-digit hexadecimal number specifying the eight byte identifier extension in the 16-byte
SRP target port identifier. The target port identifier is sent by ib_srp to the target in the
SRP_LOGIN_REQ request.

ioc_guid A 16-digit hexadecimal number specifying the eight byte I/O controller GUID portion of the 16-
byte target port identifier.

dgid A 32-digit hexadecimal number specifying the destination GID.

pkey A four-digit hexadecimal number specifying the InfiniBand partition key.

service_id A 16-digit hexadecimal number specifying the InfiniBand service ID used to establish
communication with the SRP target. How to find out the value of the service ID is specified in
the documentation of the SRP target.

max_sect A decimal number specifying the maximum number of 512-byte sectors to be transferred via a
single SCSI command.

max_cmd_pe
r_lun

A decimal number specifying the maximum number of outstanding commands for a single LUN.

io_class A hexadecimal number specifying the SRP I/O class. Must be either 0xff00 (rev 10) or 0x0100
(rev 16a). The I/O class defines the format of the SRP initiator and target port identifiers.

initiator_ext A 16-digit hexadecimal number specifying the identifier extension portion of the SRP initiator
port identifier. This data is sent by the initiator to the target in the SRP_LOGIN_REQ request.

cmd_sg_entri
es

A number in the range 1..255 that specifies the maximum number of data buffer descriptors
stored in the SRP_CMD information unit itself. With allow_ext_sg=0 the parameter
cmd_sg_entries defines the maxi- mum S/G list length for a single SRP_CMD, and commands
whose S/G list length exceeds this limit after S/G list collapsing will fail.

allow_ext_sg Whether ib_srp is allowed to include a partial memory descriptor list in an SRP_CMD instead of
the entire list. If a partial memory descriptor list has been included in an SRP_CMD the
remaining memory descriptors are communicated from initiator to target via an additional
RDMA transfer. Setting allow_ext_sg to 1 increases the maximum amount of data that can be
transferred between initiator and target via a single SCSI command. Since not all SRP target
implementations support partial memory descriptor lists the default value for this option is 0.

824

•
•
•

1.
a.

b.

2.
a.

sg_tablesize A number in the range 1..2048 specifying the maximum S/G list length the SCSI layer is
allowed to pass to ib_srp. Specifying a value that exceeds cmd_sg_entries is only safe with
partial memory descriptor list support enabled (allow_ext_sg=1).

comp_vector A number in the range 0..n-1 specifying the MSI-X completion vector. Some HCA's allocate
multiple (n) MSI-X vectors per HCA port. If the IRQ affinity masks of these interrupts have been
configured such that each MSI-X interrupt is handled by a different CPU then the comp_vector
parameter can be used to spread the SRP completion workload over multiple CPU's.

tl_retry_coun
t

A number in the range 2..7 specifying the IB RC retry count.

SRP Tools - ibsrpdm, srp_daemon and srpd Service Script

The OFED distribution provides two utilities: ibsrpdm and srp_daemon:

They detect targets on the fabric reachable by the Initiator (Step 1)
Output target attributes in a format suitable for use in the above “echo” command (Step 2)
A service script srpd which may be started at stack startup

The utilities can be found under /usr/sbin/, and are part of the srptools RPM that may be installed
using the OFED installation. Detailed information regarding the various options for these utilities are
provided by their man pages.
Below, several usage scenarios for these utilities are presented.

ibsrpdm

ibsrpdm has the following tasks:

Detecting reachable targets.
To detect all targets reachable by the SRP initiator via the default umad device (/sys/
class/infiniband_mad/umad0), execute the following command:

ibsrpdm

This command will result into readable output information on each SRP Target
detected. Sample:

 IO Unit Info:
 port LID: 0103
 port GID: fe800000000000000002c90200402bd5
 change ID: 0002
 max controllers: 0x10
 controller[1]
 GUID: 0002c90200402bd4
 vendor ID: 0002c9
 device ID: 005a44
 IO class : 0100
 ID: LSI Storage Systems SRP Driver 200400a0b81146a1
 service entries: 1
 service[0]: 200400a0b81146a1 / SRP.T10:200400A0B81146A1

To detect all the SRP Targets reachable by the SRP Initiator via another umad device,
use the following command:

ibsrpdm -d <umad device>

Assisting in SRP connection creation.
To generate an output suitable for utilization in the “echo” command in “Manually
Establishing an SRP Connection” section, add the ‘-c’ option to ibsrpdm:

825

b.

3.

•

•

•

•
•

1.

2.

•

ibsrpdm -c

Sample output:

id_ext=200400A0B81146A1,ioc_guid=0002c90200402bd4,
dgid=fe800000000000000002c90200402bd5,pkey=ffff,service_id=200400a0b81146a1

To establish a connection with an SRP Target using the output from the ‘ibsrpdm -c’
example above, execute the following command:

echo -n id_ext=200400A0B81146A1,ioc_guid=0002c90200402bd4,
dgid=fe800000000000000002c90200402bd5,pkey=ffff,service_id=200400a0b81146a1 > /sys/
class/infiniband_srp/srp-mlx5_0-1/add_target

The SRP connection should now be up; the newly created SCSI devices should appear in
the listing obtained from the ‘ fdisk -l ’ command.

Discover reachable SRP Targets given an InfiniBand HCA name and port, rather than by just
running /sys/class/infiniband_mad/umad<N> where <N> is a digit.

srpd

The srpd service script allows automatic activation and termination of the srp_daemon utility on all
system live InfiniBand ports.

srp_daemon

srp_daemon utility is based on ibsrpdm and extends its functionality. In addition to the ibsrpdm
functionality described above, srp_daemon can:

Establish an SRP connection by itself (without the need to issue the “echo” command
described in “Manually Establishing an SRP Connection” section)
Continue running in background, detecting new targets and establishing SRP connections with
them (daemon mode)
Discover reachable SRP Targets given an infiniband HCA name and port, rather than just by /

dev/umad<N> where <N> is a digit
Enable High Availability operation (together with Device-Mapper Multipath)
Have a configuration file that determines the targets to connect to:

srp_daemon commands equivalent to ibsrpdm:

"srp_daemon -a -o" is equivalent to "ibsrpdm"
"srp_daemon -c -a -o" is equivalent to "ibsrpdm -c"

Note: These srp_daemon commands can behave differently than the equivalent ibsrpdm
command when /etc/srp_daemon.conf is not empty.
srp_daemon extensions to ibsrpdm.

To discover SRP Targets reachable from the HCA device <InfiniBand HCA name> and the
port <port num>, (and to generate output suitable for 'echo'), execute:

host1# srp_daemon -c -a -o -i <InfiniBand HCA name> -p <port number>

Note: To obtain the list of InfiniBand HCA device names, you can either use the ibstat
tool or run ‘ls /sys/class/infiniband’.

826

•

•

•

•

•

•

•

•

•
•

•

To both discover the SRP Targets and establish connections with them, just add the -e
option to the above command.
Executing srp_daemon over a port without the -a option will only display the reachable
targets via the port and to which the initiator is not connected. If executing with the
-e option it is better to omit -a.
It is recommended to use the -n option. This option adds the initiator_ext to the
connecting string (see "Multiple Connections from Initiator InfiniBand Port to the
Target" section).
srp_daemon has a configuration file that can be set, where the default is /etc/
srp_daemon.conf. Use the -f to supply a different configuration file that configures the
targets srp_daemon is allowed to connect to. The configuration file can also be used to
set values for additional parameters (e.g., max_cmd_per_lun, max_sect).
A continuous background (daemon) operation, providing an automatic ongoing
detection and connection capability. See "Automatic Discovery and Connection to
Targets" section.

Automatic Discovery and Connection to Targets

Make sure the ib_srp module is loaded, the SRP Initiator can reach an SRP Target, and that an
SM is running.
To connect to all the existing Targets in the fabric, run “ srp_daemon -e -o ”. This utility
will scan the fabric once, connect to every Target it detects, and then exit.

To connect to all the existing Targets in the fabric and to connect to new targets that will join
the fabric, execute srp_daemon -e. This utility continues to execute until it is either killed by
the user or encounters connection errors (such as no SM in the fabric).
To execute SRP daemon as a daemon on all the ports:

srp_daemon.sh (found under /usr/sbin/). srp_daemon.sh sends its log to /var/log/
srp_daemon.log.
Start the srpd service script, run service srpd start

For the changes in openib.conf to take effect, run:

/etc/init.d/openibd restart

Multiple Connections from Initiator InfiniBand Port to the Target

Some system configurations may need multiple SRP connections from the SRP Initiator to the same
SRP Target: to the same Target IB port, or to different IB ports on the same Target HCA.
In case of a single Target IB port, i.e., SRP connections use the same path, the configuration is
enabled using a different initiator_ext value for each SRP connection. The initiator_ext value is a
16-hexadecimal-digit value specified in the connection command.

Also in case of two physical connections (i.e., network paths) from a single initiator IB port to two
different IB ports on the same Target HCA, there is need for a different initiator_ext value on each
path. The conventions is to use the Target port GUID as the initiator_ext value for the relevant path.

srp_daemon will follow the configuration it finds in /etc/srp_daemon.conf. Thus, it
will ignore a target that is disallowed in the configuration file.

827

•
•
•

1.

2.
3.
4.

If you use srp_daemon with -n flag, it automatically assigns initiator_ext values according to this
convention. For example:

id_ext=200500A0B81146A1,ioc_guid=0002c90200402bec,\
dgid=fe800000000000000002c90200402bed,pkey=ffff,\ service_id=200500a0b81146a1,initiator_ext=ed2b400002c90200

Notes:

It is recommended to use the -n flag for all srp_daemon invocations.
ibsrpdm does not have a corresponding option.
srp_daemon.sh always uses the -n option (whether invoked manually by the user, or
automatically at startup by setting SRP_DAEMON_ENABLE to yes).

High Availability (HA)

High Availability works using the Device-Mapper (DM) multipath and the SRP daemon. Each initiator
is connected to the same target from several ports/HCAs. The DM multipath is responsible for
joining together different paths to the same target and for failover between paths when one of
them goes offline. Multipath will be executed on newly joined SCSI devices.
Each initiator should execute several instances of the SRP daemon, one for each port. At startup,
each SRP daemon detects the SRP Targets in the fabric and sends requests to the ib_srp module to
connect to each of them. These SRP daemons also detect targets that subsequently join the fabric,
and send the ib_srp module requests to connect to them as well.

Operation

When a path (from port1) to a target fails, the ib_srp module starts an error recovery process. If
this process gets to the reset_host stage and there is no path to the target from this port, ib_srp will
remove this scsi_host. After the scsi_host is removed, multipath switches to another path to this
target (from another port/HCA).
When the failed path recovers, it will be detected by the SRP daemon. The SRP daemon will then
request ib_srp to connect to this target. Once the connection is up, there will be a new scsi_host for
this target. Multipath will be executed on the devices of this host, returning to the original state
(prior to the failed path).

Manual Activation of High Availability

Initialization - execute after each boot of the driver:

Execute modprobe dm-multipath

Execute modprobe ib-srp
Make sure you have created file /etc/udev/rules.d/91-srp.rules as described above
Execute for each port and each HCA:

srp_daemon -c -e -R 300 -i <InfiniBand HCA name> -p <port number>

This step can be performed by executing srp_daemon.sh, which sends its log to /var/log/
srp_daemon.log.

Now it is possible to access the SRP LUNs on /dev/mapper/.

828

•

•

•

1.

2.

a.
b.
c.

d.
3.

Automatic Activation of High Availability

Start srpd service, run:

service srpd start

From the next loading of the driver it will be possible to access the SRP LUNs on /dev/
mapper/

It is possible to see the output of the SRP daemon in /var/log/srp_daemon.log

14.6.2.2.1.2 Shutting Down SRP

SRP can be shutdown by using “rmmod ib_srp”, or by stopping the OFED driver (“/etc/init.d/
openibd stop”), or as a by-product of a complete system shutdown.
Prior to shutting down SRP, remove all references to it. The actions you need to take depend on the
way SRP was loaded. There are three cases:

Without High Availability
When working without High Availability, you should unmount the SRP partitions that were
mounted prior to shutting down SRP.
After Manual Activation of High Availability
If you manually activated SRP High Availability, perform the following steps:

Unmount all SRP partitions that were mounted.
Stop service srpd (Kill the SRP daemon instances).
Make sure there are no multipath instances running. If there are multiple instances,
wait for them to end or kill them.
Run: multipath -F

After Automatic Activation of High Availability
If SRP High Availability was automatically activated, SRP shutdown must be part of the driver
shutdown ("/etc/init.d/openibd stop") which performs Steps 2-4 of case b above. However,
you still have to unmount all SRP partitions that were mounted before driver shutdown.

It is possible for regular (non-SRP) LUNs to also be present; the SRP LUNs may be identified
by their names. You can configure the /etc/multipath.conf file to change multipath
behavior.

It is also possible that the SRP LUNs will not appear under /dev/mapper/. This can occur if
the SRP LUNs are in the black-list of multipath. Edit the ‘blacklist’ section in /etc/
multipath.conf and make sure the SRP LUNs are not blacklisted.

It is possible that regular (not SRP) LUNs are also present. SRP LUNs may be
identified by their name.

829

•
•
•

14.6.2.2.2 iSCSI Extensions for RDMA (iSER)

iSCSI Extensions for RDMA (iSER) extends the iSCSI protocol to RDMA. It permits data to be
transferred directly into and out of SCSI buffers without intermediate data copies.
iSER uses the RDMA protocol suite to supply higher bandwidth for block storage transfers (zero time
copy behavior). To that fact, it eliminates the TCP/IP processing overhead while preserving the
compatibility with iSCSI protocol.

There are three target implementation of ISER:

Linux SCSI target framework (tgt)
Linux-IO target (LIO)
Generic SCSI target subsystem for Linux (SCST)

Each one of those targets can work in TCP or iSER transport modes.
iSER also supports RoCE without any additional configuration required. To bond the RoCE interfaces,
set the fail_over_mac option in the bonding driver (see "Bonding IPoIB").
RDMA/RoCE is located below the iSER block on the network stack. In order to run iSER, the RDMA
layer should be configured and validated (over Ethernet or InfiniBand). For troubleshooting RDMA,
please refer to "HowTo Enable, Verify and Troubleshoot RDMA" on the Community website.

14.6.2.2.2.1 iSER Initiator

The iSER initiator is controlled through the iSCSI interface available from the iscsi-initiator-utils
package.

To discover and log into iSCSI targets, as well as access and manage the open-iscsi database use
the iscasiadm utility, a command-line tool.

https://enterprise-support.nvidia.com/s/article/How-To-Enable-Verify-and-Troubleshoot-RDMA

830

To enable iSER as a transport protocol use " I iser " as a parameter of the iscasiadm command.

Example for discovering and connecting targets over iSER:

iscsiadm -m discovery -o new -o old -t st -I iser -p <ip:port> -l

 Note that the target implementation (e.g. LIO, SCST, TGT) does not affect he initiator process and
configuration.

14.6.2.2.2.2 iSER Targets

Targets settings such as timeouts and retries are set the same as any other iSCSI targets.

For various configuration, troubleshooting and debugging examples, refer to Storage Solutions on
the Community website.

14.6.2.2.3 Lustre

Lustre is an open-source, parallel distributed file system, generally used for large-scale cluster
computing that supports many requirements of leadership class HPC simulation environments.

Lustre Compilation for MLNX_OFED:

To compile Lustre version 2.4.0 and higher:

$./configure --with-o2ib=/usr/src/ofa_kernel/default/
$ make rpms

To compile older Lustre versions:

$ EXTRA_LNET_INCLUDE="-I/usr/src/ofa_kernel/default/include/ -include /usr/src/ofa_kernel/default/include/linux/
compat-2.6.h" ./configure --with-o2ib=/usr/src/ofa_kernel/default/
$ EXTRA_LNET_INCLUDE="-I/usr/src/ofa_kernel/default/include/ -include /usr/src/ofa_kernel/default/include/linux/
compat-2.6.h" make rpms

For full installation example, refer to HowTo Install NVIDIA OFED driver for Lustre Community post.

Setting the iSER target is out of scope of this manual. For guidelines of how to do so, please
refer to the relevant target documentation (e.g. stgt, targetcli).

If targets are set to auto connect on boot, and targets are unreachable, it may take a long
time to continue the boot process if timeouts and max retries are set too high.

This procedure applies to RHEL/SLES OSs supported by Lustre. For further information,
please refer to Lustre Release Notes.

https://enterprise-support.nvidia.com/s/article/storage-solutions
https://enterprise-support.nvidia.com/s/article/howto-install-mellanox-ofed-driver-for-lustre

831

•

•

•
•
•
•
•
•

14.6.2.2.4 NVME-oF - NVM Express over Fabrics

14.6.2.2.4.1 NVME-oF

NVME-oF enables NVMe message-based commands to transfer data between a host computer and a
target solid-state storage device or system over a network such as Ethernet, Fibre Channel, and
InfiniBand. Tunneling NVMe commands through an RDMA fabric provides a high throughput and a low
latency.
For information on how to configure NVME-oF, please refer to the HowTo Configure NVMe over
Fabrics Community post.

14.6.2.2.4.2 NVME-oF Target Offload

NVME-oF Target Offload is an implementation of the new NVME-oF standard Target (server) side in
hardware. Starting from ConnectX-5 family cards, all regular IO requests can be processed by the
HCA, with the HCA sending IO requests directly to a real NVMe PCI device, using peer-to-peer PCI
communications. This means that excluding connection management and error flows, no CPU
utilization will be observed during NVME-oF traffic.

For instructions on how to configure NVME-oF target offload, refer to HowTo Configure NVME-
oF Target Offload Community post.
For instructions on how to verify that NVME-oF target offload is working properly, refer to
Simple NVMe-oF Target Offload Benchmark Community post.

14.6.2.3 Virtualization
The chapter contains the following sections:

Single Root IO Virtualization (SR-IOV)
Enabling Paravirtualization
VXLAN Hardware Stateless Offloads
Q-in-Q Encapsulation per VF in Linux (VST)
802.1Q Double-Tagging
Scalable Functions

14.6.2.3.1 Single Root IO Virtualization (SR-IOV)

Single Root IO Virtualization (SR-IOV) is a technology that allows a physical PCIe device to present
itself multiple times through the PCIe bus. This technology enables multiple virtual instances of the
device with separate resources. NVIDIA adapters are capable of exposing up to 127 virtual instances
(Virtual Functions (VFs) for each port in the NVIDIA ConnectX® family cards. These virtual functions
can then be provisioned separately. Each VF can be seen as an additional device connected to the

The --with-nvmf installation option should not be specified, if nvme-tcp kernel module is
used. In this case, the native Inbox nvme-tcp kernel module will be loaded.

This feature is only supported for ConnectX-5 adapter cards family and above.

https://enterprise-support.nvidia.com/s/article/howto-configure-nvme-over-fabrics
https://enterprise-support.nvidia.com/s/article/howto-configure-nvme-over-fabrics--nvme-of--target-offload
https://enterprise-support.nvidia.com/s/article/simple-nvme-of-target-offload-benchmark

832

•

•
•
•

1.

Physical Function. It shares the same resources with the Physical Function, and its number of ports
equals those of the Physical Function.
SR-IOV is commonly used in conjunction with an SR-IOV enabled hypervisor to provide virtual
machines direct hardware access to network resources hence increasing its performance.
In this chapter we will demonstrate setup and configuration of SR-IOV in a Red Hat Linux
environment using ConnectX® VPI adapter cards.

14.6.2.3.1.1 System Requirements

To set up an SR-IOV environment, the following is required:

MLNX_OFED Driver

A server/blade with an SR-IOV-capable motherboard BIOS
Hypervisor that supports SR-IOV such as: Red Hat Enterprise Linux Server Version 6
NVIDIA ConnectX® VPI Adapter Card family with SR-IOV capability

14.6.2.3.1.2 Setting Up SR-IOV

Depending on your system, perform the steps below to set up your BIOS. The figures used in this
section are for illustration purposes only. For further information, please refer to the appropriate
BIOS User Manual:

Enable "SR-IOV" in the system BIOS.

833

2.

3.
4.

1.
2.

Enable "Intel Virtualization Technology".

Install a hypervisor that supports SR-IOV.
Depending on your system, update the /boot/grub/grub.conf file to include a similar
command line load parameter for the Linux kernel.
For example, to Intel systems, add:

default=0
timeout=5
splashimage=(hd0,0)/grub/splash.xpm.gz
hiddenmenu
title Red Hat Enterprise Linux Server (4.x.x)
 root (hd0,0)
 kernel /vmlinuz-4.x.x ro root=/dev/VolGroup00/LogVol00 rhgb quiet
 intel_iommu=on initrd /initrd-4.x.x.img

Note: Please make sure the parameter " intel_iommu=on " exists when updating the /boot/
grub/grub.conf file, otherwise SR-IOV cannot be loaded.
Some OSs use /boot/grub2/grub.cfg file. If your server uses such file, please edit this file
instead (add “ intel_iommu=on ” for the relevant menu entry at the end of the line that
starts with "linux16").

14.6.2.3.1.3 Configuring SR-IOV (Ethernet)

To set SR-IOV in Ethernet mode, refer to HowTo Configure SR-IOV for ConnectX-4/ConnectX- 5/
ConnectX-6 with KVM (Ethernet) Community Post.

14.6.2.3.1.4 Configuring SR-IOV (InfiniBand)
Install the MLNX_OFED driver for Linux that supports SR-IOV.
Check if SR-IOV is enabled in the firmware.

mlxconfig -d /dev/mst/mt4115_pciconf0 q

 Device #1:

 Device type: Connect4
 PCI device: /dev/mst/mt4115_pciconf0
 Configurations: Current

https://enterprise-support.nvidia.com/s/article/HowTo-Configure-SR-IOV-for-ConnectX-4-ConnectX-5-ConnectX-6-with-KVM-Ethernet

834

3.
4.

5.

6.

 SRIOV_EN 1
 NUM_OF_VFS 8

Reboot the server.
Write to the sysfs file the number of Virtual Functions you need to create for the PF. You can
use one of the following equivalent files:
You can use one of the following equivalent files:
- A standard Linux kernel generated file that is available in the new kernels.

echo [num_vfs] > /sys/class/infiniband/mlx5_0/device/sriov_numvfs

Note: This file will be generated only if IOMMU is set in the grub.conf file (by adding
intel_iommu=on, as seen in the fourth step under “Setting Up SR-IOV”).
- A file generated by the mlx5_core driver with the same functionality as the kernel
generated one.

echo [num_vfs] > /sys/class/infiniband/mlx5_0/device/mlx5_num_vfs

Note: This file is used by old kernels that do not support the standard file. In such kernels,
using sriov_numvfs results in the following error: “bash: echo: write error: Function not
implemented”.
The following rules apply when writing to these files:
- If there are no VFs assigned, the number of VFs can be changed to any valid value (0 - max
#VFs as set during FW burning)
- If there are VFs assigned to a VM, it is not possible to change the number of VFs
- If the administrator unloads the driver on the PF while there are no VFs assigned, the driver
will unload and SRI-OV will be disabled
- If there are VFs assigned while the driver of the PF is unloaded, SR-IOV will not be disabled.
This means that VFs will be visible on the VM. However, they will not be operational. This is
applicable to OSs with kernels that use pci_stub and not vfio.
 - The VF driver will discover this situation and will close its resources
 - When the driver on the PF is reloaded, the VF becomes operational. The administrator of
the VF will need to restart the driver in order to resume working with the VF.
Load the driver. To verify that the VFs were created. Run:

lspci | grep Mellanox
08:00.0 Infiniband controller: Mellanox Technologies MT27700 Family [ConnectX-4]
08:00.1 Infiniband controller: Mellanox Technologies MT27700 Family [ConnectX-4]
08:00.2 Infiniband controller: Mellanox Technologies MT27700 Family [ConnectX-4 Virtual Function]
08:00.3 Infiniband controller: Mellanox Technologies MT27700 Family [ConnectX-4 Virtual Function]
08:00.4 Infiniband controller: Mellanox Technologies MT27700 Family [ConnectX-4 Virtual Function]
08:00.5 Infiniband controller: Mellanox Technologies MT27700 Family [ConnectX-4 Virtual Function]

Configure the VFs.
After VFs are created, 3 sysfs entries per VF are available under /sys/class/infiniband/
mlx5_<PF INDEX>/device/sriov (shown below for VFs 0 to 2):

+-- 0
| +-- node
| +-- policy

If needed, use mlxconfig to set the relevant fields:
mlxconfig -d /dev/mst/mt4115_pciconf0 set SRIOV_EN=1 NUM_OF_VFS=16

835

7.

1.

| +-- port
+-- 1
| +-- node
| +-- policy
| +-- port
+-- 2
 +-- node
 +-- policy
 +-- port

For each Virtual Function, the following files are available:
- Node - Node’s GUID:
The user can set the node GUID by writing to the /sys/class/infiniband/<PF>/device/sriov/
<index>/node file. The example below, shows how to set the node GUID for VF 0 of mlx5_0.

echo 00:11:22:33:44:55:1:0 > /sys/class/infiniband/mlx5_0/device/sriov/0/node

- Port - Port’s GUID:
The user can set the port GUID by writing to the /sys/class/infiniband/<PF>/device/sriov/
<index>/port file. The example below, shows how to set the port GUID for VF 0 of mlx5_0.

echo 00:11:22:33:44:55:2:0 > /sys/class/infiniband/mlx5_0/device/sriov/0/port

- Policy - The vport's policy. The user can set the port GUID by writing to the /sys/class/
infiniband/<PF>/device/sriov/<index>/port file. The policy can be one of:
 - Down - the VPort PortState remains 'Down'
 - Up - if the current VPort PortState is 'Down', it is modified to 'Initialize'. In all other
states, it is unmodified. The result is that the SM may bring the VPort up.
 - Follow - follows the PortState of the physical port. If the PortState of the physical port is
'Active', then the VPort implements the 'Up' policy. Otherwise, the VPort PortState is 'Down'.
Notes:
- The policy of all the vports is initialized to “Down” after the PF driver is restarted except
for VPort0 for which the policy is modified to 'Follow' by the PF driver.
- To see the VFs configuration, you must unbind and bind them or reboot the VMs if the VFs
were assigned.
Make sure that OpenSM supports Virtualization (Virtualization must be enabled).
The /etc/opensm/opensm.conf file should contain the following line:

virt_enabled 2

Note: OpenSM and any other utility that uses SMP MADs (ibnetdiscover, sminfo, iblink- info,
smpdump, ibqueryerr, ibdiagnet and smpquery) should run on the PF and not on the VFs. In
case of multi PFs (multi-host), OpenSM should run on Host0.

VFs Initialization Note

Since the same mlx5_core driver supports both Physical and Virtual Functions, once the Virtual
Functions are created, the driver of the PF will attempt to initialize them so they will be available
to the OS owning the PF. If you want to assign a Virtual Function to a VM, you need to make sure the
VF is not used by the PF driver. If a VF is used, you should first unbind it before assigning to a VM.

To unbind a device use the following command:
Get the full PCI address of the device.

836

2.

3.

1.
2.

lspci -D

Example:

0000:09:00.2

Unbind the device.

echo 0000:09:00.2 > /sys/bus/pci/drivers/mlx5_core/unbind

Bind the unbound VF.

echo 0000:09:00.2 > /sys/bus/pci/drivers/mlx5_core/bind

PCI BDF Mapping of PFs and VFs

PCI addresses are sequential for both of the PF and their VFs. Assuming the card's PCI slot is 05:00
and it has 2 ports, the PFs PCI address will be 05:00.0 and 05:00.1.
Given 3 VFs per PF, the VFs PCI addresses will be:

05:00.2-4 for VFs 0-2 of PF 0 (mlx5_0)
05:00.5-7 for VFs 0-2 of PF 1 (mlx5_1)

14.6.2.3.1.5 Additional SR-IOV Configurations

Assigning a Virtual Function to a Virtual Machine

This section describes a mechanism for adding a SR-IOV VF to a Virtual Machine.

Assigning the SR-IOV Virtual Function to the Red Hat KVM VM Server

Run the virt-manager.
Double click on the virtual machine and open its Properties.

837

3.

4.
5.
6.

7.

Go to Details → Add hardware → PCI host device.

Choose a NVIDIA virtual function according to its PCI device (e.g., 00:03.1)
If the Virtual Machine is up reboot it, otherwise start it.
Log into the virtual machine and verify that it recognizes the NVIDIA card. Run:

lspci | grep Mellanox

Example:

lspci | grep Mellanox
01:00.0 Infiniband controller: Mellanox Technologies MT28800 Family [ConnectX-5 Ex]

Add the device to the /etc/sysconfig/network-scripts/ifcfg-ethX configuration file.
The MAC address for every virtual function is configured randomly, therefore it is not
necessary to add it.

Ethernet Virtual Function Configuration when Running SR-IOV

SR-IOV Virtual function configuration can be done through Hypervisor iprout2/netlink tool, if
present. Otherwise, it can be done via sysfs.

ip link set { dev DEVICE | group DEVGROUP } [{ up | down }]
...
[vf NUM [mac LLADDR] [vlan VLANID [qos VLAN-QOS]]
...
[spoofchk { on | off}]]
...

sysfs configuration (ConnectX-4):

/sys/class/net/enp8s0f0/device/sriov/[VF]

+-- [VF]

838

•
•
•

•

•

•

•

•

| +-- config
| +-- link_state
| +-- mac
| +-- mac_list
| +-- max_tx_rate
| +-- min_tx_rate
| +-- spoofcheck
| +-- stats
| +-- trunk
| +-- trust
| +-- vlan

VLAN Guest Tagging (VGT) and VLAN Switch Tagging (VST)

When running ETH ports on VGT, the ports may be configured to simply pass through packets as is
from VFs (VLAN Guest Tagging), or the administrator may configure the Hypervisor to silently force
packets to be associated with a VLAN/Qos (VLAN Switch Tagging).
In the latter case, untagged or priority-tagged outgoing packets from the guest will have the VLAN
tag inserted, and incoming packets will have the VLAN tag removed.
The default behavior is VGT.

To configure VF VST mode, run:

ip link set dev <PF device> vf <NUM> vlan <vlan_id> [qos <qos>]

where:

NUM = 0..max-vf-num
vlan_id = 0..4095
qos = 0..7

For example:

ip link set dev eth2 vf 2 vlan 10 qos 3 - sets VST mode for VF #2 belonging to PF eth2, with
vlan_id = 10 and qos = 3
ip link set dev eth2 vf 2 vlan 0 - sets mode for VF 2 back to VGT

Additional Ethernet VF Configuration Options

Guest MAC configuration - by default, guest MAC addresses are configured to be all zeroes. If
the administrator wishes the guest to always start up with the same MAC, he/she should
configure guest MACs before the guest driver comes up. The guest MAC may be configured by
using:

ip link set dev <PF device> vf <NUM> mac <LLADDR>

For legacy and ConnectX-4 guests, which do not generate random MACs, the administrator
should always configure their MAC addresses via IP link, as above.

Spoof checking - Spoof checking is currently available only on upstream kernels newer than
3.1.

ip link set dev <PF device> vf <NUM> spoofchk [on | off]

 Guest Link State

839

ip link set dev <PF device> vf <UM> state [enable| disable| auto]

Virtual Function Statistics

Virtual function statistics can be queried via sysfs:

cat /sys/class/infiniband/mlx5_2/device/sriov/2/stats tx_packets : 5011
tx_bytes : 4450870
tx_dropped : 0
rx_packets : 5003
rx_bytes : 4450222
rx_broadcast : 0
rx_multicast : 0
tx_broadcast : 0
tx_multicast : 8
rx_dropped : 0

Mapping VFs to Ports

To view the VFs mapping to ports:

Use the ip link tool v2.6.34~3 and above.

ip link

Output:

61: p1p1: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN mode DEFAULT group default qlen 1000
 link/ether 00:02:c9:f1:72:e0 brd ff:ff:ff:ff:ff:ff
 vf 0 MAC 00:00:00:00:00:00, vlan 4095, spoof checking off, link-state auto
 vf 37 MAC 00:00:00:00:00:00, vlan 4095, spoof checking off, link-state auto
 vf 38 MAC ff:ff:ff:ff:ff:ff, vlan 65535, spoof checking off, link-state disable
 vf 39 MAC ff:ff:ff:ff:ff:ff, vlan 65535, spoof checking off, link-state disable

When a MAC is ff:ff:ff:ff:ff:ff, the VF is not assigned to the port of the net device it is listed under.
In the example above, vf38 is not assigned to the same port as p1p1, in contrast to vf0.
However, even VFs that are not assigned to the net device, could be used to set and change its
settings. For example, the following is a valid command to change the spoof check:

ip link set dev p1p1 vf 38 spoofchk on

This command will affect only the vf38. The changes can be seen in ip link on the net device that
this device is assigned to.

RoCE Support

RoCE is supported on Virtual Functions and VLANs may be used with it. For RoCE, the hypervisor GID
table size is of 16 entries while the VFs share the remaining 112 entries. When the number of VFs is
larger than 56 entries, some of them will have GID table with only a single entry which is
inadequate if VF's Ethernet device is assigned with an IP address.

Virtual Guest Tagging (VGT+)

VGT+ is an advanced mode of Virtual Guest Tagging (VGT), in which a VF is allowed to tag its own
packets as in VGT, but is still subject to an administrative VLAN trunk policy. The policy determines
which VLAN IDs are allowed to be transmitted or received. The policy does not determine the user
priority, which is left unchanged.

840

•

•

•

•

Packets can be sent in one of the following modes: when the VF is allowed to send/receive untagged
and priority tagged traffic and when it is not. No default VLAN is defined for VGT+ port. The send
packets are passed to the eSwitch only if they match the set, and the received packets are
forwarded to the VF only if they match the set.

Configuration

To enable VGT+ mode:

Set the corresponding port/VF (in the example below port eth5, VF0) range of allowed VLANs.

echo "<add> <start_vid> <end_vid>" > /sys/class/net/eth5/device/sriov/0/trunk

Examples:

Adding VLAN ID range (4-15) to trunk:

echo add 4 15 > /sys/class/net/eth5/device/sriov/0/trunk

Adding a single VLAN ID to trunk:

echo add 17 17 > /sys/class/net/eth5/device/sriov/0/trunk

Note: When VLAN ID = 0, it indicates that untagged and priority-tagged traffics are allowed

To disable VGT+ mode, make sure to remove all VLANs.

echo rem 0 4095 > /sys/class/net/eth5/device/sriov/0/trunk

To remove selected VLANs.
Remove VLAN ID range (4-15) from trunk:

echo rem 4 15 > /sys/class/net/eth5/device/sriov/0/trunk

Remove a single VLAN ID from trunk:

echo rem 17 17 > /sys/class/net/eth5/device/sriov/0/trunk

SR-IOV Advanced Security Features

SR-IOV MAC Anti-Spoofing

Normally, MAC addresses are unique identifiers assigned to network interfaces, and they are fixed
addresses that cannot be changed. MAC address spoofing is a technique for altering the MAC address
to serve different purposes. Some of the cases in which a MAC address is altered can be legal, while
others can be illegal and abuse security mechanisms or disguises a possible attacker.

When working in SR-IOV, the default operating mode is VGT.

841

1.
a.

b.

2.

a.

b.

The SR-IOV MAC address anti-spoofing feature, also known as MAC Spoof Check provides protection
against malicious VM MAC address forging. If the network administrator assigns a MAC address to a
VF (through the hypervisor) and enables spoof check on it, this will limit the end user to send traffic
only from the assigned MAC address of that VF.

MAC Anti-Spoofing Configuration

In the configuration example below, the VM is located on VF-0 and has the following MAC address:
11:22:33:44:55:66.
There are two ways to enable or disable MAC anti-spoofing:

Use the standard IP link commands - available from Kernel 3.10 and above.
To enable MAC anti-spoofing, run:

ip link set ens785f1 vf 0 spoofchk on

To disable MAC anti-spoofing, run:

ip link set ens785f1 vf 0 spoofchk off

Specify echo "ON" or "OFF" to the file located under /sys/class/net/<ifname / device/sriov/
<VF index>/spoofcheck.

To enable MAC anti-spoofing, run:

echo "ON" > /sys/class/net/ens785f1/vf/0/spoofchk

To disable MAC anti-spoofing, run:

echo "OFF" > /sys/class/net/ens785f1/vf/0/spoofchk

Limit and Bandwidth Share Per VF

This feature enables rate limiting traffic per VF in SR-IOV mode. For details on how to configure
rate limit per VF for ConnectX-4 and above adapter cards, please refer to HowTo Configure Rate
Limit per VF for ConnectX-4/ConnectX-5/ConnectX-6 Community post.

Limit Bandwidth per Group of VFs

VFs Rate Limit for vSwitch (OVS) feature allows users to join available VFs into groups and set a rate
limitation on each group. Rate limitation on a VF group ensures that the total Tx bandwidth that the
VFs in this group get (altogether combined) will not exceed the given value.
With this feature, a VF can still be configured with an individual rate limit as in the past (under /
sys/class/net/<ifname>/device/sriov/<vf_num>/max_tx_rate). However, the actual bandwidth limit
on the VF will eventually be determined considering the VF group limitation and how many VFs are

MAC anti-spoofing is disabled by default.

This configuration is non-persistent and does not survive driver restart.

https://enterprise-support.nvidia.com/s/article/HowTo-Configure-Rate-Limit-per-VF-for-ConnectX-4-ConnectX-5-ConnectX-6

842

1.

2.

3.

4.
5.

6.

a.

b.
c.

d.

e.
f.

•

•

in the same group.
For example: 2 VFs (0 and 1) are attached to group 3.

Case 1: The rate limitation on the group is set to 20G. Rate limit of each VF is 15G
Result: Each VF will have a rate limit of 10G

Case 2: Group’s max rate limitation is still set to 20G. VF 0 is configured to 30G limit, while VF 1 is
configured to 5G rate limit
Result: VF 0 will have 15G de-facto. VF 1 will have 5G

The rule of thumb is that the group’s bandwidth is distributed evenly between the number of VFs in
the group. If there are leftovers, they will be assigned to VFs whose individual rate limit has not
been met yet.

VFs Rate Limit Feature Configuration

When VF rate group is supported by FW, the driver will create a new hierarchy in the SRI-OV
sysfs named “groups” (/sys/class/net/<ifname>/device/sriov/groups/). It will contain all the
info and the configurations allowed for VF groups.
All VFs are placed in group 0 by default since it is the only existing group following the initial
driver start. It would be the only group available under /sys/class/net/<ifname>/device/
sriov/groups/
The VF can be moved to a different group by writing to the group file -> echo $GROUP_ID > /
sys/class/net/<ifname>/device/sriov/<vf_id>/group
The group IDs allowed are 0-255
Only when there is at least 1 VF in a group, there will be a group configuration available
under /sys/class/net/<ifname>/device/sriov/groups/ (Except for group 0, which is always
available even when it’s empty).
Once the group is created (by moving at least 1 VF to that group), users can configure the
group’s rate limit. For example:

echo 10000 > /sys/class/net/<ifname>/device/sriov/5/max_tx_rate – setting individual
rate limitation of VF 5 to 10G (Optional)
echo 7 > /sys/class/net/<ifname>/device/sriov/5/group – moving VF 5 to group 7
echo 5000 > /sys/class/net/<ifname>/device/sriov/groups/7/max_tx_rate – setting
group 7 with rate limitation of 5G
When running traffic via VF 5 now, it will be limited to 5G because of the group rate
limit even though the VF itself is limited to 10G
echo 3 > /sys/class/net/<ifname>/device/sriov/5/group – moving VF 5 to group 3
Group 7 will now disappear from /sys/class/net/<ifname>/device/sriov/groups since
there are 0 VFs in it. Group 3 will now appear. Since there’s no rate limit on group 3,
VF 5 can transmit at 10G (thanks to its individual configuration)

Notes:

You can see to which group the VF belongs to in the ‘stats’ sysfs (cat /sys/class/net/
<ifname>/device/sriov/<vf_num>/stats)
You can see the current rate limit and number of attached VFs to a group in the group’s
‘config’ sysfs (cat /sys/class/net/<ifname>/device/sriov/groups/<group_id>/config)

Bandwidth Guarantee per Group of VFs

843

•

•

•

1.
a.

Bandwidth guarantee (minimum BW) can be set on a group of VFs to ensure this group is able to
transmit at least the amount of bandwidth specified on the wire.

Note the following:

The minimum BW settings on VF groups determine how the groups share the total BW
between themselves. It does not impact an individual VF’s rate settings.
The total minimum BW that is set on the VF groups should not exceed the total line rate.
Otherwise, results are unexpected.
It is still possible to set minimum BW on the individual VFs inside the group. This will
determine how the VFs share the group’s minimum BW between themselves. The total
minimum BW of the VF member should not exceed the minimum BW of the group.

For instruction on how to create groups of VFs, see Limit Bandwidth per Group of VFs above.

Example

With a 40Gb link speed, assuming 4 groups and default group 0 have been created:

echo 20000 > /sys/class/net/<ifname>/device/sriov/group/1/min_tx_rate
echo 5000 > /sys/class/net/<ifname>/device/sriov/group/2/min_tx_rate
echo 15000 > /sys/class/net/<ifname>/device/sriov/group/3/min_tx_rate

Group 0(default) : 0 - No BW guarantee is configured.
Group 1 : 20000 - This is the maximum min rate among groups
Group 2 : 5000 which is 25% of the maximum min rate
Group 3 : 15000 which is 75% of the maximum min rate
Group 4 : 0 - No BW guarantee is configured.

Assuming there are VFs attempting to transmit in full line rate in all groups, the results would look
like: In which case, the minimum BW allocation would be:

Group0 – Will have no BW to use since no BW guarantee was set on it while other groups do have such settings.
Group1 – Will transmit at 20Gb/s
Group2 – Will transmit at 5Gb/s
Group3 – Will transmit at 15Gb/s
Group4 - Will have no BW to use since no BW guarantee was set on it while other groups do have such settings.

Privileged VFs

In case a malicious driver is running over one of the VFs, and in case that VF's permissions are not
restricted, this may open security holes. However, VFs can be marked as trusted and can thus
receive an exclusive subset of physical function privileges or permissions. For example, in case of
allowing all VFs, rather than specific VFs, to enter a promiscuous mode as a privilege, this will
enable malicious users to sniff and monitor the entire physical port for incoming traffic, including
traffic targeting other VFs, which is considered a severe security hole.

Privileged VFs Configuration

In the configuration example below, the VM is located on VF-0 and has the following MAC address:
11:22:33:44:55:66.
There are two ways to enable or disable trust:

Use the standard IP link commands - available from Kernel 4.5 and above.
To enable trust for a specific VF, run:

844

b.

2.

a.

b.

1.

2.

ip link set ens785f1 vf 0 trust on

To disable trust for a specific VF, run:

ip link set ens785f1 vf 0 trust off

Specify echo "ON" or "OFF" to the file located under /sys/class/net/<ETH_IF_NAME> / device/
sriov/<VF index>/trust.

To enable trust for a specific VF, run:

echo "ON" > /sys/class/net/ens785f1/device/sriov/0/trust

To disable trust for a specific VF, run:

echo "OFF" > /sys/class/net/ens785f1/device/sriov/0/trust

Probed VFs

Probing Virtual Functions (VFs) after SR-IOV is enabled might consume the adapter cards' resources.
Therefore, it is recommended not to enable probing of VFs when no monitoring of the VM is needed.
VF probing can be disabled in two ways, depending on the kernel version installed on your server:

If the kernel version installed is v4.12 or above, it is recommended to use the PCI sysfs
interface sriov_drivers_autoprobe . For more information, see linux-next branch.
If the kernel version installed is older than v4.12, it is recommended to use the mlx5_core
module parameter probe_vf with driver version 4.1 or above.

Example:

echo 0 > /sys/module/mlx5_core/parameters/probe_vf

For more information on how to probe VFs, see HowTo Configure and Probe VFs on mlx5 Drivers
Community post.

VF Promiscuous Rx Modes

VF Promiscuous Mode

VFs can enter a promiscuous mode that enables receiving the unmatched traffic and all the
multicast traffic that reaches the physical port in addition to the traffic originally targeted to the
VF. The unmatched traffic is any traffic's DMAC that does not match any of the VFs' or PFs' MAC
addresses.
Note: Only privileged/trusted VFs can enter the VF promiscuous mode.

To set the promiscuous mode on for a VF, run:

ifconfig eth2 promisc

To exit the promiscuous mode, run:

https://git.kernel.org/pub/scm/linux/kernel/git/next/linux-next.git/diff/Documentation/ABI/testing/sysfs-bus-pci?id=0e7df22401a3dfd403b26dea62dd00e0598b538b
https://enterprise-support.nvidia.com/s/article/howto-configure-and-probe-vfs-on-mlx5-drivers

845

1.

2.

3.

•
•

ifconfig eth2 –promisc

VF All-Multi Mode

VFs can enter an all-multi mode that enables receiving all the multicast traffic sent from/to the
other functions on the same physical port in addition to the traffic originally targeted to the VF.
Note: Only privileged/trusted VFs can enter the all-multi RX mode.

To set the all-multi mode on for a VF, run:

ifconfig eth2 allmulti

To exit the all-multi mode, run:

#ifconfig eth2 –allmulti

14.6.2.3.1.6 Uninstalling the SR-IOV Driver

To uninstall SR-IOV driver, perform the following:
For Hypervisors, detach all the Virtual Functions (VF) from all the Virtual Machines (VM) or
stop the Virtual Machines that use the Virtual Functions.
Please be aware that stopping the driver when there are VMs that use the VFs, will cause
machine to hang.
Run the script below. Please be aware, uninstalling the driver deletes the entire driver's file,
but does not unload the driver.

[root@swl022 ~]# /usr/sbin/ofed_uninstall.sh
This program will uninstall all OFED packages on your machine.
Do you want to continue?[y/N]:y
Running /usr/sbin/vendor_pre_uninstall.sh
Removing OFED Software installations
Running /bin/rpm -e --allmatches kernel-ib kernel-ib-devel libibverbs libibverbs-devel libibverbs-
devel-static libibverbs-utils libmlx4 libmlx4-devel libibcm libibcm-devel libibumad libibumad-devel
libibumad-static libibmad libibmad-devel libibmad-static librdmacm librdmacm-utils librdmacm-devel ibacm
opensm-libs opensm-devel perftest compat-dapl compat-dapl-devel dapl dapl-devel dapl-devel-static dapl-
utils srptools infiniband-diags-guest ofed-scripts opensm-devel
warning: /etc/infiniband/openib.conf saved as /etc/infiniband/openib.conf.rpmsave
Running /tmp/2818-ofed_vendor_post_uninstall.sh

Restart the server.

14.6.2.3.1.7 SR-IOV Live Migration

Live migration refers to the process of moving a guest virtual machine (VM) running on one physical
host to another host without disrupting normal operations or causing other adverse effects for the
end user.

Using the Migration process is useful for:

load balancing
hardware independence

This feature is supported in Ethernet mode only.

846

•
•
•

•
•

•
•

energy saving
geographic migration
fault tolerance

Migration works by sending the state of the guest virtual machine's memory and any virtualized
devices to a destination host physical machine. Migrations can be performed live or not, in the live
case, the migration will not disrupt the user operations and it will be transparent to it as explained
in the sections below.

Non-Live Migration

When using the non-live migration process, the Hypervisor suspends the guest virtual machine, then
moves an image of the guest virtual machine's memory to the destination host physical machine.
The guest virtual machine is then resumed on the destination host physical machine, and the
memory the guest virtual machine used on the source host physical machine is freed. The time it
takes to complete such a migration depends on the network bandwidth and latency. If the network
is experiencing heavy use or low bandwidth, the migration will take longer then desired.

Live Migration

When using the Live Migration process, the guest virtual machine continues to run on the source
host physical machine while its memory pages are transferred to the destination host physical
machine. During migration, the Hypervisor monitors the source for any changes in the pages it has
already transferred and begins to transfer these changes when all of the initial pages have been
transferred.

It also estimates transfer speed during migration, so when the remaining amount of data to transfer
will take a certain configurable period of time, it will suspend the original guest virtual machine,
transfer the remaining data, and resume the same guest virtual machine on the destination host
physical machine.

MLX5 VF Live Migration

The purpose of this section is to demonstrate how to perform basic live migration of a QEMU VM
with an MLX5 VF assigned to it. This section does not explains how to create VMs either using libvirt
or directly via QEMU.

Requirements

The below are the requirements for working with MLX5 VF Live Migration.

Components Description

Adapter Cards ConnectX-7 ETH
BlueField-3 ETH

Firmware 28.41.1000
32.41.1000

Kernel Linux v6.7 or newer

User Space Tools iproute2 version 6.2 or newer

The same PSID must be used on both the source and the
target hosts (identical cards, same CAPs and features are
needed), and have the same firmware version.

847

•
•
•

1.

2.

Components Description

QEMU QEMU 8.1 or newer

Libvirt Libvirt 8.6 or newer

Setup

NVCONFIG

SR-IOV should be enabled and be configured to support the required number of VFs as of enabling
live migration. This can be achieved by the below command:

mlxconfig -d *<PF_BDF>* s SRIOV_EN=1 NUM_OF_VFS=4 VF_MIGRATION_MODE=2

where:

SRIOV_EN Enable Single-Root I/O Virtualization (SR-IOV)

NUM_OF_VFS The total number of Virtual Functions (VFs) that can be
supported, for each PF.

VF_MIGRATION_MODE Defines support for VF migration.
0x0: DEVICE_DEFAULT
0x1: MIGRATION_DISABLED
0x2: MIGRATION_ENABLED

Kernel Configuration

Needs to be compiled with driver MLX5_VFIO_PCI enabled. (i.e. CONFIG_MLX5_VFIO_PCI).

To load the driver, run:

modprobe mlx5_vfio_pci

QEMU

Needs to be compiled with VFIO_PCI enabled (this is enabled by default).

Host Preparation

As stated earlier, creating the VMs is beyond the scope of this guide and we assume that they are
already created. However, the VM configuration should be a migratable configuration, similarly to
how it is done without SRIOV VFs.

Over libvirt

Set the PF in the "switchdev" mode.

devlink dev eswitch set pci/<PF_BDF> mode switchdev

Create the VFs that will be assigned to the VMs.

The below steps should be done before running the VMs.

848

3.
a.

b.

c.

4.

a.

b.

5.
a.

b.

6.

a.

echo "1" > /sys/bus/pci/devices/<PF_BDF>/sriov_numvfs

Set the VFs as migration capable.
See the name of the VFs, run:

devlink port show

Unbind the VFs from mlx5_core, run:

echo '<VF_BDF>' > /sys/bus/pci/drivers/mlx5_core/unbind

Use devlink to set each VF as migration capable, run:

devlink port function set pci/<PF_BDF>/1 migratable enable

Assign the VFs to the VMs.

Edit the VMs XML file, run:

virsh edit <VM_NAME>

Assign the VFs to the VM by adding the following under the "devices" tag:

<hostdev mode='subsystem' type='pci' managed='no'>
 <driver name='vfio'/>
 <source>
 <address domain='0x0000' bus='0x08' slot='0x00' function='0x2'/>
 </source>
 <address type='pci' domain='0x0000' bus='0x09' slot='0x00' function='0x0'/>
</hostdev>

Set the destination VM in incoming mode.
Edit the destination VM XML file, run:

virsh edit <VM_NAME>

Set the destination VM in migration incoming mode by adding the following under
"domain" tag:

<domain type='kvm' xmlns:qemu='http://libvirt.org/schemas/domain/qemu/1.0'>
 [...]
 <qemu:commandline>
 <qemu:arg value='--incoming'/>
 <qemu:arg value='tcp:<DEST_IP>:<DEST_PORT>'/>
 </qemu:commandline>
</domain>

Bind the VFs to mlx5_vfio_pci driver.

Detach the VFs from libvirt management, run:

The domain, bus, slot and function values above are dummy values, replace
them with your VFs values.

To be able to save the file, the above "xmlns:qemu" attribute of the
"domain" tag must be added as well.

849

b.

c.

d.

1.

2.

3.
a.

b.

c.

4.
a.

b.

1.

virsh nodedev-detach pci_<VF_BDF>

Unbind the VFs from vfio-pci driver (the VFs are automatically bound to it after
running "virsh nodedev-detach"), run:

echo '<VF_BDF>' > /sys/bus/pci/drivers/vfio-pci/unbind

Set driver override, run:

echo 'mlx5_vfio_pci' > /sys/bus/pci/devices/<VF_BDF>/driver_override

Bind the VFs to mlx5_vfio_pci driver, run:

echo '<VF_BDF>' > /sys/bus/pci/drivers/mlx5_vfio_pci/bind

Directly over QEMU

Set the PF in "switchdev" mode.

devlink dev eswitch set pci/<PF_BDF> mode switchdev

Create the VFs that will be assigned to the VMs.

echo "1" > /sys/bus/pci/devices/<PF_BDF>/sriov_numvfs

Set the VFs as migration capable.
See the name of the VFs, run:

devlink port show

Unbind the VFs from mlx5_core, run:

echo '<VF_BDF>' > /sys/bus/pci/drivers/mlx5_core/unbind

Use devlink to set each VF as migration capable, run:

devlink port function set pci/<PF_BDF>/1 migratable enable

Bind the VFs to mlx5_vfio_pci driver:
Set driver override, run:

echo 'mlx5_vfio_pci' > /sys/bus/pci/devices/<VF_BDF>/driver_override

Bind the VFs to mlx5_vfio_pci driver, run:

echo '<VF_BDF>' > /sys/bus/pci/drivers/mlx5_vfio_pci/bind

Running the Migration

Over libvirt

Start the VMs in source and in destination, run:

850

2.

3.

4.

5.

1.

2.

3.

4.

5.

virsh start <VM_NAME>

Enable switchover-ack QEMU migration capability. Run the following commands both in source
and destination:

virsh qemu-monitor-command <VM_NAME> --hmp "migrate_set_capability return-path on"

virsh qemu-monitor-command <VM_NAME> --hmp "migrate_set_capability switchover-ack on"

[Optional] Configure the migration bandwidth and downtime limit in source side:

virsh qemu-monitor-command <VM_NAME> --hmp "migrate_set_parameter max-bandwidth <VALUE>"
virsh qemu-monitor-command <VM_NAME> --hmp "migrate_set_parameter downtime-limit <VALUE>"

Start migration by running the migration command in source side:

virsh qemu-monitor-command <VM_NAME> --hmp "migrate -d tcp:<DEST_IP>:<DEST_PORT>"

Check the migration status by running the info command in source side:

virsh qemu-monitor-command <VM_NAME> --hmp "info migrate"

Directly over QEMU

Start the VM in source with the VF assigned to it:

qemu-system-x86_64 [...] -device vfio-pci,host=<VF_BDF>,id=mlx5_1

Start the VM in destination with the VF assigned to it and with the "incoming" parameter:

qemu-system-x86_64 [...] -device vfio-pci,host=<VF_BDF>,id=mlx5_1 -incoming tcp:<DEST_IP>:<DEST_PORT>

Enable switchover-ack QEMU migration capability. Run the following commands in QEMU
monitor, both in source and destination:

migrate_set_capability return-path on

migrate_set_capability switchover-ack on

[Optional] Configure the migration bandwidth and downtime limit in source side:

migrate_set_parameter max-bandwidth <VALUE>
migrate_set_parameter downtime-limit <VALUE>

Start migration by running the migration command in QEMU monitor in source side:

migrate -d tcp:<DEST_IP>:<DEST_PORT>

When the migration status is "completed" it means the migration has finished
successfully.

851

6.

1.

2.

3.

Check the migration status by running the info command in QEMU monitor in source side:

info migrate

Migration with MultiPort vHCA

Enables the usage of a dual port Virtual HCA (vHCA) to share RDMA resources (e.g., MR, CQ, SRQ,
PDs) across the two Ethernet (RoCE) NIC network ports and display the NIC as a dual port device.

MultiPort vHCA (MPV) VF is made of 2 "regular" VFs, one VF of each port. Creating a migratable MPV
VF requires the same steps as regular VF (see steps in section Over libvirt). The steps should be
performed on each of the NIC ports. MPV VFs traffic cannot be configured with OVS. TC rules must
be defined to configure the MPV VFs traffic.

Notes

14.6.2.3.2 Enabling Paravirtualization

To enable Paravirtualization:

Create a bridge.

vim /etc/sysconfig/network-scripts/ifcfg-bridge0
DEVICE=bridge0
TYPE=Bridge
IPADDR=12.195.15.1
NETMASK=255.255.0.0
BOOTPROTO=static
ONBOOT=yes
NM_CONTROLLED=no
DELAY=0

Change the related interface (in the example below bridge0 is created over eth5).

DEVICE=eth5
BOOTPROTO=none
STARTMODE=on
HWADDR=00:02:c9:2e:66:52
TYPE=Ethernet
NM_CONTROLLED=no
ONBOOT=yes
BRIDGE=bridge0

Restart the service network.

When the migration status is "completed" it means the migration has finished
successfully.

In ConnectX-7 adapter cards, migration cannot run in parallel on more than 4 VFs. It is the
administrator's responsibility to control that.

Live migration requires same firmware version on both the source and the target hosts.

The example below works on RHEL7.* without a Network Manager.

852

4.

•
•
•
•
•

Attach a bridge to VM.

ifconfig -a
…
eth6 Link encap:Ethernet HWaddr 52:54:00:E7:77:99
 inet addr:13.195.15.5 Bcast:13.195.255.255 Mask:255.255.0.0
 inet6 addr: fe80::5054:ff:fee7:7799/64 Scope:Link
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
 RX packets:481 errors:0 dropped:0 overruns:0 frame:0
 TX packets:450 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:1000
 RX bytes:22440 (21.9 KiB) TX bytes:19232 (18.7 KiB)
 Interrupt:10 Base address:0xa000
…

14.6.2.3.3 VXLAN Hardware Stateless Offloads

VXLAN technology provides scalability and security challenges solutions. It requires extension of the
traditional stateless offloads to avoid performance drop. ConnectX family cards offer the following
stateless offloads for a VXLAN packet, similar to the ones offered to non-encapsulated packets.
VXLAN protocol encapsulates its packets using outer UDP header.

Available hardware stateless offloads:

Checksum generation (Inner IP and Inner TCP/UDP)
Checksum validation (Inner IP and Inner TCP/UDP)
TSO support for inner TCP packets
RSS distribution according to inner packets attributes
Receive queue selection - inner frames may be steered to specific QPs

14.6.2.3.3.1
Enabling VXLAN Hardware Stateless Offloads

VXLAN offload is enabled by default for ConnectX-4 family devices running the minimum required
firmware version and a kernel version that includes VXLAN support.

To confirm if the current setup supports VXLAN, run:

ethtool -k $DEV | grep udp_tnl

Example:

ethtool -k ens1f0 | grep udp_tnl
tx-udp_tnl-segmentation: on

ConnectX-4 family devices support configuring multiple UDP ports for VXLAN offload. Ports can be
added to the device by configuring a VXLAN device from the OS command line using the "ip"
command.

Note: If you configure multiple UDP ports for offload and exceed the total number of ports
supported by hardware, then those additional ports will still function properly, but will not benefit
from any of the stateless offloads.

Example:

ip link add vxlan0 type vxlan id 10 group 239.0.0.10 ttl 10 dev ens1f0 dstport 4789
ip addr add 192.168.4.7/24 dev vxlan0
ip link set up vxlan0

853

Note: dstport' parameters are not supported in Ubuntu 14.4.

The VXLAN ports can be removed by deleting the VXLAN interfaces.

Example:

ip link delete vxlan0

14.6.2.3.3.2 Important Note

VXLAN tunneling adds 50 bytes (14-eth + 20-ip + 8-udp + 8-vxlan) to the VM Ethernet frame. Please
verify that either the MTU of the NIC who sends the packets, e.g. the VM virtio-net NIC or the host
side veth device or the uplink takes into account the tunneling overhead. Meaning, the MTU of the
sending NIC has to be decremented by 50 bytes (e.g 1450 instead of 1500), or the uplink NIC MTU
has to be incremented by 50 bytes (e.g 1550 instead of 1500)

14.6.2.3.4 Q-in-Q Encapsulation per VF in Linux (VST)

This section describes the configuration of IEEE 802.1ad QinQ VLAN tag (S-VLAN) to the hypervisor
per Virtual Function (VF). The Virtual Machine (VM) attached to the VF (via SR- IOV) can send traffic
with or without C-VLAN. Once a VF is configured to VST QinQ encapsulation (VST QinQ), the
adapter's hardware will insert S-VLAN to any packet from the VF to the physical port. On the receive
side, the adapter hardware will strip the S-VLAN from any packet coming from the wire to that VF.

14.6.2.3.4.1 Setup

The setup assumes there are two servers equipped with ConnectX-5/ConnectX-6 adapter cards.

This feature is supported on ConnectX-5 and ConnectX-6 adapter cards only.

ConnectX-4 and ConnectX-4 Lx adapter cards support 802.1Q double-tagging (C-tag stack-
ing on C-tag), refer to "802.1Q Double-Tagging" section.

854

•
•
•

•

•

1.

a.

b.

2.

3.

4.

14.6.2.3.4.2 Prerequisites
Kernel must be of v3.10 or higher, or custom/inbox kernel must support vlan-stag
Firmware version 16/20.21.0458 or higher must be installed for ConnectX-5/ConnectX-6 HCAs
The server should be enabled in SR-IOV and the VF should be attached to a VM on the
hypervisor.

In order to configure SR-IOV in Ethernet mode for ConnectX-5/ConnectX-6 adapter
cards, please refer to "Configuring SR-IOV for ConnectX-4/ConnectX-5
(Ethernet)" section. In the following configuration example, the VM is attached to VF0.

Network Considerations - the network switches may require increasing the MTU (to support
1522 MTU size) on the relevant switch ports.

14.6.2.3.4.3 Configuring Q-in-Q Encapsulation per Virtual Function for ConnectX-5/
ConnectX-6

Add the required S-VLAN (QinQ) tag (on the hypervisor) per port per VF. There are two ways
to add the S-VLAN:

By using sysfs:

echo '100:0:802.1ad' > /sys/class/net/ens1f0/device/sriov/0/vlan

By using the ip link command (available only when using the latest Kernel version):

ip link set dev ens1f0 vf 0 vlan 100 proto 802.1ad

Check the configuration using the ip link show command:

ip link show ens1f0
 ens1f0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq state UP mode DEFAULT qlen 1000
 link/ether ec:0d:9a:44:37:84 brd ff:ff:ff:ff:ff:ff
 vf 0 MAC 00:00:00:00:00:00, vlan 100, vlan protocol 802.1ad, spoof checking off, link-state
auto, trust off
 vf 1 MAC 00:00:00:00:00:00, spoof checking off, link-state auto, trust off
 vf 2 MAC 00:00:00:00:00:00, spoof checking off, link-state auto, trust off
 vf 3 MAC 00:00:00:00:00:00, spoof checking off, link-state auto, trust off
 vf 4 MAC 00:00:00:00:00:00, spoof checking off, link-state auto, trust off

Optional: Add S-VLAN priority. Use the qos parameter in the ip link command (or sysfs):

ip link set dev ens1f0 vf 0 vlan 100 qos 3 proto 802.1ad

Check the configuration using the ip link show command:

ip link show ens1f0
ens1f0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq state UP mode DEFAULT qlen 1000
 link/ether ec:0d:9a:44:37:84 brd ff:ff:ff:ff:ff:ff
 vf 0 MAC 00:00:00:00:00:00, vlan 100, qos 3, vlan protocol 802.1ad, spoof checking off, link-state
auto, trust off
 vf 1 MAC 00:00:00:00:00:00, spoof checking off, link-state auto, trust off
 vf 2 MAC 00:00:00:00:00:00, spoof checking off, link-state auto, trust off
 vf 3 MAC 00:00:00:00:00:00, spoof checking off, link-state auto, trust off
 vf 4 MAC 00:00:00:00:00:00, spoof checking off, link-state auto, trust off

Create a VLAN interface on the VM and add an IP address.

ip link add link ens5 ens5.40 type vlan protocol 802.1q id 40
ip addr add 42.134.135.7/16 brd 42.134.255.255 dev ens5.40
ip link set dev ens5.40 up

To verify the setup, run ping between the two VMs and open Wireshark or tcpdump to capture
the packet.

855

1.

a.

b.

2.

3.

•

14.6.2.3.5 802.1Q Double-Tagging

This section describes the configuration of 802.1Q double-tagging support to the hypervisor per
Virtual Function (VF). The Virtual Machine (VM) attached to the VF (via SR-IOV) can send traffic with
or without C-VLAN. Once a VF is configured to VST encapsulation, the adapter's hardware will insert
C-VLAN to any packet from the VF to the physical port. On the receive side, the adapter hardware
will strip the C-VLAN from any packet coming from the wire to that VF.

14.6.2.3.5.1 Configuring 802.1Q Double-Tagging per Virtual Function
Add the required C-VLAN tag (on the hypervisor) per port per VF. There are two ways to add
the C-VLAN:

By using sysfs:

echo '100:0:802.1q' > /sys/class/net/ens1f0/device/sriov/0/vlan

By using the ip link command (available only when using the latest Kernel version):

ip link set dev ens1f0 vf 0 vlan 100

Check the configuration using the ip link show command:

ip link show ens1f0
 ens1f0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq state UP mode DEFAULT qlen 1000
 link/ether ec:0d:9a:44:37:84 brd ff:ff:ff:ff:ff:ff
 vf 0 MAC 00:00:00:00:00:00, vlan 100, spoof checking off, link-state auto, trust off
 vf 1 MAC 00:00:00:00:00:00, spoof checking off, link-state auto, trust off
 vf 2 MAC 00:00:00:00:00:00, spoof checking off, link-state auto, trust off
 vf 3 MAC 00:00:00:00:00:00, spoof checking off, link-state auto, trust off
 vf 4 MAC 00:00:00:00:00:00, spoof checking off, link-state auto, trust off

Create a VLAN interface on the VM and add an IP address.

ip link add link ens5 ens5.40 type vlan protocol 802.1q id 40
ip addr add 42.134.135.7/16 brd 42.134.255.255 dev ens5.40
ip link set dev ens5.40 up

To verify the setup, run ping between the two VMs and open Wireshark or tcpdump to capture
the packet.

14.6.2.3.6 Scalable Functions

Scalable function is a lightweight function that has a parent PCI function on which it is deployed.
Scalable functions are useful for containers where netdevice and RDMA devices of a scalable
function can be assigned to a container. This way, the container can get complete offload
capabilities of an eswitch, isolation and dedicated accelerated network device. For Step-by-Step
Configuration instructions, follow the User Guide here.

14.6.2.4 Resiliency
The chapter contains the following sections:

Reset Flow

https://github.com/Mellanox/scalablefunctions/wiki/MLNX_OFED-step-by-step-guide

856

14.6.2.4.1 Reset Flow

Reset Flow is activated by default. Once a "fatal device" error is recognized, both the HCA and the
software are reset, the ULPs and user application are notified about it, and a recovery process is
performed once the event is raised.

Currently, a reset flow can be triggered by a firmware assert with Recover Flow Request (RFR) only.
Firmware RFR support should be enabled explicitly using mlxconfig commands.

To query the current value, run:

mlxconfig -d /dev/mst/mt4115_pciconf0 query | grep SW_RECOVERY_ON_ERRORS

To enable RFR bit support, run:

mlxconfig -d /dev/mst/mt4115_pciconf0 set SW_RECOVERY_ON_ERRORS=true

14.6.2.4.1.1 Kernel ULPs

Once a "fatal device" error is recognized, an IB_EVENT_DEVICE_FATAL event is created, ULPs are
notified about the incident, and outstanding WQEs are simulated to be returned with "flush in error"
message to enable each ULP to close its resources and not get stuck via calling its "remove_one"
callback as part of "Reset Flow".
Once the unload part is terminated, each ULP is called with its " add_one " callback, its resources
are re-initialized and it is re-activated.

14.6.2.4.1.2 User Space Applications (IB/RoCE)

Once a "fatal device" error is recognized an IB_EVENT_DEVICE_FATAL event is created, applications
are notified about the incident and relevant recovery actions are taken.
Applications that ignore this event enter a zombie state, where each command sent to the kernel is
returned with an error, and no completion on outstanding WQEs is expected.
The expected behavior from the applications is to register to receive such events and recover once
the above event is raised. Same behavior is expected in case the NIC is unbounded from the PCI and
later is rebounded. Applications running over RDMA CM should behave in the same manner once the
RDMA_CM_EVENT_DEVICE_REMOVAL event is raised.
The below is an example of using the unbind/bind for NIC defined by "0000:04:00.0"

echo 0000:04:00.0 > /sys/bus/pci/drivers/mlx5_core/unbind
echo 0000:04:00.0 > /sys/bus/pci/drivers/mlx5_core/bind

857

14.6.2.4.1.3 SR-IOV

If the Physical Function recognizes the error, it notifies all the VFs about it by marking their
communication channel with that information, consequently, all the VFs and the PF are reset.
If the VF encounters an error, only that VF is reset, whereas the PF and other VFs continue to work
unaffected.

14.6.2.4.1.4 Forcing the VF to Reset

If an outside "reset" is forced by using the PCI sysfs entry for a VF, a reset is executed on that VF
once it runs any command over its communication channel.
For example, the below command can be used on a hypervisor to reset a VF defined by
0000:04:00.1:

echo 1 >/sys/bus/pci/devices/0000:04:00.1/reset

14.6.2.4.1.5 Extended Error Handling (EEH)

Extended Error Handling (EEH) is a PowerPC mechanism that encapsulates AER, thus exposing AER
events to the operating system as EEH events.
The behavior of ULPs and user space applications is identical to the behavior of AER.

14.6.2.4.1.6 CRDUMP

CRDUMP feature allows for taking an automatic snapshot of the device CR-Space in case the device's
FW/HW fails to function properly.

Snapshots Triggers:

The snapshot is triggered after firmware detects a critical issue, requiring a recovery flow.

This snapshot can later be investigated and analyzed to track the root cause of the failure.
Currently, only the first snapshot is stored, and is exposed using a temporary virtual file. The virtual
file is cleared upon driver reset.
When a critical event is detected, a message indicating CRDUMP collection will be printed to the
Linux log. User should then back up the file pointed to in the printed message. The file location
format is: /proc/driver/mlx5_core/crdump/<pci address>

Snapshot should be copied by Linux standard tool for future investigation.

14.6.2.4.1.7 Firmware Tracer

This mechanism allows for the device's FW/HW to log important events into the event tracing
system (/sys/kernel/debug/tracing) without requiring any NVIDIA tool.

This feature is enabled by default, and can be controlled using sysfs commands.

To disable the feature:

To be able to use this feature, trace points must be enabled in the kernel.

858

echo 0 > /sys/kernel/debug/tracing/events/mlx5/fw_tracer/enable

To enable the feature:

echo 1 > /sys/kernel/debug/tracing/events/mlx5/fw_tracer/enable

To view FW traces using vim text editor:

vim /sys/kernel/debug/tracing/trace

14.6.2.5 Docker Containers
On Linux, Docker uses resource isolation of the Linux kernel, to allow independent "containers" to
run within a single Linux kernel instance.
Docker containers are supported on MLNX_OFEDusing Docker runtime. Virtual RoCE and InfiniBand
devices are supported using SR-IOV mode.

Currently, RDMA/RoCE devices are supported in the modes listed in the following table.

Linux Containers Networking Modes

Orchestration and
Clustering Tool

Version Networking Mode Link Layer Virtualizati
on Mode

Docker Docker
Engine
17.03 or
higher

SR-IOV using sriov-plugin along with
docker run wrapper tool

InfiniBand and
Ethernet

SR-IOV

Kubernetes Kubernetes
1.10.3 or
higher

SR-IOV using device plugin, and
using SR- IOV CNI plugin

InfiniBand and
Ethernet

SR-IOV

VXLAN using IPoIB bridge InfiniBand Shared HCA

14.6.2.5.1 Docker Using SR-IOV

In this mode, Docker engine is used to run containers along with SR-IOV networking plugin. To
isolate the virtual devices, docker_rdma_sriov tool should be used. This mode is applicable to both
InfiniBand and Ethernet link layers.
To obtain the plugin, visit: hub.docker.com/r/rdma/sriov-plugin
To install the docker_rdma_sriov tool, use the container tools installer available via
hub.docker.com/r/rdma/container_tools_installer
For instructions on how to use Docker with SR-IOV, refer to Docker RDMA SRIOV Networking with
ConnectX4/ConnectX5/ConnectX6 Community post.

14.6.2.5.2 Kubernetes Using SR-IOV

In order to use RDMA in Kubernetes environment with SR-IOV networking mode, two main
components are required:

https://hub.docker.com/r/rdma/sriov-plugin
https://hub.docker.com/r/rdma/container_tools_installer
https://enterprise-support.nvidia.com/s/article/Docker-RDMA-SRIOV-Networking-with-ConnectX4-ConnectX5-ConnectX6

859

1.
2.

RDMA device plugin - this plugin allows for exposing RDMA devices in a Pod
SR-IOV CNI plugin - this plugin provisions VF net device in a Pod

When used in SR-IOV mode, this plugin enables SR-IOV and performs necessary configuration
including setting GUID, MAC, privilege mode, and Trust mode.
The plugin also allocates the VF devices when Pods are scheduled and requested by Kubernetes
framework.

14.6.2.5.3 Kubernetes with Shared HCA

One RDMA device (HCA) can be shared among multiple Pods running in a Kubernetes worker nodes.
User defined networks are created using VXLAN or VETH networking devices. RDMA device (HCA) can
be shared among multiple Pods running in a Kubernetes worker nodes.

14.6.2.6 HPC-X
For information on HPC-X®, please refer to HPC-X User Manual at developer.nvidia.com/
networking/hpc-x.

14.6.2.7 Fast Driver Unload
This feature enables optimizing mlx5 driver teardown time in shutdown and kexec flows.

The fast driver unload is disabled by default. To enable it, the prof_sel module parameter of
mlx5_core module should be set to 3.

https://developer.nvidia.com/networking/hpc-x

860

•

•

•

15 DOCA Applications
This page provides an overview of the example DOCA applications implemented on top of NVIDIA®
BlueField® DPU.

All of the DOCA reference applications described in this section are governed under the BSD-3
software license agreement.

15.1 Introduction
DOCA applications are an educational resource provided as a guide on how to program on the NVIDIA
BlueField networking platform using DOCA API.

For instructions regarding the development environment and installation, refer to the NVIDIA DOCA
Developer Guide and the NVIDIA DOCA Installation Guide for Linux respectively.

15.1.1 Installation
DOCA applications are installed under /opt/mellanox/doca/applications with each application
having its own dedicated folder. Each directory contains the source code and compilation files for
the matching application.

15.1.2 Prerequisites
The DOCA SDK references (samples and applications) require the use of meson, with a minimal
version requirement of 0.61.2. Since this version is usually more advanced than what is provided by
the distribution provider, it is recommended to install meson directly through pip instead of through
upstream packages:

$ sudo pip3 install meson==0.61.2

15.1.3 Compilation
As applications are shipped alongside their sources, developers may want to modify some of the
code during their development process and then recompile the applications. The files required for
the compilation are the following:

/opt/mellanox/doca/applications/meson.build – main compilation file for a project
that contains all the applications
/opt/mellanox/doca/applications/meson_options.txt – configuration file for the
compilation process
/opt/mellanox/doca/applications/<application_name>/meson.build – application-
specific compilation definitions

To recompile all the reference applications:

For questions, comments, and feedback, please contact us at DOCA-
Feedback@exchange.nvidia.com.

https://mesonbuild.com/
mailto:DOCA-Feedback@exchange.nvidia.com

861

1.

2.

3.

1.

2.

Move to the applications directory:

cd /opt/mellanox/doca/applications

Prepare the compilation definitions:

meson /tmp/build

Compile all the applications:

ninja -C /tmp/build

15.1.4 Developer Configurations
When recompiling the applications, meson compiles them by default in "debug" mode. Therefore,
the binaries would not be optimized for performance as they would include the debug symbol. For
comparison, the application binaries shipped as part of DOCA's installation are compiled in "release"
mode. To compile the applications in something other than debug, please consult Meson's
configuration guide.

The applications also offer developers the ability to use the DOCA log's TRACE level (DOCA_LOG_TRC)

on top of the existing DOCA log levels. Enabling the TRACE log level during compilation activates

various developer log messages left out of the release compilation. Activating the TRACE log level

may be done through enable_trace_log in the meson_options.txt file, or directly from the
command line:

Prepare the compilation definitions to use the trace log level:

meson /tmp/build -Denable_trace_log=true

Compile the applications:

ninja -C /tmp/build

15.2 Application Use of DOCA Libs
The following table maps DOCA reference applications to the libraries they make use of.

The generated applications are located under the /tmp/build/ directory, using the

following path /tmp/build/<application_name>/doca_<application_name> .

Compilation against DOCA's SDK relies on environment variables which are automatically
defined per user session upon login. For more information, please refer to section "Meson
Complains About Missing Dependencies" in the NVIDIA DOCA Troubleshooting Guide.

https://mesonbuild.com/Running-Meson.html#configuring-the-build-directory

862

Applicati
on

Category

Applicati
on

Library Category

BareMetal/Virtualized Cloud Secure
Cloud

Gateway

Clo
ud
Sto
rag
e

Mo
nit
ori
ng

Str
ea
mi
ng

HPC

Flo
w

DP
A

DM
A

Fle
xIO
SD
K

PC
C

Ap
p

Shi
eld

SH
A

Co
mp
res
s

Tel
em
etr
y

GP
UN
etI
O

Co
mc
h

UC
X

Network Ethernet L2
Forwarding

GPU Packet
Processing

✔

Simple
Forward
VNF

✔

Switch ✔

Security App Shield
Agent

✔ ✔

East-west
Overlay
Encryption

IPsec
Security
Gateway

✔

PSP
Gateway

✔

Secure
Channel

✔

YARA
Inspection

✔ ✔

Data Path
Acceleratio
n

DPA All-to-
all

✔

DPA L2
Reflector

✔

PCC ✔

Storage DMA Copy ✔ ✔

File
Compressio
n

✔ ✔

File
Integrity

✔ ✔

HPC UROM
RDMO

✔

863

15.3 Applications

15.3.1 App Shield Agent
The DOCA App Shield Agent application describes how to build secure process monitoring and is
based on the DOCA APSH library, which leverages DPU capabilities such as regular expression (RXP)
acceleration engine, hardware-based DMA, and more.

15.3.2 DMA Copy
The DOCA DMA Copy application describes how to transfer files between the DPU and the host. The
application is based on the direct memory access (DMA) library, which leverages hardware
acceleration for data copy for both local and remote memory.

15.3.3 DPA All-to-all
The DOCA DPA All-to-all application is a collective operation that allows data to be copied between
multiple processes. This application is implemented using DOCA DPA, which leverages the data path
accelerator (DPA) inside of the BlueField-3 which offloads the copying of the data to the DPA and
leaves the CPU free for other computations.

15.3.4 DPA L2 Reflector
The DOCA DPA L2 Reflector application uses the data path accelerator (DPA) engine to intercept
network traffic and swap the source and destination MAC addresses of each packet. It is based on
the FlexIO API which leverages DPU capabilities such as high-speed DPA.

15.3.5 East-West Overlay Encryption
The DOCA East-West Overlay Encryption application (IPsec) sets up encrypted connections between
different devices and works by encrypting IP packets and authenticating the packets' originator. It is
based on a strongSwan solution which is an open-source IPsec-based VPN solution.

15.3.6 Ethernet L2 Forwarding
The DOCA Ethernet L2 Forwarding application is a DOCA Ethernet based application that
forwards traffic from a single RX port to a single TX port and vice versa, leveraging DOCA's task/
event batching feature for enhanced performance.

15.3.7 File Compression
The DOCA File Compression application shows how to compress and decompress data using hardware
acceleration and to send and receive it. The application is based on the DOCA Compress and DOCA
Comm-Channel libraries.

https://confluence.nvidia.com/display/docadev/.DOCA+Ethernet+v2.7.0

864

15.3.8 File Integrity
The DOCA File Integrity application shows how to send and receive files in a secure way using the
hardware Crypto engine. It is based on the DOCA SHA and DOCA Comm-Channel libraries.

15.3.9 GPU Packet Processing
The DOCA GPU Packet Processing application shows how to combine DOCA GPUNetIO, DOCA
Ethernet, and DOCA Flow to manage ICMP, UDP, TCP and HTTP connections with a GPU-centric
approach using CUDA kernels without involving the CPU in the main data path.

15.3.10 IPsec Gateway
The DOCA IPsec Gateway application demonstrates how to insert rules related to IPsec encryption
and decryption based on the DOCA Flow and IPsec libraries, which leverage the DPU's hardware
capability for secure network communication.

15.3.11 Programmable Congestion Control
The DOCA Programmable Congestion Control application, programmable congestion control, is based
on the DOCA PCC library and allows users to design and implement their own congestion control
algorithm, giving them good flexibility to work out an optimal solution to handle congestion in their
clusters.

15.3.12 PSP Gateway
The DOCA PSP Gateway application demonstrates how to exchange keys between application
instances and insert rules controlling PSP encryption and decryption using the DOCA Flow library.

15.3.13 Secure Channel
The DOCA Secure Channel application is used to establish a secure, network-independent
communication channel between the host and the DPU based on the DOCA Comm Channel library.

15.3.14 Simple Forward VNF
The DOCA Simple Forward VNF application is a forwarding application that takes VXLAN traffic from
a single RX port and transmits it on a single TX port. It is based on the DOCA Flow library which
leverages DPU capabilities such as building generic execution pipes in the hardware, and more.

15.3.15 Switch
The DOCA Switch application is used to establish internal switching between representor ports on
the DPU. It is based on the DOCA Flow library which leverages DPU capabilities such as building
generic execution pipes in the hardware, and more.

865

15.3.16 UROM RDMO
The DOCA UROM RDMO application demonstrates how to execute an Active Message outside the
context of the target process. It is based on the DOCA UROM (Unified Resources and Offload
Manager) library as a framework to launch UROM workers on the DPU and using the UCX
communication framework, which leverages the DPU's low-latency and high-bandwidth utilization of
its network engine.

15.3.17 YARA Inspection
The DOCA YARA Inspection application describes how to build YARA rule inspection for processes and
is based on the DOCA APSH library, which leverages DPU capabilities such as the regular expression
(RXP) acceleration engine, hardware-based DMA, and more.

15.4 NVIDIA DOCA App Shield Agent Application Guide
This guide provides process introspection system implementation on top of NVIDIA® BlueField® DPU.

15.4.1 Introduction
App Shield Agent monitors a process in the host system using the DOCA App Shield library.

This security capability helps identify corruption of core processes in the system from an
independent and trusted DPU. This is a major and innovate intrusion detection system (IDS) ability
since it cannot be provided from inside the host.

The DOCA App Shield Library gives the capability to read, analyze, and authenticate the host (bare
metal/VM) memory directly from the DPU.

Using the library, this application hashes the un-writeable memory pages (also unloaded pages) of a
specific process and its libraries. Then, at regular intervals, the app authenticates the loaded pages.

The app reports pass/fail after every iteration until the first attestation failure. The reports are
both printed to the console and exported to the DOCA Telemetry Service (DTS) using inter-process
communication (IPC).

This guide describes how to build secure process monitoring using the DOCA App Shield library,
which leverages the DPU's advantages such as hardware-based DMA, integrity, and more.

15.4.2 System Design
The App Shield agent is designed to run independently on the DPU's Arm without hindering the host.

The host's involvement is limited to configuring monitoring of a new process when there is a need to
generate the needed ZIP and JSON files to pass to the DPU. This is done at inception ("time 0")
which is when the host is still in a "safe" state.

Generating the needed files can be done by running DOCA App Shield's doca_apsh_config.py tool
on the host. See DOCA App Shield for more info.

866

•
•
•

1.

2.
3.

a.
b.
c.

15.4.3 Application Architecture
The user creates three mandatory files using the DOCA tool doca_apsh_config.py and copies
them to the DPU. The application can report attestation results to the:

File
Terminal
DTS

The files are generated by running doca_apsh_config.py on the host against the process at
time zero.

The App Shield agent requests new attestation from DOCA App Shield library.
The DOCA App Shield library creates a new attestation:

Scans and hashes process memory pages (that are currently in use).
Compares the hash to the original hash.
Creates attestation for each lib/exe involved in the process. Each of attestation
includes the number of valid pages and the number of pages.

The actions 2-5 recur at regular time intervals.

867

4.

5.
a.

b.
c.

6.

•
•

The App Shield agent searches each attestation for inconsistency between number of used
pages and number of valid pages.
The App Shield agent reports results with a timestamp and scan count to:

Local telemetry files – a folder and files representing the data a real DTS would have
received. These files are used for the purposes of this example only as normally this
data is not exported into user-readable files.
DOCA log (without scan count).
DTS IPC interface (even if no DTS is active).

The App Shield agent exits on first attestation failure.

15.4.4 DOCA Libraries
This application leverages the following DOCA libraries:

DOCA App Shield
DOCA Telemetry Exporter

Refer to their respective programming guide for more information.

15.4.5 Compiling the Application

The installation of DOCA's reference applications contains the sources of the applications, alongside
the matching compilation instructions. This allows for compiling the applications "as-is" and provides
the ability to modify the sources, then compile a new version of the application.

The sources of the application can be found under the application's directory: /opt/mellanox/

doca/applications/app_shield_agent/ .

15.4.5.1 Compiling All Applications
All DOCA applications are defined under a single meson project. So, by default, the compilation
includes all of them.

To build all the applications together, run:

cd /opt/mellanox/doca/applications/
meson /tmp/build
ninja -C /tmp/build

Please refer to the NVIDIA DOCA Installation Guide for Linux for details on how to install
BlueField-related software.

For more information about the applications as well as development and compilation tips,
refer to the DOCA Applications page.

doca_app_shield_agent is created under /tmp/build/app_shield_agent/ .

868

1.

•

•
2.

1.
a.

b.
c.

2.
•

15.4.5.2 Compiling Only the Current Application
To build only the App Shield Agent application:

cd /opt/mellanox/doca/applications/
meson /tmp/build -Denable_all_applications=false -Denable_app_shield_agent=true
ninja -C /tmp/build

Alternatively, the user can set the desired flags in the meson_options.txt file instead of providing
them in the compilation command line:

Edit the following flags in /opt/mellanox/doca/applications/meson_options.txt :

Set enable_all_applications to false

Set enable_app_shield_agent to true
Run the following compilation commands:

cd /opt/mellanox/doca/applications/
meson /tmp/build
ninja -C /tmp/build

15.4.5.3 Troubleshooting
Refer to the NVIDIA DOCA Troubleshooting Guide for any issue encountered with the compilation of
the application.

15.4.6 Running the Application

15.4.6.1 Prerequisites
Configure the BlueField's firmware.

On the BlueField system, configure the PF base address register and NVMe emulation.
Run:

dpu> mlxconfig -d /dev/mst/mt41686_pciconf0 s PF_BAR2_SIZE=2 PF_BAR2_ENABLE=1
 NVME_EMULATION_ENABLE=1

Perform a BlueField system reboot for the mlxconfig settings to take effect.
You may verify these configurations using the following command:

dpu> mlxconfig -d /dev/mst/mt41686_pciconf0 q | grep -E "NVME|BAR"

Download target system (host/VM) symbols.
For Ubuntu:

doca_app_shield_agent is created under /tmp/build/app_shield_agent/ .

doca_app_shield_agent is created under /tmp/build/app_shield_agent/ .

869

•

•
3.

a.

b.

c.

•

•

•
4.

a.
b.

host> sudo tee /etc/apt/sources.list.d/ddebs.list << EOF
deb http://ddebs.ubuntu.com/ $(lsb_release -cs) main restricted universe multiverse
deb http://ddebs.ubuntu.com/ $(lsb_release -cs)-updates main restricted universe multiverse
deb http://ddebs.ubuntu.com/ $(lsb_release -cs)-proposed main restricted universe multiverse
EOF
host> sudo apt install ubuntu-dbgsym-keyring
host> sudo apt-get update
host> sudo apt-get install linux-image-$(uname -r)-dbgsym

For CentOS:

host> yum install --enablerepo=base-debuginfo kernel-devel-$(uname -r) kernel-debuginfo-$(uname -r)
kernel-debuginfo-common-$(uname -m)-$(uname -r)

No action is needed for Windows
Perform IOMMU passthrough. This stage is only necessary if IOMMU is not enabled by default
(e.g., when the host is using an AMD CPU).

Locate your OS's grub file (most likely /boot/grub/grub.conf , /boot/grub2/

grub.cfg , or /etc/default/grub) and open it for editing. Run:

host> vim /etc/default/grub

Search for the line defining GRUB_CMDLINE_LINUX_DEFAULT and add the

argument iommu=pt . For example:

GRUB_CMDLINE_LINUX_DEFAULT="iommu=pt <intel/amd>_iommu=on"

Run:

For Ubuntu:

host> sudo update-grub
host> ipmitool power cycle

For CentOS:

host> grub2-mkconfig -o /boot/grub2/grub.cfg
host> ipmitool power cycle

For Windows targets, turn off Hyper-V capability.
Prepare target:

Install DOCA on the target system.
Create the ZIP and JSON files. Run:

target-system> cd /opt/mellanox/doca/tools/

Skip this step if you are not sure whether it is needed. Return to it only if DMA fails
with a message similar to the following in dmesg :

host> dmesg
[3839.822897] mlx5_core 0000:81:00.0: AMD-Vi: Event logged [IO_PAGE_FAULT domain=0x0047
address=0x2a0aff8 flags=0x0000]

Prior to performing a power cycle, make sure to do a graceful shutdown.

870

1.

a.

b.

target-system> python3 doca_apsh_config.py --pid <pid-of-process-to-monitor> --os <windows/linux>
--path <path to dwarf2json executable or pdbparse-to-json.py>
target-system> cp /opt/mellanox/doca/tools/*.* <shared-folder-with-baremetal>
dpu> scp <shared-folder-with-baremetal>/* <path-to-app-shield-binary>

If the target system does not have DOCA installed, the script can be copied from the
BlueField.
The required dwaf2json and pdbparse-to-json.py are not provided with DOCA.

15.4.6.2 Application Execution
The App Shield Agent application is provided in source form; hence a compilation is required
before the application can be executed.

Application usage instructions:

Usage: doca_app_shield_agent [DOCA Flags] [Program Flags]

DOCA Flags:
 -h, --help Print a help synopsis
 -v, --version Print program version information
 -l, --log-level Set the (numeric) log level for the program <10=DISABLE, 20=CRI
TICAL, 30=ERROR, 40=WARNING, 50=INFO, 60=DEBUG, 70=TRACE>
 --sdk-log-level Set the SDK (numeric) log level for the program <10=DISABLE, 20=
CRITICAL, 30=ERROR, 40=WARNING, 50=INFO, 60=DEBUG, 70=TRACE>
 -j, --json <path> Parse all command flags from an input json file

Program Flags:
 -p, --pid Process ID of process to be attested
 -e, --ehm <path> Exec hash map path
 -m, --memr <path> System memory regions map
 -f, --vuid VUID of the System device
 -d, --dma DMA device name
 -o, --osym <path> System OS symbol map path
 -s, --osty <windows|linux> System OS type - windows/linux
 -t, --time <seconds> Scan time interval in seconds

CLI example for running the application on the BlueField:

./doca_app_shield_agent -p 13577 -e hash.zip -m mem_regions.json -o symbols.json -f
MT2125X03335MLNXS0D0F0VF1 -d mlx5_0 -t 3 -s linux

If the kernel and process .exe have not changed, there no need to redo this
step.

This usage printout can be printed to the command line using the -h (or --

help) options:

./doca_app_shield_agent -h

For additional information, please refer to section "Command Line Flags".

All used identifiers (-f , -p and -d flags) should match the identifier of the
desired devices and processes.

871

•
•
•
•
•
•
•

•
•
•
•
•
•
•

15.4.6.3 Command Line Flags
Flag Type Short Flag Long Flag Description

General flags h help Print a help synopsis

v version Print program version information

l log-level Set the log level for the
application:

DISABLE=10
CRITICAL=20
ERROR=30
WARNING=40
INFO=50
DEBUG=60
TRACE=70 (requires
compilation with TRACE log
level support)

N/A sdk-log-level Set the log level for the program:
DISABLE=10
CRITICAL=20
ERROR=30
WARNING=40
INFO=50
DEBUG=60
TRACE=70

j json Parse all command flags from an
input JSON file

Program flags p pid PID of the process to be attested

e ehm Path to the pre-
generated hash.zip file
transferred from the host

m memr Path to the pre-
generated mem_regions.json fil
e transferred from the host

872

•

•

•

Flag Type Short Flag Long Flag Description

f pcif System PCIe function vendor
unique identifier (VUID) of the VF/
PF exposed to the target system.
Used for DMA operations.
To obtain this argument, run:

target-system> lspci -vv | grep
"\[VU\] Vendor specific:"

Example output:

[VU] Vendor specific:
MT2125X03335MLNXS0D0F0
[VU] Vendor specific:
MT2125X03335MLNXS0D0F1

Two VUIDs are printed for each
DPU connected to the target
system. The first is of the DPU
on pf0 and the second is of the
DPU on port pf1 .

The VUID of a VF allocated on
PF0/1 is the VUID of the PF with
an additional suffix, VF<vf-

number> , where vf-number is
the VF index +1.
For example, for the output in the
example above:

PF0 VUID =
MT2125X03335MLNXS0D0F0
PF1 VUID =
MT2125X03335MLNXS0D0F1
VUID of VF0 on PF0 =
MT2125X03335MLNXS0D0F0VF1

VUIDs are persistent even on
reset.

d dma DMA device name to use

o osym Path to the pre-
generated symbols.json file
transferred from the host

s osty OS type (windows or linux) of
the system where the process is
running

t time Number of seconds to sleep
between scans

Running this command on
the DPU outputs VUIDs
with an additional "EC"
string in the middle. You
must remove the "EC" to
arrive at the correct
VUID.

873

1.
a.

b.

c.

2.
a.

b.

c.

3.
a.

b.

15.4.6.4 Troubleshooting
Refer to the NVIDIA DOCA Troubleshooting Guide for any issue encountered with the installation or
execution of the DOCA applications.

15.4.7 Application Code Flow
Parse application argument.

Initialize arg parser resources and register DOCA general parameters.

doca_argp_init();

Register application parameters.

register_apsh_params();

Parse the arguments.

doca_argp_start();

Initialize DOCA App Shield lib context.
Create lib context.

doca_apsh_create();

Set DMA device for lib.

doca_devinfo_list_create();
doca_dev_open();
doca_devinfo_list_destroy();
doca_apsh_dma_dev_set();

Start the context

doca_apsh_start();
apsh_system_init();

Initialize DOCA App Shield lib system context handler.
Get the representor of the remote PCIe function exposed to the system.

doca_devinfo_remote_list_create();
doca_dev_remote_open();
doca_devinfo_remote_list_destroy();

Create and start the system context handler.

doca_apsh_system_create();
doca_apsh_sys_os_symbol_map_set();
doca_apsh_sys_mem_region_set();
doca_apsh_sys_dev_set();
doca_apsh_sys_os_type_set();
doca_apsh_system_start();

Refer to DOCA Arg Parser for more information regarding the supported flags and execution
modes.

874

4.

5.

a.
b.
c.
d.
e.

6.

7.

8.

9.

10.

•

Find target process by pid .

doca_apsh_processes_get();

Telemetry initialization.

telemetry_start();

Initialize a new telemetry schema.
Register attestation type event.
Set up output to file (in addition to default IPC).
Start the telemetry schema.
Initialize and start a new DTS source with the gethostname() name as source ID.

Get initial attestation of the process.

doca_apsh_attestation_get();

Loop until attestation validation fail.

doca_apsh_attst_refresh();
/* validation logic */
doca_telemetry_exporter_source_report();
DOCA_LOG_INFO();
sleep();

DOCA App Shield Agent destroy.

doca_apsh_attestation_free();
doca_apsh_processes_free();
doca_apsh_system_destroy();
doca_apsh_destroy();
doca_dev_close();
doca_dev_remote_close();

Telemetry destroy.

telemetry_destroy();

Arg parser destroy.

doca_argp_destroy();

15.4.8 References
/opt/mellanox/doca/applications/app_shield_agent/

15.5 NVIDIA DOCA DMA Copy Application Guide
This guide provides an example of a DMA Copy implementation on top of NVIDIA® BlueField® DPU.

15.5.1 Introduction
DOCA DMA (direct memory access) Copy application transfers files (data path), up to the maximum
supported size by the hardware, between the DPU and the x86 host using the DOCA DMA Library

875

which provides an API to copy data between DOCA buffers using hardware acceleration, supporting
both local and remote memory.

DOCA DMA allows complex memory copy operations to be easily executed in an optimized,
hardware-accelerated manner.

15.5.2 System Design
DOCA DMA Copy is designed to run on the instances of the BlueField DPU and x86 host. The DPU
application must be the first to spawn as it opens the DOCA Comch server between the two sides on
which all the necessary DOCA DMA library configuration files (control path) are transferred.

15.5.3 Application Architecture
DOCA DMA Copy runs on top of DOCA DMA to read/write directly from the host's memory without any
user/kernel space context switches, allowing for a fast memory copy.

876

1.
2.

3.

4.

•
•

Flow:

The two sides initiate a short negotiation in which the file size and location are determined.
The host side creates the export descriptor with doca_mmap_export_pci() and sends it with
the local buffer address and length on the Comch to the DPU side application.
The DPU side application uses the received export descriptor to create a remote memory map
locally with doca_mmap_create_from_export() and the host buffer information to create a
remote DOCA buffer.
From this point on, the DPU side application has all the necessary memory information and
the DMA copy can take place.

15.5.4 DOCA Libraries
This application leverages the following DOCA libraries:

DOCA DMA
DOCA Comch

Refer to their respective programming guide for more information.

877

1.

•

•
2.

15.5.5 Compiling the Application

The installation of DOCA's reference applications contains the sources of the applications, alongside
the matching compilation instructions. This allows for compiling the applications "as-is" and provides
the ability to modify the sources, then compile a new version of the application.

The sources of the application can be found under the application's directory: /opt/mellanox/

doca/applications/dma_copy/ .

15.5.5.1 Compiling All Applications
All DOCA applications are defined under a single meson project. So, by default, the compilation
includes all of them.

To build all the applications together, run:

cd /opt/mellanox/doca/applications/
meson /tmp/build
ninja -C /tmp/build

15.5.5.2 Compiling Only the Current Application
To directly build only the DMA Copy application:

cd /opt/mellanox/doca/applications/
meson /tmp/build -Denable_all_applications=false -Denable_dma_copy=true
ninja -C /tmp/build

Alternatively, one can set the desired flags in the meson_options.txt file instead of providing
them in the compilation command line:

Edit the following flags in /opt/mellanox/doca/applications/meson_options.txt :

Set enable_all_applications to false

Set enable_dma_copy to true
Run the following compilation commands:

Please refer to the NVIDIA DOCA Installation Guide for Linux for details on how to install
BlueField-related software.

For more information about the applications as well as development and compilation tips,
refer to the DOCA Applications page.

doca_dma_copy is created under /tmp/build/dma_copy/ .

doca_dma_copy is created under /tmp/build/dma_copy/ .

878

1.

2.

cd /opt/mellanox/doca/applications/
meson /tmp/build
ninja -C /tmp/build

15.5.5.3 Troubleshooting
Refer to the NVIDIA DOCA Troubleshooting Guide for any issue encountered with the compilation of
the application.

15.5.6 Running the Application

15.5.6.1 Application Execution
The DMA Copy application is provided in source form. Therefore, a compilation is required before
the application can be executed.

Application usage instructions:

Usage: doca_dma_copy [DOCA Flags] [Program Flags]

DOCA Flags:
 -h, --help Print a help synopsis
 -v, --version Print program version information
 -l, --log-level Set the (numeric) log level for the program <10=DISABLE, 20=CRITICAL,
30=ERROR, 40=WARNING, 50=INFO, 60=DEBUG, 70=TRACE>
 --sdk-log-level Set the SDK (numeric) log level for the program <10=DISABLE, 20=CRITICA
L, 30=ERROR, 40=WARNING, 50=INFO, 60=DEBUG, 70=TRACE>
 -j, --json <path> Parse all command flags from an input json file

Program Flags:
 -f, --file Full path to file to be copied/created after a successful DMA copy
 -p, --pci-addr DOCA Comm Channel device PCI address
 -r, --rep-pci DOCA Comm Channel device representor PCI address (needed only on DPU)

CLI example for running the application on the BlueField:

./doca_dma_copy -p 03:00.0 -r 3b:00.0 -f received.txt

doca_dma_copy is created under /tmp/build/dma_copy/ .

This usage printout can be printed to the command line using the -h (or --help)
options:

./doca_dma_copy -h

For additional information, refer to section "Command Line Flags".

Both the DOCA Comch device PCIe address (03:00.0) and the DOCA Comch device

representor PCIe address (3b:00.0) should match the addresses of the desired PCIe
devices.

879

3.

4.

•
•
•
•
•
•
•

•
•
•
•
•
•
•

CLI example for running the application on the host:

./doca_dma_copy -p 3b:00.0 -f send.txt

The application also supports a JSON-based deployment mode, in which all command-line
arguments are provided through a JSON file:

./doca_dma_copy --json [json_file]

For example:

./doca_dma_copy --json ./dma_copy_params.json

15.5.6.2 Command Line Flags
Flag Type Short Flag Long Flag/JSON

Key
Description JSON Content

General flags h help Print a help synopsis N/A

v version Print program version
information

N/A

l log-level Set the log level for the
application:

DISABLE=10
CRITICAL=20
ERROR=30
WARNING=40
INFO=50
DEBUG=60
TRACE=70 (requires
compilation with TRACE
log level support)

"log-level": 60

N/A sdk-log-level Set the log level for the
program:

DISABLE=10
CRITICAL=20
ERROR=30
WARNING=40
INFO=50
DEBUG=60
TRACE=70

"sdk-log-level":
40

j json Parse all command flags
from an input JSON file

N/A

The DOCA Comch device PCIe address, 3b:00.0 , should match the address of the
desired PCIe device.

Before execution, ensure that the used JSON file contains the correct configuration
parameters, and especially the PCIe addresses necessary for the deployment.

880

1.
a.

b.

c.

1.

Flag Type Short Flag Long Flag/JSON
Key

Description JSON Content

Program flags f file Full path to file to be
copied/created after a
successful copy

"file": "/tmp/
sample.txt"

p pci-addr DOCA Comch device PCIe
address.

"pci-addr":
"b1:00.0"

r rep-pci DOCA Comch device
representor PCIe address.

"rep-pci":
"b1:02.0"

15.5.6.3 Troubleshooting
Refer to the NVIDIA DOCA Troubleshooting Guide for any issue encountered with the installation or
execution of the DOCA applications.

15.5.7 Application Code Flow
Parse application argument.

Initialize arg parser resources and register DOCA general parameters.

doca_argp_init();

Register DMA Copy application parameters.

register_dma_copy_params();

Parse the arguments.

doca_argp_start();

Initialize Comch endpoint.

This is a mandatory
flag.

This is a mandatory
flag.

This is a mandatory
flag only on the
DPU.

Refer to DOCA Arg Parser for more information regarding the supported flags and execution
modes.

881

a.
b.
c.
d.
e.
f.

2.

a.
b.
c.
d.

3.

4.

5.
a.

i.

ii.
iii.

iv.

v.
vi.
vii.

b.

i.
ii.
iii.
iv.
v.

init_cc();

Create Comch endpoint.
Parse user PCIe address for Comch device.
Open Comch DOCA device.
Parse user PCIe address for Comch device representor (on DPU side).
Open Comch DOCA device representor (on DPU side).
Set Comch endpoint properties.

Open the DOCA hardware device from which the copy would be made.

open_dma_device();

Parse the PCIe address provided by the user.
Create a list of all available DOCA devices.
Find the appropriate DOCA device according to specific properties.
Open the device.

Create all required DOCA core objects.

create_core_objects();

Initiate DOCA core objects.

init_core_objects();

Start host/DPU DMA Copy.
Host side application:

host_start_dma_copy();

Start negotiation with the DPU side application for the location and size of the
file.
Allocate memory for the DMA buffer.
Export the memory map and send the output (export descriptor) to the DPU side
application.
Send the host local buffer memory address and length on the Comch to the DPU
side application.
Wait for the DPU to notify that DMA Copy ended.
Close all memory objects.
Clean resources.

DPU side application:

dpu_start_dma_copy();

Start negotiation with the host side application for file location and size.
Allocate memory for the DMA buffer.
Receive the export descriptor on the Comch.
Create the DOCA memory map for the remote buffer on the host.
Receive the host buffer information on the Comch.

882

vi.

vii.
viii.
ix.

6.

7.

8.

•

•

Create two DOCA buffers, one for the remote (host) buffer and one for the local
buffer.
Submit the DMA copy task.
Send a host message to notify that DMA copy ended.
Clean resources.

Destroy Comch.

destroy_cc();

Destroy DOCA core objects.

destroy_core_objects();

Arg parser destroy.

doca_argp_destroy();

15.5.8 References
/opt/mellanox/doca/applications/dma_copy/

/opt/mellanox/doca/applications/dma_copy/dma_copy_params.json

15.6 NVIDIA DOCA DPA All-to-all Application Guide
This guide explains all-to-all collective operation example when accelerated using the DPA in
NVIDIA® BlueField®-3 DPU.

15.6.1 Introduction
This reference application shows how the message passing interface (MPI) all-to-all collective can be
accelerated on the Data Path Accelerator (DPA). In an MPI collective, all processes in the same job
call the collective routine.

Given a communicator of n ranks, the application performs a collective operation in which all
processes send and receive the same amount of data from all processes (hence all-to-all).

This document describes how to run the all-to-all example using the DOCA DPA API.

15.6.2 System Design
All-to-all is an MPI method. MPI is a standardized and portable message passing standard designed to
function on parallel computing architectures. An MPI program is one where several processes run in
parallel.

883

•
•

•

Each process in the diagram divides its local sendbuf into n blocks (4 in this example), each
containing sendcount elements (4 in this example). Process i sends the k-th block of its local
sendbuf to process k which places the data in the i-th block of its local recvbuf.

Implementing all-to-all method using DOCA DPA offloads the copying of the elements from the srcbuf
to the recvbufs to the DPA, and leaves the CPU free to perform other computations.

15.6.3 Application Architecture
The following diagram describes the differences between host-based all-to-all and DPA all-to-all.

In DPA all-to-all, DPA threads perform all-to-all and the CPU is free to do other computations
In host-based all-to-all, CPU must still perform all-to-all at some point and is not completely
free for other computations

15.6.4 DOCA Libraries
This application leverages the following DOCA library:

DOCA DPA

Refer to its programming guide for more information.

884

•
•
•

15.6.5 Dependencies
NVIDIA BlueField-3 platform is required
The application can be run on target BlueField or on host.
Open MPI version 4.1.5rc2 or greater (included in DOCA's installation).

15.6.6 Compiling the Application

The installation of DOCA's reference applications contains the sources of the applications, alongside
the matching compilation instructions. This allows for compiling the applications "as-is" and provides
the ability to modify the sources, then compile a new version of the application.

The sources of the application can be found under the application's directory: /opt/mellanox/

doca/applications/dpa_all_to_all/ .

15.6.6.1 Compiling All Applications
All DOCA applications are defined under a single meson project. So, by default, the compilation
includes all of them.

MPI is used for the compilation of this application. Make sure that MPI is installed on your setup
(openmpi is provided as part of the installation of DOCA, as part of the doca-all and doca-ofed
meta-packages).

To build all applications together, run:

cd /opt/mellanox/doca/applications/
meson /tmp/build
ninja -C /tmp/build

Please refer to the NVIDIA DOCA Installation Guide for Linux for details on how to install
BlueField-related software.

For more information about the applications as well as development and compilation tips,
refer to the DOCA Applications page.

Compiling the application requires updating the LD_LIBRARY_PATH and PATH environment

variable to include MPI. For example, if openmpi is installed under /usr/mpi/gcc/

openmpi-4.1.7a1 , then updating the environment variables should be like the following

export PATH=/usr/mpi/gcc/openmpi-4.1.7a1/bin:${PATH}
export LD_LIBRARY_PATH=/usr/mpi/gcc/openmpi-4.1.7a1/lib:${LD_LIBRARY_PATH}

doca_dpa_all_to_all is created under /tmp/build/dpa_all_to_all/ .

885

1.

•

•
2.

15.6.6.2 Compiling DPA All-to-all Application Only
To directly build only all-to-all application:

cd /opt/mellanox/doca/applications/
meson /tmp/build -Denable_all_applications=false -Denable_dpa_all_to_all=true
ninja -C /tmp/build

Alternatively, one can set the desired flags in meson_options.txt file instead of providing them in
the compilation command line:

Edit the following flags in /opt/mellanox/doca/applications/meson_options.txt :

Set enable_all_applications to false

Set enable_dpa_all_to_all to true
Run the following compilation commands:

cd /opt/mellanox/doca/applications/
meson /tmp/build
ninja -C /tmp/build

15.6.6.3 Troubleshooting
Please refer to the NVIDIA DOCA Troubleshooting Guide for any issue encountered with the
compilation of the application.

15.6.7 Running the Application

15.6.7.1 Prerequisites

MPI is used to run this application. Make sure that MPI is installed on your setup (openmpi is

provided as part of the installation of DOCA on the host, as part of the doca-all and doca-ofed
meta-packages).

doca_dpa_all_to_all is created under /tmp/build/dpa_all_to_all/ .

doca_dpa_all_to_all is created under /tmp/build/dpa_all_to_all/ .

Running the application requires updating the LD_LIBRARY_PATH and PATH environment

variable to include MPI. For example, if openmpi is installed under /usr/mpi/gcc/

openmpi-4.1.7a1 , then updating the environment variables should be like the following:

export PATH=/usr/mpi/gcc/openmpi-4.1.7a1/bin:${PATH}
export LD_LIBRARY_PATH=/usr/mpi/gcc/openmpi-4.1.7a1/lib:${LD_LIBRARY_PATH}

886

1.

2.

•

•

3.

15.6.7.2 Application Execution
DPA all-to-all application is provided in source form. Therefore, a compilation is required before
application can be executed.

Application usage instructions:

Usage: doca_dpa_all_to_all [DOCA Flags] [Program Flags]

DOCA Flags:
 -h, --help Print a help synopsis
 -v, --version Print program version information
 -l, --log-level Set the (numeric) log level for the program <10=DISABLE, 20=CRITICA
L, 30=ERROR, 40=WARNING, 50=INFO, 60=DEBUG, 70=TRACE>
 --sdk-log-level Set the SDK (numeric) log level for the program <10=DISABLE, 20=CRI
TICAL, 30=ERROR, 40=WARNING, 50=INFO, 60=DEBUG, 70=TRACE>
 -j, --json <path> Parse all command flags from an input json file

Program Flags:
 -m, --msgsize <Message size> The message size - the size of the sendbuf and recvbuf (in bytes).
Must be in multiplies of integer size. Default is size of one integer times the number of processes.
 -d, --devices <IB device names> IB devices names that supports DPA, separated by comma without
spaces (max of two devices). If not provided then a random IB device will be chosen.

CLI example for running the application on host:

The following runs the DPA all-to-all application with 8 processes using the default
message size (the number of processes, which is 8, times the size of 1 integer) with a
random InfiniBand device:

mpirun -np 8 ./doca_dpa_all_to_all

The following runs DPA all-to-all application with 8 processes, with 128 bytes as
message size, and with mlx5_0 and mlx5_1 as the InfiniBand devices:

mpirun-np 8 ./doca_dpa_all_to_all -m 128 -d "mlx5_0,mlx5_1"

The application also supports a JSON-based deployment mode, in which all command-line
arguments are provided through a JSON file:

This usage printout can be printed to the command line using the -h (or --help)
option:

./doca_dpa_all_to_all -h

For additional information, please refer to section "Command Line Flags".

This is an MPI program, so use mpirun to run the application (with the -np flag to
specify the number of processes to run).

The application supports running with a maximum of 16 processes. If you try
to run with more processes, an error is printed and the application exits.

887

•
•
•
•
•
•
•

•
•
•
•
•
•
•

./doca_dpa_all_to_all --json [json_file]

For example:

./doca_dpa_all_to_all --json ./dpa_all_to_all_params.json

15.6.7.3 Command Line Flags
Flag Type Short Flag Long Flag/

JSON Key
Description JSON Content

General flags h help Prints a help synopsis N/A

v version Prints program version
information

N/A

l log-level Set the log level for the
application:

DISABLE=10
CRITICAL=20
ERROR=30
WARNING=40
INFO=50
DEBUG=60
TRACE=70 (requires
compilation with TRACE
log level support)

"log-level": 60

N/A sdk-log-level Sets the log level for the
program:

DISABLE=10
CRITICAL=20
ERROR=30
WARNING=40
INFO=50
DEBUG=60
TRACE=70

"sdk-log-level": 40

j json Parse all command flags from
an input json file

N/A

Before execution, ensure that the used JSON file contains the correct configuration
parameters, especially the InfiniBand device identifiers.

888

1.

2.
a.

b.

c.

Flag Type Short Flag Long Flag/
JSON Key

Description JSON Content

Program flags m msgsize The message size. The size of
the sendbuf and recvbuf (in
bytes). Must be in multiples
of an integer. The default is
size of 1 integer times the
number of processes.

"msgsize": -1

d devices InfiniBand devices names that
support DPA, separated by
comma without spaces (max
of two devices). If NOT_SET
then a random InfiniBand
device is chosen.

"devices": "NOT_SET"

15.6.7.4 Troubleshooting
Refer to the NVIDIA DOCA Troubleshooting Guide for any issue encountered with the installation or
execution of the DOCA applications.

15.6.8 Application Code Flow
Initialize MPI.

MPI_Init(&argc, &argv);

Parse application arguments.
Initialize arg parser resources and register DOCA general parameters.

doca_argp_init();

Register the application's parameters.

register_all_to_all_params();

Parse the arguments.

doca_argp_start();

The value -1 is a
placeholder to use
the default size,
which is only known
at run time
(because it
depends on the
number of
processes).

Refer to DOCA Arg Parser for more information regarding the supported flags and execution
modes.

889

i.

ii.

d.

3.
a.
b.

c.
4.

a.
i.

ii.

b.
i.

ii.

c.

The msgsize parameter is the size of the sendbuf and recvbuf (in bytes). It
must be in multiples of an integer and at least the number of processes times an
integer size.
The devices_param parameter is the names of the InfiniBand devices to use
(must support DPA). It can include up to two devices names.

Only let the first process (of rank 0) parse the parameters to then broadcast them to
the rest of the processes.

Check and prepare the needed resources for the all_to_all call:
Check the number of processes (maximum is 16).
Check the msgsize . It must be in multiples of integer size and at least the number of
processes times integer size.
Allocate the sendbuf and recvbuf according to msgsize .

Prepare the resources required to perform all-to-all method using DOCA DPA:

Initialize DOCA DPA context:
 Open DOCA DPA device (DOCA device that supports DPA).

open_dpa_device(&doca_device);

Initialize DOCA DPA context using the opened device.

extern struct doca_dpa_app *dpa_all2all_app;

doca_dpa_create(doca_device, &doca_dpa);

doca_dpa_set_app(doca_dpa, dpa_all2all_app);

doca_dpa_start(doca_dpa);

Initialize the required DOCA Sync Events for the all-to-all:
One completion event for the kernel launch where the subscriber is CPU and the
publisher is DPA.
Kernel events, published by remote peer and subscribed to by DPA, as the
number of processes.

create_dpa_a2a_events() {
 // initialize completion event
 doca_sync_event_create(&comp_event);

 doca_sync_event_add_publisher_location_dpa(comp_event);

 doca_sync_event_add_subscriber_location_cpu(comp_event);

 doca_sync_event_start(comp_event);

 // initialize kernels events
 for (i = 0; i < resources->num_ranks; i++) {
 doca_sync_event_create(&(kernel_events[i]));

 doca_sync_event_add_publisher_location_remote_net(kernel_events[i]);

 doca_sync_event_add_subscriber_location_dpa(kernel_events[i]);

 doca_sync_event_start(kernel_events[i]);
 }
}

Prepare DOCA RDMAs and set them to work on DPA:

The application uses MPI without an additional security layer. The data exported (for
sync event, RDMA, and MMAP), as described in this step, should be passed over a
secure channel in a production deployment.

890

i.

ii.

iii.

d.

5.

a.

b.

c.

Create DOCA RDMAs as the number of processes/ranks.

for (i = 0; i < resources->num_ranks; i++) {
 doca_rdma_create(&rdma);

 rdma_as_doca_ctx = doca_rdma_as_ctx(rdma);

 doca_rdma_set_permissions(rdma);

 doca_rdma_set_grh_enabled(rdma);

 doca_ctx_set_datapath_on_dpa(rdma_as_doca_ctx, doca_dpa);

 doca_ctx_start(rdma_as_doca_ctx);
}

Connect local DOCA RDMAs to the remote DOCA RDMAs.

connect_dpa_a2a_rdmas();

Get DPA handles for local DOCA RDMAs (so they can be used by DPA kernel) and
copy them to DPA heap memory.

for (int i = 0; i < resources->num_ranks; i++) {
 doca_rdma_get_dpa_handle(rdmas[i], &(rdma_handles[i]));
}

doca_dpa_mem_alloc(&dev_ptr_rdma_handles);

doca_dpa_h2d_memcpy(dev_ptr_rdma_handles, rdma_handles);

Prepare the memory required to perform all-to-all method using DOCA Mmap. This
includes creating DPA memory handles for sendbuf and recvbuf, getting other
processes recvbufs handles, and copying these memory handles and their remote keys
and events handlers to DPA heap memory.

prepare_dpa_a2a_memory();

Launch alltoall_kernel using DOCA DPA kernel launch with all required parameters:

Every MPI rank launches a kernel of up to MAX_NUM_THREADS . This example

defines MAX_NUM_THREADS as 16.

Launch alltoall_kernel using kernel_launch .

doca_dpa_kernel_launch_update_set();

Each process should perform num_ranks RDMA write operations, with local and
remote buffers calculated based on the rank of the process that is performing the
RDMA write operation and the rank of the remote process that is being written to. The
application iterates over the rank of the remote process.i

Each process runs num_threads threads on this kernel, therefore the number of RDMA
write operations (which is the number of processes) is divided by the number of
threads.
Each thread should wait on its local events to make sure that the remote processes
have finished RDMA write operations.
Each thread should also synchronize its RDMA DPA handles to make sure that the local
RDMA operation calls has finished.

for (i = thread_rank; i < num_ranks; i += num_threads) {
 doca_dpa_dev_rdma_post_write();

891

d.

6.
a.

b.

c.

d.

e.

f.

•

 doca_dpa_dev_rdma_signal_set();
}

for (i = thread_rank; i < num_ranks; i += num_threads) {
 doca_dpa_dev_sync_event_wait_gt();
 doca_dpa_dev_rdma_synchronize();
}

Wait until alltoall_kernel has finished.

doca_sync_event_wait_gt();

After alltoall_kernel is finished, the recvbuf of all processes contains the
expected output of all-to-all method.

Destroy a2a_resources :
Free all DOCA DPA memories.

doca_dpa_mem_free();

Destroy all DOCA Mmaps

doca_mmap_destroy();

Destroy all DOCA RDMAs.

doca_ctx_stop();
doca_rdma_destroy();

Destroy all DOCA Sync Events.

doca_sync_event_destroy();

Destroy DOCA DPA context.

doca_dpa_destroy();

Close DOCA device.

doca_dev_close();

15.6.9 References
/opt/mellanox/doca/applications/dpa_all_to_all/

RDMA operations should be executed over a secure channel in a production
deployment, given the sensitivity arising from the nature of the protocol.

Add an MPI barrier after waiting for the event to make sure that all of the
processes have finished executing alltoall_kernel .

MPI_Barrier();

892

• /opt/mellanox/doca/applications/dpa_all_to_all/dpa_all_to_all_params.json

15.7 NVIDIA DOCA DPA L2 Reflector Application Guide
This document provides a DPA L2 reflector implementation on top of the NVIDIA® BlueField®-3 DPU.

15.7.1 Introduction
The BlueField-3 DPU supports high-speed Data Path Accelerator (DPA). Data path accelerator allows
for accelerated packet processing and manipulation.

DOCA layer-2 reflector uses the DPA engine to intercept network traffic and swap the source and
destination MAC addresses of each packet.

15.7.2 System Design
The application accepts traffic from a specific port given as an argument and leverages DPA
capabilities for accelerated processing.

The following figure provides a high-level view of the components of the application:

893

15.7.3 Application Architecture
DOCA L2 reflector runs on top of FlexIO SDK to configure the DPA engine.

894

•
•

•

The FlexIO application consist of two parts:

Host side – responsible for allocating resources and loading them to the DPA
Device side – core processing logic of the application which swaps the MACs on the DPA

For more information, refer to "Programming FlexIO SDK".

15.7.4 DOCA Libraries and Drivers
This application leverages the following DOCA driver:

FlexIO SDK

Refer to its programming guide for more information.

15.7.5 Dependencies
NVIDIA® BlueField®-3 DPU and above is required.

895

1.

•

•
2.

15.7.6 Compiling the Application

The installation of DOCA's reference applications contains the sources of the applications, alongside
the matching compilation instructions. This allows for compiling the applications "as-is" and provides
the ability to modify the sources, then compile a new version of the application.

The sources of the application can be found under the application's directory: /opt/mellanox/

doca/applications/l2_reflector/ .

15.7.6.1 Compiling All Applications
All DOCA applications are defined under a single meson project. So, by default, the compilation
includes all of them.

To build all the applications together, run:

cd /opt/mellanox/doca/applications/
meson /tmp/build
ninja -C /tmp/build

15.7.6.2 Compiling DPA L2 Reflector Application Only
To directly build only the L2 reflector application:

cd /opt/mellanox/doca/applications/
meson /tmp/build -Denable_all_applications=false -Denable_l2_reflector=true
ninja -C /tmp/build

Alternatively, one can set the desired flags in the meson_options.txt file instead of providing
them in the compilation command line:

Edit the following flags in /opt/mellanox/doca/applications/meson_options.txt :

Set enable_all_applications to false

Set enable_l2_reflector to true
Run the following compilation commands:

Please refer to the NVIDIA DOCA Installation Guide for Linux for details on how to install
BlueField-related software.

For more information about the applications as well as development and compilation tips,
refer to the DOCA Applications page.

l2_reflector is created under /tmp/build/l2_reflector/host .

l2_reflector is created under /tmp/build/l2_reflector/host .

896

1.

2.

cd /opt/mellanox/doca/applications/
meson /tmp/build
ninja -C /tmp/build

15.7.6.3 Troubleshooting
Refer to the NVIDIA DOCA Troubleshooting Guide for any issue you may encounter with the
compilation of the DOCA applications.

15.7.7 Running the Application

15.7.7.1 Application Execution
The L2 reflector application is provided in source form. Therefore, a compilation is required before
the application can be executed.

Application usage instructions:

Usage: l2_reflector [DOCA Flags] [Program Flags]

DOCA Flags:
 -h, --help Print a help synopsis
 -v, --version Print program version information
 -l, --log-level Set the (numeric) log level for the program <10=DISABLE, 20=CRITICAL,
30=ERROR, 40=WARNING, 50=INFO, 60=DEBUG, 70=TRACE>
 --sdk-log-level Set the SDK (numeric) log level for the program <10=DISABLE, 20=CRITICA
L, 30=ERROR, 40=WARNING, 50=INFO, 60=DEBUG, 70=TRACE>
 -j, --json <path> Parse all command flags from an input json file

Program Flags:
 -d, --device <device name> Device name

CLI example for running the application on BlueField or host:

./l2_reflector -d mlx5_0

l2_reflector is created under /tmp/build/l2_reflector/host .

This usage printout can be printed to the command line using the -h (or --help)
options:

./l2_reflector -h

For additional information, refer to section "Command Line Flags".

The used device name (-d flag) must match the identifier of the desired IB device.

To run the application on the second port, verify that it has a partition. Run:

897

3.

•
•
•
•
•
•
•

•
•
•
•
•
•
•

The application also supports a JSON-based deployment mode, in which all command-line
arguments are provided through a JSON file:

./l2_reflector --json [json_file]

For example:

./l2_reflector --json ./l2_reflector_params.json

15.7.7.2 Command Line Flags
Flag Type Short Flag Long Flag/JSON

Key
Description JSON Content

General flags h help Prints a help synopsis N/A

v version Prints program version
information

N/A

l log-level Set the log level for
the application:

DISABLE=10
CRITICAL=20
ERROR=30
WARNING=40
INFO=50
DEBUG=60
TRACE=70
(requires
compilation with
TRACE log level
support)

"log-level": 60

N/A sdk-log-level Sets the log level for
the program:

DISABLE=10
CRITICAL=20
ERROR=30
WARNING=40
INFO=50
DEBUG=60
TRACE=70

"sdk-log-level":
40

j json Parse all command
flags from an input
JSON file

N/A

dpaeumgmt partition info -d mlx5_1

If DPA EU partition creation is required, refer to NVIDIA DOCA DPA Execution Unit
Management Tool.

Before execution, ensure that the used JSON file contains the correct configuration
parameters, and especially the desired PCIe addresses required for the deployment.

898

1.
a.

b.

c.

2.

3.

4.

Flag Type Short Flag Long Flag/JSON
Key

Description JSON Content

Program flags d device Device name

"device": mlx5_0

15.7.7.3 Troubleshooting

Please refer to the NVIDIA DOCA Troubleshooting Guide for any issue encountered with the
installation or execution of the DOCA applications.

15.7.8 Application Code Flow
This section lists the application's configuration flow which includes different FlexIO functions and
wrappers.

Parse application argument.
Initialize arg parser resources and register DOCA general parameters.

doca_argp_init();

Register the application's parameters.

register_l2_reflector_params();

Parse the arguments.

doca_argp_start();

Setup the InfiniBand device.

l2_reflector_setup_ibv_device();

Setup the DPA device.

l2_reflector_setup_device();

Allocate the device's resources.

Refer to DOCA Arg Parser for more information regarding the supported flags and execution
modes.

DPA L2 reflector works with packets with a specific source MAC address. To check the
supported MAC address, refer to /opt/mellanox/doca/applications/l2_reflector/src/

host/l2_reflector_core.h .

899

5.

6.

7.

8.

9.

•

•

l2_reflector_allocate_device_resources();

Run initialization function on the device.

flexio_process_call();

Create the steering rule.

l2_reflector_create_steering_rule();

Start the event handler on the device.

flexio_event_handler_run();

Main loop.

while (!force_quit)
 sleep(10);

Cleanup the resources.

l2_reflector_destroy();

15.7.9 References
/opt/mellanox/doca/applications/l2_reflector/

/opt/mellanox/doca/applications/l2_reflector/l2_reflector_params.json

15.8 NVIDIA DOCA East-West Overlay Encryption
Application

This guide describes IPsec-based strongSwan solution on top of NVIDIA® BlueField® DPU.

15.8.1 Introduction
IPsec is used to set up encrypted connections between different devices. It helps keep data sent
over public networks secure. IPsec is often used to set up VPNs, and it works by encrypting IP
packets as well as authenticating the packets' originator.

IPsec contains the following main modules:

Important note for NVIDIA® BlueField®-2 DPUs

If your target application utilizes 100Gb/s or higher bandwidth, where a substantial part of
the bandwidth is allocated for IPsec traffic, please refer to the NVIDIA BlueField-2 DPUs
Product Release Notes to learn about a potential bandwidth limitation. To access the
relevant product release notes, please contact your NVIDIA sales representative.

900

•

•

•

•

•

•

•

•

Key exchange – a key is a string of random bytes that can be used for encryption and
decryption of messages. IPsec sets up keys with a key exchange between the connected
devices, so that each device can decrypt the other device's messages.
Authentication – IPsec provides authentication for each packet which ensures that they come
from a trusted source.
Encryption – IPsec encrypts the payloads within each packet and possibly, based on the
transport mode, the packet's IP header.
Decryption – at the other end of the communication, packets are decrypted by the IPsec
supported node.

IPsec supports two types of headers:

Authentication header (AH) – AH protocol ensures that packets are from a trusted source. AH
does not provide any encryption.
Encapsulating security protocol (ESP) – ESP encrypts the payload for each packet as well as
the IP header depending on the transport mode. ESP adds its own header and a trailer to each
data packet.

IPsec support two types of transport mode:

IPsec tunnel mode – used between two network nodes, each acting as tunnel initiator/
terminator on a public network. In this mode, the original IP header and payload are both
encrypted. Since the IP header is encrypted, an IP tunnel is added for network forwarding. At
each end of the tunnel, the routers decrypt the IP headers to route the packets to their
destinations.
Transport mode – the payload of each packet is encrypted, but the original IP header is not.
Intermediary network nodes are therefore able to view the destination of each packet and
route the packet, unless a separate tunneling protocol is used.

strongSwan is an open-source IPsec-based VPN solution. For more information, refer to strongSwan
documentation.

15.8.2 System Design
IPsec packet offload offloads both IPsec crypto (encrypt/decrypt) and IPsec encapsulation to the
hardware.

The deployment model allows the IPsec offload to be transparent to the host with the benefits of
securing legacy workloads (no dependency on host SW stack) and to zero CPU utilization on host.

IPsec packet offload configuration works with and is transparent to OVS offload. This means all
packets from OVS offload are encrypted by IPsec rules.

The following figure illustrates the interaction between IPsec packet offload and OVS VXLAN
offload.

https://wiki.strongswan.org/projects/strongswan/wiki/IntroductiontostrongSwan

901

1.
2.
3.

4.
5.

15.8.3 Application Architecture

Configure strongSwan IPsec offload using swanctl.conf configuration file.
Traffic is sent from the host through BlueField.
Using OVS, the packets are encapsulated on ingress using tunnel protocols (VXLAN for
example) to match IPsec configuration by strongSwan.
Set by strongSwan configuration file, traffic will be encrypted using the hardware offload.
Egress flow is decryption first, decapsulation of the tunnel header and forward to the
relevant physical function.

IPsec packet offload is only supported on Ubuntu Bluefield kernel 5.15

OVS offload and IPsec IPv6 do not work together.

902

1.
2.

1.

2.

15.8.4 DOCA Libraries
N/A

15.8.5 Configuration Flow
The following section provides information on manually configuring IPsec packet offload in general
and on using OVS IPsec with strongSwan specifically.

If you are working directly with the ip xfrm tool, use /opt/mellanox/iproute2/sbin/ip to
benefit from IPsec packet offload support.

There are two parts in the configuration flow

Enabling IPsec packet offload mode.
Configuring the IPsec OVS bridge using one of three modes of authentication.

15.8.5.1 Enabling IPsec Packet Offload
This section explicitly enables IPsec packet offload on the Arm cores before setting up offload-
aware IPsec tunnels.

Explicitly enable IPsec full offload on the Arm cores.

Set IPSEC_FULL_OFFLOAD="yes" in /etc/mellanox/mlnx-bf.conf .

Restart IB driver (rebooting also works). Run:

/etc/init.d/openibd restart

There is a script, east_west_overlay_encryption.sh which performs the steps in this
section automatically.

An alternative for step two is configuring swanctl.conf files (configuration files for
strongSwan) manually and using strongSwan directly instead of using IPsec OVS (which
automatically generates swanctl.conf files) as explained in section "Configuring OVS
IPsec Using strongSwan Manually".

If an OVS VXLAN tunnel configuration already exists, stop openvswitch service prior to
performing the steps below and restart the service afterwards.

If IPSEC_FULL_OFFLOAD does not appear in /etc/mellanox/mlnx-bf.conf then
you are probably using an old version of the BlueField image. Check the way of
enabling IPsec full offload in a previous DOCA versions in the NVIDIA DOCA
Documentation Archives.

903

15.8.5.2 Configuring OVS IPsec

This section configures OVS IPsec VXLAN tunnel which automatically generates the swanctl.conf
files and runs strongSwan (the IPsec daemon). The following figure illustrates an example with two
BlueField DPUs, Left and Right, operating with a secured VXLAN channel.

Two BlueField DPUs are required to build an OVS IPsec tunnel between the two hosts, Right and
Left.

The OVS IPsec tunnel configures an unaware IPsec connection between the two hosts' InfiniBand
devices. For the sake of this example, the host's InfiniBand network device is HOST_PF , and the

DPU's host representor is PF_REP and the DPU's physical function PF .

a.

b.
c.

If mlx-regex is running:

Disable mlx-regex prior to running restarting the IB driver:

systemctl stop mlx-regex

Restart IB driver according to the command above.
Re-enable mlx-regex after the restart has finished:

systemctl restart mlx-regex

To revert IPsec full offload mode, redo the procedure from step 1, only difference is to
set IPSEC_FULL_OFFLOAD="no" in /etc/mellanox/mlnx-bf.conf .

Before proceeding with this section, make sure to follow the procedure in section "Enabling
IPsec Packet Offload" for both DPUs.

904

1.

a.

b.

2.
a.

b.

3.

4.

This example sets up the following variables on both Arms:

host_ip1=1.1.1.1
host_ip2=1.1.1.2
HOST_PF=ens7np0
ip1=192.168.50.1
ip2=192.168.50.2
PF=p0
PF_REP=pf0hpf

Configure IP addresses for the HOST_PF s of both hosts (x86):

On host_1 :

ifconfig $HOST_PF $host_ip1/24 up

On host_2 :

ifconfig $HOST_PF $host_ip2/24 up

Configure IP addresses for the PFs of both Arms:
On Arm_1 :

ifconfig $PF $ip1/24 up

On Arm_2 :

ifconfig $PF $ip2/24 up

Start Open vSwitch. If your operating system is Ubuntu, run the following on both Arm_1 and

Arm_2 :

service openvswitch-switch start

If your operating system is CentOS, run the following on both Arm_1 and Arm_2 :

service openvswitch restart

Start OVS IPsec service. Run on both Arm_1 and Arm_2 :

systemctl start openvswitch-ipsec.service

The name of the HOST_PF could be different in your machine. You may verify this by
running:

host# ibdev2netdev
mlx5_0 port 1 ==> ens7np0 (Down)
mlx5_1 port 1 ==> ens8np1 (Down)

This example uses the first InfiniBand's (mlx5_0) network device which is ens7np0 .

Step 1 is the only command that is performed on the host, the rest of the
commands are performed on the Arm (DPU) side.

905

5.

6.

1.
a.

Set up OVS bridges in both DPUs. Run on both Arm_1 and Arm_2 :

ovs-vsctl add-br vxlan-br
ovs-vsctl add-port ovs-br $PF_REP
ovs-vsctl set Open_vSwitch . other_config:hw-offload=true

Set up IPsec tunnel on the OVS bridge. Three authentication methods are possible, choose
your preferred authentication method and follow the steps relevant to it. Note that the last
two authentication methods requires you to create certificates (self-signed certificates or
certificate authority certificates).

15.8.5.2.1 Authentication Methods

The following subsections detail the possible authentication methods for setting up the IPsec tunnel
on the OVS bridge.

15.8.5.2.1.1 Pre-shared Key

This method configures OVS IPsec using a pre-shared key. You must select a pre-shared key, for
example:

psk=swordfish

Set up the VXLAN tunnel:
On Arm_1 , run:

ovs-vsctl add-port vxlan-br tun -- \
 set interface tun type=vxlan \
 options:local_ip=$ip1 \
 options:remote_ip=$ip2 \
 options:key=100 \
 options:dst_port=4789 \
 options:psk=$psk

Configuring other_config:hw-offload=true sets IPsec Packet offload. Setting it to

false sets software IPsec.

The MTU of the MTU of the tunnel interface (PF) should be at least 50 bytes larger
than the MTU of the endpoints of the tunnels above (PF_REP) to account for the size
of the VXLAN tunnel header. For example, if the MTU of PF_REP is 1500 then the MTU
of PF should be at least 1550.

To configure the MTU of the PF:

ifconfig $PF mtu $PF_MTU up

After the IPsec tunnel is set up using one of the three methods of authentication,
strongSwan configuration is done automatically and the swanctl.conf files will be
generated and strongSwan will run automatically.

906

b.

1.

a.

b.

2.
a.

b.

c.

3.

a.

b.

4.
a.

On Arm_2 , run:

ovs-vsctl add-port vxlan-br tun -- \
 set interface tun type=vxlan \
 options:local_ip=$ip2 \
 options:remote_ip=$ip1 \
 options:key=100 \
 options:dst_port=4789\
 options:psk=$psk

15.8.5.2.1.2 Self-signed Certificate

This method configures OVS IPsec using self-signed certificates. You must generate self-signed
certificates and keys. This example demonstrates how to generate self-signed certificates using
ovs-pki but you may generate them in any other way while skipping step 1.

Generate self-signed certificates using ovs-pki :

On Arm_1 , run:

ovs-pki req -u host_1
ovs-pki self-sign host_1

After running this code you should have host_1-cert.pem and host_1-privkey.pem .

On Arm_2 , run:

ovs-pki req -u host_2
ovs-pki self-sign host_2

After running this code you should have host_2-cert.pem and host_2-privkey.pem .
Configure the certificates and private keys:

Copy the certificate of Arm_1 to Arm_2 , and the certificate of Arm_2 to Arm_1 .

On each machine, move both host_1-privkey.pem and host_2-cert.pem to /etc/

swanctl/x509/ if on Ubuntu, or /etc/strongswan/swanctl/x509/ if on CentOS.

On each machine, move the local private key (host_1-privkey.pem on Arm_1 and

host_2-privkey.pem on Arm_2) to /etc/swanctl/private if on Ubuntu, or /etc/

strongswan/swanctl/private if on CentOS.

Set up OVS other_config on both sides.

On A rm_1 :

ovs-vsctl set Open_vSwitch . other_config:certificate=/etc/swanctl/x509/host_1-cert.pem \
 other_config:private_key=/etc/swanctl/private/host_1-privkey.pem

On Arm_2 :

ovs-vsctl set Open_vSwitch . other_config:certificate=/etc/swanctl/x509/host_2-cert.pem \
 other_config:private_key=/etc/swanctl/private/host_2-privkey.pem

Set up the VXLAN tunnel:
On Arm_1 :

ovs-vsctl add-port vxlan-br vxlanp0 -- set interface vxlanp0 type=vxlan options:local_ip=$ip1 \
 options:remote_ip=$ip2 options:key=100 options:dst_port=4789 \
 options:remote_cert=/etc/swanctl/x509/host_2-cert.pem
service openvswitch-switch restart

907

b.

1.

a.

b.

2.
a.

b.

c.

d.

3.

a.

On Arm_2 :

ovs-vsctl add-port vxlan-br vxlanp0 -- set interface vxlanp0 type=vxlan options:local_ip=$ip2 \
 options:remote_ip=$ip1 options:key=100 options:dst_port=4789 \
 options:remote_cert=/etc/swanctl/x509/host_1-cert.pem
service openvswitch-switch restart

15.8.5.2.1.3 CA-signed Certificate

This method configures OVS IPsec using certificate authority (CA)-signed certificates. You must
generate CA-signed certificates and keys. The example demonstrates how to generate CA-signed
certificates using ovs-pki but you may generate them in any other way while skipping step 1.

Generate CA-signed certificates using ovs-pki . For this method, all the certificates and the
requests must be in the same directory during the certificate generating and signing. This
example refers to this directory as certsworkspace .

On Arm_1 , run:

ovs-pki init --force
cp /var/lib/openvswitch/pki/controllerca/cacert.pem <path_to>/certsworkspace
cd <path_to>/certsworkspace
ovs-pki req -u host_1
ovs-pki sign host1 switch

After running this code, you should have host_1-cert.pem , host_1-privkey.pem ,

and cacert.pm in the certsworkspace folder.

On Arm_2 , run:

ovs-pki init --force
cp /var/lib/openvswitch/pki/controllerca/cacert.pem <path_to>/certsworkspace
cd <path_to>/certsworkspace
ovs-pki req -u host_2
ovs-pki sign host_2 switch

After running this code, you should have host_2-cert.pem , host_2-privkey.pem ,

and cacert.pm in the certsworkspace folder.
Configure the certificates and private keys:

Copy the certificate of Arm_1 to Arm_2 and the certificate of Arm_2 to Arm_1 .

On each machine, move both host_1-privkey.pem and host_2-cert.pem to /etc/

swanctl/x509/ if on Ubuntu, or /etc/strongswan/swanctl/x509/ if on CentOS.

On each machine, move the local private key (host_1-privkey.pem if on Arm_1 and

host_2-privkey.pem if on Arm_2) to /etc/swanctl/private if on Ubuntu, or /

etc/strongswan/swanctl/private if on CentOS.

On each machine, copy cacert.pem to the x509ca directory under /etc/swanctl/

x509ca/ if on Ubuntu, or /etc/strongswan/swanctl/x509ca/ if on CentOS.

Set up OVS other_config on both sides.

On Arm_1 :

In steps 3 and 4, if you are in CentOS you must change the path of the certificates to /etc/

strongswan/swanctl/x509/ and the path of the private keys to /etc/strongswan/

swanctl/private .

http://cacert.pm

908

b.

4.
a.

b.

ovs-vsctl set Open_vSwitch . \
 other_config:certificate=/etc/strongswan/swanctl/x509/host_1.pem \
 other_config:private_key=/etc/strongswan/swanctl/private/host_1-privkey.pem \
 other_config:ca_cert=/etc/strongswan/swanctl/x509ca/cacert.pem

On Arm_2 :

ovs-vsctl set Open_vSwitch . \
 other_config:certificate=/etc/strongswan/swanctl/x509/host_2.pem \
 other_config:private_key=/etc/strongswan/swanctl/private/host_2-privkey.pem \
 other_config:ca_cert=/etc/strongswan/swanctl/x509ca/cacert.pem

Set up the tunnel:
On Arm_1 :

ovs-vsctl add-port vxlan-br vxlanp0 -- set interface vxlanp0 type=vxlan options:local_ip=$ip1 \
options:remote_ip=$ip2 options:key=100 options:dst_port=4789 \ options:remote_name=host_2
service openvswitch-switch restart

On Arm_2 :

ovs-vsctl add-port vxlan-br vxlanp0 -- set interface vxlanp0 type=vxlan options:local_ip=$ip2 \
options:remote_ip=$ip1 options:key=100 options:dst_port=4789 \ options:remote_name=host_1
service openvswitch-switch restart

15.8.5.3 Ensuring IPsec is Configured

Using /opt/mellanox/iproute2/sbin/ip xfrm state show , you should be able to see 4 IPsec

states for the IPsec connection you configured with the keyword in mode packet meaning which
means that you are in IPsec packet HW offload mode.

For example, after configuring IPsec using pre-shared key method, you would get something similar
to the following on Arm_1 :

/opt/mellanox/iproute2/sbin/ip xfrm state show

src 192.168.50.1 dst 192.168.50.2
 proto esp spi 0xcc8bf8ad reqid 1 mode transport
 replay-window 0 flag esn
 aead rfc4106(gcm(aes)) 0x9f45cc4577e70c4e077bcc0c1473a782143e7ad199f58566519639d03b593b8996383f11 128
 anti-replay esn context:
 seq-hi 0x0, seq 0x0, oseq-hi 0x0, oseq 0x0
 replay_window 1, bitmap-length 1
 00000000
 crypto offload parameters: dev p0 dir out mode packet
 sel src 192.168.50.1/32 dst 192.168.50.2/32 proto udp sport 4789
src 192.168.50.2 dst 192.168.50.1
 proto esp spi 0xce8bf4b6 reqid 1 mode transport
 replay-window 0 flag esn
 aead rfc4106(gcm(aes)) 0xf2d0e335d9a64ef6e385a630a32b0e43bb52f581290cd34bbb8f7592d54f11657ed0258e 128
 anti-replay esn context:
 seq-hi 0x0, seq 0x0, oseq-hi 0x0, oseq 0x0
 replay_window 32, bitmap-length 1
 00000000
 crypto offload parameters: dev p0 dir in mode packet
 sel src 192.168.50.2/32 dst 192.168.50.1/32 proto udp dport 4789
src 192.168.50.1 dst 192.168.50.2
 proto esp spi 0xcb600a84 reqid 2 mode transport
 replay-window 0 flag esn
 aead rfc4106(gcm(aes)) 0x7fb26035299bcc9b973abea5d581acfbcf87cbf0bd053b745c4d95c62311f934010973f6 128
 anti-replay esn context:
 seq-hi 0x0, seq 0x0, oseq-hi 0x0, oseq 0x0
 replay_window 1, bitmap-length 1

In steps 3 and 4, if you are in CenOS you must change the path of the certificates to /etc/

strongswan/swanctl/x509/ , the path of the CA certificate to /etc/strongswan/

swanctl/x509ca/ , and the path of the private keys to /etc/strongswan/swanctl/

private/ .

909

1.
a.

b.

2.

3.

4.

 00000000
 crypto offload parameters: dev p0 dir out mode packet
 sel src 192.168.50.1/32 dst 192.168.50.2/32 proto udp dport 4789
src 192.168.50.2 dst 192.168.50.1
 proto esp spi 0xc137d5a0 reqid 2 mode transport
 replay-window 0 flag esn
 aead rfc4106(gcm(aes)) 0x28e3d12ad4e24aa9d9de9459de8ef8bb4379e8e12faac0054c5b629b6aa50fdeda8e4574 128
 anti-replay esn context:
 seq-hi 0x0, seq 0x0, oseq-hi 0x0, oseq 0x0
 replay_window 32, bitmap-length 1
 00000000
 crypto offload parameters: dev p0 dir in mode packet
 sel src 192.168.50.2/32 dst 192.168.50.1/32 proto udp sport 4789

After insuring that the IPsec connection is configured, you can send encrypted traffic between
host_1 and host_2 using the HOST_PF s IP addresses.

15.8.5.4 Configuring OVS IPsec Using strongSwan Manually

This section configures an OVS VXLAN tunnel which then uses swanctl.conf files and runs
strongSwan (the IPsec daemon) manually.

Build a VXLAN tunnel over OVS and connect the PF representor to the same OVS bridge.
On Arm_1 :

ovs-vsctl add-br vxlan-br
ovs-vsctl add-port vxlan-br PF_REP
ovs-vsctl add-port vxlan-br vxlan11 -- set interface vxlan11 type=vxlan options:local_ip=$ip1 \
 options:remote_ip=$ip2 options:key=100 options:dst_port=4789 \
ovs-vsctl set Open_vSwitch . other_config:hw-offload=true

On Arm_2 :

ovs-vsctl add-br vxlan-br
ovs-vsctl add-port vxlan-br PF_REP
ovs-vsctl add-port vxlan-br vxlan11 -- set interface vxlan11 type=vxlan options:local_ip=$ip2 \
 options:remote_ip=$ip1 options:key=100 options:dst_port=4789 \
ovs-vsctl set Open_vSwitch . other_config:hw-offload=true

If your operating system is Ubuntu, run on both Arm_1 and Arm_2 :

service openvswitch-switch start

If your operating system is CentOS, run:

service openvswitch restart

Enable TC offloading for the PF. Run on both Arm_1 and Arm_2 :

ethtool -K $PF hw-tc-offload on

Disable host PF as the port owner from Arm. Run on both Arm_1 and Arm_2 :

mlxprivhost -d /dev/mst/mt${pciconf} --disable_port_owner r

Before proceeding with this section, make sure to follow the procedure in section "Enabling
IPsec Packet Offload" for both DPUs.

 To get ${pciconf} , run the following on the DPU:

910

5.

6.

a.

b.

Configure the swanctl.conf files for each machine. See section swanctl.conf Files.

Load the swanctl.conf files and initialize strongSwan. Run:

On the Arm_2 , run:

systemctl restart strongswan.service
swanctl --load-all

On the Arm_1 , run:

systemctl restart strongswan.service
swanctl --load-all
swanctl -i --child bf

Now the IPsec connection should be established.

15.8.5.5 swanctl.conf Files
strongSwan configures IPSec packet HW offload using a new value added to its configuration
file swanctl.conf . The file should be placed under sysconfdir which by default can be found at

/etc/swanctl/swanctl.conf .

The terms Left (BFL) and Right (BFR), in reference to the illustration under "Application
Architecture", are used to identify the two nodes (or machines) that communicate.

In this example, 192.168.50.1 is used for the left PF uplink and 192.168.50.2 for the right PF uplink.

connections {
 BFL-BFR {
 local_addrs = 192.168.50.1
 remote_addrs = 192.168.50.2

 local {
 auth = psk
 id = host1
 }
 remote {
 auth = psk
 id = host2
 }
 children {
 bf-out {
 local_ts = 192.168.50.1/24 [udp]
 remote_ts = 192.168.50.2/24 [udp/4789]
 esp_proposals = aes128gcm128-x25519-esn
 mode = transport
 policies_fwd_out = yes
 hw_offload = packet
 }
 bf-in {
 local_ts = 192.168.50.1/24 [udp/4789]
 remote_ts = 192.168.50.2/24 [udp]

ls --color=never /dev/mst/ | grep --color=never '^m.*f0$' | cut -c 3-

For example:

mlxprivhost -d /dev/mst/mt41686_pciconf0 --disable_port_owner r

Each machine should have exactly one . swanctl.conf file in /etc/swanctl/conf.d/ .

Either side (BFL or BFR) can fulfill either role (initiator or receiver).

911

•

•

•

•

•
•
•

 esp_proposals = aes128gcm128-x25519-esn
 mode = transport
 policies_fwd_out = yes
 hw_offload = packet
 }
 }
 version = 2
 mobike = no
 reauth_time = 0
 proposals = aes128-sha256-x25519
 }
}

secrets {
 ike-BF {
 id-host1 = host1
 id-host2 = host2
 secret = 0sv+NkxY9LLZvwj4qCC2o/gGrWDF2d21jL
 }
}

The BFB installation will place two example swanctl.conf files for BFL and BFR

(BFL.swanctl.conf and BFR.swanctl.conf respectively) in the strongSwan conf.d directory.

Each node should have only one swanctl.conf file in its strongSwan conf.d directory.

Note that:

" hw_offload = packet" is responsible for configuring IPsec packet offload

Packet offload support has been added to the existing hw_offload field and preserves
backward compatibility.
For your reference:

Value Description

no Do not configure HW offload.

crypto Configure crypto HW offload if supported by the kernel and hardware, fail
if not supported.

yes Same as crypto (considered legacy).

packet Configure packet HW offload if supported by the kernel and hardware, fail
if not supported.

auto Configure packet HW offload if supported by the kernel and hardware, do
not fail (perform fallback to crypto or no as necessary).

Whenever the value of hw_offload is changed, strongSwan configuration must be reloaded.

Switching to crypto HW offload requires setting up devlink/ipsec_mode to none beforeha
nd.
Switching to packet HW offload requires setting up
[udp/4789] is crucial for instructing strongSwan to IPSec only VXLAN communication.
Packet HW offload can only be done on what is streamed over VXLAN.

Mind the following limitations:

Fields Limitation

reauth_time Ignored if set

rekey_time Do not use. Ignored if set.

rekey_bytes Do not use. Not supported and will fail if it is set.

rekey_packets Use for rekeying

912

•

•

•

•

15.8.6 Running the Application

15.8.6.1 Installation
Please refer to the NVIDIA DOCA Installation Guide for Linux for details on how to install BlueField-
related software.

15.8.6.2 Application Execution
Notes:

IPsec daemons are started by systemd strongswan.service

Use systemctl [start | stop | restart] to control IPsec daemons through

strongswan.service . For example, to restart, run:

systemctl restart strongswan.service

This command effectively does the same thing as ipsec restart .

This subsection explains how to configure and set an IPsec connection using the script. To configure
the IPsec connection, you need two DPUs, referred to as the initiator and receiver machines. There
are no differences between the two machines except that the initiator is the one that initiates the
connection between the two (and should run the script after the receiver).

The script is located under /opt/mellanox/doca/applications/east_west_overlay_encryption/

east_west_overlay_encryption.sh .

15.8.6.2.1 Script Parameters
Parameter Description Valid Values Use when Notes

side The side of the
connection (receiver
or initiator).

r|receiver

i|intitiator

Always This parameter must
be always passed on
the command line and
cannot be passed in
the JSON parameter
file.

Do not use the ipsec script (located under /usr/sbin/ipsec) to restart/stop/
start the IPsec connection.

913

Parameter Description Valid Values Use when Notes

j|json The JSON parameters
file full path.

JSON file path, written
according to the
template demonstrated
in the following file: /

opt/mellanox/doca/

applications/

east_west_overlay_e

ncryption/

east_west_overlay_e

ncryption_params.js

on .

To pass the
parameters as a
JSON file

When running the
script with JSON file,
you cannot pass on the
command line other
parameters than the
side and the JSON
file.

initiator_ip

_addr

The IP address of the
initiator machine's
port interface for the
IPsec connection.

A valid IP address,
ranging from 1.1.1.1 to
255.255.255.255.

Always In the JSON file, it is
set by default to
192.168.50.1.

receiver_ip

_addr

The IP address of the
receiver machine's
port interface for the
IPsec connection.

A valid IP address,
ranging from 1.1.1.1 to
255.255.255.255.

Always In the JSON file, it is
set by default to
192.168.50.2.

port_num The number of the
port interface (p0/p1)
for the IPsec
connection.

0 or 1. Always In the JSON file, it is
set by default to 0.

auth_method the authentication
method of IPsec. can
be psk (pre-shared

key), ssc (self-signed

certificate) or ca
(CA-signed
certificate). Set by
default to psk .

Can be psk (pre-

shared key), ssc
(self-signed certificate)
or ca (CA-signed
certificate).

Always In the JSON file, it is
set by default to psk.

preshared_k

ey

The pre-shared key. A sequence of
characters (string).

The auth_method

parameter is psk

In the JSON file it is set
by default to
swordfish . Both the
initiator and receiver
must configure the
same preshared_key .

initiator_c

ert_path

The initiator's
certificate.

Any valid self-signed or
CA signed certificate.
Must provide full path
of certificate.

The auth_method

parameter is ssc

or ca

Both the initiator and
receiver must
configure the same
initiator_cert_path
.

receiver_ce

rt_path

The receiver's
certificate.

Any valid self-signed or
CA signed certificate.
Must provide full path
of certificate.

The auth_method

parameter is ssc

or ca

Both the initiator and
receiver must
configure the same
receiver _cert_path
.

914

Parameter Description Valid Values Use when Notes

initiator_k

ey_path

the initiator's private-
key.

Any valid private key
that is generated with
the certificate. Must
provide full path of
private key.

The side
parameter is set
to initiator
and the
auth_method is

set to ssc or ca

N/A

receiver_ke

y_path

the receiver's private-
key.

Any valid private key
that is generated with
the certificate. Must
provide full path of
private key.

The side
parameter is set
to receiver and

the auth_method

is set to ssc or

ca

N/A

initiator_c

acert_path

The initiator's CA
certificate.

Any valid CA
certificate. Must
provide full path of
certificate.

The side and

auth_method
parameters are
set to initiator

and ca
respectively

N/A

receiver_ca

cert_path

The receiver's CA
certificate.

Any valid CA
certificate. Must
provide full path of
certificate.

The side and

auth_method
parameters are
set to receiver

and ca
respectively

N/A

initiator_c

n

The common name
(CN) of the initiator's
certificate.

Must be the same as
the CN described in the
initiator's certificate.

The side and

auth_method
parameters are
set to receiver

and ca
respectively

N/A

receiver_cn The CN of the
receiver's certificate.

Must be the same as
the CN described in the
receiver's certificate.

The side and

auth_method
parameters are
set to initiator

and ca
respectively

N/A

There are two ways of passing the parameters, either using the JSON parameters file or by passing
the parameters on the command line.

15.8.6.2.2 Using JSON Parameters File

In this method, you must configure the parameters file and the then run the script:

915

1.

2.

3.

1.

2.

1.

2.

1.

Configure the JSON parameters file located under /opt/mellanox/doca/applications/

east_west_overlay_encryption/east_west_overlay_encryption_params.json or create

a JSON file according to the template of east_west_overlay_encryption_params.json for
the script according to the explanation under section "Script Parameters".
Run the script on the receiver's DPU with the JSON file:

/opt/mellanox/doca/applications/east_west_overlay_encryption/east_west_overlay_encryption.sh --side=r --
json=/opt/mellanox/doca/applications/east_west_overlay_encryption/east_west_overlay_encryption_params.json

Run the script on the initiator's DPU:

/opt/mellanox/doca/applications/east_west_overlay_encryption/east_west_overlay_encryption.sh --side=i --
json=/opt/mellanox/doca/applications/east_west_overlay_encryption/east_west_overlay_encryption_params.json

You may now send encrypted data over the PF interface (192.168.50.[1|2]) configured for
VXLAN.

15.8.6.2.3 Passing Parameters on Command Line

In this method, you do not need to configure the parameters file and can run the script with the
appropriate parameters.

15.8.6.2.3.1 Passing Parameters for Pre-shared Key Authentication Method
Run the script on the receiver's DPU:

/opt/mellanox/doca/applications/east_west_overlay_encryption/east_west_overlay_encryption.sh --side=r --
initiator_ip_addr=INITIATOR_IP_ADDRESS --receiver_ip_addr=RECEIVER_IP_ADDRESS --port_num=PORT_NUM \
--auth_method=psk --preshared_key=PRESHARED_KEY

Run the script on the initiator's DPU:

/opt/mellanox/doca/applications/east_west_overlay_encryption/east_west_overlay_encryption.sh --side=i --
initiator_ip_addr=INITIATOR_IP_ADDRESS --receiver_ip_addr=RECEIVER_IP_ADDRESS --port_num=PORT_NUM \
--auth_method=psk --preshared_key=PRESHARED_KEY

15.8.6.2.3.2 Passing Parameters for Self-signed Certificates Authentication Method
Run the script on the receiver's DPU:

/opt/mellanox/doca/applications/east_west_overlay_encryption/east_west_overlay_encryption.sh --side=r --
initiator_ip_addr=INITIATOR_IP_ADDRESS --receiver_ip_addr=RECEIVER_IP_ADDRESS --port_num=PORT_NUM \
--auth_method=ssc --initiator_cert_path=INITIATOR_CERT_PATH --receiver_cert_path=RECEIVER_CERT_PATH --
receiver_key_path=RECEIVER_KEY_PATH

Run the script on the initiator's DPU:

/opt/mellanox/doca/applications/east_west_overlay_encryption/east_west_overlay_encryption.sh --side=i --
initiator_ip_addr=INITIATOR_IP_ADDRESS --receiver_ip_addr=RECEIVER_IP_ADDRESS --port_num=PORT_NUM \
--auth_method=ssc --initiator_cert_path=INITIATOR_CERT_PATH --receiver_cert_path=RECEIVER_CERT_PATH --
initiator_key_path=INITIATOR_KEY_PATH

15.8.6.2.3.3 Passing Parameters for CA Certificates Authentication Method
Run the script on the receiver's DPU:

916

2.

1.

2.
3.

4.
5.

•

•

•

/opt/mellanox/doca/applications/east_west_overlay_encryption/east_west_overlay_encryption.sh --side=r --
initiator_ip_addr=INITIATOR_IP_ADDRESS --receiver_ip_addr=RECEIVER_IP_ADDRESS --port_num=PORT_NUM \
--auth_method=ca --initiator_cert_path=INITIATOR_CERT_PATH --receiver_cert_path=RECEIVER_CERT_PATH --
receiver_key_path=RECEIVER_KEY_PATH --receiver_cacert_path=RECEIVER_CACERT_PATH --initiator_cn=INITIATOR_CN

Run the script on the initiator's DPU:

/opt/mellanox/doca/applications/east_west_overlay_encryption/east_west_overlay_encryption.sh --side=i --
initiator_ip_addr=INITIATOR_IP_ADDRESS --receiver_ip_addr=RECEIVER_IP_ADDRESS --port_num=PORT_NUM \
--auth_method=ssc --initiator_cert_path=INITIATOR_CERT_PATH --receiver_cert_path=RECEIVER_CERT_PATH --
initiator_key_path=INITIATOR_KEY_PATH --initiator_cacert_path=INITIATOR_CACERT_PATH --
receiver_cn=RECEIVER_CN

For help and usage, run the script with --help / -h flag:

/opt/mellanox/doca/applications/east_west_overlay_encryption/east_west_overlay_encryption.sh -h

15.8.6.3 Troubleshooting
Please refer to the NVIDIA DOCA Troubleshooting Guide for any issue you may encounter with the
installation or execution of the DOCA applications.

15.8.6.4 Building strongSwan

Install dependencies mentioned here. libgmp-dev is missing from that list, so make sure to
install that as well.
Git clone https://github.com/Mellanox/strongswan.git.
Git checkout BF-5.9.10. This branch is based on the official strongSwan 5.9.10 branch
(https://github.com/strongswan/strongswan/tree/5.9.10) with added packaging and support
for DOCA IPsec plugin (check NVIDIA DOCA IPsec Security Gateway Application Guide for more
information regarding strongSwan DOCA plugin).
Run autogen.sh within the strongSwan repo.
Run the following:

configure --enable-openssl --disable-random --prefix=/usr/local --sysconfdir=/etc --enable-systemd
make
make install

Notes:
--enable-systemd enables the systemd service for strongSwan present inside the

GitHub repo (see step 3) at init/systemd-starter/strongswan.service.in .

When building strongSwan on your own, the openssl.cnf.mlnx file, required for PK
and RNG HW offload via OpenSSL plugin, is not installed. It must be copied over
manually from GitHub repo inside the openssl-conf directory. See section "Running
Strongswan Example" for important notes.
The openssl.cnf.mlnx file references PKA engine shared objects. libpka (version 1.3
or later) and openssl (version 1.1.1) must be installed for this to work.

Perform the following only if you want to build your own BFB and would like to rebuild
strongSwan.

https://wiki.strongswan.org/projects/strongswan/repository/entry/HACKING
https://github.com/Mellanox/strongswan.git
https://github.com/strongswan/strongswan/tree/5.9.10
http://strongswan.service.in

917

•

•

•
•

15.8.6.5 Reverting IPsec Configuration
To destroy IPsec configuration, run the following on both machines:

/opt/mellanox/doca/applications/east_west_overlay_encryption/east_west_overlay_encryption.sh -d

15.8.7 References
/opt/mellanox/doca/applications/east_west_overlay_encryption/

east_west_overlay_encryption.sh

/opt/mellanox/doca/applications/east_west_overlay_encryption/

east_west_overlay_encryption_params.json

15.9 NVIDIA DOCA Eth L2 Forwarding Application Guide
This document provides an Ethernet L2 Forwarding implementation on top of the NVIDIA®
BlueField® DPU.

15.9.1 Introduction
The Ethernet L2 Forwarding application is a DOCA Ethernet based application that forwards traffic
from a single RX port to a single TX port and vice versa, leveraging DOCA's task/event batching
feature for enhanced performance.

The application can run both on the host and the BlueField, and has two main modes:

Two-sided forwarding – device 1 → device 2 and device 2 → device 1
One-sided forwarding – device 1 → device 2 or device 2 → device 1

The one-sided mode offers better performance, enlarging the packets forwarding rate.

15.9.2 System Design
The following diagram shows the application running on the host:

The Ethernet L2 Forwarding application runs on the host or the BlueField.

Make sure to run this command only after at least two minutes have passed from running
the application on either machines. Otherwise, this may lead to errors.

If you run this command without initializing the connection first (in Running strongSwan
Example), you may receive errors. These errors have no functional impact and may be
safely ignored.

918

The following diagram shows the application running on the BlueField:

15.9.3 Application Architecture
The Ethernet L2 Forwarding application runs on top of the DOCA Ethernet API to form an (two/one-
sided) L2 forwarding between two ports.

919

1.
2.
3.
4.

5.

•
•

Two DOCA devices are opened.
Two DOCA mmaps are created.
Two DOCA Flow ports are configured and started, each with a different opened DOCA device.
Two DOCA Ethernet TXQ and RXQ contexts are initialized, each TXQ-RXQ pair with a different
opened DOCA device such that traffic is steered from the device to the corresponding RXQ,
and from the corresponding TXQ to the device.
Forwarding - Packets received by device x are steered to RXQ x, then allocated to TXQ y and
sent by device y (and vice versa).

15.9.4 DOCA Libraries
This application leverages the following DOCA libraries:

DOCA Ethernet - Programming Guide
DOCA Flow - Programming Guide

For additional information about the used DOCA libraries, please refer to the respective
programming guides.

15.9.5 Compiling the Application

15.9.5.1 Installation
Please refer to the NVIDIA DOCA Installation Guide for Linux for details on how to install BlueField-
related software.

920

1.

2.

a.

•

•
b.

15.9.5.2 Overview
The installation of DOCA's reference applications contains the sources of the applications, alongside
the matching compilation instructions. This allows for both compilation of the applications "as-is", as
well as provides the ability to modify the sources and then compile the new version of the
application. For more information about the applications, as well as development and compilation
tips, please refer to the DOCA Applications main guide.

The sources of the application can be found under the application's directory: /opt/mellanox/

doca/applications/eth_l2_fwd/ .

15.9.5.3 Compiling All Applications
The applications are all defined under a single meson project, meaning that the default compilation
will compile all the DOCA applications.

To build all the applications together, run:

cd /opt/mellanox/doca/applications/
meson /tmp/build
ninja -C /tmp/build

15.9.5.4 Compiling Only the Current Application
To directly build only the Ethernet L2 Forwarding application:

cd /opt/mellanox/doca/applications/
meson /tmp/build -Denable_all_applications=false -Denable_eth_l2_fwd=true
ninja -C /tmp/build

Alternatively, one can set the desired flags in the meson_options.txt file instead of
providing them in the compilation command line:

Edit the following flags in /opt/mellanox/doca/applications/meson_options.txt :

Set enable_all_applications to false

Set enable_eth_l2_fwd to true
The same compilation commands should be used, as were shown in the previous
section:

cd /opt/mellanox/doca/applications/
meson /tmp/build
ninja -C /tmp/build

doca_eth_l2_fwd will be created under /tmp/build/eth_l2_fwd/ .

doca_eth_l2_fwd will be created under /tmp/build/eth_l2_fwd/ .

doca_eth_l2_fwd will be created under /tmp/build/eth_l2_fwd/ .

921

1.

2.

3.

15.9.5.5 Troubleshooting
Please refer to the NVIDIA DOCA Troubleshooting Guide for any issue you may encounter with the
compilation of the DOCA applications.

15.9.6 Running the Application

15.9.6.1 Application Execution
The Ethernet L2 Forwarding application is provided in source form, hence a compilation is required
before the application can be executed.

Application usage instructions:

Usage: doca_eth_l2_fwd [DOCA Flags] [Program Flags]

DOCA Flags:
 -h, --help Print a help synopsis
 -v, --version Print program version information
 -l, --log-level Set the (numeric) log level for the program <10=DISABLE, 20=CRITICAL,
30=ERROR, 40=WARNING, 50=INFO, 60=DEBUG, 70=TRACE>
 --sdk-log-level Set the SDK (numeric) log level for the program <10=DISABLE, 20=CRITICA
L, 30=ERROR, 40=WARNING, 50=INFO, 60=DEBUG, 70=TRACE>
 -j, --json <path> Parse all command flags from an input json file

Program Flags:
 -d, --devs-names <name1,name2> Set two IB devices names separated by a comma, without spaces.
 -r, --rate <rate> Set packets receive rate (in [MB/s]), default is 12500.
 -ps, --pkt-size <size> Set max packet size (in [B]), default is 1600.
 -t, --time <time> Set packet max process time (in [μs]), default is 1.
 -nt, --num-tasks <num> Set number of tasks per batch, default is 128.
 -nb, --num-batches <num> Set number of task batches, default is 32.
 -o, --one-sided-forwarding <num> Set one-sided forwarding: 0 - two-sided forwarding, 1 - device 1 ->
device 2, 2 - device 2 -> device 1. default is 0.
 -f, --max-forwardings <num> Set max forwardings after which the application run will end, default
 is 0, meaning no limit.

For additional information, please refer to the Command Line Flags section below.

CLI example for running the application either on the BlueField or on the host:

./doca_eth_l2_fwd -d mlx5_0,mlx5_1

The application also supports a JSON-based deployment mode, in which all command-line
arguments are provided through a JSON file:

./doca_eth_l2_fwd --json [json_file]

For example:

The above usage printout can be printed to the command line using the -h (or --

help) options:

./doca_eth_l2_fwd -h

Both IB devices identifiers (mlx5_0, mlx5_1) should match the identifiers of the
desired IB devices.

922

•
•
•
•
•
•
•

•
•
•
•
•
•
•

./doca_eth_l2_fwd --json ./eth_l2_fwd_params.json

15.9.6.2 Command Line Flags
Flag Type Short Flag Long Flag/JSON

Key
Description JSON Content

General flags h help Prints a help synopsis N/A

v version Prints program version
information

N/A

l log-level Set the log level for the
application:

DISABLE=10
CRITICAL=20
ERROR=30
WARNING=40
INFO=50
DEBUG=60
TRACE=70 (Requires
compilation with Trace
level support)

"log-level": 60

N/A sdk-log-level Sets the log level for the
program:

DISABLE=10
CRITICAL=20
ERROR=30
WARNING=40
INFO=50
DEBUG=60
TRACE=70

N/A

j json Parse all command flags
from an input json file

N/A

Program flags d devs-names Two IB devices names,
separated by a comma,
without spaces.

"devs-names":
"mlx5_0,mlx5_1"

r rate The rate (in [MB/s]) in
which the RX port is
expected to receive traffic.

"rate": 12500

ps pkt-size The maximum size (in [B])
of a received packet.

"pkt-size": 1600

Before execution, please ensure that the used JSON file contains the correct
configuration parameters, and especially the desired IB devices names needed for
the deployment.

This is a
mandatory flag.

923

1.
a.

b.

c.

i.
ii.

2.

Flag Type Short Flag Long Flag/JSON
Key

Description JSON Content

t time The maximum time taking
to process a single packet.

"time": 1

nt num-tasks The number of tasks to set
per a single task batch.

"num-tasks": 128

nb num-batches The number of task batches
to set for the TX side.

"num-batches": 32

o one-sided-

forwarding

Flag to set one of 3
options:
0 - Two-sided forwarding.
1 - One-sided forwarding
from device 1 to device 2.
2 - One-sided forwarding
from device 2 to device 1.

"one-sided-
forwarding": 0

f max-forwardings The maximum number of
forwarding

"max-forwardings":
32

Refer to DOCA Arg Parser for more information regarding the supported flags and execution modes.

15.9.6.3 Troubleshooting
Please refer to the NVIDIA DOCA Troubleshooting Guide for any issue you may encounter with the
installation or execution of the DOCA applications.

15.9.7 Application Code Flow
Parse application argument.

Initialize Arg parser resources and register DOCA general parameters.

doca_argp_init();

Register Ethernet L2 Forwarding application parameters.

register_eth_l2_forwarding_params();

Parse the arguments.

doca_argp_start();

Parse DOCA flags.
Parse application parameters.

Execute Ethernet L2 Forwarding application main logic.

eth_l2_fwd_execute();

924

a.
b.
c.
d.

3.

a.
b.

4.

•

•

•

•

Open the two chosen DOCA devices.
Initialize necessary DOCA Core objects.
Initialize ETH RXQ/TXQ contexts for the devices.
Forward packets.

Clean up application resources.

eth_l2_fwd_cleanup();

Stop all contexts and drain tasks.
Free all application resources.

Arg parser destroy.

doca_argp_destroy()

15.9.8 References
/opt/mellanox/doca/applications/eth_l2_fwd/

/opt/mellanox/doca/applications/eth_l2_fwd/eth_l2_fwd_params.json

15.10 NVIDIA DOCA File Compression Application Guide
This document provides a file compression implementation on top of the NVIDIA® BlueField® DPU.

15.10.1 Introduction
The file compression application exhibits how to use the DOCA Compress API to compress and
decompress data using hardware acceleration as well as sending and receiving it using the DOCA
Comch API.

The application's logic includes both a client and a server:

Client side – the application opens a file, compresses it, and sends the checksum of the
source file with the compressed data to the server
Server side – the application saves the received file in a buffer, decompresses it, and
compares the received checksum with the calculated one

15.10.2 System Design
The file compression application client runs on the host and the server runs on the DPU.

925

15.10.3 Application Architecture
The file compression application runs on top of the DOCA Comm Channel API to send and receive the
file from the host and to the DPU.

926

1.
2.

•

•
3.
4.
5.
6.
7.
8.

Connection is established on both sides by DOCA Comm Channel API.
Client compresses the data:

When compress engine is available – submits compress job with DOCA Compress API and
sends the result to the server
When compress engine is unavailable – compresses the data in software

Client sends the number of messages needed to send the compressed content of the file.
Client sends data segments in size of up to 4080 bytes.
Server saves the received data in a buffer and submits a decompress job.
Server sends an ACK message to the client when all parts of the file are received successfully.
Server compares the received checksum to the calculated checksum.
Server writes the decompressed data to an output file.

927

•
•

15.10.4 DOCA Libraries
This application leverages the following DOCA libraries:

DOCA Compress
DOCA Comch

Refer to their respective programming guide for more information.

15.10.5 Compiling the Application

The installation of DOCA's reference applications contains the sources of the applications, alongside
the matching compilation instructions. This allows for compiling the applications "as-is" and provides
the ability to modify the sources, then compile a new version of the application.

The sources of the application can be found under the application's directory: /opt/mellanox/

doca/applications/file_compression/ .

15.10.5.1 Compiling All Applications
All DOCA applications are defined under a single meson project. So, by default, the compilation
includes all of them.

To build all the applications together, run:

cd /opt/mellanox/doca/applications/
meson /tmp/build
ninja -C /tmp/build

15.10.5.2 Compiling File Compression Application Only
To directly build only the file compression application:

cd /opt/mellanox/doca/applications/
meson /tmp/build -Denable_all_applications=false -Denable_file_compression=true
ninja -C /tmp/build

Please refer to the NVIDIA DOCA Installation Guide for Linux for details on how to install
BlueField-related software.

For more information about the applications as well as development and compilation tips,
refer to the DOCA Applications page.

doca_file_compression is created under /tmp/build/file_compression/ .

doca_file_compression is created under /tmp/build/file_compression/ .

928

1.

•

•
2.

1.

2.

Alternatively, the user may set the desired flags in the meson_options.txt file instead of
providing them in the compilation command line:

Edit the following flags in /opt/mellanox/doca/applications/meson_options.txt :

Set enable_all_applications to false

Set enable_file_compression to true
Run the following compilation commands:

cd /opt/mellanox/doca/applications/
meson /tmp/build
ninja -C /tmp/build

15.10.5.3 Troubleshooting
Refer to the NVIDIA DOCA Troubleshooting Guide for any issue encountered with the compilation of
the application.

15.10.6 Running the Application

15.10.6.1 Application Execution
The file compression application is provided in source form. Therefore, a compilation is required
before the application can be executed.

Application usage instructions:

Usage: doca_file_compression [DOCA Flags] [Program Flags]

DOCA Flags:
 -h, --help Print a help synopsis
 -v, --version Print program version information
 -l, --log-level Set the (numeric) log level for the program <10=DISABLE, 20=CRITICAL,
30=ERROR, 40=WARNING, 50=INFO, 60=DEBUG, 70=TRACE>
 --sdk-log-level Set the SDK (numeric) log level for the program <10=DISABLE, 20=CRITICA
L, 30=ERROR, 40=WARNING, 50=INFO, 60=DEBUG, 70=TRACE>
 -j, --json <path> Parse all command flags from an input json file

Program Flags:
 -p, --pci-addr DOCA Comm Channel device PCI address
 -r, --rep-pci DOCA Comm Channel device representor PCI address
 -f, --file File to send by the client / File to write by the server
 -t, --timeout Application timeout for receiving file content messages, default is 5
 sec

CLI example for running the application on BlueField:

doca_file_compression is created under /tmp/build/file_compression/ .

This usage printout can be printed to the command line using the -h (or --help)
options:

./doca_file_compression -h

For additional information, refer to section "Command Line Flags".

929

3.

4.

•
•
•
•
•
•
•

./doca_file_compression -p 03:00.0 -r 3b:00.0 -f received.txt

CLI example for running the application on the host:

./doca_file_compression -p 3b:00.0 -f send.txt

The application also supports a JSON-based deployment mode, in which all command-line
arguments are provided through a JSON file:

./doca_file_compression --json [json_file]

For example:

./doca_file_compression --json ./file_compression_params.json

15.10.6.2 Command Line Flags
Flag Type Short Flag Long Flag/JSON

Key
Description JSON Content

General flags h help Prints a help synopsis N/A

v version Prints program version
information

N/A

l log-level Set the log level for the
application:

DISABLE=10
CRITICAL=20
ERROR=30
WARNING=40
INFO=50
DEBUG=60
TRACE=70 (requires
compilation with
TRACE log level
support)

"log-level": 60

Both the DOCA Comm Channel device PCIe address (03:00.0) and the DOCA Comm

Channel device representor PCIe address (3b:00.0) should match the addresses of
the desired PCIe devices.

The DOCA Comm Channel device PCIe address (3b:00.0) should match the address
of the desired PCIe device.

Before execution, ensure that the used JSON file contains the correct configuration
parameters, and especially the PCIe addresses necessary for the deployment.

930

•
•
•
•
•
•
•

1.
a.

Flag Type Short Flag Long Flag/JSON
Key

Description JSON Content

N/A sdk-log-level Sets the log level for the
program:

DISABLE=10
CRITICAL=20
ERROR=30
WARNING=40
INFO=50
DEBUG=60
TRACE=70

"sdk-log-level": 40

j json Parse all command flags
from an input JSON file

N/A

Program flags f file For client – path to the
file to be sent
For server – path to write
the file into

"file": "/tmp/
data.txt"

p pci-addr Comm Channel DOCA
device PCIe address

"pci-addr": 03:00.1

r rep-pci Comm Channel DOCA
device representor PCIe
address

"rep-pci": b1:00.1

15.10.6.3 Troubleshooting
Refer to the NVIDIA DOCA Troubleshooting Guide for any issue encountered with the installation or
execution of the DOCA applications.

15.10.7 Application Code Flow
Parse application argument.

Initialize arg parser resources and register DOCA general parameters.

This is a
mandatory flag.

This is a
mandatory flag.

This flag is
mandatory only
on the DPU.

Refer to DOCA Arg Parser for more information regarding the supported flags and execution
modes.

931

b.

c.

i.
2.

a.
b.

3.

a.
4.

5.

a.
6.

•

•

doca_argp_init();

Register file compression application parameters.

register_file_compression_params();

Parse the arguments.

doca_argp_start();

Parse app parameters.
Set endpoint attributes.

set_endpoint_properties();

Set maximum message size of 4080 bytes.
Set maximum number of messages allowed.

Create comm channel endpoint.

doca_comm_channel_ep_create();

Create endpoint for client/server.
Run client/server main logic.

file_compression_client/server();

Clean up the file compression application.

file_compression_cleanup();

Free all application resources.
Arg parser destroy.

doca_argp_destroy()

15.10.8 References
/opt/mellanox/doca/applications/file_compression/

/opt/mellanox/doca/applications/file_compression/file_compression_params.json

15.11 NVIDIA DOCA File Integrity Application Guide
This guide provides a file integrity implementation on top of NVIDIA® BlueField® DPU.

15.11.1 Introduction
The file integrity application exhibits how to use the DOCA Comch and DOCA SHA libraries to send
and receive a file securely.

The application's logic includes both a client and a server:

932

•

•

Client side – the application opens a file, calculates the SHA (secure hash algorithm) digest on
it, and sends the digest of the source file alongside the file itself to the server
Server side – the application calculates the SHA on the received file and compares the
received digest to the calculated one to check if the file has been compromised

15.11.2 System Design
The file integrity application runs in client mode (host) and server mode (DPU).

15.11.3 Application Architecture
The file integrity application runs on top of the DOCA Comm Channel API to send and receive files
from the host and DPU.

SHA hardware acceleration is only available on the BlueField-2 DPU. This application is not
supported on BlueField-3.

933

1.
2.
3.
4.
5.
6.
7.

•
•

Connection is established on both sides by the Comm Channel API.
Client submits SHA job with the DOCA SHA library and sends the result to the server.
Client sends the number of messages required to send the content of the file.
Client sends data segments in size of up to 4032 bytes.
Server submits a partial SHA job on each received segment.
Server sends an ACK message to the client when all parts of the file are received successfully.
Server compares the received SHA to the calculated SHA.

15.11.4 DOCA Libraries
This application leverages the following DOCA libraries:

DOCA SHA
DOCA Comch

Refer to their respective programming guide for more information.

934

1.

•

•
2.

15.11.5 Compiling the Application

The installation of DOCA's reference applications contains the sources of the applications, alongside
the matching compilation instructions. This allows for compiling the applications "as-is" and provides
the ability to modify the sources, then compile a new version of the application.

The sources of the application can be found under the application's directory: /opt/mellanox/

doca/applications/file_integrity/ directory.

15.11.5.1 Compiling All Applications
All DOCA applications are defined under a single meson project. So, by default, the compilation
includes all of them.

To build all the applications together, run:

cd /opt/mellanox/doca/applications/
meson /tmp/build
ninja -C /tmp/build

15.11.5.2 Compiling Only the Current Application
To directly build only the file integrity application:

cd /opt/mellanox/doca/applications/
meson /tmp/build -Denable_all_applications=false -Denable_file_integrity=true
ninja -C /tmp/build

Alternatively, one can set the desired flags in the meson_options.txt file instead of providing
them in the compilation command line:

Edit the following flags in /opt/mellanox/doca/applications/meson_options.txt :

Set enable_all_applications to false

Set enable_file_integrity to true
Run the following compilation commands:

Please refer to the NVIDIA DOCA Installation Guide for Linux for details on how to install
BlueField-related software.

For more information about the applications as well as development and compilation tips,
refer to the DOCA Applications page.

doca_file_integrity is created under /tmp/build/file_integrity/ .

doca_file_integrity is created under /tmp/build/file_integrity/ .

935

1.

2.

cd /opt/mellanox/doca/applications/
meson /tmp/build
ninja -C /tmp/build

15.11.5.3 Troubleshooting
Refer to the NVIDIA DOCA Troubleshooting Guide for any issue encountered with the compilation of
the application.

15.11.6 Running the Application

15.11.6.1 Application Execution
The file integrity application is provided in source form. Therefore, a compilation is required before
the application can be executed.

Application usage instructions:

Usage: doca_file_integrity [DOCA Flags] [Program Flags]

DOCA Flags:
 -h, --help Print a help synopsis
 -v, --version Print program version information
 -l, --log-level Set the (numeric) log level for the program <10=DISABLE, 20=CRITICAL,
30=ERROR, 40=WARNING, 50=INFO, 60=DEBUG, 70=TRACE>
 --sdk-log-level Set the SDK (numeric) log level for the program <10=DISABLE, 20=CRITICA
L, 30=ERROR, 40=WARNING, 50=INFO, 60=DEBUG, 70=TRACE>
 -j, --json <path> Parse all command flags from an input json file

Program Flags:
 -p, --pci-addr DOCA Comm Channel device PCI address
 -r, --rep-pci DOCA Comm Channel device representor PCI address
 -f, --file File to send by the client / File to write by the server
 -t, --timeout Application timeout for receiving file content messages, default is 5
 sec

CLI example for running the application on BlueField:

./doca_file_integrity -p 03:00.0 -r 3b:00.0 -f received.txt

doca_file_integrity is created under /tmp/build/file_integrity/ .

This usage printout can be printed to the command line using the -h (or --help)
options:

./doca_file_integrity -h

For additional information, refer to section "Command Line Flags".

936

3.

4.

•
•
•
•
•
•
•

CLI example for running the application on the host:

./doca_file_integrity -p 3b:00.0 -f send.txt

The application also supports a JSON-based deployment mode, in which all command-line
arguments are provided through a JSON file:

./doca_file_integrity --json [json_file]

For example:

./doca_file_integrity --json ./file_integrity_params.json

15.11.6.2 Command Line Flags
Flag Type Short Flag Long Flag/JSON

Key
Description JSON Content

General flags h help Prints a help synopsis N/A

v version Prints program version
information

N/A

l log-level Set the log level for the
application:

DISABLE=10
CRITICAL=20
ERROR=30
WARNING=40
INFO=50
DEBUG=60
TRACE=70 (requires
compilation
with TRACE log level
support)

"log-level": 60

Both the DOCA Comm Channel device PCIe address (03:00.0) and the DOCA Comm

Channel device representor PCIe address (3b:00.0) should match the addresses of
the desired PCIe devices.

The DOCA Comm Channel device PCIe address (3b:00.0) should match the address
of the desired PCIe device.

Before execution, ensure that the used JSON file contains the correct configuration
parameters, and especially the PCIe addresses necessary for the deployment.

937

•
•
•
•
•
•
•

1.
a.

Flag Type Short Flag Long Flag/JSON
Key

Description JSON Content

N/A sdk-log-level Sets the log level for the
program:

DISABLE=10
CRITICAL=20
ERROR=30
WARNING=40
INFO=50
DEBUG=60
TRACE=70

"sdk-log-level": 40

j json Parse all command flags
from an input JSON file

N/A

Program flags f file For client – path to the
file to be sent
For server – path to write
the file into

"file": "/tmp/
data.txt"

p pci-addr Comm Channel DOCA
device PCIe address

"pci-addr": 03:00.1

r rep-pci Comm Channel DOCA
device representor PCIe
address

"rep-pci": b1:00.1

15.11.6.3 Troubleshooting
Please refer to the NVIDIA DOCA Troubleshooting Guide for any issue encountered with the
installation or execution of the DOCA applications.

15.11.7 Application Code Flow
Parse application argument.

Initialize the arg parser resources and register DOCA general parameters.

This is a
mandatory flag.

This is a
mandatory flag.

This flag is
mandatory only
on the DPU.

Refer to DOCA Arg Parser for more information regarding the supported flags and execution
modes.

938

b.

c.

2.

a.
b.

3.

a.
4.

a.
5.

6.

a.

•

•

doca_arg_init();

Register file integrity application parameters.

register_file_integrity_params();

Parse application parameters.

doca_argp_start();

Set endpoint attributes.

set_endpoint_properties();

Set maximum message size of 4032 bytes.
Set number of maximum messages allowed per connection.

Create Comm Channel endpoint.

doca_comm_channel_ep_create();

Create endpoint for client/server.
Create SHA context.

doca_sha_create();

Create SHA context for submitting SHA jobs for client/server.
Run client/server main logic.

file_integrity_client/server();

Clean up the File Integrity app.

file_integrity_cleanup();

Free all application resources.

15.11.8 References
/opt/mellanox/doca/applications/file_integrity/

/opt/mellanox/doca/applications/file_integrity/file_integrity_params.json

15.12 NVIDIA DOCA GPU Packet Processing Application
Guide

This guide provides a description of the GPU packet processing application to demonstrate the use
of DOCA GPUNetIO, DOCA Ethernet, and DOCA Flow libraries to implement a GPU traffic analyzer.

939

15.12.1 Introduction
Real-time GPU processing of network packets is a useful technique to several different application
domains, including signal processing, network security, information gathering, and input
reconstruction. The goal of these applications is to realize an inline packet processing pipeline to
receive packets in GPU memory (without staging copies through CPU memory), process them in
parallel with one or more CUDA kernels, and then run inference, evaluate, or send the result of the
calculation over the network.

The type of data processing heavily depends on the use case. The goal of this application is to
provide a basic layout to reuse in the most common use cases of being able to receive, differentiate
and manage the following types of network traffic in multiple queues: UDP, TCP and ICMP.

This application is an enhancement of the use cases presented in this NVIDIA blog post about DOCA
GPUNetIO.

15.12.2 System Design
This is a receive-and-process DOCA application, so a packet generator sending packets is required to
test the application.

To launch the application, the PCIe address of the GPU and NIC are required.

15.12.3 Application Architecture
The application manages different types of traffic differently, dedicating up to 4 receive queues to
each one using DOCA Flow with RSS mode to assign each packet to the right queue. The more

https://developer.nvidia.com/blog/inline-gpu-packet-processing-with-nvidia-doca-gpunetio/

940

1.

2.
3.

4.

5.

queues the application uses, the higher is the degree of parallelism in how receive data is processed
and how long it takes.

15.12.3.1 ICMP Network Traffic
If the network interface used for the application has an IP address, it is possible to ping that
interface. ICMP packets are received by a dedicated CUDA kernel (file gpu_kernels/

receive_icmp.cu) which:

Receives packets using the DOCA GPUNetIO CUDA warp-level
function doca_gpu_dev_eth_rxq_receive_warp .
Checks if the packet is an ICMP echo request.
Forwards the same packet, modifying some header info (e.g., swapping MAC and IP
addresses, changing ICMP packet type).
Pushes the modified packet into the send queue using the DOCA GPUNetIO thread-level
function doca_gpu_dev_eth_txq_send_enqueue_strong .
Sends the packet using the DOCA GPUNetIO thread-level functions
doca_gpu_dev_eth_txq_commit_strong and doca_gpu_dev_eth_txq_push .

By default, the OS CPU ping TTL is set to 64. Therefore, to be sure the GPU is actually replying to
ICMP ping requests, TTL is set to 128 in this application.

The following are motivations for this use case:

It is highly recommended to use more than one receive queue for 100Gb/s or higher
network traffic throughput.

This is not a compute intensive use case, so a single CUDA warp with only one receive queue
and one send queue is enough to keep up with a decent latency.

941

•

•

•
•

Providing an easy tool to check connectivity between packet the generator machine and the
DOCA application machine
Having a sense of network latency between the two machines using a well-known tool like
ping
Showing an easy way to receive and forward modified packets
Providing a warp-level implementation of a CUDA kernel receiving and forwarding traffic

Assuming the IP address of the network interface to ping is 192.168.1.1 , this is the expected
output:

$ ping 192.168.1.1
PING 192.168.1.1 (192.168.1.1) 56(84) bytes of data.
64 bytes from 192.168.1.1: icmp_seq=1 ttl=64 time=0.324 ms
64 bytes from 192.168.1.1: icmp_seq=2 ttl=64 time=0.332 ms
64 bytes from 192.168.1.1: icmp_seq=3 ttl=64 time=0.299 ms
64 bytes from 192.168.1.1: icmp_seq=4 ttl=64 time=0.309 ms
64 bytes from 192.168.1.1: icmp_seq=5 ttl=64 time=0.323 ms
64 bytes from 192.168.1.1: icmp_seq=6 ttl=64 time=0.300 ms
64 bytes from 192.168.1.1: icmp_seq=7 ttl=64 time=0.274 ms
64 bytes from 192.168.1.1: icmp_seq=8 ttl=64 time=0.314 ms
64 bytes from 192.168.1.1: icmp_seq=9 ttl=64 time=0.327 ms
64 bytes from 192.168.1.1: icmp_seq=10 ttl=64 time=0.384 ms
At this point, the DOCA application has been started on the 192.168.1.1 interface
TTL becomes 128 as it's the GPU replying to ICMP requests now instead of the OS
64 bytes from 192.168.1.1: icmp_seq=11 ttl=128 time=0.346 ms
64 bytes from 192.168.1.1: icmp_seq=12 ttl=128 time=0.274 ms
64 bytes from 192.168.1.1: icmp_seq=13 ttl=128 time=0.294 ms
64 bytes from 192.168.1.1: icmp_seq=14 ttl=128 time=0.240 ms
64 bytes from 192.168.1.1: icmp_seq=15 ttl=128 time=0.273 ms
64 bytes from 192.168.1.1: icmp_seq=16 ttl=128 time=0.238 ms
64 bytes from 192.168.1.1: icmp_seq=17 ttl=128 time=0.252 ms
64 bytes from 192.168.1.1: icmp_seq=18 ttl=128 time=0.232 ms
64 bytes from 192.168.1.1: icmp_seq=19 ttl=128 time=0.278 ms
......

A DOCA Progress Engine is attached to the DOCA Ethernet Txq context used to forward ICMP packets.
Those packets are sent from the GPU with the DOCA_GPU_SEND_FLAG_NOTIFY flag, which result in
creating a notification after every packet is sent by the NIC.

All the notifications are then analyzed by the CPU through the doca_pe_progress function. The
final effect is the output of the application which returns the distance, in seconds, between two
pings. The following is an example with a ping every 0.5 seconds:

$ ping -i 0.5 192.168.1.1
PING 192.168.1.1 (192.168.1.1) 56(84) bytes of data.
64 bytes from 192.168.1.1: icmp_seq=1 ttl=128 time=0.202 ms
64 bytes from 192.168.1.1: icmp_seq=2 ttl=128 time=0.179 ms
64 bytes from 192.168.1.1: icmp_seq=3 ttl=128 time=0.199 ms
64 bytes from 192.168.1.1: icmp_seq=4 ttl=128 time=0.180 ms
64 bytes from 192.168.1.1: icmp_seq=5 ttl=128 time=0.200 ms
64 bytes from 192.168.1.1: icmp_seq=6 ttl=128 time=0.189 ms
......

On the DOCA side, the application should print a log for all the ICMP packets received and
retransmitted:

Seconds 5
[UDP] QUEUE: 0 DNS: 0 OTHER: 0 TOTAL: 0
[TCP] QUEUE: 0 HTTP: 0 HTTP HEAD: 0 HTTP GET: 0 HTTP POST: 0 TCP [SYN: 0 FIN: 0 ACK: 0] OTHER: 0 TOTAL: 0
[13:54:19:202061][2688665][DOCA][INF][gpu_packet_processing.c:77][debug_send_packet_icmp_cb] ICMP debug event:
Queue 0 packet 3 sent at 1702302859201997120 time from last ICMP is 0.512025 sec
[13:54:19:713960][2688665][DOCA][INF][gpu_packet_processing.c:77][debug_send_packet_icmp_cb] ICMP debug event:
Queue 0 packet 4 sent at 1702302859713896620 time from last ICMP is 0.511899 sec
[13:54:20:225891][2688665][DOCA][INF][gpu_packet_processing.c:77][debug_send_packet_icmp_cb] ICMP debug event:
Queue 0 packet 5 sent at 1702302860225868072 time from last ICMP is 0.511971 sec
[13:54:20:737823][2688665][DOCA][INF][gpu_packet_processing.c:77][debug_send_packet_icmp_cb] ICMP debug event:
Queue 0 packet 6 sent at 1702302860737781760 time from last ICMP is 0.511914 sec
[13:54:21:249763][2688665][DOCA][INF][gpu_packet_processing.c:77][debug_send_packet_icmp_cb] ICMP debug event:
Queue 0 packet 7 sent at 1702302861249723044 time from last ICMP is 0.511941 sec
[13:54:21:761614][2688665][DOCA][INF][gpu_packet_processing.c:77][debug_send_packet_icmp_cb] ICMP debug event:
Queue 0 packet 8 sent at 1702302861761588848 time from last ICMP is 0.511866 sec
[13:54:22:273689][2688665][DOCA][INF][gpu_packet_processing.c:77][debug_send_packet_icmp_cb] ICMP debug event:
Queue 0 packet 9 sent at 1702302862273643536 time from last ICMP is 0.512055 sec
[13:54:22:785543][2688665][DOCA][INF][gpu_packet_processing.c:77][debug_send_packet_icmp_cb] ICMP debug event:
Queue 0 packet 10 sent at 1702302862785527576 time from last ICMP is 0.511884 sec

942

1.

2.
3.
4.

5.
6.

7.

[13:54:23:297545][2688665][DOCA][INF][gpu_packet_processing.c:77][debug_send_packet_icmp_cb] ICMP debug event:
Queue 0 packet 11 sent at 1702302863297501448 time from last ICMP is 0.511974 sec
[13:54:23:809406][2688665][DOCA][INF][gpu_packet_processing.c:77][debug_send_packet_icmp_cb] ICMP debug event:
Queue 0 packet 12 sent at 1702302863809350664 time from last ICMP is 0.511849 sec

Seconds 10
[UDP] QUEUE: 0 DNS: 0 OTHER: 0 TOTAL: 0
[TCP] QUEUE: 0 HTTP: 0 HTTP HEAD: 0 HTTP GET: 0 HTTP POST: 0 TCP [SYN: 0 FIN: 0 ACK: 0] OTHER: 0 TOTAL: 0
[13:54:24:321405][2688665][DOCA][INF][gpu_packet_processing.c:77][debug_send_packet_icmp_cb] ICMP debug event:
Queue 0 packet 13 sent at 1702302864321391148 time from last ICMP is 0.512040 sec
[13:54:24:833338][2688665][DOCA][INF][gpu_packet_processing.c:77][debug_send_packet_icmp_cb] ICMP debug event:
Queue 0 packet 14 sent at 1702302864833270356 time from last ICMP is 0.511879 sec
[13:54:25:345302][2688665][DOCA][INF][gpu_packet_processing.c:77][debug_send_packet_icmp_cb] ICMP debug event:
Queue 0 packet 15 sent at 1702302865345282728 time from last ICMP is 0.512012 sec
[13:54:25:857199][2688665][DOCA][INF][gpu_packet_processing.c:77][debug_send_packet_icmp_cb] ICMP debug event:
Queue 0 packet 16 sent at 1702302865857133664 time from last ICMP is 0.511851 sec
[13:54:26:369131][2688665][DOCA][INF][gpu_packet_processing.c:77][debug_send_packet_icmp_cb] ICMP debug event:
Queue 0 packet 17 sent at 1702302866369128728 time from last ICMP is 0.511995 sec......

15.12.3.2 UDP Network Traffic
This is the most generic use case of receive-and-analyze packet headers. Designed to keep up with
100Gb/s of incoming network traffic, the CUDA kernel responsible for the UDP traffic dedicates one
CUDA block of 512 CUDA threads (file gpu_kernels/receive_udp.cu) to a different Ethernet UDP
receive queue.

The data path loop is:

Receive packets using the DOCA GPUNetIO CUDA block-level
function doca_gpu_dev_eth_rxq_receive_block .
Each CUDA thread works on a subset of received packets.
DOCA buffer containing the packet is retrieved.
Packet payload is analyzed to differentiate between DNS packets from other UDP generic
packets.
Packet payload is wiped-out to ensure that old stale packets are not analyzed again.
Each CUDA block reports to the CPU thread statistics about types of received packets through
a DOCA GPUNetIO semaphore.
CPU thread polls on semaphores to retrieve and print the statistics to the console.

943

•
•

•
•

The motivation for this use case is mostly to provide an application template to:

Receive and analyze packet headers to differentiate across different UDP protocols
Report statistics to the CPU through the DOCA GPUNetIO semaphore

Several well-known packet generators can be used to test this mode like T-Rex or DPDK testpmd.

15.12.3.3 TCP Network Traffic and HTTP Echo Server
By default, the TCP flow management is the same as UDP: Receive TCP packets and analyze their
headers to report to the CPU statistics about the types of received packets. This is good for passive
traffic analyzers or sniffers but sometimes a packet processing application requires receiving
packets directly from TCP peers which implies the establishment of a TCP-reliable connection
through the 3-way handshake method. Therefore, it is possible to enable TCP "server" mode through
the -s command-line flag which enables an "HTTP echo server" mode where the CPU and GPU
cooperate to establish a TCP connection and process TCP data packets.

Specifically, in this case there are two different sets of receive queues:

CPU DPDK receive queues which receive TCP "control" packets (e.g. SYN, FIN or RST)
DOCA GPUNetIO receive queues to receive TCP "data" packets

This distinction is possible thanks to DOCA Flow capabilities.

The application's flow requires CPU and GPU collaboration as described in the following subsections.

944

15.12.3.3.1 Step 1: TCP Connection Establishment

A CPU thread through DPDK queues receives a TCP SYN packet from a remote TCP peer. The CPU
thread establishes a TCP reliable connection (replies with a TCP SYN-ACK packet) with the peer and
uses DOCA Flow to create a new steering rule to redirect TCP data packets to one of the DOCA
GPUNetIO receive queues. The new steering rule excludes control packets (e.g., SYN, FIN or RST).

15.12.3.3.2 Step 2: TCP Data Processing

The CUDA kernel responsible for TCP processing receives TCP data packets and performs TCP packet
header analysis. If it receives an HTTP GET request, it stores the relevant packet's info in the next
item of a DOCA GPUNetIO semaphore, setting it to READY .

15.12.3.3.3 Step 3: HTTP Echo Server

A second CUDA kernel responsible for HTTP processing polls the DOCA GPUNetIO semaphore. Once it
detects the update of the next item to READY , it reads the HTTP GET packet info and crafts an
HTTP response packet with an HTML page.

If the request is about index.html or contacts.html , the CUDA kernel replies with the

appropriate HTML page using a 200 OK code. For all other requests, the it returns a "Page not

found" and 404 Error code.

HTTP response packets are sent by this second HTTP CUDA kernel using DOCA GPUNetIO.

15.12.3.3.4 Step 4: TCP Connection Closure

If the CPU receives a TCP FIN packet through the DPDK queues, it closes the connection with the
remote TCP peer and removes the DOCA Flow rule from the DOCA GPUNetIO queues so the CUDA
kernel cannot receive anymore packets from that TCP peer.

Care must be taken to maintain TCP sequence/ack numbers in the packet headers.

945

•
•

•

•
•

Motivations for this use case:

Receiving and analyzing packet headers to differentiate across different TCP protocols
Processing TCP packets on GPU in passive mode (sniffing) and active mode (reliable
connection)
Having a DOCA-DPDK application able to establish a TCP reliable connection without using any
OS socket and bypassing kernel routines
Having CUDA-kernel-to-CUDA-kernel communication through a DOCA GPUNetIO semaphore
Showing how to create and send a packet from scratch with DOCA GPUNetIO

Assuming the network interface used to run the application has the IP address 192.168.1.1 , it is

possible to test this HTTP echo server mode using simple tools like curl or wget .

Example with curl :

$ curl http://192.168.1.1/index.html -ivvv

946

•
•
•

•

•
•

* Trying 192.168.1.1:80...
* Connected to 192.168.1.1 (192.168.1.1) port 80 (#0)
> GET /index.html HTTP/1.1
> Host: 192.168.1.1
> User-Agent: curl/7.81.0
> Accept: */*
>
* Mark bundle as not supporting multiuse
< HTTP/1.1 200 OK
HTTP/1.1 200 OK
< Date: Sun, 30 Apr 2023 20:30:40 GMT
Date: Sun, 30 Apr 2023 20:30:40 GMT
< Content-Type: text/html; charset=UTF-8
Content-Type: text/html; charset=UTF-8
< Content-Length: 158
Content-Length: 158
< Last-Modified: Sun, 30 Apr 2023 22:38:34 GMT
Last-Modified: Sun, 30 Apr 2023 22:38:34 GMT
< Server: GPUNetIO
Server: GPUNetIO
< Accept-Ranges: bytes
Accept-Ranges: bytes
< Connection: keep-alive
Connection: keep-alive
< Keep-Alive: timeout=5
Keep-Alive: timeout=5

<
<html>
 <head>
 <title>GPUNetIO index page</title>
 </head>
 <body>
 <p>Hello World, the GPUNetIO server Index page!</p>
 </body>
</html>

* Connection #0 to host 192.168.1.1 left intact

15.12.4 DOCA Libraries
This application leverages the following DOCA libraries:

DOCA GPUNetIO
DOCA Ethernet
DOCA Flow

Refer to their respective programming guide for more information on system configuration and
requirements.

Refer to the NVIDIA DOCA Installation Guide for Linux for details on how to install DOCA package
software.

15.12.5 Dependencies
Before running the application you need to be sure you have the following:

gdrdrv kernel module – active and running on the system

nvidia-peermem kernel module – active and running on the system
Network card interface you want to use is up

15.12.6 Compiling the Application

Please refer to the NVIDIA DOCA Installation Guide for Linux for details on how to install
BlueField-related software.

947

1.

•

•
2.

The installation of DOCA's reference applications contains the sources of the applications, alongside
the matching compilation instructions. This allows for compiling the applications "as-is" and provides
the ability to modify the sources, then compile a new version of the application.

The sources of the application can be found under the application's directory: /opt/mellanox/

doca/applications/gpu_packet_processing/ .

15.12.6.1 Compiling All Applications
All DOCA applications are defined under a single meson project. So, by default, the compilation
includes all of them.

To build all the applications together, run:

cd /opt/mellanox/doca/applications/
meson /tmp/build
ninja -C /tmp/build

15.12.6.2 Compiling Only the Current Application
To directly build only the GPU packet processing application:

cd /opt/mellanox/doca/applications/
meson /tmp/build -Denable_all_applications=false -Denable_gpu_packet_processing=true
ninja -C /tmp/build

Alternatively, users can set the desired flags in the meson_options.txt file instead of providing
them in the compilation command line:

Edit the following flags in /opt/mellanox/doca/applications/meson_options.txt :

Set enable_all_applications to false

Set enable_gpu_packet_processing to true
Run the following compilation commands:

cd /opt/mellanox/doca/applications/
meson /tmp/build
ninja -C /tmp/build

For more information about the applications as well as development and compilation tips,
refer to the DOCA Applications page.

doca_gpu_packet_processing is created under /tmp/build/gpu_packet_processing/ .

doca_gpu_packet_processing is created under /tmp/build/gpu_packet_processing/ .

doca_gpu_packet_processing is created under /tmp/build/

gpu_packet_processing/ .

948

1.

2.
a.

15.12.6.3 Troubleshooting
Refer to the NVIDIA DOCA Troubleshooting Guide for any issue encountered with the compilation of
the application.

15.12.7 Running the Application
The GPU packet processing application is provided in source form. Therefore, a compilation is
required before the application can be executed.

Application usage instructions:

Usage: doca_gpu_packet_processing [DOCA Flags] [Program Flags]

DOCA Flags:
 -h, --help Print a help synopsis
 -v, --version Print program version information
 -l, --log-level Set the (numeric) log level for the program <10=DISABLE, 20=CRITICAL,
30=ERROR, 40=WARNING, 50=INFO, 60=DEBUG, 70=TRACE>
 --sdk-log-level Set the SDK (numeric) log level for the program <10=DISABLE, 20=CRITICA
L, 30=ERROR, 40=WARNING, 50=INFO, 60=DEBUG, 70=TRACE>
 -j, --json <path> Parse all command flags from an input json file

Program Flags:
 -g, --gpu <GPU PCIe address> GPU PCIe address to be used by the app
 -n, --nic <NIC PCIe address> DOCA device PCIe address used by the app
 -q, --queue <GPU receive queues> DOCA GPUNetIO receive queue per flow
 -s, --httpserver <Enable GPU HTTP server> Enable GPU HTTP server mode

CLI example for running the application on the host:
Assuming a GPU PCIe address ca:00.0 and NIC PCIe address 17:00.0 with 2
GPUNetIO receive queues:

./doca_gpu_packet_processing -n 17:00.0 -g ca:00.0 -q 2

15.12.7.1 Command Line Flags
Flag Type Short Flag Long Flag Description

General flags h help Prints a help synopsis

v version Prints program version information

This usage printout can be printed to the command line using the -h (or --help)
options:

./doca_gpu_packet_processing -h

For additional information, refer to section "Command Line Flags".

Refer to section "Running DOCA Application on Host" in the NVIDIA DOCA Virtual
Functions User Guide.

949

•
•
•
•
•
•
•

•
•
•
•
•
•
•

Flag Type Short Flag Long Flag Description

l log-level Set the log level for the
application:

DISABLE=10
CRITICAL=20
ERROR=30
WARNING=40
INFO=50
DEBUG=60
TRACE=70 (requires compilation
with TRACE log level support)

N/A sdk-log-level Sets the log level for the program:
DISABLE=10
CRITICAL=20
ERROR=30
WARNING=40
INFO=50
DEBUG=60
TRACE=70

j json Parse all command flags from an
input JSON file

Program flags g gpu GPU PCIe address in
<bus>:<device>.<function> for
mat. This can be obtained using
the nvidia-smi or lspci
commands.

n nic Network card port PCIe address in
<bus>:<device>.<function> for
mat. This can be obtained using
the lspci command.

q queue Number of receive queues to use in
the example. Default is 1,
maximum allowed is 4.

s httpserver Enable the TCP HTTP server mode.
With this flag, TCP packets are not
received by GPUNetIO as regular
sniffer as it requires a TCP 3-way
handshake to establish a reliable
connection first.

15.12.7.2 Troubleshooting
Refer to the NVIDIA DOCA Troubleshooting Guide for any issue encountered with the installation or
execution of the DOCA applications.

Refer to DOCA Arg Parser for more information regarding the supported flags and execution
modes.

950

1.

2.

3.

4.

5.

6.

7.

8.

9.

15.12.8 Application Code Flow
The following explains the application's flow, highlighting main code blocks and functions:

Parse application argument.

doca_argp_init();
register_application_params();
doca_argp_start();

Initialize network device as DOCA device, initialize DPDK, and get device DPDK port ID.

init_doca_device();

Calls rte_eal_init() with empty flags to initialize EAL resources.
Initialize a GPU device, creating a DOCA GPUNetIO handle for it.

doca_gpu_create();

Initialize DOCA Flow, starting the DPDK port.

init_doca_flow();

Flags to initialize DOCA Flow are VNF, HW steering, and isolated mode (to prevent the default
RSS flows from interfering with the GPUNetIO queues).
Create RX and TX queue related objects (i.e., Ethernet handlers, GPUNetIO handlers, flow
rules, semaphores) to manage UDP, TCP and ICMP flows.

create_udp_queues();
create_tcp_queues();
create_icmp_queues();
/* Depending on TCP mode (HTTP server or not) properly connect different DOCA Flow pipes */
create_root_pipe();

Allocate generic exit flag. All CUDA kernels periodically poll on this flag. If the CPU set it to
1, CUDA kernels exit from their main loop and return.

doca_gpu_mem_alloc(gpu_dev, sizeof(uint32_t), alignment, DOCA_GPU_MEM_GPU_CPU, (void
 **)&gpu_exit_condition, (void **)&cpu_exit_condition);

Launch CUDA kernels, each on a different stream.

kernel_receive_udp(rx_udp_stream, gpu_exit_condition, &udp_queues);
kernel_receive_tcp(rx_tcp_stream, gpu_exit_condition, &tcp_queues, app_cfg.http_server);
kernel_receive_icmp(rx_icmp_stream, gpu_exit_condition, &icmp_queues);
if (app_cfg.http_server)
 kernel_http_server(tx_http_server, gpu_exit_condition, &tcp_queues, &http_queues);

Launch the CPU thread responsible to poll on DOCA GPUNetIO semaphores and print UDP and
TCP stats on the console.

rte_eal_remote_launch((void *)stats_core, NULL, current_lcore);

Launch CPU thread responsible for managing TCP 3-way handshake connections.

if (app_cfg.http_server) {
 ...
 rte_eal_remote_launch(tcp_cpu_rss_func, &tcp_queues, current_lcore);

951

10.

11.

•

}

Wait for the user to send a signal to quit the application. When this happens, the signal
handler function sets the force_quit flag to true which causes the main thread to move
forward and set the exit condition to 1.

while (DOCA_GPUNETIO_VOLATILE(force_quit) == false);
DOCA_GPUNETIO_VOLATILE(*cpu_exit_condition) = 1;

Wait for CUDA kernels to exit and finalize all DOCA Flow and GPUNetIO resources.

cudaStreamSynchronize(rx_udp_stream);
cudaStreamSynchronize(rx_tcp_stream);
cudaStreamSynchronize(rx_icmp_stream);
if (app_cfg.http_server)
 cudaStreamSynchronize(tx_http_server);
destroy_flow_queue();
doca_gpu_destroy();

15.12.9 References
/opt/mellanox/doca/applications/gpu_packet_processing/

15.13 NVIDIA DOCA IPsec Security Gateway Application
Guide

This document provides an IPsec security gateway implementation on top of NVIDIA® BlueField®
DPU.

15.13.1 Introduction

DOCA IPsec Security Gateway leverages the DPU's hardware capability for secure network
communication. The application demonstrates how to insert rules related to IPsec encryption and
decryption based on the DOCA Flow library.

The application demonstrates how to insert rules to create an IPsec tunnel.

The application can be configured to receive IPsec rules in one of the following ways:

Important note for NVIDIA® BlueField®-2 DPUs

If your target application utilizes 100Gb/s or higher bandwidth, where a substantial part of
the bandwidth is allocated for IPsec traffic, please refer to the NVIDIA BlueField-2 DPUs
Product Release Notes to learn about a potential bandwidth limitation. To access the
relevant product release notes, please contact your NVIDIA sales representative.

DOCA IPsec Security Gateway is supported at alpha level.

An example for configuring the Internet Key Exchange (IKE) can be found under section
"Keying Daemon Integration (StrongSwan)" but is not considered part of the application.

952

•

•

•

•

Static configuration – (default) receives a fixed list of rules for IPsec encryption and
decryption

Dynamic configuration – receives IPsec encryption and decryption rules during runtime
through a Unix domain socket (UDS) which is enabled when providing a socket path to the
application

The application supports the following IPsec modes: Tunnel, transport, UDP transport.

15.13.2 System Design
DOCA IPsec Security Gateway is designed to run with 2 ports, secured and unsecured:

Secured port – BlueField receives IPsec encrypted packets and, after decryption, they are
sent through the unsecured port
Unsecured port – BlueField receives regular (plain text) packets and, after encryption, they
are sent through the secured port

Example packet path for hardware (HW) offloading:

When creating the security association (SA) object, the application gets the key, salt,
and other SA attributes from the JSON input file.

You may find an example of integrating a rules generator with the application under
strongSwan project (DOCA plugin).

https://github.com/Mellanox/strongswan/blob/BF-5.9.6/src/libcharon/plugins/doca/doca_plugin_ipsec.c

953

Example packet path for partial software processing (handling encap/decap in software):

Using the application with SF:

954

1.
2.

3.
4.

15.13.3 Application Architecture

15.13.3.1 Static Configuration
Open two DOCA devices, one for the secured port and another for the unsecured port.
With the open DOCA devices, the application probes DPDK ports and initializes DOCA Flow and
DOCA Flow ports accordingly.
On the created ports, build DOCA Flow pipes.
In a loop according to the JSON rules:

955

a.
b.

1.
2.

3.
4.
5.

a.
b.
c.

Create IPSec SA shared resource for the new rule.
Insert encrypt or decrypt rule to DOCA Flow pipes.

15.13.3.2 Dynamic Configuration

Open two DOCA devices, one for the secured port and another for the unsecured port.
With the open DOCA devices, the application probes DPDK ports and initializes DOCA Flow and
DOCA Flow ports accordingly.
On the created ports, build DOCA Flow pipes.
Create UDS socket and listen for incoming data.
While waiting for new IPsec policies to be received in a loop, if a new IPsec policy is
received:

Parse the policy whether it is an encryption or decryption rule.
Create IPSec SA shared resource for the new rule.
Insert encrypt or decrypt rule to DOCA Flow pipes.

15.13.3.3 DOCA Flow Modes

The application can run in two modes, vnf and switch . For more information about the modes,
please refer to "Pipe Mode" in the DOCA Flow.

956

1.

a.

b.

c.
2.

15.13.3.3.1 VNF Mode

15.13.3.3.1.1 Encryption

The application builds pipes for encryption. Control pipe as root with four entries that match
L3 and L4 types and forward the traffic to the relevant pipes.

IPv6 pipes – match the source IP address and forward the traffic to a pipe that matches
5-tuple excluding the source IP.
In the 5-tuple match pipes set action of "set meta data", the metadata would be the
rule's index in the JSON file.
The matched packet is forwarded to the second port.

In the secured egress domain, the IP classifier pipe sends the packets to the correct
encryption pipe (IPv4 or IPv6) which has a shared IPsec encrypt action. According to the
metadata match, the packet is encrypted with the encap destination IP and SPI as defined in
the user's rules.

957

1.

2.

3.

a.

15.13.3.3.1.2 Decryption

The application builds pipes for decryption. Control pipe as root with two entries that match
L3 type and forward the traffic to the relevant decrypt pipe.
The decrypt pipe matches the destination IP and SPI according to the rule files and has a
shared IPsec action for decryption.
After decryption, the matched packets are forwarded to the decap pipe and, if the syndrome
is non-zero, the packets are dropped. Otherwise, the packets decap the ESP header and
forward to the second port.

In debug mode, if syndrome is non-zero, then it sends to bad syndrome pipe to match
on the syndrome, count and drop/send to application.

958

•

•
•

•

15.13.3.3.2 Switch Mode

In switch mode, an ingress root pipe matches the source port to decide what the next pipe is:

Based on the port, the packet passes through almost the same path as VNF mode and the
metadata is set. Afterwards, the packet moves to egress root pipe.

In egress root pipe, the match is on encrypt and decrypt bits that were set in the packet meta:

Decrypt bit is 1 – packet finishes the decrypt path and must be sent to the unsecure port
Encrypt bit is 1 – packet almost finishes the encrypt path and must be sent to the encrypt
pipe on the secure egress domain and to the secure port from there

15.13.4 DOCA Libraries
This application leverages the following DOCA libraries:

DOCA Flow

Refer to their respective programming guide for more information.

15.13.5 Compiling the Application

The installation of DOCA's reference applications contains the sources of the applications, alongside
the matching compilation instructions. This allows for compiling the applications "as-is" and provides
the ability to modify the sources, then compile a new version of the application.

Please refer to the NVIDIA DOCA Installation Guide for Linux for details on how to install
BlueField-related software.

For more information about the applications as well as development and compilation tips,
refer to the DOCA Applications page.

959

•

•

1.

•

•
2.

The sources of the application can be found under the application's directory: /opt/mellanox/

doca/applications/ipsec_security_gw/ .

15.13.5.1 Prerequisites

The application relies on the json-c open source, hence requires the following installation:

Ubuntu/Debian:

$ sudo apt install libjson-c-dev

CentOS/RHEL:

$ sudo yum install json-c-devel

15.13.5.2 Compiling All Applications
All DOCA applications are defined under a single meson project. So, by default, the compilation
includes all of them.

To build all the applications together, run:

cd /opt/mellanox/doca/applications/
meson /tmp/build
ninja -C /tmp/build

15.13.5.3 Compiling Only the Current Application
To directly build only the IPsec Security Gateway application:

cd /opt/mellanox/doca/applications/
meson /tmp/build -Denable_all_applications=false -Denable_ipsec_security_gw=true
ninja -C /tmp/build

Alternatively, users can set the desired flags in the meson_options.txt file instead of providing
them in the compilation command line:

Edit the following flags in /opt/mellanox/doca/applications/meson_options.txt :

Set enable_all_applications to false

Set enable_ipsec_security_gw to true
Run the following compilation commands:

cd /opt/mellanox/doca/applications/
meson /tmp/build
ninja -C /tmp/build

doca_ipsec_security_gw is created under /tmp/build/ipsec_security_gw/ .

doca_ipsec_security_gw is created under /tmp/build/ipsec_security_gw/ .

960

1.

2.

15.13.5.4 Troubleshooting
Refer to the NVIDIA DOCA Troubleshooting Guide for any issue encountered with the compilation of
the application.

15.13.6 Running the Application

15.13.6.1 Prerequisites
The IPsec security gateway application is based on DOCA Flow. Therefore, the user is required
to allocate huge pages.

echo '2048' | sudo tee -a /sys/kernel/mm/hugepages/hugepages-2048kB/nr_hugepages

VNF mode – the IPsec security gateway application requires disabling some of the hardware
tables:

/opt/mellanox/iproute2/sbin/devlink dev eswitch set pci/0000:03:00.0 mode legacy
/opt/mellanox/iproute2/sbin/devlink dev eswitch set pci/0000:03:00.1 mode legacy

echo none > /sys/class/net/p0/compat/devlink/encap
echo none > /sys/class/net/p1/compat/devlink/encap

/opt/mellanox/iproute2/sbin/devlink dev eswitch set pci/0000:03:00.0 mode switchdev
/opt/mellanox/iproute2/sbin/devlink dev eswitch set pci/0000:03:00.1 mode switchdev

To restore the old configuration:

/opt/mellanox/iproute2/sbin/devlink dev eswitch set pci/0000:03:00.0 mode legacy
/opt/mellanox/iproute2/sbin/devlink dev eswitch set pci/0000:03:00.1 mode legacy

echo basic > /sys/class/net/p0/compat/devlink/encap
echo basic > /sys/class/net/p1/compat/devlink/encap

doca_ipsec_security_gw is created under /tmp/build/ipsec_security_gw/ .

On some operating systems (RockyLinux, OpenEuler, CentOS 8.2) the default huge
page size on the DPU (and Arm hosts) is larger than 2MB, and is often 512MB instead.
Once can find out the sige of the huge pages using the following command:

$ grep -i huge /proc/meminfo

AnonHugePages: 0 kB
ShmemHugePages: 0 kB
FileHugePages: 0 kB
HugePages_Total: 4
HugePages_Free: 4
HugePages_Rsvd: 0
HugePages_Surp: 0
Hugepagesize: 524288 kB
Hugetlb: 6291456 kB

Given that the guiding principal is to allocate 4GB of RAM, in such cases instead of
allocating 2048 pages, one should allocate the matching amount (8 pages):

echo '8' | sudo tee -a /sys/kernel/mm/hugepages/hugepages-524288kB/nr_hugepages

961

3.

1.

/opt/mellanox/iproute2/sbin/devlink dev eswitch set pci/0000:03:00.0 mode switchdev
/opt/mellanox/iproute2/sbin/devlink dev eswitch set pci/0000:03:00.1 mode switchdev

Switch mode – the IPsec security gateway application requires configuring the ports to run in
switch mode:

sudo mlxconfig -d /dev/mst/mt41686(mt41692)_pciconf0 s LAG_RESOURCE_ALLOCATION=1
power cycle the host to apply this setting

/opt/mellanox/iproute2/sbin/devlink dev eswitch set pci/0000:03:00.0 mode legacy
/opt/mellanox/iproute2/sbin/devlink dev eswitch set pci/0000:03:00.1 mode legacy

sudo devlink dev param set pci/0000:03:00.0 name esw_pet_insert value false cmode runtime
sudo devlink dev param set pci/0000:03:00.1 name esw_pet_insert value false cmode runtime

/opt/mellanox/iproute2/sbin/devlink dev eswitch set pci/0000:03:00.0 mode switchdev
/opt/mellanox/iproute2/sbin/devlink dev eswitch set pci/0000:03:00.1 mode switchdev

sudo devlink dev param set pci/0000:03:00.0 name esw_multiport value true cmode runtime
sudo devlink dev param set pci/0000:03:00.1 name esw_multiport value true cmode runtime

To restore the old configuration:

sudo devlink dev param set pci/0000:03:00.0 name esw_multiport value false cmode runtime
sudo devlink dev param set pci/0000:03:00.1 name esw_multiport value false cmode runtime

15.13.6.2 Application Execution
The IPsec Security Gateway application is provided in source form. Therefore, a compilation is
required before the application can be executed.

Application usage instructions:

Usage: doca_ipsec_security_gw [DOCA Flags] [Program Flags]

DOCA Flags:
 -h, --help Print a help synopsis
 -v, --version Print program version information
 -l, --log-level Set the (numeric) log level for the program <10=DISABLE, 20=CRITICAL,
30=ERROR, 40=WARNING, 50=INFO, 60=DEBUG, 70=TRACE>
 --sdk-log-level Set the SDK (numeric) log level for the program <10=DISABLE, 20=CRITICA
L, 30=ERROR, 40=WARNING, 50=INFO, 60=DEBUG, 70=TRACE>
 -j, --json <path> Parse all command flags from an input json file

Program Flags:
 -s, --secured secured port pci-address
 -u, --unsecured unsecured port pci-address
 -c, --config Path to the JSON file with application configuration
 -m, --mode ipsec mode - {tunnel/transport/udp_transport}
 -i, --ipc IPC socket file path
 -sn, --secured-name secured port interface name
 -un, --unsecured-name unsecured port interface name
 -n, --nb-cores number of cores
 --debug Enable debug counters

Make sure to perform graceful shutdown prior to power cycling the host.

This usage printout can be printed to the command line using the -h (or --help)
options:

./doca_ipsec_security_gw -h

For additional information, refer to section "Command Line Flags".

962

2.
•

•

3.

•
•
•
•
•
•
•

CLI example for running the application on the BlueField or host:
Static Configuration:

./doca_ipsec_security_gw -s 03:00.0 -u 03:00.1 -c ./ipsec_security_gw_config.json -m transport

Dynamic Configuration:

./doca_ipsec_security_gw -s 03:00.0 -u 03:00.1 -c ./ipsec_security_gw_config.json -m transport -i /
tmp/rules_socket

The application also supports a JSON-based deployment mode, in which all command-line
arguments are provided through a JSON file:

./doca_ipsec_security_gw --json [json_file]

For example

./doca_ipsec_security_gw --json ipsec_security_gw_params.json

15.13.6.3 Command Line Flags
Flag Type Short Flag Long Flag/JSON

Key
Description JSON Content

General flags h help Prints a help synopsis N/A

v version Prints program version
information

N/A

l log-level Set the log level for the
application:

DISABLE=10
CRITICAL=20
ERROR=30
WARNING=40
INFO=50
DEBUG=60
TRACE=70 (requires
compilation
with TRACE log
level support)

"log-level": 60

Both the PCIe address identifiers (-s and -u flags) should match the
addresses of the desired PCIe devices.

Both the PCIe address identifiers (-s and -u flags) should match the
addresses of the desired PCIe devices.

Before execution, ensure that the used JSON file contains the correct configuration
parameters, and especially the PCIe addresses necessary for the deployment.

963

•
•
•
•
•
•
•

Flag Type Short Flag Long Flag/JSON
Key

Description JSON Content

N/A sdk-log-level Sets the log level for the
program:

DISABLE=10
CRITICAL=20
ERROR=30
WARNING=40
INFO=50
DEBUG=60
TRACE=70

"sdk-log-level": 40

j json Parse all command flags
from an input json file

N/A

Program flags c config Path to JSON file with
configurations

"config":
"security_gateway_conf
ig.json"

u unsecured PCIe address for the
unsecured port

"unsecured": "03:00.1"

s secured PCIe address for the
secured port

"secured": "03:00.0"

m mode IPsec mode.
Possible values: tunnel ,

transport ,

udp_transport

"mode": "tunnel"

un unsecured-name Interface name of the
unsecured port

"unsecured-name": "p1"

sn secured-name Interface name of
the secured port

"secured-name": "p0"

i ipc IPC socket file path for
receiving IPsec rules
during runtime

"ipc": "/tmp/
rules_socket"

n nb-cores Number of cores

"nb-cores": 8

N/A debug Add counters to all the
entries

"debug": true

Refer to DOCA Arg Parser for more information regarding the supported flags and execution
modes.

964

15.13.6.4 Static Configuration IPsec Rules
IPsec rules and other configuration can be added with a JSON config file which is passed using
the --config parameter.

Section Field Type Description Example

config switch bool Configures whether DOCA Flow
runs in VNF (false) or switch

(true) mode
"switch": true

esp-header-

offload

string Decap and encap offloading:
both , encap , decap , or

none . Default is both
(offloading both encap and
decap).

"esp-header-
offload": "none"

sw-sn-inc-

enable

bool Increments sequence number of
ESP in software if set to true .
Default is false.

"sw-sn-inc-
enable": true

sw-antireplay-

enable

bool Enables anti-replay mechanism
in software if set to true .
Default is false.

"sw-antireplay-
enable": true

sn-initial uint Initial sequence number for ESP
header. Used also
when sw_antireplay_enable
is true. Default is 0.

"sn-initial": 0

debug bool Set debug counter for all
entries when true . Default is

false .
This parameter is also used
from CLI, will be taken as true
if was sent in one of them.

"debug": false

Available only
if esp_header_offlo

ad is decap or none .

Available only
if esp_header_offlo

ad is encap or none .

Window size is 64. Not
ESN. Supports non-
zero sn_initial .

965

•

•

Section Field Type Description Example

fwd-bad-

syndrome

string Forward packets that has bad
syndrome: drop , RSS . Default

is drop .
"fwd-bad-
syndrome": "drop"

perf-

measurements

string Possible values: none ,

insertion-rate , bandwidth ,

both . Default is none .

insertion-rate – print
the total time it took to add
the entries
bandwidth – optimize the
pipe to improve pps for IPv6

"perf-
measurements":
"both"

vxlan-encap bool When true , preform vxlan-

encap after encryption and
decap before decryption.
Default is false .

"vxlan-encap":
false

vni uint When vxlan-encap is true,

use this vni value in the
VXLAN tunnel.

"vni": 5

marker-encap bool When true , add an extra non-
ESP marker of 8 bytes. Default
is false .

"marker-encap":
false

encrypt_rules ip-version int Source and destination IP
version. Possible values: 4 , 6 .

Optional; default is 4 .
"ip-version": 6

src-ip string Source IP to match

"src-ip":
"1.2.3.4"

dst-ip string Destination IP to match

"dst-ip":
"101:101:101:101:1
01:101:101:101"

protocol string L4 protocol: TCP or UDP

"protocol"

src-port int Source port to match

dst-port int Destination port to match

"dst-port": 55

encap-ip-

version

int Encap IP version: 4 or 6 . Opti

onal; default is 4 . "ip-version": 4

Only available in
debug mode.

966

Section Field Type Description Example

encap-dst-ip string Encap destination IP

"encap-dst-ip":
"1.1.1.1"

spi int SPI integer to set in the ESP
header

"spi": 5

key string Key for creating the SA (in hex
format)

"key":
"11223344556677889
9aabbccdd"

key-type int Key size: 128 or 256 .

Optional; default is 256 . "key-type": 128

salt int Salt value for creating the SA.
Default is 6 .

"salt": 1212

icv-length int ICV length value: 8 , 12 , or 16 .

Default is 16 . "icv-length": 12

lifetime-

threshold

int Set IPsec lifetime threshold.
Ignored if sw-sn-inc-enable
is true. Default is 0.

"lifetime-
threshold":
1000000

esn_en bool Enables extended sequence
number. Default is false .

"esn_en" : true

decrypt_rules ip-version int Destination IP version: 4 or 6 .

Optional; default is 4 . "ip-version": 6

dst-ip string Destination IP to match

"dst-ip":
"1122:3344:5566:77
88:99aa:bbcc:ddee:
ff00"

inner-ip-

version

int Inner IP version: 4 or 6 .

Optional; default is 4 . "inner-ip-
version": 4

spi int SPI to match in the ESP header

"spi": 5

Mandatory for tunnel
mode only.

Mandatory for tunnel
mode only.

967

Section Field Type Description Example

key string Key for creating the SA (in hex
format)

"key":
"11223344556677889
9aabbccdd"

key-type int Key size: 128 or 256 .

Optional; default is 256 . "key-type": 128

salt int Salt value for creating the SA.
Default is 6 .

"salt": 1212

icv-length int ICV length value: 8 , 12 , or 16 .

Default is 16 . "icv-length": 12

lifetime-

threshold

int Set IPsec lifetime threshold.
Ignored if sw-antireplay-

enable is true. Default is 0.
"lifetime-
threshold":
1000000

esn_en bool Enables extended sequence
number. Default is false .

"esn_en" : true

15.13.6.5 Dynamic Configuration IPsec Rules
The application listens on the UDS socket for receiving a predefined structure for the IPsec policy
defined in the policy.h file.

The client program or keying daemon should connect to the socket with the same socket file path
provided to the application by the --ipc / -i flags, and send the policy structure as packed to the
application through the same socket.

The IPsec policy structure:

struct ipsec_security_gw_ipsec_policy {
 /* Protocols attributes */
 uint16_t src_port; /* Policy inner source port */
 uint16_t dst_port; /* Policy inner destination port */
 uint8_t l3_protocol; /* Policy L3 proto {POLICY_L3_TYPE_IPV4, POLICY_L3_TYPE_IPV6} */
 uint8_t l4_protocol; /* Policy L4 proto {POLICY_L4_TYPE_UDP, POLICY_L4_TYPE_TCP} */
 uint8_t outer_l3_protocol; /* Policy outer L3 type {POLICY_L3_TYPE_IPV4, POLICY_L3_TYPE_IPV6} */

 /* Policy attributes */
 uint8_t policy_direction; /* Policy direction {POLICY_DIR_IN, POLICY_DIR_OUT} */
 uint8_t policy_mode; /* Policy IPSEC mode {POLICY_MODE_TRANSPORT, POLICY_MODE_TUNNEL} */

 /* Security Association attributes */
 uint8_t esn; /* Is ESN enabled? */
 uint8_t icv_length; /* ICV length in bytes {8, 12, 16} */
 uint8_t key_type; /* AES key type {POLICY_KEY_TYPE_128, POLICY_KEY_TYPE_256} */
 uint32_t spi; /* Security Parameter Index */
 uint32_t salt; /* Cryptographic salt */
 uint8_t enc_key_data[MAX_KEY_LEN]; /* Encryption key (binary) */

 /* Policy inner and outer addresses */
 char src_ip_addr[MAX_IP_ADDR_LEN + 1]; /* Policy inner IP source address in string format */
 char dst_ip_addr[MAX_IP_ADDR_LEN + 1]; /* Policy inner IP destination address in string format */

In the dynamic configuration, the application uses the config section from the JSON

config file and ignores the encrypt_rules and decrypt_rules sections.

968

1.
a.

b.

c.

i.
2.

3.

4.

a.
b.

5.

 char outer_src_ip[MAX_IP_ADDR_LEN + 1]; /* Policy outer IP source address in string format */
 char outer_dst_ip[MAX_IP_ADDR_LEN + 1]; /* Policy outer IP destination address in string format */
};

15.13.6.6 Troubleshooting
Refer to the NVIDIA DOCA Troubleshooting Guide for any issue encountered with the installation or
execution of the DOCA applications.

15.13.7 Application Code Flow
Parse application argument.

Initialize arg parser resources and register DOCA general parameters.

doca_argp_init();

Register the application's parameters.

register_ipsec_security_gw_params();

Parse the arguments.

doca_argp_start();

Parse app parameters.
DPDK initialization.

rte_eal_init();

Call rte_eal_init() to initialize EAL resources with the provided EAL flags for not probing
the ports.
Parse config file.

ipsec_security_gw_parse_config();

Initialize devices and ports.

ipsec_security_gw_init_devices();

Open DOCA devices with input PCIe addresses / interface names.
Probe DPDK port from each opened device.

Initialize and start DPDK ports.

dpdk_queues_and_ports_init();

•

•

The policy type, whether it is encrypted or decrypted, is classified according to the
policy_direction attribute:

POLICY_DIR_IN – decryption policy

POLICY_DIR_OUT – encryption policy

969

a.
b.
c.

6.

a.
b.

7.
a.

b.

8.

a.
9.

a.

b.

c.

d.

e.

f.

Initialize DPDK ports, including mempool allocation.
Initialize hairpin queues if needed.
Binds hairpin queues of each port to its peer port.

Initialize DOCA Flow.

ipsec_security_gw_init_doca_flow();

Initialize DOCA Flow library.
Find the indices of the DPDK-probed ports and start DOCA Flow ports with them.

Insert rules.
Insert encryption rules.

ipsec_security_gw_insert_encrypt_rules();

Insert decryption rules.

ipsec_security_gw_insert_decrypt_rules();

Wait for traffic.

ipsec_security_gw_wait_for_traffic();

wait in a loop until the user terminates the program.
IPsec security gateway cleanup:

DOCA Flow cleanup; destroy initialized ports.

doca_flow_cleanup();

SA destruction.

ipsec_security_gw_destroy_sas();

IPsec objects destruction.

ipsec_security_gw_ipsec_ctx_destroy();

Destroy DPDK ports and queues.

dpdk_queues_and_ports_fini();

DPDK finish.

dpdk_fini();

Calls rte_eal_destroy() to destroy initialized EAL resources.
Arg parser destroy.

doca_argp_destroy()

970

15.13.8 Keying Daemon Integration (StrongSwan)
strongSwan is a keying daemon that uses the Internet Key Exchange Version 2 (IKEv2) protocol to
establish SAs between two peers. strongSwan includes a DOCA plugin that is part of the strongSwan
package in BFB. The plugin is loaded only if the DOCA IPsec Security Gateway is triggered. The
plugin connects to UDS socket and sends IPsec policies to the application after the key exchange
completes.

For more information about the key daemon, refer to strongSwan documentation.

15.13.8.1 End-to-end Architecture
The following diagram presents an architecture where two BlueField DPUs are connected to each
other with DOCA IPsec Security Gateway running on each.

https://wiki.strongswan.org/projects/strongswan/wiki/IntroductiontostrongSwan

971

1.
2.
3.
4.

5.

1.

swanctl is a command line tool used for strongSwan IPsec configuration:

Run DOCA IPsec Security Gateway on both sides in a dynamic configuration.
Start strongSwan service.
Configure strongSwan IPsec using the swanctl.conf configuration file on both sides.
Start key exchange between the two peers. At the end of the flow, the result arrives to the
DOCA plugin, populates the policy-defined structure, and sends it to the socket.
DOCA IPsec Security Gateway on both sides reads new policies from the socket, performs the
parsing, creates a DOCA SA object, and adds flow decrypt/encrypt entry.

This architecture uses P1 uplink on both BlueField DPUs to run the strongSwan key daemon. To
configure the uplink:

Configure an IP addresses for the PFs of both DPUs:

972

a.

b.

2.

3.

•
•

•

On BF1:

ip addr add 192.168.50.1/24 dev p1

On BF2:

ip addr add 192.168.50.2/24 dev p1

Verify the connection between two BlueField DPUs.

BF1> ping 192.168.50.2

Configure the swanctl.conf files for each machine. The file should be located under /etc/

swanctl/conf.d/ .

Adding swanctl.conf file examples:
Transport mode

swanctl.conf example for BF1:

connections {
 BF1-BF2 {
 local_addrs = 192.168.50.1
 remote_addrs = 192.168.50.2
 rekey_time = 0

 local {
 auth = psk
 id = host1
 }
 remote {
 auth = psk
 id = host2
 }

 children {
 bf {
 local_ts = 192.168.50.1/32 [udp/60]
 remote_ts = 192.168.50.2/32 [udp/90]
 esp_proposals = aes128gcm128-x25519-esn
 mode = transport
 policies_fwd_out = yes
 life_time = 0
 }
 }
 version = 2
 mobike = no
 reauth_time = 0
 proposals = aes128-sha256-x25519
 }
}

secrets {
 ike-BF {
 id-host1 = host1
 id-host2 = host2
 secret = 0sv+NkxY9LLZvwj4qCC2o/gGrWDF2d21jL
 }
}

swanctl.conf example for BF2:

connections {
 BF2-BF1 {
 local_addrs = 192.168.50.2
 remote_addrs = 192.168.50.1

It is possible to configure multiple IP addresses to uplinks to run key exchanges
with different policy attributes.

Make sure that the uplink is not in OVS bridges.

973

•

 rekey_time = 0

 local {
 auth = psk
 id = host2
 }
 remote {
 auth = psk
 id = host1
 }

 children {
 bf {
 local_ts = 192.168.50.2/32 [udp/90]
 remote_ts = 192.168.50.1/32 [udp/60]
 esp_proposals = aes128gcm128-x25519-esn
 mode = transport
 life_time = 0
 }
 }
 version = 2
 mobike = no
 reauth_time = 0
 proposals = aes128-sha256-x25519
 }
}

secrets {
 ike-BF {
 id-host1 = host1
 id-host2 = host2
 secret = 0sv+NkxY9LLZvwj4qCC2o/gGrWDF2d21jL
 }
}

Tunnel mode

connections {
 BF1-BF2 {
 local_addrs = 192.168.50.2
 remote_addrs = 192.168.50.1
 rekey_time = 0

 local {
 auth = psk
 id = host2
 }
 remote {
 auth = psk
 id = host1
 }

 children {
 bf {
 local_ts = 2001:db8:85a3::8a2e:370:7334/128 [udp/3030]
 remote_ts = 2001:db8:85a3::8a2e:370:7335/128 [udp/55]
 esp_proposals = aes128gcm128-x25519-esn
 life_time = 0
 }
 }
 version = 2
 mobike = no
 proposals = aes128-sha256-x25519
 }
}

secrets {
 ike-BF {
 id-host1 = host1
 id-host2 = host2
 secret = 0sv+NkxY9LLZvwj4qCC2o/gGrWDF2d21jL
 }
}

DOCA IPsec only supports ESP headers, AES-GCM encryption algorithm, and key sizes 128 or 256.
Therefore, when setting ESP proposals in the swanctl.conf , please adhere to the values provided
in the following table:

local_ts and remote_ts must have a netmask of /32 for IPv4 addresses
and /128 for IPv6 addresses.

SA rekey is not supported in DOCA plugin. connection.rekey_time must be

set to 0 and connection.child.life_time must be set to 0.

974

1.

2.

3.

ESP Proposal Algorithm Type Including ICV Length Key Size

aes128gcm8 ENCR_AES_GCM_ICV8 128

aes128gcm64 ENCR_AES_GCM_ICV8 128

aes128gcm12 ENCR_AES_GCM_ICV12 128

aes128gcm96 ENCR_AES_GCM_ICV12 128

aes128gcm16 ENCR_AES_GCM_ICV16 128

aes128gcm128 ENCR_AES_GCM_ICV16 128

aes128gcm ENCR_AES_GCM_ICV16 128

aes256gcm8 ENCR_AES_GCM_ICV8 256

aes256gcm64 ENCR_AES_GCM_ICV8 256

aes256gcm12 ENCR_AES_GCM_ICV12 256

aes256gcm96 ENCR_AES_GCM_ICV12 256

aes256gcm16 ENCR_AES_GCM_ICV16 256

aes256gcm128 ENCR_AES_GCM_ICV16 256

aes256gcm ENCR_AES_GCM_ICV16 256

15.13.8.2 Running the Solution
Run the following commands on both BlueField peers.

Run DOCA IPsec Security Gateway in dynamic configuration, assuming the socket location is /

tmp/rules_socket .

doca_ipsec_security_gw -s 03:00.0 -un <sf_net_dev> -c ./ipsec_security_gw_config.json -m transport -i /tmp/
rules_socket

Edit the /etc/strongswan.d/charon/doca.conf file and add the UDS socket path. If the

socket_path is not set, the plugin uses the default path /tmp/strongswan_doca_socket .

doca {

Whether to load the plugin
load = yes

Path to DOCA socket
socket_path = /tmp/rules_socket
}

Restart the strongSwan server:

systemctl restart strongswan.service

DOCA IPsec Security Gateway application should be run first.

You must provide the application with this path as well.

975

4.

5.

6.

1.

2.
3.
4.

5.
6.

•

•

Verify that the swanctl.conf file exists in /etc/swanctl/conf.d/ . directory.

Load IPsec configuration:

swanctl --load-all

Start IKE protocol on either the initiator or the target side:

swanctl -i --child <child_name>

15.13.8.3 Building strongSwan
To perform some changes in the DOCA plugin in strongSwan zone:

Verify that the dependencies listed here are installed in your environment. libgmp-dev is
missing from that list so make sure to install that as well.
Git clone https://github.com/Mellanox/strongswan.git.
Git checkout BF-5.9.10 branch.
Add your changes in the plugin located under src/libcharon/plugins/doca .

Run autogen.sh within the strongSwan repo.
Run the following:

./configure --enable-openssl --disable-random --prefix=/usr/local --sysconfdir=/etc --enable-systemd --
enable-doca
make
make install
systemctl daemon-reload
systemctl restart strongswan.service

15.13.9 References
/opt/mellanox/doca/applications/ipsec_security_gw/

/opt/mellanox/doca/applications/ipsec_security_gw/

ipsec_security_gw_params.json

15.14 NVIDIA DOCA PCC Application Guide
This document provides a DOCA PCC implementation on top of NVIDIA® BlueField® networking
platform.

If the application has been run with log level debug, you can see that the connection
has been done successfully and the application is waiting for new IPsec policies.

It is recommended to remove any unused conf files under /etc/swanctl/conf.d/ .

In the example above, the child's name is bf .

https://github.com/Mellanox/strongswan/tree/BF-5.9.6
https://github.com/Mellanox/strongswan/blob/BF-5.9.6/HACKING
https://github.com/Mellanox/strongswan.git

976

•

•
•

15.14.1 Introduction
Programmable Congestion Control (PCC) allows users to design and implement their own congestion
control (CC) algorithm, giving them the flexibility to work out an optimal solution to handle
congestion in their clusters. On BlueField-3 networking platforms, PCC is provided as a component
of DOCA.

The application leverages the DOCA PCC API to provide users the flexibility to manage allocation of
DPA resources according to their requirements.

Typical DOCA application includes App running on host/Arm and App running on DPA. Developers are
advised to use the host/Arm application with minimal changes and focus on developing their
algorithm and integrating it into the DPA application.

15.14.2 System Design
DOCA PCC application consists of two parts:

Host/Arm app is the control plane. It is responsible for allocating all resources and handover
to the DPA app initially, then destroying everything when the DPA app finishes its operation.
The host app must always be alive to stay in control while the device app is working.
Device/DPA app is the data plane.

The default mode of the data plane is running as a reaction point (RP). When the first
thread is activated, DPA App initialization is done in the DOCA PCC library by calling
the algorithm initialization function implemented by the user in the app. Moreover, the
user algorithm execution function is called when a CC event arrives. The user
algorithm takes event data as input and performs a calculation, using per-flow
context, and replies with the updated rate value and a flag to send an RTT request.
The following is an illustration of the general RP application flow:

The host/Arm application sends a command to the BlueField platform firmware when
allocating or destroying resources. CC events are generated by the BlueField platform
hardware automatically when sending data or receiving ACK/NACK/CNP/RTT packets,
then the device application handles these events by calling the user algorithm. After

977

•

the DPA application replies to hardware, handling of current event is done, and the
next event can arrive.

The device/DPA app can function as a notification point (NP). When a new probe
request packet arrives, the user handler can read and analyze the data and send a
probe response back. The following is an illustration of the general NP application
flow:

15.14.3 Application Architecture

/opt/mellanox/doca/applications/pcc/
├── host
│ ├── pcc.c
│ ├── pcc_core.c
│ └── pcc_core.h
└── device
 ├── pcc_common_dev.h
 ├── rp
 │ ├── rtt_template
 │ │ ├── algo
 │ │ │ ├── rtt_template.h
 │ │ │ ├── rtt_template_algo_params.h
 │ │ │ ├── rtt_template_ctxt.h
 │ │ │ └── rtt_template.c
 │ │ └── rp_rtt_template_dev_main.c
 │ └── switch_telemetry
 │ ├── algo
 │ │ ├── telem_template.h
 │ │ ├── telem_template_algo_params.h
 │ │ ├── telem_template_ctxt.h
 │ │ └── telem_template.c
 │ └── rp_switch_telemetry_dev_main.c
 └── np
 ├── np_nic_telemetry_dev_main.c
 └── np_switch_telemetry_dev_main.c

The main content of the reference DOCA PCC application files are the following:

The device/DPA app can also run different algorithms for the RP program,
which users can configure as a runtime option.

The device/DPA app is as well capable of functioning as a telemetry program
for a NP NIC or switch operations, which users can configure as a runtime
option.

978

•

•

•

•

•

•

•

•

•

•

•
•
•

host/pcc.c – entry point to entire application

host/pcc_core.c – host functions to initialize and destroy the PCC application resources,
parsers for PCC command line parameters
device/pcc_common_dev.h – common util calls and definitions for device programs

device/rp/rtt_template/rp_rtt_template_dev_main.c – callbacks for user CC algorithm
initialization, user CC algorithm calculation and algorithm parameter change notification of
the RTT template algorithm reference
device/rp/rtt_template/algo/* – user CC algorithm reference for RTT template. Put user
algorithm code here
device/rp/switch_telemetry/rp_switch_telemetry_dev_main.c – callbacks for user CC
algorithm initialization, user CC algorithm calculation, and algorithm parameter change
notification of the switch telemetry algorithm reference
device/rp/switch_telemetry/algo/* – user CC algorithm reference for switch telemetry.
Put user algorithm code here.
device/np/np_nic_telemetry_dev_main.c – callback for user NP handling, implemented
as a NIC telemetry program to observe RX counters
device/np/np_switch_telemetry_dev_main.c – callback for user NP handling,
implemented as a switch telemetry program to observe last hop switch metadata

15.14.4 DOCA Libraries
This application leverages the following DOCA library:

DOCA PCC

Refer to its respective programming guide for more information.

15.14.5 Dependencies
NVIDIA BlueField-3 Platform is required
Firmware 32.38.1000 and higher
MFT 4.25 and higher

15.14.6 Compiling the Application

The installation of DOCA's reference applications contains the sources of the applications, alongside
the matching compilation instructions. This allows for compiling the applications "as-is" and provides
the ability to modify the sources, then compile a new version of the application.

Please refer to the NVIDIA DOCA Installation Guide for Linux for details on how to install
BlueField-related software.

For more information about the applications as well as development and compilation tips,
refer to the DOCA Applications page.

979

1.

•

•
2.

The sources of the application can be found under the application's directory: /opt/mellanox/

doca/applications/pcc/ .

15.14.6.1 Compiling All Applications
All DOCA applications are defined under a single meson project. So, by default, the compilation
includes all of them.

To build all the applications together, run:

cd /opt/mellanox/doca/applications/
meson /tmp/build
ninja -C /tmp/build

15.14.6.2 Compiling Only the Current Application
To directly build only the PCC application:

cd /opt/mellanox/doca/applications/
meson /tmp/build -Denable_all_applications=false -Denable_pcc=true
ninja -C /tmp/build

Alternatively, one can set the desired flags in the meson_options.txt file instead of providing
them in the compilation command line:

Edit the following flags in /opt/mellanox/doca/applications/meson_options.txt :

Set enable_all_applications to false

Set enable_pcc to true
Run the following compilation commands:

cd /opt/mellanox/doca/applications/
meson /tmp/build
ninja -C /tmp/build

15.14.6.3 Compilation Options
The application offers specific compilation flags which one can set for a desired behavior in the
device/DPA program.

In the meson_options.txt file, one can find the following options:

doca_pcc is created under /tmp/build/pcc/ .

doca_pcc is created under /tmp/build/pcc/ .

doca_pcc is created under /tmp/build/pcc/ .

980

•

•

1.

enable_pcc_application_tx_counter_sampling : set to true to use TX counters sampled
at runtime in the RP CC handling algorithm.
enable_pcc_application_np_rx_rate : set to true to use RX counters received from NP in
the RP CC handling algorithm.

15.14.6.4 Troubleshooting
Refer to the NVIDIA DOCA Troubleshooting Guide for any issue encountered with the compilation of
the application.

15.14.7 Running the Application

15.14.7.1 Prerequisites

Enable USER_PROGRAMMABLE_CC in mlxconfig :

mlxconfig -y -d /dev/mst/mt41692_pciconf0 set USER_PROGRAMMABLE_CC=1

Perform a BlueField system reboot for the mlxconfig settings to take effect.

15.14.7.2 Application Execution
The PCC application is provided in source form. Therefore, a compilation is required before the
application can be executed.

Application usage instructions:

Usage: doca_pcc [DOCA Flags] [Program Flags]

DOCA Flags:
 -h, --help Print a help synopsis
 -v, --version Print program version information
 -l, --log-level Set the (numeric) log level for the program <10=DISABLE, 20=CRITICAL, 30=ERROR
, 40=WARNING, 50=INFO, 60=DEBUG, 70=TRACE>
 --sdk-log-level Set the SDK (numeric) log level for the program <10=DISABLE, 20=CRITICAL, 30=E
RROR, 40=WARNING, 50=INFO, 60=DEBUG, 70=TRACE>
 -j, --json <path> Parse all command flags from an input json file

Program Flags:
 -d, --device <IB device names> IB device name that supports PCC (mandatory).
 -np-nt, --np-nic-telemetry <PCC Notification Point NIC Telemetry> Flag to indicate running as a
Notification Point NIC Telemetry (optional). The application will generate CCMAD probe packets. By default
 the flag is set to false.
 -rp-st, --rp-switch-telemetry <PCC Reaction Point Switch Telemetry> Flag to indicate running as a
Reaction Point Switch Telemetry (optional). The application will generate IFA2 probe packets. By default
 the flag is set to false.
 -np-st, --np-switch-telemetry <PCC Notification Point Switch Telemetry> Flag to indicate running as a
Notification Point Switch Telemetry (optional). The application will generate IFA2 probe packets. By
default the flag is set to false.
 -t, --threads <PCC threads list> A list of the PCC threads numbers to be chosen for the DOCA PCC context
to run on (optional). Must be provided as a string, such that the number are separated by a space.
 -w, --wait-time <PCC wait time> The duration of the DOCA PCC wait (optional), can provide negative
values which means infinity. If not provided then -1 will be chosen.
 -r-handler, --remote-sw-handler <CCMAD remote SW handler> CCMAD remote SW handler flag (optional). If not
provided then false will be chosen.
 -hl, --hop-limit <IFA2 hop limit> The IFA2 probe packet hop limit (optional). If not provided then 0XFE
 will be chosen.
 -gns, --global-namespace <IFA2 global namespace> The IFA2 probe packet global namespace (optional). If
not provided then 0XF will be chosen.
 -gns-ignore_mask, --global-namespace-ignore-mask <IFA2 global namespace ignore mask> The IFA2 probe
packet global namespace ignore mask (optional). If not provided then 0 will be chosen.
 -gns-ignore_val, --global-namespace-ignore-value <IFA2 global namespace ignore value> The IFA2 probe
packet global namespace ignore value (optional). If not provided then 0 will be chosen.
 -f, --coredump-file <PCC coredump file> A pathname to the file to write coredump data in case of
unrecoverable error on the device (optional). Must be provided as a string.
 -i, --port-id <Physical port ID> The physical port ID of the device running the application (optional).
If not provided then ID 0 will be chosen.

981

2.

3.

CLI example for running the application on the BlueField Platform or the host:

./doca_pcc -d mlx5_0

The application also supports a JSON-based deployment mode, in which all command-line
arguments are provided through a JSON file:

./doca_pcc --json [json_file]

For example:

./doca_pcc --json ./pcc_params.json

15.14.7.3 Command Line Flags
Fla
g
Ty
pe

Short
Flag

Long Flag/
JSON Key

Description JSON Content

Gen
eral
flags

h help Prints a help synopsis N/A

v version Prints program version information N/A

This usage printout can be printed to the command line using the -h (or --help)
options:

./doca_pcc -h

For additional information, refer to section "Command Line Flags".

The IB device identifier (mlx5_0) should match the identifier of the desired IB
device.

Before execution, ensure that the used JSON file contains the correct configuration
parameters, and especially the PCIe addresses necessary for the deployment.

982

•
•
•
•
•
•
•

•
•
•
•
•
•
•

Fla
g
Ty
pe

Short
Flag

Long Flag/
JSON Key

Description JSON Content

l log-level Sets the log level for the program:
DISABLE=10
CRITICAL=20
ERROR=30
WARNING=40
INFO=50
DEBUG=60
TRACE=70

N/A

N/A sdk-log-

level

Sets the log level for the program:
DISABLE=10
CRITICAL=20
ERROR=30
WARNING=40
INFO=50
DEBUG=60
TRACE=70

N/A

j json Parse all command flags from an input
JSON file

N/A

Prog
ram
flags

d device IB device name that supports PCC

"device": ""

 np-nt np-nic-

telemetry

(Optional) Flag to indicate running as
a NP NIC telemetry.
The DOCA PCC application can run as
a NP NIC telemetry program. If this
flag is used, the application loads a
program to run on the DPA to sample
RX NIC counters and send them in a
response packet.

"np-nic-telemetry": false

rp-st rp-switch-

telemetry

(Optional) Flag to indicate running as
a RP switch telemetry.
The DOCA PCC application can run as
a RP switch telemetry program. If this
flag is used, the application loads a
program to run on the DPA of a switch
telemetry algorithm which receives
metadata from the last hop switch
congestion point from the NP node.

"rp-switch-telemetry": false

The application uses a
unique logging
implementation that
makes use of DOCA's
logging levels.

983

Fla
g
Ty
pe

Short
Flag

Long Flag/
JSON Key

Description JSON Content

np-st np-switch-

telemetry

(Optional) Flag to indicate running as
a NP switch telemetry.
The DOCA PCC application can run as
a NP switch telemetry program. If this
flag is used, the application loads a
program to run on the DPA to sample
metadata from the last hop switch
congestion point and send them in
response packet.

"np-switch-telemetry": false

t threads (Optional) A list of the PCC EU indexes
to be chosen for the DOCA PCC event
handler threads to run on. Must be
provided as a string, such that the
numbers are separated by a space.
The placement of the PCC threads per
core can be controlled using the EU
indexes. Utilizing a large number of
EUs, while limiting the number of
threads per core, gives the best event
handling rate and lowest event
latency.
The last EU is used for communication
with the BlueField Platform while all
others are for data path CC event
handling.

"pcc-threads": "176 177 178 179 180
 181 182 183
184 185 186 187 192 193 194 195 196
 197 198 199
200 201 202 203 208 209 210 211 212
 213 214 215
216 217 218 219 224 225 226 227 228
 229 230 231
232 233 234 235 240"

w wait-time (Optional) In seconds, the duration of
the DOCA PCC wait. Negative values
mean infinity.

"wait-time": -1

r-

handler

remote-sw-

handler

(Optional) CCMAD remote SW handler
flag. Relevant for RP contexts. This
flag indicates whether the expected
CCMAD probe packet responses are
generated by a remote DOCA NP
process or not.

"remote-sw-handler": false

If np-nic-telemetry
option is chosen by the user,
a different set of threads
will be chosen as default list.

If using other probe types
than CCMAD, probe packet
responses are always
expected to be generated
from a remote DOCA NP
process.

984

1.
a.

Fla
g
Ty
pe

Short
Flag

Long Flag/
JSON Key

Description JSON Content

hl hop-limit (Optional) The IFA2 probe packet hop
limit

"hop-limit": 0xFE

gns global-

namespace

(Optional) The IFA2 probe packet
global namespace

"global-namespace": 0xF

gns-

ignore-

mask

global-

namespace-

ignore-mask

(Optional) The IFA2 probe packet
global namespace ignore mask

"global-namespace-ignore-mask": 0

gns-

ignore-

val

global-

namespace-

ignore-

value

(Optional) The IFA2 probe packet
global namespace ignore value

"global-namespace-ignore-value": 0

f coredump-

file

(Optional) A pathname to the file to
write core dump data if an
unrecoverable error occurs on the
device

"coredump-file": "/tmp/
doca_pcc_coredump.txt"

 i port-id (Optional) The physical port ID of the
device running the application

"port-id": 0

15.14.7.4 Troubleshooting
Refer to the NVIDIA DOCA Troubleshooting Guide for any issue encountered with the installation or
execution of the DOCA applications.

15.14.8 Application Code Flow
This section lists the application's configuration flow, explaining the different DOCA function calls
and wrappers.

Parse application argument.
Initialize arg parser resources and register DOCA general parameters.

Relevant for RP contexts.

Relevant for RP contexts.

Relevant for NP contexts.

Relevant for NP contexts.

Refer to DOCA Arg Parser for more information regarding the supported flags and execution
modes.

985

b.

c.

i.
ii.

2.

a.
b.
c.

3.

a.
b.
c.

4.

a.

b.
5.

a.
b.

doca_argp_init();

Register PCC application parameters.

register_pcc_params();

Parse the arguments.

doca_argp_start();

Parse DOCA flags.
Parse DOCA PCC parameters.

PCC initialization.

pcc_init();

Open DOCA device that supports PCC.
Create DOCA PCC context.
Configure affinity of threads handling CC events.

Start DOCA PCC.

doca_pcc_start();

Create PCC process and other resources.
Trigger initialization of PCC on device.
Register the PCC in the BlueField Platform hardware so CC events can be generated
and an event handler can be triggered.

Process state monitor loop.

doca_pcc_get_process_state();
doca_pcc_wait();

Get the state of the process:

State Description

DOCA_PCC_PS_ACTIVE = 0 The process handles CC events (only one process is
active at a given time)

DOCA_PCC_PS_STANDBY = 1 The process is in standby mode (another process is
already ACTIVE)

DOCA_PCC_PS_DEACTIVATED = 2 The process has been deactivated by the BlueField
Platform firmware and should be destroyed

DOCA_PCC_PS_ERROR = 3 The process is in error state and should be destroyed

Wait on process events from the device.
PCC destroy.

doca_pcc_destroy();

Destroy PCC resources. The process stops handling PCC events.
Close DOCA device.

986

6.

•
•
•
•

•

•

•

•

•

•

•

Arg parser destroy.

doca_argp_destroy()

15.14.9 Port Programmable Congestion Control Register
The Port Programmable Congestion Control (PPCC) register allows the user to configure and read
PCC algorithms and their parameters/counters.

It supports the following functionalities:

Enabling different algorithms on different ports
Querying information of both algorithms and tunable parameters/counters
Changing algorithm parameters without compiling and reburning user image
Querying or clearing programmable counters

15.14.9.1 Usage
The PPCC register can be accessed using a string similar to the following:

sudo mlxreg -d /dev/mst/mt41692_pciconf0 -y --get --op "cmd_type=0" --reg_name PPCC --indexes
"local_port=1,pnat=0,lp_msb=0,algo_slot=0,algo_param_index=0"
sudo mlxreg -d /dev/mst/mt41692_pciconf0 -y --set "cmd_type=1" --reg_name PPCC --indexes
"local_port=1,pnat=0,lp_msb=0,algo_slot=0,algo_param_index=0"

Where you must:

Set the cmd_type and the indexes

Give values for algo_slot , algo_param_index

Keep local_port=1 , pnat=0 , lp_msb=0

Keep doca_pcc application running

cmd_typ
e

Description Method Index Input (in --
set)

Output

0x0 Get algorithm info Get algo_slot N/A Value – 32-bit
algo_num or 0 if no
algo is available at
this index
Text – algorithm
description
sl_bitmask_support
– indicates whether
the device supports
sl_bitmask logic

0x1 Enable algorithm Set sl_bitmask

trace_en

counter_en

N/A

0x2 Disable algorithm Set N/A N/A

987

•
•
•

•

•

•

•

•

•

•
•
•
•

•

•

•

•

•

•

cmd_typ
e

Description Method Index Input (in --
set)

Output

0x3 Get algorithm
enabling status

Get N/A Value:
0 – disabled
1 – enabled

sl_bitmask – this
field allows to apply
to specific SLs based
on the bitmask
sl_bitmask_support
– indicates whether
the device supports
sl_bitmask logic

0x4 Get number of
parameters

Get N/A Value – num of
params of algo

0x5 Get parameter
information

Get algo_slot

algo_param_in

dex

N/A param_value1 –
default value of
param
param_value2 – min
value of param
param_value3 – max
value of param
prm –

0: read-only
1: read-write
2: read-only
but may be
cleared using
the "get and
clear"
command

0x6 Get parameter
value

Get N/A Value – param value

0x7 Get and clear
parameter

Get N/A Value – param value

0x8 Set parameter
value

Set Parameter value N/A

0xA Bulk get
parameters

Get algo_slot N/A text_length –
param num x 4 bytes
text[0]…text[n] –
param values

0xB Bulk set
parameters

Set text_length -
param num x 4
text[0]…

text[n] -
param values

N/A

0xC Bulk get counters Get N/A text_length –
counter num x 4
bytes
text[0]…text[n] –
counter values

988

•

•

•

•

•
•
•
•

•

•

cmd_typ
e

Description Method Index Input (in --
set)

Output

0xD Bulk get and clear
counters

Get N/A text_length –
counter num x 4
bytes
text[0]…text[n] –
counter values

0xE Get number of
counters

Get N/A Value – num of
counters of algo

0xF Get counter
information

Get algo_slot

algo_param_in

dex

N/A param_value3 – max
value of parameter
prm –

0: read-only
1: read-write
2: read-only
but may be
cleared via
"get & clear"
command

0x10 Get algorithm info
array

Get N/A N/A text_length – algo
slot initialized x 4
bytes
text[0]…text[n] –

32-bit algo_num or 0
if no algorithm is
available at this slot
index

15.14.9.2 Internal Default Algorithm
The internal default algorithm is used when enhanced connection establishment (ECE) negotiation
fails. It is mainly used for backward compatibility and can be disabled using "force mode".
Otherwise, users may change doca_pcc_dev_user_algo() in the device app to run a specific
algorithm without considering the algorithm negotiation.

The force mode command is per port:

sudo mlxreg -d /dev/mst/mt41692_pciconf0 -y --get --op "cmd_type=2" --reg_name PPCC --indexes
"local_port=1,pnat=0,lp_msb=0,algo_slot=15,algo_param_index=0"
sudo mlxreg -d /dev/mst/mt41692_pciconf0.1 -y --get --op "cmd_type=2" --reg_name PPCC --indexes
"local_port=1,pnat=0,lp_msb=0,algo_slot=15,algo_param_index=0"

15.14.9.3 Counters

Counters are shared on the port and are only enabled on one algo_slot per port. The following

command enables the counters while enabling the algorithm according to the algo_slot :

sudo mlxreg -d /dev/mst/mt41692_pciconf0 -y --set "cmd_type=1,counter_en=1" --reg_name PPCC --indexes
"local_port=1,pnat=0,lp_msb=0,algo_slot=0,algo_param_index=0"

After counters are enabled on the algo_slot , they can be queried using cmd_type 0xC or 0xD.

989

•

•

sudo mlxreg -d /dev/mst/mt41692_pciconf0 -y --get --op "cmd_type=12" --reg_name PPCC --indexes
"local_port=1,pnat=0,lp_msb=0,algo_slot=0,algo_param_index=0"
sudo mlxreg -d /dev/mst/mt41692_pciconf0 -y --get --op "cmd_type=13" --reg_name PPCC --indexes
"local_port=1,pnat=0,lp_msb=0,algo_slot=0,algo_param_index=0"

15.14.10 References
/opt/mellanox/doca/applications/pcc/

/opt/mellanox/doca/applications/pcc/pcc_params.json

15.15 NVIDIA DOCA PSP Gateway Application Guide
This document describes the usage of the NVIDIA DOCA PSP Gateway sample application on top of an
NVIDIA® BlueField® networking platform or NVIDIA® ConnectX® SmartNIC.

15.15.1 Introduction

The DOCA PSP Gateway application leverages the BlueField or ConnectX hardware capability for
fully offloaded secure network communication using the PSP security protocol. The application
demonstrates how to exchange keys between application instances and insert rules controlling PSP
encryption and decryption using the DOCA Flow library.

The application can be configured to establish out-bound PSP tunnel connections via individual
command-line arguments, or via a text file configured via a command-line argument. The
connections are established on-demand by default, but can also be configured to connect at
startup.

DOCA PSP Gateway is supported at alpha level.

DOCA PSP Gateway is supported only on BlueField-3 or ConnectX-7 and later.

The application exchanges keys using an unencrypted gRPC channel. If your environment
requires the protection of encryption keys, you must modify the application to create the
gRPC channel using the applicable certificates.

The PSP Gateway application supports only the PSP tunnel protocol. The PSP transport
protocol is not supported by the application in this release, although it is supported by the
underlying DOCA Flow library.

The PSP Gateway application supports only IPv4 inner and IPv6 outer headers. Other
combinations are not supported by the application in the current release, although they are
supported by the underlying DOCA Flow library.

https://github.com/google/psp
https://grpc.io/

990

•
•
•

15.15.2 System Design
The DOCA PSP Gateway is designed to run with three ports:

A secure (encrypted) uplink netdev (i.e., p0)
An unsecured (plaintext) netdev representor (VF or SF)
An out-of-bound (OOB) management port, used to communicate with peer instances using
standard sockets

Whether the DOCA PSP Gateway is deployed to a BlueField or a ConnectX device, the functionality is
the same. The Out of Bounds (OOB) network device carries PSP parameters between peers, the
Uplink port carries secure (encrypted) traffic, and the VF carries the unencrypted traffic.

991

When the application is deployed to a DPU, the operation of the PSP encryption protocol is entirely
transparent to the Host. All the resources required to manage the PSP connections are physically
located on the DPU.

992

When the application is deployed to the host, the operation of the PSP encryption protocol is the
responsibility of the host, and resources are allocated from the host. However, the operation of the
PSP encryption protocol is entirely transparent to any virtual machines and containers attached to
the VF network devices.

15.15.3 Application Architecture
The creation of PSP tunnel connections requires two-way communication between peers. Each
"sender" must request a unique security parameters index (SPI) and encryption key from the
intended "receiver". The receiver derives sequential SPIs and encryption keys using the hardware
resources inside the BlueField or ConnectX device, which manages a secret pair of master keys to
produce the SPIs and encryption keys.

One key architectural benefit of PSP over similar protocols (e.g., IPsec) is that the receiver does not
incur any additional resource utilization whenever it creates a new SPI and encryption key. This is
because the decryption key associated with the SPI is computed on the fly, based on the SPI and
master key, for each received packet. This lack of requirement for additional context memory for
each additional decryption rule is partly responsible for the ability of the PSP protocol to scale to
many thousands of peers.

15.15.3.1 Startup vs. On-Demand Tunnel Creation
The default mode of operation is on-demand tunnel creation. That is, when a packet is received
from the unsecured port for which the flow pipeline does not have an encryption rule, the packet
misses to RSS, where the CPU must decide how to handle the packet. If the destination IP address in
the packet belongs to a known peer’s virtual network, the CPU uses gRPC on the OOB network

993

connection to attempt a key exchange with the peer. If the key exchange is successful and a new
encryption flow is created successfully, then the packet is then resubmitted to the pipeline, where
it is encrypted and sent just as any of the following packets having the same destination IP address.

The following diagram illustrates this sequence (the "Slow Path"), for Virtual Machine V1 which
intends to send a packet to Virtual Machine V2. In this case, V1 is hosted on physical host H1 and V2
on physical host H2. The first packet sent (1) results in a miss (2), so the packet is retained (3) while
the keys are exchanged in both directions (4-8). Then the pipeline is updated (9) and the original
packet is resubmitted (10). From there, the packet follows the same logic as the fast path, below.

Once the tunnel is established, and packets received from the VF (1) match a rule (2) and are
encrypted and sent (3-4) without any intervention from the CPU ("Fast Path").

994

•
•

In the case of on-startup tunnel creation, the application's main thread repeatedly attempts to
perform the key exchange for each of the peers specified on the command line until the list is
completed. Each peer is connected only once and, if a connection to one peer fails, the loop
continues onto the next peer and retries the failed connection after all the others have been
attempted.

15.15.3.2 Sampling
The PSP gateway application supports the sample-at-receiver (S) bit in the PSP header. If sampling is
enabled, then packets marked with the S bit are mirrored to the RSS queues and logged to the
console. In addition, on transmit, the S bit of a random subset of packets (1 out of 2^N for
command-line parameter N) is set to 1, and those packets are mirrored to RSS.

To avoid out-of-sequence indication in ROCE traffic, the --maintain-order flag can be used.
When used, the application creates two mirror resources for egress sampling:

One for when the sample bit is on – mirror is to RSS
One for when the sample bit is off – mirror with fwd type drop

Sampling packets on transmit is currently supported only following encryption. Sampling of
egress packets before encryption will be supported in a future release.

995

•
a.

i.

15.15.3.3 Pipelines

15.15.3.3.1 Host-to-Network Flows

Traffic sent from the local, unsecured port (host-to-net) without sampling enabled travels through
the pipeline as shown in the diagrams that follow. Note that the Ingress Root Pipe is the first
destination for packets arriving from either the VF or the secured uplink port. However, the Egress
ACL pipe is the first destination for packets sent via tx_burst on the PF (in the switch model's
expert mode).

The Empty Pipe is a vestigial transition from the Default Domain, in which the Ingress Root Pipe is
created, to the Secure Egress Domain, where the Egress ACL pipe performs encryption.

If sampling is enabled, the host-to-net pipeline is modified as shown in the following:

Here, an Egress Sampling Pipe is added between the Egress ACL Pipe and the Secured Port. It
performs a match of the random metadata, masked according to command-line parameters, and
then:

On match, the following actions occur:
Packet modifications:

The S bit in the PSP header is set to true .

This pipe may be removed in a future release.

996

ii.

b.
c.

•
a.
b.

•
•

The pkt_meta field is set to a sentinel value to indicate to CPU software why
the packet was sent to RSS.

The original packet is forwarded to RSS.
The mirror action forwards the packet to the secured port.

On miss, the following actions occur:
No packet modifications are made.
The packet is forwarded to a vestigial pipe which can then forward the packet to the
wire.

15.15.3.3.2 Network-to-Host Flows

When a packet arrives from the secured port, the following flows are executed.

As before, the Ingress Root Pipe is the first destination and, here, the secured port ID as well as IPv6
outer L3 type are matched for. Matching packets flow to the decryption pipe, which matches the
outer UDP port number against 1000, the constant specified in the PSP specification. On match, the
packet is decrypted, but not yet de-capped. Then the Ingress ACL pipe checks the following:

PSP_Syndrome – did the packet decrypt correctly and pass its ICV check?
PSP SPI and inner IP src address – was this packet encrypted with the key associated with the
given source?

If the packet passes the syndrome and ACL check, it is forwarded to the VF. Otherwise, the
Syndrome Stats pipe counts the occurrences of the different bits in the PSP Syndrome word.

When sampling is enabled, the Ingress Sampling Pipe is inserted before the ACL. Unlike the Egress
Sampling Pipe, no randomness is involved; the match criteria is the sample-on-receive flag in the
PSP header. On a match, the incoming packet are mirrored to RSS with pkt_meta indicating the
reason for forwarding the packet to RSS. On match or miss, the next pipe is the Ingress ACL Pipe.

A fwd_miss cannot target a port.

This pipe may be removed in a future release.

997

•

•
•

•

•

15.15.3.4 DOCA Libraries
This application leverages the following DOCA libraries:

DOCA Flow

Refer to their respective programming guide for more information.

15.15.4 Compiling the Application

The installation of DOCA's reference applications contains the sources of the applications, alongside
the matching compilation instructions. This allows for compiling the applications "as-is" and provides
the ability to modify the sources, then compile a new version of the application.

The sources of the application can be found under the application's directory: /opt/mellanox/

doca/applications/psp_gateway/ .

15.15.4.1 Prerequisites
The application relies on the json-c open source, requiring the following to be installed:

Ubuntu/Debian:

$ sudo apt install libjson-c-dev

CentOS/RHEL:

$ sudo yum install json-c-devel

Installing the gRPC open source

Please refer to the NVIDIA DOCA Installation Guide for Linux for details on how to install
BlueField-related software.

For more information about the applications as well as development and compilation tips,
refer to the DOCA Applications page.

https://grpc.io/

998

1.

•

•
2.

15.15.4.2 Compiling All Applications
All DOCA applications are defined under a single meson project. So, by default, the compilation
includes all of them.

To build all the applications together, run:

cd /opt/mellanox/doca/applications/
meson /tmp/build
ninja -C /tmp/build

15.15.4.3 Compiling Only the Current Application
To directly build only the PSP Gateway application:

cd /opt/mellanox/doca/applications/
meson /tmp/build -Denable_all_applications=false -Denable_psp_gateway=true
ninja -C /tmp/build

Alternatively, users can set the desired flags in the meson_options.txt file instead of providing
them in the compilation command line:

Edit the following flags in /opt/mellanox/doca/applications/meson_options.txt :

Set enable_all_applications to false

Set enable_psp_gateway to true
Run the following compilation commands:

cd /opt/mellanox/doca/applications/
meson /tmp/build
ninja -C /tmp/build

15.15.4.4 Troubleshooting
Refer to the NVIDIA DOCA Troubleshooting Guide for any issue encountered with the compilation of
the application.

doca_psp_gateway is created under /tmp/build/psp_gateway/ .

doca_psp_gateway is created under /tmp/build/psp_gateway/ .

doca_psp_gateway is created under /tmp/build/psp_gateway/ .

999

1.

15.15.5 Running the Application

15.15.5.1 Prerequisites
The PSP gateway application is based on DOCA Flow. Therefore, the user is required to allocate huge
pages:

echo '2048' | sudo tee -a /sys/kernel/mm/hugepages/hugepages-2048kB/nr_hugepages

15.15.5.2 Application Execution
The PSP Gateway application is provided in source form. Therefore, a compilation is required before
the application can be executed.

Application usage instructions:

Usage: doca_psp_gateway [DOCA Flags] [Program Flags]

DOCA Flags:
 -h, --help Print a help synopsis
 -v, --version Print program version information
 -l, --log-level Set the (numeric) log level for the program <10=DISABLE, 20=CRITICAL,
30=ERROR, 40=WARNING, 50=INFO, 60=DEBUG, 70=TRACE>
 --sdk-log-level Set the SDK (numeric) log level for the program <10=DISABLE,
20=CRITICAL, 30=ERROR, 40=WARNING, 50=INFO, 60=DEBUG, 70=TRACE>
 -j, --json <path> Parse all command flags from an input json file

Program Flags:
 -p, --pci-addr PCI BDF of the device in BB:DD.F format (required)
 -r, --repr Device representor list in vf[x-y]pf[x-y] format (required)
 -m, --core-mask EAL Core Mask
 --decap-dmac mac_dst addr of the decapped packets (cannot use w/ vf-name)
 --local-virt-ip Local IP addr of VF (cannot use w/ vf-name)
 -d, --vf-name Name of the virtual function device / unsecured port
 (Host only. Automatically detects MAC/VIP. Requires IPv4 addr bound to
VF.)
 -n, --nexthop-dmac next-hop mac_dst addr of the encapped packets
 -s, --svc-addr Service address of locally running gRPC server; port number optional
 -t, --tunnel Remote host tunnel(s), formatted 'svc-ip:virt-ip'
 -f, --tunnels-file Specifies the location of the tunnels-file. Format: rpc-addr:virt-
addr,virt-addr,...
 -c, --cookie Enable use of PSP virtualization cookies
 -a, --disable-ingress-acl Allows any ingress packet that successfully decrypts
 --sample-rate Sets the log2 sample rate: 0: disabled, 1: 50%, ... 16: 1.5e-3%
 -x, --max-tunnels Specify the max number of PSP tunnels

On some OSs (e.g., RockyLinux, OpenEuler, CentOS 8.2), the default huge page size on the
BlueField (and Arm hosts) is larger than 2MB, and is often 512MB instead. The user can find
out the size of the huge pages using the following command:

$ grep -i huge /proc/meminfo

AnonHugePages: 0 kB
ShmemHugePages: 0 kB
FileHugePages: 0 kB
HugePages_Total: 4
HugePages_Free: 4
HugePages_Rsvd: 0
HugePages_Surp: 0
Hugepagesize: 524288 kB
Hugetlb: 6291456 kB

Given that the guiding principle is to allocate 4GB of RAM, in such cases instead of
allocating 2048 pages, the user should allocate the matching amount (8 pages):

echo '8' | sudo tee -a /sys/kernel/mm/hugepages/hugepages-524288kB/nr_hugepages

1000

2.

3.

•

•

•

4.

 -o, --crypt-offset Specify the PSP crypt offset
 --psp-version Specify the PSP version for outgoing connections (0 or 1)
 -z, --static-tunnels Create tunnels at startup
 -k, --debug-keys Enable debug keys
 --stat-print Enable printing statistics
 --perf-print Enable printing performance metrics (key-gen, insertion, all)
 --show-rss-rx-packets Show RSS rx packets
 --outer-ip-type outer IP type

This usage printout can be printed to the command line using the -h (or --help) options:

./doca_psp_gateway -h

CLI example for running the application on the BlueField or host:

./doca_psp_gateway -p 03:00.0 -r vf0pf0 -d ens2f0v0 -t 10.1.1.55:192.168.1.55

The PCIe address identifier (-p flag) should match the addresses of the desired PCIe
device
The -d flag indicates the MAC address that should be applied to incoming packets
upon decap. It should match the MAC address of the virtual function specified by the
-r argument.

The -t flag indicates the mapping of the virtual IP address 192.168.x.y to an out-

of-bounds network address 10.1.1.55
The application also supports a JSON-based deployment mode, in which all command-line
arguments are provided through a JSON file:

./doca_psp_gateway --json [json_file]

For example:

./doca_psp_gateway --json psp_gateway_params.json

15.15.5.3 Command Line Flags
Flag Type Short Flag Long Flag/JSON

Key
Description JSON Content

General flags h help Prints a help synopsis N/A

v version Prints program version
information

N/A

For additional information, refer to section "Command Line Flags".

Before execution, ensure that the used JSON file contains the correct configuration
parameters, and especially the PCIe addresses necessary for the deployment.

1001

•
•
•
•
•
•
•

•
•
•
•
•
•
•

Flag Type Short Flag Long Flag/JSON
Key

Description JSON Content

l log-level Set the log level for the
application:

DISABLE=10
CRITICAL=20
ERROR=30
WARNING=40
INFO=50
DEBUG=60
TRACE=70 (requires
compilation
with TRACE log
level support)

"log-level": 60

N/A sdk-log-level Sets the log level for the
program:

DISABLE=10
CRITICAL=20
ERROR=30
WARNING=40
INFO=50
DEBUG=60
TRACE=70

"sdk-log-
level": 40

j json Parse all command flags
from an input JSON file

N/A

Program flags p pci-addr PCIe BDF of the device in
BB:DD.F format

"p": "03:00.0"

r repr Device representor list in
vf[x-y]pf[x-y]
format

"r": "vf0pf0"

m core-mask EAL core mask

"m": "0xf"

N/A decap-dmac mac_dst address of the
decapped packets
(cannot be used with
vf-name)

"dcap-dmac":
"11:22:33:44:55:
:66"

N/A local-virt-ip Local IP address of VF
(cannot be used with
vf-name)

"local-virt-ip":
"192,168.1.100"

N/A vf-name Name of the VF device/
unsecured port (Host
only. Automatically
detects MAC/VIP.
Requires IPv4 address
bound to VF.)

"vf-name":
"ens2f0v0"

n nexthop-dmac Next-hop mac_dst
address of the encapped
packets

"nexthop-dmac": "
77:88:99:aa:bb:c
c"

1002

•
•
•

Flag Type Short Flag Long Flag/JSON
Key

Description JSON Content

s svc-addr Service address of locally
running gRPC server;
port number optional

"svc-addr": "10.
1.1.50"

t tunnel Remote host tunnel(s),
formatted rpc-

addr:virt-addr
"tunnel": "10.1.
1.55:192.168.1.1
00"

f tunnels-file Specifies the location of
the tunnels-file. Format:
rpc-addr:virt-

addr,virt-addr,...

"tunnels-file":
"tunnels.txt"

c cookie Enable use of PSP
virtualization cookies

"cookie": true

a disable-ingress-

acl

Allows any ingress
packet that successfully
decrypts

"disable-
ingress-acl": tr
ue

N/A sample-rate Sets the log2 sample
rate:

0 – disabled,
1 – 50%, ...
16 – 1.5e-3%

"sample-rate":
16

x max-tunnels Specify the max number
of PSP tunnels

"max-
tunnels": 4096

o crypt-offset Specify the PSP crypt
offset

"crypt-
offset": 7

N/A psp-version Specify the PSP version
for outgoing connections
(0 or 1)

"psp-version": 0

z static-tunnels Create tunnels at startup
using the given local IP
address

"static-
tunnels": "192.1
68.1.99"

k debug-keys Enable debug keys

"debug-keys": tr
ue

N/A outer-ip-type Outer IP tunnel type
(ipv4 or ipv6). When
not specified, default is
ipv6 .

"outer-ip-type":
ipv4

1003

1.
a.

i.

ii.

b.

c.

d.
i.
ii.

Refer to DOCA Arg Parser for more information regarding the supported flags and execution modes.

15.15.5.4 Tunnel Mappings File
A text file which maps an OOB network address to a list of virtual IP addresses behind that physical
address can be specified on the command line. The format is as follows:

(Comments are allowed)
Format:
svc-oob-ip-addr:virt-addr,virt-addr,...
Specify a service address of 10.1.1.55 which hosts virtual addresses 192.168.1.101 and others.
10.1.1.55:192.168.1.101,192.168.1.102,192.168.1.103,192.168.1.104
Specify a service address of 10.1.1.56 which hosts virtual addresses 192.168.1.201 and others.
10.1.1.56:192.168.1.201,192.168.1.202,192.168.1.203,192.168.1.204

When a packet from the VF does not match any existing flows, this table defines the physical host
which should provide the tunnel to the given (virtual) destination.

15.15.5.5 Troubleshooting
Refer to the NVIDIA DOCA Troubleshooting Guide for any issue encountered with the installation or
execution of the DOCA applications.

15.15.6 Application Code Flow
Main loop code flow

Initialize the logger facility.
 The standard logger and the SDK logger are created, and the SDK logger default
log level is selected.

doca_log_backend_create_standard();
doca_log_backend_create_with_file_sdk(stdout, &sdk_log);
doca_log_backend_set_sdk_level(sdk_log, DOCA_LOG_LEVEL_WARNING);

The signal handler is connected to enable a clean shutdown.

signal(SIGINT, signal_handler);
signal(SIGTERM, signal_handler);

Parse application arguments. The main function invokes psp_gw_argp_exec() , which
initializes the arg parser resources and registers DOCA general parameters, and then
registers the PSP application-specific parameters. Then the parser is invoked.

doca_argp_init();
psp_gw_register_params();
doca_argp_start();

DPDK initialization. Call rte_eal_init() to initialize EAL resources with the provided

EAL flags for not probing the ports (-a00:0.0).

rte_eal_init(n_eal_args, (char **)eal_args);

Initialize devices and ports.
Open DOCA devices with input PCIe addresses/interface names.
Probe DPDK port from each opened device.

1004

iii.

e.

f.

i.
ii.
iii.
iv.

g.

h.

i.
i.

j.

open_doca_device_with_pci(...); // not part of doca_flow; see doca/samples/common.c
doca_dpdk_port_probe(...);

The MAC and IP addresses of the PF are queried and logged.

rte_eth_macaddr_get(...);
doca_devinfo_get_ipv6_addr(...);
DOCA_LOG_INFO("Port %d: Detected PF mac addr: %s, IPv6 addr: %s, total ports: %d", ...);

Initialize and start DPDK ports. Initialize DPDK ports, including mempool allocation. No
hairpin queues are created.

dpdk_queues_and_ports_init(); // not part of doca_flow; see doca/applications/common/dpdk_utils.c

Initialize DOCA Flow objects used by the PSP Gateway application. The DOCA Flow
library is initialized with the string "switch,hws,isolated,expert" , because it is
desirable for the application to act as an intermediary between the uplink physical
port and some number of VF representors (switch mode), and hws (hardware steering

mode) and isolated mode are mandatory for switch mode. The optional expert
flag prevents DOCA Flow from automating certain packet operations and gives more
control to the application, as described in the DOCA Flow page.

PSP_GatewayFlows psp_flows(&pf_dev, vf_port_id, &app_config);
psp_flows.init();

Initialize DOCA Flow library.
Start the ports.
Allocate shared resources (PSP crypto objects and Mirror actions).
Create the ingress and egress pipes.

Create the gRPC service.

PSP_GatewayImpl psp_svc(&app_config, &psp_flows);

Launch the L-Core threads to handle RSS packets.

rte_eal_remote_launch(lcore_pkt_proc_func, &lcore_params, lcore_id);

Launch the gRPC service.
This implementation uses InsecureServerCredentials . Update as needed.

grpc::ServerBuilder builder;
builder.AddListeningPort(server_address, grpc::InsecureServerCredentials());
builder.RegisterService(&psp_svc);
auto server_instance = builder.BuildAndStart();

Wait for traffic. If configured to connect at startup, process the list of remaining
connections. Then display the flow pipe counters.

while (!force_quit) {
 psp_svc.try_connect(remotes_to_connect, local_vf_addr);
...
 psp_flows.show_static_flow_counts();
 psp_svc.show_flow_counts();
}

1005

•
k.

i.

ii.

iii.

2.
a.

b.

c.

d.

i.

e.

f.

g.

•

Wait in a loop until the user terminates the program.
PSP Gateway cleanup:

Destroy DPDK ports and queues.

dpdk_queues_and_ports_fini();

DPDK finish.

dpdk_fini();

Calls rte_eal_destroy() to destroy initialized EAL resources.
Arg parser destroy.

doca_argp_destroy()

Miss-packet code flow.
The L-Core launch routine from the main loop pointed to the lcore_pkt_proc_func
routine.
The force_quit flag is polled to respond to the signal handler.

while (!*params->force_quit) { ... }

The rte_eth_rx_burst function polls the PF queue for received packets.

nb_rx_packets = rte_eth_rx_burst(port_id, queue_id, rx_packets, MAX_RX_BURST_SIZE);

Inside handle_packet() , the packet metadata is inspected to detect whether this
packet is sampled on ingress, sampled on egress, or a miss packet.

uint32_t pkt_meta = rte_flow_dynf_metadata_get(packet);

Sampled packets are simply logged using the rte_pktmbuf_dump function.

Miss packets are passed to the handle_miss_packet method of the gRPC service. This
method handles cases where an application attached to the VF wishes to send a packet
to another virtual address, but a PSP tunnel must first be established by exchanging SPI
and key information between hosts.
The service acts as a gRPC client, and the appropriate server is looked up from the
config->net_config.hosts vector, which is comprised of hosts passed via the -t

tunnels arguments or the -f tunnels file argument.

Once the client connection exists, the request_tunnel_to_host method takes care

of invoking the the RequestTunnelParams operation defined in the schema.
Optionally, this function generates a corresponding set of tunnel parameters
appropriate for the server host to send traffic back via
generate_tunnel_params() .

doca_flow_crypto_psp_spi_key_bulk_generate(bulk_key_gen);
doca_flow_crypto_psp_spi_key_bulk_get(bulk_key_gen, 0, &spi, key);
doca_flow_crypto_psp_spi_key_wipe(bulk_key_gen, 0);

1006

h.

i.

j.

k.

The RPC operation is invoked, and if successful, create_tunnel_flow is called to
create the egress flow:

status = stub->RequestTunnelParams(&context, request, &response);

The create_tunnel_flow method translates the resulting Protobuf objects to

application-specific data structures and passes them to the add_encrypt_entry
method of the flows object. Here, the PSP SPI and key are programmed into an
available crypto_id index as follows.

struct doca_flow_shared_resource_cfg res_cfg = {};
res_cfg.domain = DOCA_FLOW_PIPE_DOMAIN_SECURE_EGRESS;
res_cfg.psp_cfg.key_cfg.key_type = DOCA_FLOW_CRYPTO_KEY_256;
res_cfg.psp_cfg.key_cfg.key = (uint32_t *)encrypt_key;
doca_flow_shared_resource_cfg(DOCA_FLOW_SHARED_RESOURCE_PSP, session->crypto_id, &res_cfg);

A flow pipe entry which references the newly programmed PSP encryption key (via its
index crypto.crypto_id) must be inserted. Additionally, this pipe entry must specify
all the outer Ethernet, IP, UDP, and PSP header fields to insert.

format_encap_data(session, actions.crypto_encap.encap_data);
actions.crypto.action_type = DOCA_FLOW_CRYPTO_ACTION_ENCRYPT;
actions.crypto.resource_type = DOCA_FLOW_CRYPTO_RESOURCE_PSP;
actions.crypto.crypto_id = session->crypto_id;
...

doca_flow_pipe_add_entry(pipe_queue, pipe, match, actions, mon, fwd, flags, &status, entry);
...

doca_flow_entries_process(port, 0, DEFAULT_TIMEOUT_US, num_of_entries);

The original packet received via rte_ethdev_rx_burst is sent back through the

newly updated pipelines via rte_ethdev_tx_burst . Since the port_id argument is

that of the PF, and since DOCA Flow has been initialized in expert mode, the packet

•

•

•

SPI and crypto_id are two independent concepts:
The SPI value in the PSP packet header indicates to the receiver which
key was used by the sender to encrypt the data. Each receiver
computes an SPI and key to provide to a sender. Since each receiver is
responsible for tracking its next SPI, multiple receivers may provide the
same SPI to a sender, so one sender may send the same SPI to multiple
different peers. This is allowed, as each of the receiving peers has its
own decryption key to handle that SPI.
The crypto_id acts as an index into the bucket of PSP keys allocated

by DOCA Flow. The doca_flow_shared_resource_cfg() function
writes a given PSP encryption key to a given slot in the bucket of keys
in NIC memory. These slots can be overwritten as needed by the
application.
There is no explicit association between crypto_id and SPI. The

doca_flow_shared_resource_cfg() function writes a key at the slot

provided by the crypto_id argument, then the flow pipe entry

actions.crypto.crypto_id references this key, and

actions.crypto_encap.encap_data includes a PSP header with the
desired SPI.

1007

3.
a.

b.

c.

d.

•
•
•

is transferred to the root of the egress domain (the "empty pipe" before
egress_acl_pipe).

nsent = rte_eth_tx_burst(port_id, queue_id, &packet, 1);

Tunnel parameter request handling
The gRPC service provided by the PSP Gateway implements the RequestTunnelParams
operation referenced above. A client uses this operation to request an SPI and key to
encrypt traffic to send to the server's NIC device. The request indicates the virtual
remote address for which the tunnel will be created.
This operation begins by generating a new SPI and key inside
generate_tunnel_params() as described previously.
The operation creates an ACL entry permitting the new SPI and the remote virtual
address using the add_ingress_acl_entry method of the Flows object.

doca_flow_match match = {};
match.parser_meta.psp_syndrome = 0;
match.tun.type = DOCA_FLOW_TUN_PSP;
match.tun.psp.spi = RTE_BE32(session->spi_ingress);
match.inner.l3_type = DOCA_FLOW_L3_TYPE_IP4;
match.inner.ip4.src_ip = session->src_vip;
...

doca_flow_pipe_add_entry(pipe_queue, pipe, match, actions, mon, fwd, flags, &status, entry);
...

doca_flow_entries_process(port, 0, DEFAULT_TIMEOUT_US, num_of_entries);

If the request included parameters for traffic in the reverse direction (traffic to
encrypt and send to the client), these parameters are translated and passed to the
Flows object by calling create_tunnel_flow described above.

15.15.6.1 References
PSP Security Protocol Specification
Google's Open-Source PSP tools
Google Remote Procedure Calls library

15.16 NVIDIA DOCA Secure Channel Application Guide
This guide provides a secure channel implementation on top of NVIDIA® BlueField® DPU.

15.16.1 Introduction
The DOCA Secure Channel reference application leverages the DOCA Comch API which creates
a secure, network independent communication channel between the host and the NVIDIA BlueField
DPU.

Comch allows the host to control services on the DPU, activate certain offloads, or exchange
messages using client-server/producer-consumer framework.

The client (host) side can communicate only with one server at a time while the server side is able
to communicate with multiple clients.

The API allows communication between any PF/VF/SF on the host to the server located on the DPU.

https://raw.githubusercontent.com/google/psp/main/doc/PSP_Arch_Spec.pdf
https://github.com/google/psp
https://grpc.io/

1008

•

•

Once a client-server connection is established, multiple producer-consumer instances can be
spawned to transfer large amount of data in a first-in-first-out (FIFO) style queue.

Secure channel allows the user to select the message size and amount to be exchanged between the
client and the server to simulate heavy load on the channel.

15.16.2 System Design
A secure channel application runs on client mode (host) and server mode (DPU). Once a channel is
open, messages can flow from both sides.

15.16.3 Application Architecture
The secure channel application runs on top of the DOCA Comch API.

The application begins by establishing a client-server connection between host (client) and DPU
(server). Once this connection is established, the application on both sides spawns two new threads:

Consumer – The consumer thread registers a number of post_recv buffers with the opposite
end of the connection
Producer – The producer thread, after it detects the consumer, populates these post_recv
buffers with data that can then be read by the consumer

Once the consumer has processed a received buffer, the buffer is reposted (via task submit) to again
be populated by the opposite producer.

When the producer has sent the requested number of messages, and the consumer has received the
same amount, both threads exit and the main client-server connection is destroyed.

1009

•

The flow is described in the following diagram:

15.16.4 DOCA Libraries
This application leverages the following DOCA library:

DOCA Comch

Refer to its respective programming guide for more information.

15.16.5 Compiling the Application

The installation of DOCA's reference applications contains the sources of the applications, alongside
the matching compilation instructions. This allows for compiling the applications "as-is" and provides
the ability to modify the sources, then compile a new version of the application.

The sources of the application can be found under the application's directory: /opt/mellanox/

doca/applications/secure_channel/ .

15.16.5.1 Compiling All Applications
All DOCA applications are defined under a single meson project. So, by default, the compilation
includes all of them.

Please refer to the NVIDIA DOCA Installation Guide for Linux for details on how to install
BlueField-related software.

For more information about the applications as well as development and compilation tips,
refer to the DOCA Applications page.

1010

1.

•

•
2.

1.

To build all the applications together, run:

cd /opt/mellanox/doca/applications/
meson /tmp/build
ninja -C /tmp/build

15.16.5.2 Compiling Only the Current Application
To directly build only the secure channel application:

cd /opt/mellanox/doca/applications/
meson /tmp/build -Denable_all_applications=false -Denable_secure_channel=true
ninja -C /tmp/build

Alternatively, users can set the desired flags in the meson_options.txt file instead of providing
them in the compilation command line:

Edit the following flags in /opt/mellanox/doca/applications/meson_options.txt :

Set enable_all_applications to false

Set enable_secure_channel to true
Run the following compilation commands:

cd /opt/mellanox/doca/applications/
meson /tmp/build
ninja -C /tmp/build

15.16.5.3 Troubleshooting
Refer to the NVIDIA DOCA Troubleshooting Guide for any issue encountered with the compilation of
the application.

15.16.6 Running the Application

15.16.6.1 Application Execution
The secure channel application is provided in source form. Therefore, a compilation is required
before the application can be executed.

Application usage instructions:

doca_secure_channel is created under /tmp/build/secure_channel/ .

doca_secure_channel is created under /tmp/build/secure_channel/ .

doca_secure_channel is created under /tmp/build/secure_channel/ .

1011

2.

3.

4.

Usage: doca_secure_channel [DOCA Flags] [Program Flags]

DOCA Flags:
 -h, --help Print a help synopsis
 -v, --version Print program version information
 -l, --log-level Set the (numeric) log level for the program <10=DISABLE, 20=CRITICAL,
30=ERROR, 40=WARNING, 50=INFO, 60=DEBUG, 70=TRACE>
 --sdk-log-level Set the SDK (numeric) log level for the program <10=DISABLE, 20=CRITICA
L, 30=ERROR, 40=WARNING, 50=INFO, 60=DEBUG, 70=TRACE>
 -j, --json <path> Parse all command flags from an input json file

Program Flags:
 -s, --msg-size Message size to be sent
 -n, --num-msgs Number of messages to be sent
 -p, --pci-addr DOCA Comm Channel device PCI address
 -r, --rep-pci DOCA Comm Channel device representor PCI address (needed only on DPU)

CLI example for running the application on the BlueField:

./doca_secure_channel -s 256 -n 10 -p 03:00.0 -r 3b:00.0

CLI example for running the application on the host:

./doca_secure_channel -s 256 -n 10 -p 3b:00.0

The application also supports a JSON-based deployment mode, in which all command-line
arguments are provided through a JSON file:

./doca_secure_channel --json [json_file]

For example:

./doca_secure_channel --json ./sc_params.json

This usage printout can be printed to the command line using the -h (or --help)
options:

./doca_secure_channel -h

For additional information, refer to section "Command Line Flags".

Both the DOCA Comch device PCIe address (03:00.0) and the DOCA Comch device

representor PCIe address (3b:00.0) should match the addresses of the desired PCIe
devices.

The DOCA Comch device PCIe address (3b:00.0) should match the address of the
desired PCIe device.

Before execution, ensure that the used JSON file contains the correct configuration
parameters, and especially the PCIe addresses necessary for the deployment.

1012

•
•
•
•
•
•
•

•
•
•
•
•
•
•

15.16.6.2 Command Line Flags
Flag Type Short Flag Long Flag/JSON

Key
Description JSON Content

General flags h help Prints a help synopsis N/A

v version Prints program version
information

N/A

l log-level Set the log level for the
application:

DISABLE=10
CRITICAL=20
ERROR=30
WARNING=40
INFO=50
DEBUG=60
TRACE=70 (requires
compilation
with TRACE log
level support)

"log-level": 60

N/A sdk-log-level Sets the log level for
the program:

DISABLE=10
CRITICAL=20
ERROR=30
WARNING=40
INFO=50
DEBUG=60
TRACE=70

"sdk-log-level":
40

j json Parse all command flags
from an input JSON file

N/A

Program flags s msg-size Message size in bytes

"msg-size": 128

n num-msgs Number of messages to
send on both sides

"num-msgs": 256

p pci-addr DOCA Comch device
PCIe address

"pci-addr": 03:00
.1

This is a
mandatory
flag.

This is a
mandatory
flag.

This is a
mandatory
flag.

1013

1.
a.

b.

c.

d.

i.

ii.

iii.
2.

Flag Type Short Flag Long Flag/JSON
Key

Description JSON Content

r rep-pci DOCA Comch device
representor PCIe
address

"rep-pci": b1:00.
1

15.16.6.3 Troubleshooting
Refer to the NVIDIA DOCA Troubleshooting Guide for any issue encountered with the installation or
execution of the DOCA applications.

15.16.7 Application Code Flow
Parse application argument.

Initialize the arg parser resources and register DOCA general parameters.

doca_argp_init();

Register secure channel application parameters.

register_secure_channel_params();

Parse application parameters:

doca_argp_start();

Establish the client-server control path connection:

comch_utils_fast_path_init();

Create a doca_comch_client or doca_comch_server depending on where the
application is run (x86 host or DPU Arm cores).
Register a callback which is triggered when new consumers are created on the
opposite end.
Progress the connection until it becomes established.

Run main logic.

sc_start();

This is a
mandatory
flag only on
the DPU.

Refer to DOCA Arg Parser for more information regarding the supported flags and execution
modes.

1014

a.

b.
c.

i.
ii.

iii.

iv.

v.

vi.
d.

i.
ii.

iii.

iv.

v.

vi.

e.

•

•

Send a message on the control channel telling the opposite end how many fastpath
messages it intends to send and their length.
Wait to receive a similar message from the opposite side.
Start a producer thread:

Create and starts a doca_comch_producer .
Wait until a consumer has been registered from the opposite end of the control
channel.
Create a doca_buf of input message length to send repeatedly.

Submit the max number of doca_comch_producer_task_send tasks each

containing the doca_buf .
Resubmit each task from its completion callback until the requested number of
tasks are sent.
Destroy producer and ends thread.

Start a consumer thread
Create and starts a doca_comch_consumer .
Progress until consumer has been fully registered with the control channel
connection.
Create doca_buf s of negotiated size to receive data on.

Submit the max number of doca_comch_consumer_task_post_recv tasks with

each of the allocated doca_buf s.

Resubmit each post_recv buffer from its callback when it has been populated
by a producer.
Destroy consumer and thread when it has received the communicated number of
fastpath messages.

Sends (DPU) or waits (host) on a message to indicate that all fastpath messages have
completed and the Comch control connection can be destroyed.

15.16.8 References
/opt/mellanox/doca/applications/secure_channel/

/opt/mellanox/doca/applications/secure_channel/sc_params.json

15.17 NVIDIA DOCA Simple Forward VNF Application
Guide

This guide provides a Simple Forward implementation on top of NVIDIA® BlueField® DPU.

15.17.1 Introduction
Simple forward is a forwarding application that leverages the DOCA Flow API to take either VXLAN,
GRE, or GTP traffic from a single RX port and transmits it on a single TX port.

For every packet received on an RX queue on a given port, DOCA Simple Forward checks the packet's
key, which consists of a 5-tuple. If it finds that the packet matches an existing flow, then it does not
create a new one. Otherwise, a new flow is created with a FORWARDING component. Finally, the
packet is forwarded to the TX queue of the egress port if the "rx-only" mode is not set.

1015

The FORWARDING component type depends on the flags delivered when running the application. For
example, if the hairpinq flag is provided, then the FORWARDING component would be hairpin.
Otherwise, it would be RSS'd to software, and hence every VXLAN, GTP, or GRE packet would be
received on RX queues.

Simple forward should be run with dual ports. By using a traffic generator, the RX port receives the
VXLAN, GRE, or GTP packets and forwarding forwards them back to the traffic generator.

15.17.2 System Design
The following diagram illustrates simple forward's packet flows. It receives traffic coming from the
wire and passes it to the other port.

1016

15.17.3 Application Architecture
Simple forward first initializes DPDK, after which the application handles the incoming packets.

The following diagram illustrates the initialization process.

1017

1.

2.

3.

1.
2.

•
•

3.

•

Init_DPDK – EAL init, parse argument from command line and register signal.

Start port – mbuf_create , dev_configure , rx/tx/hairpin queue setup and start the port.

Simple_fwd INIT – create flow tables, build default forward pipes.

The following diagram illustrates how to process the packet.

Based on the packet's info, find the key values (e.g. src/dst IP, src/dst port, etc).
Traverse the inner flow tables, check if the keys exist or not.

If yes, update inner counter
If no, a new flow table is added to the DPU

Forward the packet to the other port.

15.17.4 DOCA Libraries
This application leverages the following DOCA library:

DOCA Flow

Refer to its respective programming guide for more information.

15.17.5 Compiling the Application

The installation of DOCA's reference applications contains the sources of the applications, alongside
the matching compilation instructions. This allows for compiling the applications "as-is" and provides
the ability to modify the sources, then compile a new version of the application.

Please refer to the NVIDIA DOCA Installation Guide for Linux for details on how to install
BlueField-related software.

For more information about the applications as well as development and compilation tips,
refer to the DOCA Applications page.

1018

1.

•

•
2.

The sources of the application can be found under the application's directory: /opt/mellanox/

doca/applications/simple_fwd_vnf/ .

15.17.5.1 Compiling All Applications
All DOCA applications are defined under a single meson project. So, by default, the compilation
includes all of them.

To build all the applications together, run:

cd /opt/mellanox/doca/applications/
meson /tmp/build
ninja -C /tmp/build

15.17.5.2 Compiling Simple Forward Application Only
To directly build only the simple forward application:

cd /opt/mellanox/doca/applications/
meson /tmp/build -Denable_all_applications=false -Denable_simple_fwd_vnf=true
ninja -C /tmp/build

Alternatively, users can set the desired flags in the meson_options.txt file instead of providing
them in the compilation command line:

Edit the following flags in /opt/mellanox/doca/applications/meson_options.txt :

Set enable_all_applications to false

Set enable_simple_fwd_vnf to true
Run the following compilation commands:

cd /opt/mellanox/doca/applications/
meson /tmp/build
ninja -C /tmp/build

15.17.5.3 Troubleshooting
Refer to the NVIDIA DOCA Troubleshooting Guide for any issue encountered with the compilation of
the application.

doca_simple_fwd_vnf is created under /tmp/build/simple_fwd_vnf/ .

doca_simple_fwd_vnf is created under /tmp/build/simple_fwd_vnf/ .

doca_simple_fwd_vnf is created under /tmp/build/simple_fwd_vnf/ .

1019

1.

a.

b.

2.

1.

15.17.6 Running the Application

15.17.6.1 Prerequisites
A FLEX profile number should be manually set to 3 on the system for the application to build
the GRE, standard VXLAN and GRE pipes.

Set FLEX profile number to 3 from the DPU.

sudo mlxconfig -d <pcie_address> s FLEX_PARSER_PROFILE_ENABLE=3

Perform a BlueField system reboot for the mlxconfig settings to take effect.

The Simple Forward application is based on DOCA Flow. Therefore, the user is required to
allocate huge pages.

echo '2048' | sudo tee -a /sys/kernel/mm/hugepages/hugepages-2048kB/nr_hugepages

On some operating systems (RockyLinux, OpenEuler, CentOS 8.2) the default huge page size
on the DPU (and Arm hosts) is larger than 2MB, and is often 512MB instead. Once can find out
the sige of the huge pages using the following command:

$ grep -i huge /proc/meminfo

AnonHugePages: 0 kB
ShmemHugePages: 0 kB
FileHugePages: 0 kB
HugePages_Total: 4
HugePages_Free: 4
HugePages_Rsvd: 0
HugePages_Surp: 0
Hugepagesize: 524288 kB
Hugetlb: 6291456 kB

Given that the guiding principal is to allocate 4GB of RAM, in such cases instead of allocating
2048 pages, one should allocate the matching amount (8 pages):

echo '8' | sudo tee -a /sys/kernel/mm/hugepages/hugepages-524288kB/nr_hugepages

15.17.6.2 Application Execution
The simple forward application is provided in source form. Therefore, a compilation is required
before the application can be executed.

Application usage instructions:

Usage: doca_simple_forward_vnf [DPDK Flags] -- [DOCA Flags] [Program Flags]

DOCA Flags:
 -h, --help Print a help synopsis
 -v, --version Print program version information
 -l, --log-level Set the (numeric) log level for the program <10=DISABLE, 20=CRITICAL,
30=ERROR, 40=WARNING, 50=INFO, 60=DEBUG, 70=TRACE>

Resetting the firmware can be done from the BlueField as well. For more
information, refer to step 3.b of the "Upgrading Firmware" section of the
NVIDIA DOCA Installation Guide for Linux.

1020

2.

3.

 --sdk-log-level Set the SDK (numeric) log level for the program <10=DISABLE, 20=CRITICA
L, 30=ERROR, 40=WARNING, 50=INFO, 60=DEBUG, 70=TRACE>
 -j, --json <path> Parse all command flags from an input json file

Program Flags:
 -t, --stats-timer <time> Set interval to dump stats information
 -q, --nr-queues <num> Set queues number
 -r, --rx-only Set rx only
 -o, --hw-offload Set PCI address of the RXP engine to use
 -hq, --hairpinq Set forwarding to hairpin queue
 -a, --age-thread Start thread do aging

CLI example for running the application on the BlueField:

./doca_simple_fwd_vnf -a auxiliary:mlx5_core.sf.4 -a auxiliary:mlx5_core.sf.5 -- -l 60

CLI example for running the application on the host:

This usage printout can be printed to the command line using the -h (or --help)
options:

./doca_simple_fwd_vnf -- -h

For additional information, refer to section "Command Line Flags".

SFs must be enabled according to the NVIDIA BlueField DPU Scalable Function User
Guide.

Before creating SFs on a specific physical port, it is important to verify the encap
mode on the respective PF FDB. The default mode is basic . To check the encap
mode, run:

cat /sys/class/net/p0/compat/devlink/encap

In this case, disable encap on the PF FDB before creating the SFs by running:

/opt/mellanox/iproute2/sbin/devlink dev eswitch set pci/0000:03:00.0 mode legacy
/opt/mellanox/iproute2/sbin/devlink dev eswitch set pci/0000:03:00.1 mode legacy
echo none > /sys/class/net/p0/compat/devlink/encap
echo none > /sys/class/net/p1/compat/devlink/encap
/opt/mellanox/iproute2/sbin/devlink dev eswitch set pci/0000:03:00.0 mode switchdev
/opt/mellanox/iproute2/sbin/devlink dev eswitch set pci/0000:03:00.1 mode switchdev

If the encap mode is set to basic then the application fails upon initialization.

a.
b.

The flag -a auxiliary:mlx5_core.sf.4 -a auxiliary:mlx5_core.sf.5 is
mandatory for proper usage of the application.

Modifying this flag results unexpected behavior as only 2 ports are supported.
The SF number is arbitrary and configurable.

The SF numbers must match the desired SF devices.

1021

4.

•
•
•
•
•
•
•

./doca_simple_fwd_vnf -a 04:00.3 -a 04:00.4 -- -l 60

The application also supports a JSON-based deployment mode, in which all command-line
arguments are provided through a JSON file:

./doca_simple_fwd_vnf --json [json_file]

For example:

./doca_simple_fwd_vnf --json ./simple_fwd_params.json

15.17.6.3 Command Line Flags
Flag Type Short Flag Long Flag/

JSON Key
Description JSON Content

DPDK Flags a devices Add a PCIe device into
the list of devices to
probe.

"devices":
[
 {"device": "sf", "id":
"4","sft": true},
 {"device": "sf", "id":
"5","sft": true},
]

General flags h help Prints a help synopsis N/A

v version Prints program version
information

N/A

l log-level Set the log level for the
application:

DISABLE=10
CRITICAL=20
ERROR=30
WARNING=40
INFO=50
DEBUG=60
TRACE=70 (requires
compilation
with TRACE log level
support)

"log-level": 60

The device identifiers must match the desired network devices.

For more information, refer to section "Running DOCA Application on Host" in NVIDIA
DOCA Virtual Functions User Guide.

Before execution, ensure that the used JSON file contains the correct configuration
parameters, and especially the PCIe addresses necessary for the deployment.

1022

•
•
•
•
•
•
•

1.
a.

b.

Flag Type Short Flag Long Flag/
JSON Key

Description JSON Content

N/A sdk-log-level Sets the log level for the
program:

DISABLE=10
CRITICAL=20
ERROR=30
WARNING=40
INFO=50
DEBUG=60
TRACE=70

"sdk-log-level": 40

j json Parse all command flags
from an input JSON file

N/A

Program flags t stats-timer Set interval to dump
stats information.

"stats-timer": 2

q nr-queues Set queues number.

"nr-queues": 4

r rx-only Set RX only. When set,
the packets will not be
sent to the TX queues.

"rx-only": false

o hw-offload Set HW offload of the
RXP engine to use.

"hw-offload": false

hq hairpinq Set forwarding to hairpin
queue.

"hairpinq": false

a age-thread Start a dedicated thread
that handles the aged
flows.

"age-thread": false

15.17.6.4 Troubleshooting
Refer to the NVIDIA DOCA Troubleshooting Guide for any issue encountered with the installation or
execution of the DOCA applications.

15.17.7 Application Code Flow
Parse application argument.

Initialize arg parser resources and register DOCA general parameters.

doca_argp_init();

Register application parameters.

Refer to DOCA Arg Parser for more information regarding the supported flags and execution
modes.

1023

c.

i.
ii.

2.

3.

a.
b.

c.

d.

e.

f.
4.

a.

b.

5.

a.

b.

c.

6.

register_simple_fwd_params();

Parse the arguments.

doca_argp_start();

Parse DPDK flags and invoke handler for calling the rte_eal_init() function.
Parse app parameters.

DPDK initialization.

dpdk_init();

Calls rte_eal_init() to initialize EAL resources with the provided EAL flags.

DPDK port initialization and start.

dpdk_queues_and_ports_init();

Initialize DPDK ports.
Create mbuf pool using

 rte_pktmbuf_pool_create .

Driver initialization – use

 rte_eth_dev_configure
to configure the number of queues.
Rx/Tx queue initialization – use rte_eth_rx_queue_setup and

rte_eth_tx_queue_setup to initialize the queues.

Rx hairpin queue initialization – use rte_eth_rx_hairpin_queue_setup to initialize
the queues.
Start the port using rte_eth_dev_start .

Simple forward initialization.

simple_fwd_init();

simple_fwd_create_ins – create flow tables using simple_fwd_ft_create .

simple_fwd_init_ports_and_pipes – initialize DOCA port using

simple_fwd_init_doca_port and build default pipes for each port.

Main loop.

simple_fwd_process_pkts();

Receive packets using rte_eth_rx_burst in a loop.

Process packets using simple_fwd_process_offload .

Transmit the packets on the other port by calling rte_eth_tx_burst . Or free the

packet mbuf if rx_only is set to true .

Process packets.

1024

a.

b.

7.

8.

9.

10.

•

•

•

simple_fwd_process_offload();

Parse the packet's rte_mbuf using simple_fwd_pkt_info .

Handle the packet using simple_fwd_handle_packet . If the packet's key does not
match the existed the flow entry, create a new flow entry and PIPE using
simple_fwd_handle_new_flow . Otherwise, increase the total packet's counter.

Simple forward destroy.

simple_fwd_destroy();

Simple forward close port and clean the flow resources.
DPDK ports and queues destruction.

dpdk_queues_and_ports_fini();

DPDK finish.

dpdk_fini();

Calls rte_eal_destroy() to destroy initialized EAL resources.
Arg parser destroy.

doca_argp_destroy();

Free DPDK resources by call rte_eal_cleanup() function.

15.17.8 References

 /opt/mellanox/doca/applications/simple_fwd_vnf/

/opt/mellanox/doca/applications/simple_fwd_vnf/simple_fwd_params.json

15.18 NVIDIA DOCA Switch Application Guide
This guide provides an example of switch implementation on top of NVIDIA® BlueField® DPU.

15.18.1 Introduction
DOCA Switch is a network application that leverages the DPU's hardware capability for internal
switching between representor ports on the DPU.

DOCA Switch is based on the DOCA Flow library. As such, it exposes a command line interface which
receives DOCA Flow like commands to allow adding rules in real time.

15.18.2 System Design
DOCA Switch is designed to run on the DPU as a standalone application (all network traffic goes
directly through it).

Traffic flows between two VMs on the host:

1025

Traffic flow from a physical port to a VM on the host:

1026

•
•

•

15.18.3 Application Architecture
DOCA Switch is based on 3 modules:

Command line interface – receives pre-defined DOCA Flow-like commands and parses them
Flow pipes manger – generates a unique identification number for each DOCA Flow structure
created
Switch core – combines all modules together and calls necessary DOCA Flow API

1027

•

•

•

•

Port initialization cannot be made dynamically. All ports must be defined when running the
application with standard DPDK flags.

When adding a pipe or an entry, the user must run commands to create the relevant structs
beforehand
Optional parameters must be specified by the user in the command line; otherwise, NULL is
used
After a pipe or an entry is created successfully, the relevant ID is printed for future use

15.18.4 DOCA Libraries
This application leverages the following DOCA libraries:

DOCA Flow

Refer to its respective programming guide for more information.

1028

1.

•

•
2.

15.18.5 Compiling the Application

The installation of DOCA's reference applications contains the sources of the applications, alongside
the matching compilation instructions. This allows for compiling the applications "as-is" and provides
the ability to modify the sources, then compile a new version of the application.

The sources of the application can be found under the application's directory: /opt/mellanox/

doca/applications/switch/ .

15.18.5.1 Compiling All Applications
All DOCA applications are defined under a single meson project. So, by default, the compilation
includes all of them.

To build all the applications together, run:

cd /opt/mellanox/doca/applications/
meson /tmp/build
ninja -C /tmp/build

15.18.5.2 Recompiling Only the Current Application
To directly build only the switch application:

cd /opt/mellanox/doca/applications/
meson /tmp/build -Denable_all_applications=false -Denable_switch=true
ninja -C /tmp/build

Alternatively, one can set the desired flags in the meson_options.txt file instead of providing
them in the compilation command line:

Edit the following flags in /opt/mellanox/doca/applications/meson_options.txt :

Set enable_all_applications to false

Set enable_switch to true
Run the following compilation commands:

Please refer to the NVIDIA DOCA Installation Guide for Linux for details on how to install
BlueField-related software.

For more information about the applications as well as development and compilation tips,
refer to the DOCA Applications page.

doca_switch is created under /tmp/build/switch/ .

doca_switch is created under /tmp/build/switch/ .

1029

1.

cd /opt/mellanox/doca/applications/
meson /tmp/build
ninja -C /tmp/build

15.18.5.3 Troubleshooting
Refer to the NVIDIA DOCA Troubleshooting Guide for any issue encountered with the compilation of
the application.

15.18.6 Running the Application

15.18.6.1 Prerequisites
The switch application is based on DOCA Flow. Therefore, the user is required to allocate huge
pages.

echo '2048' | sudo tee -a /sys/kernel/mm/hugepages/hugepages-2048kB/nr_hugepages

15.18.6.2 Application Execution
The switch application is provided in source form. Therefore, hence a compilation is required before
the application can be executed.

Application usage instructions:

Usage: doca_switch [DPDK Flags] -- [DOCA Flags]

DOCA Flags:
 -h, --help Print a help synopsis

doca_switch is created under /tmp/build/switch/ .

On some operating systems (RockyLinux, OpenEuler, CentOS 8.2) the default huge page size
on the DPU (and Arm hosts) is larger than 2MB, and is often 512MB instead. Once can find
out the sige of the huge pages using the following command:

$ grep -i huge /proc/meminfo

AnonHugePages: 0 kB
ShmemHugePages: 0 kB
FileHugePages: 0 kB
HugePages_Total: 4
HugePages_Free: 4
HugePages_Rsvd: 0
HugePages_Surp: 0
Hugepagesize: 524288 kB
Hugetlb: 6291456 kB

Given that the guiding principal is to allocate 4GB of RAM, in such cases instead of
allocating 2048 pages, one should allocate the matching amount (8 pages):

echo '8' | sudo tee -a /sys/kernel/mm/hugepages/hugepages-524288kB/nr_hugepages

1030

2.

•
•
•
•
•
•
•

 -v, --version Print program version information
 -l, --log-level Set the (numeric) log level for the program <10=DISABLE, 20=CRITICAL,
30=ERROR, 40=WARNING, 50=INFO, 60=DEBUG, 70=TRACE>
 --sdk-log-level Set the SDK (numeric) log level for the program <10=DISABLE, 20=CRITICA
L, 30=ERROR, 40=WARNING, 50=INFO, 60=DEBUG, 70=TRACE>
 -j, --json <path> Parse all command flags from an input json file

CLI example for running the application on the BlueField:

./doca_switch -a 03:00.0,representor=[0-2],dv_flow_en=2 -- -l 60

15.18.6.3 Command Line Flags
Flag Type Short Flag Long Flag Description JSON Content

General flags h help Prints a help synopsis N/A

v version Prints program version
information

N/A

l log-level Set the log level for the
application:

DISABLE=10
CRITICAL=20
ERROR=30
WARNING=40
INFO=50
DEBUG=60
TRACE=70 (requires
compilation
with TRACE log
level support)

"log-level": 60

This usage printout can be printed to the command line using the -h (or --help)
options:

./doca_switch -- -h

For additional information, refer to section "Command Line Flags".

dv_flow_en=2 is necessary to run the application with hardware steering.

The PCIe address (03:00.0) should match the address of the desired PCIe device.

1031

•
•
•
•
•
•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Flag Type Short Flag Long Flag Description JSON Content

N/A sdk-log-level Sets the log level for the
program:

DISABLE=10
CRITICAL=20
ERROR=30
WARNING=40
INFO=50
DEBUG=60
TRACE=70

"sdk-log-level":
40

j json Parse all command flags
from an input JSON file

N/A

15.18.6.4 Supported Commands
create pipe port_id=[port_id][,<optional_parameters>]
Available optional parameters:

name=<pipe-name>

root_enable=[1|0]

monitor=[1|0]

match_mask=[1|0]

fwd=[1|0]

fwd_miss=[1|0]

type=[basic|control]

add entry pipe_id=<pipe_id>,pipe_queue=<pipe_queue>[,<optional_parameters>]
Available optional parameters:

monitor=[1|0]

fwd=[1|0]

add control_pipe entry

priority=<priority>,pipe_id=<pipe_id>,pipe_queue=<pipe_queue>[,<optional_param

eters>]
Available optional parameters:

match_mask=[1|0]

fwd=[1|0]

destroy pipe pipe_id=<pipe_id>

rm entry pipe_queue=<pipe_queue>,entry_id=[entry_id]

port pipes flush port_id=[port_id]

port pipes dump port_id=[port_id],file=[file_name]

query entry_id=[entry_id]

Refer to DOCA Arg Parser for more information regarding the supported flags and execution
modes.

1032

•

•

create [struct] [field=value,…]

Struct options: pipe_match , entry_match , match_mask , actions , monitor , fwd ,

fwd_miss
Match struct fields:

Fields Field Options

flags

port_meta

outer.eth.src_mac

outer.eth.dst_mac

outer.eth.type

outer.vlan_tci

outer.l3_type ipv4 , ipv6

outer.src_ip_addr

outer.dst_ip_addr

outer.l4_type_ext tcp , udp , gre

outer.tcp.flags FIN , SYN , RST , PSH , ACK , URG , ECE ,

CWR

outer.tcp_src_port

outer.tcp_dst_port

outer.udp_src_port

outer.udp_dst_port

tun_type

vxlan_tun_id

gre_key

gtp_teid

inner.eth.src_mac

inner.eth.dst_mac

inner.eth.type

inner.vlan_tci

inner.l3_type ipv4 , ipv6

inner.src_ip_addr

inner.dst_ip_addr

1033

•

Fields Field Options

inner.l4_type_ext tcp , udp

inner.tcp.flags FIN , SYN , RST , PSH , ACK , URG , ECE ,

CWR

inner.tcp_src_port

inner.tcp_dst_port

inner.udp_src_port

inner.udp_dst_port

Actions struct fields:

Fields Field Options

decap true , false

mod_src_mac

mod_dst_mac

mod_src_ip_type ipv4 , ipv6

mod_src_ip_addr

mod_dst_ip_type ipv4 , ipv6

mod_dst_ip_addr

mod_src_port

mod_dst_port

ttl

has_encap true , false

encap_src_mac

encap_dst_mac

encap_src_ip_type ipv4 , ipv6

encap_src_ip_addr

encap_dst_ip_type ipv4 , ipv6

encap_dst_ip_addr

encap_tup_type vxlan , gtpu , gre

encap_vxlan-tun_id

encap_gre_key

encap_gtp_teid

1034

•

•
•

•

•

•

•
•
•
•

1.
2.
3.
4.

1.
a.

FWD struct fields:

Fields Field Options

type rss , port , pipe , drop

rss_flags

rss_queues

num_of_queues

port_id

next_pipe_id

Monitor struct fields:
flags

cir

cbs

aging

The physical port number (only one physical port is supported) will always be 0 and all representor
ports are numbered from 1 to N where N is the number of representors being used. For example:

Physical port ID: 0
VF0 representor port ID: 1
VF1 representor port ID: 2
VF2 representor port ID: 3

The following is an example of creating a pipe and adding one entry into it:

create fwd type=port,port_id=0xffff
create pipe port_id=0,name=p0_to_vf1,root_enable=1,fwd=1
create fwd type=port,port_id=1
add entry pipe_queue=0,fwd=1,pipe_id=1012

rm entry pipe_queue=0,entry_id=447

Pipe is configured on port ID 0 (physical port).
Entry is configured to forward all traffic directly into port ID 1 (VF0).
When the forwarding rule is no longer needed, the entry is deleted.
Ultimately, both entries are deleted, each according to the unique random ID it was given:

15.18.6.5 Troubleshooting
Refer to the NVIDIA DOCA Troubleshooting Guide for any issue encountered with the installation or
execution of the DOCA applications.

15.18.7 Application Code Flow
Parse application argument.

Initialize the arg parser resources and register DOCA general parameters.

1035

b.

c.

2.

a.

3.

4.

a.
b.
c.
d.

5.

a.
b.
c.
d.

6.

7.

a.
8.

9.

doca_argp_init();

Register application parameters.

register_switch_params();

Parse app parameters.

doca_argp_start();

Count total number of ports.

switch_ports_count();

Check how many ports are entered when running the application.

Initialize DPDK ports and queues.

dpdk_queues_and_ports_init();

Initialize DOCA Switch.

switch_init();

Initialize DOCA Flow.
Create port pairs.
Create Flow Pipes Manger module.
Register an action for each relevant CLI command.

Initialize Flow Parser.

flow_parser_init();

Reset all internal Flow Parser structures.
Start the command line interface.
Receive user commands, parse them, and call the required DOCA Flow API command.
Close the interactive shell once a "quit" command is entered.

Clean Flow Parser resources.

flow_parser_cleanup();

Destroy Switch resources.

switch_destroy();

Destroy Flow Pipes Manager resources.
Destroy DOCA Flow.

switch_destroy();

Destroy DPDK ports and queues.

dpdk_queues_and_ports_fini();

1036

10.

a.
11.

•

•

•

•

•

•

DPDK finish.

dpdk_fini();

Call rte_eal_destroy() to destroy initialized EAL resources.
Arg parser destroy.

doca_argp_destroy();

15.18.8 References
/opt/mellanox/doca/applications/switch/

15.19 NVIDIA DOCA UROM RDMO Application Guide
This guide provides a DOCA Remote Direct Memory Operation implementation on top of NVIDIA®
BlueField® DPU using Unified Communication X (UCX).

15.19.1 Introduction
A remote direct memory operation (RDMO) is conceptionally an active message which is executed
outside the context of the target process.

An RDMO involves the following entities:

Target – establishes a connection to the server to use as the control path. The target interacts
with the server to define target endpoints and memory regions. The target exchanges
endpoint and memory region information with an initiator to facilitate its connection.
Initiator – establishes a connection to the server to use as the data path. An RDMO is initiated
by sending an RDMO command with an optional payload to the server. The server parses the
commands and runs an associated RDMO handler. An RDMO handler interacts with the target
process by performing one-sided memory accesses to target-defined memory regions.
Server – responsible for executing RDMOs asynchronously from the target process. The server
implements an RDMO handler for each supported operation. RDMO handlers may maintain a
state within the server for optimization.

The DOCA UROM RDMO application includes the above three entities, split into the following parts:

BlueField side – the implementation of RDMO plugin component to be loaded by the DOCA
UROM worker (which is the RDMO server)
Host side – host application that runs using two modes: target and initiator

1037

RDMOs are designed to take advantage of extra computing resources on a platform. While
application processes run on the primary compute resources, an RDMO server can run on idle
resources on the same host or be offloaded to run on a separate device (i.e., BlueField).

15.19.2 System Design
The application demonstrates the implementation of RDMO operations as a DOCA UROM worker
plugin component. A target process would use the DOCA UROM API to create a worker with RDMO
capabilities. An initiator process establishes an RDMO connection to the UROM worker. The plugin
uses UCX as its transport.

15.19.2.1 Bootstrap Procedure
To connect the RDMO initiator and target, on the target side, UROM is used to retrieve an address
for each created RDMO worker. This address would need to be delivered to the RDMO initiator side

1038

•
•

for connection establishment. The initiator address is obtained from the UCX worker created
explicitly by the RDMO application. Both addresses are exchanged over the out-of-band (OOB)
network and used to establish the connection:

On the RDMO initiator side, a UCX endpoint is created using UCX API
On the RDMO target side, the initiator's address is communicated to the RDMO worker using
the UROM command channel

15.19.2.2 Memory Management
UROM returns an identifier (ID) for each memory region imported to the RDMO plugin component.
This ID is used to refer to a target memory region in RDMO requests. It must be exchanged with the
initiator process OOB.

15.19.2.3 RDMO UROM Worker Operation
Communication between the RDMO initiator and worker is implemented on top of UCX active
messages. The worker’s active message handler is the entry point that identifies the type of the
RDMO operation based on the RDMO request header. The request is then forwarded to the
corresponding RDMO operation handler which determines the operation parameters by inspecting
the operation-specific sub-header in the request.

UCX active messages support eager and rendezvous protocols. When using a rendezvous protocol,
the worker can choose whether to pull data to the server or move it directly to a target memory
using a UCX-imported memory handle.

An RDMO operation handler may perform any combination of computation, initiator and target
memory accesses, server state updates, or responses.

The RDMO client uses UROM to instantiate an RDMO worker and to configure target endpoints and
memory regions. The client uses UCX directly to connect endpoints to the RDMO server. The client
uses UCX to send formatted RDMO messages.

1039

•
•
•

15.19.3 Application Architecture
DOCA's UROM RDMO application implementation uses UCX to support data exchange between
endpoints. It utilizes UCX's sockaddr-based connection establishment and the UCX active messages
(AM) API for communications, and UCX is responsible for all RDMO communications (control and data
path).

The RDMO server application initiates a DOCA UROM worker RDMO component via the DOCA UROM
service and shares the UROM worker UCX EP with the DOCA UROM RDMO client application. The
RDMO server application imports memory regions into the UROM worker to facilitate RDMA
operations from the BlueField on host memory.

The RDMO client application performs RDMO operations via the DOCA UROM worker. Upon receiving
the UCX EP address from the server, the client application initially establishes a connection with the
worker. It then proceeds to request the worker to execute the operation without the server
application's awareness.

15.19.3.1 UROM RDMO Worker Component
The UROM RDMO worker plugin component defines a small set of commands to enable the target to:

Establish a UCX communication channel between the client and the worker
Create a UCX endpoint capable of receiving RDMO request
Import memory regions that can be used as a source or target for RDMA initiated by the
worker

The set of commands are:

enum urom_worker_rdmo_cmd_type {
 UROM_WORKER_CMD_RDMO_CLIENT_INIT,
 UROM_WORKER_CMD_RDMO_RQ_CREATE,
 UROM_WORKER_CMD_RDMO_RQ_DESTROY,
 UROM_WORKER_CMD_RDMO_MR_REG,
 UROM_WORKER_CMD_RDMO_MR_DEREG,

1040

•

•

•

•

•

•

•

};

The associated notification types are:

enum urom_worker_rdmo_notify_type {
 UROM_WORKER_NOTIFY_RDMO_CLIENT_INIT,
 UROM_WORKER_NOTIFY_RDMO_RQ_CREATE,
 UROM_WORKER_NOTIFY_RDMO_RQ_DESTROY,
 UROM_WORKER_NOTIFY_RDMO_MR_REG,
 UROM_WORKER_NOTIFY_RDMO_MR_DEREG,
};

15.19.3.1.1 Init

The Client Init command initializes the client to receive RDMOs. This includes establishing a
connection between worker and host to allow the RDMO worker to access client memory.

The command is of type UROM_WORKER_CMD_RDMO_CLIENT_INIT . Command format:

struct urom_worker_rdmo_cmd_client_init {
 uint64_t id;
 void *addr;
 uint64_t addr_len;
};

id – client ID used to identify the target process in RDMO commands

addr – pointer to the client's UCP worker address to use for a worker-to-host connection

addr_len – length of the address

This command returns a notification of type UROM_WORKER_NOTIFY_RDMO_CLIENT_INIT . Notificatio
n format:

struct urom_worker_rdmo_notify_client_init {
 void *addr;
 uint64_t addr_len;

addr – pointer to the component's UCP worker address to use for initiator-to-server
connections
addr_len – length of the address

15.19.3.1.2 RQ Create

This Receive Queue (RQ) Create command creates and connects a new endpoint on the server. The
endpoint may be targeted by formatted RDMO messages.

This command is of type UROM_WORKER_CMD_RDMO_RQ_CREATE . Command format:

struct urom_worker_rdmo_cmd_rq_create {
 void *addr;
 uint64_t addr_len;
};

addr – the UCP worker address to use to connect the new endpoint

addr_len – the length of address

The command returns a notification of type UROM_WORKER_NOTIFY_RDMO_RQ_CREATE . Notification
format:

1041

•

•

•

•

•

•

•

•

•

struct urom_worker_rdmo_notify_rq_create {
 uint64_t rq_id;
};

rq_id – the RQ ID to use to destroy the RQ

15.19.3.1.3 RQ Destroy

The RQ Destroy command destroys an RQ.

The RQ Destroy command is of type UROM_WORKER_CMD_RDMO_RQ_DESTROY . Command format:

struct urom_worker_rdmo_cmd_rq_destroy {
 uint64_t rq_id;
};

rq_id – the ID of a previously created RQ

The RQ destroy command returns a notification of type UROM_WORKER_NOTIFY_RDMO_RQ_DESTROY .
Notification format:

struct urom_worker_rdmo_notify_rq_destroy {
 uint64_t rq_id;
};

rq_id – the destroyed receive queue id

15.19.3.1.4 MR Register

The Memory Region (MR) Register command registers a UCP memory handle with the RDMO
component. An MR must be registered with the RDMO component before use in RDMOs.

The command is of type UROM_WORKER_CMD_RDMO_MR_REG . Command format:

struct urom_worker_rdmo_cmd_mr_reg {
 uint64_t va;
 uint64_t len;
 void *packed_rkey;
 uint64_t packed_rkey_len;
 void *packed_memh;
 uint64_t packed_memh_len;
};

va – the virtual address of the MR

len – the length of the MR

packed_rkey – pointer to the UCP packed R-key for the MR

packed_rkey_len – the length of packed_rkey

packed_mem_h – pointer to the UCP-packed memory handle for the MR. The memory handle

must be packed with flag UCP_MEMH_PACK_FLAG_EXPORT .

packed_memh_len – the length of packed_memh

The command returns a notification of type UROM_WORKER_NOTIFY_RDMO_MR_REG . Notification
format:

struct urom_worker_rdmo_notify_mr_reg {
 uint64_t rkey;
};

1042

•

•

•

•

•

•

rkey – the ID used in RDMOs to refer to the MR

15.19.3.1.5 MR Deregister

The MR deregister command deregisters an MR from the RDMO component.

The command is of type UROM_WORKER_CMD_RDMO_MR_DEREG . Command format:

struct urom_worker_rdmo_cmd_mr_dereg {
 uint64_t rkey;
};

rkey – the ID of a previously registered MR

The command returns a notification of type UROM_WORKER_NOTIFY_RDMO_MR_DEREG . Notification
format:

struct urom_worker_rdmo_notify_mr_dereg {
 uint64_t rkey;
};

rkey – the deregistered memory region remote key

15.19.3.2 Command Format
An RDMO is initiated by sending an RDMO request via UCP active message to a UROM RDMO worker
server.

The RDMO request format is:

The RDMO header identifies the operation type and flags, modifying how the RDMO is processed.
The operation (op) header includes arguments specific to the operation type. Optionally, the
operation type may include an arbitrary-sized payload.

RDMO header format:

struct urom_rdmo_hdr {
 uint32_t id;
 uint32_t op_id;
 uint32_t flags;
};

id – the client ID

op_id – the RDMO operation type ID

flags – flags modifying how the RDMO is processed by the server

Valid flag values:

enum urom_rdmo_req_flags {
 UROM_RDMO_REQ_FLAG_FENCE,
};

1043

•

•

•

•

UROM_RDMO_REQ_FLAG_FENCE – Complete all outstanding RDMO requests on the connection
before executing this request. This flag is required to implement a flush operation that
guarantees remote completion.

Optionally, an operation may return a response to the initiator.

Response header format:

struct urom_rdmo_rsp_hdr {
 uint16_t op_id;
};

op_id – the RDMO response type ID

15.19.3.2.1 Append

RDMO Append atomically appends data to a queue in remote memory. This can be achieved in a one-
sided programming model with a Fetching-Add operation to the location of a pointer in remote
memory, followed by a Put to the fetched address. RDMO Append allows these dependent operations
to be offloaded to the target.

The following diagram provides a comparison of native and RDMO approaches to the Append
operation:

Combining two dependent operations into a single RDMO allows the non-blocking implementation of
Append, as the initiator does not need to wait between the Fetching Atomic and the data write
operations. Using RDMO, the initiator can create a pipeline of operations and achieve a higher
message rate.

The rate at which the RDMO server can perform operations on the target memory is expected to be
a bottleneck. To improve the rate, the following optimizations can be looked at:

The result of the Fetch-and-ADD (FADD) after the initial Append is performed can be cached
in the server. Subsequent Appends can re-use the cached value, eliminating the atomic FADD
operation. The modified pointer value is required to be synchronized during the flush
command.
For small Append sizes, the Append data can be cached in the RDMO server and coalesced
into a single Put. As a result, the server requires, on average, a single Put access to target
memory to execute several RDMOs.

1044

•

•

•

•

•

•

To avoid extra memory usage and lost bandwidth for large Append operations, the RDMO
server may initiate direct transfers from the initiator to the target memory bypassing the
acceleration device memory.

The Append operation uses an operation of type UROM_RDMO_OP_APPEND . Append header format:

struct urom_rdmo_append_hdr {
 uint64_t ptr_addr;
 uint16_t ptr_rkey;
 uint16_t data_rkey;
};

ptr_addr – the address of the queue pointer in target memory

ptr_rkey – the R-key used to access ptr_addr

data_rkey – the R-key used to access the queue data

The RDMO payload is the local data buffer.

15.19.3.2.2 Flush

RDMO Flush is used to implement synchronization between the initiator and server. On execution,
Flush sends a response message back to the initiator. Flush can be used to guarantee remote
completion of a previously issued RDMO.

To achieve this, the initiator sends an in-order Flush command including the RDMO flag
UROM_RDMO_REQ_FLAG_FENCE . This flag causes the server to complete all previously received
RDMOs before executing the Flush. To complete previous operations, the server must write any
cached data and make it visible in the target memory. Once complete, the server executes the
Flush. Flush sends a response to the initiator. When the initiator receives the flush message, the
result of all previously sent RDMOs is guaranteed to be visible in the target memory.

The Flush operation uses operation type UROM_RDMO_OP_FLUSH . Flush header format:

struct urom_rdmo_flush_hdr {
 uint64_t flush_id;
};

flush_id – local ID used to track completion

Flush returns a response with the following header format:

struct urom_rdmo_flush_rsp_hdr {
 uint64_t flush_id;
};

flush_id – the ID of the completed Flush

Flush requests and responses do not include a payload.

15.19.3.2.3 Scatter

RDMO Scatter is used to support aggregating non-contiguous memory Puts. An RDMO may be defined
to map non-contiguous virtual addresses into a single memory region using a network interface at
the target platform, and then return a memory key for this region. The initiator may then perform
Puts to this memory region, which are scattered by target hardware. Alternatively, an RDMO may be

1045

•

•

•

•

•
•

defined to post an IOV Receive. The initiator could then post a matching Send to scatter data at the
target.

The Scatter operation uses operation type UROM_RDMO_OP_SCATTER . Scatter header format:

struct urom_rdmo_scatter_hdr {
 uint64_t count; /* Number of IOVs in the payload */
};

count – Number of IOVs in the RDMO payload

IOVs are packed into the Scatter request payload, descriptor followed by data:

struct urom_rdmo_scatter_iov {
 uint64_t addr; /* Scattered data address */
 uint64_t rkey; /* Data remote key */
 uint16_t len; /* Data length */
};

addr – scattered data address

rkey – data remote key

len – data length

15.19.4 DOCA Libraries
This application leverages the following DOCA libraries:

DOCA UROM
UCX framework DOCA driver

Refer to their respective programming guide for more information.

15.19.5 Compiling the Application

The installation of DOCA's reference applications contains the sources of the applications, alongside
the matching compilation instructions. This allows for compiling the applications "as-is" and provides
the ability to modify the sources, then compile a new version of the application.

The sources of the application can be found under the application's directory: /opt/mellanox/

doca/applications/urom_rdmo/ .

15.19.5.1 Compiling All Applications
All DOCA applications are defined under a single meson project. So, by default, the compilation
includes all of them.

Please refer to the NVIDIA DOCA Installation Guide for Linux for details on how to install
BlueField-related software.

For more information about the applications as well as development and compilation tips,
refer to the DOCA Applications page.

1046

1.

•

•
2.

To build all the applications together, run:

cd /opt/mellanox/doca/applications/
meson /tmp/build
ninja -C /tmp/build

15.19.5.2 Compiling Only the Current Application
To directly build only the UROM RDMO application (host) or plugin (DPU):

cd /opt/mellanox/doca/applications/
meson /tmp/build -Denable_all_applications=false -Denable_urom_rdmo=true
ninja -C /tmp/build

Alternatively, one can set the desired flags in the meson_options.txt file instead of providing
them in the compilation command line:

Edit the following flags in /opt/mellanox/doca/applications/meson_options.txt :

Set enable_all_applications to false

Set enable_urom_rdmo to true
Run the following compilation commands:

cd /opt/mellanox/doca/applications/
meson /tmp/build
ninja -C /tmp/build

15.19.5.3 Troubleshooting
Refer to the NVIDIA DOCA Troubleshooting Guide for any issue encountered with the compilation of
the application.

On the host, doca_urom_rdmo is created under /tmp/build/urom_rdmo/host/ . On the

BlueField side, the RDMO worker plugin worker_rdmo.so is created under /tmp/build/

urom_rdmo/dpu/ .

On the host, doca_urom_rdmo is created under /tmp/build/urom_rdmo/host/ . On the

BlueField side, the RDMO worker plugin worker_rdmo.so is created under /tmp/build/

urom_rdmo/dpu/ .

On the host, doca_urom_rdmo is created under /tmp/build/urom_rdmo/host/ . On

the BlueField side, the RDMO worker plugin worker_rdmo.so is created under /

tmp/build/urom_rdmo/dpu/ .

http://worker_rdmo.so
http://worker_rdmo.so
http://worker_rdmo.so

1047

1.

2.

3.

4.

15.19.6 Running the Application

15.19.6.1 Host Application Execution
The UROM RDMO application is provided in source form; therefore, a compilation is required before
the application can be executed.

Application usage instructions:

Usage: doca_urom_rdmo [DOCA Flags] [Program Flags]

DOCA Flags:
 -h, --help Print a help synopsis
 -v, --version Print program version information
 -l, --log-level Set the (numeric) log level for the program <10=DISABLE, 20=CRITICAL,
30=ERROR, 40=WARNING, 50=INFO, 60=DEBUG, 70=TRACE>
 --sdk-log-level Set the SDK (numeric) log level for the program <10=DISABLE, 20=CRITICA
L, 30=ERROR, 40=WARNING, 50=INFO, 60=DEBUG, 70=TRACE>
 -j, --json <path> Parse all command flags from an input json file

Program Flags:
 -d, --device <IB device name> IB device name.
 -s, --server-name <server name> server name.
 -m, --mode {server, client} Set mode type {server, client}

CLI example for running the application with server mode:

./doca_urom_rdmo -d mlx5_0 -m server

CLI example for running the application with client mode:

./doca_urom_rdmo -m clinet -s <server_host_name>

The application also supports a JSON-based deployment mode, in which all command-line
arguments are provided through a JSON file:

./doca_urom_rdmo --json [json_file]

For example:

./doca_urom_rdmo --json ./urom_rdmo_params.json

15.19.6.2 RDMO DPU Plugin Component
The UROM RDMO plugin component is provided in source form, hence a compilation is required
before the application can be executed in order when spawning UROM worker could load the plugin
in runtime and it is compiled as .so file.

This usage printout can be printed to the command line using the -h (or --help)
options:

./doca_urom_rdmo -h

For additional information, refer to section "Command Line Flags".

1048

•

•

•
•
•
•
•
•
•

•
•
•
•
•
•
•

The plugin exposes the following symbols:

Get DOCA worker plugin interface for RDMO plugin:

doca_error_t urom_plugin_get_iface(struct urom_plugin_iface *iface);

Get the RDMO plugin version which will be used to verify that the host and DPU plugin
versions are compatible:

doca_error_t urom_plugin_get_version(uint64_t *version);

15.19.6.3 Command Line Flags
Flag Type Short Flag Long Flag/JSON

Key
Description JSON Content

General flags h help Print a help synopsis N/A

v version Print program version
information

N/A

l log-level Set the log level for the
application:

DISABLE=10
CRITICAL=20
ERROR=30
WARNING=40
INFO=50
DEBUG=60
TRACE=70 (requires
compilation with
TRACE log level
support)

"log-level": 60

N/A sdk-log-level Set the log level for the
program:

DISABLE=10
CRITICAL=20
ERROR=30
WARNING=40
INFO=50
DEBUG=60
TRACE=70

"sdk-log-level":
40

j json Parse all command flags
from an input JSON file

N/A

Program flags d device DOCA UROM IB device
name

"device": "mlx5_0"

s server-name RDMO server name

"server-name":
"<host-name>-oob"

m mode RDMO application mode
[server, client]

"mode": "client"

1049

1.
a.

b.

c.

2.
•

i.
ii.
iii.
iv.

v.

vi.

vii.
viii.

ix.

x.
xi.
xii.

•
i.
ii.

iii.

15.19.6.4 Troubleshooting
Refer to the NVIDIA DOCA Troubleshooting Guide for any issue encountered with the installation or
execution of the DOCA applications.

15.19.7 Application Code Flow
Parse application argument.

Initialize arg parser resources and register DOCA general parameters.

doca_argp_init();

Register UROM RDMO application parameters.

register_urom_rdmo_params();

Parse the arguments.

doca_argp_start();

Run main logic:
If the application mode is server:

Create UROM objects and spawn UROM worker on the BlueField.
Initialize UCP with features: UCP_FEATURE_AM , UCP_FEATURE_EXPORTED_MEMH .
Create a UCP worker and query the worker address
Initialize the RDMO worker client with the command
UROM_WORKER_CMD_RDMO_CLIENT_INIT .
Send UROM RDMO worker address to the initiator via OOB channel and receive
the intiator's UCP worker address
Create a UCP memory handle and register it with the RDMO server using the
command UROM_WORKER_CMD_RDMO_MR_REG . Receive an R-key in return.
Send the RDMO key to the initiator
Create an RDMO RQ by passing the initiator's UCP worker address to the UROM
command UROM_WORKER_CMD_RDMO_RQ_CREATE .
Wait till the RDMO append operation is done and next validate the memory
data.
Wait till the RDMO scatter operation is done and next validate the memory data.
Destroy the UCP resources.
Destroy UROM RDMO worker and UROM objects.

If the application mode is client:
Create UCP worker using UCX API directly.
Receive the UROM RDMO worker address via OOB channel and send the initiator's
UCP worker address.
Create a UCP endpoint using the RDMO worker address.

Refer to DOCA Arg Parser for more information regarding the supported flags and execution
modes.

1050

iv.
v.

vi.
3.

•

•

Install an Active Message handler on the endpoint to receive RDMO responses.
Send an RDMO requests via UCP Active Message protocol with the header
pointing to the serialized RDMO and Op headers, and data pointing to the
payload. The request parameter flag: UCP_AM_SEND_FLAG_REPLY will be set to
allow the RDMO server to identify the sender.
Once the RDMO operations are done, Destroy UCP resources.

Arg parser destroy.

doca_argp_destroy();

15.19.8 References
/opt/mellanox/doca/applications/urom_rdmo/

/opt/mellanox/doca/applications/urom_rdmo/urom_rdmo_params.json

15.20 NVIDIA DOCA YARA Inspection Application Guide
This guide provides YARA inspection implementation on top of NVIDIA® BlueField® DPU.

15.20.1 Introduction
YARA inspection monitors all processes in the host system for specific YARA rules using the DOCA App
Shield library.

This security capability helps identify malware detection patterns in host processes from an
independent and trusted DPU. This is an innovative Intrusion Detection System (IDS) as it is designed
to run independently on the DPU's Arm cores without hindering the host.

This DOCA App Shield based application provides the capability to read, analyze, and authenticate
the host (bare metal/VM) memory directly from the DPU.

Using the library, this application scans host processes and looks for pre-defined YARA rules. After
every scan iteration, the application indicates if any of the rules matched. Once there is a match,
the application reports which rules were detected in which process. The reports are both printed to
the console and exported to the DOCA Telemetry Service (DTS) using inter-process communication
(IPC).

This guide describes how to build YARA inspection using the DOCA App Shield library which leverages
DPU abilities such as hardware-based DMA, integrity, and more.

15.20.2 System Design
The host's involvement is limited to generating the required ZIP and JSON files to pass to the DPU.
This is done before the app is triggered, when the host is still in a "safe" state.

As the DOCA App Shield library only supports the YARA API for Windows hosts, this
application can only be used to inspect Windows hosts.

1051

•
•
•

Generating the needed files can be done by running DOCA App Shield's doca_apsh_config.py tool
on the host. See DOCA App Shield for more info.

15.20.3 Application Architecture
The user creates the ZIP and JSON files using the DOCA tool doca_apsh_config.py and copies
them to the DPU.

The application can report YARA rules detection to the:

File
Terminal
DTS

1052

1.

2.
a.
b.

c.

•

•
•

3.

•
•

•
•

The files are generated by running doca_apsh_config.py on the host against the process at
time zero.
The following steps recur at regular time intervals:

The YARA inspection app requests a list of all apps from the DOCA App Shield library.
The app loops over all processes and checks for YARA rules match using the DOCA App
Shield library.
If YARA rules are found (1 or more), the YARA attestation app reports results with a
timestamp and details about the process and rules to:

Local telemetry files – a folder and files representing the data a real DTS would
have received

DOCA log
DTS IPC interface (even if no DTS is active)

The App Shield agent exits on first YARA rule detection.

15.20.4 DOCA Libraries
This application leverages the following DOCA libraries:

DOCA App Shield
DOCA Telemetry Exporter

Refer to their respective programming guide for more information.

15.20.5 Limitations
The application is only available on Ubuntu 22.04 environments
The application only supports the inspection of Windows hosts

These files are used for the purpose of this example only as normally
this data is not exported into user-readable files.

1053

1.

•

•
2.

15.20.6 Compiling the Application

The installation of DOCA's reference applications contains the sources of the applications, alongside
the matching compilation instructions. This allows for compiling the applications "as-is" and provides
the ability to modify the sources, then compile a new version of the application.

The sources of the application can be found under the application's directory: /opt/mellanox/

doca/applications/yara_inspection/ .

15.20.6.1 Compiling All Applications
All DOCA applications are defined under a single meson project. So, by default, the compilation
includes all of them.

To build all the applications together, run:

cd /opt/mellanox/doca/applications/
meson /tmp/build
ninja -C /tmp/build

15.20.6.2 Compiling Only the Current Application
To directly build only the YARA inspection application:

cd /opt/mellanox/doca/applications/
meson /tmp/build -Denable_all_applications=false -Denable_yara_inspection=true
ninja -C /tmp/build

Alternatively, one can set the desired flags in the meson_options.txt file instead of providing
them in the compilation command line:

Edit the following flags in /opt/mellanox/doca/applications/meson_options.txt :

Set enable_all_applications to false

Set enable_yara_inspection to true
Run the following compilation commands:

Please refer to the NVIDIA DOCA Installation Guide for Linux for details on how to install
BlueField-related software.

For more information about the applications as well as development and compilation tips,
refer to the DOCA Applications page.

doca_yara_inspection is created under /tmp/build/yara_inspection/ .

doca_yara_inspection is created under /tmp/build/yara_inspection/ .

1054

1.
a.

b.
c.

2.
•

•

•
3.

cd /opt/mellanox/doca/applications/
meson /tmp/build
ninja -C /tmp/build

15.20.6.3 Troubleshooting
Refer to the NVIDIA DOCA Troubleshooting Guide for any issue encountered with the compilation of
the application.

15.20.7 Running the Application

15.20.7.1 Prerequisites
Configure the BlueField's firmware

On the BlueField system, configure the PF base address register and NVME emulation.
Run:

dpu> mlxconfig -d /dev/mst/mt41686_pciconf0 s PF_BAR2_SIZE=2 PF_BAR2_ENABLE=1
 NVME_EMULATION_ENABLE=1

Perform a BlueField system reboot for the mlxconfig settings to take effect.
This configuration can be verified using the following command:

dpu> mlxconfig -d /dev/mst/mt41686_pciconf0 q | grep -E "NVME|BAR"

Download target system (host/VM) symbols.
For Ubuntu:

host> sudo tee /etc/apt/sources.list.d/ddebs.list << EOF
deb http://ddebs.ubuntu.com/ $(lsb_release -cs) main restricted universe multiverse
deb http://ddebs.ubuntu.com/ $(lsb_release -cs)-updates main restricted universe multiverse
deb http://ddebs.ubuntu.com/ $(lsb_release -cs)-proposed main restricted universe multiverse
EOF
host> sudo apt install ubuntu-dbgsym-keyring
host> sudo apt-get update
host> sudo apt-get install linux-image-$(uname -r)-dbgsym

For CentOS:

host> yum install --enablerepo=base-debuginfo kernel-devel-$(uname -r) kernel-debuginfo-$(uname -r)
kernel-debuginfo-common-$(uname -m)-$(uname -r)

No action is needed for Windows
Perform IOMMU passthrough. This stage is only needed on some of the cases where IOMMU is
not enabled by default (e.g., when the host is using an AMD CPU).

doca_yara_inspection is created under /tmp/build/yara_inspection/ .

Skip this step if you are not sure whether you need it. Return to it only if DMA fails
with a message in dmesg similar to the following:

1055

•

•

•

•

•

•
4.

a.

b.

Locate your OS's grub file (most likely /boot/grub/grub.conf , /boot/grub2/

grub.cfg , or /etc/default/grub) and open it for editing. Run:

host> vim /etc/default/grub

Search for the line defining GRUB_CMDLINE_LINUX_DEFAULT and add the

argument iommu=pt . For example:

GRUB_CMDLINE_LINUX_DEFAULT="iommu=pt <intel/amd>_iommu=on"

Run:

For Ubuntu:

host> sudo update-grub
host> ipmitool power cycle

For CentOS:

host> grub2-mkconfig -o /boot/grub2/grub.cfg
host> ipmitool power cycle

For Windows targets: Turn off Hyper-V capability.
The DOCA App Shield library uses hugepages for DMA buffers. Therefore, the user must
allocate 42 huge pages.

Run:

dpu> nr_huge=$(cat /sys/devices/system/node/node0/hugepages/hugepages-2048kB/nr_hugepages)
 nr_huge=$((42+$nr_huge))
 echo $nr_huge | sudo tee -a /sys/devices/system/node/node0/hugepages/hugepages-2048kB/
nr_hugepages

Create the ZIP and JSON files. Run:

target-system> cd /opt/mellanox/doca/tools/
target-system> python3 doca_apsh_config.py <pid-of-process-to-monitor> --os <windows/linux> --path
<path to dwarf2json executable or pdbparse-to-json.py>
target-system> cp /opt/mellanox/doca/tools/*.* <shared-folder-with-baremetal>
dpu> scp <shared-folder-with-baremetal>/* <path-to-app-shield-binary>

If the target system does not have DOCA installed, the script can be copied from the
BlueField.
The required dwaf2json and pdbparse-to-json.py are not provided with DOCA.

host> dmesg
[3839.822897] mlx5_core 0000:81:00.0: AMD-Vi: Event logged [IO_PAGE_FAULT domain=0x0047 address=0
x2a0aff8 flags=0x0000]

Prior to performing a power cycle, make sure to do a graceful shutdown.

If the kernel and process .exe have not changed, there no need to redo this
step.

1056

1.

2.

15.20.7.2 Application Execution
The YARA inspection application is provided in source form. Therefore, a compilation is required
before the application can be executed.

Application usage instructions:

Usage: doca_yara_inspection [DOCA Flags] [Program Flags]

DOCA Flags:
 -h, --help Print a help synopsis
 -v, --version Print program version information
 -l, --log-level Set the (numeric) log level for the program <10=DISABLE, 20=CRITICAL,
30=ERROR, 40=WARNING, 50=INFO, 60=DEBUG, 70=TRACE>
 --sdk-log-level Set the SDK (numeric) log level for the program <10=DISABLE, 20=CRITICA
L, 30=ERROR, 40=WARNING, 50=INFO, 60=DEBUG, 70=TRACE>
 -j, --json <path> Parse all command flags from an input json file

Program Flags:
 -m, --memr <path> System memory regions map
 -f, --vuid VUID of the System device
 -d, --dma DMA device name
 -o, --osym <path> System OS symbol map path
 -t, --time <seconds> Scan time interval in seconds

CLI example for running the application on the BlueField:

./doca_yara_inspection -m mem_regions.json -o symbols.json -f MT2125X03335MLNXS0D0F0VF1 -d mlx5_0 -t 3

15.20.7.3 Command Line Flags
Flag Type Short Flag Long Flag Description

General flags h help Prints a help synopsis

v version Prints program version
information

This usage printout can be printed to the command line using the -h (or --help)
options:

./doca_yara_inspection -h

For additional information, refer to section "Command Line Flags".

All used identifiers (-f and -d flags) should match the identifier of the desired
devices.

1057

•
•
•
•
•
•
•

•
•
•
•
•
•
•

Flag Type Short Flag Long Flag Description

l log-level Set the log level for the
application:

DISABLE=10
CRITICAL=20
ERROR=30
WARNING=40
INFO=50
DEBUG=60
TRACE=70 (requires
compilation with TRACE log
level support)

N/A sdk-log-level Sets the log level for the
program:

DISABLE=10
CRITICAL=20
ERROR=30
WARNING=40
INFO=50
DEBUG=60
TRACE=70

j json Parse all command flags from an
input JSON file

Program flags m memr Path to the pre-
generated mem_regions.json fi
le transferred from the host

1058

•

•

•

Flag Type Short Flag Long Flag Description

f pcif System PCIe function vendor
unique identifier (VUID) of the
VF/PF exposed to the target
system. Used for DMA operations.
To obtain this argument, run:

target-system> lspci -vv | grep
"\[VU\] Vendor specific:"

Example output:

[VU] Vendor specific:
MT2125X03335MLNXS0D0F0
[VU] Vendor specific:
MT2125X03335MLNXS0D0F1

Two VUIDs are printed for each
DPU connected to the target
system. The first is of the DPU
on pf0 and the second is of the

DPU on port pf1 .

The VUID of a VF allocated on
PF0/1 is the VUID of the PF with
an additional suffix, VF<vf-

number> , where vf-number is
the VF index +1.
For example, for the output in
the example above:

PF0 VUID =
MT2125X03335MLNXS0D0F0
PF1 VUID =
MT2125X03335MLNXS0D0F1
VUID of VF0 on PF0 =
MT2125X03335MLNXS0D0F0VF
1

VUIDs are persistent even on
reset.

d dma DMA device name to use

o osym Path to the pre-
generated symbols.json file
transferred from the host

t time Number of seconds to sleep
between scans

Running this command
on the DPU outputs
VUIDs with an additional
"EC" string in the
middle. You must
remove the "EC" to
arrive at the correct
VUID.

1059

1.
a.

b.

c.

2.
a.

b.

c.

3.
a.

b.

4.

15.20.7.4 Troubleshooting
Refer to the NVIDIA DOCA Troubleshooting Guide for any issue encountered with the installation or
execution of the DOCA applications.

15.20.8 Application Code Flow
Parse application argument.

Initialize arg parser resources and register DOCA general parameters.

doca_argp_init();

Register application parameters.

register_apsh_params();

Parse the arguments.

doca_argp_start();

Initialize DOCA App Shield lib context.
Create lib context.

doca_apsh_create();

Set DMA device for lib.

open_doca_device_with_ibdev_name();
doca_apsh_dma_dev_set();

Start the context

doca_apsh_start();
apsh_system_init();

Initialize DOCA App Shield lib system context handler.
Get the representor of the remote PCIe function exposed to the system.

open_doca_device_rep_with_vuid();

Create and start the system context handler.

doca_apsh_system_create();
doca_apsh_sys_os_symbol_map_set();
doca_apsh_sys_mem_region_set();
doca_apsh_sys_dev_set();
doca_apsh_sys_os_type_set();
doca_apsh_system_start();

Telemetry initialization.

Refer to DOCA Arg Parser for more information regarding the supported flags and execution
modes.

1060

a.
b.
c.
d.
e.

5.
a.

b.

6.

7.

8.

•

telemetry_start();

Initialize a new telemetry schema.
Register YARA type event.
Set up output to file (in addition to default IPC).
Start the telemetry schema.
Initialize and start a new DTS source with the gethostname() name as source ID.

Loop until YARA rule is matched.
Get all processes from the host.

doca_apsh_processes_get();

Check for YARA rule identification and send a DTS event if there is a match.

doca_apsh_yara_get();
if (yara_matches_size != 0) {
 /* event fill logic
 doca_telemetry_exporter_source_report();
DOCA_LOG_INFO();
sleep();

Telemetry destroy.

telemetry_destroy();

YARA inspection clean-up.

doca_apsh_system_destroy();
doca_apsh_destroy();
doca_dev_close();
doca_dev_rep_close();

Arg parser destroy.

doca_argp_destroy();

15.20.9 References
/opt/mellanox/doca/applications/yara_inspection/

1061

16 DOCA Tools
This is an overview of the set of tools provided by DOCA and their purpose.

16.1 Introduction
DOCA tools are a set of executables/scripts that are needed to produce inputs to some of the DOCA
libraries and applications.

All tools are installed with DOCA, as part of the doca-tools package, and can either be directly
accessed from the terminal or can be found at /opt/mellanox/doca/tools . Refer to NVIDIA DOCA
Installation Guide for Linux for more information.

16.2 Tools

16.2.1 DOCA Bench
CLI name: doca_bench

DOCA Bench is a tool that allows a user to evaluate the performance of DOCA applications, with
reasonable accuracy for real-world applications. It provides a flexible architecture to evaluate
multiple features in series with multi-core scaling to provide detailed throughput and latency
analysis.

16.2.2 Capabilities Print Tool
CLI name: doca_caps

DOCA Capabilities Print tool is used to print the available devices and their representor devices (in
the DPU), all their capabilities, and the available DOCA libraries.

16.2.3 DPA Tools
DOCA DPA tools are a set of executables that enable the DPA application developer and the system
administrator to manage and monitor DPA resources and to debug DPA applications.

16.2.4 PCC Counter
CLI name: pcc_counters.sh

DOCA PCC Counter tool is used to print PCC-related hardware counters. The output counters help
debug the PCC user algorithm embedded in the DOCA PCC application.

For questions, comments, and feedback, please contact us at DOCA-
Feedback@exchange.nvidia.com.

mailto:DOCA-Feedback@exchange.nvidia.com

1062

•
•
•

•
•
•
•
•
•
•
•

•
•
•

•
•

•
•
•
•

16.2.5 Socket Relay
CLI name: doca_socket_relay

DOCA Socket Relay tool allows Unix Domain Socket (AF_UNIX family) server applications to be
offloaded to Bluefield while communication between the two sides is proxied by DOCA Comm
Channel.

16.3 NVIDIA DOCA Bench

16.3.1 Introduction
NVIDIA DOCA Bench allows users to evaluate the performance of DOCA applications, with
reasonable accuracy for real-world applications. It provides a flexible architecture to evaluate
multiple features in series with multi-core scaling to provide detailed throughput and latency
analysis.

This tool can be used to evaluate the performance of multiple DOCA operations, gain insight into
each stage in complex DOCA operations and understand how items such as buffer sizing, scaling, and
GGA configuration affect throughput and latency.

16.3.2 Feature Overview
DOCA Bench is designed as a unified testing tool for all BlueField accelerators. It, therefore,
provides these major features:

BlueField execution, utilizing the Arm cores and GGAs "locally"
Host (x86) execution, utilizing x86 cores and the GGAs on the BlueField over PCIe
Support for following DOCA/DPU features:

DOCA AES GCM
DOCA Comch
DOCA Compress
DOCA DMA
DOCA EC
DOCA Eth
DOCA RDMA
DOCA SHA

Multi-core/multi-thread support
Schedule executions based on time, job counts, etc.
Ability to construct complex pipelines with multiple GGAs (where data moves serially through
the pipeline)
Various data sources (random data, file data, groups of files, etc.)
Remote memory operations

Use data location on the host x86 platform as input to GGAs
Comprehensive output to screen or CSV
Query function to report supported software and hardware feature
Sweeping of parameters between a start and end value, using a specific increment each time

1063

•

•

•

Specific attributes can be set per GGA instance, allowing fine control of GGA operation

16.3.3 Installation
DOCA Bench is installed and available in both DOCA-for-Host and DOCA BlueField Arm packages. It is
located under the /opt/mellanox/doca/tools folder.

16.3.3.1 Prerequisites
DOCA 2.7.0 and higher.

16.3.3.2 Granular Build Support
DOCA Bench supports a granular build environment which allows users to determine which DOCA
libraries are installed on any target system. During initialization, DOCA Bench probes all available
and supported DOCA libraries, and provides the ability to test those libraries. For example, if the
DOCA SHA library is not present then DOCA Bench does not allow SHA to be tested.

DOCA Bench provides a query system where device capabilities can be queried to see if the library is
indeed installed and supported (under the "installed : yes / no" section of each library). Please see
section "Queries" for details.

16.3.4 Operating Modes
DOCA Bench measures performance of either throughput (bandwidth) or latency.

16.3.5 Throughput Measurements
In this mode, DOCA Bench measures the maximum performance of a given pipeline (see "Core
Principles"). At the end of the execution, a short summary along with more detailed statistics is
presented:

Aggregate stats
 Duration: 3000049 micro seconds
 Enqueued jobs: 17135128
 Dequeued jobs: 17135128
 Throughput: 5712042 Operations/s
 Ingress rate: 063.832 Gib/s
 Egress rate: 063.832 Gib/s

16.3.5.1 Latency Measurements
Latency is the measurement of time taken to perform a particular operation. In this instance, DOCA
Bench measures the time taken between submitting a job and receiving a response.

DOCA Bench provides two different types of latency measurement figures:

Bulk latency mode – attempts to submit a group of jobs in parallel to gain maximum
throughput, while reporting latency as the time between the first job submitted in the group
and the last job received.
Precision latency mode – used to ensure that only one job is submitted and measured before
the next job is scheduled.

1064

•
•

1.

2.

16.3.5.1.1 Bulk Latency

This latency mode effectively runs the pipelines at full rate, trying to maintain the maximum
throughput of any pipeline while also recording latency figures for jobs submitted.

To record latency, while operating at the pipeline's maximum throughput, users must place the
latency figures inside groups or "buckets" (rather than record each individual job latency). Using this
method, users can avoid the large memory and CPU overheads associated with recording millions of
latency figures per second (which would otherwise significantly reduce the performance).

As each pipeline operation is different, and therefore has different latency characteristics, the user
can supply the boundaries of the latency measure. DOCA Bench internally creates 100 buckets, of
which the user can specify the starting value and the width or size of each bucket. The first and last
bucket have significance:

The first bucket contains all jobs that executed faster than the starting period
The last bucket contains a count of jobs that took longer than the maximum time allowed

The command line option --latency-bucket-range is used to supply two values representing the

starting time period of the first bucket, and the width of each sequential bucket. For example, --

latency-bucket-range 10us,100us would start with the lowest bucket measuring <10μs response
times, then 100 buckets which are 100μs wide, and a final bucket for results taking longer than
10010μs.

The report generated by bulk mode visualizes the latency data in two methods:

A bar graph is provided to visually show the spread of values across the range specified by the
--latency-bucket-range option:

Latency report:
 :
 :
 :
 :
 :
 ::
 ::
 ::
 ::
 .::.
--

A breakdown of the number of jobs per bucket is presented. This example shortens the
output to show that the majority of values lie between 27000ns and 31000ns.

[25000ns -> 25999ns]: 0
[26000ns -> 26999ns]: 0
[27000ns -> 27999ns]: 128
[28000ns -> 28999ns]: 2176
[29000ns -> 29999ns]: 1152
[30000ns -> 30999ns]: 128
[31000ns -> 31999ns]: 0
[32000ns -> 32999ns]: 0
[33000ns -> 33999ns]: 128
[34000ns -> 34999ns]: 0
[35000ns -> 35999ns]: 0

16.3.5.1.2 Precision Latency

This latency mode operates on a single job at a time. At the cost of greatly reduced throughput, this
allows the minimum latency to be precisely recorded. As shown below, the statistics generated are
precise and include various fields such as min, max, median, and percentile values.

1065

Aggregate stats

 min: 1878 ns
 max: 4956 ns
 median: 2134 ns
 mean: 2145 ns
 90th %ile: 2243 ns
 95th %ile: 2285 ns
 99th %ile: 2465 ns
 99.9th %ile: 3193 ns
 99.99th %ile: 4487 ns

16.3.6 Core Principles
The following subsections elaborate on principles which are essential to understand how DOCA
Bench operates.

16.3.6.1 Host or BlueField Arm Execution
Whether executing DOCA Bench on an x86 host or BlueField Arm, the behavior of DOCA Bench is
identical. The performance measured is dependent on the environment.

16.3.6.2 Pipelines
DOCA Bench is a highly flexible tool, providing the ability to configure how and what operations
occur and in what order. To accomplish this, DOCA Bench uses a pipeline of operations, which are
termed "steps". These steps can be a particular function (e.g., Ethernet receive, SHA hash
generation, data compression). Therefore, a pipeline of steps can accomplish a number of
sequential operations. DOCA Bench can measure the throughput performance or latency of these
pipelines, whether running on single or multiple cores/threads.

16.3.6.3 Warm-up Period
To ensure correct measurement, the pipelines must be run "hot" (i.e., any initial memory, caches,
and hardware subsystems must be running prior to actual performance measurements begin). This is
known as the "warm-up" period and, by default, runs approximately 250 jobs through the pipeline
before starting measurements.

16.3.6.4 Defaults
DOCA Bench has a large number of parameters but, to simplify execution, only a few must be
supplied to commence a performance measurement. Therefore various parameters have defaults
which should be sufficient for most cases. To fine tune performance, users should pay close
attention to any default parameters which may affect their pipeline's operation.

Only execution on x86 hosts is supported.

Currently, DOCA supports running only one pipeline at a time.

When executed, DOCA Bench reports a full list of all parameters and configured values.

1066

•

•

•

•

16.3.6.5 Optimizing Performance
To obtain maximum performance, a certain amount of tuning is required for any given environment.
While outside the scope of this documentation, it is recommended for users to:

Avoid using CPU 0 as most OS processes and interrupt request (IRQ) handlers are scheduled to
execute on this core
Enable CPU/IRQ isolation in the kernel boot parameters to remove kernel activities from any
cores they wish to execute performance tests on
On hosts, ensure to not cross any non-uniform memory access (NUMA) regions when
addressing the BlueField
Understand the memory allocation requirements of scenarios, to avoid over-allocating or
running into near out-of-memory situations

16.3.7 Supported BlueField Feature Matrix
DOCA Bench can be executed on both host and BlueField Arm environments, and can target
BlueField networking platforms.

The following table shows which operations are possible using either DOCA Bench. It also provides
two columns showing whether remote memory can be used as an input or output to that operation.
For example, DMA operations on the BlueField Arm can access remote memory as an input to pull
memory from the host into the BlueField Arm).

BlueField-2
Networking
Platform

BlueFIeld-3
Networking
Platform

Execute
on Host

Side

Execute
on

BlueField
Arm

Remote
Memory as

Input
Allowed?

Remote
Memory as

Output
Allowed?

doca_com
press::co
mpress

✓ ✓ ✓ ✓ ✓

doca_com
press::dec
ompress

✓ ✓ ✓ ✓ ✓ 1 ✓

doca_dma ✓ ✓ ✓ ✓ ✓ ✓

doca_ec::
create

✓ ✓ ✓ ✓ ✓

doca_ec::r
ecover

✓ ✓ ✓ ✓ ✓

doca_ec::
update

✓ ✓ ✓ ✓ ✓

doca_sha ✓ ✓ ✓ ✓

doca_rdm
a::send

✓ ✓ ✓ ✓ ✓ ✓

doca_rdm
a::receive

✓ ✓ ✓ ✓ ✓ ✓

1067

doca_aes_
gcm::encr

ypt

✓ ✓ ✓ ✓ ✓

doca_aes_
gcm::decr

ypt

✓ ✓ ✓ ✓ ✓

doca_cc::c
lient_prod

ucer

✓ ✓ ✓ ✓

doca_cc::c
lient_cons

umer

✓ ✓ ✓ ✓

doca_eth::
rx

✓ ✓ ✓

doca_eth::
tx

✓ ✓ ✓

1. Input remote memory is not supported for lz4 decompression

16.3.8 Remote Operations
A subset of BlueField operations have a remote element, whether this is an RDMA connection,
Ethernet connectivity, or memory residing on an x86 host. All these operations require an agent to
be present on the far side to facilitate the benchmarking of that particular feature.

In DOCA Bench, this agent is an additional standalone application called the "companion app". It
provides the remote benchmarking facilities and is part of the standard DOCA Bench installation.

The following diagram provides an overview of the function and communications between DOCA
Bench and the companion app:

In this particular setup, the BlueField executes "DOCA Bench" while the host (x86) is executes the
companion App.

DOCA Bench also acts as the controller of the tests, instructing the companion app to perform the
necessary operations as required. There is an out-of-band communications channel operating
between the two applications that utilizes either standard TCP/IP sockets or a DOCA Comch channel
(depending on the test scenario/user preferences).

1068

•

•
•

•

•

•

16.3.9 CPU Core and Thread Selection

A key requirement to scaling any application is the number of CPU cores or threads allocated to any
given activity. DOCA Bench provides the ability to specify the numbers of cores, and the number of
threads to be created per core, to maximize the number of jobs submitted to a given pipeline.

The following care should be given when selecting the number of CPU's or threads:

Threads that are on cores located on distant NUMA regions (i.e., not the same NUMA region
the BlueField is connected to) will experience lower performance and higher latency
Core 0 is often most used by the OS and should be avoided
Standard Linux Kernel installations allow the OS to move processes on any CPU core resulting
in unexpected drops in performance, or higher latency, due to process switching

The selection of CPU cores is provided through the --core-mask , --core-list , --core-count

parameters, while thread selection is made via the --threads-per-core parameter.

16.3.10 Device Selection
When executing from a host (x86) environment DOCA Bench can target one or more BlueField
devices within an installed environment. When executing from the BlueField Arm, the target is
always the local BlueField.

The default method of targeting a given BlueField from either the host or the BlueField Arm is using
the --device or -A parameters, which can be provided as:

Device PCIe address (i.e., 03:00.0);

Device IB name (mlx5_0); or

Device interface name (ens4f0)

From the BlueField Arm environment, DOCA Bench should be targeted at the local PCIe address
(i.e., --device 03:00.0) or the IB device name (i.e., mlx5_0).

16.3.11 Input Data Selection and Sizing of Jobs
DOCA Bench supports different methods of supplying data to jobs and providing information on the
amount of data to process per job. These are referred to as "Data Providers".

DOCA Bench tool is not intended to be used in a production deployment. If choosing to do
so, please be aware that the out-of-band communications might contain sensitive
information and thus should be done over a secure channel when using the standard TCP/IP
sockets

Selection of the correct CPU cores and threads has a significant impact on the performance
or latency obtained. Read this section carefully.

1069

16.3.11.1 Input Data Selection
The following subsections provide the modes available to provide data for input into any operation.

16.3.11.1.1 File

A single file is used as input to the operation. The contents of the file are not important for certain
operations (e.g., DMA, SHA, etc.) but must be valid and specific for others (e.g., decompress, etc).
The data may be used multiple times and repeated if the operations required more data than the
single file contains. For more information on how file data is handled in complex operations, see
section "Command-line Parameters".

16.3.11.1.2 File Sets

File sets are a group of files that are primarily used for structured data. The data in the file set is
effectively a list of files, separated by a new line that is used sequentially as input data for jobs.
Each file pointed to by the file set would have its entire contents read into a single buffer. This is
useful for operations that require structured data (i.e., a complete valid block of data, such as
decompression or AES).

16.3.11.1.3 Random Data

Random data is provided when the actual data required for the given operation is not specific (e.g.,
DMA).

16.3.11.2 Job Sizing
Each job in DOCA Bench consists of three buffers: An original input buffer, an output, and an
intermediate buffer.

The input buffer is provided by the data provider for the first step in the pipeline to use, after
which the following steps use the output and intermediate buffers (can be sized by using --job-

output-buffer-size) in a ping-pong fashion. This means, the pipeline can always start with the
same deterministic data while allowing for each step to provide its newly generated output data to
be used as input to the next step.

The input buffer is specified in one of two ways: using uniform-job-size to make every input buffer
the exact same size, or using a file set to size each buffer based on the size of the selected input
data file(s). Users should ensure the data generated by each step in the pipeline will fit in the
provided output buffer.

The use of random data for certain operations may reduce the maximum performance
obtained. For example, compressing random data results in lower performance than
compressing actual file data (due to the lack of repeating patterns in random data).

1070

16.3.12 Controlling Test Duration
DOCA Bench has a variety of ways to control the length of executing tests—whether based on data or
time limit.

16.3.12.1 Limit to Specific Number of Seconds

Using the --run-limit-seconds or -s parameter ensures that the execution continues for a
specific number of seconds.

16.3.12.2 Limited Through Total Number of Jobs

It may be desirable to measure a specific number of jobs passing through a pipeline. The --run-

limit-jobs or -J parameter is used to specify the exact number of jobs submitted to the pipeline
and allowed to complete before execution finishes.

16.3.13 GGA-specific Attributes
As DOCA Bench supports a wide range of both GGA and software based DOCA libraries, the ability to
fine tune their invocation is important. Command-line parameters are generally used for
configuration options that apply to all aspects of DOCA Bench, without being specific to a particular
DOCA library.

Attributes are the method of providing configuration options to a particular DOCA Library, whilst
some shared attributes exist the majority of libraries have specific attributes designed to control
their specific behavior.

For example, the attribute doca_ec.data_block_count allows you to set the data block count for

the DOCA EC library, whilst the attribute doca_sha.algorithm controls the selection of the SHA
algorithm.

For a full list of support attributes, see the "Command-line Parameters" section.

16.3.14 Command-line Parameters
DOCA Bench allows users to specify a series of operations to be performed and then scale that
workload across multiple CPU cores/threads to get an estimation of how that workload performs
and some insight into which stage(s), if any, cause performance problems for them. The user can
then modify various configuration properties to explore how issues can be tuned to better serve
their need.

When running, DOCA Bench creates a number of execution threads with affinities to the specific
CPU specified by the user. Each thread creates, uniquely for themselves, a jobs pool (with job data
initialized by a data provider) and a pipeline of workload steps.

Due to batching it is possible that more than the supplied jobs are executed.

1071

•

•

16.3.14.1 CPU Core and Thread Count Configuration
There are many factors involved when carrying out performance tests, one of these is the CPU
selection:

The user should consider NUMA regions when selecting which cores to use, as using a CPU
which is distant from the device under test can impact the performance achievable
The user may also wish to avoid core 0 as this is typically the default core for kernel interrupt
handlers.

16.3.14.1.1 --core-mask

Default value: 0x02

Core mask is the simplest way to specify which cores to use but is limited in that it can only specify
up to 32 CPUs (0-31). Usage example: --core-mask 0xF001 selects CPU cores 0, 12, 13, 14, and
15.

16.3.14.1.2 --core-list

Core list can specify any/all CPU cores in a given system as a list, range, or combination of the two.
Usage example: --core-list 0,3,6-10 selects CPU cores 0, 3, 6, 7, 8, 9, and 10.

16.3.14.1.3 --core-count

The user can select the first N cores from a given core set (list or mask) if desired. Usage example:
--core-count N .

16.3.14.1.4 --threads-per-core -t

To test the impacts of contention within a single CPU core, the user can specify this value so that
instead of only one thread being created per core, N threads are created with their affinity mask set
to the given core for each core selected. For example, 3 cores and 2 threads per core create 6
threads total.

16.3.14.2 Device Configuration
The test requires the use of at least one BlueField to execute. With remote system testing, a second
device may be required.

CPU core selection has an impact on the total memory footprint of the test. See section
"Test Memory Footprint" for more details.

Sweep testing is supported. See section "Sweep Tests" for more details.

Sweep testing is supported. See section "Sweep Tests" for more details.

1072

•

•

•

16.3.14.2.1 --device -A

Specify the device to use from the perspective of the system under test. The value can be for any
one of either the device PCIe address (e.g., 03:00.0), the device IB device name (e.g., mlx5_0),

or the device interface name (e.g., ens4f0).

16.3.14.2.2 --representor -R

This option is used only when performing remote memory operations between a BlueField device
and its host using DOCA Comch. This is typically automated by the companion connection string but
exists for some developer debug use-cases.

16.3.14.3 Input Data and Buffer Size Configuration
DOCA Bench supports multiple methods of acquiring data to use to initialize job buffers. The user
can also configure the output/intermediate buffers associated with each job.

16.3.14.3.1 --data-provider -I

DOCA Bench supports several different input data sources:

file

file-set

random-data

16.3.14.3.1.1 File Data Provider

The file data provider produces uniform/non-structured data buffers by using a single input file. The
input data is stripped and or repeated to fill each data buffer as required, returning back to the
start of the file each time it is exhausted to collect more data. This is desirable when the
performance of the component(s) under test is meant to show different performance characteristics
depending on the input data supplied.

For example, doca_dma and doca_sha would execute in constant time regardless of the input

data. Whereas doca_compress would be faster with data with more duplication and slower for
truly random data and would produce different output depending on the input data.

Example 1 – Small Input File with Large Buffers

This option used to be important before the companion connection string property was
introduced but now is rarely used.

Input data and buffer size configuration has an impact on the total memory footprint of the
test. See section "Test Memory Footprint" for more details.

1073

•

•

•

•

•

Given a small input data (i.e., smaller than the data buffer size), the file contents are repeated
until the buffer is filled and then continue onto the next buffer(s). So, if the input file contained
the data 012345 and the user requested two 20-byte buffers, the buffers would appear as follows:

01234501234501234501

23450123450123450123

Example 2 – Large Input File with Smaller Buffers

Given a large input data (i.e., greater than the data buffer size), the file contents are distributed
across the data buffers. If the the input file contained the data 0123456789abcdef and the user
requested three 12-byte buffers, the buffers would appear as follows:

0123456789ab

cdef01234567

89abcdef0123

16.3.14.3.1.2 File Set Data Provider

The file set data provider produces structured data. The file set input file itself is a file containing
one or more filenames (relative to the input "command working directory (cwd)" not relative to
the file set file). Each file listed inside the file set would have its entire contents used as a job
buffer. This is useful for operations where the data must be a complete valid data block for the
operation to succeed like decompression with doca_compress or decryption with doca_aes .

Example – File Set and Its Contents

Given a file set in the "command working directory (cwd)" referring to data_1.bin and

data_2.bin (one file name per line), and data_1.bin contains 33 bytes and data_2.bin
contains 69 bytes, then the data required by the buffers would be filled with these two files in a
round-robin manner until the buffers are full. Unlike uniform (non-structured) data each task can
have different lengths.

16.3.14.3.1.3 Random-data Data Provider

The random data data provider provides uniform (non-structured) data from a random data source.
Each buffer will have unique (pseudo) random bytes of content.

16.3.14.3.2 --data-provider-job-count

Default value: 128

Each thread in DOCA Bench has its own allocation of job data buffers to avoid memory contention
issues. Users may select how many jobs should be created per thread using this parameter.

Sweep testing is supported. See section "Sweep Tests" for more details.

1074

•

•

16.3.14.3.3 --data-provider-input-file

For data providers which use an input file, the filename can be specified here. The filename is
relative to the input_cwd .

16.3.14.3.4 --uniform-job-size

Specify the size of uniform input buffers (in bytes) that should be created.

16.3.14.3.5 --job-output-buffer-size

Default value: 16384

Specify the size of output/intermediate buffers (in bytes). Each job has 3 buffers: immutable input
buffer and two output/intermediate buffers. This allows for a pipeline to mutate the data an
infinite number of times throughout the pipeline, while allowing for it to be reset and re-used at
the end and allowing any step to use the new mutated data created by the previous step.

16.3.14.3.6 --input-cwd -i

To ease configuration management, the user may opt to use a separate folder for the input data for
a given scenario outside of the DOCA build/install directory.

16.3.14.3.6.1 Example 1 – Running DOCA Bench from Current Working Directory

Considering a user executing DOCA Bench from /home/bob/doca/build , values specified in --

data-provider-input-file and filenames within a file set would search relative to the shell's

"command working directory (cwd)": /home/bob/doca/build . Their command might look
something like:

doca_bench --data-provider file-set --data-provider-input-file my_file_set.txt

And assuming my_file_set.txt contains data_1.bin , the files that would be loaded by DOCA
Bench after path resolution would be:

/home/bob/doca/build/my_file_set.txt

/home/bob/doca/build/data_1.bin

Sweep testing is supported. See section "Sweep Tests" for more details.

Does not apply and should not be specified when using structured data input sources.

Sweep testing is supported. See section "Sweep Tests" for more details.

It is recommended to use relative file paths for the input files.

1075

•

•

•

•

16.3.14.3.6.2 Example 2 – Running DOCA Bench from Another Directory

Considering the user executed that same test from one level up. Something like:

build/doca_bench --data-provider file-set --data-provider-input-file build/my_file_set.txt

The files to be loaded would be:

/home/bob/doca/build/my_file_set.txt

/home/bob/doca/data_1.bin

Notice how both files were loaded relative to the "command working directory (cwd)" and the
data file was not loaded relative to the file set.

16.3.14.3.6.3 Example 3 – Example 2 Revisited Using input-cwd

The user can solve this easily by keeping all input files in a single directory and then referring to
that directory using the parameter input-cwd . In this case, the command like may look something
like:

build/doca_bench --data-provider file-set --data-provider-input-file my_file_set.txt --input-cwd build

Note that the value for --data-provider-input-file also changed to be relative to the new

"command working directory (cwd)" .

The files loaded this time are back to being what is expected:

/home/bob/doca/build/my_file_set.txt

/home/bob/doca/build/data_1.bin

16.3.14.4 Test Execution Control
DOCA Bench supports multiple test modes and run execution limits to allow the user to configure
the test type and duration.

16.3.14.4.1 --mode

Default value: throughput

Select which type of test is to be performed.

16.3.14.4.1.1 Throughput Mode

Throughput mode is optimized to increase the volume of data processed in a given period with little
or no regard for latency impact. Throughput mode tries to keep each component under test as busy
as possible. A summary of the bandwidth and job execution rate are provided as output.

1076

•
•

16.3.14.4.1.2 Bulk-latency Mode

Bulk latency mode strikes a balance between throughout and latency, submitting a batch of jobs and
waiting for them all to complete to measure the latency of each job. This mode uses a bucketing
mechanism to allow DOCA Bench to handle many millions of jobs worth of results. DOCA Bench
keeps a count of the number of jobs that complete within each bucket to allow it to run for long
periods of time. A summery of the distribution of results with an ASCII histogram of the results are
provided as output. The latency reported is the time taken between the first job submission (for a
batch of jobs) until the final job response is received (for that same batch of jobs).

16.3.14.4.1.3 Precision-latency Mode

Precision latency mode executes one job at a time to allow DOCA Bench to calculate the minimum
possible latency of the jobs. This causes the components which can process many jobs in parallel to
be vastly underutilized and so greatly reduces bandwidth. As this mode records every result
individually, it should not be used to execute more than several thousand jobs. Precision latency
mode requires 8 bytes of storage for each result, so be mindful of the memory overhead of the
number of jobs to be executed.

A statistical analysis including minimum, maximum, mean, median and some percentiles of the
latency value are provided as output.

16.3.14.4.2 --latency-bucket-range

Default value: 100ms,10ms

Only applicable to bulk-latency mode. Allows the user to specify the starting value of the buckets,
and the width of each bucket. There are 100 buckets of the given size and an under flow and
overflow bucket for results that fall outside of the central range.

For example:

--latency-bucket-range 10us,100us

This would start with the lowest bucket measuring <10μs response times, then 100 buckets which
are 100μs wide, and a final bucket for results taking longer than >10010μs.

16.3.14.5 Blocking Mode
DOCA supports two methods of waiting on completion of tasks:

Busy-wait (or polling) mode
Notification-driven mode

By default, DOCA Bench uses the busy-wait to ensure maximum bandwidth (and low latency) for any
given pipeline and its tasks with high utilization of any allocated CPU resources.

As with all high-performance software, utilizing GGAs or hardware accelerators, performance is
usually CPU-bound at smaller packet sizes (i.e., at smaller payload sizes, the CPU spends a long

Refer to "DOCA SDK Architecture" documentation for more information.

1077

time generating tasks and dealing with completions). For larger packet sizes, the CPU submits less
tasks, as each task contains more data, therefore it may easily submit more data than the GGA or
hardware accelerator can accept, resulting in periods where the CPU is busy-waiting on completions
before being able to submit further tasks.

16.3.14.5.1 --use-blocking-mode

This option causes DOCA Bench to use the "notification-drive mode" method of waiting on task
completion.

16.3.14.5.2 --record-cpu-usage

If specified, this option reports CPU statistics for any CPU cores DOCA Bench is executing on. This
provides guidance on how much CPU time is returned, and thus available to other processes or
threads, should the "notification-driven" mode be active.

The statistics provided include min, max, median, and mean values for the CPU usage. Also included
are a number of percentile results, showing 90th, 95th, and a number of 99th percentile values.
Example output:

CPU Usage stats
 min: 25%
 max: 50%
 median: 50%
 mean: 45.8333%
 90th %ile: 50%
 95th %ile: 50%
 99th %ile: 50%
 99.9th %ile: 50%
 99.99th %ile: 50%

16.3.14.6 Execution Limits
By default, a test runs forever. This is typically undesirable so the user can specify a limit to the
test.

16.3.14.6.1 --run-limit-seconds -s

Runs the test for N seconds as specified by the user.

To execute any tests using an "notification-driven mode", use the options detailed in the
following subsections.

At smaller packet sizes, the benchmark may still be CPU bound.

Short duration tests may not result in sufficient produced data to generate CPU usage
statistics.

Precision-latency mode only supports job limited execution.

1078

•

•

16.3.14.6.2 --run-limit-jobs -J

Runs the test until at least N jobs have been submitted, then allowing in-flight jobs to complete
before exiting. More jobs than N may be executed based on batch size.

16.3.14.6.3 --run-limit-bytes -b

Runs the test until at least N bytes of data have been submitted, then allowing in-flight jobs to
complete before exiting. More data may be processed than desired if the limit is not a multiple of
the job input buffer size.

16.3.14.7 Gather/Scatter Support
Gather support involved breaking incoming input data from a single buffer into multiple buffers,
which are "gathered" into a single gather list. Currently only gather is supported.

16.3.14.7.1 --gather-value

Default value: 1

Specifies the partitioning of input data from a single buffer into a gather list. The value can be
specified in two flavors:

--gather-value 4 – splits input buffers into 4 parts as evenly as possible with odd bytes in
the last segment
--gather-value 4KiB – splits buffers after each 4KB of data. See doca_bench/utility/

byte_unit.hpp for the list of possible units.

16.3.14.8 Stats Output

16.3.14.8.1 --rt-stats-interval

By default, DOCA Bench emits the results of an iteration once it completes. The user can ask for
transient snapshots of the stats as the test progresses by providing the --rt-stats-interval
argument with a value representing the number of milliseconds between stat prints. The end-result
of the run is still displayed as normal.

16.3.14.8.2 --csv-output-file

DOCA Bench can produce an output file as part of its execution which can contain stats and the
configuration values used to produce that stat. This is enabled by specifying the --csv-output-

file argument with a file path as the value. Providing a value for this argument enables CSV stats
output (in addition to the normal console output). When performing a sweep test, one line per
iteration of the sweep test is populated.

By default, the CSV output contains every possible value. The user can tune this by applying a filter.

This may produce a large amount of console output.

1079

16.3.14.8.3 --csv-stats

Provide one or more filters (positive or negative) to tune which stats are displayed. The value for
this argument is a comma-separated list of filter strings. Negative filters start with a minus sign (' - '
).

16.3.14.8.3.1 Example 1 – Emit Only Statistical Values (No Configuration Values)

 --csv-stats "stats.*"

16.3.14.8.3.2 Example 2 – Emit Statistical Values and Some Configuration Values (Remove
Attribute Values)

--csv-stats "stats.*,-attribute*

16.3.14.8.4 --csv-append-mode

Default: false

When enabled, DOCA Bench appends to a CSV file if it exists or creates a new one. It is assumed that
all invocation uses the exact same set of output values. This is not verified by DOCA Bench. The user
must ensure that all tests that append to the CSV use the same set of output values.

16.3.14.8.5 --csv-separate-dynamic-values

A special case which creates a non-standard CSV file. All values that are not supported by sweep
tests are reported only once first, then a new line of headers for values emitted during the test,
then a row for each test result. This is reserved for an internal use case and should not be relied
upon by anyone else.

16.3.14.8.6 --enable-environment-information

Instructs DOCA Bench to collect some detailed system information as part of the test startup
procedure which are then made available for output in the CSV. These also gather the same details
from the companion side if the companion is in use.

The quotes around the * prevent the shell from interpreting it as a wild card for filenames
in the command.

This collection can take a long time (up to a few minutes in some circumstances) to
complete, so it is not recommended unless you know you need it.

1080

16.3.14.9 Remote Memory Testing

Some libraries (e.g., doca_dma) support the use of remote memory. To enable this, the user can

specify one or both of the remote memory flags --use-remote-input-buffers and --use-

remote-output-buffers . This tells DOCA Bench to use the companion to create a remote mmap.
This remote mmap is then used to create buffers that are submitted to the component under test.

16.3.14.9.1 --use-remote-input-buffers

Specifies that the memory used for the initial immutable job input buffers into a pipeline should be
backed by an mmap on the remote side.

16.3.14.9.2 --use-remote-output-buffers

Specifies that all output and translation buffers in use are backed by an mmap on the remote side.

16.3.15 Network Options

16.3.15.1 --mtu-size

For use with doca_rdma . Value is an enum: 256B 512B 1KB 2KB 4KB or raw_eth .

16.3.15.2 --receive-queue-size

For use with doca_rdma . Configure the RDMA RQ size independently of the SQ size.

16.3.15.3 --send-queue-size

For use with doca_rdma . Configure the RDMA SQ size independently of the RQ size.

16.3.15.4 DOCA Lib Configuration Options

16.3.15.4.1 --task-pool-size

Default value: 1024

These flags should be used with caution and an understanding that if the underlying
components under test can support this scenario, there is no automated checking. It is user
responsibility to ensure these are used appropriately.

Requires the companion app to be configured.

Requires the companion app to be configured.

1081

•
•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Configure the maximum task pool size used when libraries initialize task pools.

16.3.15.5 Pipeline Configuration
DOCA Bench is based on a pipeline of operations, This allow for complex test scenarios where
multiple components are tested in parallel. Currently only a single chain of operations in a pipeline
is supported (but scaled across multiple cores or threads), future versions will allow for varied
pipeline's per CPU core.

A pipeline is described as a series of steps. All steps have a few general characteristics:

Step type: doca_dma , doca_sha , doca_compress , etc.
An operation category – transformative or non-transformative
An input data category – structured or non structured

Individual step types may also have some additional metadata information or configuration as
defined on a per step basis.

Metadata examples:

doca_compress requires an operation type: compress or decompress

doca_aes requires an operation type: encrypt or decrypt

doca_ec requires an operation type: create , recover or update

doca_rdma requires a direction: send , receive or bidir

Configuration examples:

--pipeline-steps doca_dma

--pipeline-steps doca_compress::compress,doca_compress::decompress

16.3.15.5.1 --pipeline-steps

Define the step(s) (comma-separated list) to be executed by each thread of the test.

The following is the list of supported steps:

doca_compress::compress

doca_compress::decompress

doca_dma

doca_ec::create

doca_ec::recover

doca_ec::update

doca_sha

doca_rdma::send

doca_rdma::receive

doca_rdma::bidir

doca_aes_gcm::encrypt

doca_aes_gcm::decrypt

doca_cc::client_producer

doca_cc::client_consumer

doca_eth::rx

1082

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

doca_eth::tx

16.3.15.5.2 --attribute

Some of the options are very niche or specific to a single step/mmo type, so they are defined simply
as attributes instead of a unique command-line argument.

The following is the list of supported options:

doption.mmp.log_qp_depth

doption.mmo.log.num_qps

doption.companion_app.path

doca_compress.algorithm

doca_ec.matrix_count

doca_ec.data_block_count

doca_ec.redundancy_block_count

doca_sha.algorithm

doca_rdma.gid-index

doca_eth.max_burst_size

doca_eth.l3_chksum_offload

doca_eth.l4_chksum_offload

16.3.15.5.3 --warm-up-jobs

Default value: 100

Warm-up serves two purposes:

Firstly, it runs N tasks in a round robin fashion to get the data path code, tasks memory, and
tasks data buffers memory into the CPU caches before the measurement of the test begins
Secondly, it uses doca_task_try_submit instead of doca_task_submit to validate the
jobs. This validation is not desirable during the proper hot path as it costs time revalidating
the task each execution.

The user should ensure their warmup count equals or exceeds the number of tasks being used per
thread (see --data-provider-job-count).

16.3.15.6 Companion Configuration
Some tests require a remote system to function. For this purpose, DOCA Bench comes bundled with
a companion application (this application is installed as part of the DOCA-for-Host or BlueField
packages). The companion is responsible for providing services to DOCA Bench such as creating a
doca_mmap on the remote side and exporting it for use with remote operations like doca_dma /

doca_sha , or other doca_libs that support remote memory input buffers. DOCA Bench can also

Some modules may be unavailable if they were not compiled as part of DOCA when DOCA
Bench was compiled.

1083

•

•

•

provide remote worker processes for libraries that require them such as doca_rdma and doca_cc .

The companion is enabled by providing the --companion-connection-string argument.

Companion remote workers are enabled by providing either of the arguments --companion-core-

list or --companion-core-mask .

The companion connection may also specify the no-launch option.

The user may also specify a path to a specific companion binary to allow them to test companion
binaries not in the default install path using the following command:

--attribute doption.companion_app.path=/tmp/my_doca_build/tools/bench/doca_bench_companion

16.3.15.6.1 --companion-connection-string

Specifies the details required to establish a connection to and execute the companion process.

Example of running DOCA Bench from the host side using the BlueField for the remote side
using doca_comch as the communications method:

--companion-connection-string "proto=dcc,mode=DPU,user=bob,addr=172.17.0.1,dev=03:00.0,rep=d8:00.0"

Example of running DOCA Bench from the BlueField side using the host for the remote side
using doca_comch as the communications method:

--companion-connection-string "proto=dcc,mode=host,user=bob,addr=172.17.0.1,dev=d8:00.0"

Example of running DOCA Bench on one host with the companion on another host using TCP as
the communications method:

--companion-connection-string "proto=tcp,user=bob,addr=172.17.0.1,port=12345,dev=d8:00.0"

16.3.15.6.2 --companion-core-list

Works the same way as --core-list but defines the cores to be used on the companion side.

DOCA Bench requires that an SSH key is configured to allow the user specified to SSH
without a password to the remote system using the supplied address (to launch the
companion). Refer to your OS's documentation for information on how to achieve this.

This is reserved for expert developer use.

This is reserved for expert developer use.

For doca_rdma only.

1084

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

16.3.15.6.3 --companion-core-mask

Works the same way as --core-mask but defines the cores to be used on the companion side.

16.3.15.7 Sweep Tests

16.3.15.7.1 --sweep

DOCA Bench supports executing a set of tests based on a number of value ranges. For example, to
understand the performance of multi-threading, the user may wish to run the same test for various
CPU core counts. They may also wish to vary more than one aspect of the test. Providing one or
more --sweep parameters activates sweep test mode where every combination of values is tested
with a single invocation of DOCA Bench.

The following is a list of the supported sweep test options:

core-count

data-provider-input-file

data-provider-job-count

gather-value

mtu-size

receive-queue-size

send-queue-size

threads-per-core

task-pool-size

uniform-job-size

doption.mmo.log_qp_depth

doption.mmo.log_num_qps

doca_rdma.transport-type

doca_rdma.gid-index

Sweep test argument values take one of three forms:

--sweep param,start_value,end_value,+N

--sweep param,start_value,end_value,*N

--sweep param,value1,...,valueN

Sweep core count and input file example:

--sweep core-count,1,8,*2 –sweep data-provider-input-file,file1.bin,file2.bin

Must be at least as large as the --core-list .

Must be at least as large as the --core-mask .

1085

•

•

•
•

•
•

This would sweep cores 1-8, inclusive, multiplying the value each time as 1,2,4,8 and two different
input files resulting in a cumulative 8 test cases:

Iteration Number Core Count Input File

1 1 file1.bin

2 2 file1.bin

3 4 file1.bin

4 8 file1.bin

5 1 file2.bin

6 2 file2.bin

7 4 file2.bin

8 8 file2.bin

16.3.15.8 Queries

16.3.15.8.1 Device Capabilities

DOCA Bench allows the querying of a device to report which step types are available as well as
information of valid configuration options for each step. A device must be specified:

tools/bench/doca_bench --device 03:00.0 --query device-capabilities

For each supported library, this would report:

Capable – if that library is enabled in DOCA Bench at compile time (if not capable, installing
the library would not make it become available to bench)
Installed – if the library is installed on the machine executing the query (if not installed,
installing it would make it available to bench)
Library wide attributes
A list of supported task types (~= step name)

If the task type is supported
Task specific attributes/capabilities

doca_compress:
 Capable: yes
 Installed: yes
 Tasks:
 compress::deflate:
 Supported: no
 compress::lz4:
 Supported: no
 compress::lz4_stream:
 Supported: no
 decompress::deflate:
 Supported: yes
 Max buffer length: 134217728
 decompress::lz4:
 Supported: yes
 Max buffer length: 134217728
 decompress::lz4_stream:
 Supported: yes
 Max buffer length: 134217728

1086

16.3.15.8.2 Supported Sweep Attributes

Shows the possible parameters that can be used with the sweep test parameter

tools/bench/doca_bench --query sweep-properties

Example output:

Supported query properties: [
 core-count
 threads-per-core
 uniform-job-size
 task-pool-size
 data-provider-job-count
 gather-value
 mtu-size
 send-queue-size
 receive-queue-size
 doption.mmo.log_qp_depth
 doption.mmo.log_num_qps
 doca_rdma.transport-type
 doca_rdma.gid-index
]

16.3.16 Test Memory Footprint
DOCA Bench allocates memory for all the tasks required by the test based on the input buffer size,
output/intermediate buffer size, number of cores, number of threads, and number of jobs in use.
All jobs contain an input buffer, an output buffer, and an intermediate buffer. The input buffer is
immutable and sized based on the data provider in use. The output and intermediate buffers are
sized based on the users specification or automatically calculated at the users request. For a library
which produces the same amount of output as it consumes (e.g., doca_dma), typically the user
should set the buffers all to the same size to make things as efficient as possible.

The memory footprint for job buffers can be calculated as: (number-of-tasks) * (number-of-

cores) * (number-of-threads-per-core) * (input-buffer-size + (output/intermediate-

buffer-size * 2)) . For a 1KB job with the default of 32 jobs, 1 core, and 1 core per thread, the
memory footprint would be 96KB.

For sweep testing and structured data input, it can be difficult to pick a suitable output buffer size
so the user may choose to specify 0 and have DOCA Bench try all the tasks once to calculate the
required output buffer sizes. This only has a cost in terms of time taken to perform the calculation.
After this, there is no difference between auto-sizing and manually sizing the jobs output buffers.

16.3.17 DOCA Bench Sample Invocations

16.3.17.1 Overview
This guide provides examples of various invocations of the tool to help provide guidance and insight
into it and the feature under test.

When running DOCA Bench on the BlueField and on some host OSs, it may be necessary to
increase the limit of how much memory the process can acquire. Consult your OS's
documentation for details of how to do this.

1087

•

•
•

•

16.3.17.2 DOCA Eth Receive Sample
This test invokes DOCA Bench to run in Ethernet receive mode, configured to receive Ethernet
frames of size 1500 bytes.
The test runs for 3 seconds using a single core and use a maximum burst size of 512 frames.
The test runs in the default throughput mode, with throughput figures displayed at the end of
the test run.
The companion application uses 6 cores to continuously transmit Ethernet frames of size 1500
bytes until it is stopped by DOCA Bench.

16.3.17.2.1 Command Line

doca_bench --core-mask 0x02 \
 --pipeline-steps doca_eth::rx \
 --device b1:00.1 \
 --data-provider random-data \
 --uniform-job-size 1500 \
 --run-limit-seconds 3 \
 --attribute doca_eth.max-burst-size=512 \
 --companion-connection-string proto=tcp,addr=10.10.10.10,port=12345,user=bob,de
v=ens4f1np1 \
 --attribute doption.companion_app.path=/opt/mellanox/doca/tools/
doca_bench_companion \
 --companion-core-list 6 \
 --job-output-buffer-size 1500 \
 --mtu-size raw_eth

16.3.17.2.2 Results Output

[main] doca_bench : 2.7.0084
[main] release build
+ +
DOCA bench supported modules: [doca_comm_channel, doca_compress, doca_dma, doca_ec, doca_eth, doca_sha, doca_comch,
doca_rdma, doca_aes_gcm]
+ +

DOCA bench configuration
Static configuration: [
 Attributes: [doca_eth.l4-chksum-offload:false, doca_eth.max-burst-size:512, doption.companion_app.path:/
opt/mellanox/doca/tools/doca_bench_companion, doca_eth.l3-chksum-offload:false]
 Companion configuration: [
 Device: ens4f1np1
 Remote IP address: "bob@10.10.10.10"
 Core set: [6]
]
 Pipelines: [
 Steps: [
 name: "doca_eth::rx"
 attributes: []
]
 Use remote input buffers: no
 Use remote output buffers: no
 Latency bucket_range: 10000ns-110000ns
]
 Run limits: [
 Max execution time: 3seconds
 Max jobs executed: -- not configured --
 Max bytes processed: -- not configured --
]

To make the samples clearer, certain verbose output and repeated information has been
removed or shortened, in particular to output of the configuration or defaults when DOCA
Bench is first executed is removed.

The command line options may need to be updated to suit your environment (e.g., TCP
addresses, port numbers, interface names, usernames). See the "Command-line Parameters"
section for more information.

1088

•

•
•
•
•

•

 Data provider: [
 Name: "random-data"
 Job output buffer size: 1500
]
 Device: "b1:00.1"
 Device representor: "-- not configured --"
 Warm up job count: 100
 Input files dir: "-- not configured --"
 Output files dir: "-- not configured --"
 Core set: [1]
 Benchmark mode: throughput
 Warnings as errors: no
 CSV output: [
 File name: -- not configured --
 Selected stats: []
 Deselected stats: []
 Separate dynamic values: no
 Collect environment information: no
 Append to stats file: no
]
]
Test permutations: [
 Attributes: []
 Uniform job size: 1500
 Core count: 1
 Per core thread count: 1
 Task pool size: 1024
 Data provider job count: 128
 MTU size: ETH_FRAME
 SQ depth: -- not configured --
 RQ depth: -- not configured --
 Input data file: -- not configured --
]

[main] Initialize framework...
[main] Start execution...
Preparing...
EAL: Detected CPU lcores: 36
EAL: Detected NUMA nodes: 4
EAL: Detected shared linkage of DPDK
EAL: Multi-process socket /run/user/48679/dpdk/rte/mp_socket
EAL: Selected IOVA mode 'PA'
EAL: VFIO support initialized
TELEMETRY: No legacy callbacks, legacy socket not created
EAL: Probe PCI driver: mlx5_pci (15b3:a2d6) device: 0000:b1:00.1 (socket 2)
[08:19:32:110524][398304][DOCA][WRN][engine_model.c:90][adapt_queue_depth] adapting queue depth to 128.
Executing...
Data path thread [0] started...
WT[0] Executing 100 warm-up tasks using 100 unique tasks
Cleanup...
[main] Completed! tearing down...
Aggregate stats
 Duration: 3000633 micro seconds
 Enqueued jobs: 611215
 Dequeued jobs: 611215
 Throughput: 000.204 MOperations/s
 Ingress rate: 002.276 Gib/s
 Egress rate: 002.276 Gib/s

16.3.17.2.3 Results Overview

As a single core is specified, there is a single section of statistics output displayed.

16.3.17.3 DOCA Eth Send Sample
This test invokes DOCA Bench to run in Ethernet send mode, configured to transmit Ethernet
frames of size 1500 bytes
Random data is used to populate the Ethernet frames
The test runs for 3 seconds using a single core and uses a maximum burst size of 512 frames
L3 and L4 checksum offloading is not enabled
The test runs in the default throughput mode, with throughput figures displayed at the end of
the test run
The companion application uses 6 cores to continuously receive Ethernet frames of size 1500
bytes until it is stopped by DOCA Bench

16.3.17.3.1 Command Line

doca_bench --core-mask 0x02 \
 --pipeline-steps doca_eth::tx \

1089

 --device b1:00.1 \
 --data-provider random-data \
 --uniform-job-size 1500 \
 --run-limit-seconds 3 \
 --attribute doca_eth.max-burst-size=512 \
 --attribute doca_eth.l4-chksum-offload=false \
 --attribute doca_eth.l3-chksum-offload=false \
 --companion-connection-string proto=tcp,addr=10.10.10.10,port=12345,user=bob,de
v=ens4f1np1 \
 --attribute doption.companion_app.path=/opt/mellanox/doca/tools/
doca_bench_companion \
 --companion-core-list 6 \
 --job-output-buffer-size 1500

16.3.17.3.2 Results Output

[main] doca_bench : 2.7.0084
[main] release build
+ +
DOCA bench supported modules: [doca_comm_channel, doca_compress, doca_dma, doca_ec, doca_eth, doca_sha, doca_comch,
doca_rdma, doca_aes_gcm]
+ +

DOCA bench configuration
Static configuration: [
 Attributes: [doca_eth.l4-chksum-offload:false, doca_eth.max-burst-size:512, doption.companion_app.path:/
opt/mellanox/doca/tools/doca_bench_companion, doca_eth.l3-chksum-offload:false]
 Companion configuration: [
 Device: ens4f1np1
 Remote IP address: "bob@10.10.10.10"
 Core set: [6]
]
 Pipelines: [
 Steps: [
 name: "doca_eth::tx"
 attributes: []
]
 Use remote input buffers: no
 Use remote output buffers: no
 Latency bucket_range: 10000ns-110000ns
]
 Run limits: [
 Max execution time: 3seconds
 Max jobs executed: -- not configured --
 Max bytes processed: -- not configured --
]
 Data provider: [
 Name: "random-data"
 Job output buffer size: 1500
]
 Device: "b1:00.1"
 Device representor: "-- not configured --"
 Warm up job count: 100
 Input files dir: "-- not configured --"
 Output files dir: "-- not configured --"
 Core set: [1]
 Benchmark mode: throughput
 Warnings as errors: no
 CSV output: [
 File name: -- not configured --
 Selected stats: []
 Deselected stats: []
 Separate dynamic values: no
 Collect environment information: no
 Append to stats file: no
]
]
Test permutations: [
 Attributes: []
 Uniform job size: 1500
 Core count: 1
 Per core thread count: 1
 Task pool size: 1024
 Data provider job count: 128
 MTU size: -- not configured --
 SQ depth: -- not configured --
 RQ depth: -- not configured --
 Input data file: -- not configured --
]

[main] Initialize framework...
[main] Start execution...
Preparing...
Executing...
Data path thread [0] started...
WT[0] Executing 100 warm-up tasks using 100 unique tasks
Cleanup...
[main] Completed! tearing down...
Aggregate stats
 Duration: 3000049 micro seconds
 Enqueued jobs: 17135128
 Dequeued jobs: 17135128
 Throughput: 005.712 MOperations/s
 Ingress rate: 063.832 Gib/s
 Egress rate: 063.832 Gib/s

1090

•
•

•

•
•

•

16.3.17.3.3 Results Overview

As a single core is specified, there is a single section of statistics output displayed.

16.3.17.4 Host-side AES-GCM Decrypt Sample
This test invokes DOCA Bench on the x86 host side to run the AES-GM Decryption step
A file-set file is used to indicate which file is to be decrypted. The content of the file-set file
lists the filename to be decrypted.
The key to be used for the encryption and decryption is specified using the
doca_aes_gcm.key -file attribute. This contains the key to be used.
It will run until 5000 jobs have been processed
It runs in the precision-latency mode, with latency and throughput figures displayed at the
end of the test run
A core mask is specified to indicate that cores 12, 13, 14, and 15 are to be used for this test

16.3.17.4.1 Command Line

doca_bench --mode precision-latency \
 --core-mask 0xf000 \
 --warm-up-jobs 32 \
 --device 17:00.0 \
 --data-provider file-set \
 --data-provider-input-file aes_64_128.fileset \
 --run-limit-jobs 5000 \
 --pipeline-steps doca_aes_gcm::decrypt \
 --attribute doca_aes_gcm.key-file='aes128.key' \
 --job-output-buffer-size 80

16.3.17.4.2 Results Output

[main] Completed! tearing down...
Worker thread[0](core: 12) stats:
 Duration: 10697 micro seconds
 Enqueued jobs: 5000
 Dequeued jobs: 5000
 Throughput: 000.467 MOperations/s
 Ingress rate: 000.265 Gib/s
 Egress rate: 000.223 Gib/s
Worker thread[1](core: 13) stats:
 Duration: 10700 micro seconds
 Enqueued jobs: 5000
 Dequeued jobs: 5000
 Throughput: 000.467 MOperations/s
 Ingress rate: 000.265 Gib/s
 Egress rate: 000.223 Gib/s
Worker thread[2](core: 14) stats:
 Duration: 10733 micro seconds
 Enqueued jobs: 5000
 Dequeued jobs: 5000
 Throughput: 000.466 MOperations/s
 Ingress rate: 000.264 Gib/s
 Egress rate: 000.222 Gib/s
Worker thread[3](core: 15) stats:
 Duration: 10788 micro seconds
 Enqueued jobs: 5000
 Dequeued jobs: 5000
 Throughput: 000.463 MOperations/s
 Ingress rate: 000.262 Gib/s
 Egress rate: 000.221 Gib/s
Aggregate stats
 Duration: 10788 micro seconds
 Enqueued jobs: 20000
 Dequeued jobs: 20000
 Throughput: 001.854 MOperations/s
 Ingress rate: 001.050 Gib/s
 Egress rate: 000.884 Gib/s
 min: 1878 ns
 max: 4956 ns
 median: 2134 ns
 mean: 2145 ns
 90th %ile: 2243 ns
 95th %ile: 2285 ns

1091

•
•
•

•
•

•

 99th %ile: 2465 ns
 99.9th %ile: 3193 ns
 99.99th %ile: 4487 ns

16.3.17.4.3 Results Overview

Since a core mask is specified but no core count, then all cores in the mask are used.

There is a section of statistics displayed for each core used as well as the aggregate statistics.

16.3.17.5 BlueField-side AES-GCM Encrypt Sample
This test invokes DOCA Bench on the BlueField side to run the AES-GM encryption step
A text file of size 2KB is the input for the encryption stage
The key to be used for the encryption and decryption is specified using the
doca_aes_gcm.key attribute
It runs until 2000 jobs have been processed
It runs in the bulk-latency mode, with latency and throughput figures displayed at the end of
the test run
A single core is specified with 2 threads

16.3.17.5.1 Command Line

doca_bench --mode bulk-latency \
 --core-list 3 \
 --threads-per-core 2 \
 --warm-up-jobs 32 \
 --device 03:00.0 \
 --data-provider file \
 --data-provider-input-file plaintext_2k.txt \
 --run-limit-jobs 2000 \
 --pipeline-steps doca_aes_gcm::encrypt \
 --attribute doca_aes_gcm.key="0123456789abcdef0123456789abcdef" \
 --uniform-job-size 2048 \
 --job-output-buffer-size 4096

16.3.17.5.2 Results Output

[main] Completed! tearing down...
Worker thread[0](core: 3) stats:
 Duration: 501 micro seconds
 Enqueued jobs: 2048
 Dequeued jobs: 2048
 Throughput: 004.082 MOperations/s
 Ingress rate: 062.279 Gib/s
 Egress rate: 062.644 Gib/s
Worker thread[1](core: 3) stats:
 Duration: 466 micro seconds
 Enqueued jobs: 2048
 Dequeued jobs: 2048
 Throughput: 004.386 MOperations/s
 Ingress rate: 066.922 Gib/s
 Egress rate: 067.314 Gib/s
Aggregate stats
 Duration: 501 micro seconds
 Enqueued jobs: 4096
 Dequeued jobs: 4096
 Throughput: 008.163 MOperations/s
 Ingress rate: 124.558 Gib/s
 Egress rate: 125.287 Gib/s
Latency report:
 :
 :
 :
 :
 :
 ::
 ::
 ::
 ::
 .::.
--

1092

•

•
•

•

•
•

[<10000ns]: 0
.. OUTPUT RETRACTED (SHORTENED) ..
[26000ns -> 26999ns]: 0
[27000ns -> 27999ns]: 128
[28000ns -> 28999ns]: 2176
[29000ns -> 29999ns]: 1152
[30000ns -> 30999ns]: 128
[31000ns -> 31999ns]: 0
[32000ns -> 32999ns]: 0
[33000ns -> 33999ns]: 128
[34000ns -> 34999ns]: 0
[35000ns -> 35999ns]: 0
[36000ns -> 36999ns]: 0
[37000ns -> 37999ns]: 0
[38000ns -> 38999ns]: 128
[39000ns -> 39999ns]: 0
[40000ns -> 40999ns]: 0
[41000ns -> 41999ns]: 0
[42000ns -> 42999ns]: 0
[43000ns -> 43999ns]: 128
[44000ns -> 44999ns]: 128
[45000ns -> 45999ns]: 0
.. OUTPUT RETRACTED (SHORTENED) ..
[>110000ns]: 0

16.3.17.5.3 Results Overview

Since a single core is specified, there is a single section of statistics output displayed.

16.3.17.6 Host-side AES-GCM Encrypt and Decrypt Sample
This test invokes DOCA Bench on the host side to run 2 AES-GM steps in the pipeline, first to
encrypt a text file and then to decrypt the associated output from the encrypt step
A text file of size 2KB is the input for the encryption stage
The input-cwd option instructs DOCA Bench to look in a different location for the input file,
in the parent directory in this case
The key to be used for the encryption and decryption is specified using the
doca_aes_gcm.key -file attribute, indicating that the key can be found in the specified file
It runs until 204800 bytes have been processed
It runs in the default throughput mode, with throughput figures displayed at the end of the
test run

16.3.17.6.1 Command Line

doca_bench --core-mask 0xf00 \
 --core-count 1 \
 --warm-up-jobs 32 \
 --device 17:00.0 \
 --data-provider file \
 --input-cwd ../. \
 --data-provider-input-file plaintext_2k.txt \
 --run-limit-bytes 204800 \
 --pipeline-steps doca_aes_gcm::encrypt,doca_aes_gcm::decrypt \
 --attribute doca_aes_gcm.key-file='aes128.key' \
 --uniform-job-size 2048 \
 --job-output-buffer-size 4096

16.3.17.6.2 Results Output

Executing...
Worker thread[0](core: 8) [doca_aes_gcm::encrypt>>doca_aes_gcm::decrypt] started...
Worker thread[0] Executing 32 warm-up tasks using 32 unique tasks
Cleanup...
[main] Completed! tearing down...
Aggregate stats
 Duration: 79 micro seconds
 Enqueued jobs: 214
 Dequeued jobs: 214
 Throughput: 002.701 MOperations/s
 Ingress rate: 041.214 Gib/s
 Egress rate: 041.214 Gib/s

1093

•

•

16.3.17.6.3 Results Overview

Since a single core is specified, there is a single section of statistics output displayed.

16.3.17.7 Host-side SHA with CSV Output File Sample
This test invokes DOCA Bench on the host side to execute the SHA operation using the SHA256
algorithm and to create a CSV file containing the test configuration and statistics
A list of 1 core is provided with a count of 2 threads per core

16.3.17.7.1 Command Line

doca_bench --core-mask 2 \
 --threads-per-core 2 \
 --pipeline-steps doca_sha \
 --device d8:00.0 \
 --data-provider random-data \
 --uniform-job-size 2048 \
 --job-output-buffer-size 2048 \
 --run-limit-seconds 3 \
 --attribute doca_sha.algorithm=sha256 \
 --warm-up-jobs 100 \
 --csv-output-file /tmp/sha_256_test.csv

16.3.17.7.2 Results Output

Executing...
Data path thread [0] started...
WT[0] Executing 100 warm-up tasks using 100 unique tasks
Data path thread [1] started...
WT[1] Executing 100 warm-up tasks using 100 unique tasks
Cleanup...
[main] Completed! tearing down...
Stats for thread[0](core: 1)
 Duration: 3000064 micro seconds
 Enqueued jobs: 3713935
 Dequeued jobs: 3713935
 Throughput: 001.238 MOperations/s
 Ingress rate: 018.890 Gib/s
 Egress rate: 000.295 Gib/s
Stats for thread[1](core: 1)
 Duration: 3000056 micro seconds
 Enqueued jobs: 3757335
 Dequeued jobs: 3757335
 Throughput: 001.252 MOperations/s
 Ingress rate: 019.110 Gib/s
 Egress rate: 000.299 Gib/s
Aggregate stats
 Duration: 3000064 micro seconds
 Enqueued jobs: 7471270
 Dequeued jobs: 7471270
 Throughput: 002.490 MOperations/s
 Ingress rate: 038.000 Gib/s
 Egress rate: 000.594 Gib/s

16.3.17.7.3 Results Overview

As a single core has been specified with a thread count of 2, there are statistics displayed for each
thread as well as the aggregate statistics.

It can also be observed that 2 threads are started on core 1 with each thread executing the warm-
up jobs.

The contents of the /tmp/sha_256_test.csv are shown below. It can be seen that the
configuration used for the test and the associated statistics from the test run are listed:

1094

•

•

•

1.

2.

cfg.companion.connection_string,cfg.pipeline.steps,cfg.pipeline.use_remote_input_buffers,cfg.pipeline.use_remote_ou
tput_buffers,cfg.pipeline.bulk_latency.lower_bound,cfg.pipeline.bulk_latency.bucket_width,cfg.run_limit.duration,cf
g.r
un_limit.jobs,cfg.run_limit.bytes,cfg.data_provider.type,cfg.data_provider.output_buffer_size,cfg.device.pci_addres
s,cfg.input.cwd,cfg.output.cwd,cfg.warmup_job_count,cfg.core_set,cfg.benchmark_mode,cfg.warnings_are_errors,cfg.att
rib
ute.doca_compress.algorithm,cfg.attribute.doca_ec.matrix_type,cfg.attribute.doca_ec.data_block_count,cfg.attribute.
doca_ec.redundancy_block_count,cfg.attribute.doca_ec.use_precomputed_matrix,cfg.attribute.doca_eth.l3_chksum_offloa
d,c
fg.attribute.doca_eth.l4_chksum_offload,cfg.attribute.doca_sha.algorithm,cfg.uniform_job_size,cfg.core_count,cfg.pe
r_core_thread_count,cfg.task_pool_size,cfg.data_provider_job_count,cfg.sg_config,cfg.mtu-size,cfg.send-queue-
size,cfg. receive-queue-size,cfg.data-provider-input-
file,cfg.attribute.mmo.log_qp_depth,cfg.attribute.mmo.log_num_qps,stats.input.job_count,stats.output.job_count,stat
s.input.byte_count,stats.output.byte_count,stats.input.throughput.bytes,sta
ts.output.throughput.bytes,stats.input.throughput.rate,stats.output.throughput.rate
,[doca_sha],0,0,10000,1000,3,,,random-data,2048,d8:00.0,,,100,[1],throughput,0,,,,,,,,sha256,2048,1,2,1024,128,1 fr
agments,,,,,,,7471270,7471270,15301160960,239109312,038.000 Gib/s,000.594 Gib/s,2.490370 MOperations/s,2.490370 MOp
era tions/s

16.3.17.8 Host-side SHA with CSV Appended Output File Sample
This test invokes DOCA Bench on the Host side to execute the SHA operation using the SHA512
algorithm and to create a csv file containing the test configuration and statistics,
The command is repeated with the added option of csv-append-mode. This instructs DOCA
Bench to append the test run statistics to the existing csv file.
A list of 1 core is provided with a count of 2 threads per core.

16.3.17.8.1 Command Line
Create the initial /tmp/sha_512_test.csv file:

doca_bench --core-list 2 \
 --threads-per-core 2 \
 --pipeline-steps doca_sha \
 --device d8:00.0 \
 --data-provider random-data \
 --uniform-job-size 2048 \
 --job-output-buffer-size 2048 \
 --run-limit-seconds 3 \
 --attribute doca_sha.algorithm=sha512 \
 --warm-up-jobs 100 \
 --csv-output-file /tmp/sha_512_test.csv

The second command is:

./doca_bench --core-list 2 \
 --threads-per-core 2 \
 --pipeline-steps doca_sha \
 --device d8:00.0 \
 --data-provider random-data \
 --uniform-job-size 2048 \
 --job-output-buffer-size 2048 \
 --run-limit-seconds 3 \
 --attribute doca_sha.algorithm=sha512 \
 --warm-up-jobs 100 \
 --csv-output-file /tmp/sha_512_test.csv \
 --csv-append-mode

This causes DOCA Bench to append the configuration and statistics from the second command
run to the /tmp/sha_512_test.csv file.

16.3.17.8.2 Results Output

This is a snapshot of the results output from the first command run:

Executing...
Data path thread [0] started...
WT[0] Executing 100 warm-up tasks using 100 unique tasks
Data path thread [1] started...
WT[1] Executing 100 warm-up tasks using 100 unique tasks
Cleanup...
[main] Completed! tearing down...
Stats for thread[0](core: 2)
 Duration: 3015185 micro seconds

1095

 Enqueued jobs: 3590717
 Dequeued jobs: 3590717
 Throughput: 001.191 MOperations/s
 Ingress rate: 018.171 Gib/s
 Egress rate: 000.568 Gib/s
Stats for thread[1](core: 2)
 Duration: 3000203 micro seconds
 Enqueued jobs: 3656044
 Dequeued jobs: 3656044
 Throughput: 001.219 MOperations/s
 Ingress rate: 018.594 Gib/s
 Egress rate: 000.581 Gib/s
Aggregate stats
 Duration: 3015185 micro seconds
 Enqueued jobs: 7246761
 Dequeued jobs: 7246761
 Throughput: 002.403 MOperations/s
 Ingress rate: 036.673 Gib/s
 Egress rate: 001.146 Gib/s

This is a snapshot of the results output from the second command run:

Executing...
Data path thread [0] started...
WT[0] Executing 100 warm-up tasks using 100 unique tasks
Data path thread [1] started...
WT[1] Executing 100 warm-up tasks using 100 unique tasks
Cleanup...
[main] Completed! tearing down...
Stats for thread[0](core: 2)
 Duration: 3000072 micro seconds
 Enqueued jobs: 3602562
 Dequeued jobs: 3602562
 Throughput: 001.201 MOperations/s
 Ingress rate: 018.323 Gib/s
 Egress rate: 000.573 Gib/s
Stats for thread[1](core: 2)
 Duration: 3000062 micro seconds
 Enqueued jobs: 3659148
 Dequeued jobs: 3659148
 Throughput: 001.220 MOperations/s
 Ingress rate: 018.611 Gib/s
 Egress rate: 000.582 Gib/s
Aggregate stats
 Duration: 3000072 micro seconds
 Enqueued jobs: 7261710
 Dequeued jobs: 7261710
 Throughput: 002.421 MOperations/s
 Ingress rate: 036.934 Gib/s
 Egress rate: 001.154 Gib/s

16.3.17.8.3 Results Overview

Since a single core has been specified with a thread count of 2, there are statistics displayed for
each thread as well as the aggregate statistics.

It can also be observed that 2 threads are started on core 1 with each thread executing the warm-
up jobs.

The contents of the /tmp/sha_256_test.csv , after the first command has been run, are shown
below. It can be seen that the configuration used for the test and the associated statistics from the
test run are listed:

cfg.companion.connection_string,cfg.pipeline.steps,cfg.pipeline.use_remote_input_buffers,cfg.pipeline.use_remote_ou
tput_buffers,cfg.pipeline.bulk_latency.lower_bound,cfg.pipeline.bulk_latency.bucket_width,cfg.run_limit.duration,cf
g.run_limit.jobs,cfg.run_limit.bytes,cfg.data_provider.type,cfg.data_provider.output_buffer_size,cfg.device.pci_add
ress,cfg.input.cwd,cfg.output.cwd,cfg.warmup_job_count,cfg.core_set,cfg.benchmark_mode,cfg.warnings_are_errors,cfg.
attribute.doca_compress.algorithm,cfg.attribute.doca_ec.matrix_type,cfg.attribute.doca_ec.data_block_count,cfg.attr
ibute.doca_ec.redundancy_block_count,cfg.attribute.doca_ec.use_precomputed_matrix,cfg.attribute.doca_eth.l3_chksum_
offload,cfg.attribute.doca_eth.l4_chksum_offload,cfg.attribute.doca_sha.algorithm,cfg.uniform_job_size,cfg.core_cou
nt,cfg.per_core_thread_count,cfg.task_pool_size,cfg.data_provider_job_count,cfg.sg_config,cfg.mtu-size,cfg.send-
queue-size,cfg.receive-queue-size,cfg.data-provider-input-
file,cfg.attribute.mmo.log_qp_depth,cfg.attribute.mmo.log_num_qps,stats.input.job_count,stats.output.job_count,stat
s.input.byte_count,stats.output.byte_count,stats.input.throughput.bytes,stats.output.throughput.bytes,stats.input.t
hroughput.rate,stats.output.throughput.rate
,[doca_sha],0,0,10000,1000,3,,,random-data,2048,d8:00.0,,,100,[2],throughput,0,,,,,,,,sha512,2048,1,2,1024,128,1 fr
agments,,,,,,,7246761,7246761,14841366528,463850048,036.673 Gib/s,001.146 Gib/s,2.403422 MOperations/s,2.403422 MOp
erations/s

1096

•

•
•

The contents of the /tmp/sha_256_test.csv , after the second command has been run, are shown
below. It can be seen that a second entry has been added detailing the configuration used for the
test and the associated statistics from the test run:

cfg.companion.connection_string,cfg.pipeline.steps,cfg.pipeline.use_remote_input_buffers,cfg.pipeline.use_remote_ou
tput_buffers,cfg.pipeline.bulk_latency.lower_bound,cfg.pipeline.bulk_latency.bucket_width,cfg.run_limit.duration,cf
g.run_limit.jobs,cfg.run_limit.bytes,cfg.data_provider.type,cfg.data_provider.output_buffer_size,cfg.device.pci_add
ress,cfg.input.cwd,cfg.output.cwd,cfg.warmup_job_count,cfg.core_set,cfg.benchmark_mode,cfg.warnings_are_errors,cfg.
attribute.doca_compress.algorithm,cfg.attribute.doca_ec.matrix_type,cfg.attribute.doca_ec.data_block_count,cfg.attr
ibute.doca_ec.redundancy_block_count,cfg.attribute.doca_ec.use_precomputed_matrix,cfg.attribute.doca_eth.l3_chksum_
offload,cfg.attribute.doca_eth.l4_chksum_offload,cfg.attribute.doca_sha.algorithm,cfg.uniform_job_size,cfg.core_cou
nt,cfg.per_core_thread_count,cfg.task_pool_size,cfg.data_provider_job_count,cfg.sg_config,cfg.mtu-size,cfg.send-
queue-size,cfg.receive-queue-size,cfg.data-provider-input-
file,cfg.attribute.mmo.log_qp_depth,cfg.attribute.mmo.log_num_qps,stats.input.job_count,stats.output.job_count,stat
s.input.byte_count,stats.output.byte_count,stats.input.throughput.bytes,stats.output.throughput.bytes,stats.input.t
hroughput.rate,stats.output.throughput.rate
,[doca_sha],0,0,10000,1000,3,,,random-data,2048,d8:00.0,,,100,[2],throughput,0,,,,,,,,sha512,2048,1,2,1024,128,1 fr
agments,,,,,,,7246761,7246761,14841366528,463850048,036.673 Gib/s,001.146 Gib/s,2.403422 MOperations/s,2.403422 MOp
erations/s
,[doca_sha],0,0,10000,1000,3,,,random-data,2048,d8:00.0,,,100,[2],throughput,0,,,,,,,,sha512,2048,1,2,1024,128,1 fr
agments,,,,,,,7261710,7261710,14871982080,464806784,036.934 Gib/s,001.154 Gib/s,2.420512 MOperations/s,2.420512 MOp
erations/s

16.3.17.9 BlueField-side SHA with Transient Statistics Sample
This test invokes DOCA Bench on the BlueField side to execute the SHA operation using the
SHA1 algorithm and to display statistics every 2000 milliseconds during the test run
A list of 3 cores is provided with a count of 2 threads per core and a core-count of 1
The core-count instructs DOCA Bench to use the first core number in the core list, in this case
core number 2

16.3.17.9.1 Command Line

doca_bench --core-list 2,3,4 \
 --core-count 1 \
 --threads-per-core 2 \
 --pipeline-steps doca_sha \
 --device 03:00.0 \
 --data-provider random-data \
 --uniform-job-size 2048 \
 --job-output-buffer-size 2048 \
 --run-limit-seconds 3 \
 -attribute doca_sha.algorithm=sha1 \
 --warm-up-jobs 100 \
 --rt-stats-interval 2000

16.3.17.9.2 Results Output

Executing...
Data path thread [0] started...
WT[0] Executing 100 warm-up tasks using 100 unique tasks
Data path thread [1] started...
WT[1] Executing 100 warm-up tasks using 100 unique tasks
Stats for thread[0](core: 2)
 Duration: 965645 micro seconds
 Enqueued jobs: 1171228
 Dequeued jobs: 1171228
 Throughput: 001.213 MOperations/s
 Ingress rate: 018.505 Gib/s
 Egress rate: 000.181 Gib/s
Stats for thread[1](core: 2)
 Duration: 965645 micro seconds
 Enqueued jobs: 1171754
 Dequeued jobs: 1171754
 Throughput: 001.213 MOperations/s
 Ingress rate: 018.514 Gib/s
 Egress rate: 000.181 Gib/s
Aggregate stats
 Duration: 965645 micro seconds
 Enqueued jobs: 2342982
 Dequeued jobs: 2342982
 Throughput: 002.426 MOperations/s
 Ingress rate: 037.019 Gib/s
 Egress rate: 000.362 Gib/s
Stats for thread[0](core: 2)
 Duration: 2968088 micro seconds

1097

•
•

•

 Enqueued jobs: 3653691
 Dequeued jobs: 3653691
 Throughput: 001.231 MOperations/s
 Ingress rate: 018.783 Gib/s
 Egress rate: 000.183 Gib/s
Stats for thread[1](core: 2)
 Duration: 2968088 micro seconds
 Enqueued jobs: 3689198
 Dequeued jobs: 3689198
 Throughput: 001.243 MOperations/s
 Ingress rate: 018.965 Gib/s
 Egress rate: 000.185 Gib/s
Aggregate stats
 Duration: 2968088 micro seconds
 Enqueued jobs: 7342889
 Dequeued jobs: 7342889
 Throughput: 002.474 MOperations/s
 Ingress rate: 037.748 Gib/s
 Egress rate: 000.369 Gib/s
Cleanup...
[main] Completed! tearing down...
Stats for thread[0](core: 2)
 Duration: 3000122 micro seconds
 Enqueued jobs: 3694128
 Dequeued jobs: 3694128
 Throughput: 001.231 MOperations/s
 Ingress rate: 018.789 Gib/s
 Egress rate: 000.184 Gib/s
Stats for thread[1](core: 2)
 Duration: 3000089 micro seconds
 Enqueued jobs: 3751128
 Dequeued jobs: 3751128
 Throughput: 001.250 MOperations/s
 Ingress rate: 019.079 Gib/s
 Egress rate: 000.186 Gib/s
Aggregate stats
 Duration: 3000122 micro seconds
 Enqueued jobs: 7445256
 Dequeued jobs: 7445256
 Throughput: 002.482 MOperations/s
 Ingress rate: 037.867 Gib/s
 Egress rate: 000.370 Gib/s

16.3.17.9.3 Results Overview

Although a core list of 3 cores has been specified, the core-count value of 1 instructs DOCA Bench to
use the first entry in the core list.

It can be seen that as a thread-count of 2 has been specified, there are 2 threads created on core 2.

A transient statistics interval of 2000 milliseconds has been specified, and the transient statistics
per thread can be seen, as well as the final aggregate statistics.

16.3.17.10 Host-side Local DMA with Core Sweep Sample
This test invokes DOCA Bench to execute a local DMA operation on the host
It specifies that a core sweep should be carried out using core counts of 1, 2, and 4 using the
option --sweep core-count,1,4,*2

Test output is to be saved in a CSV file /tmp/dma_sweep.csv and a filter is applied so that
only statistics information is recorded. No configuration information is to be recorded.

16.3.17.10.1 Command Line

doca_bench --core-mask 0xff \
 --sweep core-count,1,4,*2 \
 --pipeline-steps doca_dma \
 --device d8:00.0 \
 --data-provider random-data \
 --uniform-job-size 2048 \
 --job-output-buffer-size 2048 \
 --run-limit-seconds 5 \
 --csv-output-file /tmp/dma_sweep.csv \
 --csv-stats "stats.*"

1098

16.3.17.10.2 Results Overview

Test permutations: [
 Attributes: []
 Uniform job size: 2048
 Core count: 1
 Per core thread count: 1
 Task pool size: 1024
 Data provider job count: 128
 MTU size: -- not configured --
 SQ depth: -- not configured --
 RQ depth: -- not configured --
 Input data file: -- not configured --

 Attributes: []
 Uniform job size: 2048
 Core count: 2
 Per core thread count: 1
 Task pool size: 1024
 Data provider job count: 128
 MTU size: -- not configured --
 SQ depth: -- not configured --
 RQ depth: -- not configured --
 Input data file: -- not configured --

 Attributes: []
 Uniform job size: 2048
 Core count: 4
 Per core thread count: 1
 Task pool size: 1024
 Data provider job count: 128
 MTU size: -- not configured --
 SQ depth: -- not configured --
 RQ depth: -- not configured --
 Input data file: -- not configured --
]

[main] Initialize framework...
[main] Start execution...
Preparing permutation 1 of 3...
Executing permutation 1 of 3...
Data path thread [0] started...
WT[0] Executing 100 warm-up tasks using 100 unique tasks
Cleanup permutation 1 of 3...
Aggregate stats
 Duration: 5000191 micro seconds
 Enqueued jobs: 22999128
 Dequeued jobs: 22999128
 Throughput: 004.600 MOperations/s
 Ingress rate: 070.185 Gib/s
 Egress rate: 070.185 Gib/s
Preparing permutation 2 of 3...
Executing permutation 2 of 3...
Data path thread [0] started...
WT[0] Executing 100 warm-up tasks using 100 unique tasks
Data path thread [1] started...
WT[1] Executing 100 warm-up tasks using 100 unique tasks
Cleanup permutation 2 of 3...
Stats for thread[0](core: 0)
 Duration: 5000066 micro seconds
 Enqueued jobs: 14409794
 Dequeued jobs: 14409794
 Throughput: 002.882 MOperations/s
 Ingress rate: 043.975 Gib/s
 Egress rate: 043.975 Gib/s
Stats for thread[1](core: 1)
 Duration: 5000188 micro seconds
 Enqueued jobs: 14404708
 Dequeued jobs: 14404708
 Throughput: 002.881 MOperations/s
 Ingress rate: 043.958 Gib/s
 Egress rate: 043.958 Gib/s
Aggregate stats
 Duration: 5000188 micro seconds
 Enqueued jobs: 28814502
 Dequeued jobs: 28814502
 Throughput: 005.763 MOperations/s
 Ingress rate: 087.932 Gib/s
 Egress rate: 087.932 Gib/s
Preparing permutation 3 of 3...
Executing permutation 3 of 3...
Data path thread [1] started...
Data path thread [0] started...
WT[0] Executing 100 warm-up tasks using 100 unique tasks
WT[1] Executing 100 warm-up tasks using 100 unique tasks
Data path thread [3] started...
WT[3] Executing 100 warm-up tasks using 100 unique tasks
Data path thread [2] started...
WT[2] Executing 100 warm-up tasks using 100 unique tasks
Cleanup permutation 3 of 3...
[main] Completed! tearing down...
Stats for thread[0](core: 0)
 Duration: 5000092 micro seconds
 Enqueued jobs: 7227025
 Dequeued jobs: 7227025
 Throughput: 001.445 MOperations/s
 Ingress rate: 022.055 Gib/s
 Egress rate: 022.055 Gib/s

1099

Stats for thread[1](core: 1)
 Duration: 5000081 micro seconds
 Enqueued jobs: 7223269
 Dequeued jobs: 7223269
 Throughput: 001.445 MOperations/s
 Ingress rate: 022.043 Gib/s
 Egress rate: 022.043 Gib/s
Stats for thread[2](core: 2)
 Duration: 5000047 micro seconds
 Enqueued jobs: 7229678
 Dequeued jobs: 7229678
 Throughput: 001.446 MOperations/s
 Ingress rate: 022.063 Gib/s
 Egress rate: 022.063 Gib/s
Stats for thread[3](core: 3)
 Duration: 5000056 micro seconds
 Enqueued jobs: 7223037
 Dequeued jobs: 7223037
 Throughput: 001.445 MOperations/s
 Ingress rate: 022.043 Gib/s
 Egress rate: 022.043 Gib/s
Aggregate stats
 Duration: 5000092 micro seconds
 Enqueued jobs: 28903009
 Dequeued jobs: 28903009
 Throughput: 005.780 MOperations/s
 Ingress rate: 088.203 Gib/s
 Egress rate: 088.203 Gib/s

16.3.17.10.3 Results Overview

The output gives a summary of the permutations being carried out and then proceeds to display the
statistics for each of the permutations.

The CSV output file contents can be seen to contain only statistics information. Configuration
information is not included.

There is an entry for each of the sweep permutations:

stats.input.job_count,stats.output.job_count,stats.input.byte_count,stats.output.byte_count,stats.input.throughput.
bytes,stats.output.throughput.bytes,stats.input.throughput.rate,stats.output.throughput.rate
22999128,22999128,47102214144,47102214144,070.185 Gib/s,070.185 Gib/s,4.599650 MOperations/s,4.599650 MOperations/s
28814502,28814502,59012100096,59012100096,087.932 Gib/s,087.932 Gib/s,5.762683 MOperations/s,5.762683 MOperations/s
28903009,28903009,59193362432,59193362432,088.203 Gib/s,088.203 Gib/s,5.780495 MOperations/s,5.780495 MOperations/s

16.3.17.11 Host-side Local DMA with Job Size Sweep Sample
This test invokes DOCA Bench to execute a local DMA operation on the host.

It specifies that a uniform job size sweep should be carried out using job sizes 1024 and 2048 using
the option --sweep uniform-job-size,1024,2048 .

Test output is to be saved in a CSV file /tmp/dma_sweep_job_size.csv and collection of
environment information is enabled.

16.3.17.11.1 Command Line

doca_bench --core-mask 0xff \
 --core-count 1 \
 --pipeline-steps doca_dma \
 --device d8:00.0 \
 --data-provider random-data \
 --sweep uniform-job-size,1024,2048 \
 --job-output-buffer-size 2048 \
 --run-limit-seconds 5 \
 --csv-output-file /tmp/dma_sweep_job_size.csv \
 --enable-environment-information

1100

16.3.17.11.2 Results Overview

Test permutations: [
 Attributes: []
 Uniform job size: 1024
 Core count: 1
 Per core thread count: 1
 Task pool size: 1024
 Data provider job count: 128
 MTU size: -- not configured --
 SQ depth: -- not configured --
 RQ depth: -- not configured --
 Input data file: -- not configured --

 Attributes: []
 Uniform job size: 2048
 Core count: 1
 Per core thread count: 1
 Task pool size: 1024
 Data provider job count: 128
 MTU size: -- not configured --
 SQ depth: -- not configured --
 RQ depth: -- not configured --
 Input data file: -- not configured --
]

[main] Initialize framework...
[main] Start execution...
Preparing permutation 1 of 2...
Executing permutation 1 of 2...
Data path thread [0] started...
WT[0] Executing 100 warm-up tasks using 100 unique tasks
Cleanup permutation 1 of 2...
Aggregate stats
 Duration: 5000083 micro seconds
 Enqueued jobs: 23645128
 Dequeued jobs: 23645128
 Throughput: 004.729 MOperations/s
 Ingress rate: 036.079 Gib/s
 Egress rate: 036.079 Gib/s
Preparing permutation 2 of 2...
Executing permutation 2 of 2...
Data path thread [0] started...
WT[0] Executing 100 warm-up tasks using 100 unique tasks
Cleanup permutation 2 of 2...
[main] Completed! tearing down...
Aggregate stats
 Duration: 5000027 micro seconds
 Enqueued jobs: 22963128
 Dequeued jobs: 22963128
 Throughput: 004.593 MOperations/s
 Ingress rate: 070.078 Gib/s
 Egress rate: 070.078 Gib/s

16.3.17.11.3 Results Overview

The output gives a summary of the permutations being carried out and then proceeds to display the
statistics for each of the permutations.

The CSV output file contents can be seen to contain statistics information and the environment
information.

There is an entry for each of the sweep permutations.

cfg.companion.connection_string,cfg.pipeline.steps,cfg.pipeline.use_remote_input_buffers,cfg.pipeline.use_remote_ou
tput_buffers,cfg.pipeline.bulk_latency.lower_bound,cfg.pipeline.bulk_latency.bucket_width,cfg.run_limit.duration,cf
g.run_limit.jobs,cfg.run_limit.bytes,cfg.data_provider.type,cfg.data_provider.output_buffer_size,cfg.device.pci_add
ress,cfg.input.cwd,cfg.output.cwd,cfg.warmup_job_count,cfg.core_set,cfg.benchmark_mode,cfg.warnings_are_errors,cfg.
attribute.doca_compress.algorithm,cfg.attribute.doca_ec.matrix_type,cfg.attribute.doca_ec.data_block_count,cfg.attr
ibute.doca_ec.redundancy_block_count,cfg.attribute.doca_ec.use_precomputed_matrix,cfg.attribute.doca_eth.l3_chksum_
offload,cfg.attribute.doca_eth.l4_chksum_offload,cfg.attribute.doca_sha.algorithm,cfg.uniform_job_size,cfg.core_cou
nt,cfg.per_core_thread_count,cfg.task_pool_size,cfg.data_provider_job_count,cfg.sg_config,cfg.mtu-size,cfg.send-
queue-size,cfg.receive-queue-size,cfg.data-provider-input-
file,cfg.attribute.mmo.log_qp_depth,cfg.attribute.mmo.log_num_qps,stats.input.job_count,stats.output.job_count,stat
s.input.byte_count,stats.output.byte_count,stats.input.throughput.bytes,stats.output.throughput.bytes,stats.input.t
hroughput.rate,stats.output.throughput.rate,host.pci.3.address,host.pci.3.ext_tag,host.pci.3.link_type,host.pci.2.e
xt_tag,host.pci.2.address,host.cpu.0.model,host.ofed_version,host.pci.4.max_read_request,host.pci.2.width,host.cpu.
1.logical_cores,host.pci.2.eswitch_mode,host.pci.3.max_read_request,host.pci.4.address,host.pci.2.link_type,host.pc
i.1.max_read_request,host.pci.4.link_type,host.cpu.socket_count,host.pci.0.ext_tag,host.pci.6.port_speed,host.cpu.0
.physical_cores,host.pci.7.port_speed,host.memory.dimm_slot_count,host.cpu.1.model,host.pci.0.max_payload_size,host
.pci.6.relaxed_ordering,host.doca_host_package_version,host.pci.6.max_payload_size,host.pci.0.gen,host.pci.4.width,
host.pci.2.gen,host.pci.1.max_payload_size,host.pci.4.relaxed_ordering,host.pci.3.width,host.cpu.0.logical_cores,ho
st.cpu.0.arch,host.pci.4.port_speed,host.pci.4.eswitch_mode,host.pci.7.address,host.pci.5.eswitch_mode,host.pci.5.a
ddress,host.cpu.1.arch,host.pci.0.eswitch_mode,host.pci.7.width,host.pci.7.link_type,host.pci.1.link_type,host.pci.
3.gen,host.pci.7.max_read_request,host.pci.7.eswitch_mode,host.pci.6.gen,host.pci.2.port_speed,host.pci.7.gen,host.
pci.2.relaxed_ordering,host.pci.6.width,host.pci.4.gen,host.pci.6.address,host.hostname,host.pci.5.link_type,host.p
ci.6.link_type,host.pci.6.max_read_request,host.pci.7.max_payload_size,host.pci.5.gen,host.pci.6.eswitch_mode,host.
pci.5.width,host.pci.3.relaxed_ordering,host.pci.4.ext_tag,host.pci.0.width,host.pci.5.port_speed,host.pci.2.max_pa

1101

•
•

•
•

yload_size,host.pci.3.max_payload_size,host.pci.5.max_payload_size,host.pci.2.max_read_request,host.pci.0.address,h
ost.pci.gen,host.os.family,host.pci.1.gen,host.pci.5.relaxed_ordering,host.pci.1.port_speed,host.pci.7.ext_tag,host
.pci.1.address,host.pci.3.eswitch_mode,host.pci.3.port_speed,host.pci.0.max_read_request,host.pci.1.ext_tag,host.pc
i.0.relaxed_ordering,host.pci.0.link_type,host.pci.5.max_read_request,host.pci.4.max_payload_size,host.pci.device_c
ount,host.memory.populated_dimm_count,host.memory.installed_capacity,host.pci.6.ext_tag,host.os.kernel_version,host
.pci.0.port_speed,host.pci.1.width,host.pci.7.relaxed_ordering,host.pci.1.relaxed_ordering,host.os.version,host.os.
name,host.cpu.1.physical_cores,host.numa_node_count,host.pci.5.ext_tag,host.pci.1.eswitch_mode
,[doca_dma],0,0,10000,1000,5,,,random-data,2048,d8:00.0,,,100,"[0, 1, 2, 3, 4, 5, 6, 7]",throughput,0,,,,,,,,,1024,1,1
024,128,1 fragments,,,,,,,23645128,23645128,24212611072,24212611072,036.079 Gib/s,036.079 Gib/s,4.728947 MOperation
s/s,4.728947 MOperations/s,0000:5e:00.1,true,Infiniband,true,0000:5e:00.0,N/A,OFED-internal-24.04-0.4.8,N/A,x63,N/
A,N/A,N/A,0000:af:00.0,Infiniband,N/A,Ethernet,2,true,N/A,N/A,N/A,N/A,N/A,N/A,true,<none>,N/A,Gen15,x63,Gen15,N/A,t
rue,x63,N/A,x86_64,104857600000,N/A,0000:d8:00.1,N/A,0000:af:00.1,x86_64,N/A,x63,Ethernet,Infiniband,Gen15,N/A,N/
A,Gen15,N/A,Gen15,true,x63,Gen15,0000:d8:00.0,zibal,Ethernet,Ethernet,N/A,N/A,Gen15,N/A,x63,true,true,x63,104857600
000,N/A,N/A,N/A,N/A,0000:3b:00.0,N/A,Linux,Gen15,true,N/A,true,0000:3b:00.1,N/A,N/A,N/A,true,true,Infiniband,N/A,N/
A,8,N/A,270049112064,true,5.4.0-174-generic,N/A,x63,true,true,20.04.1 LTS (Focal Fossa),Ubuntu,N/A,2,true,N/A
,[doca_dma],0,0,10000,1000,5,,,random-data,2048,d8:00.0,,,100,"[0, 1, 2, 3, 4, 5, 6, 7]",throughput,0,,,,,,,,,2048,1,1
024,128,1 fragments,,,,,,,22963128,22963128,47028486144,47028486144,070.078 Gib/s,070.078 Gib/s,4.592600 MOperation
s/s,4.592600 MOperations/s,0000:5e:00.1,true,Infiniband,true,0000:5e:00.0,N/A,OFED-internal-24.04-0.4.8,N/A,x63,N/
A,N/A,N/A,0000:af:00.0,Infiniband,N/A,Ethernet,2,true,N/A,N/A,N/A,N/A,N/A,N/A,true,<none>,N/A,Gen15,x63,Gen15,N/A,t
rue,x63,N/A,x86_64,104857600000,N/A,0000:d8:00.1,N/A,0000:af:00.1,x86_64,N/A,x63,Ethernet,Infiniband,Gen15,N/A,N/
A,Gen15,N/A,Gen15,true,x63,Gen15,0000:d8:00.0,zibal,Ethernet,Ethernet,N/A,N/A,Gen15,N/A,x63,true,true,x63,104857600
000,N/A,N/A,N/A,N/A,0000:3b:00.0,N/A,Linux,Gen15,true,N/A,true,0000:3b:00.1,N/A,N/A,N/A,true,true,Infiniband,N/A,N/
A,8,N/A,270049112064,true,5.4.0-174-generic,N/A,x63,true,true,20.04.1 LTS (Focal Fossa),Ubuntu,N/A,2,true,N/A

16.3.17.12 BlueField-side Remote DMA Sample
This test invokes DOCA Bench to execute a remote DMA operation on the host
It specifies the companion connection details to be used on the host and that remote output
buffers are to be used

16.3.17.12.1 Command Line

doca_bench --core-list 12 \
 --pipeline-steps doca_dma \
 --device 03:00.0 \
 --data-provider random-data \
 --uniform-job-size 2048 \
 --job-output-buffer-size 2048 \
 --use-remote-output-buffers \
 --companion-connection-string proto=tcp,port=12345,mode=host,dev=17:00.0,user=bob,addr=10.10.10.10 \
 --run-limit-seconds 5

16.3.17.12.2 Results Overview

Executing...
Worker thread[0](core: 12) [doca_dma] started...
Worker thread[0] Executing 100 warm-up tasks using 100 unique tasks
Cleanup...
[main] Completed! tearing down...
Aggregate stats
 Duration: 5000073 micro seconds
 Enqueued jobs: 32202128
 Dequeued jobs: 32202128
 Throughput: 006.440 MOperations/s
 Ingress rate: 098.272 Gib/s
 Egress rate: 098.272 Gib/s

16.3.17.12.3 Results Overview

None.

16.3.17.13 Compress BlueField-side Sample

This test invokes DOCA Bench to run compression using random data as input
The compression algorithm specified is "deflate"

This test is relevant for BlueField-2 only.

1102

•
•

•
•

16.3.17.13.1 Command Line

doca_bench --core-list 2 \
 --pipeline-steps doca_compress::compress \
 --device 03:00.0 \
 --data-provider random-data \
 --uniform-job-size 2048 \
 --job-output-buffer-size 4096 \
 --run-limit-seconds 3 \
 --attribute doca_compress.algorithm="deflate"

16.3.17.13.2 Result Output

Executing...
Data path thread [0] started...
WT[0] Executing 100 warm-up tasks using 100 unique tasks
Cleanup...
[main] Completed! tearing down...
Aggregate stats
 Duration: 3000146 micro seconds
 Enqueued jobs: 5340128
 Dequeued jobs: 5340128
 Throughput: 001.780 MOperations/s
 Ingress rate: 027.160 Gib/s
 Egress rate: 027.748 Gib/s

16.3.17.13.3 Results Overview

None

16.3.17.14 BlueField-side Decompress LZ4 Sample
This test invokes DOCA Bench to run decompression using random data as input
This test specifies a data provider of file set which contains the filename of an LZ4
compressed file
Remote input buffers are specified to be used for the input jobs
It specifies the companion connection details to be used on the host for the remote input
buffers

16.3.17.14.1 Command Line

doca_bench --core-list 12 \
 --pipeline-steps doca_compress::decompress \
 --device 03:00.0 \
 --data-provider file-set \
 --data-provider-input-file lz4_compressed_64b_buffers.fs \
 --job-output-buffer-size 4096 \
 --run-limit-seconds 3 \
 --attribute doca_compress.algorithm="lz4" \
 --use-remote-output-buffers \
 --companion-connection-string proto=tcp,port=12345,mode=host,dev=17:00.0,user=bob,addr=10.10.10.10

16.3.17.14.2 Results Output

Executing...
Worker thread[0](core: 12) [doca_compress::decompress] started...
Worker thread[0] Executing 100 warm-up tasks using 100 unique tasks
Cleanup...
[main] Completed! tearing down...
Aggregate stats
 Duration: 3000043 micro seconds
 Enqueued jobs: 15306128
 Dequeued jobs: 15306128
 Throughput: 005.102 MOperations/s

1103

•
•

•
•

 Ingress rate: 003.155 Gib/s
 Egress rate: 002.433 Gib/s

16.3.17.14.3 Results Comment

None

16.3.17.15 Host-side EC Creation in Bulk Latency Mode Sample
This test invokes DOCA Bench to run the EC creation step.
It runs in bulk latency mode and specifies the doca_ec attributes of data_block_count ,

redundancy_block_count , and matrix_type

16.3.17.15.1 Command Line

doca_bench --mode bulk-latency \
 --core-list 12 \
 --pipeline-steps doca_ec::create \
 --device 17:00.0 \
 --data-provider random-data \
 --uniform-job-size 1024 \
 --job-output-buffer-size 1024 \
 --run-limit-seconds 3 \
 --attribute doca_ec.data_block_count=16 \
 --attribute doca_ec.redundancy_block_count=16 \
 --attribute doca_ec.matrix_type=cauchy

16.3.17.15.2 Results Output

Bulk latency output will be similar to that presented in section "BlueField-side Decompress LZ4
Sample".

16.3.17.15.3 Results Comment

Bulk latency output will be similar to that presented earlier on this page.

16.3.17.16 BlueField-side EC Creation in Precision Latency Mode
Sample

This test invokes DOCA Bench to run the EC creation step
It runs in precision latency mode and specifies the doca_ec attributes of

data_block_count , redundancy_block_count , and matrix_type

16.3.17.16.1 Command Line

doca_bench --mode precision-latency \
 --core-list 12 \
 --pipeline-steps doca_ec::create \
 --device 03:00.0 \
 --data-provider random-data \
 --uniform-job-size 1024 \
 --job-output-buffer-size 1024 \
 --run-limit-jobs 5000 \
 --attribute doca_ec.data_block_count=16 \
 --attribute doca_ec.redundancy_block_count=16 \
 --attribute doca_ec.matrix_type=cauchy

1104

•

•

•

•

16.3.17.16.2 Results Output

None

16.3.17.16.3 Results Comment

Precision latency output will be similar to that presented earlier on this page.

16.3.17.17 Comch Consumer from Host Side Sample
This test invokes DOCA Bench in Comch consumer mode using a core-list on host side and
BlueField side
The run-limit is 500 jobs

16.3.17.17.1 Command Line

./doca_bench --core-list 4 --warm-up-jobs 32 --pipeline-steps doca_comch::consumer --device ca:00.0 --data-provider
random-data --run-limit-jobs 500 --core-count 1 --uniform-job-size 4096 --job-output-buffer-size 4096 --companion-
connection-string proto=tcp,mode=dpu,dev=03:00.0,user=bob,addr=10.10.10.10,port=12345 --attribute
dopt.companion_app.path=<path to DPU doca_bench_companion application location> --data-provider-job-count 256 --
companion-core-list 12

16.3.17.17.2 Results Output

[main] Completed! tearing down...
Aggregate stats
 Duration: 1415 micro seconds
 Enqueued jobs: 500
 Dequeued jobs: 500
 Throughput: 000.353 MOperations/s
 Ingress rate: 000.000 Gib/s
 Egress rate: 010.782 Gib/s

16.3.17.17.3 Results Comment

The aggregate statistics show the test completed after 500 jobs were processed.

16.3.17.18 Host-side Comch Producer Sample
This test invokes DOCA Bench in Comch producer mode using a core-mask on the host side
and BlueField side
The run-limit is 1000 jobs

16.3.17.18.1 Command Line

doca_bench --core-list 4 \
 --warm-up-jobs 32 \
 --pipeline-steps doca_comch::producer \
 --device ca:00.0 \
 --data-provider random-data \
 --run-limit-jobs 500 \
 --core-count 1 \
 --uniform-job-size 4096 \
 --job-output-buffer-size 4096 \
 --companion-connection-string proto=tcp,mode=dpu,dev=03:00.0,user=bob,addr=10.10.10.10,port=12345 \
 --attribute dopt.companion_app.path=<path to DPU doca_bench_companion location> \
 --data-provider-job-count 256 \
 --companion-core-list 12

1105

•

•

•

•

16.3.17.18.2 Results Overview

[main] Completed! tearing down...
Aggregate stats
 Duration: 407 micro seconds
 Enqueued jobs: 500
 Dequeued jobs: 500
 Throughput: 001.226 MOperations/s
 Ingress rate: 037.402 Gib/s
 Egress rate: 000.000 Gib/s

16.3.17.18.3 Results Comment

The aggregate statistics show the test completed after 500 jobs were processed.

16.3.17.19 Host-side RDMA Send Sample
This test invokes DOCA Bench in RDMA send mode using a core-list on the send and receive
side
The send queue size is configured to 50 entries

16.3.17.19.1 Command Line

doca_bench --pipeline-steps doca_rdma::send \
 --device d8:00.0 \
 --data-provider random-data \
 --uniform-job-size 2048 \
 --job-output-buffer-size 2048 \
 --run-limit-seconds 3 \
 --send-queue-size 50 \
 --companion-connection-string proto=tcp,addr=10.10.10.10,port=12345,user=bob,dev=ca:00.0 \
 --companion-core-list 12 \
 --core-list 12

16.3.17.19.2 Results Output

Test permutations: [
 Attributes: []
 Uniform job size: 2048
 Core count: 1
 Per core thread count: 1
 Task pool size: 1024
 Data provider job count: 128
 MTU size: -- not configured --
 SQ depth: 50
 RQ depth: -- not configured --
 Input data file: -- not configured --
]

16.3.17.19.3 Results Comment

The configuration output shows the send queue size configured to 50.

16.3.17.20 Host-side RDMA Receive Sample
This test invokes DOCA Bench in RDMA receive mode using a core-list on the send and receive
side
The receive queue size is configured to 100 entries

1106

•
•

•

16.3.17.20.1 Command Line

doca_bench --pipeline-steps doca_rdma::receive \
 --device d8:00.0 \
 --data-provider random-data \
 --uniform-job-size 2048 \
 --job-output-buffer-size 2048 \
 --run-limit-seconds 3 \
 --receive-queue-size 100 \
 --companion-connection-string proto=tcp,addr=10.10.10.10,port=12345,user=bob,dev=ca:00.0 \
 --companion-core-list 12 \
 --core-list 12

16.3.17.20.2 Results Output

Test permutations: [
 Attributes: []
 Uniform job size: 2048
 Core count: 1
 Per core thread count: 1
 Task pool size: 1024
 Data provider job count: 128
 MTU size: -- not configured --
 SQ depth: -- not configured --
 RQ depth: 100
 Input data file: -- not configured --
]

16.3.17.20.3 Results Overview

The configuration output shows the receive queue size configured to 100.

16.4 NVIDIA DOCA Capabilities Print Tool
This document provides instruction on the usage of the DOCA Capabilities Print Tool.

16.4.1 Introduction
This tool is used to print all the available DOCA libraries and devices. For each DOCA device, the
tool prints its representor devices and the capabilities it supports in each DOCA library.

16.4.2 Prerequisites
DOCA 2.6.0 and higher.

16.4.3 Description
This tool can be executed on the host or Arm sides.

The following capabilities are supported by this tool:

DOCA device list – print the PCIe device of every available DOCA device and its capabilities
DOCA representor device list – for every DOCA device, print the PCIe device of every available
DOCA representor device and its capabilities
DOCA library list – print the available DOCA libraries supported by the running OS and their
availability for specific OSs

1107

•

•

•

DOCA library capabilities – for every DOCA device, print the capabilities it supports in every
DOCA library

16.4.4 Execution
To print all the available DOCA devices and their capabilities, run:

/opt/mellanox/doca/tools/doca_caps --list-devs

Example output:

/opt/mellanox/doca/tools/doca_caps --list-devs
PCI: 0000:03:00.0
 ibdev_name mlx5_0
 iface_name p0
 mac_addr 94:6d:ae:5c:9e:04
 ipv4_addr 0.0.0.0
 ipv6_addr fe80:0000:0000:0000:966d:aeff:fe5c:9e04
 gid_table_size 255
 GID[0] fe80:0000:0000:0000:966d:aeff:fe5c:9e04
PCI: 0000:03:00.1
 ibdev_name mlx5_1
 iface_name p1
 mac_addr 94:6d:ae:5c:9e:05
 ipv4_addr 0.0.0.0
 ipv6_addr fe80:0000:0000:0000:966d:aeff:fe5c:9e05
 gid_table_size 255
 GID[0] fe80:0000:0000:0000:966d:aeff:fe5c:9e05
PCI: 0000:03:00.0
 ibdev_name mlx5_2
 iface_name enp3s0f0s0
 mac_addr 02:c6:d0:fd:56:d7
 ipv4_addr 0.0.0.0
 ipv6_addr fe80:0000:0000:0000:00c6:d0ff:fefd:56d7
 gid_table_size 255
 GID[0] fe80:0000:0000:0000:00c6:d0ff:fefd:56d7
PCI: 0000:03:00.1
 ibdev_name mlx5_3
 iface_name enp3s0f1s0
 mac_addr 02:b6:4f:a9:fa:9a
 ipv4_addr 0.0.0.0
 ipv6_addr fe80:0000:0000:0000:00b6:4fff:fea9:fa9a
 gid_table_size 255
 GID[0] fe80:0000:0000:0000:00b6:4fff:fea9:fa9a

To print all the available DOCA representor devices and their capabilities, run:

/opt/mellanox/doca/tools/doca_caps --list-rep-devs

Example output:

/opt/mellanox/doca/tools/doca_caps --list-rep-devs
PCI: 0000:03:00.0
 representor-PCI: 0000:3b:00.0
 pci_func_type PF
 hotplug no
 vuid MT2308XZ0BN0MLNXS0D0F0
 representor-PCI: 0000:3b:00.0

Printing the capabilities of a specific DOCA device can be done using the --pci-addr
flag.

This command is available only on the Arm side.

Printing the representor list of a specific DOCA device can be done using the --pci-

addr flag.

1108

•

•

 pci_func_type SF
 hotplug no
 vuid MT2308XZ0BN0ECMLNXS0D0F0SF32800
PCI: 0000:03:00.1
 representor-PCI: 0000:3b:00.1
 pci_func_type PF
 hotplug no
 vuid MT2308XZ0BN0MLNXS0D0F1
 representor-PCI: 0000:3b:00.1
 pci_func_type SF
 hotplug no
 vuid MT2308XZ0BN0ECMLNXS0D0F1SF32800
PCI: 0000:03:00.0
PCI: 0000:03:00.1

To print all the supported DOCA libraries by the OS and their availability status, run:

/opt/mellanox/doca/tools/doca_caps --list-libs

Example output:

/opt/mellanox/doca/tools/doca_caps --list-libs
 common installed
 aes_gcm installed
 apsh installed
 argp installed
 cc installed
 comm_channel installed
 compress installed
 dma installed
 dpa installed
 dpdk_bridge installed
 erasure_coding installed
 eth installed
 ipsec installed
 flow installed
 flow_ct installed
 pcc installed
 rdma installed
 sha installed
 telemetry installed

To print all the capabilities for all the available libraries, that have capabilities, for every
DOCA device, run:

/opt/mellanox/doca/tools/doca_caps

Example output:

/opt/mellanox/doca/tools/doca_caps
PCI: 0000:03:00.0
 common
 mmap_export_pci supported
 mmap_create_from_export_pci supported
 hotplug_manager unsupported
 rep_filter_all supported
 rep_filter_net supported
 rep_filter_emulated unsupported
 aes_gcm
 task_encrypt supported
 task_encrypt_get_max_iv_len 12
 task_encrypt_tag_96 supported

Different OSs may support different DOCA libraries.

Printing the capabilities of one specific DOCA device can be done using the --pci-

addr flag.

Printing the capabilities of one specific DOCA library can be done using the --lib
flag.

1109

 task_encrypt_tag_128 supported
 task_encrypt_128b_key supported
 task_encrypt_256b_key supported
 task_encrypt_max_buf_size 2097152
 task_encrypt_max_list_buf_num_elem 128
 task_decrypt supported
 task_decrypt_get_max_iv_len 12
 task_decrypt_tag_96 supported
 task_decrypt_tag_128 supported
 task_decrypt_128b_key supported
 task_decrypt_256b_key supported
 task_decrypt_max_buf_size 2097152
 task_decrypt_max_list_buf_num_elem 128
 max_num_tasks 65536
 cc
 server supported
 client supported
 max_name_len 120
 max_msg_size 4080
 max_recv_queue_size 8192
 max_send_tasks 8192
 max_clients 512
 consumer supported
 consumer_max_num_tasks 65536
 consumer_max_buf_size 2097152
 producer supported
 producer_max_num_tasks 65536
 producer_max_buf_size 2097152
 comm_channel
 max_service_name_len 120
 max_message_size 4080
 max_send_queue_size 8192
 max_recv_queue_size 8192
 service_max_num_connections 512
 compress
 task_compress_deflate unsupported
 task_compress_deflate_get_max_buf_size 0
 task_compress_deflate_get_max_buf_list_len 0
 task_decompress_deflate supported
 task_decompress_deflate_get_max_buf_size 2097152
 task_decompress_deflate_get_max_buf_list_len 128
 task_decompress_lz4 supported
 task_decompress_lz4_get_max_buf_size 2097152
 task_decompress_lz4_get_max_buf_list_len 128
 max_num_tasks 65536
 dma
 task_memcpy supported
 max_buf_size 2097152
 max_buf_list_len 64
 max_num_tasks 65536
 dpa
 dpa supported
 max_threads_per_kernel 128
 kernel_max_run_time 12
 erasure_coding
 task_galois_mul supported
 task_create supported
 task_update supported
 task_recover supported
 max_block_size 1048576
 max_buf_list_len 128
 eth
 rxq_cyclic_cpu unsupported
 rxq_cyclic_gpu supported
 rxq_managed_mempool_cpu unsupported
 rxq_managed_mempool_gpu supported
 rxq_regular_cpu unsupported
 rxq_regular_gpu supported
 rxq_max_recv_buf_list_len 32
 rxq_max_packet_size 16384
 rxq_max_burst_size 32768
 txq_regular_cpu unsupported
 txq_regular_gpu supported
 txq_max_send_buf_list_len 48
 txq_max_lso_header_size 256
 txq_txq_max_lso_msg_size 262144
 txq_l3_chksum_offload supported
 txq_l4_chksum_offload supported
 txq_wait_on_time_type unsupported
 flow_ct
 flow_ct supported
 ipsec
 task_sa_create supported
 task_sa_destroy supported
 nvrd_transport
 task_write supported
 rc_max_src_buf_list_len 0
 dc_max_src_buf_list_len 0
 pcc
 pcc unsupported
 pcc_np unsupported
 min_num_threads 0
 max_num_threads 0
 rdma
 task_send supported
 task_send_imm supported
 task_read supported
 task_write supported
 task_write_imm supported
 task_atomic_cmp_swp supported
 task_atomic_fetch_add supported
 task_receive supported
 rc_transport_type supported

1110

 dc_transport_type unsupported
 rc_task_receive_get_max_dst_buf_list_len 31
 dc_task_receive_get_max_dst_buf_list_len 0
 task_remote_net_sync_event_get supported
 task_remote_net_sync_event_notify_set supported
 task_remote_net_sync_event_notify_add supported
 max_send_queue_size 32768
 max_recv_queue_size 32768
 max_send_buf_list_len 13
 max_message_size 1073741824
 sha
 sha1 unsupported
 sha256 unsupported
 sha512 unsupported
 sha1_partial unsupported
 sha256_partial unsupported
 sha512_partial unsupported
 max_list_num_elem 0
 max_src_buf_size 0
 sha1_min_dst_buf_size 0
 sha256_min_dst_buf_size 0
 sha512_min_dst_buf_size 0
 sha1_partial_hash_block_size 0
 sha256_partial_hash_block_size 0
 sha512_partial_hash_block_size 0
PCI: 0000:03:00.1
 common
 mmap_export_pci supported
 mmap_create_from_export_pci supported
 hotplug_manager unsupported
 rep_filter_all supported
 rep_filter_net supported
 rep_filter_emulated unsupported
 aes_gcm
 task_encrypt supported
 task_encrypt_get_max_iv_len 12
 task_encrypt_tag_96 supported
 task_encrypt_tag_128 supported
 task_encrypt_128b_key supported
 task_encrypt_256b_key supported
 task_encrypt_max_buf_size 2097152
 task_encrypt_max_list_buf_num_elem 128
 task_decrypt supported
 task_decrypt_get_max_iv_len 12
 task_decrypt_tag_96 supported
 task_decrypt_tag_128 supported
 task_decrypt_128b_key supported
 task_decrypt_256b_key supported
 task_decrypt_max_buf_size 2097152
 task_decrypt_max_list_buf_num_elem 128
 max_num_tasks 65536
 cc
 server supported
 client supported
 max_name_len 120
 max_msg_size 4080
 max_recv_queue_size 8192
 max_send_tasks 8192
 max_clients 512
 consumer supported
 consumer_max_num_tasks 65536
 consumer_max_buf_size 2097152
 producer supported
 producer_max_num_tasks 65536
 producer_max_buf_size 2097152
 comm_channel
 max_service_name_len 120
 max_message_size 4080
 max_send_queue_size 8192
 max_recv_queue_size 8192
 service_max_num_connections 512
 compress
 task_compress_deflate unsupported
 task_compress_deflate_get_max_buf_size 0
 task_compress_deflate_get_max_buf_list_len 0
 task_decompress_deflate supported
 task_decompress_deflate_get_max_buf_size 2097152
 task_decompress_deflate_get_max_buf_list_len 128
 task_decompress_lz4 supported
 task_decompress_lz4_get_max_buf_size 2097152
 task_decompress_lz4_get_max_buf_list_len 128
 max_num_tasks 65536
 dma
 task_memcpy supported
 max_buf_size 2097152
 max_buf_list_len 64
 max_num_tasks 65536
 dpa
 dpa supported
 max_threads_per_kernel 128
 kernel_max_run_time 12
 erasure_coding
 task_galois_mul supported
 task_create supported
 task_update supported
 task_recover supported
 max_block_size 1048576
 max_buf_list_len 128
 eth
 rxq_cyclic_cpu unsupported
 rxq_cyclic_gpu supported
 rxq_managed_mempool_cpu unsupported
 rxq_managed_mempool_gpu supported

1111

 rxq_regular_cpu unsupported
 rxq_regular_gpu supported
 rxq_max_recv_buf_list_len 32
 rxq_max_packet_size 16384
 rxq_max_burst_size 32768
 txq_regular_cpu unsupported
 txq_regular_gpu supported
 txq_max_send_buf_list_len 48
 txq_max_lso_header_size 256
 txq_txq_max_lso_msg_size 262144
 txq_l3_chksum_offload supported
 txq_l4_chksum_offload supported
 txq_wait_on_time_type unsupported
 flow_ct
 flow_ct supported
 ipsec
 task_sa_create supported
 task_sa_destroy supported
 nvrd_transport
 task_write supported
 rc_max_src_buf_list_len 0
 dc_max_src_buf_list_len 0
 pcc
 pcc unsupported
 pcc_np unsupported
 min_num_threads 0
 max_num_threads 0
 rdma
 task_send supported
 task_send_imm supported
 task_read supported
 task_write supported
 task_write_imm supported
 task_atomic_cmp_swp supported
 task_atomic_fetch_add supported
 task_receive supported
 rc_transport_type supported
 dc_transport_type unsupported
 rc_task_receive_get_max_dst_buf_list_len 31
 dc_task_receive_get_max_dst_buf_list_len 0
 task_remote_net_sync_event_get supported
 task_remote_net_sync_event_notify_set supported
 task_remote_net_sync_event_notify_add supported
 max_send_queue_size 32768
 max_recv_queue_size 32768
 max_send_buf_list_len 13
 max_message_size 1073741824
 sha
 sha1 unsupported
 sha256 unsupported
 sha512 unsupported
 sha1_partial unsupported
 sha256_partial unsupported
 sha512_partial unsupported
 max_list_num_elem 0
 max_src_buf_size 0
 sha1_min_dst_buf_size 0
 sha256_min_dst_buf_size 0
 sha512_min_dst_buf_size 0
 sha1_partial_hash_block_size 0
 sha256_partial_hash_block_size 0
 sha512_partial_hash_block_size 0
PCI: 0000:03:00.0
 common
 mmap_export_pci supported
 mmap_create_from_export_pci supported
 hotplug_manager unsupported
 rep_filter_all unsupported
 rep_filter_net unsupported
 rep_filter_emulated unsupported
 aes_gcm
 task_encrypt supported
 task_encrypt_get_max_iv_len 12
 task_encrypt_tag_96 supported
 task_encrypt_tag_128 supported
 task_encrypt_128b_key supported
 task_encrypt_256b_key supported
 task_encrypt_max_buf_size 2097152
 task_encrypt_max_list_buf_num_elem 128
 task_decrypt supported
 task_decrypt_get_max_iv_len 12
 task_decrypt_tag_96 supported
 task_decrypt_tag_128 supported
 task_decrypt_128b_key supported
 task_decrypt_256b_key supported
 task_decrypt_max_buf_size 2097152
 task_decrypt_max_list_buf_num_elem 128
 max_num_tasks 65536
 cc
 server unsupported
 client supported
 max_name_len 120
 max_msg_size 4080
 max_recv_queue_size 8192
 max_send_tasks 8192
 max_clients 0
 consumer supported
 consumer_max_num_tasks 65536
 consumer_max_buf_size 2097152
 producer supported
 producer_max_num_tasks 65536
 producer_max_buf_size 2097152
 comm_channel

1112

 max_service_name_len 120
 max_message_size 4080
 max_send_queue_size 8192
 max_recv_queue_size 8192
 service_max_num_connections 0
 compress
 task_compress_deflate unsupported
 task_compress_deflate_get_max_buf_size 0
 task_compress_deflate_get_max_buf_list_len 0
 task_decompress_deflate supported
 task_decompress_deflate_get_max_buf_size 2097152
 task_decompress_deflate_get_max_buf_list_len 128
 task_decompress_lz4 supported
 task_decompress_lz4_get_max_buf_size 2097152
 task_decompress_lz4_get_max_buf_list_len 128
 max_num_tasks 65536
 dma
 task_memcpy supported
 max_buf_size 2097152
 max_buf_list_len 64
 max_num_tasks 65536
 dpa
 dpa supported
 max_threads_per_kernel 128
 kernel_max_run_time 12
 erasure_coding
 task_galois_mul supported
 task_create supported
 task_update supported
 task_recover supported
 max_block_size 1048576
 max_buf_list_len 128
 eth
 rxq_cyclic_cpu supported
 rxq_cyclic_gpu supported
 rxq_managed_mempool_cpu supported
 rxq_managed_mempool_gpu supported
 rxq_regular_cpu supported
 rxq_regular_gpu supported
 rxq_max_recv_buf_list_len 32
 rxq_max_packet_size 16384
 rxq_max_burst_size 32768
 txq_regular_cpu supported
 txq_regular_gpu supported
 txq_max_send_buf_list_len 48
 txq_max_lso_header_size 256
 txq_txq_max_lso_msg_size 262144
 txq_l3_chksum_offload supported
 txq_l4_chksum_offload supported
 txq_wait_on_time_type unsupported
 flow_ct
 flow_ct unsupported
 ipsec
 task_sa_create unsupported
 task_sa_destroy unsupported
 nvrd_transport
 task_write supported
 rc_max_src_buf_list_len 0
 dc_max_src_buf_list_len 0
 pcc
 pcc unsupported
 pcc_np unsupported
 min_num_threads 0
 max_num_threads 0
 rdma
 task_send supported
 task_send_imm supported
 task_read supported
 task_write supported
 task_write_imm supported
 task_atomic_cmp_swp supported
 task_atomic_fetch_add supported
 task_receive supported
 rc_transport_type supported
 dc_transport_type unsupported
 rc_task_receive_get_max_dst_buf_list_len 31
 dc_task_receive_get_max_dst_buf_list_len 0
 task_remote_net_sync_event_get supported
 task_remote_net_sync_event_notify_set supported
 task_remote_net_sync_event_notify_add supported
 max_send_queue_size 32768
 max_recv_queue_size 32768
 max_send_buf_list_len 13
 max_message_size 1073741824
 sha
 sha1 unsupported
 sha256 unsupported
 sha512 unsupported
 sha1_partial unsupported
 sha256_partial unsupported
 sha512_partial unsupported
 max_list_num_elem 0
 max_src_buf_size 0
 sha1_min_dst_buf_size 0
 sha256_min_dst_buf_size 0
 sha512_min_dst_buf_size 0
 sha1_partial_hash_block_size 0
 sha256_partial_hash_block_size 0
 sha512_partial_hash_block_size 0
PCI: 0000:03:00.1
 common
 mmap_export_pci supported
 mmap_create_from_export_pci supported

1113

 hotplug_manager unsupported
 rep_filter_all unsupported
 rep_filter_net unsupported
 rep_filter_emulated unsupported
 aes_gcm
 task_encrypt supported
 task_encrypt_get_max_iv_len 12
 task_encrypt_tag_96 supported
 task_encrypt_tag_128 supported
 task_encrypt_128b_key supported
 task_encrypt_256b_key supported
 task_encrypt_max_buf_size 2097152
 task_encrypt_max_list_buf_num_elem 128
 task_decrypt supported
 task_decrypt_get_max_iv_len 12
 task_decrypt_tag_96 supported
 task_decrypt_tag_128 supported
 task_decrypt_128b_key supported
 task_decrypt_256b_key supported
 task_decrypt_max_buf_size 2097152
 task_decrypt_max_list_buf_num_elem 128
 max_num_tasks 65536
 cc
 server unsupported
 client supported
 max_name_len 120
 max_msg_size 4080
 max_recv_queue_size 8192
 max_send_tasks 8192
 max_clients 0
 consumer supported
 consumer_max_num_tasks 65536
 consumer_max_buf_size 2097152
 producer supported
 producer_max_num_tasks 65536
 producer_max_buf_size 2097152
 comm_channel
 max_service_name_len 120
 max_message_size 4080
 max_send_queue_size 8192
 max_recv_queue_size 8192
 service_max_num_connections 0
 compress
 task_compress_deflate unsupported
 task_compress_deflate_get_max_buf_size 0
 task_compress_deflate_get_max_buf_list_len 0
 task_decompress_deflate supported
 task_decompress_deflate_get_max_buf_size 2097152
 task_decompress_deflate_get_max_buf_list_len 128
 task_decompress_lz4 supported
 task_decompress_lz4_get_max_buf_size 2097152
 task_decompress_lz4_get_max_buf_list_len 128
 max_num_tasks 65536
 dma
 task_memcpy supported
 max_buf_size 2097152
 max_buf_list_len 64
 max_num_tasks 65536
 dpa
 dpa supported
 max_threads_per_kernel 128
 kernel_max_run_time 12
 erasure_coding
 task_galois_mul supported
 task_create supported
 task_update supported
 task_recover supported
 max_block_size 1048576
 max_buf_list_len 128
 eth
 rxq_cyclic_cpu supported
 rxq_cyclic_gpu supported
 rxq_managed_mempool_cpu supported
 rxq_managed_mempool_gpu supported
 rxq_regular_cpu supported
 rxq_regular_gpu supported
 rxq_max_recv_buf_list_len 32
 rxq_max_packet_size 16384
 rxq_max_burst_size 32768
 txq_regular_cpu supported
 txq_regular_gpu supported
 txq_max_send_buf_list_len 48
 txq_max_lso_header_size 256
 txq_txq_max_lso_msg_size 262144
 txq_l3_chksum_offload supported
 txq_l4_chksum_offload supported
 txq_wait_on_time_type unsupported
 flow_ct
 flow_ct unsupported
 ipsec
 task_sa_create unsupported
 task_sa_destroy unsupported
 nvrd_transport
 task_write supported
 rc_max_src_buf_list_len 0
 dc_max_src_buf_list_len 0
 pcc
 pcc unsupported
 pcc_np unsupported
 min_num_threads 0
 max_num_threads 0
 rdma
 task_send supported

1114

•

•

•

 task_send_imm supported
 task_read supported
 task_write supported
 task_write_imm supported
 task_atomic_cmp_swp supported
 task_atomic_fetch_add supported
 task_receive supported
 rc_transport_type supported
 dc_transport_type unsupported
 rc_task_receive_get_max_dst_buf_list_len 31
 dc_task_receive_get_max_dst_buf_list_len 0
 task_remote_net_sync_event_get supported
 task_remote_net_sync_event_notify_set supported
 task_remote_net_sync_event_notify_add supported
 max_send_queue_size 32768
 max_recv_queue_size 32768
 max_send_buf_list_len 13
 max_message_size 1073741824
 sha
 sha1 unsupported
 sha256 unsupported
 sha512 unsupported
 sha1_partial unsupported
 sha256_partial unsupported
 sha512_partial unsupported
 max_list_num_elem 0
 max_src_buf_size 0
 sha1_min_dst_buf_size 0
 sha256_min_dst_buf_size 0
 sha512_min_dst_buf_size 0
 sha1_partial_hash_block_size 0
 sha256_partial_hash_block_size 0
 sha512_partial_hash_block_size 0

16.5 NVIDIA DOCA Comm Channel Admin Tool
This document provides instructions on the usage of the DOCA Comm Channel Admin Tool.

16.5.1 Introduction
The Comm Channel Admin Tool is used to print a snapshot of DOCA Comch (comm channel)
connections:

On the BlueField Arm side, it includes DOCA Comch servers and their current connection
information
On the host side, it includes all active client connections and the server they are connected
to
Only client-to-server control channels are reported; fast path producer/consumer channels
are not.

16.5.2 Prerequisites
The Comm Channel Admin Tool is for Linux only and requires an up-to-date BFB bundle or DOCA host
packages of at least 2.7, which include in the Resource dump binary.

16.5.3 Description and Execution
The Comm Channel Admin Tool can be executed on the host or Arm CPUs. By default, the tool scans
all available PCIe slots to detect supported DOCA devices and reports any Comch information
available.

The tool can be run on BlueField Arm or x86 host using the following command:

/opt/mellanox/doca/tools/doca_comm_channel_admin

1115

•
•
•

•
•

16.5.3.1 Sample Output from BlueField Arm
On the BlueField Arm side, any active DOCA Comch servers are be reported:

The following information is available:

Server Name – the name assigned to the server
PID – the Linux process ID of the application which created the server
Connections – the number of connections active on the server out of the total allowed (e.g.,
2/512 means 2 active connections of a maximum of 512)
PCIe – the PCIe address of the device which the server has been detected on
Interface Name – the interface name associated with the PCIe address

16.5.3.2 Sample Output from x86
The x86 host cannot run DOCA Comch servers. Therefore, individual client connections are reported:

Connections may also be displayed on the BlueField Arm like on x86. This occurs if SF ports
are detected here. The interface name associated with the PCIe address indicates the SF
port.

1116

•
•
•

•

The following information is available:

Server Name – the name of the BlueField Arm server that a client has connected to
PID – the Linux process ID of the application running a DOCA Comch client
PCIe – the PCIe address of the BlueField networking platform which the destination server is
running on
Interface Name – the interface name associated with the PCIe address

16.6 NVIDIA DPA Tools

16.6.1 Introduction
DPA tools are a set of executables that enable the DPA application developer and the system
administrator to manage and monitor DPA resources and to debug DPA applications.

1117

16.6.2 DPA Tools

16.6.2.1 DPACC Compiler

CLI name: dpacc

DPACC is a high-level compiler for the DPA processor. It compiles code targeted for the DPA processor
into an executable and generates a DPA program.

The DPA program is a host library with interfaces encapsulating the DPA executable. This DPA
program can be linked with the host application to generate a host executable where the DPA code
is invoked through the FlexIO runtime API.

16.6.2.2 DPA EU Management Tool

CLI name: dpaeumgmt

This tool allows users to manage the DPA's EUs which are the basic resource of the DPA. The tool
enables the resource control of EUs to optimize the usage of computation resources of the DPA.
Using this tool, users may query, create, and destroy EU partitions and groups, thus ensuring proper
EU allocation between devices.

16.6.2.3 DPA GDB Server Tool

CLI name: dpa-gdbserver

The DPA GDB Server tool enables debugging FlexIO DEV programs.

16.6.2.4 DPA PS Tool

CLI name: dpa-ps

This tool allows users to monitor running DPA processes and threads.

16.6.2.5 DPA Statistic Tool

CLI name: dpa-statistics

This tool allows users to monitor and obtain statistics on thread execution per running DPA process
and thread.

16.6.3 NVIDIA DOCA DPACC Compiler
This document describes DOCA DPACC compiler and instructions about DPA toolchain setup and
usage.

16.6.3.1 Introduction
DPACC is a high-level compiler for the DPA processor which compiles code targeted for the data-path
accelerator (DPA) processor into a device executable and generates a DPA program.

1118

•

•

•

The DPA program is a host library with interfaces encapsulating the device executable. This DPA
program is linked with the host application to generate a host executable. The host executable can
invoke the DPA code through FlexIO runtime API.

DPACC uses DPA compiler (dpa-clang) to compile code targeted for DPA. dpa-clang is part of the
DPA toolchain package which is an LLVM-based cross-compiling bare-metal toolchain. It provides
Clang compiler, LLD linker targeting DPA architecture, and other utilities.

16.6.3.1.1 Glossary
Term Definition

Device DPA as present on the BlueField DPU

Host CPU that launches the device code to run on the DPA

Device function Any C function that runs on the DPA device

DPA global function Device function that is the point of entry when offloading any
work on DPA

Host compiler Compiler used to compile the code targeting the host CPU

Device compiler Compiler used to compile code targeting the DPA

DPA program Host library that encapsulates the DPA device executable (.elf)
and host stubs which are used to access the device executable

16.6.3.1.2 Offloading Work on DPA

To invoke a DPA function from host, the following things are required:

DPA device code – C programs, targeted to run on the DPA. DPA device code may contain one
or more entry functions.
Host application code – the corresponding host application. For more information, refer to
DPA Subsystem documentation.
Runtime – FlexIO or DOCA DPA library provides the runtime

1119

•
•

•

The generated DPA program, when linked with a host application results in a host executable which
also contains the device executable. The host application oversees loading the device executable on
the device.

16.6.3.1.3 DPACC Predefined Macros

DPACC predefines the following macros:

Macro Description

__DPA__ Defined when compiling device code file

__NV_DPA Defined to the target DPA hardware identifier macros. See
Architecture Macros for more details.

__DPA_MAJOR__ Defined to the major version number of DPACC

__DPA_MINOR__ Defined to the minor version number of DPACC

__DPA_PATCH__ Defined to the patch version number of DPACC

16.6.3.1.4 Writing DPA Applications

DPA device code is a C code with some restrictions and special definitions.

FlexIO or DOCA-DPA APIs provide interfaces to DPA.

16.6.3.1.4.1 Language Support

The DPA is programmed using a subset of the C11 language standard. The compiler documents any
constructs that are not available. Language constructs, where available, retain their standard
definitions.

16.6.3.1.4.2 Restrictions on DPA Code
Use of C thread local storage is not allowed for any variables
Identifiers with _dpacc prefix are reserved by the compiler. Use of such identifiers may
result in an error or undefined behavior
DPA processor does not have native floating-point support; use of floating point operations is
disabled

16.6.3.1.4.3 DPA RPC Functions

A remote procedure call function is a synchronous call that triggers work in DPA and waits for its
completion. These functions return a type uint64_t value. They are annotated with a

__dpa_rpc__ attribute.

16.6.3.1.4.4 DPA Global Functions

A DPA global function is an event handler device function referenced from the host code. These
functions do not return anything. They are annotated with a __dpa_global__ attribute.

1120

•

•

•
•

•

•
•
•

For more information, refer to DPA Subsystem documentation.

16.6.3.1.4.5 Characteristics of Annotated Functions
Global functions must have void return type and RPC functions must have uint64_t return
type
Annotated functions cannot accept C pointers and arrays as arguments (e.g., void

my_global (int *ptr, int arr[]))
Annotated functions cannot accept a variable number of arguments
Inline specifier is not allowed on annotated functions

16.6.3.1.4.6 Handling User-defined Data Types

User-defined data types, when used as global function arguments, require special handling. They
must be annotated with a __dpa_global__ attribute.

If the user-defined data type is typedef 'd, the typedef statement must be annotated with a

__dpa_global__ attribute along the data type itself.

16.6.3.1.4.7 Characteristics of Annotated Types
They must have a copy of the definition in all translation units where they are used as global
function arguments
They cannot have pointers, variable length arrays, and flexible arrays as members
Fixed-size arrays as C structure members are supported
These characteristics apply recursively to any user-defined/ typedef 'd types that are
members of an annotated type

DPACC processes all annotated functions along with annotated types and generates host and device
interfaces to facilitate the function launch.

16.6.3.1.4.8 DPA Intrinsics

DPA features such as fences and processor-specific instructions are exposed via intrinsics by the DPA
compiler. All intrinsics defined in the header file dpaintrin.h are guarded by

the DPA_INTRIN_VERSION_USED macro. The current DPA_INTRIN_VERSION is 1.3 .

Example:

#define DPA_INTRIN_VERSION_USED (DPA_INTRIN_VERSION(1, 3))
#include <dpaintrin.h>
…
__dpa_thread_writeback_window(); // Fence for write barrier

For more information, refer to DPA Subsystem documentation.

1121

•
•

16.6.3.2 Prerequisites
Package Instructions

Host compiler Compiler specified through hostcc option. Both gcc and clang
are supported.

Device compiler The default device compiler is the "DPA compiler". Installing the
DPACC package also installs the DPA compiler binaries dpa-clang ,

dpa-ar , dpa-nm and dpa-objdump .

FlexIO SDK and C library Available as part of the DOCA software package. DPA toolchain does
not provide C library and corresponding headers. Users are
expected to use the C library for DPA from the FlexIO SDK.

16.6.3.2.1 Supported Versions
DPACC version 1.8.0
Refer to DPA Subsystem documentation for other component versions

16.6.3.3 Description

16.6.3.3.1 DPACC Inputs and Outputs

DPACC can produce DPA programs in a single command by accepting all source files as input. DPACC
also offers the flexibility of producing DPA object files or libraries from input files.

DPA object files contain both host stub objects (DPACC-generated interfaces) and device objects.
These DPA object files can later be given to DPACC as input to produce the DPA library.

Phase Option Name Default Output File Name

Compile input device code files to DPA object
files

--compile or -c .dpa.o appended to the name of
each input source file

Compile and link the input device code files/
DPA object files, and produce a DPA program

No specific option No default name, output file name
must be specified

Compile and build DPA library from input
device code files/DPA object files

--gen-

libs or -gen-libs

No default name, output library name
must be specified

DPACC can accept the following file types as input:

Input File Extension File Type Description

.c C source file DPA device code

Minimum supported version for clang as hostcc is clang

3.8.0 .

dpa-clang is the only supported device compiler.

1122

•

•

Input File Extension File Type Description

.dpa.o DPA object file Object file generated by DPACC, containing
both host and device objects

.a DPA object archive An archive of DPA object files. User can
generate this archive from DPACC-generated
DPA objects.

Based on the mode of operations, DPACC can generate the following output files:

Output File Type Input Files

DPA object file C source files

DPA program C source files, DPA object files, and/or DPA object
archives

DPA library
(DPA host library and DPA device library)

C source files, DPA object files, and/or DPA object
archives

The following provides the commands to generate different kinds of supported output file types for
each input file type:

Input Output DPACC Command

C source file DPA program dpacc -hostcc=gcc in.c -o libprog.a

DPA object dpacc -hostcc=gcc in.c -c

DPA library dpacc -hostcc=gcc in.c -o lib<name>

-gen-libs

DPA object DPA program dpacc -hostcc=gcc in.dpa.o -o

libprog.a

DPA library dpacc -hostcc=gcc in.dpa.o -o

lib<name> -gen-libs

DPA object archive DPA program dpacc -hostcc=gcc in.a -o libprog.a

DPA library dpacc -hostcc=gcc in.a -o lib<name>

-gen-libs

16.6.3.3.1.1 DPA Program

DPACC produces a DPA program in compile-and-link mode. A DPA program is a host library which
contains:

DPACC-generated host stubs which facilitate invoking a DPA global function from the host
application
Device executable, generated by DPACC by compiling input DPA device code

DPA program library must be linked with the host application that contains appropriate runtime APIs
to load the device executable onto DPA memory.

1123

•
•

16.6.3.3.1.2 DPA Object

DPACC produces DPA object files in compile-only mode. A DPA object is an object file for the host
machine. In a DPA object, the device object generated by compiling the input device code file is
placed inside a specific section of the generated host stubs object. This process is repeated for each
input file.

16.6.3.3.1.3 DPA Library

A DPA library is a collection of two individual libraries:

DPA device library – contains device objects generated from input files
DPA host library – contains host interface objects corresponding to the device objects in DPA
device library

The DPA device library is consumed by DPACC during DPA-program generation and the DPA host
library can optionally be linked with other host code and be distributed as the host library. Both
libraries are generated as static archives.

1124

16.6.3.3.2 DPACC Trajectory

The following diagram illustrates DPACC compile-and-link mode trajectory.

1125

16.6.3.3.3 Modes of Operation

16.6.3.3.3.1 Compile-and-link Mode

This is a one-step mode that accepts C source files or DPA object files and produces the DPA
program. Specifying the output library name is mandatory in this mode.

Example commands:

$ dpacc in1.c in2.c -o myLib1.a -hostcc=gcc # Takes C sources to produce myLib1.a library
$ dpacc in3.dpa.o in4.dpa.o -o myLib2.a -hostcc=gcc # Takes DPA object files to produce myLib2.a library
$ dpacc in1.c in3.dpa.o -o myLib3.a -hostcc=gcc # Takes C source and DPA object to produce myLib3.a library

16.6.3.3.3.2 Compile-only Mode

This mode accepts C source code and produces .dpa.o object files. These files can be given to

DPACC to produce the DPA program. The mode is invoked by the --compile or -c option.

1126

The user can explicitly provide the output object file name using the --output-file or -o
option.

Example commands:

$ dpacc -c input1.c -hostcc=gcc # Produces input1.dpa.o
$ dpacc -c input3.c input4.c -hostcc=gcc # Produces input3.dpa.o and input4.dpa.o
$ dpacc -c input2.c -o myObj.dpa.o -hostcc=gcc # Produces myObj.dpa.o

16.6.3.3.3.3 Library Generation Mode

This mode accepts C source files or DPA object files and produces the DPA program. Specifying the
output DPA library name is mandatory in this mode.

Example commands:

$ dpacc in1.c in2.c -o libdummy1 -hostcc=gcc -gen-libs # Takes C sources to produce libdummy1_host.a
and libdummy_device.a archives
$ dpacc in3.dpa.o in4.dpa.o -o libdummy2 -hostcc=gcc -gen-libs # Takes DPA object files to produce
libdummy2_host.a and libdummy2_device.a archives
$ dpacc in1.c in3.dpa.o -o outdir/libdummy3 -hostcc=gcc -gen-libs # Takes C source and DPA object to produce
outdir/libdummy3_host.a and outdir/libdummy3_device.a archives

16.6.3.4 Execution
To execute DOCA DPACC compiler:

Usage: dpacc <list-of-input-files> -hostcc=<path> [other options]
Helper Flags:
 -h, --help Print help information about DPACC
 -V, --version Print DPACC version information
 -v, --verbose List the compilation commands generated by this invocation while also
executing every command in verbose mode
 -dryrun, --dryrun Only list the compilation commands generated by DPACC, without executing them
 -keep, --keep Keep all intermediate files that are generated during internal compilation
steps in the current directory
 -keep-dir, --keep-dir Keep all intermediate files that are generated during internal compilation
steps in the given directory
 -optf, --options-file <file>,... Include command line options from the specified file

16.6.3.4.1 Mandatory Arguments
Flag DPACC Mode Description

List of one or more input files All List of C source files or DPA object file
names. Specifying at least one input file is
mandatory. A file with an unknown extension
is treated as a DPA object file.

-hostcc , --hostcc <path> All Specify the host compiler. This is typically
the native compiler present on the host
system.

-o , --output-file <file> Compile-and-link/library
generation

Specify name and location of the output file.

The host compiler used to link the
host application with the DPA
program must be link-compatible
with the hostcc compiler
provided here.

1127

•

•

•

16.6.3.4.2 Commonly Used Arguments

Flag Description

-app-name , --app-

name <name>

Specify DPA application name for the DPA program. This option is required if
multiple DPA programs are part of a host application because each DPA application
must have a unique name. Default name is __dpa_a_out .

-mcpu=<target_cpu> Specify the target DPA hardware for code generation. See DPA Hardware
Architectures for more details.
Supported values: nv-dpa-bf3 , nv-dpa-cx7

-flto , --flto Enable link-time optimization (LTO) for device code. Specify this option during
compilation along with an optimization level in devicecc-options .

-devicecc-options ,

--devicecc-options

<options> ,...

Specify the list of options to pass to the device compiler.

-devicelink-options ,

--devicelink-options

<options> ,...

Specify the list of options to pass during device linking stage.

-device-libs , --

device-libs '-L<path>

-l<name>' ,...

Specify the list of device libraries including their names (in -l) and their paths

(in -L). FlexIO libraries are linked by default.

-I , --common-

include-path

<path> ,...

Specify include search paths common to host and device code compilation. FlexIO
headers paths are included by DPACC by default.

-o , --output-file

<file>

Specify name and location of the output file.
Compile-only mode – name of the output DPA object file. If not
specified, .dpa.o is generated for each .c file.
Compiler-and-link mode – name of the output DPA program. This is a
mandatory option in compiler-and-link mode.
Library generation mode – name of the output library. This is a mandatory
option for this mode. Output files <name>_device.a and <name>_host.a
are generated.

-hostcc-options , --

hostcc-options

<options> ,...

Specify the list of options to pass to the host compiler.

-gen-libs , --gen-

libs

Generate a DPA library from input files

-ldoca_dpa , --

ldoca_dpa

Link with DOCA-DPA libraries

Use --help option for a list of all supported options.

1128

16.6.3.4.3 DPA Hardware Architectures

The following table mentions the DPA architectures, the associated values supported in the compiler
through the -mcpu option, and the macros defined by the compiler to identify these architectures.

Hardware Value Macro

ConnectX-7 nv-dpa-cx7 __NV_DPA_CX7

BlueField-3 nv-dpa-bf3 __NV_DPA_BF3

Since ConnectX-7 and BlueField-3 share the same DPA hardware, nv-dpa-cx7 is treated as an alias

of nv-dpa-bf3 by the compiler.

16.6.3.4.4 Architecture Macros

As described in section "DPA Hardware Architectures", the compiler defines identifier macros for
each version of DPA hardware. Each identifier macro has a unique integer value which is strictly
greater than that of macros for older DPA CPU models. Known aliases such as BlueField-3 DPA and
ConnectX-7 DPA share the same integer value. The macro __NV_DPA is defined to the value of
current compilation target. This can be used to write device code specific to a DPA hardware
generation as shown in the following:

#if __NV_DPA == __NV_DPA_BF3
// Code for Bluefield-3 here
#elif __NV_DPA > __NV_DPA_BF3
// Code for devices after Bluefield-3 here
#endif

Using machine dependent options (e.g., -mcpu , -march , -mabi) through -devicecc-

options to influence compiler code generation is not supported.

The devicecc-options option allows passing any option to the device compiler. However,
passing options that prevent compilation of the input file may lead to unexpected behavior
(e.g., -devicecc-options="-version" makes the device compiler print the version and
not process input files).

Incompatible options that affect DPA global function argument sizes during DPACC
invocation and host application compilation may lead to undefined behavior during
execution (e.g., passing -hostcc-options="-fshort-enums" to DPACC and missing this
option when building the host application).

The ordering established by the value of the hardware version identifier macros does not
imply an ordering of features supported by hardware. It is the user responsibility to ensure
that features used in the code which are specific for a DPA version are actually supported
on the hardware.

1129

•
•

•
•

•

•

•

16.6.3.4.5 LTO Usage Guidelines

16.6.3.4.5.1 Restrictions
Only the default linker script is supported with LTO
Using options -fPIC / -fpic / -shared / -mcmodel=large through -devicecc-options is
not supported when LTO is enabled
Fat objects containing both LLVM bitcode and ELF representation are not supported
Thin LTO is not supported

16.6.3.4.5.2 Compatibility

During compilation, LLVM generates the object as bitcode IR (intermediate representation) when
LTO is enabled instead of ELF representation. The bitcode IR generated by the DPA compiler is only
guaranteed to be compatible within the same version of DPACC. All objects involved in link-time
optimization (enabled with -flto) must be built with the same version of DPACC.

16.6.3.4.6 Deprecated Features
The -ldpa option which links with DOCA-DPA libraries is deprecated and will be removed in

future releases. Use the option -ldoca_dpa instead.

16.6.3.4.7 Examples

This section provides some common use cases of DPACC and showcases the dpacc command.

16.6.3.4.7.1 Building Libraries

This example shows how to build DPA libraries using DPACC. Libraries for DPA typically contain two
archives, one for the host and one for the device.

dpacc input.c -hostcc=gcc -o lib<name> -gen-libs -hostcc-options="-fPIC"

This command generates the output files lib<name>_host.a and lib<name>_device.a .

The host stub archive can be linked with other host code to generate a shared/static host library.

Generating a static host library:

ar x lib<name>_host.a # Extract objects to generate *.o
ar cr lib<name>.a <*src.host.o> *.o # Generate final static archive with all objects

Generating a shared host library:

gcc -shared -o lib<name>.so <*src.host.o> -Wl,-whole-archive -l<name>_host -Wl,-no-whole-archive #
Link the generated archive to build a shared library

1130

16.6.3.4.7.2 Linking with DPA Device Library

The DPA device library generated by DPACC using -gen-libs as part of a DPA library can be

consumed by DPACC using the -device-libs option.

dpacc input.c -hostcc=gcc -o libInput.a -device-libs="-L <path-to-library> -l<libName>"

16.6.3.4.7.3 Enabling Link-time Optimizations

Link-time optimizations can be enabled using -flto along with an optimization level specified for
device compilation.

dpacc input1.c -hostcc=gcc -c -flto -devicecc-options="-O2" dpacc input2.c -hostcc=gcc -c -flto -devicecc-
options="-O2" dpacc input1.dpa.o input2.dpa.o -hostcc=gcc -o libInput.a

16.6.3.4.7.4 Including Headers

This example includes headers for device compilation using devicecc-options and host

compilation using hostcc-options . You may also specify headers for any compilation on both the

host and device side using the -I option.

dpacc input.c -hostcc=gcc -o libInput.a -I <common-headers-path> -devicecc-options="-I <device-headers-path>"
-hostcc-options="-I <host-headers-path>"

16.6.3.4.7.5 Generating Output as Source Code

DPACC provides an option, -src-output , to generate the output as host source code. This source
can be compiled by the host compiler to generate functionally equivalent output which DPACC
would have generated directly.

This example shows how to build various outputs of DPACC as source using this option and how to
compile the generated source.

DPA-program Source

Generate DPA-program source by passing the following option to DPACC:

dpacc input.c -hostcc=gcc -o libfoo.c -src-output

Compile the generated source using host compiler to generate an object and build an archive with
this object. A macro __DPACC_SRC_TARGET__ must be defined when building this object to remove
code which is unnecessary when building from source:

$ gcc libfoo.c -c -I /opt/mellanox/flexio/include -Wno-attributes -Wno-pedantic -Wno-unused-parameter -Wno-return-
type -Wno-implicit-function-declaration -D__DPACC_SRC_TARGET__
$ ar cr libfoo.a libfoo.o

DPA-library Source

Generate DPA-library source by passing the following option to DPACC:

1131

•
•
•

dpacc input.c -hostcc=gcc -o libfoo -gen-libs -src-output

This generates the device archive libfoo_device.a and host code files libfoo.lib.c and

input.dpa.c .

The host archive of DPA-library is generated by compiling these sources and building an archive. The
__DPACC_SRC_TARGET__ macro must be defined in this instance to remove unnecessary code:

$ gcc libfoo.lib.c input.dpa.c -c -I /opt/mellanox/flexio/include -Wno-attributes -Wno-pedantic -Wno-unused-
parameter -Wno-return-type -Wno-implicit-function-declaration -D__DPACC_SRC_TARGET__
$ ar cr libfoo_host.a libfoo.lib.o input.dpa.o

DPA-object Source

Generate DPA-object source by passing the following option to DPACC:

dpacc input.c -hostcc=gcc -c -src-output

This generates a single file, input.dpa.c .

Compile the host file to generate an object:

gcc input.dpa.c -c -I /opt/mellanox/flexio/include -Wno-attributes -Wno-pedantic -Wno-unused-parameter -Wno-return-
type -Wno-implicit-function-declaration

16.6.3.4.8 DPA Compiler Usage

dpa-clang is a compiler driver for accessing the Clang/LLVM compiler, assembler, and linker which
accepts C code files or object files and generates an output according to different usage modes.

Refer to the following resources for more detailed information on Clang:

Clang Compiler User's Manual
Clang command line argument reference
Target-dependent compilation options

16.6.3.4.8.1 Compiler Driver Command-line Options

dpa-clang <list-of-input-files> [other-options]

16.6.3.4.8.2 Linker Command Line Options

LLD is the default linker provided in the DPA toolchain. Linker-related options are passed to through
the compiler driver.

dpa-clang -Wl,<linker-option>

For more information, please refer to the LLD command line reference.

Invoking the compiler, assembler, or linker directly may lead to unexpected errors.

https://releases.llvm.org/15.0.0/tools/clang/docs/UsersManual.html
https://releases.llvm.org/15.0.0/tools/clang/docs/ClangCommandLineReference.html
https://releases.llvm.org/15.0.0/tools/clang/docs/ClangCommandLineReference.html#target-dependent-compilation-options
https://manpages.debian.org/experimental/lld-15/ld.lld-15.1.en.html

1132

16.6.3.4.8.3 dpacc-extract Command Line Options

dpacc-extract is a tool for extracting a device executable out of a DPA program or a host
executable containing DPA program(s).

To execute dpacc-extract:

Usage: dpacc-extract <input-file> -o=<output-file> [other options]
Helper Flags:

 -o, --output-file Specify name of the output file
 -app-name, --app-name <name> Specify name of the DPA application to extract
 -h, --help Print help information about dpacc-extract
 -V, --version Print dpacc-extract version information
 -optf, --options-file <file>,... Include command line options from the specified file

Mandatory arguments:

Flag Description

Input file DPA program or host executable containing DPA program.
Specifying one input file is mandatory.

-o , --output-file <file> Specify name and location of the output device executable.

-app-name , --app-name <name> Specify name of the DPA application to extract. Mandatory if
input file has multiple DPA apps.

16.6.3.4.8.4 Objdump Command Line Options

The dpa-objdump utility prints the contents of object files and final linked images named on the
command line.

For more information, please refer to the Objdump command line reference.

Commonly used dpa-objdump options:

Flag Description

--mcpu=nv-dpa-bf3 Option to choose micro-architecture for DPA processor. nv-

dpa-bf3 is the default CPU for dpa-objdump.

16.6.3.4.8.5 Archiver Command Line Options

dpa-ar is a Unix ar-compatible archiver.

For more information, please refer to the Archiver command line reference.

16.6.3.4.8.6 NM Tool Command Line Options

The dpa-nm utility lists the names of symbols from object files and archives.

For more information, please refer to the NM tool command line reference.

https://releases.llvm.org/15.0.0/docs/CommandGuide/llvm-objdump.html
https://releases.llvm.org/15.0.0/docs/CommandGuide/llvm-ar.html
https://releases.llvm.org/15.0.0/docs/CommandGuide/llvm-nm.html

1133

•
•

16.6.3.4.8.7 Common Compiler Options

Flag Description

--mcpu=nv-dpa-bf3 Option to choose micro-architecture and ABI for DPA processor.
nv-dpa-bf3 is the default CPU for the compiler.

-mrelax / -mno-relax Option to enable/disable linker relaxations.

-I <dir> Option to include header files present in <dir> .

16.6.3.4.8.8 Common Linker Options

Flag Description

-Wl,-L <path-to-library> -Wl,-l<library-name> Option to link against libraries

16.6.3.4.8.9 Debugging Options

Flag Description

-fdebug-macro Option to emit macro debugging information. This option enables
macro-debugging similar to GCC option -g3 .

16.6.3.4.8.10 Miscellaneous Notes
Objects produced by LLD are not compatible with those generated by any other linker.
The default debugging standard of the DPA compiler is DWARFv5. GDB versions <10.1 have
issues processing some DWARFv5 features. Use the option -devicecc-options="-gdwarf-4"
with DPACC to debug with GDB versions <10.1.

16.6.4 NVIDIA DOCA DPA Execution Unit Management Tool
This document describes the DPA Execution Unit (EU) management tool, dpaeumgmt .

Linker options are provided through the compiler driver dpa-clang.

The LLD linker script is honored in addition to the default configuration rather than
replacing the whole configuration like in GNU lD. Hence, additional options may be required
to override some default behaviors.

Execution unit partitions will be supported in future releases.

1134

•

•

•

•

•
•
•

•

16.6.4.1 Introduction
This table introduces important terms for understanding this document:

Term Definition

DPA Data-path accelerator; an auxiliary processor designed to accelerate
data-path operations.

DPA partition manager PCIe device function capable of controlling the entire system's EUs.
On NVIDIA® BlueField®-3 it is the ECPF. The DPA partition manager is
by default associated with the default partition.

EU Hardware execution unit; a logical DPA processing unit.

EU group Collection/subset of EUs which could be created using dpaeumgmt .
EU groups are created under an EU partition and could only be
formed from the pool of EUs under that partition.

EU object EU partition or EU group.

EU partition An isolated pool of EUs which may be created using dpaeumgmt .
Only when a partition is created and associated with other vHCAs are
they able to use hardware resources and execute a DPA software
thread.

EU affinity The method by which a DPA thread is paired with a DPA EU. DPA
supports three types of affinity:

none – selects an EU from a pool of all available EUs

strict – select only the specified EU (by ID)

group – select an EU from all the EUs in the specified group

The DPA EU management tool can run either on the host machine or on the target DPU and allows
users to manage the DPA's EUs which are the basic resource of the DPA. The tool enables the
resource control of EUs to optimize computation resources usage of the DPA before using DOCA
FlexIO SDK API.

Without EU allocation, a DPA software thread would lack access to the hardware pipeline/CPU time
resource, and consequently not be able to execute.

dpaeumgmt serves the following main usages:

Running a DPA software thread with strict affinity on a DPA EU (i.e., running a DPA thread

using only the specific preselected EU). For this purpose, dpaeumgmt provides an option to
query the maximum EU ID allowed to use.
Allowing a DPA software thread to run over a DPA EU from a group of EUs:

Once an EU group is created, it is allocated a subset of EUs.
dpaeumgmt provides an ID to the created group which can be used to run DPA

applications with group affinity where the affinity ID would be the same as that
group's ID.

EU partition management - the ability to manage EU partitions.

When the software stack wishes to run a DPA thread with group affinity type, one of the available
EUs from the group's collection is used for the execution.

1135

•

•

•

16.6.4.2 Execution Unit Objects
Upon boot, a default EU partition is automatically created. The default EU partition possesses all
the system's EUs. The DPA partition manager function is the only function that belongs to it and can
therefore control the entire resources of the system.

When running a DPA thread with none affinity, the EU chosen for the DPA thread to run with comes
from the partition's pool of EUs. Namely, from the EUs belonging only to the DPA device's current
partition which were not assigned to any EU groups (on the current partition). If the aforementioned
group of EUs (i.e., the partition's default EU group) is empty, the DPA thread would fail to run
with none affinity.

16.6.4.3 dpaeumgmt Commands

dpaeumgmt enables users to create, destroy, and query EU objects.

Top-level dpaeumgmt command syntax:

Usage: dpaeumgmt {help|version|eu_group|partition}

Type "./dpaeumgmt help" for detailed help

16.6.4.3.1 General Commands
Print basic usage information for the tool:

dpaeumgmt -h

Print a detailed help menu of the tool's commands:

dpaeumgmt help

Print version information:

dpaeumgmt version

16.6.4.3.2 Execution Unit Group Commands

The commands listed in the following subsections are used to configure EU groups.

A DPA thread may execute if and only if there is an available EU for it.

dpaeumgmt tool must run with root privileges and users must execute sudo mst start
before using it.

1136

16.6.4.3.2.1 EU Group Command Flags and Arguments

The following table lists the flags relevant to eu _group commands. Arguments for the flags must
be used within quotes (if more than one) and without extra spaces.

Short Option Long Option Description

-h --help Print out basic tool usage information.

-d --dpa_device The device interface name (MST/PCI/RDMA/NET).

-r --range_eus The range of EUs to allocate an EU group or a
partition. The argument must be provided within
quotes.

-g --id_group Group ID number.
This number must be positive and less than or
equal to the max_num_dpa_eu_group parameter
which may be retrieved using the command
eu _group info -d <device> .

-n --name_group Group name; 15-character string. The argument
must be provided within quotes.

-f --file_groups Full path or only the filename if it is located in the
same directory as the executable directory (where
dpaeumgmt is).

16.6.4.3.2.2 Info EU Group

Print information on the relevant DPA resources for the EU groups:

dpaeumgmt eu_group info --dpa_device <device>

Example:

$ sudo ./dpaeumgmt eu_group info -d mlx5_0
Max number of DPA EU groups: 15
Max number of DPA EUs in one DPA EU group: 190
Max DPA EU number available to use: 190
Max EU group name length is 15 chars

16.6.4.3.2.3 Create EU Group

Create an EU group with the specified name on the provided device's partition. The EUs indicated by
the range are taken from the DPA device's EU partition.

dpaeumgmt eu_group create --dpa_device <device> --name_group <name> --range_eus <range>

Example:

$ sudo ./dpaeumgmt eu_group create -d mlx5_0 -n "HG hello world1" -r "6-8,16,55,70"
Group created successfully-
EU group ID: 1
EU group name: HG hello world
Member EUs are: 6,7,8,16,55,70

1137

16.6.4.3.2.4 Destroy EU Group

Destroy an EU group that exists on the device's partition with either the provided group name or ID.

dpaeumgmt eu_group destroy --dpa_device <device> [--name_group <name> | --id_group <id>]

Example:

$ sudo ./dpaeumgmt eu_group destroy -d mlx5_0 -g 1
Group with group id: 1, was destroyed successfully

16.6.4.3.2.5 Query EU Group

Query EU groups residing on the provided device's partition. If one of the optional parameters is
used, the command only queries the specific group and prints it if it exists:

dpaeumgmt eu_group query --dpa_device <device> [--name_group <name> | --id_group <id>]

Example:

$ sudo ./dpaeumgmt eu_group query -d mlx5_0
1) EU group ID: 1
EU group name: HG hello world
Member EUs are: 6,7,8,16,55,70

In total there are 1 EU groups configured.

More options:

$ sudo ./dpaeumgmt eu_group query -d mlx5_0 -n "HG hello world"
$ sudo ./dpaeumgmt eu_group query -d mlx5_0 -g 1

16.6.4.3.2.6 Apply EU Group

Apply the EU groups provided in the file on the device's partition:

dpaeumgmt eu_group apply --dpa_device <device> --file_groups <file>

File format example:

{
 "eu_groups": [
 { "name": "hg1", "range": "178-180"},
 { "name": "hg2", "range": "2-10"}
]
}

After successfully creating an EU group, users can run a DPA thread using group affinity
with the affinity type set to the group's ID.

The command removes all the previous EU groups defined on the EU partition that the DPA
device belongs to and applies the ones from the file.

1138

Example:

$ sudo ./dpaeumgmt eu_group apply -d mlx5_0 --file_groups example.json
1) EU group ID: 1
EU group name: hg1
Member EUs are: 178,179,180

1) EU group ID: 2
EU group name: hg2
Member EUs are: 2,3,4,5,6,7,8,9,10

In total there are 2 EU groups configured.

16.6.4.3.3 EU Partition Commands

The commands listed in the following subsections are used to configure EU partitions.

16.6.4.3.3.1 EU Partition Command Flags and Arguments

The following table lists the flags relevant to EU partition commands. Arguments for the flags
must be used within quotes (if more than one) and without extra spaces.

Short Option Long Option Description

-h --help Print out basic tool usage information.

-d --dpa_device The device interface name (MST/PCI/RDMA/
NET).

-r --range_eus The range of EUs to allocate an EU group or a
partition. The argument must be provided within
quotes.

-p --id_partition Partition ID number.
This number must be positive and less than or
equal to the value of
max_num_dpa_eu_partition which may be

retrieved using the command partition info

-d <device> .

-v --vhca_list The vHCA IDs to be associated with the partition.
The argument must be provided within quotes.

-m --max_num_eu_group The number of EU groups to reserve for the
partition upon its creation.

16.6.4.3.3.2 Info EU Partition

Print the relevant DPA resources of the EU partitions:

dpaeumgmt partition info --dpa_device <device>

Example:

$ sudo ./dpaeumgmt partition info -d mlx5_0
Max number of DPA EU partitions: 15
Max number of VHCAs associated with a single partition: 32
Max number of DPA EU groups: 15
Note- an allocation of a partition consumes from the number of DPA EU *groups* available to create
Max DPA EU number available to use: 190

1139

16.6.4.3.3.3 Create EU Partition

Create an EU partition on the DPA device:

dpaeumgmt partition create --dpa_device <device> --vhca_list <id_list> --range_eus <range> --max_num_eu_group
<max_num>

Example:

$ sudo ./dpaeumgmt partition create -d mlx5_0 -v 1 -r 10-20 -m 2
Partition created successfully-
EU Partition ID: 1
Maximal number of groups: 2
The partition has a total of 1 associated VHCA IDs, namely: 1
Partition's member EUs are: 10,11,12,13,14,15,16,17,18,19,20

16.6.4.3.3.4 Destroy EU Partition

Destroy an EU partition that exists on the device's partition:

dpaeumgmt partition destroy --dpa_device <device> --id_partition <id>

Example:

$ sudo ./dpaeumgmt partition destroy -d mlx5_0 -p 1
Partition with partition id: 1, was destroyed successfully

16.6.4.3.3.5 Query EU Partition

Query EU partitions that reside on the provided device's partition and print out the partition if it
exists:

dpaeumgmt partition query --dpa_device <device> [--id_partition <id>]

Example:

$ sudo ./dpaeumgmt partition query -d mlx5_0 -p 1
EU Partition ID: 1
Maximal number of groups: 2
The partition has a total of 1 associated VHCA IDs, namely: 1
Partition's member EUs are: 10,11,12,13,14,15,16,17,18,19,20

More options:

$ sudo ./dpaeumgmt partition query -d mlx5_0

16.6.4.4 vHCAs and Partitions
The following diagram illustrates the ownership and control of a partition by a vHCA and also which
vHCAs have claim to (i.e., can use) a partition.

1140

•

•

•
•

•

•
•

•

•

•

•
•

•

•

16.6.4.5 Known Limitations
Currently, dpaeumgmt is only supported on the DPU not the host

dpaeumgmt should run before creating a DPA process so all resources are configured ahead of
time

Running the tool over a device with an existing DPA process results in failure
The EU group name assigned by the user must be unique for every EU group on a specific
partition or the EU group create command fails
The creation of an EU partition consumes from the number of EU groups allowed on the
vHCA's partition it is created on:

1 group for the partition itself due to a default group created for each partition
<max_num> of groups which is the user's input provided upon partition creation

Creating groups or running DPA threads in general (with any affinity) on interfaces other than
ECPF, requires a configuration of a valid partition for the specific vHCA
Only the default partition is exposed to the real EU numbers, all other partitions the user
creates use virtual EUs

For example, if a user creates a partition with the range of EUs 20-40, querying the
partition info from one of its virtual HCAs (vHCAs) would display EUs from 0-20.
Therefore, the EU whose real number is 39 in this example would correspond to the
virtual EU number 19.

Group IDs on a non-default partition are virtual.
Different partitions can have completely distinct groups, even if they have the same
ID.
The affinity ID parameter, specified on the FlexIO API, can distinguish between the
groups according to the vHCA an application is running on.

vHCA ID overlap is not allowed on EU partitions

1141

•

•
•
•

•
•
•

•
•
•

•
•

•

It is not possible to query vHCA IDs with dpaeumgmt , these are assumed to be known by the
user beforehand
Partition destruction fails if there are EU objects that exist on that partition
It is not possible to know which EU has been chosen to run on
Every vHCA sees the partition it belongs to, and its resources, as the entire world. It only
sees:

Groups and partitions it created
The number of EUs it was given
The max_num_eu_group of the partition it belongs to

No guarantee regarding EU group ID that will be given on group creation
The default groups (of every partition) cannot be managed by the user
The EU numbers available are between 0 and the max DPA EU number available to use minus
1 (the upper limit can be queried using the info command specified above)
dpaeumgmt does not support virtual functions (VFs)
It is not possible to create partitions on other vHCAs other than the DPA partition manager
function
There are at most 16 hardware EU group entities

16.6.5 NVIDIA DOCA DPA GDB Server Tool
This document describes the DPA GDB Server tool.

16.6.5.1 Introduction

The DPA GDB Server tool (dpa-gdbserver) enables debugging FlexIO DEV programs.

DEV programs for debugging are selected using a token (8-byte value) provided by the FlexIO
process owner.

16.6.5.1.1 Glossary
Term Description

PUD Process under debug. DEV-side processes intended for debug.

EU Execution unit (similar to hardware CPU core)

DPA Data path accelerator

RPC Remote process communication. Mechanism used in FlexIO to run DEV-side
code instantly. Runtime is limited to 6 seconds.

HOST x86 or aarch64 Linux OS which manages dev-side code (i.e., DEV)

The DPA GDB Server Tool is currently supported at beta level.

Any GDB, familiar with RISC-V architecture, can be used for the debug. Refer to this page
for information how to work with GDB.

https://sourceware.org/gdb/current/onlinedocs/gdb.html/

1142

•

•

•

Term Description

DEV RISC-V code, loaded by HOST into the DPA's device. Triggered to run by
different types of interrupts. DEV side is directly connected to ConnectX
adapter card.

GDB GNU Project debugger. Allows users to monitor another program while it
executes.

GDBSERVER Tool for remote debug programs

RTOS Real-time operation system running on RISC-V core. Manages handling of
interrupts and calls to DEV user processes routines.

RSP Remote serial protocol. Used for interaction between GDB and GDBSERVER.

16.6.5.1.2 Known Limitations
DPA GDB technology does not catch fatal errors. Therefore, if a fatal error occurs, core dump
(created by flexio_coredump_create()) should be used.
DPA GDB technology does not support Outbox access. GDB users cannot write to Doorbell or to
Window configuration areas.
DPA GDB technology does not support Window access. Read/write to Window memory does
not work properly.

16.6.5.2 DPA-specific Notes

16.6.5.2.1 Token

The process under debug (PUD) can expose a debugging token. Every external process, using this
token, get full access to the process with given token. To not show it constantly (e.g., for security
reasons), users can modify their host application temporary. See
flexio_process_udbg_token_get() .

16.6.5.2.2 Connection on Application Launch

If the code which needs debugging begins to run immediately after launch, the user should modify
the host application to stop upon start to give the user time to run dpa-gdbserver . One possible

way of doing this is to place function getchar() immediately after process creation.

16.6.5.2.3 Dummy Thread Concept

Something to consider with DPA debugging is that a PUD does not have a running thread all time
(e.g., the process's thread may exist but be waiting for incoming packets). In a regular Linux
application, this scenario is not possible and GDB does not support such cases.

Therefore, when no thread is running, dpa-gdbserver reports a dummy thread:

1143

gdb

(gdb) info thread
 Id Target Id Frame
* 1 Thread 1.805378433 (Dummy Flexio thread) 0x0800000000000000 in ?? ()
(gdb)

In this case user can inspect memory, create breakpoints, and give the continue command.

Commands like step , next , and stepi can not be executed for the Dummy thread.

16.6.5.2.4 Watchdog Issues

The RTOS has a watchdog timer that limits DEV code interrupt processes to 120 seconds. This timer
is stopped when the user connects to DEV with GDB. Therefore users will have no time limitation for
debugging.

16.6.5.3 Tool TCP Port and Execution Unit (EU)

By default, dpa-gdbserver uses TCP port 1981 and runs on EU 29. If this conflicts with another

application (or if other instances of dpa-gdbserver are running), users should change the defaults
as follows:

Bash

$> dpa-gdbserver mlx5_0 -T <token> -s <port> -E <eu_id>

16.6.5.4 Debugging

16.6.5.4.1 Preparation for Debug

Modify your FlexIO application if needed. Make sure the HOST code prints udbg_token and waits
for GDB connection if needed:

C code. Host side. diff

+ uint64_t udbg_token;

 flexio_process_create(..., &flexio_process);

+ udbg_token = flexio_process_udbg_token_get(flexio_process);
+ if (udbg_token)
+ printf("Process created. Use token >>> %#lx <<< for debug\n", udbg_token);

+ printf("Stop point for waiting of GDB connection. Press Enter to continue..."); /* Usually you don't need this
stop point */
+ fflush(stdout);
+ getchar();

Extract the DPA application from the FlexIO application. For example:

1144

1.

2.

3.

4.

Bash

$> dpacc-extract cc-host/app/host/flexio_app_name -o flexio_app_name.rv5

16.6.5.4.2 Start Debugging
Run your FlexIO application. It should expose the debug token:

Bash

$> flexio_app_name mlx5_0
Process created. Use token >>> 0xd6278388ce4e682c <<< for debug

Run dpa-gdbserver with the debug token received:

Bash

$> dpa-gdbserver mlx5_0 -T 0xd6278388ce4e682c
Registered on device mlx5_0
Listening for GDB connection on port 1981

Run any GDB with RISC-V support. For example, gdb-multiarch :

Bash

$> gdb-multiarch -q flexio_app_name.rv5
Reading symbols from flexio_app_name.rv5...
(gdb)

Connect to the gdbserver using proper TCP port and hostname, if needed:

gdb

(gdb) target remote :1981
Remote debugging using :1981
0x0800000000000000 in ?? ()

16.6.5.4.3 DPA-specific Debugging Techniques

16.6.5.4.3.1 Easy Example of Transitioning from Dummy to Real Thread

Transitioning between the dummy thread and a real thread is not standard practice for debugging
under GDB. In an ideal situation, the user would know exactly the entry points for all their routines
and can set breakpoints for all of them. Then the user may run the continue command:

gdb

(gdb) target remote :1981
Remote debugging using :1981
0x0800000000000000 in ?? ()
(gdb) info threads
 Id Target Id Frame

1145

* 1 Thread 1.805378433 (Dummy Flexio thread) 0x0800000000000000 in ?? ()
(gdb) b foo
Breakpoint 1 at 0x400000b2: file ../tests/path/hello.c, line 58.
(gdb) b bar
Breakpoint 2 at 0x40000518: file ../tests/path/hallo.c, line 113.
(gdb) continue
Continuing.

Initiate interrupts for your DEV program (depends your task), and GDB should catch a breakpoint
and now the real thread of the PUD appear instead of the dummy:

gdb

(gdb) continue
Continuing.
(gdb) [New Thread 1.2]
[New Thread 1.130]
[New Thread 1.258]
[New Thread 1.386]
[Switching to Thread 1.2]

Thread 2 hit Breakpoint 1, foo(thread_arg=9008)
 at ../tests/path/hello.c:58
58 struct host_data *hdata = NULL;
(gdb) info threads
 Id Target Id Frame
* 2 Thread 1.2 (Process 0 thread 0x1 GVMI 0) foo (arg=9008) at ../tests/path/hello.c:58
 3 Thread 1.130 (Process 0 thread 0x81 GVMI 0) foo (arg=9264) at ../tests/path/hello.c:58
 4 Thread 1.258 (Process 0 thread 0x101 GVMI 0) foo (arg=9648) at ../tests/path/hello.c:58
 5 Thread 1.386 (Process 0 thread 0x181 GVMI 0) foo (arg=9904) at ../tests/path/hello.c:58
(gdb)

From this point, you may examine memory and trace your code as usual.

16.6.5.4.3.2 Complicated Example of Transitioning from Dummy to Real Thread

In a more complicated situation, the interrupt happens after GDB connection. In this case, the real
thread should start running but cannot because the PUD is in HALT state. The user can type the
command info threads , see new thread instead of the old dummy, and then switch to the new
thread manually:

gdb

(gdb) target remote :19811
Remote debugging using :19812
0x0800000000000000 in ?? ()3
(gdb) info threads4
 Id Target Id Frame5
* 1 Thread 1.805378433 (Dummy Flexio thread) 0x0800000000000000 in ?? ()6
(gdb) info threads7
[New Thread 1.32769]8
 Id Target Id Frame9
 2 Thread 1.32769 (Process 0 thread 0x8000 GVMI 0) bar (arg=0xc0, len=0)10
 at /path/lib/src/stub.c:16711
 12
The current thread <Thread ID 1> has terminated. See `help thread'.13
(gdb) thread 214
[Switching to thread 2 (Thread 1.32769)]15
#0 bar (arg=0xc0, len=0)16
 at /path/lib/src/stub.c:16717
167 {18
(gdb) bt19
#0 bar (arg=0xc0, len=0)20
 at /path/lib/src/stub.c:16721
#1 0x000000004000017a in foo (thread_arg=3221)22
 at ../path/dev/hello.c:18223
#2 0x0000000000000000 in ?? ()24
Backtrace stopped: frame did not save the PC25
(gdb)26

The same command info threads in lines 4 and 7 gives different results. This happens
because the interrupt occurs between the instances and the real code begins to run.

1146

•
•
•
•
•

The user must switch to the new thread manually (see line 14). After this, they can trace/debug the
flow as usual (i.e., using the commands step , next , stepi).

16.6.5.4.3.3 Finishing Real Thread without Finishing PUD

Every interrupt handler at some point finishes its way and returns the CPU resources to RTOS. The
most common way to do this is to call function flexio_dev_thread_reschedule() . The command

next on this function will have the same effect as the command continue :

gdb

205 __dpa_thread_fence(__DPA_MEMORY, __DPA_W, __DPA_W);
(gdb) next
206 flexio_dev_cq_arm(dtctx, app_ctx.rq_cq_ctx.cq_idx, app_ctx.rq_cq_ctx.cq_number);
(gdb) next
208 if ((dev_errno = flexio_dev_get_and_rst_errno(dtctx))) {
(gdb) next
213 print_sim_str("Nothing to do. Wait for next duar\n", 0);
(gdb) next
214 flexio_dev_thread_reschedule();
(gdb) next

16.6.5.5 Error Reporting

Should a dpa-gdbserver bug occur, please provide the following data:

Used GDB (name and version)
Commands sequence to reproduce the issue
DPA GDB server tool console output
DPA GDB server tool log directory content (see next part for details)
Optional – output data printed when dpa-gdbserver is run in verbose mode

16.6.5.5.1 Tool Log Directory

For every run, a temporary directory is created with the template /tmp/flexio_gdbs.XXXXXX .

To locate the latest one, run the following command:

GDB waits until the user types ^C or a breakpoint is reached after the next interrupt
occurred.

The DPA GDB server tool has been validated with gdb-multiarch (version 9.2) and with
GDB version 12.1 from RISC-V tool chain.

The GDB server should support all commands described in GDB RSP (remote serial protocol)
for GDB stubs. But only the most common GDB commands are supported.

1147

Bash

$> ls -ldtr /tmp/flexio_gdbs.* | tail

16.6.5.5.2 Verbosity Level of gdbserver

By default, dpa-gdbserver does not print any log information to screen. Adding - v option to

command line increases verbosity level, printing additional info to dpa-gdbserver terminal

display. Verbosity level is incremented according to number of 'v' in command line switch (i.e. -vv ,

-vvv etc.).

One -v shows the RSP exchange. This is a textual protocol, so users can read and understand
requests from GDB and answers from the GDB server:

gdbserver.log -v

<<<<< "qTStatus"
>>>>> ""
<<<<< "?"
>>>>> "S05"
<<<<< "qfThreadInfo"
>>>>> "mp01.30011981"
<<<<< "qsThreadInfo"
>>>>> "l"
<<<<< "qAttached:1"
>>>>> "1"
<<<<< "Hc-1"
>>>>> "OK"
<<<<< "qC"
>>>>> "QCp01.30011981"

When running with a higher verbosity level (e.g., run dpa-gdbserver with option -vv or higher),
the exchange with the RTOS module is shown:

gdbserver.log -vv

<<<<< "qfThreadInfo"
/ 2/dgdbs_handler - cmd 0x5
/ 2/dgdbs_handler - retval 0x4
>>>>> "mp01.30011981"
<<<<< "qsThreadInfo"
/ 2/dgdbs_handler - cmd 0x5
/ 2/dgdbs_handler - retval 0x5
>>>>> "l"
<<<<< "m800000000000000,4"
/ 2/dgdbs_handler - cmd 0xc
/ 2/dgdbs_handler - retval 0x9
>>>>> "E0a"
<<<<< "m7fffffffffffffc,4"
/ 2/dgdbs_handler - cmd 0xc
/ 2/dgdbs_handler - retval 0x9
>>>>> "E0a"
<<<<< "qSymbol::"
>>>>> "OK"

In the examples, <<<<< and >>>>> are used to indicate data received from GDB and
transmitted to GDB, respectively.

Lines beginning with / #/ provide the number of internal RTOS threads printed from the
DEV side.

1148

16.6.5.6 Useful Info Regarding Work with GDB
This section provides useful information about commands and methods which can help users when
performing DPA debug. This is not related to the dpa-gdbserver itself. But this is about remote
debugging and FlexIO sources.

16.6.5.6.1 Command "directory"

GDB can run on a different host from the one where compilation was done. For example, users may
have compiled and run their application on host1 and run their instance of GDB on host2 . In this

case, users will see the error message ../xxx/yyy/zzz/your_file.c: No such file or

directory . To solve this problem, copy sources to the host running GDB (host2 in the example).

Make sure to save the original code hierarchy. Use GDB command directory to inform where the
sources are to GDB:

gdb on host2

host2~$> gdb-multiarch -q /tmp/my_riscv.elf
Reading symbols from /tmp/my_riscv.elf...
(gdb) b foo
Breakpoint 1 at 0x4000016c: file ../xxx/yyy/zzz/my_file.c, line 182.
(gdb) target remote host1:1981
Remote debugging using host1:1981
0x0800000000000000 in ?? ()
(gdb) c
Continuing.
[New Thread 1.32769]
[Switching to Thread 1.32769]

Thread 2 hit Breakpoint 1, foo (thread_arg=5728) at ../xxx/yyy/zzz/my_file.c:182
182 ../xxx/yyy/zzz/my_file.c: No such file or directory.
(gdb) directory /tmp/apps/
Source directories searched: /tmp/apps:$cdir:$cwd
(gdb) list
179 struct flexio_dev_thread_ctx *dtctx;
180 uint64_t dev_errno;
181
182 print_sim_str("=====> NET event handler started\n", 0);
183
184 flexio_dev_print("Hello GDB user\n");
185

See this page of GDB documentation for more examples of specifying source directories.

Pay attention to the exact path reported by GDB. The argument for the command
directory should point to the start point for this path. For example, if GDB looks for ../

xxx/yyy/zzz and you placed the sources in local directory /tmp/copy_of_worktree , then

the command should be (gdb) directory /tmp/copy_of_worktree/xxx/ and not (gdb)

directory /tmp/copy_of_worktree/ .

Sometimes, the *.elf file provides a global path from the root. In this case, use the

command set substitute-path <from> <to> . For example, if the file /foo/bar/baz.c wa

s moved to /mnt/cross/baz.c , then the command (gdb) set substitute-path /foo/

bar /mnt/cross instructs GDB to replace /foo/bar with /mnt/cross , which allows GDB to
find the file baz.c even though it was moved.

https://sourceware.org/gdb/current/onlinedocs/gdb.html/Source-Path.html

1149

•
•

16.6.5.6.2 Core Dump Usage

If the code runs into a fatal error even though the host side of your project is implemented
correctly, a core dump is saved which allows analyzing the core. It should point exactly to where the
fatal error occurred. The command backtrace can be used to examine the memory and its
registers. Change the frame to see local variables of every function on the backtrace list:

gdb

$> gdb-multiarch -q -c crash_demo.558184.core /tmp/my_riscv.elf
Reading symbols from /tmp/my_riscv.elf...

[New LWP 1]
#0 0x000000004000126e in read_test (line=153, ptr=0x30) at /xxx/yyy/zzz/my_file.c:109
109 val = *(volatile uint64_t *)ptr;
(gdb) bt
#0 0x000000004000126e in read_test (line=153, ptr=0x30) at /xxx/yyy/zzz/my_file.c:109
#1 0x000000004000031a in tlb_miss_test (op_code=1) at /xxx/yyy/zzz/my_file.c:153
#2 0x0000000040000144 in test_thread_err_events_entry_point (h2d_daddr=3221258560) at /xxx/yyy/zzz/my_file.c:588
#3 0x00000000400013fc in _dpacc_flexio_dev_arg_unpack_test_err_events_dev_test_thread_err_events_entry_point
(argbuf=0xc0008228, func=0x400000b0 <test_thread_err_events_entry_point>)
 at /tmp/dpacc_xExkvE/test_err_events_dev.dpa.device.c:67
#4 0x0000000040001680 in flexio_hw_rpc (host_arg=3221258752) at /local_home/www/flexio-sdk/libflexio-dev/src/
flexio_dev_entry_point.c:75
#5 0x0000000000000000 in ?? ()
Backtrace stopped: frame did not save the PC
(gdb) frame 4
#4 0x0000000040001680 in flexio_hw_rpc (host_arg=3221258752) at /local_home/igorle/flexio-sdk/libflexio-dev/src/
flexio_dev_entry_point.c:75
75 retval = unpack_cb(&data_from_host->func_params.arg_buf,
(gdb) p /x *data_from_host
$2 = {poll_lkey = 0x1ff2b1, window_id = 0x3, poll_haddr = 0x55dc0f40b900, entry_point = 0x400013d8, func_params =
{func_wo_pack = 0x0, dev_func_entry = 0x400000b0, arg_buf = 0xc0008140}}
(gdb)

16.6.5.6.3 Debug of Optimized Code

Usually highly optimized code is compiled and run.

Two types of mistakes in code can be considered:

Logical errors
Optimization-related errors

Logical errors (e.g., using & instead of &&) are reproduced on the non-optimized version of the
code. Optimization related errors (e.g., forgetting volatile classification, non-usage of memory
barriers) only impact optimization. Non-optimized code is much easier for tracing with GDB,
because every C instruction is translated directly to assembly code.

It is good practice to check if an issue can be reproduced on non-optimized code. That helps
observing the application flow:

Bash

$> build.sh -O 0

For tracing this code, using GDB commands next and step should be sufficient.

But if an issue can only be reproduced on on optimized code, you should start debugging it. This
would require reading disassembly code and using the GDB command stepi because it becomes a
challenge to understand exactly which C-code line executed.

1150

16.6.5.6.4 Disassembly of Advanced RISC-V Commands

DPA core runs on a RISC-V CPU with an extended instruction set. The GDB may not be familiar with
some of those instructions. Therefore, asm view mode shows numbers instead of disassembly. In

this case it is recommended to disassemble your RISC-V binary code manually. Use the dpa-objdump

utility with the additional option --mcpu=nv-dpa-bf3 .

bash

$> dpa-objdump -sSdxl --mcpu=nv-dpa-bf3 my_riscv.elf > my_riscv.asm

The following screenshot shows the difference:

16.6.6 NVIDIA DOCA DPA PS Tool

16.6.6.1 Introduction

DOCA dpa-ps is a CLI tool which allows users to monitor running DPA processes and threads. The
tool presents sorted lists of the currently running DPA processes and threads.

16.6.6.2 Command Flags and Arguments

The following table lists the flags for the dpa-ps tool.

Short Option Long Option Description

-h --help Help information

-d --device Device interface name (MST/RDMA)

-p --process-id Hexadecimal process ID for filtering

-t --threads Show threads info for each process

-i --suppress-header-info Suppress print header info

The process ID output of the dpa-ps tool may be used as the input parameter for

the dpa-statistics tool.

This tool is supported for NVIDIA® BlueField®-3 only.

1151

•

•
•
•

16.6.6.3 Example

$ sudo ./dpa-ps -d mlx5_0 -t
ProcessID
 ThreadID
0
 5
 6
1
 3
 4
2
3
 0
 1
 2
4

16.6.6.4 Known Limitations
The dpa-ps and dpa-statistics tools cannot be run at the same time on the same device

16.6.7 NVIDIA DOCA DPA Statistics Tool

16.6.7.1 Introduction

DOCA dpa-statistics is a CLI tool which allows users to monitor and obtain statistics on thread
execution per running DPA process and thread. The tool is used to expose information about the
running DPA processes and threads and to collect statistics on DPA thread performance.

The tool presents performance information for running DPA threads, including the number of cycles
and instructions executed in a time period. The tool enables initiating and stopping collection of
statistics and displaying the data collected per thread.

16.6.7.2 Collecting Performance Statistics Data

The command collect works on four mutually exclusive modes:

Enable mode – start collecting performance data
Disable mode – stop collecting performance data
Timeout mode – start collecting, wait with a timeout, stop collect and print info. User could
break the wait with Ctrl-C command and then the timeout will be canceled and tool will
disable statistics collection and prints the info with the actual time of the collect operation.

Arguments for the flags must be used within quotes (if more than one) and without extra
spaces.

The process ID output of the dpa-ps tool may be used as the input parameter for the

dpa-statistics tool.

This tool is supported for NVIDIA® BlueField®-3 only.

1152

•

•
•

•
•
•

Infinite mode – no special flags. Same as timeout mode but with infinite timeout. The tool
awaits the Ctrl-C command to stop.

The following table lists the collect command's flags and arguments:

Short Option Long Option Description

-h --help Help information

-d --device Device interface name (MST/RDMA)

-p --process-id Hexadecimal process ID for filtering

-i --suppress-header-info Suppress print header info

-n --enable Enable collect info

-o --disable Disable collect info

-t --timeout Enable collect, wait with timeout, disable collect
and print info

Examples for inputting timeout value:
45 – 45 milliseconds
45.55 – 45 milliseconds and 550,000
nanoseconds
.0005 – 500 nanoseconds
45m55n – 45 milliseconds and 55 nanoseconds
66n – 66 nanoseconds

-r --reset Reset counters before operation starting collect
operation

16.6.7.3 Presenting Statistics List
Presenting performance statistics is applicable after initiating data collection.

The following table lists the show command's flags and arguments:

Short Option Long Option Description

-h --help Help information

-d --device Device interface name (MST/RDMA)

-p --process-id Hexadecimal process ID for filtering

-i --suppress-header-info Suppress print header info

Output example:

This flag indicates a specific command
for the command to operate on.
Otherwise, statistics are collected from
all processes.

Timeout value is in milliseconds.

1153

•

•

•

•

•

•

•

•

•

•

•
•

$ sudo ./dpa-statistics show -d mlx5_0 -p 1
ProcessID
 ThreadID Cycles Instruction Time Executions
1
 3 266268 18193 164 41
 4 411571 32727 252 47

Where:

ProcessID – The dpa_process_object_id to which the threads belongs

ThreadID – DPA thread object ID

Cycles – Total EU cycles the thread used

Instruction – Total number of instructions the thread executed

Time – Total time in ticks the thread was active

Executions – Total number of thread invocations

16.6.7.3.1 Examples
Example of collect in infinite mode for process 0 with suppress header info:

$ sudo ./dpa-statistics collect -d mlx5_0 -p 0 -i
...^C
Data collected for 4606 milliseconds 0 nanoseconds
0
 5 223964 13754 140 31
 6 190130 13754 114 31

Example of collect in timeout mode with a timeout of 1 second and half a millisecond.

$ sudo ./dpa-statistics collect -d mlx5_0 -t 1000.500
Data collected for 1000 milliseconds 500000 nanoseconds
ProcessID
 ThreadID Cycles Instruction Time Executions
0
 5 223964 13754 140 31
 6 190130 13754 114 31
1
 3 266268 18193 164 41
 4 411571 32727 252 47
2
3
 0 223205 13754 137 31
 1 189896 13754 113 31
 2 191796 13754 117 31
4

Example of enabling statistics collection with reset of counters.

$ sudo ./dpa-statistics collect -d mlx5_0 -n -r

Example of disabling statistics collection.

$ sudo ./dpa-statistics collect -d mlx5_0 -o

16.6.7.4 Known Limitations
Reading large statistics counter blocks takes a long time
The dpa-ps and dpa-statistics tools cannot be run at the same time on the same device

16.7 NVIDIA DOCA PCC Counter Tool
This document provides instruction on the usage of the PCC Counter tool.

1154

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

16.7.1 Introduction
The PCC Counter tool is used to print PCC-related hardware counters. The output counters help
debug the PCC user algorithm embedded in the DOCA PCC application.

16.7.2 Prerequisites
DOCA 2.2.0 and higher.

16.7.3 Description
If NVIDIA® BlueField®-3 is operating in DPU mode, the script must be executed on the Arm side. If
BlueField-3 is operating in NIC mode, the script must be executed on the host side.

The following performance counters are supported for PCC:

MAD_RTT_PERF_CONT_REQ – the number of RTT requests received in total

MAD_RTT_PERF_CONT_RES – the number of RTT responses received in total

SX_EVENT_WRED_DROP – the number of TX events dropped due to the CC event queue being
full
SX_RTT_EVENT_WRED_DROP – the number of "TX event with RTT request sent indication"
dropped due to the CC event queue being full
ACK_EVENT_WRED_DROP – the number of Ack events dropped due to the CC event queue being
full
NACK_EVENT_WRED_DROP – the number of Nack events dropped due to the CC event queue
being full
CNP_EVENT_WRED_DROP – the number of CNP events dropped due to the CC event queue
being full
RTT_EVENT_WRED_DROP – the number of RTT events dropped due to the CC event queue
being full
HANDLED_SXW_EVENTS – the number of handled CC events related to SXW

HANDLED_RXT_EVENTS – the number of handled CC events related to RXT

DROP_RTT_PORT0_REQ – the number of RTT requests dropped in total from port 0

DROP_RTT_PORT1_REQ – the number of RTT requests dropped in total from port 1

DROP_RTT_PORT0_RES – the number of RTT responses dropped in total from port 0

DROP_RTT_PORT1_RES – the number of RTT responses dropped in total from port 1

RTT_GEN_PORT0_REQ – the number of RTT requests sent in total from port 0

RTT_GEN_PORT1_REQ – the number of RTT requests sent in total from port 1

RTT_GEN_PORT0_RES – the number of RTT responses sent in total from port 0

RTT_GEN_PORT1_RES – the number of RTT responses sent in total from port 1

PCC_CNP_COUNT – the number of CNP received in total, regardless of whether it is handled or
ignored

Refer to NVIDIA BlueField Modes of Operation for more information on the DPU's modes of
operation.

1155

1.

2.

16.7.4 Execution
To use the PCC Counter:

Initialize all supported hardware counters. Run:

sudo ./pcc_counters.sh set /dev/mst/mt41692_pciconf0

Query all supported hardware counters. Run:

sudo ./pcc_counters.sh query /dev/mst/mt41692_pciconf0

Example output:

sudo ./pcc_counters.sh query /dev/mst/mt41692_pciconf0
-----------------PCC Counters-----------------
Counter: MAD_RTT_PERF_CONT_REQ Value: 000000000028b85b
Counter: MAD_RTT_PERF_CONT_RES Value: 000000000028b85a
Counter: SX_EVENT_WRED_DROP Value: 0000000000000000
Counter: SX_RTT_EVENT_WRED_DROP Value: 0000000000000000
Counter: ACK_EVENT_WRED_DROP Value: 0000000000ccdf4f
Counter: NACK_EVENT_WRED_DROP Value: 0000000000000000
Counter: CNP_EVENT_WRED_DROP Value: 0000000000000000
Counter: RTT_EVENT_WRED_DROP Value: 0000000000000000
Counter: HANDLED_SXW_EVENTS Value: 000000000932543a
Counter: HANDLED_RXT_EVENTS Value: 000000000028b85c
Counter: DROP_RTT_PORT0_REQ Value: 0000000000000000
Counter: DROP_RTT_PORT1_REQ Value: 0000000000000000
Counter: DROP_RTT_PORT0_RES Value: 0000000000000000
Counter: DROP_RTT_PORT1_RES Value: 0000000000000000
Counter: RTT_GEN_PORT0_REQ Value: 0000000000000000
Counter: RTT_GEN_PORT1_REQ Value: 000000000028b85c
Counter: RTT_GEN_PORT0_RES Value: 0000000000000000
Counter: RTT_GEN_PORT1_RES Value: 000000000028b85d
Counter: PCC_CNP_COUNT Value: 0000000000000000

16.8 NVIDIA DOCA Socket Relay
This document describes DOCA Socket Relay architecture, usage, etc.

16.8.1 Introduction
DOCA Socket Relay allows Unix Domain Socket (AF_UNIX family) server applications to be offloaded
to the DPU while communication between the two sides is proxied by DOCA Comch.

Socket relay only supports SOCK_STREAM communication with a limit of 512 AF_UNIX application
clients.

The tool is coupled to the client AF_UNIX server application. That is, a socket relay instance should
be initiated per AF_UNIX server application.

Counters are zeroed after each set command.

The output counters are counted from the time the set command is executed to

the time when the query command is issued.

1156

•
•

•

•
•

•

Socket relay is transparent to the application except for the following TCP flows:

Connection termination must be done by the host side application only
Once a FIN packet (shutdown system call has been made) is sent by the host side application,
data cannot be transferred between the DPU and the host, and the connection must be
closed.

The following details the communication flow between the client and server:

The AF_UNIX client application connects to the socket relay AF_UNIX server in the same way
as in the original flow
The AF_UNIX client application sends SOCK_STREAM packets
The socket relay (host) AF_UNIX server receives the client application packets, and the Comm
Channel client sends them on the channel
The socket relay (DPU) Comm Channel server receives the client application packets and the
AF_UNIX client sends them to the user's AF_UNIX server application

1157

16.8.2 Prerequisites
Windows 10 build 17063 is the minimal Windows version to run DOCA Socket Relay on a Windows
host.

16.8.3 Dependencies
NVIDIA® BlueField®-2 firmware version 24.35.1012 or higher.

16.8.4 Execution
To execute DOCA Socket Relay:

Usage: doca_socket_relay [DOCA Flags] [Program Flags]

DOCA Flags:
 -h, --help Print a help synopsis
 -v, --version Print program version information
 -l, --log-level Set the (numeric) log level for the program <10=DISABLE, 20=CRITICAL, 30=ERROR,
40=WARNING, 50=INFO, 60=DEBUG, 70=TRACE>
 --sdk-log-level Set the SDK (numeric) log level for the program <10=DISABLE, 20=CRITICAL, 30=ERROR,
40=WARNING, 50=INFO, 60=DEBUG, 70=TRACE>
 -j, --json <path> Parse all command flags from an input json file

Program Flags:
 -s, --socket Unix domain socket path, host side will bind to and DPU connect to
 -n, --cc-name Comm Channel service name
 -p, --pci-addr DOCA Comm Channel device PCI address
 -r, --rep-pci DOCA Comm Channel device representor PCI address (needed only on DPU)

For example (DPU side):

doca_socket_relay -s /tmp/sr_server.socket -n cc_channel -p 03:00.0 -r b1:00.0

To run doca_socket_relay using a JSON file:

doca_socket_relay --json [json_file]

For example:

doca_socket_relay --json /tmp/doca_socket_relay.json

16.8.5 Arg Parser DOCA Flags
Refer to the DOCA Arg Parser for more information.

Flag Type Short Flag Long Flag/
JSON Key

Description JSON Content

General flags h help Prints a help synopsis N/A

v version Prints program version
information

N/A

1158

•
•
•
•
•
•
•

Flag Type Short Flag Long Flag/
JSON Key

Description JSON Content

l log-level Set the log level for the
application:

DISABLE=10
CRITICAL=20
ERROR=30
WARNING=40
INFO=50
DEBUG=60
TRACE=70 (requires
compilation with TRACE log
level support)

"log-level": 60

N/A sdk-log-level SDK log events are currently
unsupported for this tool

N/A

j json Parse all command flags from an
input JSON file

N/A

Program flags s socket AF_UNIX (SOCK_STREAM) path.
On the host, this is the path of
the socket relay AF_UNIX server
for the client's application to
connect to. On the DPU, this is
the path of the client AF_UNIX
server application.

"socket": "/tmp/
uds-server.socket"

n cc-name Comm Channel service name

"cc-name":
sr_channel

p pci-addr DOCA Comm Channel device PCIe
address

"pci-addr": b1:00.
1

r rep-pci DOCA Comm Channel device
representor PCIe address

"rep-pci": b1:02.2

This flag is mandatory.

This flag is mandatory.

This flag is mandatory.

This flag is available
and mandatory only on
the DPU.

1159

•

•

1.
2.

3.

4.

17 DOCA Services
This is an overview of the set of services provided by DOCA and their purpose.

17.1 Introduction
DOCA services are DOCA-based products, wrapped in a container for fast and easy deployment on
top of the NVIDIA® BlueField® DPU. DOCA services leverage DPU capabilities to offer telemetry,
time synchronization, networking solutions, and more.

Services containers can be found under the official NGC catalog, labeled under the "DOCA" and
"DPU" NGC labels, as well as the built-in NVIDIA platform option ("DOCA") on the container catalog.

For information on the deployment of the services, refer to the NVIDIA BlueField Container
Deployment Guide.

17.2 Development Lifecycle
DOCA-based containers consist of two main categories:

DOCA Base Images – containerized DOCA environments for both runtime and development.
Used either by developers for their development environment or in the process of
containerizing a DOCA-based solution.
DOCA Services – containerized DOCA-based products

The process of developing and containerizing a DOCA-based product is described in the following
sections.

17.2.1 Development
Before containerizing a product, users must first design and develop it using the same process for a
bare-metal deployment on the BlueField DPU.

This process consists of the steps:

Identifying the requirements for the DOCA-based solution.
Reviewing the feature set offered by the DOCA SDK libraries, as shown in detail in their
respective programming guides.
Starting the development process by following our Developer Guide to make the best use of
our provided tips and tools.
Testing the developed solution.

Once the developed product is mature enough, it is time to start containerizing it.

•
•

The following services are not available in the NGC catalog:
DOCA Management Service
NVIDIA OpenvSwitch Acceleration (OVS in DOCA)

https://catalog.ngc.nvidia.com/

1160

•

•

•

•

•

•

•
•
•

17.2.2 Containerization
In this process, it is recommended to make use of DOCA's provided base-images, as available on
DOCA's NGC page.

Three image flavors are provided:

base-rt – includes the DOCA runtime, using the most basic runtime environment required by
DOCA's SDK
full-rt – builds on the previous image and includes the full list of runtime packages, which
are all user-mode components that can be found under the doca-runtime package
devel – builds on the previous image and adds headers and development tools for
developing and debugging DOCA applications. This image is particularly useful for multi-stage
builds.

All images are preconfigured to use to the DOCA repository of the matching DOCA version. This
means that installing an additional DOCA package as part of a Dockerfile / within the development
container can be done using the following commands:

apt update
apt install <package name>

For DOCA and CUDA environments, there are similar flavors for these images combined with CUDA's
images:

base-rt (DOCA) + base (CUDA)

full-rt (DOCA) + runtime (CUDA)

devel (DOCA) + devel (CUDA)

Once the containerized solution is mature enough, users may start profiling it in preparation for a
production-grade deployment.

17.2.3 Profiling
As mentioned in the NVIDIA BlueField Container Deployment Guide, the current deployment model
of containers on top of the DPU is based on kubelet-standalone. And more specifically, this
Kubernetes-based deployment makes use of YAML files to describe the resources required by the pod
such as:

CPU
RAM
Huge pages

It is recommended to profile your product so as to estimate the resources it requires (under regular
deployments, as well as under stress testing) so that the YAML would contain an accurate "resources"
section. This allows an administrator to better understand what the requirements are for deploying

DOCA provides base images for both the DPU and the Host. For host-related DOCA base
images, please refer to the image tag suffixed with "-host".

https://catalog.ngc.nvidia.com/orgs/nvidia/teams/doca/containers/doca
https://catalog.ngc.nvidia.com/orgs/nvidia/containers/cuda

1161

your service, as well as allow the k8s infrastructure to ensure that the service is not misbehaving
once deployed.

Once done, the containerized DOCA-based product is ready for the final testing rounds, after which
it will be ready for deployment in production environments.

17.3 Services

17.3.1 Container Deployment
The NVIDIA BlueField Container Deployment Guide provides an overview and deployment
configuration of DOCA containers for NVIDIA® BlueField® DPU.

17.3.2 DOCA BlueMan
DOCA BlueMan service runs in the DPU as a standalone web dashboard and consolidates all the basic
information, health, and telemetry counters into a single interface. This friendly, easy-to-use web
dashboard acts as a one-stop shop for all the information needed to monitor the DPU.

17.3.3 DOCA Firefly
DOCA Firefly service provides precision time protocol (PTP) based time syncing services to
the BlueField DPU. PTP is used to synchronize clocks in a network which, when used in conjunction
with hardware support, PTP is capable of sub-microsecond accuracy, which is far better than what is
normally obtainable with network time protocol (NTP).

17.3.4 DOCA Flow Inspector
DOCA Flow Inspector service allows monitoring real-time data and extraction of telemetry
components which can be utilized by various services for security, big data and more.

Specific mirrored packets can be transferred to Flow Inspector for parsing and analyzing. These
packets are forwarded to DTS, which gathers predefined statistics determined by various telemetry
providers.

17.3.5 DOCA HBN
DOCA Host-Based Networking service orchestrates network connectivity of dynamically created VMs/
containers on cloud servers. HBN service is a BGP router that supports EVPN extension to enable
multi-tenant clouds.

At its core, HBN is the Linux networking acceleration driver of the DPU, Netlink-to-DOCA daemon
which seamlessly accelerates Linux networking using DOCA hardware programming APIs.

17.3.6 DOCA Management Service
DOCA Management service (DMS) is a one-stop shop for the user to configure and operate NVIDIA
BlueField Networking Platforms and NVIDIA ConnectX Adapters (NICs). DMS governs all scripts/tools
of NVIDIA with an easy open API created by the OpenConfig community. The user can configure

1162

BlueField or ConnectX for any mode whether locally (ssh) or remotely (grpc). It makes it easy to
migrate and bootstrap any customer for any NVIDIA network device.

17.3.7 OpenvSwitch Acceleration (OVS in DOCA)
OVS-DOCA is a virtual switch service, designed to work with NVIDIA NICs and DPUs to utilize ASAP2

(Accelerated Switching and Packet Processing) technology for data-path acceleration, providing the
most efficient performance and feature set due to its architecture and use of DOCA libraries.

17.3.8 DOCA Telemetry
DOCA Telemetry service (DTS) collects data from built-in providers and from external telemetry
applications. Collected data is stored in binary format locally on the DPU and can be propagated
onwards using Prometheus endpoint pulling, pushing to Fluent Bit, or using other supported
providers. Exporting NetFlow packets collected using the DOCA Telemetry NetFlow API is a great
example of DTS usage.

17.3.9 DOCA UROM
DOCA UROM service provides a framework for offloading significant portions of HPC software stack
directly from the host and to the BlueField networking platform.

17.4 NVIDIA BlueField Container Deployment Guide
This guide provides an overview and deployment configuration of DOCA containers for NVIDIA®
BlueField® DPU.

17.4.1 Introduction
DOCA containers allow for easy deployment of ready-made DOCA environments to the DPU, whether
it is a DOCA service bundled inside a container and ready to be deployed, or a development
environment already containing the desired DOCA version.

Containerized environments enable the users to decouple DOCA programs from the underlying
BlueField software. Each container is pre-built with all needed libraries and configurations to match
the specific DOCA version of the program at hand. One only needs to pick the desired version of the
service and pull the ready-made container of that version from NVIDIA's container catalog.

For questions, comments, and feedback, please contact us at DOCA-
Feedback@exchange.nvidia.com.

mailto:DOCA-Feedback@exchange.nvidia.com

1163

•

•

1.

2.
3.

The different DOCA containers are listed on NGC, NVIDIA's container catalog, and can be found
under both the "DOCA" and "DPU" labels.

17.4.2 Prerequisites
Refer to the NVIDIA DOCA Installation Guide for Linux for details on how to install BlueField
related software
BlueField image version required is 3.9.0 and higher

17.4.3 Container Deployment
Deploying containers on top of the BlueField DPU requires the following setup sequence:

Pull the container .yaml configuration files.

Modify the container's .yaml configuration file.
Deploy the container. The image is automatically pulled from NGC.

Some of the steps must only be performed once, while others are required before the deployment
of each container.

What follows is an example of the overall setup sequence using the DOCA Firefly container as an
example.

Container deployment based on standalone Kubelet, as presented in this guide, is currently
in alpha version and is subject to change in future releases.

https://ngc.nvidia.com/catalog

1164

1.

2.

17.4.3.1 Pull Container YAML Configurations

To pull the latest resource version:

Pull the entire resource as a *.zip file:

wget https://api.ngc.nvidia.com/v2/resources/nvidia/doca/doca_container_configs/versions/2.8.0v1/zip -O
doca_container_configs_2.8.0v1.zip

Unzip the resource:

unzip -o doca_container_configs_2.8.0v1.zip -d doca_container_configs_2.8.0v1

More information about additional versions can be found in the NGC resource page.

17.4.3.2 Container-specific Instructions
Some containers require specific configuration steps for the resources used by the application
running inside the container and modifications for the .yaml configuration file of the container
itself.

Refer to the container-specific instructions listed under the container's relevant page on NGC.

This step pulls the .yaml configurations from NGC. If you have already performed this step
for other DOCA containers you may skip to the next section.

1165

1.

17.4.3.3 Structure of NGC Resource
The DOCA NGC resource downloaded in section "Pull Container YAML Configurations" contains
a configs directory under which a dedicated folder per DOCA version is located. For example,
2.0.2 will include all currently available .yaml configuration files for DOCA 2.0.2 containers.

doca_container_configs_2.0.2v1
├── configs
│ ├── 1.2.0
│ │ ...
│ └── 2.0.2
│ ├── doca_application_recognition.yaml
│ ├── doca_blueman.yaml
│ ├── doca_devel.yaml
│ ├── doca_devel_cuda.yaml
│ ├── doca_firefly.yaml
│ ├── doca_flow_inspector.yaml
│ ├── doca_hbn.yaml
│ ├── doca_ips.yaml
│ ├── doca_snap.yaml
│ ├── doca_telemetry.yaml
│ └── doca_url_filter.yaml

In addition, the resource also contains a scripts directory under which services may choose to
provide additional helper-scripts and configuration files to use with their services.

The folder structure of the scripts directory is as follows:

+ doca_container_configs_2.0.2v1
+-+ configs
| +-- ...
+-+ scripts
 +-+ doca_firefly <== Name of DOCA Service
 +-+ doca_hbn <== Name of DOCA Service
 | +-+ 1.3.0
 | | +-- ... <== Files for the DOCA HBN version "1.3.0"
 | +-+ 1.4.0
 | | +-- ... <== Files for the DOCA HBN version "1.4.0"

A user wishing to deploy an older version of the DOCA service would still have access to the suitable
YAML file (per DOCA release under configs) and scripts (under the service-specific version folder

which resides under scripts).

17.4.3.4 Spawn Container
Once the desired .yaml file is updated, simply copy the configuration file to Kubelet's input folder.
Here is an example using the doca_firefly.yaml , corresponding to the DOCA Firefly service.

cp doca_firefly.yaml /etc/kubelet.d

Kubelet automatically pulls the container image from NGC and spawns a pod executing the
container. In this example, the DOCA Firelfy service starts executing right away and its printouts
would be seen via the container's logs.

17.4.3.5 Review Container Deployment
When deploying a new container, it is recommended to follow this procedure to ensure successful
completion of each step in the deployment:

View currently active pods and their IDs:

1166

2.

3.

4.

5.

sudo crictl pods

When deploying a new container, search for a matching line in the command's output:

POD ID CREATED STATE NAME
NAMESPACE ATTEMPT RUNTIME
06bd84c07537e 4 seconds ago Ready doca-firefly-my-dpu
default 0 (default)

If a matching line fails to appear, it is recommended to view Kubelet's logs to get more
information about the error:

sudo journalctl -u kubelet --since -5m

Once the issue is resolved, proceed to the next steps.

Verify that the container image is successfully downloaded from NGC into the DPU's container
registry (download time may vary based on the size of the container image):

sudo crictl images

Example output:

IMAGE TAG IMAGE ID SIZE
k8s.gcr.io/pause 3.9 829e9de338bd5 268kB
nvcr.io/nvidia/doca/doca_firefly 1.1.0-doca2.0.2 134cb22f34611 87.4MB

View currently active containers and their IDs:

sudo crictl ps

Once again, find a matching line for the deployed container (boot time may vary depending
on the container's image size):

CONTAINER IMAGE CREATED STATE NAME
ATTEMPT POD ID POD
b505a05b7dc23 134cb22f34611 4 minutes ago Running doca-firefly 0
06bd84c07537e doca-firefly-my-dpu

In case of failure, to see a line matching the container, check the list of all recent container
deployments:

sudo crictl ps -a

It is possible that the container encountered an error during boot and exited right away:

CONTAINER IMAGE CREATED STATE NAME
ATTEMPT POD ID POD
de2361ec15b61 134cb22f34611 1 second ago Exited doca-firefly 1
4aea5f5adc91d doca-firefly-my-dpu

It may take up to 20 seconds for the pod to start.

For more troubleshooting information and tips, refer to the matching section in our
Troubleshooting Guide.

1167

6.

1.

2.

3.

During the container's lifetime, and for a short timespan after it exits, once can view the
containers logs as were printed to the standard output:

sudo crictl logs <container-id>

In this case, the user can learn from the log that the wrong configuration was passed to the
container:

$ sudo crictl logs de2361ec15b61
Starting DOCA Firefly - Version 1.1.0
...
Requested the following PTP interface: p10
Failed to find interface "p10". Aborting

17.4.3.6 Stop Container
The recommended way to stop a pod and its containers is as follows:

Delete the .yaml configuration file for Kubelet to stop the pod:

rm /etc/kubelet.d/<file name>.yaml

Stop the pod directly (only if it still shows "Ready"):

sudo crictl stopp <pod-id>

Once the pod stops, it may also be necessary to stop the container itself:

sudo crictl stop <container-id>

17.4.4 Troubleshooting Common Errors
This section provides a list of common errors that may be encountered when spawning a container.
These account for the vast majority of deployment errors and are easy to verify first before trying
to parse the Kubelet journal log.

17.4.4.1 Yaml Syntax

The syntax of the .yaml file is extremely sensitive and minor indentation changes may cause it to
stop working. The file uses spaces (' ') for indentations (two per indent). Using any other number of
spaces causes an undefined behavior.

For additional information and guides on using crictl , refer to the Kubernetes
documentation.

If more troubleshooting is required, refer to the matching section in the Troubleshooting
Guide.

https://kubernetes.io/docs/tasks/debug-application-cluster/crictl/

1168

1.
a.
b.

2.

3.

17.4.4.2 Huge Pages
The container only spawns once all the required system resources are allocated on the DPU and can
be reserved for the container. The most notable resource is huge pages.

Before deploying the container, make sure that:
Huge pages are allocated as required per container.
Both the amount and size of pages match the requirements precisely.

Once huge pages are allocated, it is recommended to restart the container service to apply
the change:

sudo systemctl restart kubelet.service
sudo systemctl restart containerd.service

Once the above operations are completed successfully, the container could be deployed
(YAML can be copied to /etc/kubelet.d).

17.4.5 Advanced Troubleshooting

17.4.5.1 Manual Execution from Within Container - Debugging

Although most containers define the entrypoint.sh script as the container's ENTRYPOINT, this
option is only valid for interaction-less sessions. In some debugging scenarios, it is useful to have
better control of the programs executed within the container via an interactive shell session.
Hence, the .yaml file supports an additional execution option.

Uncommenting (i.e., removing # from) the following 2 lines in the .yaml file causes the container
to boot without spawning the container's entrypoint script.

command: ["sleep"]
args: ["infinity"]

In this execution mode, users can attach a shell to the spawned container:

crictl exec -it <container-id> /bin/bash

Once attached, users get a full shell session enabling them to execute internal programs directly at
the scope of the container.

The deployment described in this section requires an in-depth knowledge of the container's
structure. As this structure might change from version to version, it is only recommended to
use this deployment for debugging, and only after other debugging steps have been
attempted.

1169

•
•

•

17.4.6 Air-gapped Container Deployment
Container deployment on the BlueField DPU can be done in air-gapped networks and does not
require an Internet connection. As explained previously, per DOCA service container, there are 2
required components for successful deployment:

Container image – hosted on NVIDIA's NGC catalog
YAML file for the container

From an infrastructure perspective, one additional module is required:

k8s.gcr.io/pause container image

17.4.6.1 Pulling Container for Offline Deployment
When preparing an air-gapped environment, users must pull the required container images in
advance so they could be imported locally to the target machine:

docker pull <container-image:tag>
docker save <container-image:tag> > <name>.tar

The following example pulls DOCA Firefly 1.1.0-doca2.0.2 :

docker pull nvcr.io/nvidia/doca/doca_firefly:1.1.0-doca2.0.2
docker save nvcr.io/nvidia/doca/doca_firefly:1.1.0-doca2.0.2 > firefly_v1.1.0.tar

17.4.6.2 Importing Container Image

After exporting the image from the container catalog, users must place the created *.tar files on
the target machine on which to deploy them. The import command is as follows:

ctr --namespace k8s.io image import <name>.tar

For example, to import the firefly .tar file pulled in the previous section:

ctr --namespace k8s.io image import firefly_v1.1.0.tar

Examining the status of the operation can be done using the image inspection command:

crictl images

Some of DOCA's container images support multiple architectures, causing the docker pull
command to pull the image according to the architecture of the machine on which it is
invoked. Users may force the operation to pull an Arm image by passing the --platform
flag:

docker pull --platform=linux/arm64 <container-image:tag>

1170

•

•

1.

2.

17.4.6.3 Built-in Infrastructure Support

The DOCA image comes pre-shipped with the k8s.gcr.io/pause image:

/opt/mellanox/doca/services/infrastructure/
├── docker_pause_3_9.tar
└── enable_offline_containers.sh

This image is imported by default during boot as part of the automatic activation of DOCA Telemetry
Service (DTS).

This image can also be pulled and imported manually, using the following instructions:

To export the image:

docker pull k8s.gcr.io/pause:3.9
docker save k8s.gcr.io/pause:3.9 > docker_pause_3_9.tar

To import the image:

ctr --namespace k8s.io image import docker_pause_3_9.tar
crictl images
IMAGE TAG IMAGE ID SIZE
k8s.gcr.io/pause 3.9 829e9de338bd5 268kB

17.4.7 DOCA Services for Host
A subset of the DOCA services is available for host-based deployment as well. This is indicated in
those services' deployment and can also be identified by having container tags on NGC with the *-

host suffix.

In contrast to the managed DPU environment, the deployment of DOCA services on the host is based
on docker. This deployment can be extended further based on the user's own container runtime
solution.

17.4.7.1 Docker Deployment
DOCA services for the host are deployed directly using Docker.

Make sure Docker is installed on your host. Run:

docker version

If it is not installed, visit the official Install Docker Engine webpage for installation
instructions.
Make sure the Docker service is started. Run:

Importing the image independently of DTS can be done using the
enable_offline_container.sh script located under the same directory as the image's

*.tar file.

https://docs.docker.com/engine/install/

1171

3.

a.
b.

c.

4.
a.

b.

sudo systemctl daemon-reload
sudo systemctl start docker

Pull the container image directly from NGC (can also be done using the docker run
command):

Visit the NGC page of the desired container.
Under the "Tags" menu, select the desired tag and click the paste icon so it is copied to
the clipboard.
The docker pull command will be as follows:

sudo docker pull <NGC container tag here>

For example:

sudo docker pull nvcr.io/nvidia/doca/doca_firefly:1.1.0-doca2.0.2-host

Deploy the DOCA service using Docker:
The deployment is performed using the following command:

sudo docker run --privileged --net=host -v <host directory>:<container directory> -e <env
variables> -it <container tag> /entrypoint.sh

The specific deployment command for each DOCA service is listed in their respective
deployment guide.

17.5 NVIDIA DOCA BlueMan Service Guide
This guide provides instructions on how to use the DOCA BlueMan service on top of NVIDIA®
BlueField® DPU.

17.5.1 Introduction
DOCA BlueMan runs in the DPU as a standalone web dashboard and consolidates all the basic
information, health, and telemetry counters into a single interface.

All the information that BlueMan provides is gathered from the DOCA Telemetry Service (DTS),
starting from DTS version 1.11.1-doca1.5.1.

For DOCA services with deployments on both DPU and host, make sure to
select the tag ending with -host .

For more information, refer to Docker's official documentation.

https://docs.docker.com/engine/reference/commandline/run/

1172

•
•

17.5.2 Requirements
BlueField image version 3.9.3.1 or higher
DTS and the DOCA Privileged Executer (DPE) daemon must be up and running

17.5.2.1 Verifying DTS Status
All the information that BlueMan provides is gathered from DTS.

Verify that the state of the DTS pod is ready :

$ crictl pods --name doca-telemetry-service

Verify that the state of the DTS container is running :

$ crictl ps --name doca-telemetry-service

17.5.2.2 Verifying DPE Status
All the information that DTS gathers for BlueMan is from the the DPE daemon.

Verify that the DPE daemon is active :

$ systemctl is-active dpe.service
active

If the daemon is inactive, activate it by starting the dpe.service :

$ systemctl start dpe.service

1173

1.

2.

3.

17.5.3 Service Deployment
For information about the deployment of DOCA containers on top of the BlueField DPU, refer to the
NVIDIA DOCA Container Deployment Guide.

17.5.3.1 DOCA Service on NGC
BlueMan is available on NGC, NVIDIA's container catalog. Service-specific configuration steps and
deployment instructions can be found under the service's container page.

17.5.3.2 Default Deployment – BlueField BSP

BlueMan service is located under /opt/mellanox/doca/services/blueman /.

The following is a list of the files under the BlueMan directory:

doca_blueman_fe_service_<version>-doca<version>_arm64.tar
doca_blueman_conv_service_<version>-doca<version>_arm64.tar
doca_blueman_standalone.yaml
bring_up_doca_blueman_service.sh

17.5.3.2.1 Enabling BlueMan Service

17.5.3.2.1.1 Using Script

Run bring_up_doca_blueman_service.sh :

$ chmod +x /opt/mellanox/doca/services/blueman/bring_up_doca_blueman_service.sh
$ /opt/mellanox/doca/services/blueman/bring_up_doca_blueman_service.sh

17.5.3.2.1.2 Manual Procedure
Import images to crictl images:

$ cd /opt/mellanox/doca/services/blueman/
$ ctr --namespace k8s.io image import doca_blueman_fe_service_<version>-doca<version>_arm64.tar
$ ctr --namespace k8s.io image import doca_blueman_conv_service_<version>-doca<version>_arm64.tar

Verify that the DPE daemon is active:

$ systemctl is-active dpe.service
active

If the daemon is inactive, activate it by starting the dpe.service :

$ systemctl start dpe.service

Copy blueman_standalone.yaml to /etc/kubelet.d/ :

$ cp doca_blueman_standalone.yaml /etc/kubelet.d/

https://catalog.ngc.nvidia.com/orgs/nvidia/teams/doca/containers/doca_blueman_fe

1174

1.

2.

3.

•
•

•
•
•
•

•
•
•
•
•
•
•
•
•
•

17.5.3.3 Verifying Deployment Success
Verify that the DPE daemon is active:

$ systemctl is-active dpe.service

Verify that the state of the DTS container is running :

$ crictl ps --name doca-telemetry-service

Verify that the state of the BlueMan service container is running :

$ crictl ps --name doca-blueman-fe
$ crictl ps --name doca-blueman-conv

Configuration

The configuration of the BlueMan back end is located under /opt/mellanox/doca/services/

telemetry/config/blueman_config.ini . Users can interact with the blueman_config.ini file
which contains the default range values of the Pass, Warning, and Failed categories which are used
in the health page. Changing these values gets reflected in the BlueMan webpage within 60 seconds.

Example of blueman_config.ini :

;Health Cpu usages Pass, warning, Failed
[Health:CPU_Usages:Pass]
range = 0,80
[Health:CPU_Usages:Warning]
range = 80,90
[Health:CPU_Usages:Failed]
range = 90,100

17.5.4 Collected Data
Info

General info – OS name, kernel, part number, serial number, DOCA version, driver,
board ID, etc.
Installed packages – list of all installed packages on the DPU including their version
CPU info – vendor, cores, model, etc.
FW info – all the mlxconfig parameters with default/current/next boot data
DPU operation mode

Health
System service
Kernel modules
Dmesg
DOCA services
Port status of the PF and OOB
Core usage and processes running on each core
Memory usage
Disk usage
Temperature

1175

•

•

•

a.

b.

•

Telemetry – all telemetry counters that come from DTS according to the enabled providers
displayed on tables

Users have the ability to build graphs of specific counters

17.5.5 Connecting to BlueMan Web Interface
To log into BlueMan, enter the IP address of the DPU's OOB interface (http://<DPU_OOB_IP>) to a
web browser located in the same network as the DPU.

The login credentials to use are the same pair used for the SSH connection to the DPU.

17.5.6 Troubleshooting
For general troubleshooting, refer to the NVIDIA DOCA Troubleshooting Guide.

For container-related troubleshooting, refer to the "Troubleshooting" section in the NVIDIA DOCA
Container Deployment Guide.

The following are additional troubleshooting tips for DOCA BlueMan:

The following error message in the login page signifies a failure to connect to the DPE
daemon: "The service is currently unavailable. Please check server up and running."

Restart the DPE daemon:

$ systemctl restart dpe.service

Verify that DTS is up and running by following the instructions in section "Verifying DTS
Status".

If the message "Invalid Credentials" appears in the login page, verify that the username and
password are the same ones used to SSH to the DPU.

1176

•

•

If all of the above is configured as expected and there is still some failure to log in, it is
recommended to check if there are any firewall rules that block the connection.
For other issues, check the /var/log/syslog and /var/log/doca/telemetry/

blueman_service.log log file.

17.6 NVIDIA DOCA Firefly Service Guide
This guide provides instructions on how to use the DOCA Firefly service container on top of NVIDIA®
BlueField® DPU.

17.6.1 Introduction
DOCA Firefly Service provides precision time protocol (PTP) based time syncing services to the
BlueField DPU.

PTP is a protocol used to synchronize clocks in a network. When used in conjunction with hardware
support, PTP is capable of sub-microsecond accuracy, which is far better than is what is normally
obtainable with network time protocol (NTP). PTP support is divided between the kernel and user
space. The ptp4l program implements the PTP boundary clock and ordinary clock. With hardware
time stamping, it is used to synchronize the PTP hardware clock to the master clock.

1177

•
•
•

17.6.2 Requirements
Some of the features provided by Firefly require specific BlueField DPU hardware capabilities:

PTP – Supported by all BlueField DPUs
PPS – Requires BlueField DPU with PPS capabilities
SyncE - Requires converged card BlueField DPUs

Failure to run PPS due to missing hardware support will be noted in the service's output. However,
the service will continue to run the timing services it can provide on the provided hardware.

17.6.2.1 Firmware Version
Firmware version must be 24.34.1002 or higher.

17.6.2.2 BlueField BSP Version
Supported BlueField image versions are 3.9.0 and higher.

1178

1.

2.

3.
4.

1.

2.

3.

•

•

17.6.2.3 Embedded Mode

17.6.2.3.1 Configuring Firmware Settings on DPU for Embedded Mode
Set the DPU to embedded mode (default mode):

sudo mlxconfig -y -d 03:00.0 s INTERNAL_CPU_MODEL=1

Enable the real time clock (RTC):

sudo mlxconfig -d 03:00.0 set REAL_TIME_CLOCK_ENABLE=1

Graceful shutdown and power cycle the DPU to apply the configuration.
You may check the DPU mode using the following command:

sudo mlxconfig -d 03:00.0 q | grep INTERNAL_CPU_MODEL
Example output
 INTERNAL_CPU_MODEL EMBEDDED_CPU(1)

17.6.2.3.2 Ensuring OVS Hardware Offload

DOCA Firefly requires that hardware offload is activated in Open vSwitch (OVS). This is enabled by
default as part of the BFB image installed on the DPU.

To verify the hardware offload configuration in OVS:

sudo ovs-vsctl get Open_vSwitch . other_config | grep hw-offload
Example output
 {hw-offload="true"}

If inactive:

Activate hardware offloading by running:

sudo ovs-vsctl set Open_vSwitch . other_config:hw-offload=true;

Restart the OVS service:

sudo /etc/init.d/openvswitch-switch restart

Graceful shutdown and power cycle the DPU to apply the configuration.

17.6.2.3.3 Helper Scripts

Firefly's deployment contains a script to help with the configuration steps required for the network
interface in embedded mode:

scripts/doca_firefly/<firefly-version>/prepare_for_embedded_mode.sh

scripts/doca_firefly/<firefly-version>/set_new_sf.sh

The latest DOCA Firefly version is 1.4.0 .

1179

•

•

•

•

•

•

•
•
•

Both scripts are included as part of DOCA's container resource which can be downloaded according
to the instructions in the NVIDIA DOCA Container Deployment Guide. For more information about the
structure of the DOCA container resource, refer to section "Structure of NGC Resource" in the
deployment guide.

17.6.2.3.3.1 prepare_for_embedded_mode.sh

This script automates all the steps mentioned in section "Setting Up Network Interfaces for
Embedded Mode" and configures a freshly installed BFB image to the settings required by DOCA
Firefly.

Notes:

The script deletes all previous OVS settings and creates a single OVS bridge that matches the
definitions in section "Setting Up Network Interfaces for Embedded Mode"
The script should only be run once when connecting to the DPU for the first time or after a
power cycle
The only manual step required after using this script is configuring the IP address for the
created network interface (step 5 in section "Setting Up Network Interfaces for Embedded
Mode")
The script automatically uses port 0 (p0). Configurations for port 1 should be done manually
based on the commands listed in sections "set_new_sf.sh" and "Setting Up Network Interfaces
for DPU Mode".

Script arguments:

SF number (checks if already exists)

Examples:

Prepare OVS settings using an SF indexed 4:

chmod +x ./*.sh
./prepare_for_embedded_mode.sh 4

The script makes use of set_new_sf.sh as a helper script.

17.6.2.3.3.2 set_new_sf.sh

Creates a new trusted SF and marks it as "trusted".

Script arguments:

PCIe address
SF number (checks if already exists)
MAC address (if absent, a random address is generated)

Due to technical limitations of the NGC resource, both scripts are provided without execute
(+x) permissions. This could be resolved by running the following command:

chmod +x scripts/doca_firefly/<firefly-version>/*.sh

1180

•

•

•

1.

2.

3.

4.

5.

6.

Examples:

Create SF with number "4" over port 0 of the DPU:

./set_new_sf.sh 0000:03:00.0 4

Create SF with number "5" over port 0 of the DPU and a specific MAC address:

./set_new_sf.sh 0000:03:00.0 5 aa:bb:cc:dd:ee:ff

Create SF with number "4" over port 1 of the DPU:

./set_new_sf.sh 0000:03:00.1 4

The first two examples should work out of the box for a BlueField-2 device and create SF4 and SF5
respectively.

17.6.2.3.4 Setting Up Network Interfaces for DPU Mode
Create a trusted SF to be used by the service according to the Scalable Function Setup Guide.

Create the required OVS setting as is shown in the architecture diagram:

$ sudo ovs-vsctl add-br uplink
$ sudo ovs-vsctl add-port uplink p0
$ sudo ovs-vsctl add-port uplink en3f0pf0sf4
This port is needed to ensure we have traffic host<->network as well
$ sudo ovs-vsctl add-port uplink pf0hpf

 Verify the OVS settings:

sudo ovs-vsctl show
 Bridge uplink
 Port pf0hpf
 Interface pf0hpf
 Port en3f0pf0sf4
 Interface en3f0pf0sf4
 Port p0
 Interface p0
 Port uplink
 Interface uplink
 type: internal

Enable TX timestamping on the SF interface (not the representor):

tx port timestamp offloading
sudo ethtool --set-priv-flags enp3s0f0s4 tx_port_ts on

Enable the interface and set an IP address for it:

configure ip for the interface:
sudo ifconfig enp3s0f0s4 <ip-addr> up

Configure OVS to support TX timestamping over this SF and multicast traffic in general:

Multicast-related definitions

The following instructions assume that the SF has been created using index 4.

1181

1.

2.

3.
4.

1.

2.

3.

$ sudo ovs-vsctl set Bridge uplink mcast_snooping_enable=true
$ sudo ovs-vsctl set Bridge uplink other_config:mcast-snooping-disable-flood-unregistered=true
$ sudo ovs-vsctl set Port p0 other_config:mcast-snooping-flood=true
$ sudo ovs-vsctl set Port p0 other_config:mcast-snooping-flood-reports=true
PTP-related definitions
$ sudo ovs-ofctl add-flow uplink in_port=en3f0pf0sf4,udp,tp_src=319,actions=output:p0
$ sudo ovs-ofctl add-flow uplink in_port=p0,udp,tp_src=319,actions=output:en3f0pf0sf4
$ sudo ovs-ofctl add-flow uplink in_port=en3f0pf0sf4,udp,tp_src=320,actions=output:p0
$ sudo ovs-ofctl add-flow uplink in_port=p0,udp,tp_src=320,actions=output:en3f0pf0sf4

17.6.2.4 Separated Mode

17.6.2.4.1 Configuring Firmware Settings on DPU for Separated Mode
Set the BlueField mode of operation to "Separated":

sudo mlxconfig -y -d 03:00.0 s INTERNAL_CPU_MODEL=0

Enable RTC:

sudo mlxconfig -d 03:00.0 set REAL_TIME_CLOCK_ENABLE=1

Graceful shutdown and power cycle the DPU to apply the configuration.
You may check the BlueField's operation mode using the following command:

sudo mlxconfig -d 03:00.0 q | grep INTERNAL_CPU_MODEL
Example output
 INTERNAL_CPU_MODEL SEPARATED_HOST(0)

17.6.2.4.2 Setting Up Network Interfaces for Separated Mode
Make sure that that p0 is not connected to an OVS bridge:

sudo ovs-vsctl show

Enable TX timestamping on the p0 interface:

TX port timestamp offloading (assuming PTP interface is p0)
sudo ethtool --set-priv-flags p0 tx_port_ts on

Enable the interface and set an IP address for it:

Configure IP for the interface
sudo ifconfig p0 <ip-addr> up

17.6.2.5 Host-based Deployment
Host-based deployment requires the same configuration described under section "Separated Mode".

If your OVS bridge uses a name other than uplink , make sure that the used name is

reflected in the ovs-vsctl and ovs-ofctl commands. For instance:

$ sudo ovs-vsctl set Bridge <bridge-name> mcast_snooping_enable=true

1182

•

•

17.6.3 Service Deployment

17.6.3.1 DPU Deployment
For information about the deployment of DOCA containers on top of the BlueField DPU, refer
to NVIDIA DOCA Container Deployment Guide.

Service-specific configuration steps and deployment instructions can be found under the
service's container page.

17.6.3.2 Host Deployment
DOCA Firefly has a version adapted for host-based deployments. For more information about the
deployment of DOCA containers on top of a host, refer to the NVIDIA BlueField DPU Container
Deployment Guide.

The following is the docker command for deploying DOCA Firefly on the host:

sudo docker run --privileged --net=host -v /var/log/doca/firefly:/var/log/firefly -v /etc/firefly:/etc/firefly -e
PTP_INTERFACE='eth2' -it nvcr.io/nvidia/doca/doca_firefly:1.4.0-doca2.7.0-host /entrypoint.sh

Where:

Additional YAML configs may be passed as environment variables as additional -e key-value

pairs as done with PTP_INTERFACE above
The exact container tag should be the desired tag as chosen on DOCA Firefly's NGC page

17.6.4 Configuration
All modules within the service have configuration files that allow customizing various settings, both
general and PTP-related.

17.6.4.1 Built-In Config File

Each profile has its own base PTP configuration file for ptp4l . For example, the Media profile PTP

configuration file is ptp4l-media.conf .

The built-in PTP configuration files can be found in section "PTP Profile Default Config Files". For
ease-of-use, those files are provided as part of DOCA's container resource as downloaded from NGC
and are placed under Firefly's configs directory (scripts/doca_firefly/<firefly version>/

configs).

DOCA Firefly can also be deployed on DPUs not connected to the Internet. For instructions,
refer to the relevant section in the NVIDIA DOCA Container Deployment Guide.

https://catalog.ngc.nvidia.com/orgs/nvidia/teams/doca/containers/doca_firefly
https://catalog.ngc.nvidia.com/orgs/nvidia/teams/doca/containers/doca_firefly

1183

•

•

•

17.6.4.2 Custom Config File
Instead of using a profile's base config file, users can create a file of their own, for each of the
modules.

To set a custom config file, users should locate their config file in the directory /etc/firefly and
set the config file name in DOCA Firefly's YAML file.

For example, to set a custom linuxptp config file, the user can set the parameter

PTP_CONFIG_FILE in the YAML file:

- name: PTP_CONFIG_FILE
 value: my_custom_ptp.conf

In this example, my_custom_ptp.conf should be placed at /etc/firefly/my_custom_ptp.conf .

17.6.4.3 Overriding Specific Config File Parameters
Instead of replacing the entire config file, users may opt to override specific parameters. This can
be done using the following variable syntax in the YAML file:
CONF_<TYPE>_<SECTION>_<PARAMETER_NAME> .

TYPE – either PTP , MONITOR , PHC2SYS , SYNCE, or SERVO

SECTION – the section in the config file that the parameter should be placed in

PARAMETER_NAME – the config parameter name as should be placed in the config file

When using a built-in configuration file, Firefly uses the files as stored within the container
itself in the /etc/linuxptp directory. The configuration files included in the NGC resource
are only provided for ease of access. Modifying them does not impact the configuration
used in practice by the container. Instead, updates to the configuration should be done as
described in the following sections.

A config file must not define values for the UDS-related ports (/var/run/ptp4l and /var/

run/ptp4lro), as those will impact internal container behavior. Such settings will prompt a
warning and will be ignored when preparing the finalized configuration (See more in the
next sections).

If the specified section does not already exist in the config file, a new section is
created unless it refers to a PTP network interface that has not been included in
the PTP_INTERFACE YAML field.

1184

•
•

•

•
•
•

•

•

For example, the following variable in the YAML file definition changes the value of the parameter
priority1 under section global in the PTP config file to 64 .

- name: CONF_PTP_global_priority1
 value: "64"

17.6.4.4 Ensuring and Debugging Correctness of Config Files
The previous sections describe 2 layers for the configuration file definitions:

Basic configuration file – either a built-in config file or a custom config file
Adding/overriding values to/from the YAML file

In practice, there are slightly more layers in place, and the precedence is as follows (presented in
increasing order):

Default configuration values of the PTP program (ptp4l for instance) – holds values of all
available configuration options
Your chosen configuration file – contains a subset of options
Definitions from the YAML file – narrower subset
Firefly mandatory values

When combining the supplied configuration file with the definitions from the YAML file, Firefly goes
over those definitions and checks them against a predefined set of configuration options:

Warning only – warns if a certain value leads to known issues in a supported deployment
scenario
Override – container-internal definitions that should not be set by the user and will be
overridden by Firefly

Suitable log messages are provided in either case:

Example for a warning
2023-01-31 11:55:13 - Firefly - Config - INFO - Missing explicit definition "fault_reset_interval", verifying
default value instead: "4"
2023-01-31 11:55:13 - Firefly - Config - WARNING - Value "4" for definition "fault_reset_interval" will be invalid
in Embedded Mode, expected a value lesser or equal to "1"
2023-01-31 11:55:13 - Firefly - Config - WARNING - Continuing with invalid value
Example for an override
2023-01-31 11:21:00 - Firefly - Config - WARNING - Invalid value "/var/run/ptp4l2" for definition "uds_address",
expected "/var/run/ptp4l"
2023-01-31 11:21:00 - Firefly - Config - INFO - Setting definition "uds_address" value to the following: "/var/
run/ptp4l"

If the parameter name already exists in the config file, then the value is changed
according to the value provided in the .yaml file. If the parameter name does not
already exist in the config file, then it is added.

Configuring unicast_master_table through the YAML file is not supported due to the
structure of the table (i.e., multiple entries sharing the same key).

1185

•

•
•

•

•
•

•

At the end of this process, an updated configuration file is generated by Firefly to be used later by
the various time providers. To avoid accidental modification of a user-supplied configuration file or
permission issues, the finalized file is generated within the container under the /tmp directory.

For instance, if using a custom configuration file named my_custom_ptp.conf under the /etc/

firefly directory on the DPU, the updated file will reside within the container at the following

path: /tmp/my_custom_ptp.conf .

For troubleshooting possible issues with the configuration file, one can do one of the following:

Connect to the container directly as is explained in the debugging finalized configuration file
bullet under "Troubleshooting".
Map the container's /tmp directory to the DPU using the built-in support in the YAML file:

Before the change:

 # Uncomment when debugging the finalized configuration files used - Part #1
 #- name: debug-firefly-volume
 # hostPath:
 # path: /tmp/firefly
 # type: DirectoryOrCreate
 containers:
 ...
 volumeMounts:
 - name: logs-firefly-volume
 mountPath: /var/log/firefly
 - name: conf-firefly-volume
 mountPath: /etc/firefly
 # Uncomment when debugging the finalized configuration files used - Part #2
 #- name: debug-firefly-volume
 # mountPath: /tmp

After the change:

 # Uncomment when debugging the finalized configuration files used - Part #1
 - name: debug-firefly-volume
 hostPath:
 path: /tmp/firefly
 type: DirectoryOrCreate
 containers:
 ...
 volumeMounts:
 - name: logs-firefly-volume
 mountPath: /var/log/firefly
 - name: conf-firefly-volume
 mountPath: /etc/firefly
 # Uncomment when debugging the finalized configuration files used - Part #2
 - name: debug-firefly-volume
 mountPath: /tmp

17.6.5 Description

17.6.5.1 Providers
DOCA Firefly Service uses the following third-party providers to provide time syncing services:

Linuxptp - Version v4.2
PTP – PTP service, provided by the PTP4L program

PHC2SYS – OS time calibration, provided by the PHC2SYS program

The finalized configuration file keeps the sections and config options in the same order as
they appear in the original file, yet the file is stripped from spare new lines or comment
lines. This should be taken into considerations when directly accessing it during a debugging
session.

1186

•
•

•
•

•
•

•
•

•

•

Testptp
PPS - PPS settings service

In addition, DOCA Firefly Service also makes use of the following NVIDIA modules:

SyncE
SYNCE – Synchronous Ethernet Deamon (synced)

Firefly
MONITOR - Firefly PTP Monitor

Firefly
SERVO - Firefly PTP Servo

Each of the providers can be enabled, disabled, or set to use the setting defined by the
configuration profile:

YAML setting – <provider name>_STATE

Supported values – enable , disable , defined_by_profile

An example YAML setting for specifically disabling the phc2sys provider is the following:

- name: PHC2SYS_STATE
 value: "disable"

17.6.5.2 Profiles
DOCA Firefly Service includes profiles which represent common use cases for the Firefly service that
provide a different default configuration per profile:

Default Media Telco (L2) Custom

Purpose Any user that
requires PTP

Media productions Telco networks Custom configuration for
a dedicated user scenario

PTP Enabled Enabled Enabled No default. Enable/
disable should be set by
the user.

PTP profile PTP default profile SMPTE 2059-2 G.8275.1 Set by the user

PTP Client/Server
1

Both Client-only Both Set by the user

PHC2SYS Enabled Enabled Enabled No default. Enable/
disable should be set by
the user.

For the default profile settings per provider, refer to the table under section "Profiles".

The defined_by_profile setting is only available for well-defined profiles. As such, it

cannot be used when the custom profile is selected. For more information about the
profile settings, refer to the table under section "Profiles".

1187

Default Media Telco (L2) Custom

PPS (in/out) Enabled Enabled Enabled No default. Enable/
disable should be set by
the user.

PTP Monitor Disabled Disabled Disabled No default. Enable/
disable should be set by
the user.

SyncE Disabled Disabled Enabled No default. Enable/
disable should be set by
the user.

Servo Disabled Disabled Disabled No default. Enable/
disable should be set by
the user.

1. Client-only is only relevant to a single PTP interface. If more than one PTP interface is
provided in the YAML file, both modes are enabled.

17.6.5.3 Outputs

17.6.5.3.1 Container Output

While running, the full output of the DOCA Firefly Service container can be viewed using the
following command:

sudo crictl logs <CONTAINER-ID>

Where CONTANIER-ID can be retrieved using the following command:

sudo crictl ps

For example, in the following output, the container ID is 8f368b98d025b .

$ sudo crictl ps
CONTAINER IMAGE CREATED STATE NAME ATTEMPT
 POD ID POD
8f368b98d025b 289809f312b4c 2 seconds ago Running doca-firefly 0
 5af59511b4be4 doca-firefly-some-computer-name

The output of the container depends on the services supported by the hardware and enabled by
configuration and the selected profile. However, note that any of the configurations runs PTP, so
when DOCA FireFly is running successfully expect to see the line " Running ptp4l ".

The following is an example of the expected container output when running the default profile on a
DPU that supports PPS:

2023-09-07 14:04:23 - Firefly - Init - INFO - Starting DOCA Firefly - Version 1.4.0
2023-09-07 14:04:23 - Firefly - Init - INFO - Selected features:
2023-09-07 14:04:23 - Firefly - Init - INFO - [+] PTP - Enabled - ptp4l will be used
2023-09-07 14:04:23 - Firefly - Init - INFO - [+] MONITOR - Enabled - PTP Monitor will be used
2023-09-07 14:04:23 - Firefly - Init - INFO - [+] PHC2SYS - Enabled - phc2sys will be used
2023-09-07 14:04:23 - Firefly - Init - INFO - [-] SyncE - Disabled
2023-09-07 14:04:23 - Firefly - Init - INFO - [-] SERVO - Disabled
2023-09-07 14:04:23 - Firefly - Init - INFO - [+] PPS - Enabled - testptp will be used (if supported by
hardware)

1188

2023-09-07 14:04:23 - Firefly - Init - INFO - Going to analyze the configuration files
2023-09-07 14:04:23 - Firefly - Init - INFO - Requested the following PTP interface: p0
2023-09-07 14:04:23 - Firefly
2023-09-07 14:04:23 - Firefly - Init - INFO - Starting PPS configuration
2023-09-07 14:04:23 - Firefly - Init - INFO - [+] PPS is supported by hardware
2023-09-07 14:04:23 - Firefly - Init - INFO - set pin function okay
2023-09-07 14:04:23 - Firefly - Init - INFO - [+] PPS in - Activated
2023-09-07 14:04:23 - Firefly - Init - INFO - set pin function okay
2023-09-07 14:04:23 - Firefly - Init - INFO - [+] PPS out - Activated
2023-09-07 14:04:23 - Firefly - Init - INFO - name mlx5_pps0 index 0 func 1 chan 0
2023-09-07 14:04:23 - Firefly - Init - INFO - name mlx5_pps1 index 1 func 2 chan 0
2023-09-07 14:04:23 - Firefly - Init - INFO - periodic output request okay
2023-09-07 14:04:23 - Firefly
2023-09-07 14:04:23 - Firefly - Init - INFO - Running ptp4l
2023-09-07 14:04:23 - Firefly - Init - INFO - Running Firefly PTP Monitor
2023-09-07 14:04:23 - Firefly - Init - INFO - Running phc2sys

The following is an example of the expected container output when running the default profile on a
DPU that does not support PPS:

2023-09-07 14:04:23 - Firefly - Init - INFO - Starting DOCA Firefly - Version 1.3.0
2023-09-07 14:04:23 - Firefly - Init - INFO - Selected features:
2023-09-07 14:04:23 - Firefly - Init - INFO - [+] PTP - Enabled - ptp4l will be used
2023-09-07 14:04:23 - Firefly - Init - INFO - [+] MONITOR - Enabled - PTP Monitor will be used
2023-09-07 14:04:23 - Firefly - Init - INFO - [+] PHC2SYS - Enabled - phc2sys will be used
2023-09-07 14:04:23 - Firefly - Init - INFO - [-] SyncE - Disabled
2023-09-07 14:04:23 - Firefly - Init - INFO - [-] SERVO - Disabled
2023-09-07 14:04:23 - Firefly - Init - INFO - [+] PPS - Enabled - testptp will be used (if supported by
hardware)
2023-09-07 14:04:23 - Firefly - Init - INFO - Going to analyze the configuration files
2023-09-07 14:04:23 - Firefly - Init - INFO - Requested the following PTP interface: p0
2023-09-07 14:04:23 - Firefly
2023-09-07 14:04:23 - Firefly - Init - INFO - Starting PPS configuration
2023-09-07 14:04:23 - Firefly - Init - WARNING - [-] PPS capability is missing, seems that the card doesn't
support PPS
2023-09-07 14:04:23 - Firefly - Init - INFO - capabilities:
2023-09-07 14:04:23 - Firefly - Init - INFO - 50000000 maximum frequency adjustment (ppb)
2023-09-07 14:04:23 - Firefly - Init - INFO - 0 programmable alarms
2023-09-07 14:04:23 - Firefly - Init - INFO - 0 external time stamp channels
2023-09-07 14:04:23 - Firefly - Init - INFO - 0 programmable periodic signals
2023-09-07 14:04:23 - Firefly - Init - INFO - 0 pulse per second
2023-09-07 14:04:23 - Firefly - Init - INFO - 0 programmable pins
2023-09-07 14:04:23 - Firefly - Init - INFO - 0 cross timestamping
2023-09-07 14:04:23 - Firefly
2023-09-07 14:04:23 - Firefly - Init - INFO - Running ptp4l
2023-09-07 14:04:23 - Firefly - Init - INFO - Running Firefly PTP Monitor
2023-09-07 14:04:23 - Firefly - Init - INFO - Running phc2sys

17.6.5.3.2 Firefly Output

On top of the container's log, Firefly defines an additional, non-volatile log that can be found in /

var/log/doca/firefly/firefly.log .

This file contains the same output described in section "Container Output" and is useful for
debugging deployment errors should the container stop its execution.

17.6.5.3.3 ptp4l Output

The ptp4l output can be found in the file /var/log/doca/firefly/ptp4l.log .

Example output:

ptp4l[192710.691]: rms 1 max 1 freq -114506 +/- 0 delay -15 +/- 0
ptp4l[192712.692]: rms 6 max 9 freq -114501 +/- 3 delay -15 +/- 0
ptp4l[192714.692]: rms 7 max 9 freq -114511 +/- 3 delay -13 +/- 0
ptp4l[192716.692]: rms 5 max 7 freq -114502 +/- 1 delay -13 +/- 0
ptp4l[192718.693]: rms 4 max 6 freq -114509 +/- 2 delay -13 +/- 0

To avoid disk space issues, the /var/log/doca/firefly/firefly.log file only contains
the log from Firefly's initialization, and not the logs of the rest of the modules (ptp4l,
phc2sys, etc.) or that of the PTP monitor. The latter is still included in the container log
and can be inspected using the command sudo crictl logs <CONTAINER-ID> .

1189

ptp4l[192720.693]: rms 3 max 3 freq -114506 +/- 2 delay -13 +/- 0
ptp4l[192722.694]: rms 4 max 6 freq -114510 +/- 3 delay -12 +/- 0
ptp4l[192724.694]: rms 5 max 7 freq -114510 +/- 5 delay -12 +/- 1
ptp4l[192726.695]: rms 4 max 5 freq -114508 +/- 3 delay -11 +/- 0
ptp4l[192728.695]: rms 6 max 9 freq -114504 +/- 4 delay -11 +/- 0

17.6.5.3.4 phc2sys Output

The phc2sys output can be found in the file /var/log/doca/firefly/phc2sys.log .

Example output:

phc2sys[1873325.928]: reconfiguring after port state change
phc2sys[1873325.928]: selecting CLOCK_REALTIME for synchronization
phc2sys[1873325.928]: selecting enp3s0f0s4 as the master clock
phc2sys[1873325.928]: CLOCK_REALTIME phc offset 1378 s2 freq -165051 delay 255
phc2sys[1873326.928]: CLOCK_REALTIME phc offset 1378 s2 freq -163673 delay 240
phc2sys[1873327.928]: port 62b785.fffe.0c9369-1 changed state
phc2sys[1873327.929]: CLOCK_REALTIME phc offset 14 s2 freq -164624 delay 255
phc2sys[1873328.936]: CLOCK_REALTIME phc offset 89 s2 freq -164545 delay 240

17.6.5.3.5 SyncE Output

The SyncE output can be found in the file /var/log/doca/firefly/synced.log .

Example output:

INFO [05/09/2023 05:11:01.493414]: SyncE Group #0: is in TRACKING holdover acquired mode on p0, frequency_diff:
0 (ppb)
INFO [05/09/2023 05:11:02.502963]: SyncE Group #0: is in TRACKING holdover acquired mode on p0, frequency_diff:
-113 (ppb)
INFO [05/09/2023 05:11:03.512491]: SyncE Group #0: is in TRACKING holdover acquired mode on p0, frequency_diff:
37 (ppb)

17.6.5.3.6 Firefly Servo Output

The Firefly servo output can be found in the file /var/log/doca/firefly/servo.log .

Example output:

2024-03-18 09:04:22 - Firefly - SERVO - INFO - offset +8 +/- 2 freq -5.66 +/- 0.41 delay -48 +/- 2
2024-03-18 09:04:24 - Firefly - SERVO - INFO - offset +4 +/- 2 freq -6.35 +/- 0.36 delay -47 +/- 2
2024-03-18 09:04:26 - Firefly - SERVO - INFO - offset +2 +/- 2 freq -6.75 +/- 0.41 delay -47 +/- 1
2024-03-18 09:04:28 - Firefly - SERVO - INFO - offset +0 +/- 2 freq -6.97 +/- 0.35 delay -47 +/- 1
2024-03-18 09:04:30 - Firefly - SERVO - INFO - offset +0 +/- 3 freq -7.30 +/- 0.60 delay -47 +/- 1
2024-03-18 09:04:33 - Firefly - SERVO - INFO - offset +1 +/- 2 freq -6.93 +/- 0.41 delay -47 +/- 1

The verbosity of the output from the SYNCE module is limited by default. To set the output

to be more verbose, set the verbose option to 1 (True).

Before:

Example #4 - Overwrite the value of verbose in the [global] section of the SyncE configuration file.
#- name: CONF_SYNCE_global_verbose
value: "1"

After:

Example #4 - Overwrite the value of verbose in the [global] section of the SyncE configuration file.
- name: CONF_SYNCE_global_verbose
 value: "1"

1190

•
•

•
•

•

1.

2024-03-18 09:04:35 - Firefly - SERVO - INFO - offset +1 +/- 2 freq -6.81 +/- 0.48 delay -47 +/- 1
2024-03-18 09:04:37 - Firefly - SERVO - INFO - offset +2 +/- 2 freq -6.76 +/- 0.52 delay -48 +/- 2

17.6.5.4 Tx Timestamping Support on DPU Mode
When the BlueField is operating in DPU mode, additional OVS configuration is required as mentioned
in step 6 of section "Setting Up Network Interfaces for DPU Mode". This configuration achieves the
following:

Proper support for incoming/outgoing multicast traffic
Enabling Tx timestamping

Firefly only gets the packet timestamping for outgoing PTP messages (Tx timestamping) when they
are offloaded to the hardware. As such, when working with OVS, users must ensure this traffic flow
is properly recognized and offloaded. If offloading does not take place, Firefly gets stuck in a fault
loop while waiting to receive the Tx timestamp events:

ptp4l[2912.797]: timed out while polling for tx timestamp
ptp4l[2912.797]: increasing tx_timestamp_timeout may correct this issue, but it is likely caused by a driver bug
ptp4l[2912.797]: port 1 (enp3s0f0s4): send sync failed
ptp4l[2923.528]: timed out while polling for tx timestamp
ptp4l[2923.528]: increasing tx_timestamp_timeout may correct this issue, but it is likely caused by a driver bug
ptp4l[2923.528]: port 1 (enp3s0f0s4): send sync failed

The solution to this issue:

Activation of hardware offloading in OVS
OpenFlow rules that ensure OVS properly recognizes the traffic and offloads it to the
hardware
Modification to the fault_reset_interval configuration value to ensure timely recovery
from the fault induced by the first packet being always treated by software (until the rule is
offloaded to hardware). As such, Firefly requires that the fault_reset_interval value is 1
or less. Proper warnings are raised if an improper value is detected. The value is updated
accordingly in the built-in profiles.

When these configurations are in order, Firefly includes a report for a single fault during boot, but
recovers from it and continues as usual:

ptp4l[3715.687]: timed out while polling for tx timestamp
ptp4l[3715.687]: increasing tx_timestamp_timeout may correct this issue, but it is likely caused by a driver bug
ptp4l[3715.687]: port 1 (enp3s0f0s4): send delay request failed

17.6.5.4.1 Troubleshooting Tx Timestamp Issues

As explained earlier, there are several layers required to ensure Tx timestamping works as necessary
by Firefly. The following is a list of commands to debug the state of each layer:

Inspect the OpenFlow rules:

$ sudo ovs-ofctl dump-flows uplink
cookie=0x0, duration=4075.576s, table=0, n_packets=2437, n_bytes=209582, udp,in_port=en3f0pf0sf4,tp_src=319
actions=output:p0
cookie=0x0, duration=4075.549s, table=0, n_packets=1216, n_bytes=109420, udp,in_port=p0,tp_src=319
actions=output:en3f0pf0sf4
cookie=0x0, duration=4075.521s, table=0, n_packets=13, n_bytes=1242, udp,in_port=en3f0pf0sf4,tp_src=320
actions=output:p0
cookie=0x0, duration=4074.604s, table=0, n_packets=3034, n_bytes=297376, udp,in_port=p0,tp_src=320
actions=output:en3f0pf0sf4
cookie=0x0, duration=4075.856s, table=0, n_packets=184, n_bytes=12901, priority=0 actions=NORMAL

1191

2. Inspect hardware TC rules while DOCA Firefly is deployed (the rules age out after 10 seconds
without traffic):

$ sudo tc -s -d filter show dev en3f0pf0sf4 egress
filter ingress protocol ip pref 4 flower chain 0
filter ingress protocol ip pref 4 flower chain 0 handle 0x1
 eth_type ipv4
 ip_proto udp
 src_port 320
 ip_flags nofrag
 in_hw in_hw_count 1
 action order 1: mirred (Egress Redirect to device p0) stolen
 index 3 ref 1 bind 1 installed 7 sec used 7 sec
 Action statistics:
 Sent 0 bytes 0 pkt (dropped 0, overlimits 0 requeues 0)
 backlog 0b 0p requeues 0
 cookie bec8bd6ede4e86341e9045a6edb58ca2
 no_percpu

filter ingress protocol ip pref 4 flower chain 0 handle 0x2
 eth_type ipv4
 ip_proto udp
 src_port 319
 ip_flags nofrag
 in_hw in_hw_count 1
 action order 1: mirred (Egress Redirect to device p0) stolen
 index 4 ref 1 bind 1 installed 6 sec used 6 sec
 Action statistics:
 Sent 0 bytes 0 pkt (dropped 0, overlimits 0 requeues 0)
 backlog 0b 0p requeues 0
 cookie c568d97efd400de98608fbbf86ccdf3c
 no_percpu

17.6.5.5 PTP

Firefly uses the ptp4l utility to handle the Precision Time Protocol (IEEE 1588).

Through the YAML file, users can configure the network interfaces used for the protocol:

Network interfaces to be used (For multiple interfaces use a space (" ") separated list)
- name: PTP_INTERFACE
 # Set according to used interfaces on the local setup
 value: "p0"

Before the deployment of the container, users should configure this field to point at the desired
network interface(s) configured in the previous steps.

17.6.5.6 PHC2SYS

Firefly uses the phc2sys utility to synchronize the OS's clock to the accurate time stamps received

by ptp4l .

Through the YAML file, users can configure the command-line arguments used by the phc2sys
program:

- name: PHC2SYS_ARGS
 value: "-a -r"

Firefly adds the following command-line arguments on top of the user-selected flags:

If no TC rules are present when Firefly is running, this usually indicates that
hardware offloading is disabled at the OVS level, in which case it should be activated
as explained under "Ensuring OVS Hardware Offload".

1192

•

•

Use of chosen configuration file (empty configuration file by default, or user-supplied file if
specified in the YAML file)
Redirection of output to a log file using the -m command line option

17.6.5.7 SYNCE

Firefly uses the proprietary synced utility to implement the Synchronous Ethernet protocol, aimed
at ensuring synchronization of the clock's frequency with the reference clock. Once achieved, both
clocks are declared as "syntonized".

Through the YAML file, users can configure the network interfaces used for the protocol:

Network interfaces to be used (For multiple interfaces use a space (" ") separated list)
- name: SYNCE_INTERFACE
 # Set according to used interfaces on the local setup
 value: "p0"

Before the deployment of the container, one should configure this field to point at the desired
network interface(s) configured in the previous steps.

DOCA includes synced support for the "dpll" backend (default) which adds support for SFs and

VFs. The "dpll" backend is the default backend used. If DOCA detects the system does not support

it, it will automatically falls back to the "mft" backend.

The backend option can be explicitly set using the YAML file by uncommenting the following lines:

Before
Example #5 - Explicitly specify the used backend in the [global] section of the
SyncE configuration file.
#- name: CONF_SYNCE_global_backend
Options are "mft"/"dpll". If nothing is specified in YAML, "dpll" is taken as
the default
value: "mft"

phc2sys must use the same domainNumber setting used by ptp4l . If the same

domainNumber is not set by the user, Firefly does that automatically.

phc2sys is only able to accurately sync the clock of the hosting environment (usually the
DPU, but may also be the host if deployed there) if other timing services, such as NTP, are
disabled.

So, for instance, on Ubuntu 22.04, users must ensure that the NTP timing service is disabled
by running:

systemctl stop systemd-timesyncd

In versions older than kernel 6.8 or BlueField Platform Software 2.8.0, only PFs are
supported and only using the "mft" backend.

https://en.wikipedia.org/wiki/Synchronous_Ethernet

1193

After
Example #5 - Explicitly specify the used backend in the [global] section of the
SyncE configuration file.
- name: CONF_SYNCE_global_backend
 # Options are "mft"/"dpll". If nothing is specified in YAML, "dpll" is taken as
the default
 value: "mft"

The following is an example for the OVS commands required to route the SyncE-related traffic when
using a SF on top of the "dpll" backend:

$ sudo ovs-ofctl add-flow uplink dl_dst=01:80:c2:00:00:02,in_port=en3f0pf0sf4,actions=p0
$ sudo ovs-ofctl add-flow uplink dl_dst=01:80:c2:00:00:02,in_port=p0,actions=en3f0pf0sf4
$ sudo ovs-ofctl add-flow uplink dl_dst=01:80:c2:00:00:02,actions=controller

If the kernel version does not yet support this feature, and SF/VF are used, the following error is
printed:

...
mlx5 DPLL kernel support appears to be missing
Falling back to MFT tools backend
...

If this error is shown, only PFs can be used, and synced falls back to using the "mft" backend.

17.6.5.8 PTP Monitor
PTP monitor periodically queries for various PTP-related information and prints it to the container's
log.

The following is a sample output of this tool:

gmIdentity: 48:B0:2D:FF:FE:5C:4D:24 (48b02d.fffe.5c4d24)
portIdentity: 48:B0:2D:FF:FE:5C:53:44 (48b02d.fffe.5c5344-1)
port_state: Active
domainNumber: 2
master_offset: avg: 1 max: -8 rms: 3
gmPresent: true
ptp_stable: Recovered
UtcOffset: 37
timeTraceable: 0
frequencyTraceable: 0
grandmasterPriority1: 128
gmClockClass: 248
gmClockAccuracy: 0x6
grandmasterPriority2: 128
gmOffsetScaledLogVariance: 0xffff
ptp_time (TAI): Thu Sep 7 11:22:50 2023
ptp_time (UTC adjusted): Thu Sep 7 11:22:13 2023
system_time (UTC): Thu Sep 7 11:22:13 2023
error_count: 1
last_err_time (UTC): Thu Sep 7 09:55:48 2023

Among others, this monitoring provides the following information:

•

•

•

This example uses the same OVS settings used earlier in the guide:
uplink – bridge name

en3f0pf0sf4 – SF representor

p0 – PF interface we are working (port 0)

If your deployment uses different values make sure to adjust the above commands
accordingly.

1194

•
•
•

Details about the Grandmaster the DPU is syncing with
Current PTP timestamp
Health information such as connection errors during execution and whether they have been
recovered from

PTP monitoring is disabled by default and can be activated by replacing the disable value with
the IP address for the monitor server to use:

- name: MONITOR_STATE
 Value: "<IP address for the monitoring server>"

Once activated, the information can viewed from the container using the following command:

sudo crictl logs --tail=20 <CONTAINER-ID>

It is recommended to use the following watch command to actively monitor the PTP state:

sudo watch -n 1 crictl logs --tail=20 <CONTAINER-ID>

When triaging deployment issues, additional logging information can be found in the monitor's
developer logs: /var/log/doca/firefly/firefly_monitor_dev.log .

17.6.5.8.1 Configuration

The PTP monitor supports configuration options which are passed through a dedicated configuration
file like the rest of DOCA Firefly's modules. The built-in monitor configuration file can be found in
the section "PTP Monitor". For ease of use, the file is also provided as part of DOCA's container
resource as downloaded from NGC.

"Firefly Modules Configuration Options" contains a complete explanation of each of the configuration
options alongside their default values.

To set a custom config file, users should locate their config file in the directory /etc/firefly and
set the config file name in DOCA Firefly's YAML file.

- name: MONITOR_CONFIG_FILE
 value: my_custom_monitor.conf

In this example, my_custom_monitor.conf should be placed at /etc/firefly/

my_custom_monitor.conf .

17.6.5.8.2 Time Representations (PTP Time vs System Time)

Under most deployment scenarios, the PTP time shown by the monitor is presented according to the
International Atomic Time (TAI) standard, while the system time would most commonly use the

The monitoring feature connects to ptp4l's local UDS server to query the necessary
information. This is why the configuration manager prevents users from modifying the
uds_address and uds_ro_address fields used by ptp4l within the container.

1195

Coordinated Universal Time (UTC). Due to the differences between these time representation
models, the monitor provides 2 different time readings (each marked accordingly):

...
UtcOffset: 37
...
ptp_time (TAI): Thu Sep 7 11:22:50 2023
ptp_time (UTC adjusted): Thu Sep 7 11:22:13 2023
system_time (UTC): Thu Sep 7 11:22:13 2023

This difference (37 seconds in the above example) is intentional and stems from the amount of leap
seconds since epoch. This is indicated by the UtcOffset field that is also included in the monitor's
report.

17.6.5.8.3 Monitor Server

In addition to printing the monitoring data to the container's standard output available through the
container logs, the monitoring data is also exposed through a gRPC server that clients can subscribe
to. This allows a monitoring client on the host to subscribe to monitor events from the service
running on top of the DPU, thus providing better visibility.

The following diagram presents the recommended deployment architecture for connecting the
monitoring client (on the host) to the monitor server (on the DPU).

1196

Based on the above, when activating the monitor feature, the user must provide the IP address to
be used by the monitor server:

- name: MONITOR_STATE
 value: "<IP address for the monitoring server>"

Users can choose to only view the monitoring events through the container logs without connecting
to the monitoring server. In this case, it is recommended to configure the local host IP address
(127.0.0.1) in the YAML file to avoid exposing it to an unwanted network.

1197

17.6.5.8.4 Monitor Client

The required files for the monitor client are available under the service's dedicated NGC resource
"scripts" directory.

Example command line for executing the python-based monitor client from a Linux host:

$ sudo pip3 install click protobuf grpcio
$./doca_firefly_monitor_client.py <ip-address-for-the-monitoring-server>

17.6.5.9 Firefly Servo

Firefly's Servo module can be seen as an extension to the built-in set of servos offered by linuxptp .

When active, linuxptp is automatically set to "free running" and the control over the physical
hardware clock (PHC) is handed over to Firefly's own servo.

The following is a sample output of this tool when using the l2-telco profile (16 messages per
seconds):

2024-03-18 07:46:45 - Firefly - SERVO - INFO - Detected new master clock: 48b02d.fffe.5c4d24-1
2024-03-18 07:46:45 - Firefly - SERVO - INFO - Transition from servo state IDLE to FREE_RUNNING
2024-03-18 07:46:47 - Firefly - SERVO - INFO - Estimated a logSyncInterval of: -4
2024-03-18 07:46:47 - Firefly - SERVO - INFO - Measured offset 18691 delay -47
2024-03-18 07:46:48 - Firefly - SERVO - INFO - Transition from servo state FREE_RUNNING to LOCKED
2024-03-18 07:46:50 - Firefly - SERVO - INFO - offset +164 +/- 164 freq -1.50 +/- 0.00 delay -48 +/- 1
2024-03-18 07:46:52 - Firefly - SERVO - INFO - Transition from servo state LOCKED to LOCKED_STABLE
2024-03-18 07:46:52 - Firefly - SERVO - INFO - offset +0 +/- 1 freq -1.41 +/- 0.47 delay -48 +/- 1
2024-03-18 07:46:54 - Firefly - SERVO - INFO - offset -8 +/- 4 freq -4.21 +/- 1.40 delay -47 +/- 1
2024-03-18 07:46:57 - Firefly - SERVO - INFO - offset -12 +/- 2 freq -5.46 +/- 0.73 delay -47 +/- 1
2024-03-18 07:46:59 - Firefly - SERVO - INFO - offset -13 +/- 2 freq -6.13 +/- 0.65 delay -47 +/- 1
2024-03-18 07:47:01 - Firefly - SERVO - INFO - offset -13 +/- 3 freq -6.19 +/- 1.23 delay -47 +/- 2
2024-03-18 07:47:03 - Firefly - SERVO - INFO - offset -19 +/- 2 freq -8.04 +/- 0.96 delay -47 +/- 1
2024-03-18 07:47:06 - Firefly - SERVO - INFO - offset -14 +/- 3 freq -6.46 +/- 1.11 delay -47 +/- 1
2024-03-18 07:47:08 - Firefly - SERVO - INFO - offset -16 +/- 2 freq -7.32 +/- 0.78 delay -48 +/- 2
2024-03-18 07:47:10 - Firefly - SERVO - INFO - offset -15 +/- 2 freq -7.11 +/- 0.87 delay -47 +/- 2
2024-03-18 07:47:12 - Firefly - SERVO - INFO - offset -14 +/- 1 freq -6.74 +/- 0.57 delay -47 +/- 2
2024-03-18 07:47:15 - Firefly - SERVO - INFO - offset -12 +/- 3 freq -6.20 +/- 1.01 delay -48 +/- 1
2024-03-18 07:47:17 - Firefly - SERVO - INFO - offset -13 +/- 2 freq -6.40 +/- 0.89 delay -47 +/- 1
2024-03-18 07:47:19 - Firefly - SERVO - INFO - offset -11 +/- 2 freq -5.98 +/- 0.86 delay -48 +/- 1
2024-03-18 07:47:21 - Firefly - SERVO - INFO - offset -10 +/- 2 freq -5.75 +/- 0.87 delay -46 +/- 1
2024-03-18 07:47:24 - Firefly - SERVO - INFO - offset -8 +/- 1 freq -5.15 +/- 0.42 delay -47 +/- 1

As can be seen, the servo's behavior is similar to that of linuxptp 's ptp4l and consists of a state

machine that tracks the state of the active PTP port (FREE_RUNNING , LOCKED , LOCKED_STABLE ,
etc).

Firefly's Servo is disabled by default (in all profiles) and can be activated by replacing the
define_by_profile value with enable :

Activation status
- name: SERVO_STATE
 # Options are "enable"/"disable"/"defined_by_profile"
 value: "enable"

Once activated, the information can viewed from the module's log file /var/log/doca/firefly/

servo.log .

Reference source files and the .proto file used for Firefly's monitor are placed under the

src/ within the NGC resource.

1198

17.6.5.9.1 Firefly Servo Configuration

Firefly's Servo is currently aimed for telco-related deployments, using the l2-telco profile
including the use of SyncE. As such, the default values in the built-in configuration file are
optimized for those scenarios.

The servo supports configuration options which are passed through a dedicated configuration file
like the rest of DOCA Firefly's modules. The built-in servo configuration file can be found in the
section "Firefly Servo". For ease of use, the file is also provided as part of DOCA's container resource
as downloaded from NGC.

"Firefly Modules Configuration Options" contains a complete explanation of each of the configuration
options alongside their default values.

To set a custom config file, users should locate their config file in the directory /etc/firefly and
set the config file name in DOCA Firefly's YAML file.

- name: SERVO_CONFIG_FILE
 value: my_custom_servo.conf

In this example, my_custom_servo.conf should be placed at /etc/firefly/

my_custom_servo.conf .

17.6.5.9.2 Dynamic Packet Rate Support

The servo has the ability to dynamically detect the packet rate used by the PTP grandmaster clock,
so to calibrate itself accordingly incase it differs from the recommended 16 packets per seconds.

2024-03-18 07:46:45 - Firefly - SERVO - INFO - Transition from servo state IDLE to FREE_RUNNING
2024-03-18 07:46:47 - Firefly - SERVO - INFO - Estimated a logSyncInterval of: -4
2024-03-18 07:46:47 - Firefly - SERVO - INFO - Measured offset 18691 delay -47

In a case the message rate is constant and known in advance, the dynamic estimation can be
disabled, in favour of a provided message rate:

- name: CONF_SERVO_global_servo_const_log_sync_interval
 value: "-2"

In the above example, a fixed message rate of 4 packets per seconds will be used (logSyncInterval of
"-2").

17.6.5.10 VLAN Tagging
DOCA Firefly natively supports VLAN-tagging-enabled network interfaces.

While the servo was tested to produce stable results with various packets rates (2, 4, 8, 16,
32, 64, 128), it is only officially recommended for use in deployments using a packet rate of
16 packets per second.

1199

1.

2.

17.6.5.10.1 Separated Mode

The name of the VLAN-enabled network interface should be the one passed through the YAML file in
the PTP_INTERFACE field.

17.6.5.10.2 Embedded Mode

In addition to passing on the VLAN-enabled interface through the YAML as listed in the previous
section, the user is also required to configure the network routing within the DPU to support the
VLAN tagging:

The following example configures a VLAN tag of 10 to the enp3s0f0s4 interface:

$ sudo ip link add link enp3s0f0s4 name enp3s0f0s4.10 type vlan id 10
$ sudo ip link set up enp3s0f0s4.10
$ sudo ifconfig enp3s0f0s4.10 192.168.104.1 up

In this example, enp3s0f0s4.10 is the interface to be passed to DOCA Firefly.
Additional commands to route the traffic within the DPU:

$ sudo ovs-ofctl add-flow uplink in_port=en3f0pf0sf4,dl_vlan=10,actions=output:p0
$ sudo ovs-ofctl add-flow uplink in_port=p0,dl_vlan=10,actions=output:en3f0pf0sf4

17.6.5.11 Multiple Interfaces
DOCA Firefly can support multiple network interfaces through the following YAML file syntax:

- name: PTP_INTERFACE
 value: "<space (' ') separated list of interface names>"

For example:

- name: PTP_INTERFACE
 value: "p0 p1"

17.6.6 Troubleshooting
When troubleshooting container deployment issues, it is highly recommended to follow the
deployment steps and tips in the "Review Container Deployment" section of the NVIDIA DOCA
Container Deployment Guide.

The monitoring feature is supported for multiple interfaces only when the clientOnly
configuration is enabled.

Automatic mode (-a) for phc2sys is not supported when working with multiple

interfaces. It is recommended to disable phc2sys in this mode.

1200

1.

2.

To debug the finalized configuration file used by Firefly, users can connect to the container as
follows:

Open a shell session on the running container using the container ID:

sudo crictl exec -it <container-id> /bin/bash

Once connected to the container, the finalized configuration file can be found under the /

tmp directory using the same filename as the original configuration file.

17.6.6.1 Pod is Marked as "Ready" and No Container is Listed

17.6.6.1.1 Error

When deploying the container, the pod's STATE is marked as Ready , an image is listed, however no
container can be seen running:

$ sudo crictl pods
POD ID CREATED STATE NAME NAMESPACE
ATTEMPT RUNTIME
06bd84c07537e 4 seconds ago Ready doca-firefly-my-dpu default
0 (default)

$ sudo crictl images
IMAGE TAG IMAGE ID SIZE
k8s.gcr.io/pause 3.2 2a060e2e7101d 251kB
nvcr.io/nvidia/doca/doca_firefly 1.1.0-doca2.0.2 134cb22f34611 87.4MB

$ sudo crictl ps
CONTAINER IMAGE CREATED STATE NAME ATTEMPT
POD ID POD

17.6.6.1.2 Solution

In most cases, the container did start, but immediately exited. This could be checked using the
following command:

$ sudo crictl ps -a
CONTAINER IMAGE CREATED STATE NAME ATTEMPT
POD ID POD
556bb78281e1d 134cb22f34611 7 seconds ago Exited doca-firefly 1
 06bd84c07537e doca-firefly-my-dpu

Should the container fail (i.e., state of Exited) it is recommended to examine Firefly's main log at

/var/log/doca/firefly/firefly.log .

In addition, for a short period of time after termination, the container logs could also be viewed
using the the container's ID:

$ sudo crictl logs 556bb78281e1d
Starting DOCA Firefly - Version 1.1.0
...
Requested the following PTP interface: p10
Failed to find interface "p10". Aborting

More information regarding the configuration files can be found under section
"Ensuring and Debugging Correctness of Config File".

1201

17.6.6.2 Custom Config File is Not Found

17.6.6.2.1 Error

When DOCA Firefly is deployed using a custom configuration file, a deployment error occurs and the
following log message appears:

...
2023-09-07 14:04:23 - Firefly - Init - ERROR - Custom config file not found: my_file.conf. Aborting
...

17.6.6.2.2 Solution

Check the custom file name written in the YAML file and make sure that you properly placed the file
with that name under the /etc/firefly/ directory of the DPU.

17.6.6.3 Profile is Not Supported

17.6.6.3.1 Error

When DOCA Firefly is deployed, a deployment error occurs and the following log message appears:

...
2023-09-07 14:04:23 - Firefly - Init - ERROR - profile <name> is not supported. Aborting
...

17.6.6.3.2 Solution

Verify that the profile selected in the YAML file matches one of the supported profiles as listed in
the profiles table.

17.6.6.4 PPS Capability is Missing

17.6.6.4.1 Error

When DOCA Firefly is deployed and configured to use the PPS module, a deployment error occurs
and the following log message appears:

...
2023-09-07 14:04:23 - Firefly - Init - INFO - Starting PPS configuration
2023-09-07 14:04:23 - Firefly - Init - WARNING - [-] PPS capability is missing, seems that the card doesn't
support PPS
2023-09-07 14:04:23 - Firefly - Init - INFO - capabilities:
2023-09-07 14:04:23 - Firefly - Init - INFO - 50000000 maximum frequency adjustment (ppb)
2023-09-07 14:04:23 - Firefly - Init - INFO - 0 programmable alarms
2023-09-07 14:04:23 - Firefly - Init - INFO - 0 external time stamp channels
2023-09-07 14:04:23 - Firefly - Init - INFO - 0 programmable periodic signals
2023-09-07 14:04:23 - Firefly - Init - INFO - 0 pulse per second
2023-09-07 14:04:23 - Firefly - Init - INFO - 0 programmable pins
2023-09-07 14:04:23 - Firefly - Init - INFO - 0 cross timestamping
...

The profile name is case sensitive. The name must be specified in lower-case letters.

1202

17.6.6.4.2 Solution

This log indicates that the DPU hardware does not support PPS. However, PTP can still run on this
hardware and you should see the line Running ptp4l in the container log, indicating that PTP is
running successfully.

17.6.6.5 Timed Out While Polling for Tx Timestamp

17.6.6.5.1 Error

When the BlueField is operating in DPU mode, DOCA Firefly gets stuck in a fault loop while waiting
to receive the Tx timestamp events:

ptp4l[2912.797]: timed out while polling for tx timestamp
ptp4l[2912.797]: increasing tx_timestamp_timeout may correct this issue, but it is likely caused by a driver bug
ptp4l[2912.797]: port 1 (enp3s0f0s4): send sync failed
ptp4l[2923.528]: timed out while polling for tx timestamp
ptp4l[2923.528]: increasing tx_timestamp_timeout may correct this issue, but it is likely caused by a driver bug
ptp4l[2923.528]: port 1 (enp3s0f0s4): send sync failed

17.6.6.5.2 Solution

DOCA Firefly's configurations were already adjusted to accommodate for Tx port timestamping. For
more information about the reason for this error and for the designed recovery mechanism from it,
refer to section "Tx Timestamping Support on DPU Mode".

17.6.6.6 Warning – Time Jumped Backwards

17.6.6.6.1 Error

When using Firefly's Servo module, the following warning log message is encountered on start:

 2024-01-01 14:04:23 - Firefly - SERVO - WARNING - Clock is going to jump backwards in time - this might have a
system-wide impact

17.6.6.6.2 Solution

This warning message indicates that the system's time jumped backwards with a value of at least
one minute. This event is logged by Firefly given that such jumps might have system-wide
implications. For more information, refer to section "Failed to Reserve Sandbox Name" in the NVIDIA
DOCA Troubleshooting Guide.

Such jumps can only happen during Firefly's boot, before the Servo achieves initial time
synchronization with the reference clock.

DOCA Firefly has a known gap leading to this error appearing once, after which ptp4l
recovers from it. This section only covers the case in which there is a fault loop and no
recovery occurs.

1203

17.6.7 PTP Profile Default Config Files

17.6.7.1 Media Profile

#
This config file contains configurations for media & entertainment alongside
DOCA Firefly specific adjustments.
#

[global]
domainNumber 127
priority1 128
priority2 127
use_syslog 1
logging_level 6
tx_timestamp_timeout 30
hybrid_e2e 1
dscp_event 46
dscp_general 46
logAnnounceInterval -2
announceReceiptTimeout 3
logSyncInterval -3
logMinDelayReqInterval -3
delay_mechanism E2E
network_transport UDPv4
Value lesser or equal to 1 is required for Embedded Mode
fault_reset_interval 1
Required for multiple interfaces support
boundary_clock_jbod 1

17.6.7.2 Default Profile

#
This config file extends linuxptp default.cfg config file with DOCA Firefly
specific adjustments.
#

[global]
Value lesser or equal to 1 is required for Embedded Mode
fault_reset_interval 1
Required for multiple interfaces support
boundary_clock_jbod 1

17.6.7.3 Telco (L2) Profile

#
This config file extends linuxptp G.8275.1.cfg config file with DOCA Firefly
specific adjustments.
#

[global]
dataset_comparison G.8275.x
G.8275.defaultDS.localPriority 128
maxStepsRemoved 255
logAnnounceInterval -3
logSyncInterval -4
logMinDelayReqInterval -4
G.8275.portDS.localPriority 128
ptp_dst_mac 01:80:C2:00:00:0E
network_transport L2
domainNumber 24
Value lesser or equal to 1 is required for Embedded Mode
fault_reset_interval 1
Required for multiple interfaces support
boundary_clock_jbod 1

1204

•

•

•
•
•
•
•
•

17.6.8 Firefly Modules Configuration Options

17.6.8.1 PTP Monitor

17.6.8.1.1 monitor-default.conf

#
Default values for all of Firefly's PTP monitor configuration values.
#

[global]
General
report_interval 1000
Debugging & Logging
doca_logging_level 50

17.6.8.1.2 Configuration Options
report_interval – the time interval (in milliseconds) for when the monitor should publish a
report to all defined output providers (standard output, gRPC clients, etc). Default: 1000 (1
second).
doca_logging_level – Logging level for the module, based on DOCA's logging levels. Default
is 50 (INFO). Valid options:

10=DISABLE
20=CRITICAL
30=ERROR
40=WARNING
50=INFO
60=DEBUG

17.6.8.2 Firefly Servo

17.6.8.2.1 servo-default.conf

#
Default values for all of Firefly's servo configuration values
#

[global]
Time thresholds
offset_from_master_min_threshold -1500
offset_from_master_max_threshold 1500
init_max_time_adjustment 0
max_time_adjustment 1500
step_adjustment_threshold 0
hold_over_timer 0
Sampling Window & servo logic
warmup_period 1500
sync_filter_length 6
delay_request_filter_length 6
servo_adjustment_interval 4
servo_init_adjustment_interval 24
servo_const_log_sync_interval 0xFF
servo_window_min_samples 2
servo_num_offset_values 5
servo_pi_cutoff_frequency 0.0159
servo_pi_dumping_factor 7.85

Debugging & Logging
summary_interval 2000
doca_logging_level 50
free_running 0

1205

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•
•
•
•

17.6.8.2.2 Configuration Options
offset_from_master_min_threshold – Minimal threshold (in nanoseconds) for declaring
time offset from the master clock as "stable". Default is -1500 (-1.5 microseconds).
offset_from_master_max_threshold – Maximal threshold (in nanoseconds) for declaring
time offset from the master clock as "stable". Default is +1500 (+1.5 microseconds).
init_max_time_adjustment – When active, defines the maximal allowed time (step)
adjustment (in nanoseconds) before the servo reaches the "locked" state. Default is 0
(disabled).
max_time_adjustment – When active, defines the maximal allowed reference time
adjustment (in nanoseconds) after the servo has reached the "locked" state. Default is 1500
(1.5 microseconds).
step_adjustment_threshold – When active, defines the thresholds above which a time
(step) adjustment (in nanoseconds) would be allowed, even after the servo has reached the
"locked" state. Default is 0 (disabled).
hold_over_timer – When active, defines the time duration (in seconds) in which the servo
stays in "hold over" mode, until reverting back to "free running". Default is 0 ("hold over" state
is disabled).
warmup_period – Time span (in milliseconds) during which samples are collected to estimate

the logSyncInterval value (packet rate). Default is 1500 (1.5 seconds).

sync_filter_length – Number of SYNC messages in the servo's history buffer. Default is 6.

delay_request_filter_length – Number of DELAY_REQUEST messages in the servo's
history buffer. Default is 6 messages.
servo_adjustment_interval – Number of SYNC messages after which the PHC is updated
once the servo has reached the "locked" state at least once. Default is 4 messages.
servo_init_adjustment_interval – Number of SYNC messages after which the PHC is
updated before the servo has ever reached the "locked" state. Default is 24 messages.
servo_const_log_sync_interval – Known fixed value to be used as the logSyncInterval
instead of trying to estimate it at runtime. Default is 0xFF (disabled).
servo_window_min_samples – Minimal number of samples needed for a servo calculation.
Default is 2 messages.
servo_num_offset_values – Number of consecutive timestamps within the "offset from
master" threshold that are required so to transition from the "locked" state and to the "locked
stable" state. Default is 5 offset values.
servo_pi_cutoff_frequency – The PI servo's cutoff frequency value. Default is 0.0159.

servo_pi_dumping_factor – The PI servo's dumping factor value. Default is 7.85.

summary_interval – The time interval (in milliseconds) for when the servo should publish a
report log event. Default is 2000 (2 seconds).
doca_logging_level – Logging level for the module, based on DOCA's logging levels. Default
is 50 (INFO). Valid options:

10=DISABLE
20=CRITICAL
30=ERROR
40=WARNING
50=INFO

1206

•
•

60=DEBUG
free_running – Tell the servo to only log the operations, without actually adjusting the
PHC. Default is 0 (disabled).

17.7 NVIDIA DOCA Flow Inspector Service Guide
This guide provides instructions on how to use the DOCA Flow Inspector service container on top of
NVIDIA® BlueField® DPU.

17.7.1 Introduction
DOCA Flow Inspector service enables real-time data monitoring and extraction of telemetry
components. These components can be leveraged by various services, including those focused on
security, big data, and other purposes.

DOCA Flow Inspector service is linked to DOCA Telemetry Service (DTS). It receives mirrored packets
from the user parses the data, and forwards it to the DTS, which aggregates predefined statistics
from various providers and sources. The service utilizes the DOCA Telemetry Exporter API to
communicate with the DTS, while the DPDK infrastructure facilitates packet acquisition at a user-
space layer.

DOCA Flow Inspector operates within its dedicated Kubernetes pod on BlueField, aimed at receiving
mirrored packets for analysis. The received packets are parsed and transmitted, in a predefined
structure, to a telemetry collector that manages the remaining telemetry aspects.

17.7.1.1 Service Flow
The DOCA Flow Inspector receives a configuration file in a JSON format which includes which of the
mirrored packets should be filtered and which information should be sent to DTS for inspection.

1207

1.

2.

3.

The configuration file can include several export units under the "export-units" attribute. Each one
is comprised of a "filter" and an "export". Each packet that matches one filter (based on the protocol
and ports in the L4 header) is then parsed to the corresponding requested struct defined in the
export. That information only is sent for inspection. A packet that does not match any filter is
dropped.

In addition, the configuration file could contain FI optional configuration flags, see JSON format and
example in the Configuration section.

The service watches for changes in the JSON configuration file in runtime and for any change that
reconfigures the service.

The DOCA Flow Inspector runs on top of DPDK to acquire L4. The packets are then filtered and HW-
marked with their export unit index. The packets are then parsed according to their export unit and
export struct, and then forwarded to the telemetry collector using IPC.

Configuration phase:

A JSON file is used as input to configure the export units (i.e., filters and corresponding
export structs).
The filters are translated to HW rules on the SF (scalable function port) using the DOCA Flow
library.
The connection to the telemetry collector is initialized and all export structures are
registered to DTS.

1208

1.
2.
3.
4.

5.
6.
7.
8.

1.

2.

a.

b.

Inspection phase:

Traffic is mirrored to the relevant SF.
Ingress traffic is received through the configured SF.
Non-L4 traffic and packets that do not match any filter are dropped using hardware rules.
Packets matching a filter are marked with the export unit index they match and are passed to
the software layer in the Arm cores.
Packets are parsed to the desired struct by the index of export unit.
The telemetry information is forwarded to the telemetry agent using IPC.
Mirrored packets are freed.
If the JSON file is changed, run the configuration phase with the updated file.

17.7.2 Requirements
Before deploying the flow inspector container, ensure that the following prerequisites are satisfied:

Create the needed files and directories. Folders should be created automatically. Make sure
the .json file resides inside the folder:

$ touch /opt/mellanox/doca/services/flow_inspector/bin/flow_inspector_cfg.json

Validate that DTS's configuration folders exist. They should be created automatically when
DTS is deployed.

$ sudo mkdir -p /opt/mellanox/doca/services/telemetry/config
$ sudo mkdir -p /opt/mellanox/doca/services/telemetry/ipc_sockets
$ sudo mkdir -p /opt/mellanox/doca/services/telemetry/data

Allocate huge pages as needed by DPDK. This requires root privileges.

$ sudo echo 2048 > /sys/kernel/mm/hugepages/hugepages-2048kB/nr_hugepages

Or alternatively:

$ sudo echo '2048' | sudo tee -a /sys/kernel/mm/hugepages/hugepages-2048kB/nr_hugepages
$ sudo mkdir /mnt/huge
$ sudo mount -t hugetlbfs nodev /mnt/huge

Deploy a scalable function according to NVIDIA BlueField DPU Scalable Function User
Guide and mirror packets accordingly using the Open vSwitch command.
For example:

Mirror packets from p0 to sf4 :

$ ovs-vsctl add-br ovsbr1
$ ovs-vsctl add-port ovsbr1 p0
$ ovs-vsctl add-port ovsbr1 en3f0pf0sf4
$ ovs-vsctl -- --id=@p1 get port en3f0pf0sf4 \
 -- --id=@p2 get port p0 \
 -- --id=@m create mirror name=m0 select-dst-port=@p2 select-src-port=@p2 output-port=@p
1 \
 -- set bridge ovsbr1 mirrors=@m

Mirror packets from pf0hpf or p0 that pass through sf4 :

$ ovs-vsctl add-br ovsbr1
$ ovs-vsctl add-port ovsbr1 pf0hpf
$ ovs-vsctl add-port ovsbr1 p0
$ ovs-vsctl add-port ovsbr1 en3f0pf0sf4

1209

$ ovs-vsctl -- --id=@p1 get port en3f0pf0sf4 \
 -- --id=@p2 get port pf0hpf \
 -- --id=@m create mirror name=m0 select-dst-port=@p2 select-src-port=@p2 output-port=@p
1 \
 -- set bridge ovsbr1 mirrors=@m
$ ovs-vsctl -- --id=@p1 get port en3f0pf0sf4 \
 -- --id=@p2 get port p0 \
 -- --id=@m create mirror name=m0 select-dst-port=@p2 select-src-port=@p2 output-port=@p
1 \
 -- set bridge ovsbr1 mirrors=@m

The output of last command (creating the mirror) should output a sequence of letters
and numbers similar to the following:

0d248ca8-66af-427c-b600-af1e286056e1

17.7.3 Service Deployment
For information about the deployment of DOCA containers on top of the BlueField DPU, refer
to NVIDIA DOCA Container Deployment Guide.

DTS is available on NGC, NVIDIA's container catalog. Service-specific configuration steps and
deployment instructions can be found under the service's container page.

17.7.4 Configuration

17.7.4.1 JSON Input

The DOCA Flow Inspector configuration file should be placed under /opt/mellanox/doca/

services/flow_inspector/bin/<json_file_name>.json and be built in the following format:

{
 /* Optional param, time period to check for changes in JSON config file (in seconds) and flush telemetry buffer
if enabled (default is 60 seconds) */
 "config-sample-rate": <time>,

 /* Optional param, telemetry buffer size in bytes (default is 60KB) */
 "telemetry-buffer-size": <size>,

 /* Optional param, enable periodic telemetry buffer flush and defining the period time (in seconds) */
 "telemetry-flush-rate": <numeric value in seconds>,

 /* Mandatory param, Flow Inspector export units */
 "export-units":
 [

 /* Export Unit 0 */
 {
 "filter":
 { "protocols": [<L4 protocols separated by comma>], # What L4 protocols are allowed
 "ports":
 [
 [<source port>, <destination port>],
 [<source ports range>, <destination ports range>],
 <... more pairs of source, dest ports>
]
 },
 "export":
 {

The designated SF must be created as a trusted function. Additional details
can be found in the NVIDIA BlueField DPU Scalable Function User Guide.

The order of running DTS and DOCA Flow Inspector is important. You must launch DTS, wait
a few seconds, and then launch DOCA Flow Inspector.

https://catalog.ngc.nvidia.com/orgs/nvidia/teams/doca/containers/doca_flow_inspector

1210

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

 "fields": [<fields to be part of export struct, separated by comma>] # the Telemetry event will
contain these fields.

 }
 },
 <... More Export Units>
]
}

17.7.4.1.1 Export Unit Attributes

Allowed protocols:

"TCP"

"UDP"

Port range:

It is possible to insert a range of ports for both source and destination
Range should include borders [start_port-end_port]

Allowed ports:

All ports in range 0 - 65535 as a string

Or * to indicate any ports

Allowed fields in export struct:

timestamp – timestamp indicating when it was received by the service

host_ip – the IP of the host running the service

src_mac – source MAC address

dst_mac – destination MAC address

src_ip – source IP

dst_ip – destination IP

protocol – L4 protocol

src_port – source port

dst_port – destination port

flags – additional flags (relevant to TCP only)

data_len – data payload length

data_short – short version of data (payload sliced to first 64 bytes)

data_medium – medium version of data (payload sliced to first 1500 bytes)

data_long – long version of data (payload sliced to first 9*1024 bytes)

JSON example:

{

 /* Optional param, time period to check for changes in JSON config file (in seconds) and flush telemetry buffer
if enabled (default is 60 seconds) */
 "config-sample-rate": 30,

 /* Optional param, telemetry maximum buffer size in bytes */
 "telemetry-buffer-size": 70000,

 /* Optional param, enable periodic telemetry buffer flush and defining the period time (in seconds) */
 "telemetry-flush-rate": 1.5,

 /* Mandatory param, Flow Inspector export units */
 "export-units":
 [

 /* Export Unit 0 */
 {
 "filter":

1211

•

•

•

•

•

 {
 "protocols": ["tcp", "udp"],
 "ports":
 [
 ["*","433-460"],
 ["20480","28341"],
 ["28341","20480"],
 ["68", "67"],
 ["67", "68"]
]
 },
 "export":
 {
 "fields": ["timestamp", "host_ip", "src_mac", "dst_mac", "src_ip", "dst_ip", "protocol", "src_port",
 "dst_port", "flags", "data_len", "data_long"]
 }
 },

 /* Export Unit 1 */
 {
 "filter":
 {
 "protocols": ["tcp"],
 "ports":
 [
 ["5-10","422"],
 ["80","80"]
]
 },
 "export":
 {
 "fields": ["timestamp","dst_ip", "host_ip", "data_len", "flags", "data_medium"]
 }
 }
]
}

17.7.4.2 Yaml File

The .yaml file downloaded from NGC can be easily edited according to your needs.

env:
 # Set according to the local setup
 - name: SF_NUM_1
 value: "2" # Additional EAL flags, if needed
 - name: EAL_FLAGS
 value: "" # Service-Specific command line arguments
 - name: SERVICE_ARGS
 value: "--policy /flow_inspector/flow_inspector_cfg.json -l 60"

The SF_NUM_1 value can be changed according to the SF used in the OVS configuration and
can be found using the command in NVIDIA BlueField DPU Scalable Function User Guide.
The EAL_FLAGS value must be changed according to the DPDK flags required when running
the container.
The SERVICE_ARGS are the runtime arguments received by the service:

-l , --log-level <value> – sets the (numeric) log level for the program
<10=DISABLE, 20=CRITICAL, 30=ERROR, 40=WARNING, 50=INFO, 60=DEBUG, 70=TRACE>
-p , --policy <json_path> – sets the JSON path inside the container

17.7.4.3 Verifying Output
Enabling write to data in the DTS allows debugging the validity of the DOCA Flow Inspector.

To allow DTS to write locally, uncomment the following line in /opt/mellanox/doca/services/

telemetry/config/dts_config.ini :

If a packet header contains L4 ports or L4 protocol which are not specified in any filter,
they are filtered out.

1212

•
•
•
•

#output=/data

The schema folder contains JSON-formatted metadata files which allow reading the binary files
containing the actual data. The binary files are written according to the naming convention shown
in the following example:

$ tree /opt/mellanox/doca/services/telemetry/data/
/opt/mellanox/doca/services/telemetry/data/
├── {year}
│ └── {mmdd}
│ └── {hash}
│ ├── {source_id}
│ │ └── {source_tag}{timestamp}.bin
│ └── {another_source_id}
│ └── {another_source_tag}{timestamp}.bin
└── schema
 └── schema_{MD5_digest}.json

New binary files appear when:

The service starts
When the binary file's max age/size restriction is reached
When JSON file is changed and new schemas of telemetry are created
An hour passes

If no schema or no data folders are present, refer to the Troubleshooting section in NVIDIA DOCA
Telemetry Service Guide.

Reading the binary data can be done from within the DTS container using the following command:

crictl exec -it <Container-ID> /opt/mellanox/collectx/bin/clx_read -s /data/schema /data/path/to/datafile.bin

The data written locally should be shown in the following format assuming a packet matching Export
Unit 1 from the example has arrived:

{
 "timestamp": 1656427771076130,
 "host_ip": "10.237.69.238",
 "src_ip": "11.7.62.4",
 "dst_ip": "11.7.62.5",
 "data_len": 1152,
 "data_short": "Hello World"
}

Any changes in dts_config.ini necessitate restarting the pod for the new settings to
apply.

Requires installing the tree runtime utility (apt install tree).

source_id is usually set to the machine hostname. source_tag is a line describing the
collected counters, and it is often set as the provider's name or name of user-counters.

1213

17.7.5 Troubleshooting
When troubleshooting container deployment issues, it is highly recommended to follow the
deployment steps and tips in the "Review Container Deployment" section of the NVIDIA DOCA
Container Deployment Guide.

17.7.5.1 Pod is Marked as "Ready" and No Container is Listed

17.7.5.1.1 Error

When deploying the container, the pod's STATE is marked as Ready , an image is listed, however no
container can be seen running:

$ sudo crictl pods
POD ID CREATED STATE NAME
NAMESPACE ATTEMPT RUNTIME
3162b71e67677 4 seconds ago Ready doca-flow-inspector-my-dpu default
0 (default)

$ sudo crictl images
IMAGE TAG IMAGE ID SIZE
k8s.gcr.io/pause 3.2 2a060e2e7101d 487kB
nvcr.io/nvidia/doca/doca_flow_inspector 1.1.0-doca2.0.2 2af1e539eb7ab 86.8MB

$ sudo crictl ps
CONTAINER IMAGE CREATED STATE NAME ATTEMPT
POD ID POD

17.7.5.1.2 Solution

In most cases, the container did start, but immediately exited. This could be checked using the
following command:

$ sudo crictl ps -a
CONTAINER IMAGE CREATED STATE NAME ATTEMPT
POD ID POD
556bb78281e1d 2af1e539eb7ab 6 seconds ago Exited doca-flow-inspector 1
 3162b71e67677 doca-flow-inspector-my-dpu

Should the container fail (i.e., state of Exited), it is recommended to examine the Flow

Inspector's main log at /var/log/doca/flow_inspector/flow_inspector_fi_dev.log .

In addition, for a short period of time after termination, the container logs could also be viewed
using the container's ID:

$ sudo crictl logs 556bb78281e1d
...
2023-10-04 11:42:55 - flow_inspector - FI - ERROR - JSON file was not found <config-file-path>.

17.7.5.2 Pod is Not Listed

17.7.5.2.1 Error

When placing the container's YAML file in the Kubelet's input folder, the service pod is not listed in
the list of pods:

1214

$ sudo crictl pods
POD ID CREATED STATE NAME
NAMESPACE ATTEMPT RUNTIME

17.7.5.2.2 Solution

In most cases, the pod does not start due to the absence of the requested hugepages. This can be
verified using the following command:

$ sudo journalctl -u kubelet -e. . .
Oct 04 12:12:19 <my-dpu> kubelet[2442376]: I1004 12:12:19.905064 2442376 predicate.go:103] "Failed to admit pod,
unexpected error while attempting to recover from admission failure" pod="default/doca-flow-inspector-<my-dpu>"
 err="preemption: error finding a set of pods to preempt: no set of running pods found to reclaim resources: [(res:
hugepages-2Mi, q: 104563999874),]"

17.8 NVIDIA DOCA HBN Service Guide
This guide provides instructions on how to use the DOCA HBN Service container on top of NVIDIA®
BlueField® networking platform.

17.8.1 Introduction

Host-based Networking (HBN) is a DOCA service that enables the network architect to design a
network purely on L3 protocols, enabling routing to run on the server-side of the network by using
the BlueField as a BGP router. The EVPN extension of BGP, supported by HBN, extends the L3
underlay network to multi-tenant environments with overlay L2 and L3 isolated networks.

The HBN solution packages a set of network functions inside a container which, itself, is packaged
as a service pod to be run on BlueField Arm. At the core of HBN is the Linux networking BlueField
acceleration driver Netlink-to-DOCA, or nl2docad. This daemon seamlessly accelerates Linux
networking using DOCA APIs to program specific packet processing rules in BlueField hardware.

The driver mirrors the Linux kernel routing and bridging tables into the BlueField hardware tables by
discovering the configured Linux networking objects using the Linux Netlink API. Dynamic network
flows, as learned by the Linux kernel networking stack, are also programmed by the driver into
BlueField hardware by listening to Linux kernel networking events.

•
•
•
•

Beyond this page, the content of the HBN Service Guide is distributed across the following
subpages:

HBN Service Release Notes
HBN Service Deployment
HBN Service Configuration
HBN Service Troubleshooting

1215

•
•

•

The following diagram captures an overview of HBN and the interactions between various
components of HBN.

ifupdown2 is the interface manager which pushes all the interface related states to kernel
The routing stack is implemented in FRR and pushes all the control states (EVPN MACs and
routes) to kernel via netlink
Kernel maintains the whole network state and relays the information using netlink. The
kernel is also involved in the punt path and handling traffic that does not match any rules in
the eSwitch.

1216

•

•

•

•

•
•
•

nl2docad listens for the network state via netlink and invokes the DOCA interface to
accelerate the flows in BlueField hardware tables. nl2docad also offloads these flows to
eSwitch.

17.8.1.1 Service Function Chaining
HBN is a "bump-in-the-wire" service and requires specific network configuration on BlueField called
service function chaining (SFC). SFC configuration is used to redirect network traffic, which is
originated from or forwarded to the host or BlueField itself via the HBN data plane.

The diagram below shows the fully detailed default configuration for HBN with SFC.

In this setup, the HBN container is configured to use sub-function ports (SFs) instead of the actual
uplinks, PFs and VFs. To illustrate, for example:

Uplinks – use p0_if instead of p0

PF – use pf0hpf_if instead of pf0hpf

VF – use pf0vf0_if instead of pf0vf0

The indirection layer between the SF and the actual ports is managed via a br-hbn OVS bridge
automatically configured when the BFB image is installed on BlueField with HBN enabled. This
indirection layer allows other services to be chained to existing SFs and provide additional
functionality to transit traffic.

17.8.2 HBN Service Release Notes
The following subsections provide information on HBN service new features, interoperability, known
issues, and bug fixes.

17.8.2.1 Changes and New Features
HBN 2.3.0 offers the following new features and updates:

Added support for LLDP with HBN
Added support to enforce security restrictions for NVUE API
Added support for configurable PF/VF/SF mappings for HBN

1217

•

•
•
•
•
•
•

•

•

•
•

•

•

•

•
•

•

•

•
•

•

Added support for a 2-OVS bridge model to support custom steering flow, enabling user-
defined modifications to forwarding pipeline
Migrated stateful ACLs to OVS-DOCA CT to improve connection rate and better scalability
Added IPv6 hash support for full IPv6 header
Enabled async mode for bridge and route entry programing to improve flow programing rate
Added support for 128K mega flow rules in OVS
Modified HBN to reflect port states and indicate uplinks not based on names
HBN NVUE config performance improvements

HBN 2.3.0 has the following user affecting changes from 2.2.0:

HBN interface names changed from a suffix of _sf to _if . For example, p0_sf now

becomes p0_if .
Rest API access is now disabled by default

17.8.2.2 Supported Platforms and Interoperability

17.8.2.2.1 Supported BlueField Networking Platforms

HBN 2.3.0 has been validated on the following NVIDIA BlueField Networking Platforms:

BlueField-2 DPUs:
BlueField-2 P-Series DPU 25GbE Dual-Port SFP56; PCIe Gen4 x8; Crypto Enabled; 16GB
on-board DDR; 1GbE OOB management; HHHL
BlueField-2 P-Series DPU 25GbE Dual-Port SFP56; integrated BMC; PCIe Gen4 x8; Secure
Boot Enabled; Crypto Enabled; 16GB on-board DDR; 1GbE OOB management; FHHL
BlueField-2 P-Series DPU 25GbE Dual-Port SFP56; integrated BMC; PCIe Gen4 x8; Secure
Boot Enabled; Crypto Enabled; 32GB on-board DDR; 1GbE OOB management; FHHL
BlueField-2 P-Series DPU 100GbE Dual-Port QSFP56; integrated BMC; PCIe Gen4 x16;
Secure Boot Enabled; Crypto Enabled; 32GB on-board DDR; 1GbE OOB management;
FHHL

BlueField-3 DPUs:
BlueField-3 B3210 P-Series FHHL DPU; 100GbE (default mode)/HDR100 IB; Dual-port
QSFP112; PCIe Gen5.0 x16 with x16 PCIe extension option; 16 Arm cores; 32GB on-
board DDR; integrated BMC; Crypto Enabled
BlueField-3 B3220 P-Series FHHL DPU; 200GbE (default mode)/NDR200 IB; Dual-port
QSFP112; PCIe Gen5.0 x16 with x16 PCIe extension option; 16 Arm cores; 32GB on-
board DDR; integrated BMC; Crypto Enabled
BlueField-3 B3240 P-Series Dual-slot FHHL DPU; 400GbE/NDR IB (default mode); Dual-
port QSFP112; PCIe Gen5.0 x16 with x16 PCIe extension option; 16 Arm cores; 32GB on-
board DDR; integrated BMC; Crypto Enabled

BlueField-3 SuperNICs:
BlueField-3 B3210L E-series FHHL SuperNIC, 100GbE (default mode)/HDR100 IB, Dual
port QSFP112, PCIe Gen4.0 x16, 8 Arm cores, 16GB on-board DDR, integrated BMC,
Crypto Enabled
BlueField-3 B3220L E-Series FHHL SuperNIC, 200GbE (default mode)/NDR200 IB, Dual-
port QSFP112, PCIe Gen5.0 x16, 8 Arm cores, 16GB on-board DDR, integrated BMC,
Crypto Enabled

1218

•

•

BlueField-3 B3140L E-Series FHHL SuperNIC, 400GbE/ NDR IB (default mode), Single-
port QSFP112, PCIe Gen5.0 x16, 8 Arm cores, 16GB on-board DDR, integrated BMC,
Crypto Enabled
BlueField-3 B3140H E-series HHHL SuperNIC, 400GbE (default mode)/NDR IB, Single-
port QSFP112, PCIe Gen5.0 x16, 8 Arm cores, 16GB on board DDR, integrated BMC,
Crypto Enabled

17.8.2.2.2 Supported BlueField OS

HBN 2.3.0 supports DOCA 2.8.0 (BSP 4.8.0) on Ubuntu 22.04 OS.

17.8.2.2.3 Verified Scalability Limits

HBN 2.8.0 has been tested to sustain the following maximum scalability limits:

Limit BlueField-2 BlueField-3 Comments

VTEP peers (BlueFields per
control plane) in the fabric

4k 4k Number of BlueFields (VTEPs) within a
single overlay fabric (reachable in the
underlay)

L2 VNIs/Overlay networks per
BlueField

20 20 Total number of L2 VNIs in the fabric
for L2 VXLAN use-case assuming every
interface is associated with its own
VLAN + L2 VNI

L3 VNIs/Overlay networks per
BlueField

20 20 Total number of L3 VNIs in the fabric
for L3 VXLAN use-case assuming every
interface is associated with its own
VLAN + L2 VNI + L3 VNI + VRF

BlueFields per a single L2 VNI
network

4k 4k Total number of DPUs, configured with
the same L2 VNI (3 real DPUs, 2000
emulated VTEPs)

BlueFields per a single L3 VNI
network

4k 4k Total number of DPUs, configured with
the same L3 VNI (3 real DPUs, 2000
emulated VTEPs)

Maximum number of local
MAC/ARP entries per BlueField

20 20 Max total number of MAC/ARP entries
learned from the host on the DPU

Maximum number of local BGP
routes per BlueField

200 200 Max total number of BGP routes
advertised by the host to the
BlueField (BGP peering with the host):
100 IPv4 + 100 IPv6

Maximum number of remote
L3 LPM routes (underlay)

4k 4k IPv4 or IPv6 underlay LPM routes per
BlueField (default + host routes +
LPM)

Maximum number of EVPN
type-2 entries

16K 16k Remote overlay MAC/IP entries for
compute peers stored on a single
BlueField (L2 EVPN use case)

BlueField platforms with 8GB on-board DDR memory are currently not supported with HBN.

1219

Limit BlueField-2 BlueField-3 Comments

Maximum number of EVPN
type-5 entries

16K 16K Remote overlay L3 LPM entries for
compute peers stored on a single
BlueField (L3 EVPN use case)

Maximum number of PFs on
the Host side

2 2 Total number of PFs visible to the host

Maximum number of VFs on
the Host side

16 16 Total number of VFs created on the
host

Maximum number of SFs on
BlueField side

2 2 Total number of SF devices created on
BlueField Arm

17.8.2.3 Known Issues
The following table lists the known issues and limitations for this release of HBN.

1220

3743942 Description: HBN container may hang in init-sfs during container restart when
the HBN YAML file (i.e., /etc/kubelet.d/doca_hbn.yaml) is modified while
container is running.

Workaround: If the container hangs in init-sfs for more than 1 minute, reload
the DPU.

Keywords: Hang; container

Reported in HBN version: 2.3.0

3961387 Description: The changing of the port number for NVUE REST API using nv CLI/
API is not supported. The following command should not be used to change
the port number:

nv set system api port <port-no>

Workaround: On HBN, NVUE is accessible through 8765 (i.e., default port
number).

Keywords: NVUE API; port number

Reported in HBN version: 2.3.0

3965589 Description: When SR-IOV VFs are created or deleted and recreated, some
ports may stay in ethX naming format and not be properly renamed to pfXvfY
format. This results in the port remaining in error state as when running the
command ovs-vsctl show due to the SFC and HBN not recognizing it.

Workaround: Reboot the BlueField.

Keywords: Port; nomenclature; convention

Reported in HBN version: 2.3.0

3967748 Description: The command nv show system api connections does not
return any data.

Workaround: N/A

Keywords: REST API; nginx

Reported in HBN version: 2.3.0

4004191 Description: Due to security fixes on BlueField-2, the number of context
switches increased by 20% which may result in user applications (e.g.,
nl2doca) running slower.

Workaround: N/A

Keyword: BlueField-2; performance

Reported in HBN version: 2.3.0

3769309 Description: A ping or other IP connectivity from a locally connected host in
vrf-X to an interface IP address on the DPU/HBN itself in vrf-Y will not work,
even if VRF route-leaking is enabled between these two VRFs.

Workaround: N/A

Keyword: IP

Reported in HBN version: 2.2.0

3886379 Description: Deleting and re-adding SR-IOV ports might result in some ports in
br-hbn bridge going in error state.

Workaround: If possible, an appropriate number of SR-IOV ports should be
chosen at BFB install time. But if a change is made and if the system has this
error, the host must undergo a power cycle to resolve the issue.

Keyword: Bridge; SR-IOV

Reported in HBN version: 2.2.0

3835295 Description: Traffic entering HBN service on a host PF/VF main-interface and
exiting on a sub-interface of the same PF/VF (and vice versa) is not hardware
offloaded. Similarly, traffic entering HBN service on one sub-interface and
exiting on another sub-interface of the same host PF/VF is also not hardware
offloaded.

1221

3743942 Description: HBN container may hang in init-sfs during container restart when
the HBN YAML file (i.e., /etc/kubelet.d/doca_hbn.yaml) is modified while
container is running.

Workaround: If the container hangs in init-sfs for more than 1 minute, reload
the DPU.

Keywords: Hang; container

Reported in HBN version: 2.3.0

3961387 Description: The changing of the port number for NVUE REST API using nv CLI/
API is not supported. The following command should not be used to change
the port number:

nv set system api port <port-no>

Workaround: On HBN, NVUE is accessible through 8765 (i.e., default port
number).

Keywords: NVUE API; port number

Reported in HBN version: 2.3.0

3965589 Description: When SR-IOV VFs are created or deleted and recreated, some
ports may stay in ethX naming format and not be properly renamed to pfXvfY
format. This results in the port remaining in error state as when running the
command ovs-vsctl show due to the SFC and HBN not recognizing it.

Workaround: Reboot the BlueField.

Keywords: Port; nomenclature; convention

Reported in HBN version: 2.3.0

3967748 Description: The command nv show system api connections does not
return any data.

Workaround: N/A

Keywords: REST API; nginx

Reported in HBN version: 2.3.0

4004191 Description: Due to security fixes on BlueField-2, the number of context
switches increased by 20% which may result in user applications (e.g.,
nl2doca) running slower.

Workaround: N/A

Keyword: BlueField-2; performance

Reported in HBN version: 2.3.0

3769309 Description: A ping or other IP connectivity from a locally connected host in
vrf-X to an interface IP address on the DPU/HBN itself in vrf-Y will not work,
even if VRF route-leaking is enabled between these two VRFs.

Workaround: N/A

Keyword: IP

Reported in HBN version: 2.2.0

3886379 Description: Deleting and re-adding SR-IOV ports might result in some ports in
br-hbn bridge going in error state.

Workaround: If possible, an appropriate number of SR-IOV ports should be
chosen at BFB install time. But if a change is made and if the system has this
error, the host must undergo a power cycle to resolve the issue.

Keyword: Bridge; SR-IOV

Reported in HBN version: 2.2.0

3835295 Description: Traffic entering HBN service on a host PF/VF main-interface and
exiting on a sub-interface of the same PF/VF (and vice versa) is not hardware
offloaded. Similarly, traffic entering HBN service on one sub-interface and
exiting on another sub-interface of the same host PF/VF is also not hardware
offloaded.

1222

3743942 Description: HBN container may hang in init-sfs during container restart when
the HBN YAML file (i.e., /etc/kubelet.d/doca_hbn.yaml) is modified while
container is running.

Workaround: If the container hangs in init-sfs for more than 1 minute, reload
the DPU.

Keywords: Hang; container

Reported in HBN version: 2.3.0

3961387 Description: The changing of the port number for NVUE REST API using nv CLI/
API is not supported. The following command should not be used to change
the port number:

nv set system api port <port-no>

Workaround: On HBN, NVUE is accessible through 8765 (i.e., default port
number).

Keywords: NVUE API; port number

Reported in HBN version: 2.3.0

3965589 Description: When SR-IOV VFs are created or deleted and recreated, some
ports may stay in ethX naming format and not be properly renamed to pfXvfY
format. This results in the port remaining in error state as when running the
command ovs-vsctl show due to the SFC and HBN not recognizing it.

Workaround: Reboot the BlueField.

Keywords: Port; nomenclature; convention

Reported in HBN version: 2.3.0

3967748 Description: The command nv show system api connections does not
return any data.

Workaround: N/A

Keywords: REST API; nginx

Reported in HBN version: 2.3.0

4004191 Description: Due to security fixes on BlueField-2, the number of context
switches increased by 20% which may result in user applications (e.g.,
nl2doca) running slower.

Workaround: N/A

Keyword: BlueField-2; performance

Reported in HBN version: 2.3.0

3769309 Description: A ping or other IP connectivity from a locally connected host in
vrf-X to an interface IP address on the DPU/HBN itself in vrf-Y will not work,
even if VRF route-leaking is enabled between these two VRFs.

Workaround: N/A

Keyword: IP

Reported in HBN version: 2.2.0

3886379 Description: Deleting and re-adding SR-IOV ports might result in some ports in
br-hbn bridge going in error state.

Workaround: If possible, an appropriate number of SR-IOV ports should be
chosen at BFB install time. But if a change is made and if the system has this
error, the host must undergo a power cycle to resolve the issue.

Keyword: Bridge; SR-IOV

Reported in HBN version: 2.2.0

3835295 Description: Traffic entering HBN service on a host PF/VF main-interface and
exiting on a sub-interface of the same PF/VF (and vice versa) is not hardware
offloaded. Similarly, traffic entering HBN service on one sub-interface and
exiting on another sub-interface of the same host PF/VF is also not hardware
offloaded.

1223

3743942 Description: HBN container may hang in init-sfs during container restart when
the HBN YAML file (i.e., /etc/kubelet.d/doca_hbn.yaml) is modified while
container is running.

Workaround: If the container hangs in init-sfs for more than 1 minute, reload
the DPU.

Keywords: Hang; container

Reported in HBN version: 2.3.0

3961387 Description: The changing of the port number for NVUE REST API using nv CLI/
API is not supported. The following command should not be used to change
the port number:

nv set system api port <port-no>

Workaround: On HBN, NVUE is accessible through 8765 (i.e., default port
number).

Keywords: NVUE API; port number

Reported in HBN version: 2.3.0

3965589 Description: When SR-IOV VFs are created or deleted and recreated, some
ports may stay in ethX naming format and not be properly renamed to pfXvfY
format. This results in the port remaining in error state as when running the
command ovs-vsctl show due to the SFC and HBN not recognizing it.

Workaround: Reboot the BlueField.

Keywords: Port; nomenclature; convention

Reported in HBN version: 2.3.0

3967748 Description: The command nv show system api connections does not
return any data.

Workaround: N/A

Keywords: REST API; nginx

Reported in HBN version: 2.3.0

4004191 Description: Due to security fixes on BlueField-2, the number of context
switches increased by 20% which may result in user applications (e.g.,
nl2doca) running slower.

Workaround: N/A

Keyword: BlueField-2; performance

Reported in HBN version: 2.3.0

3769309 Description: A ping or other IP connectivity from a locally connected host in
vrf-X to an interface IP address on the DPU/HBN itself in vrf-Y will not work,
even if VRF route-leaking is enabled between these two VRFs.

Workaround: N/A

Keyword: IP

Reported in HBN version: 2.2.0

3886379 Description: Deleting and re-adding SR-IOV ports might result in some ports in
br-hbn bridge going in error state.

Workaround: If possible, an appropriate number of SR-IOV ports should be
chosen at BFB install time. But if a change is made and if the system has this
error, the host must undergo a power cycle to resolve the issue.

Keyword: Bridge; SR-IOV

Reported in HBN version: 2.2.0

3835295 Description: Traffic entering HBN service on a host PF/VF main-interface and
exiting on a sub-interface of the same PF/VF (and vice versa) is not hardware
offloaded. Similarly, traffic entering HBN service on one sub-interface and
exiting on another sub-interface of the same host PF/VF is also not hardware
offloaded.

1224

3743942 Description: HBN container may hang in init-sfs during container restart when
the HBN YAML file (i.e., /etc/kubelet.d/doca_hbn.yaml) is modified while
container is running.

Workaround: If the container hangs in init-sfs for more than 1 minute, reload
the DPU.

Keywords: Hang; container

Reported in HBN version: 2.3.0

3961387 Description: The changing of the port number for NVUE REST API using nv CLI/
API is not supported. The following command should not be used to change
the port number:

nv set system api port <port-no>

Workaround: On HBN, NVUE is accessible through 8765 (i.e., default port
number).

Keywords: NVUE API; port number

Reported in HBN version: 2.3.0

3965589 Description: When SR-IOV VFs are created or deleted and recreated, some
ports may stay in ethX naming format and not be properly renamed to pfXvfY
format. This results in the port remaining in error state as when running the
command ovs-vsctl show due to the SFC and HBN not recognizing it.

Workaround: Reboot the BlueField.

Keywords: Port; nomenclature; convention

Reported in HBN version: 2.3.0

3967748 Description: The command nv show system api connections does not
return any data.

Workaround: N/A

Keywords: REST API; nginx

Reported in HBN version: 2.3.0

4004191 Description: Due to security fixes on BlueField-2, the number of context
switches increased by 20% which may result in user applications (e.g.,
nl2doca) running slower.

Workaround: N/A

Keyword: BlueField-2; performance

Reported in HBN version: 2.3.0

3769309 Description: A ping or other IP connectivity from a locally connected host in
vrf-X to an interface IP address on the DPU/HBN itself in vrf-Y will not work,
even if VRF route-leaking is enabled between these two VRFs.

Workaround: N/A

Keyword: IP

Reported in HBN version: 2.2.0

3886379 Description: Deleting and re-adding SR-IOV ports might result in some ports in
br-hbn bridge going in error state.

Workaround: If possible, an appropriate number of SR-IOV ports should be
chosen at BFB install time. But if a change is made and if the system has this
error, the host must undergo a power cycle to resolve the issue.

Keyword: Bridge; SR-IOV

Reported in HBN version: 2.2.0

3835295 Description: Traffic entering HBN service on a host PF/VF main-interface and
exiting on a sub-interface of the same PF/VF (and vice versa) is not hardware
offloaded. Similarly, traffic entering HBN service on one sub-interface and
exiting on another sub-interface of the same host PF/VF is also not hardware
offloaded.

1225

3743942 Description: HBN container may hang in init-sfs during container restart when
the HBN YAML file (i.e., /etc/kubelet.d/doca_hbn.yaml) is modified while
container is running.

Workaround: If the container hangs in init-sfs for more than 1 minute, reload
the DPU.

Keywords: Hang; container

Reported in HBN version: 2.3.0

3961387 Description: The changing of the port number for NVUE REST API using nv CLI/
API is not supported. The following command should not be used to change
the port number:

nv set system api port <port-no>

Workaround: On HBN, NVUE is accessible through 8765 (i.e., default port
number).

Keywords: NVUE API; port number

Reported in HBN version: 2.3.0

3965589 Description: When SR-IOV VFs are created or deleted and recreated, some
ports may stay in ethX naming format and not be properly renamed to pfXvfY
format. This results in the port remaining in error state as when running the
command ovs-vsctl show due to the SFC and HBN not recognizing it.

Workaround: Reboot the BlueField.

Keywords: Port; nomenclature; convention

Reported in HBN version: 2.3.0

3967748 Description: The command nv show system api connections does not
return any data.

Workaround: N/A

Keywords: REST API; nginx

Reported in HBN version: 2.3.0

4004191 Description: Due to security fixes on BlueField-2, the number of context
switches increased by 20% which may result in user applications (e.g.,
nl2doca) running slower.

Workaround: N/A

Keyword: BlueField-2; performance

Reported in HBN version: 2.3.0

3769309 Description: A ping or other IP connectivity from a locally connected host in
vrf-X to an interface IP address on the DPU/HBN itself in vrf-Y will not work,
even if VRF route-leaking is enabled between these two VRFs.

Workaround: N/A

Keyword: IP

Reported in HBN version: 2.2.0

3886379 Description: Deleting and re-adding SR-IOV ports might result in some ports in
br-hbn bridge going in error state.

Workaround: If possible, an appropriate number of SR-IOV ports should be
chosen at BFB install time. But if a change is made and if the system has this
error, the host must undergo a power cycle to resolve the issue.

Keyword: Bridge; SR-IOV

Reported in HBN version: 2.2.0

3835295 Description: Traffic entering HBN service on a host PF/VF main-interface and
exiting on a sub-interface of the same PF/VF (and vice versa) is not hardware
offloaded. Similarly, traffic entering HBN service on one sub-interface and
exiting on another sub-interface of the same host PF/VF is also not hardware
offloaded.

1226

3743942 Description: HBN container may hang in init-sfs during container restart when
the HBN YAML file (i.e., /etc/kubelet.d/doca_hbn.yaml) is modified while
container is running.

Workaround: If the container hangs in init-sfs for more than 1 minute, reload
the DPU.

Keywords: Hang; container

Reported in HBN version: 2.3.0

3961387 Description: The changing of the port number for NVUE REST API using nv CLI/
API is not supported. The following command should not be used to change
the port number:

nv set system api port <port-no>

Workaround: On HBN, NVUE is accessible through 8765 (i.e., default port
number).

Keywords: NVUE API; port number

Reported in HBN version: 2.3.0

3965589 Description: When SR-IOV VFs are created or deleted and recreated, some
ports may stay in ethX naming format and not be properly renamed to pfXvfY
format. This results in the port remaining in error state as when running the
command ovs-vsctl show due to the SFC and HBN not recognizing it.

Workaround: Reboot the BlueField.

Keywords: Port; nomenclature; convention

Reported in HBN version: 2.3.0

3967748 Description: The command nv show system api connections does not
return any data.

Workaround: N/A

Keywords: REST API; nginx

Reported in HBN version: 2.3.0

4004191 Description: Due to security fixes on BlueField-2, the number of context
switches increased by 20% which may result in user applications (e.g.,
nl2doca) running slower.

Workaround: N/A

Keyword: BlueField-2; performance

Reported in HBN version: 2.3.0

3769309 Description: A ping or other IP connectivity from a locally connected host in
vrf-X to an interface IP address on the DPU/HBN itself in vrf-Y will not work,
even if VRF route-leaking is enabled between these two VRFs.

Workaround: N/A

Keyword: IP

Reported in HBN version: 2.2.0

3886379 Description: Deleting and re-adding SR-IOV ports might result in some ports in
br-hbn bridge going in error state.

Workaround: If possible, an appropriate number of SR-IOV ports should be
chosen at BFB install time. But if a change is made and if the system has this
error, the host must undergo a power cycle to resolve the issue.

Keyword: Bridge; SR-IOV

Reported in HBN version: 2.2.0

3835295 Description: Traffic entering HBN service on a host PF/VF main-interface and
exiting on a sub-interface of the same PF/VF (and vice versa) is not hardware
offloaded. Similarly, traffic entering HBN service on one sub-interface and
exiting on another sub-interface of the same host PF/VF is also not hardware
offloaded.

1227

3743942 Description: HBN container may hang in init-sfs during container restart when
the HBN YAML file (i.e., /etc/kubelet.d/doca_hbn.yaml) is modified while
container is running.

Workaround: If the container hangs in init-sfs for more than 1 minute, reload
the DPU.

Keywords: Hang; container

Reported in HBN version: 2.3.0

3961387 Description: The changing of the port number for NVUE REST API using nv CLI/
API is not supported. The following command should not be used to change
the port number:

nv set system api port <port-no>

Workaround: On HBN, NVUE is accessible through 8765 (i.e., default port
number).

Keywords: NVUE API; port number

Reported in HBN version: 2.3.0

3965589 Description: When SR-IOV VFs are created or deleted and recreated, some
ports may stay in ethX naming format and not be properly renamed to pfXvfY
format. This results in the port remaining in error state as when running the
command ovs-vsctl show due to the SFC and HBN not recognizing it.

Workaround: Reboot the BlueField.

Keywords: Port; nomenclature; convention

Reported in HBN version: 2.3.0

3967748 Description: The command nv show system api connections does not
return any data.

Workaround: N/A

Keywords: REST API; nginx

Reported in HBN version: 2.3.0

4004191 Description: Due to security fixes on BlueField-2, the number of context
switches increased by 20% which may result in user applications (e.g.,
nl2doca) running slower.

Workaround: N/A

Keyword: BlueField-2; performance

Reported in HBN version: 2.3.0

3769309 Description: A ping or other IP connectivity from a locally connected host in
vrf-X to an interface IP address on the DPU/HBN itself in vrf-Y will not work,
even if VRF route-leaking is enabled between these two VRFs.

Workaround: N/A

Keyword: IP

Reported in HBN version: 2.2.0

3886379 Description: Deleting and re-adding SR-IOV ports might result in some ports in
br-hbn bridge going in error state.

Workaround: If possible, an appropriate number of SR-IOV ports should be
chosen at BFB install time. But if a change is made and if the system has this
error, the host must undergo a power cycle to resolve the issue.

Keyword: Bridge; SR-IOV

Reported in HBN version: 2.2.0

3835295 Description: Traffic entering HBN service on a host PF/VF main-interface and
exiting on a sub-interface of the same PF/VF (and vice versa) is not hardware
offloaded. Similarly, traffic entering HBN service on one sub-interface and
exiting on another sub-interface of the same host PF/VF is also not hardware
offloaded.

1228

3743942 Description: HBN container may hang in init-sfs during container restart when
the HBN YAML file (i.e., /etc/kubelet.d/doca_hbn.yaml) is modified while
container is running.

Workaround: If the container hangs in init-sfs for more than 1 minute, reload
the DPU.

Keywords: Hang; container

Reported in HBN version: 2.3.0

3961387 Description: The changing of the port number for NVUE REST API using nv CLI/
API is not supported. The following command should not be used to change
the port number:

nv set system api port <port-no>

Workaround: On HBN, NVUE is accessible through 8765 (i.e., default port
number).

Keywords: NVUE API; port number

Reported in HBN version: 2.3.0

3965589 Description: When SR-IOV VFs are created or deleted and recreated, some
ports may stay in ethX naming format and not be properly renamed to pfXvfY
format. This results in the port remaining in error state as when running the
command ovs-vsctl show due to the SFC and HBN not recognizing it.

Workaround: Reboot the BlueField.

Keywords: Port; nomenclature; convention

Reported in HBN version: 2.3.0

3967748 Description: The command nv show system api connections does not
return any data.

Workaround: N/A

Keywords: REST API; nginx

Reported in HBN version: 2.3.0

4004191 Description: Due to security fixes on BlueField-2, the number of context
switches increased by 20% which may result in user applications (e.g.,
nl2doca) running slower.

Workaround: N/A

Keyword: BlueField-2; performance

Reported in HBN version: 2.3.0

3769309 Description: A ping or other IP connectivity from a locally connected host in
vrf-X to an interface IP address on the DPU/HBN itself in vrf-Y will not work,
even if VRF route-leaking is enabled between these two VRFs.

Workaround: N/A

Keyword: IP

Reported in HBN version: 2.2.0

3886379 Description: Deleting and re-adding SR-IOV ports might result in some ports in
br-hbn bridge going in error state.

Workaround: If possible, an appropriate number of SR-IOV ports should be
chosen at BFB install time. But if a change is made and if the system has this
error, the host must undergo a power cycle to resolve the issue.

Keyword: Bridge; SR-IOV

Reported in HBN version: 2.2.0

3835295 Description: Traffic entering HBN service on a host PF/VF main-interface and
exiting on a sub-interface of the same PF/VF (and vice versa) is not hardware
offloaded. Similarly, traffic entering HBN service on one sub-interface and
exiting on another sub-interface of the same host PF/VF is also not hardware
offloaded.

1229

3743942 Description: HBN container may hang in init-sfs during container restart when
the HBN YAML file (i.e., /etc/kubelet.d/doca_hbn.yaml) is modified while
container is running.

Workaround: If the container hangs in init-sfs for more than 1 minute, reload
the DPU.

Keywords: Hang; container

Reported in HBN version: 2.3.0

3961387 Description: The changing of the port number for NVUE REST API using nv CLI/
API is not supported. The following command should not be used to change
the port number:

nv set system api port <port-no>

Workaround: On HBN, NVUE is accessible through 8765 (i.e., default port
number).

Keywords: NVUE API; port number

Reported in HBN version: 2.3.0

3965589 Description: When SR-IOV VFs are created or deleted and recreated, some
ports may stay in ethX naming format and not be properly renamed to pfXvfY
format. This results in the port remaining in error state as when running the
command ovs-vsctl show due to the SFC and HBN not recognizing it.

Workaround: Reboot the BlueField.

Keywords: Port; nomenclature; convention

Reported in HBN version: 2.3.0

3967748 Description: The command nv show system api connections does not
return any data.

Workaround: N/A

Keywords: REST API; nginx

Reported in HBN version: 2.3.0

4004191 Description: Due to security fixes on BlueField-2, the number of context
switches increased by 20% which may result in user applications (e.g.,
nl2doca) running slower.

Workaround: N/A

Keyword: BlueField-2; performance

Reported in HBN version: 2.3.0

3769309 Description: A ping or other IP connectivity from a locally connected host in
vrf-X to an interface IP address on the DPU/HBN itself in vrf-Y will not work,
even if VRF route-leaking is enabled between these two VRFs.

Workaround: N/A

Keyword: IP

Reported in HBN version: 2.2.0

3886379 Description: Deleting and re-adding SR-IOV ports might result in some ports in
br-hbn bridge going in error state.

Workaround: If possible, an appropriate number of SR-IOV ports should be
chosen at BFB install time. But if a change is made and if the system has this
error, the host must undergo a power cycle to resolve the issue.

Keyword: Bridge; SR-IOV

Reported in HBN version: 2.2.0

3835295 Description: Traffic entering HBN service on a host PF/VF main-interface and
exiting on a sub-interface of the same PF/VF (and vice versa) is not hardware
offloaded. Similarly, traffic entering HBN service on one sub-interface and
exiting on another sub-interface of the same host PF/VF is also not hardware
offloaded.

1230

3743942 Description: HBN container may hang in init-sfs during container restart when
the HBN YAML file (i.e., /etc/kubelet.d/doca_hbn.yaml) is modified while
container is running.

Workaround: If the container hangs in init-sfs for more than 1 minute, reload
the DPU.

Keywords: Hang; container

Reported in HBN version: 2.3.0

3961387 Description: The changing of the port number for NVUE REST API using nv CLI/
API is not supported. The following command should not be used to change
the port number:

nv set system api port <port-no>

Workaround: On HBN, NVUE is accessible through 8765 (i.e., default port
number).

Keywords: NVUE API; port number

Reported in HBN version: 2.3.0

3965589 Description: When SR-IOV VFs are created or deleted and recreated, some
ports may stay in ethX naming format and not be properly renamed to pfXvfY
format. This results in the port remaining in error state as when running the
command ovs-vsctl show due to the SFC and HBN not recognizing it.

Workaround: Reboot the BlueField.

Keywords: Port; nomenclature; convention

Reported in HBN version: 2.3.0

3967748 Description: The command nv show system api connections does not
return any data.

Workaround: N/A

Keywords: REST API; nginx

Reported in HBN version: 2.3.0

4004191 Description: Due to security fixes on BlueField-2, the number of context
switches increased by 20% which may result in user applications (e.g.,
nl2doca) running slower.

Workaround: N/A

Keyword: BlueField-2; performance

Reported in HBN version: 2.3.0

3769309 Description: A ping or other IP connectivity from a locally connected host in
vrf-X to an interface IP address on the DPU/HBN itself in vrf-Y will not work,
even if VRF route-leaking is enabled between these two VRFs.

Workaround: N/A

Keyword: IP

Reported in HBN version: 2.2.0

3886379 Description: Deleting and re-adding SR-IOV ports might result in some ports in
br-hbn bridge going in error state.

Workaround: If possible, an appropriate number of SR-IOV ports should be
chosen at BFB install time. But if a change is made and if the system has this
error, the host must undergo a power cycle to resolve the issue.

Keyword: Bridge; SR-IOV

Reported in HBN version: 2.2.0

3835295 Description: Traffic entering HBN service on a host PF/VF main-interface and
exiting on a sub-interface of the same PF/VF (and vice versa) is not hardware
offloaded. Similarly, traffic entering HBN service on one sub-interface and
exiting on another sub-interface of the same host PF/VF is also not hardware
offloaded.

1231

3743942 Description: HBN container may hang in init-sfs during container restart when
the HBN YAML file (i.e., /etc/kubelet.d/doca_hbn.yaml) is modified while
container is running.

Workaround: If the container hangs in init-sfs for more than 1 minute, reload
the DPU.

Keywords: Hang; container

Reported in HBN version: 2.3.0

3961387 Description: The changing of the port number for NVUE REST API using nv CLI/
API is not supported. The following command should not be used to change
the port number:

nv set system api port <port-no>

Workaround: On HBN, NVUE is accessible through 8765 (i.e., default port
number).

Keywords: NVUE API; port number

Reported in HBN version: 2.3.0

3965589 Description: When SR-IOV VFs are created or deleted and recreated, some
ports may stay in ethX naming format and not be properly renamed to pfXvfY
format. This results in the port remaining in error state as when running the
command ovs-vsctl show due to the SFC and HBN not recognizing it.

Workaround: Reboot the BlueField.

Keywords: Port; nomenclature; convention

Reported in HBN version: 2.3.0

3967748 Description: The command nv show system api connections does not
return any data.

Workaround: N/A

Keywords: REST API; nginx

Reported in HBN version: 2.3.0

4004191 Description: Due to security fixes on BlueField-2, the number of context
switches increased by 20% which may result in user applications (e.g.,
nl2doca) running slower.

Workaround: N/A

Keyword: BlueField-2; performance

Reported in HBN version: 2.3.0

3769309 Description: A ping or other IP connectivity from a locally connected host in
vrf-X to an interface IP address on the DPU/HBN itself in vrf-Y will not work,
even if VRF route-leaking is enabled between these two VRFs.

Workaround: N/A

Keyword: IP

Reported in HBN version: 2.2.0

3886379 Description: Deleting and re-adding SR-IOV ports might result in some ports in
br-hbn bridge going in error state.

Workaround: If possible, an appropriate number of SR-IOV ports should be
chosen at BFB install time. But if a change is made and if the system has this
error, the host must undergo a power cycle to resolve the issue.

Keyword: Bridge; SR-IOV

Reported in HBN version: 2.2.0

3835295 Description: Traffic entering HBN service on a host PF/VF main-interface and
exiting on a sub-interface of the same PF/VF (and vice versa) is not hardware
offloaded. Similarly, traffic entering HBN service on one sub-interface and
exiting on another sub-interface of the same host PF/VF is also not hardware
offloaded.

1232

3743942 Description: HBN container may hang in init-sfs during container restart when
the HBN YAML file (i.e., /etc/kubelet.d/doca_hbn.yaml) is modified while
container is running.

Workaround: If the container hangs in init-sfs for more than 1 minute, reload
the DPU.

Keywords: Hang; container

Reported in HBN version: 2.3.0

3961387 Description: The changing of the port number for NVUE REST API using nv CLI/
API is not supported. The following command should not be used to change
the port number:

nv set system api port <port-no>

Workaround: On HBN, NVUE is accessible through 8765 (i.e., default port
number).

Keywords: NVUE API; port number

Reported in HBN version: 2.3.0

3965589 Description: When SR-IOV VFs are created or deleted and recreated, some
ports may stay in ethX naming format and not be properly renamed to pfXvfY
format. This results in the port remaining in error state as when running the
command ovs-vsctl show due to the SFC and HBN not recognizing it.

Workaround: Reboot the BlueField.

Keywords: Port; nomenclature; convention

Reported in HBN version: 2.3.0

3967748 Description: The command nv show system api connections does not
return any data.

Workaround: N/A

Keywords: REST API; nginx

Reported in HBN version: 2.3.0

4004191 Description: Due to security fixes on BlueField-2, the number of context
switches increased by 20% which may result in user applications (e.g.,
nl2doca) running slower.

Workaround: N/A

Keyword: BlueField-2; performance

Reported in HBN version: 2.3.0

3769309 Description: A ping or other IP connectivity from a locally connected host in
vrf-X to an interface IP address on the DPU/HBN itself in vrf-Y will not work,
even if VRF route-leaking is enabled between these two VRFs.

Workaround: N/A

Keyword: IP

Reported in HBN version: 2.2.0

3886379 Description: Deleting and re-adding SR-IOV ports might result in some ports in
br-hbn bridge going in error state.

Workaround: If possible, an appropriate number of SR-IOV ports should be
chosen at BFB install time. But if a change is made and if the system has this
error, the host must undergo a power cycle to resolve the issue.

Keyword: Bridge; SR-IOV

Reported in HBN version: 2.2.0

3835295 Description: Traffic entering HBN service on a host PF/VF main-interface and
exiting on a sub-interface of the same PF/VF (and vice versa) is not hardware
offloaded. Similarly, traffic entering HBN service on one sub-interface and
exiting on another sub-interface of the same host PF/VF is also not hardware
offloaded.

1233

3743942 Description: HBN container may hang in init-sfs during container restart when
the HBN YAML file (i.e., /etc/kubelet.d/doca_hbn.yaml) is modified while
container is running.

Workaround: If the container hangs in init-sfs for more than 1 minute, reload
the DPU.

Keywords: Hang; container

Reported in HBN version: 2.3.0

3961387 Description: The changing of the port number for NVUE REST API using nv CLI/
API is not supported. The following command should not be used to change
the port number:

nv set system api port <port-no>

Workaround: On HBN, NVUE is accessible through 8765 (i.e., default port
number).

Keywords: NVUE API; port number

Reported in HBN version: 2.3.0

3965589 Description: When SR-IOV VFs are created or deleted and recreated, some
ports may stay in ethX naming format and not be properly renamed to pfXvfY
format. This results in the port remaining in error state as when running the
command ovs-vsctl show due to the SFC and HBN not recognizing it.

Workaround: Reboot the BlueField.

Keywords: Port; nomenclature; convention

Reported in HBN version: 2.3.0

3967748 Description: The command nv show system api connections does not
return any data.

Workaround: N/A

Keywords: REST API; nginx

Reported in HBN version: 2.3.0

4004191 Description: Due to security fixes on BlueField-2, the number of context
switches increased by 20% which may result in user applications (e.g.,
nl2doca) running slower.

Workaround: N/A

Keyword: BlueField-2; performance

Reported in HBN version: 2.3.0

3769309 Description: A ping or other IP connectivity from a locally connected host in
vrf-X to an interface IP address on the DPU/HBN itself in vrf-Y will not work,
even if VRF route-leaking is enabled between these two VRFs.

Workaround: N/A

Keyword: IP

Reported in HBN version: 2.2.0

3886379 Description: Deleting and re-adding SR-IOV ports might result in some ports in
br-hbn bridge going in error state.

Workaround: If possible, an appropriate number of SR-IOV ports should be
chosen at BFB install time. But if a change is made and if the system has this
error, the host must undergo a power cycle to resolve the issue.

Keyword: Bridge; SR-IOV

Reported in HBN version: 2.2.0

3835295 Description: Traffic entering HBN service on a host PF/VF main-interface and
exiting on a sub-interface of the same PF/VF (and vice versa) is not hardware
offloaded. Similarly, traffic entering HBN service on one sub-interface and
exiting on another sub-interface of the same host PF/VF is also not hardware
offloaded.

1234

3743942 Description: HBN container may hang in init-sfs during container restart when
the HBN YAML file (i.e., /etc/kubelet.d/doca_hbn.yaml) is modified while
container is running.

Workaround: If the container hangs in init-sfs for more than 1 minute, reload
the DPU.

Keywords: Hang; container

Reported in HBN version: 2.3.0

3961387 Description: The changing of the port number for NVUE REST API using nv CLI/
API is not supported. The following command should not be used to change
the port number:

nv set system api port <port-no>

Workaround: On HBN, NVUE is accessible through 8765 (i.e., default port
number).

Keywords: NVUE API; port number

Reported in HBN version: 2.3.0

3965589 Description: When SR-IOV VFs are created or deleted and recreated, some
ports may stay in ethX naming format and not be properly renamed to pfXvfY
format. This results in the port remaining in error state as when running the
command ovs-vsctl show due to the SFC and HBN not recognizing it.

Workaround: Reboot the BlueField.

Keywords: Port; nomenclature; convention

Reported in HBN version: 2.3.0

3967748 Description: The command nv show system api connections does not
return any data.

Workaround: N/A

Keywords: REST API; nginx

Reported in HBN version: 2.3.0

4004191 Description: Due to security fixes on BlueField-2, the number of context
switches increased by 20% which may result in user applications (e.g.,
nl2doca) running slower.

Workaround: N/A

Keyword: BlueField-2; performance

Reported in HBN version: 2.3.0

3769309 Description: A ping or other IP connectivity from a locally connected host in
vrf-X to an interface IP address on the DPU/HBN itself in vrf-Y will not work,
even if VRF route-leaking is enabled between these two VRFs.

Workaround: N/A

Keyword: IP

Reported in HBN version: 2.2.0

3886379 Description: Deleting and re-adding SR-IOV ports might result in some ports in
br-hbn bridge going in error state.

Workaround: If possible, an appropriate number of SR-IOV ports should be
chosen at BFB install time. But if a change is made and if the system has this
error, the host must undergo a power cycle to resolve the issue.

Keyword: Bridge; SR-IOV

Reported in HBN version: 2.2.0

3835295 Description: Traffic entering HBN service on a host PF/VF main-interface and
exiting on a sub-interface of the same PF/VF (and vice versa) is not hardware
offloaded. Similarly, traffic entering HBN service on one sub-interface and
exiting on another sub-interface of the same host PF/VF is also not hardware
offloaded.

1235

3743942 Description: HBN container may hang in init-sfs during container restart when
the HBN YAML file (i.e., /etc/kubelet.d/doca_hbn.yaml) is modified while
container is running.

Workaround: If the container hangs in init-sfs for more than 1 minute, reload
the DPU.

Keywords: Hang; container

Reported in HBN version: 2.3.0

3961387 Description: The changing of the port number for NVUE REST API using nv CLI/
API is not supported. The following command should not be used to change
the port number:

nv set system api port <port-no>

Workaround: On HBN, NVUE is accessible through 8765 (i.e., default port
number).

Keywords: NVUE API; port number

Reported in HBN version: 2.3.0

3965589 Description: When SR-IOV VFs are created or deleted and recreated, some
ports may stay in ethX naming format and not be properly renamed to pfXvfY
format. This results in the port remaining in error state as when running the
command ovs-vsctl show due to the SFC and HBN not recognizing it.

Workaround: Reboot the BlueField.

Keywords: Port; nomenclature; convention

Reported in HBN version: 2.3.0

3967748 Description: The command nv show system api connections does not
return any data.

Workaround: N/A

Keywords: REST API; nginx

Reported in HBN version: 2.3.0

4004191 Description: Due to security fixes on BlueField-2, the number of context
switches increased by 20% which may result in user applications (e.g.,
nl2doca) running slower.

Workaround: N/A

Keyword: BlueField-2; performance

Reported in HBN version: 2.3.0

3769309 Description: A ping or other IP connectivity from a locally connected host in
vrf-X to an interface IP address on the DPU/HBN itself in vrf-Y will not work,
even if VRF route-leaking is enabled between these two VRFs.

Workaround: N/A

Keyword: IP

Reported in HBN version: 2.2.0

3886379 Description: Deleting and re-adding SR-IOV ports might result in some ports in
br-hbn bridge going in error state.

Workaround: If possible, an appropriate number of SR-IOV ports should be
chosen at BFB install time. But if a change is made and if the system has this
error, the host must undergo a power cycle to resolve the issue.

Keyword: Bridge; SR-IOV

Reported in HBN version: 2.2.0

3835295 Description: Traffic entering HBN service on a host PF/VF main-interface and
exiting on a sub-interface of the same PF/VF (and vice versa) is not hardware
offloaded. Similarly, traffic entering HBN service on one sub-interface and
exiting on another sub-interface of the same host PF/VF is also not hardware
offloaded.

1236

3743942 Description: HBN container may hang in init-sfs during container restart when
the HBN YAML file (i.e., /etc/kubelet.d/doca_hbn.yaml) is modified while
container is running.

Workaround: If the container hangs in init-sfs for more than 1 minute, reload
the DPU.

Keywords: Hang; container

Reported in HBN version: 2.3.0

3961387 Description: The changing of the port number for NVUE REST API using nv CLI/
API is not supported. The following command should not be used to change
the port number:

nv set system api port <port-no>

Workaround: On HBN, NVUE is accessible through 8765 (i.e., default port
number).

Keywords: NVUE API; port number

Reported in HBN version: 2.3.0

3965589 Description: When SR-IOV VFs are created or deleted and recreated, some
ports may stay in ethX naming format and not be properly renamed to pfXvfY
format. This results in the port remaining in error state as when running the
command ovs-vsctl show due to the SFC and HBN not recognizing it.

Workaround: Reboot the BlueField.

Keywords: Port; nomenclature; convention

Reported in HBN version: 2.3.0

3967748 Description: The command nv show system api connections does not
return any data.

Workaround: N/A

Keywords: REST API; nginx

Reported in HBN version: 2.3.0

4004191 Description: Due to security fixes on BlueField-2, the number of context
switches increased by 20% which may result in user applications (e.g.,
nl2doca) running slower.

Workaround: N/A

Keyword: BlueField-2; performance

Reported in HBN version: 2.3.0

3769309 Description: A ping or other IP connectivity from a locally connected host in
vrf-X to an interface IP address on the DPU/HBN itself in vrf-Y will not work,
even if VRF route-leaking is enabled between these two VRFs.

Workaround: N/A

Keyword: IP

Reported in HBN version: 2.2.0

3886379 Description: Deleting and re-adding SR-IOV ports might result in some ports in
br-hbn bridge going in error state.

Workaround: If possible, an appropriate number of SR-IOV ports should be
chosen at BFB install time. But if a change is made and if the system has this
error, the host must undergo a power cycle to resolve the issue.

Keyword: Bridge; SR-IOV

Reported in HBN version: 2.2.0

3835295 Description: Traffic entering HBN service on a host PF/VF main-interface and
exiting on a sub-interface of the same PF/VF (and vice versa) is not hardware
offloaded. Similarly, traffic entering HBN service on one sub-interface and
exiting on another sub-interface of the same host PF/VF is also not hardware
offloaded.

1237

3743942 Description: HBN container may hang in init-sfs during container restart when
the HBN YAML file (i.e., /etc/kubelet.d/doca_hbn.yaml) is modified while
container is running.

Workaround: If the container hangs in init-sfs for more than 1 minute, reload
the DPU.

Keywords: Hang; container

Reported in HBN version: 2.3.0

3961387 Description: The changing of the port number for NVUE REST API using nv CLI/
API is not supported. The following command should not be used to change
the port number:

nv set system api port <port-no>

Workaround: On HBN, NVUE is accessible through 8765 (i.e., default port
number).

Keywords: NVUE API; port number

Reported in HBN version: 2.3.0

3965589 Description: When SR-IOV VFs are created or deleted and recreated, some
ports may stay in ethX naming format and not be properly renamed to pfXvfY
format. This results in the port remaining in error state as when running the
command ovs-vsctl show due to the SFC and HBN not recognizing it.

Workaround: Reboot the BlueField.

Keywords: Port; nomenclature; convention

Reported in HBN version: 2.3.0

3967748 Description: The command nv show system api connections does not
return any data.

Workaround: N/A

Keywords: REST API; nginx

Reported in HBN version: 2.3.0

4004191 Description: Due to security fixes on BlueField-2, the number of context
switches increased by 20% which may result in user applications (e.g.,
nl2doca) running slower.

Workaround: N/A

Keyword: BlueField-2; performance

Reported in HBN version: 2.3.0

3769309 Description: A ping or other IP connectivity from a locally connected host in
vrf-X to an interface IP address on the DPU/HBN itself in vrf-Y will not work,
even if VRF route-leaking is enabled between these two VRFs.

Workaround: N/A

Keyword: IP

Reported in HBN version: 2.2.0

3886379 Description: Deleting and re-adding SR-IOV ports might result in some ports in
br-hbn bridge going in error state.

Workaround: If possible, an appropriate number of SR-IOV ports should be
chosen at BFB install time. But if a change is made and if the system has this
error, the host must undergo a power cycle to resolve the issue.

Keyword: Bridge; SR-IOV

Reported in HBN version: 2.2.0

3835295 Description: Traffic entering HBN service on a host PF/VF main-interface and
exiting on a sub-interface of the same PF/VF (and vice versa) is not hardware
offloaded. Similarly, traffic entering HBN service on one sub-interface and
exiting on another sub-interface of the same host PF/VF is also not hardware
offloaded.

1238

1.

2.

3.

17.8.2.4 Bug Fixes
The following table lists the known issues which have been fixed for this release of HBN.

17.8.3 HBN Service Deployment

17.8.3.1 HBN Service Requirements

The following subsections describe specific prerequisites for the BlueField before deploying the
DOCA HBN Service.

17.8.3.1.1 Enabling BlueField DPU Mode

HBN requires BlueField to work in either DPU mode or zero-trust mode of operation. Information
about configuring BlueField modes of operation can be found under "NVIDIA BlueField Modes of
Operation".

17.8.3.1.2 Enabling SFC

HBN requires SFC configuration to be activated on the BlueField before running the HBN service
container. SFC allows for additional services/containers to be chained to HBN and provides
additional data manipulation capabilities. SFC can be configured in 3 modes:

HBN-only mode – In this mode, one OVS bridge is created, br-hbn . All HBN-specific ports are
added to this bridge. This is the default mode of operation. This mode is configured by
setting ENABLE_BR_HBN=yes in bf.cfg and leaving ENABLE_BR_SFC to default.

Dual bridge mode – In this mode, 2 OVS bridges are created, br-hbn and bf-sfc . All HBN-

specific ports are added to bf-sfc bridge and all these ports are patched into the br-hbn

bridge. bf-sfc can be used to add various custom steering flows to direct traffic across

different ports in the bridge. In this mode, both ENABLE_BR_SFC and ENABLE_BR_HBN are

set as to yes . BR_HBN_XXX parameters are not set and all ports are under BR_SFC_XXX
variables.
Mixed mode – this is similar to the dual bridge model, except that ports can be assigned to
either of the bridges (i.e., some ports in br-hbn and some in br-sfc bridge). In this mode,

ports are under BR_SFC_XXX and BR_HBN_XXX .

The use of the bridge br-sfc allows defining deployment-specific rules before or after HBN

pipeline. User can add OpenFlow rules directly to bf-sfc bridge. If

ENABLE_BR_SFC_DEFAULT_FLOWS is set to yes , make sure user rules are inserted at higher
priority to make it effective.

The following table describes various bf.cfg parameters used to configure these modes as well as
other parameters which assign ports to various bridges:

Refer to the "HBN Service Release Notes" page for information on the specific hardware and
software requirements for HBN.

1239

Parameter Description Mandato
ry

Default Value Example

ENABLE_BR_HBN Setting this parameter to
yes enables the br-hbn
bridge

Yes no

ENABLE_BR_HBN=yes

ENABLE_BR_SFC Setting this parameter to
yes enables the br-sfc
bridge

No no

ENABLE_BR_SFC=no

BR_HBN_UPLINKS Uplinks added to br-hbn
directly

No p0,p1

BR_HBN_UPLINKS="p0,
p1"

BR_SFC_UPLINKS Uplinks added to br-sfc
directly

No ""

BR_SFC_UPLINKS=""

BR_HBN_REPS PFs and VFs added to br-hbn
directly

No ""

BR_HBN_REPS="pf0hpf
,pf1hpf,pf0vf0-
pf0vf12,pf1vf0-
pf1vf4"

BR_SFC_REPS PFs and VFs added to br-sfc
directly

No ""

BR_SFC_REPS=""

BR_HBN_SFS DPU ports added to br-hbn
directly. These ports are
mostly service ports present
on the DPU which require
using HBN network offload
services.

No ""

BR_HBN_SFS=svc1,svc
2

BR_SFC_SFS DPU ports added to br-sfc
directly

No ""

BR_SFC_SFS=svc1,svc
2

BR_HBN_SFC_PAT

CH_PORTS

Patch ports added to br-sfc .
These are general purpose
ports meant for muxing or
demuxing of traffic across
various PF/VF ports.

No

BR_HBN_SFC_PATCH_PO
RTS=patch1

This setting is
necessary to work
with HBN.

This is only needed
when the second
OVS bridge is
required for custom
steering flows.

1240

1.
2.

a.

b.
c.

d.

e.

Parameter Description Mandato
ry

Default Value Example

LINK_PROPAGATI

ON

Mapping of how link
propagation should work. If
nothing is provided, each
uplink/PF/VF port reflects its
status in its corresponding
HBN port. For example, the
status of p0 is reflected in
p0_if .

No Uplink/PF/VF to the
corresponding HBN
port

LINK_PROPAGATION=""

ENABLE_BR_SFC_

DEFAULT_FLOWS

This parameter is used to
provide default connectivity
in the br-sfc bridge so that
each port can send traffic to
its corresponding output port

No no

ENABLE_BR_SFC_DEFAU
LT_FLOWS=yes

The following subsections provide additional information about SFC and instructions on enabling it
during BlueField DOCA image installation.

17.8.3.1.2.1 Deploying BlueField DOCA Image with SFC from Host

For DOCA image installation on BlueField, the user should follow the instructions under NVIDIA DOCA
Installation Guide for Linux with the following extra notes to enable BlueField for HBN setup:

Make sure link type is set to ETH under the "Installing Software on Host" section.
Add the following parameters to the bf.cfg configuration file:

This configuration example is relevant for "HBN-only mode". Set the appropriate
variables and values depending on your deployment model.
Enable HBN specific OVS bridge on BlueField Arm by setting ENABLE_BR_HBN=yes.
Define the uplink ports to be used by HBN BR_HBN_UPLINKS='<port>' .

Include PF and VF ports to be used by HBN. The following example sets both PFs and 8
VFs on each uplink: BR_HBN_REPS='pf0hpf,pf1hpf,pf0vf0-pf0vf7,pf1vf0-pf1vf7' .
(Optional) Include SF devices to be created and connected to HBN bridge on the
BlueField Arm side by setting BR_HBN_SFS='pf0dpu1,pf0dpu3' .

More detail about port connectivity in each mode is provided in section "HBN Deployment
Configuration".

Must include both ports (i.e., p0,p1) for dual-port BlueField devices and only

p0 for single-port BlueField devices.

If nothing is provided, pf0dpu1 and pf0dpu3 are created by default.

1241

3.

4.
•

•

•

Then run:

bfb-install -c bf.cfg -r rshim0 -b <BFB-image>

Once SFC deployment is done, it creates 3 set of files:
/etc/mellanox/hbn.conf – this file can be used to redeploy SFC without the need to

pass through bf.cfg again to modify interface mapping

/etc/mellanox/sfc.conf – this file provides a view of how various ports are
connected in different bridges
/etc/mellanox/mlnx-sf.conf – this file includes all the HBN ports to be created and
corresponding commands to create the port

17.8.3.1.2.2 Deploying BlueField DOCA Image with SFC Using PXE Boot

To enable HBN SFC using a PXE installation environment with BFB content, use the following
configuration for PXE:

bfnet=<IFNAME>:<IPADDR>:<NETMASK> or <IFNAME>:dhcp
bfks=<URL of the kickstart script>

The kickstart script (bash) should include the following lines:

cat >> /etc/bf.cfg << EOF

ENABLE_BR_HBN=yes
BR_HBN_UPLINKS='p0,p1'
BR_HBN_REPS='pf0hpf,pf1hpf,pf0vf0-pf0vf7,pf1vf0-pf1vf7'
BR_HBN_SFS='pf0dpu1,pf0dpu3'
EOF

The /etc/bf.cfg generated above is sourced by the BFB install.sh script.

While older formats of bf.cfg still work in this release, they will be
deprecated over the next 2 releases. So, its advisable to move to the new
format to avoid any upgrade issues in future releases. The following is an
example for the old bf.cfg format:

ENABLE_SFC_HBN=yes
NUM_VFs_PHYS_PORT0=12 # <num VFs supported by HBN on Physical Port 0> (valid range:
0-127) Default 14
NUM_VFs_PHYS_PORT1=2 # <num VFs supported by HBN on Physical Port 1> (valid range:
0-127) Default 0

It is recommended to verify the accuracy of the BlueField's clock post-installation. This can
be done using the following command:

$ date

Please refer to the known issues listed in the "NVIDIA DOCA Release Notes" for more
information.

1242

1.
2.

17.8.3.1.2.3 Redeploying SFC from BlueField

Redeploying SFC from BlueField can be done after the DPU has already been deployed using bf.cfg
and either port mapping or bridge configuration needs to be change.

To redeploy SFC from BlueField:

Edit /etc/mellanox/hbn.conf by adding or removing entries in each segment as necessary.
Rerun the SFC install script:

/opt/mellanox/sfc-hbn/install.sh -c -r

This generates a new set of sfc.conf and mlnx-sf.conf and reloads the DPU.

Configuration and reload can be split into 2 steps by removing the -r option and rebooting
BlueField post configuration.

After the BlueField reloads, the command ovs-vsctl show should show all the new ports and
bridges configured in OVS.

17.8.3.1.2.4 Deploying HBN with Other Services

When the HBN container is deployed by itself, BlueField Arm is configured with 3k huge pages. If it
is deployed with other services, the actual number of huge-pages must be adjusted based on the
requirements of those services. For example, SNAP or NVMesh may need approximately 1k to 5k
huge pages. So, if HBN is running with either of these services on the same BlueField, the total
number of hugepages must be set to the sum of the hugepage requirement of all the services.

For example, if NVMesh needs 3k hugepages, 6k total hugepages must be set when running with
HBN. To do that, add the following parameters to the bf.cfg configuration file alongside other
desired parameters.

HUGEPAGE_COUNT=6144

17.8.3.2 Launching HBN Service

17.8.3.2.1 HBN Service Container Deployment

HBN service is available on NGC, NVIDIA's container catalog. For information about the deployment
of DOCA containers on top of the BlueField, refer to NVIDIA DOCA Container Deployment Guide.

17.8.3.2.1.1 Downloading DOCA Container Resource File

Pull the latest DOCA container resource as a *.zip file from NGC and extract it to the <resource>

folder (doca_container_configs_2.7.0v1 in this example):

This should be performed only on a BlueField-3 running with 32G of memory. Doing this on
16G system may cause memory issues for various applications on BlueField Arm.
Also, HBN with other services is qualified only for 16 VFs.

https://catalog.ngc.nvidia.com/orgs/nvidia/teams/doca/containers/doca_hbn

1243

1.
2.
3.
4.

5.
6.
7.

1.

wget https://api.ngc.nvidia.com/v2/resources/nvidia/doca/doca_container_configs/versions/2.7.0v1/zip -O
doca_container_configs_2.7.0v1.zip
unzip -o doca_container_configs_2.7.0v1.zip -d doca_container_configs_2.7.0v1

17.8.3.2.1.2 Running HBN Preparation Script

The HBN script (hbn-dpu-setup.sh) performs the following steps on BlueField Arm which are
required for HBN service to run:

Sets the BlueField to DPU mode if needed.
Enables IPv4/IPv6 kernel forwarding.
Sets up interface MTU if needed.
Sets up mount points between BlueField Arm and HBN container for logs and configuration
persistency.
Sets up various paths as needed by supervisord and other services inside container.
Enables the REST API access if needed.
Creates or updates credentials

The script is located in <resource>/scripts/doca_hbn/<hbn_version>/ folder, which is
downloaded as part of the DOCA Container Resource.

Run the following commands to execute the hbn-dpu-setup.sh script:

cd <resource>/scripts/doca_hbn/2.3.0/
chmod +x hbn-dpu-setup.sh
sudo ./hbn-dpu-setup.sh

The following is the help menu for the hbn-dpu-setup.sh script:

./hbn-dpu-setup.sh -h
usage: hbn-dpu-setup.sh
hbn-dpu-setup.sh -m|--mtu <MTU> Use <MTU> bytes for all HBN interfaces (default 9216)
hbn-dpu-setup.sh -u|--username <username> User creation
hbn-dpu-setup.sh -p|--password <password> Password for --username <username>
hbn-dpu-setup.sh -e|--enable-rest-api-access Enable REST API from external IPs
hbn-dpu-setup.sh -h|--help

Enabling REST API Access

To enable the REST API access:

Change the default password for the nvidia username:

•
•

•
•

•

•

Optional

To achieve the desired configuration on HBN's first boot, before running preparation script,
users can update default NVUE or flat (network interfaces and FRR) configuration files,
which are located in <resource>/scripts/doca_hbn/<hbn_version>/ .

For NVUE-based configuration:
etc/nvue.d/startup.yaml

For flat-files based configuration:
etc/network/interfaces

etc/frr/frr.conf

etc/frr/daemons

1244

2.

3.

1.
a.

b.

c.

d.

2.

3.

./hbn-dpu-setup.sh -u nvidia -p <new-password>

Enable REST API:

./hbn-dpu-setup.sh --enable-rest-api-access

Perform BlueField system-level reset.

17.8.3.2.1.3 Spawning HBN Container

HBN container .yaml configuration is called doca_hbn.yaml and it is located in <resource>/

configs/<doca_version>/ directory. To spawn the HBN container, simply copy the doca_hbn.yaml

file to the /etc/kubelet.d directory:

cd <resource>/configs/2.8.0/
sudo cp doca_hbn.yaml /etc/kubelet.d/

Kubelet automatically pulls the container image from NGC and spawns a pod executing the
container. The DOCA HBN Service starts executing right away.

17.8.3.2.1.4 Verifying HBN Container is Running

To inspect the HBN container and verify if it is running correctly:

Check HBN pod and container status and logs:
Examine the currently active pods and their IDs (it may take up to 20 seconds for the
pod to start):

sudo crictl pods

View currently active containers and their IDs:

sudo crictl ps

Examine logs of a given container:

sudo crictl logs

Examine kubelet logs if something did not work as expected:

sudo journalctl -u kubelet@mgmt

Log into the HBN container:

sudo crictl exec -it $(crictl ps | grep hbn | awk '{print $1;}') bash

While logged into HBN container, verify that the frr , nl2doca , and neighmgr services are
running:

(hbn-container)$ supervisorctl status frr
(hbn-container)$ supervisorctl status nl2doca
(hbn-container)$ supervisorctl status neighmgr

1245

4.

•

•

•
•

•

•

Users may also examine various logs under /var/log inside the HBN container.

17.8.3.2.2 HBN Deployment Configuration

The HBN service comes with four types of configurable interfaces:

Two uplinks (p0_if , p1_if)

Two PF port representors (pf0hpf_if , pf1hpf_if)

User-defined number of VFs (i.e., pf0vf0_if , pf0vf1_if , …, pf1vf0_if , pf1vf1_if , …)
DPU interfaces to connect to services running on BlueField, outside of the HBN container
(pf0dpu1_if and pf0dpu3_if)

The *_if suffix indicates that these are sub-functions and are different from the physical uplinks
(i.e., PFs, VFs). They can be viewed as virtual interfaces from a virtualized BlueField.

Each of these interfaces is connected outside the HBN container to the corresponding physical
interface, see section "Service Function Chaining" (SFC) for more details.

The HBN container runs as an isolated namespace and does not see any interfaces outside the
container (oob_net0 , real uplinks and PFs, *_if_r representors).

17.8.3.2.2.1 HBN-only Deployment Configuration

This is the default deployment model of HBN. In this model, only one OVS bridge is created.

The following is a sample bf.cfg and the resulting OVS and port configurations:

Sample bf.cfg :

bf.cfg

BR_HBN_UPLINKS="p0,p1"
BR_HBN_REPS="pf0hpf,pf1hpf,pf0vf0-pf0vf12,pf1vf0-pf1vf1"
BR_HBN_SFS="svc1,svc2"

Generated hbn.conf :

Generated hbn.conf

[BR_HBN_UPLINKS]
p0
p1
[BR_HBN_REPS]
pf0hpf
pf0vf0
pf0vf1
pf0vf2
pf0vf3
pf0vf4
pf0vf5
pf0vf6
pf0vf7
pf0vf8
pf0vf9
pf0vf10
pf0vf11
pf0vf12
pf1hpf
pf1vf0
pf1vf1

[BR_HBN_SFS]
svc1

1246

svc2

[BR_SFC_UPLINKS]

[BR_SFC_REPS]

[BR_SFC_SFS]

[BR_HBN_SFC_PATCH_PORTS]

[LINK_PROPAGATION]
p0:p0_if_r
p1:p1_if_r
pf0hpf:pf0hpf_if_r
pf0vf0:pf0vf0_if_r
pf0vf1:pf0vf1_if_r
pf0vf2:pf0vf2_if_r
pf0vf3:pf0vf3_if_r
pf0vf4:pf0vf4_if_r
pf0vf5:pf0vf5_if_r
pf0vf6:pf0vf6_if_r
pf0vf7:pf0vf7_if_r
pf0vf8:pf0vf8_if_r
pf0vf9:pf0vf9_if_r
pf0vf10:pf0vf10_if_r
pf0vf11:pf0vf11_if_r
pf0vf12:pf0vf12_if_r
pf1hpf:pf1hpf_if_r
pf1vf0:pf1vf0_if_r
pf1vf1:pf1vf1_if_r
svc1_r:svc1_if_r
svc2_r:svc2_if_r

[ENABLE_BR_SFC]

[ENABLE_BR_SFC_DEFAULT_FLOWS]

17.8.3.2.2.2 Dual Bridge HBN Deployment Configuration

The following is a sample bf.cfg and the resulting OVS and port configurations:

1247

•

•

Sample bf.cfg :

bf.cfg

BR_HBN_UPLINKS=""
BR_SFC_UPLINKS="p0,p1"
BR_HBN_REPS=""
BR_SFC_REPS="pf0hpf,pf1hpf,pf0vf0-pf0vf1,pf1vf0-pf1vf1"
BR_HBN_SFS=""
BR_SFC_SFS=""
BR_HBN_SFC_PATCH_PORTS="tss0"
LINK_PROPAGATION="pf0hpf:tss0"
ENABLE_BR_SFC=yes
ENABLE_BR_SFC_DEFAULT_FLOWS=yes

Generated hbn.conf :

Generated hbn.conf

[BR_HBN_UPLINKS]

[BR_HBN_REPS]

[BR_HBN_SFS]

[BR_SFC_UPLINKS]
p0
p1

[BR_SFC_REPS]
pf0hpf
pf0vf0
pf0vf1
pf1hpf
pf1vf0
pf1vf1

[BR_SFC_SFS]

[BR_HBN_SFC_PATCH_PORTS]
tss0

[LINK_PROPAGATION]
pf0hpf:tss0
p0:p0_if_r
p1:p1_if_r
pf0vf0:pf0vf0_if_r
pf0vf1:pf0vf1_if_r
pf1hpf:pf1hpf_if_r
pf1vf0:pf1vf0_if_r
pf1vf1:pf1vf1_if_r

[ENABLE_BR_SFC]
yes

[ENABLE_BR_SFC_DEFAULT_FLOWS]
yes

1248

•

•

17.8.3.2.2.3 Mixed Mode HBN Deployment Configuration

The following is a sample bf.cfg and the resulting OVS and port configurations:

Sample bf.cfg :

bf.cfg

BR_HBN_UPLINKS="p1"
BR_SFC_UPLINKS="p0"
BR_HBN_REPS="pf1hpf,pf0vf0"
BR_SFC_REPS="pf0hpf,pf0vf1"
BR_HBN_SFS="svc1,svc2"
BR_SFC_SFS="ovn"
BR_HBN_SFC_PATCH_PORTS="tss0"
LINK_PROPAGATION="pf0hpf:tss0"
ENABLE_BR_SFC=yes
ENABLE_BR_SFC_DEFAULT_FLOWS=yes

Generated hbn.conf :

Generated hbn.conf

[BR_HBN_UPLINKS]
p1

[BR_HBN_REPS]
pf0vf0
pf1hpf

[BR_HBN_SFS]
svc1
svc2

[BR_SFC_UPLINKS]
p0

[BR_SFC_REPS]
pf0hpf
pf0vf1

[BR_SFC_SFS]

1249

•

•

•

ovn

[BR_HBN_SFC_PATCH_PORTS]
tss0

[LINK_PROPAGATION]
pf0hpf:tss0
p1:p1_if_r
p0:p0_if_r
pf0vf0:pf0vf0_if_r
pf0hpf:pf0hpf_if_r
pf0vf1:pf0vf1_if_r
pf1hpf:pf1hpf_if_r
svc1_r:svc1_if_r
svc2_r:svc2_if_r
ovn_r:ovn_if_r

[ENABLE_BR_SFC]
yes

[ENABLE_BR_SFC_DEFAULT_FLOWS]
yes

17.8.3.2.3 HBN Deployment Considerations

17.8.3.2.3.1 SF Interface State Tracking

When HBN is deployed with SFC, the interface state of the following network devices is propagated
to their corresponding SFs:

Uplinks – p0 , p1

PFs – pf0hpf , pf1hpf

VFs – pf0vfX , pf1vfX where X is the VF number

For example, if the p0 uplink cable gets disconnected:

1250

•

•

•

•

p0 transitions to DOWN state with NO-CARRIER (default behavior on Linux); and

p0 state is propagated to p0_if whose state also becomes DOWN with NO-CARRIER

After p0 connection is reestablished:

p0 transitions to UP state; and

p0 state is propagated to p0_if whose state becomes UP

Interface state propagation only happens in the uplink/PF/VF-to-SF direction.

A daemon called sfc-state-propagation runs on BlueField, outside of the HBN container, to sync
the state. The daemon listens to netlink notifications for interfaces and transfers the state to SFs.

17.8.3.2.3.2 SF Interface MTU

In the HBN container, all the interfaces MTU are set to 9216 by default. MTU of specific interfaces
can be overwritten using flat-files configuration or NVUE.

On BlueField side (i.e., outside of the HBN container), the MTU of the uplinks, PFs and VFs
interfaces are also set to 9216. This can be changed by modifying /etc/systemd/network/30-hbn-

mtu.network or by adding a new configuration file in the /etc/systemd/network for specific
directories.

To reload this configuration, run:

systemctl restart systemd-networkd

17.8.3.2.3.3 Connecting to DOCA Services to HBN on BlueField Arm

There are various SF ports (named pf0dpuX_if , where X is [0..n]) on BlueField Arm, which can be
used to run any services on BlueField and use HBN to provide network connectivity. These ports can
have a flexible naming convention based on the service name. For example, to support OVN service,
it can create an interface named ovn which can be used by the OVN service running on the

BlueField Arm, and it will get a corresponding HBN port named ovn_if . These interfaces are

created using either BR_SFC_SFS or BR_HBN_SFS based on which the bridge needs the service
interface and mode of service deployment.

Traffic between BlueField and the outside world is hardware-accelerated when the HBN side port is
an L3 interface or access-port using switch virtual interface (SVI). So, it is treated the same way as
PF or VF ports from a traffic handling standpoint.

17.8.3.2.3.4 Disabling BlueField Uplinks

The uplink ports must be always kept administratively up for proper operation of HBN. Otherwise,
the NVIDIA® ConnectX® firmware would bring down the corresponding representor port which would
cause data forwarding to stop.

There are 2 SF port pairs created by default on BlueField Arm side so there can be 2
separate DOCA services running at same time.

1251

1.

2.

When using ECMP failover on the two uplink SFs, locally disabling one uplink does not result in
traffic switching to the second uplink. Disabling local link in this case means to set one uplink admin
DOWN directly on BlueField.

To test ECMP failover scenarios correctly, the uplink must be disabled from its remote counterpart
(i.e., execute admin DOWN on the remote system's link which is connected to the uplink).

17.8.3.2.3.5 HBN NVUE User Credentials

The preconfigured default user credentials are as follows:

Username nvidia

Password nvidia

NVUE user credentials can be added post installation:

This can be done by specifying additional –-username and –-password to the HBN startup
script (refer to "Running HBN Preparation Script"). For example:

sudo ./hbn-dpu-setup.sh -u newuser -p newpassword

After executing this script, respawn the container or start the decrypt-user-add script
inside running HBN container:

supervisorctl start decrypt-user-add
decrypt-user-add: started

The script creates a new user in the HBN container:

cat /etc/passwd | grep newuser
newuser:x:1001:1001::/home/newuser:/bin/bash

17.8.3.2.3.6 HBN NVUE Interface Classification

Interface Interface Type NVUE Type

p0_if Uplink representor swp

p1_if Uplink representor swp

lo Loopback loopback

pf0hpf_if Host representor swp

pf1hpf_if Host representor swp

pf0vfx_if (where x is 0-255) VF representor swp

pf1vfx_if (where x is 0-255) VF representor swp

Change in operational status of uplink (e.g., carrier down) would result in traffic being
switched to the other uplink.

1252

•

•

•

•

•

•

•

17.8.3.2.3.7 HBN Files Persistence

The following directories are mounted from BlueField Arm to the HBN container namespace and are
persistent across HBN service restarts and BlueField reboots:

BlueField Arm Mount Point HBN Container Mount Point

Configuration file
mount points

/var/lib/hbn/etc/network/ /etc/network/

/var/lib/hbn/etc/frr/ /etc/frr/

/var/lib/hbn/etc/nvue.d/ /etc/nvue.d/

/var/lib/hbn/etc/supervisor/conf.d/ /etc/supervisor/conf.d/

/var/lib/hbn/var/lib/nvue/ /var/lib/nvue/

Support and log file
mount points

/var/lib/hbn/var/support/ /var/support/

/var/log/doca/hbn/ /var/log/hbn/

17.8.3.2.3.8 SR-IOV Support in HBN

Creating SR-IOV VFs on Host

The first step to use SR-IOV is to create Virtual Functions (VFs) on the host server.

VFs can be created using the following command:

sudo echo N > /sys/class/net/<host-rep>/device/sriov_numvfs

Where:

<host-rep> is one of the two host representors (e.g., ens1f0 or ens1f1)

0≤ N ≤16 is the desired total number of VFs

Set N =0 to delete all the VFs on 0≤N≤16

N =16 is the maximum number of VFs supported on HBN across all representors

Automatic Creation of VF Representors and SF Devices on BlueField

VFs created on the host must have corresponding VF representor devices and SF devices for HBN on
BlueField side. For example:

ens1f0vf0 is the first SR-IOV VF device from the first host representor; this interface is
created on the host server
pf0vf0 is the corresponding VF representor device to ens1f0vf0 ; this device is present on

the BlueField Arm side and automatically created at the same time as ens1f0vf0 is created
by the user on the host side
pf0vf0_if is the corresponding SF device for pf0vf0 which is used to connect the VF to
HBN pipeline

1253

•

•

The creation of the SF device for VFs is done ahead of time when provisioning the BlueField and
installing the DOCA image on it, see section "Enabling SFC" to see how to select how many SFs to
create ahead of time.

The SF devices for VFs (i.e., pfXvfY) are pre-mapped to work with the corresponding VF
representors when these are created with the command from the previous step.

17.8.3.2.3.9 Management VRF

Two management VRFs are automatically configured for HBN when BlueField is deployed with SFC:

The first management VRF is outside the HBN container on BlueField. This VRF provides
separation between out-of-band (OOB) traffic (via oob_net0 or tmfifo_net0) and data-
plane traffic via uplinks and PFs.
The second management VRF is inside the HBN container and provides similar separation. The
OOB traffic (via eth0) is isolated from the traffic via the *_if interfaces.

MGMT VRF on BlueField Arm

The management (mgmt) VRF is enabled by default when the BlueField is deployed with SFC (see
section "Enabling SFC"). The mgmt VRF provides separation between the OOB management network
and the in-band data plane network.

The uplinks and PFs/VFs use the default routing table while the oob_net0 (OOB Ethernet port) and

the tmifo_net0 netdevices use the mgmt VRF to route their packets.

When logging in either via SSH or the console, the shell is by default in mgmt VRF context. This is
indicated by a mgmt added to the shell prompt:

root@bf2:mgmt:/home/ubuntu#
root@bf2:mgmt:/home/ubuntu# ip vrf identify
mgmt.

When logging into the HBN container with crictl , the HBN shell will be in the default VRF. Users

must switch to MGMT VRF manually if OOB access is required. Use ip vrf exec to do so.

root@bf2:mgmt:/home/ubuntu# ip vrf exec mgmt bash

The user must run ip vrf exec mgmt to perform operations requiring OOB access (e.g., apt-get
update).

Network devices belonging to the mgmt VRF can be listed with the vrf utility:

root@bf2:mgmt:/home/ubuntu# vrf link list

VRF: mgmt

tmfifo_net0 UP 00:1a:ca:ff:ff:03 <BROADCAST,MULTICAST,UP,LOWER_UP>
oob_net0 UP 08:c0:eb:c0:5a:32 <BROADCAST,MULTICAST,UP,LOWER_UP>

root@bf2:mgmt:/home/ubuntu# vrf help
vrf <OPTS>

VRF domains:
 vrf list

Links associated with VRF domains:
 vrf link list [<vrf-name>]

1254

•
•
•
•

•

•

Tasks and VRF domain asociation:
 vrf task exec <vrf-name> <command>
 vrf task list [<vrf-name>]
 vrf task identify <pid>

 NOTE: This command affects only AF_INET and AF_INET6 sockets opened by the
 command that gets exec'ed. Specifically, it has *no* impact on netlink
 sockets (e.g., ip command).

To show the routing table for the default VRF, run:

root@bf2:mgmt:/home/ubuntu# ip route show

To show the routing table for the mgmt VRF, run:

root@bf2:mgmt:/home/ubuntu# ip route show vrf mgmt

MGMT VRF Inside HBN Container

Inside the HBN container, a separate mgmt VRF is present. Similar commands as those listed under
section "MGMT VRF on BlueField Arm" can be used to query management routes.

The *_if interfaces use the default routing table while the eth0 (OOB) uses the mgmt VRF to

route out-of-band packets out of the container. The OOB traffic gets NATed through the oob_net0
interface on BlueField Arm, ultimately using the BlueField OOB's IP address.

When logging into the HBN container via crictl , the shell enters the default VRF context by

default. Switching to the mgmt VRF can be done using the command ip vrf exec mgmt <cmd> .

Existing Services in MGMT VRF on BlueField Arm

On the BlueField Arm, outside the HBN container, a set of existing services run in the mgmt VRF
context as they need OOB network access:

containerd
kubelet
ssh
docker

These services can be restarted and queried for their status using the command systemctl while

adding @mgmt to the original service name. For example:

To restart containerd:

root@bf2:mgmt:/home/ubuntu# systemctl restart containerd@mgmt

To query containerd status:

root@bf2:mgmt:/home/ubuntu# systemctl status containerd@mgmt

Running New Service in MGMT VRF on BlueField Arm

The original version of these services (without @mgmt) are not used and must not be
started.

1255

1.

2.

3.

•

•

If a service needs OOB access to run, it can be added to the set of services running in mgmt VRF
context. Adding such a service is only possible on the BlueField Arm (i.e., outside the HBN
container).

To add a service to the set of mgmt VRF services:

Add it to /etc/vrf/systemd.conf (if it is not present already). For example, NTP is already
listed in this file.
Run the following:

root@bf2:mgmt:/home/ubuntu# systemctl daemon-reload

Stop and disable to the non-VRF version of the service to be able to start the mgmt VRF one:

root@bf2:mgmt:/home/ubuntu# systemctl stop ntp
root@bf2:mgmt:/home/ubuntu# systemctl disable ntp
root@bf2:mgmt:/home/ubuntu# systemctl enable ntp@mgmt
root@bf2:mgmt:/home/ubuntu# systemctl start ntp@mgmt

17.8.4 HBN Service Configuration
To start configuring HBN, log into the HBN container:

sudo crictl exec -it $(crictl ps | grep hbn | awk '{print $1;}') bash

17.8.4.1 General Network Configuration

17.8.4.1.1 Flat Files Configuration

Add network interfaces and FRR configuration files to HBN to achieve the desired configuration:

/etc/network/interfaces

/etc/frr/frr.conf ; /etc/frr/daemons

17.8.4.2 NVUE Configuration
This section assumes familiarity with NVIDIA user experience (NVUE) Cumulus Linux documentation.
The following subsections, only expand on HBN-specific aspects of NVUE.

17.8.4.2.1 NVUE Service

HBN installs NVUE by default and enables NVUE service at boot.

Refer to NVIDIA® Cumulus® Linux documentation for more information.

Refer to NVIDIA® Cumulus® Linux documentation for more information.

https://docs.nvidia.com/networking-ethernet-software/cumulus-linux/System-Configuration/NVIDIA-User-Experience-NVUE/
https://docs.nvidia.com/networking-ethernet-software/cumulus-linux/Layer-3/FRRouting/
https://docs.nvidia.com/networking-ethernet-software/cumulus-linux/Layer-3/FRRouting/

1256

•

•

•

17.8.4.2.2 NVUE REST API

HBN enables the REST API by default but with localhost access. The user cannot access REST API
from the outside by default.

To enable REST API access, please refer to section "Enable REST API Access".

Users may run the cURL commands from the command line. Use the default HBN username, nvidia ,
and password which must be updated when enabling the REST API using the HBN preparation script.

To change the default password of the nvidia user or add additional users for NVUE access, refer
to section "HBN NVUE User Credentials".

REST API example:

curl -u 'nvidia:nvidia' --insecure https://<mgmt_ip>:8765/nvue_v1/vrf/default/router/bgp
{
 "configured-neighbors": 2,
 "established-neighbors": 2,
 "router-id": "10.10.10.201"
}

17.8.4.2.2.1 NVUE REST API Management Through CLI
To enable the REST API service, run:

nv set system api state enabled

To disable the REST API service:

nv set system api state disabled

To bind the REST API service to a specific address:

nv set system api listening-address <localhost|ipv4|ipv6|0.0.0.0>

17.8.4.2.3 NVUE CLI

For information about using the NVUE CLI, refer to the NVUE CLI documentation

17.8.4.2.4 NVUE Startup Configuration File

When the network configuration is saved using NVUE, HBN writes the configuration to the /etc/

nvue.d/startup.yaml file.

Startup configuration is applied by following the supervisor daemon at boot time. nvued-startup w

ill appear in EXITED state after applying the startup configuration.

supervisorctl status nvued-startup
nvued-startup EXITED Apr 17 10:04 AM

For information about using the NVUE REST API, refer to the NVUE API documentation.

https://docs.nvidia.com/networking-ethernet-software/cumulus-linux/System-Configuration/NVIDIA-User-Experience-NVUE/#nvue-cli
https://docs.nvidia.com/networking-ethernet-software/cumulus-linux/api/index.html

1257

17.8.4.3 HBN Configuration Examples

17.8.4.3.1 HBN Default Configuration

After a fresh HBN installation, the default /etc/network/interfaces file would contain only the
declaration of the two uplink SFs and a loopback interface.

source /etc/network/interfaces.d/*.intf

auto lo
iface lo inet loopback

auto p0_if
iface p0_if

auto p1_if
iface p1_if

FRR configuration files would also be present under /etc/frr/ but no configuration would be
enabled.

17.8.4.3.2 Layer-3 Routing

17.8.4.3.2.1 Native Routing with BGP and ECMP

HBN supports unicast routing with BGP and ECMP for IPv4 and IPv6 traffic. ECMP is achieved by
distributing traffic using hash calculation based on the source IP, destination IP, and protocol type of
the IP header.

ECMP Example

ECMP is implemented any time routes have multiple paths over uplinks or host ports. For example,
20.20.20.0/24 has 2 paths using both uplinks, so a path is selected based on a hash of the IP
headers.

20.20.20.0/24 proto bgp metric 20
 nexthop via 169.254.0.1 dev p0_if weight 1 onlink <<<<< via uplink p0_if
 nexthop via 169.254.0.1 dev p1_if weight 1 onlink <<<<< via uplink p1_if

Sample NVUE Configuration for Native Routing

nv set interface lo ip address 10.10.10.1/32

nv config apply startup applies the yaml configuration saved at /etc/nvue.d/ .

nv config save saves the running configuration to /etc/nvue.d/startup.yaml .

For TCP and UDP packets, it also includes source port and destination port.

HBN supports up to 16 paths for ECMP.

1258

nv set interface lo ip address 2010:10:10::1/128
nv set interface vlan100 type svi
nv set interface vlan100 vlan 100
nv set interface vlan100 base-interface br_default
nv set interface vlan100 ip address 2030:30:30::1/64
nv set interface vlan100 ip address 30.30.30.1/24
nv set bridge domain br_default vlan 100
nv set interface pf0hpf_if,pf1hpf_if bridge domain br_default access 100
nv set vrf default router bgp router-id 10.10.10.1
nv set vrf default router bgp autonomous-system 65501
nv set vrf default router bgp path-selection multipath aspath-ignore on
nv set vrf default router bgp address-family ipv4-unicast enable on
nv set vrf default router bgp address-family ipv4-unicast redistribute connected enable on
nv set vrf default router bgp address-family ipv6-unicast enable on
nv set vrf default router bgp address-family ipv6-unicast redistribute connected enable on
nv set vrf default router bgp neighbor p0_if remote-as external
nv set vrf default router bgp neighbor p0_if type unnumbered
nv set vrf default router bgp neighbor p0_if address-family ipv4-unicast enable on
nv set vrf default router bgp neighbor p0_if address-family ipv6-unicast enable on
nv set vrf default router bgp neighbor p1_if remote-as external
nv set vrf default router bgp neighbor p1_if type unnumbered
nv set vrf default router bgp neighbor p1_if address-family ipv4-unicast enable on
nv set vrf default router bgp neighbor p1_if address-family ipv6-unicast enable on

Sample Flat Files Configuration for Native Routing

Example /etc/network/interfaces configuration:

auto lo
iface lo inet loopback
 address 10.10.10.1/32
 address 2010:10:10::1/128

auto p0_if
iface p0_if

auto p1_if
iface p1_if

auto pf0hpf_if
iface pf0hpf_if
 bridge-access 100

auto pf1hpf_if
iface pf1hpf_if
 bridge-access 100

auto vlan100
iface vlan100
 address 2030:30:30::1/64
 address 30.30.30.1/24
 vlan-raw-device br_default
 vlan-id 100

auto br_default
iface br_default
 bridge-ports pf0hpf_if pf1hpf_if
 bridge-vlan-aware yes
 bridge-vids 100
 bridge-pvid 1

Example /etc/frr/daemons configuration:

bgpd=yes
vtysh_enable=yes

FRR Config file @ /etc/frr/frr.conf -
!
frr version 7.5+cl5.3.0u0
frr defaults datacenter
hostname BLUEFIELD2
log syslog informational
no zebra nexthop kernel enable
!
router bgp 65501
 bgp router-id 10.10.10.1
 bgp bestpath as-path multipath-relax
 neighbor p0_if interface remote-as external
 neighbor p0_if advertisement-interval 0
 neighbor p0_if timers 3 9
 neighbor p0_if timers connect 10
 neighbor p1_if interface remote-as external
 neighbor p1_if advertisement-interval 0
 neighbor p1_if timers 3 9
 neighbor p1_if timers connect 10
 !
 address-family ipv4 unicast
 redistribute connected
 maximum-paths 64
 maximum-paths ibgp 64
 exit-address-family
 !
 address-family ipv6 unicast

1259

 redistribute connected
 neighbor p0_if activate
 neighbor p1_if activate
 maximum-paths 64
 maximum-paths ibgp 64
 exit-address-family
!
line vty
!
end

Direct Routing on Host-facing Interfaces

Host-facing interfaces (PFs and VFs) are not restricted to be part of the bridge for routing. HBN
supports L3-only configuration with direct routing on host-facing PFs and VFs.

Sample NVUE Configuration

nv set interface pf0hpf_if ip address 30.30.11.1/24
nv set interface pf0hpf_if ip address 2030:30:11::1/64
nv set interface pf0vf0_if ip address 30.30.13.1/24
nv set interface pf0vf0_if ip address 2030:30:13::1/64

Sample Flat File Configuration

auto pf0hpf_if
iface pf0hpf_if
 address 2030:30:11::1/64
 address 30.30.11.1/24

auto pf0vf0_if
iface pf0vf0_if
 address 2030:30:13::1/64
 address 30.30.13.1/24

17.8.4.3.2.2 BGP Peering with the Host

HBN supports the ability to establish a BGP session between the host and the HBN service running on
BlueField Arm and allow the host to announce arbitrary route prefixes through the BlueField into the
underlay fabric. The host can use any standard BGP protocol stack implementation to establish BGP
peering with HBN.

Traffic to and from endpoints on the host gets offloaded.

It is possible to apply route filtering for these prefixes to limit the potential security impact in this
configuration.

Sample NVUE Configuration for Host BGP Peering

The following code block shows configuration to peer to host at 45.3.0.4

and 2001:cafe:1ead::4 . The BGP session can be established using IPv4 or IPv6 address.

NVUE configuration for peering with host:

nv set vrf default router bgp autonomous-system 63642
nv set vrf default router bgp enable on
nv set vrf default router bgp neighbor 45.3.0.4 nexthop-connected-check off
nv set vrf default router bgp neighbor 45.3.0.4 peer-group dpu_host
nv set vrf default router bgp neighbor 45.3.0.4 type numbered

Both IPv4 and IPv6 unicast AFI/SAFI are supported.

Either of these sessions can support IPv4 unicast and IPv6 unicast AFI/SAFI.

1260

nv set vrf default router bgp neighbor 2001:cafe:1ead::4 nexthop-connected-check off
nv set vrf default router bgp neighbor 2001:cafe:1ead::4 peer-group dpu_host
nv set vrf default router bgp neighbor 2001:cafe:1ead::4 type numbered
nv set vrf default router bgp peer-group dpu_host address-family ipv4-unicast enable on
nv set vrf default router bgp peer-group dpu_host address-family ipv6-unicast enable on
nv set vrf default router bgp peer-group dpu_host remote-as external

Sample Flat Files Configuration for Host BGP peering

The following block shows configuration to peer to host at 45.3.0.4 and 2001:cafe:1ead::4 .
The BGP session can be established using IPv4 or IPv6 address.

frr.conf file:

router bgp 63642
 bgp router-id 27.0.0.4
 bgp bestpath as-path multipath-relax
 neighbor dpu_host peer-group
 neighbor dpu_host remote-as external
 neighbor dpu_host advertisement-interval 0
 neighbor dpu_host timers 3 9
 neighbor dpu_host timers connect 10
 neighbor dpu_host disable-connected-check
 neighbor fabric peer-group
 neighbor fabric remote-as external
 neighbor fabric advertisement-interval 0
 neighbor fabric timers 3 9
 neighbor fabric timers connect 10
 neighbor 45.3.0.4 peer-group dpu_host
 neighbor 2001:cafe:1ead::4 peer-group dpu_host
 neighbor p0_if interface peer-group fabric
 neighbor p1_if interface peer-group fabric
 !
 address-family ipv4 unicast
 neighbor dpu_host activate
 !
 address-family ipv6 unicast
 neighbor dpu_host activate

Sample FRR configuration on the Host

Any BGP implementation can be used on the host to peer to HBN and advertise endpoints. The
following is an example using FRR BGP:

Sample FRR configuration on the host:

bf2-s12# sh run
Building configuration...

Current configuration:
!
frr version 7.2.1
frr defaults traditional
hostname bf2-s12
no ip forwarding
no ipv6 forwarding
!
router bgp 1000008
!
router bgp 1000008 vrf v_200_2000
 neighbor 45.3.0.2 remote-as external
 neighbor 2001:cafe:1ead::2 remote-as external
 !
 address-family ipv4 unicast
 redistribute connected
 exit-address-family
 !
 address-family ipv6 unicast
 redistribute connected
 neighbor 45.3.0.2 activate
 neighbor 2001:cafe:1ead::2 activate
 exit-address-family
!
line vty
!
end

Sample interfaces configuration on the host:

root@bf2-s12:/home/cumulus# ifquery -a
auto lo
iface lo inet loopback

1261

•
•

•

•

 address 27.0.0.7/32
 address 2001:c000:10ff:f00d::7/128

auto v_200_2000
iface v_200_2000
 address 60.1.0.1
 address 60.1.0.2
 address 60.1.0.3
 address 2001:60:1::1
 address 2001:60:1::2
 address 2001:60:1::3
 vrf-table auto
auto ens1f0np0
iface ens1f0np0
 address 45.3.0.4/24
 address 2001:cafe:1ead::4/64
 gateway 45.3.0.1
 gateway 2001:cafe:1ead::1
 vrf v_200_2000
 hwaddress 00:03:00:08:00:12
 mtu 9162

17.8.4.3.2.3 VRF Route Leaking

VRFs are typically used when multiple independent routing and forwarding tables are desirable.
However, users may want to reach destinations in one VRF from another VRF, as in the following
cases:

To make a service, such as a firewall available to multiple VRFs
To enable routing to external networks or the Internet for multiple VRFs, where the external
network itself is reachable through a specific VRF

Route leaking can be used to reach remote destinations as well as directly connected destinations in
another VRF. Multiple VRFs can import routes from a single source VRF, and a VRF can import routes
from multiple source VRFs. This can be used when a single VRF provides connectivity to external
networks or a shared service for other VRFs. It is possible to control the routes leaked dynamically
across VRFs with a route map.

When route leaking is used:

The redistribute command (not network command) must be used in BGP to leak non-BGP
routes (connected or static routes)
It is not possible to leak routes between the default and non-default VRF

In the following example commands, routes in the BGP routing table of VRF BLUE dynamically leak

into VRF RED :

nv set vrf RED router bgp address-family ipv4-unicast route-import from-vrf list BLUE
nv config apply

The following example commands delete leaked routes from VRF BLUE to VRF RED :

nv unset vrf RED router bgp address-family ipv4-unicast route-import from-vrf list BLUE
nv config apply

To exclude certain prefixes from the import process, configure the prefixes in a route map.

Kernel limitation

Ping or other IP traffic from a locally connected host in vrfX to a local interface IP address
on the BlueField/HBN in vrfY does not work, even if VRF route-leaking is enabled between
these two VRFs.

1262

•

•

•

•

•

•

•

•

•

•

The following example configures a route map to match the source protocol BGP and imports the
routes from VRF BLUE to VRF RED . For the imported routes, the community is 11:11 in VRF RED .

nv set vrf RED router bgp address-family ipv4-unicast route-import from-vrf list BLUE
nv set router policy route-map BLUEtoRED rule 10 match type ipv4
nv set router policy route-map BLUEtoRED rule 10 match source-protocol bgp
nv set router policy route-map BLUEtoRED rule 10 action permit
nv set router policy route-map BLUEtoRED rule 10 set community 11:11
nv set vrf RED router bgp address-family ipv4-unicast route-import from-vrf route-map BLUEtoRED
nv config

To check the status of the VRF route leaking, run:

NVUE command:

nv show vrf <vrf-name> router bgp address-family ipv4-unicast route-import

Vtysh command:

show ip bgp vrf <vrf-name> ipv4|ipv6 unicast route-leak command.

For example:

nv show vrf RED router bgp address-family ipv4-unicast route-import
 operational applied
-------------- ------------ ---------
from-vrf
 enable on
 route-map BLUEtoRED
 [list] BLUE BLUE
[route-target] 10.10.10.1:3

To show more detailed status information, the following NVUE commands are available:

nv show vrf <vrf-name> router bgp address-family ipv4-unicast route-import

from-vrf

nv show vrf <vrf-name> router bgp address-family ipv4-unicast route-import

from-vrf list

nv show vrf <vrf-name> router bgp address-family ipv4-unicast route-import

from-vrf list <leak-vrf-id>

To view the BGP routing table, run:

NVUE command:

nv show vrf <vrf-name> router bgp address-family ipv4-unicast

Vtysh command:

show ip bgp vrf <vrf-name> ipv4|ipv6 unicast

To view the FRR IP routing table, run:

Vtysh command:

show ip route vrf <vrf-name>

Or:

1263

•

•

•

net show route vrf <vrf-name>

17.8.4.3.2.4 VLAN Subinterfaces

A VLAN subinterface is a VLAN device on an interface. The VLAN ID appends to the parent interface
using dot (.) VLAN notation which is a standard way to specify a VLAN device in Linux.

For example:

A VLAN with ID 100 which is a subinterface of p0_if is annotated as p0_if.100

The subinterface p0_if.100 only receives packets that have a VLAN 100 tag on port p0_if

Any packets transmitted from p0_if.100 would have VLAN tag 100

In HBN, VLAN subinterfaces can be created on uplink ports as well as on the host-facing PF and VF
ports. A VLAN subinterface only receives traffic tagged for that VLAN.

In the following example, uplink subinterface on p0_if with VLAN ID 10 and a host facing

subinterface on VF ports pf1vf0_if with VLAN ID 999 are created. The host-facing subinterface is
also assigned with IPv4 and IPv6 addresses.

Subinterface configuration using NVUE commands:

nv set interface p0_if.10 base-interface p0_if
nv set interface p0_if.10 type sub
nv set interface p0_if.10 vlan 10

nv set interface pf1vf0_if type swp
nv set interface pf1vf0_if.999 base-interface pf1vf0_if
nv set interface pf1vf0_if.999 type sub
nv set interface pf1vf0_if.999 vlan 999
nv set interface pf1vf0_if ip address 30.30.14.1/24
nv set interface pf1vf0_if ip address 2030:30:14::1/64

Same configuration using sample flat file in /etc/network/interfaces :

subinterface configuration e/n/i file

auto p0_if.10
iface p0_if.10

auto pf1vf0_if.999
iface pf1vf0_if.999
 address 2030:30:40::1/64
 address 30.30.40.1/24

17.8.4.3.3 Ethernet Virtual Private Network – EVPN

HBN supports VXLAN with EVPN control plane for intra-subnet bridging (L2) services for IPv4 and IPv6
traffic in the overlay.

For the underlay, only IPv4 or BGP unnumbered configuration is supported.

These commands show all routes, including routes leaked from other VRFs.

VLAN subinterfaces are L3 interfaces and should not be added to a bridge.

1264

1.
2.
3.

17.8.4.3.3.1 Single VXLAN Device

With a single VXLAN device, a set of VXLAN network identifiers (VNIs) represents a single device
model. The single VXLAN device has a set of attributes that belong to the VXLAN construct.
Individual VNIs include VLAN-to-VNI mapping which allows users to specify which VLANs are
associated with which VNIs. A single VXLAN device simplifies the configuration and reduces the
overhead by replacing multiple traditional VXLAN devices with a single VXLAN device.

Users may configure a single VXLAN device automatically with NVUE, or manually by editing the /

etc/network/interfaces file. When users configure a single VXLAN device with NVUE, NVUE
creates a unique name for the device in the following format using the bridge name as the hash
key: vxlan<id> .
This example configuration performs the following steps:

Creates a single VXLAN device (vxlan21).
Maps VLAN 10 to VNI 10 and VLAN 20 to VNI 20.
Adds the VXLAN device to the default bridge.

cumulus@leaf01:~$ nv set bridge domain bridge vlan 10 vni 10
cumulus@leaf01:~$ nv set bridge domain bridge vlan 20 vni 20
cumulus@leaf01:~$ nv set nve vxlan source address 10.10.10.1
cumulus@leaf01:~$ nv config apply

Alternately, users may edit the file /etc/network/interfaces as follows, then run the ifreload

-a command to apply the SVD configuration.

auto lo
iface lo inet loopback
 vxlan-local-tunnelip 10.10.10.1

auto vxlan21
iface vxlan21
 bridge-vlan-vni-map 10=10 20=20
 bridge-learning off

auto bridge
iface bridge
 bridge-vlan-aware yes
 bridge-ports vxlan21 pf0hpf_if pf1hpf_if
 bridge-vids 10 20
 bridge-pvid 1

17.8.4.3.3.2 Sample Switch Configuration for EVPN

The following is a sample NVUE config for underlay switches (NVIDIA® Spectrum® with Cumulus
Linux) to enable EVPN deployments with HBN.

It assumes that the uplinks on all BlueField devices are connected to ports swp1-4 on the switch.

nv set evpn enable on
nv set router bgp enable on

nv set vrf default router bgp address-family ipv4-unicast enable on
nv set vrf default router bgp address-family ipv4-unicast redistribute connected enable on

HBN supports VXLAN encapsulation only over uplink parent interfaces.

Users may not use a combination of single and traditional VXLAN devices.

1265

nv set vrf default router bgp address-family l2vpn-evpn enable on
nv set vrf default router bgp autonomous-system 63640
nv set vrf default router bgp enable on
nv set vrf default router bgp neighbor swp1 peer-group fabric
nv set vrf default router bgp neighbor swp1 type unnumbered
nv set vrf default router bgp neighbor swp2 peer-group fabric
nv set vrf default router bgp neighbor swp2 type unnumbered
nv set vrf default router bgp neighbor swp3 peer-group fabric
nv set vrf default router bgp neighbor swp3 type unnumbered
nv set vrf default router bgp neighbor swp4 peer-group fabric
nv set vrf default router bgp neighbor swp4 type unnumbered
nv set vrf default router bgp path-selection multipath aspath-ignore on
nv set vrf default router bgp peer-group fabric address-family ipv4-unicast enable on
nv set vrf default router bgp peer-group fabric address-family ipv6-unicast enable on
nv set vrf default router bgp peer-group fabric address-family l2vpn-evpn add-path-tx off
nv set vrf default router bgp peer-group fabric address-family l2vpn-evpn enable on
nv set vrf default router bgp peer-group fabric remote-as external
nv set vrf default router bgp router-id 27.0.0.10

nv set interface lo ip address 2001:c000:10ff:f00d::10/128
nv set interface lo ip address 27.0.0.10/32
nv set interface lo type loopback
nv set interface swp1,swp2,swp3,swp4 type swp

17.8.4.3.3.3 Layer-2 EVPN

Sample NVUE Configuration for L2 EVPN

The following is a sample NVUE configuration which has L2-VNIs (2000 , 2001) for EVPN bridging on
BlueField.

nv set bridge domain br_default encap 802.1Q
nv set bridge domain br_default type vlan-aware
nv set bridge domain br_default vlan 200 vni 2000 flooding enable auto
nv set bridge domain br_default vlan 200 vni 2000 mac-learning off
nv set bridge domain br_default vlan 201 vni 2001 flooding enable auto
nv set bridge domain br_default vlan 201 vni 2001 mac-learning off

nv set evpn enable on
nv set nve vxlan arp-nd-suppress on
nv set nve vxlan enable on
nv set nve vxlan mac-learning off
nv set nve vxlan source address 27.0.0.4
nv set router bgp enable on
nv set system global anycast-mac 44:38:39:42:42:07
nv set vrf default router bgp address-family ipv4-unicast enable on
nv set vrf default router bgp address-family ipv4-unicast redistribute connected enable on

nv set vrf default router bgp address-family l2vpn-evpn enable on
nv set vrf default router bgp autonomous-system 63642
nv set vrf default router bgp enable on
nv set vrf default router bgp neighbor p0_if peer-group fabric
nv set vrf default router bgp neighbor p0_if type unnumbered
nv set vrf default router bgp neighbor p1_if peer-group fabric
nv set vrf default router bgp neighbor p1_if type unnumbered
nv set vrf default router bgp path-selection multipath aspath-ignore on
nv set vrf default router bgp peer-group fabric address-family ipv4-unicast enable on
nv set vrf default router bgp peer-group fabric address-family ipv4-unicast policy outbound route-map
MY_ORIGIN_ASPATH_ONLY
nv set vrf default router bgp peer-group fabric address-family ipv6-unicast enable on
nv set vrf default router bgp peer-group fabric address-family ipv6-unicast policy outbound route-map
MY_ORIGIN_ASPATH_ONLY
nv set vrf default router bgp peer-group fabric address-family l2vpn-evpn add-path-tx off
nv set vrf default router bgp peer-group fabric address-family l2vpn-evpn enable on
nv set vrf default router bgp peer-group fabric remote-as external
nv set vrf default router bgp router-id 27.0.0.4

nv set interface lo ip address 2001:c000:10ff:f00d::4/128
nv set interface lo ip address 27.0.0.4/32
nv set interface lo type loopback
nv set interface p0_if,p1_if,pf0hpf_if,pf1hpf_if type swp
nv set interface pf0hpf_if bridge domain br_default access 200
nv set interface pf1hpf_if bridge domain br_default access 201

nv set interface vlan200-201 base-interface br_default
nv set interface vlan200-201 ip ipv4 forward on
nv set interface vlan200-201 ip ipv6 forward on
nv set interface vlan200-201 ip vrr enable on
nv set interface vlan200-201 ip vrr state up
nv set interface vlan200-201 link mtu 9050
nv set interface vlan200-201 type svi
nv set interface vlan200 ip address 2001:cafe:1ead::3/64
nv set interface vlan200 ip address 45.3.0.2/24
nv set interface vlan200 ip vrr address 2001:cafe:1ead::1/64
nv set interface vlan200 ip vrr address 45.3.0.1/24
nv set interface vlan200 vlan 200
nv set interface vlan201 ip address 2001:cafe:1ead:1::3/64
nv set interface vlan201 ip address 45.3.1.2/24
nv set interface vlan201 ip vrr address 2001:cafe:1ead:1::1/64
nv set interface vlan201 ip vrr address 45.3.1.1/24
nv set interface vlan201 vlan 201

1266

Sample Flat Files Configuration for L2 EVPN

The following is a sample flat files configuration which has L2-VNIs (vx-2000 , vx-2001) for EVPN
bridging on BlueField.

This file is located at /etc/network/interfaces :

auto lo
iface lo inet loopback
 address 2001:c000:10ff:f00d::4/128
 address 27.0.0.4/32
 vxlan-local-tunnelip 27.0.0.4

auto p0_if
iface p0_if

auto p1_if
iface p1_if

auto pf0hpf_if
iface pf0hpf_if
 bridge-access 200

auto pf1hpf_if
iface pf1hpf_if
 bridge-access 201

auto vlan200
iface vlan200
 address 2001:cafe:1ead::3/64
 address 45.3.0.2/24
 mtu 9050
 address-virtual 00:00:5e:00:01:01 2001:cafe:1ead::1/64 45.3.0.1/24
 vlan-raw-device br_default
 vlan-id 200

auto vlan201
iface vlan201
 address 2001:cafe:1ead:1::3/64
 address 45.3.1.2/24
 mtu 9050
 address-virtual 00:00:5e:00:01:01 2001:cafe:1ead:1::1/64 45.3.1.1/24
 vlan-raw-device br_default
 vlan-id 201

auto vxlan48
iface vxlan48
 bridge-vlan-vni-map 200=2000 201=2001
217=2017
 bridge-learning off

auto br_default
iface br_default
 bridge-ports pf0hpf_if pf1hpf_if vxlan48
 bridge-vlan-aware yes
 bridge-vids 200 201
 bridge-pvid 1

This file tells the frr package which daemon to start and is located at /etc/frr/daemons :

bgpd=yes
ospfd=no
ospf6d=no
isisd=no
pimd=no
ldpd=no
pbrd=no
vrrpd=no
fabricd=no
nhrpd=no
eigrpd=no
babeld=no
sharpd=no
fabricd=no
ripngd=no
ripd=no

vtysh_enable=yes
zebra_options=" -M cumulus_mlag -M snmp -A 127.0.0.1 -s 90000000"
bgpd_options=" -M snmp -A 127.0.0.1"
ospfd_options=" -M snmp -A 127.0.0.1"
ospf6d_options=" -M snmp -A ::1"
ripd_options=" -A 127.0.0.1"
ripngd_options=" -A ::1"
isisd_options=" -A 127.0.0.1"
pimd_options=" -A 127.0.0.1"
ldpd_options=" -A 127.0.0.1"
nhrpd_options=" -A 127.0.0.1"
eigrpd_options=" -A 127.0.0.1"
babeld_options=" -A 127.0.0.1"
sharpd_options=" -A 127.0.0.1"
pbrd_options=" -A 127.0.0.1"
staticd_options="-A 127.0.0.1"
fabricd_options="-A 127.0.0.1"

1267

vrrpd_options=" -A 127.0.0.1"

frr_profile="datacenter"

FRR configuration file is located at /etc/frr/frr.conf :

!---- Cumulus Defaults ----
frr defaults datacenter
log syslog informational
no zebra nexthop kernel enable
vrf default
outer bgp 63642 vrf default
bgp router-id 27.0.0.4
bgp bestpath as-path multipath-relax
timers bgp 3 9
bgp deterministic-med
! Neighbors
neighbor fabric peer-group
neighbor fabric remote-as external
neighbor fabric timers 3 9
neighbor fabric timers connect 10
neighbor fabric advertisement-interval 0
neighbor p0_if interface peer-group fabric
neighbor p1_if interface peer-group fabric
address-family ipv4 unicast
maximum-paths ibgp 64
maximum-paths 64
distance bgp 20 200 200
neighbor fabric activate
exit-address-family
address-family ipv6 unicast
maximum-paths ibgp 64
maximum-paths 64
distance bgp 20 200 200
neighbor fabric activate
exit-address-family
address-family l2vpn evpn
advertise-all-vni
neighbor fabric activate
exit-address-family

17.8.4.3.3.4 Layer-3 EVPN with Symmetric Routing

In distributed symmetric routing, each VXLAN endpoint (VTEP) acts as a layer-3 gateway, performing
routing for its attached hosts. However, both the ingress VTEP and egress VTEP route the packets
(similar to traditional routing behavior of routing to a next-hop router). In a VXLAN encapsulated
packet, the inner destination MAC address is the router MAC address of the egress VTEP to indicate
that the egress VTEP is the next hop and that it must also perform the routing.

All routing happens in the context of a tenant (VRF). For a packet that the ingress VTEP receives
from a locally attached host, the SVI interface corresponding to the VLAN determines the VRF. For a
packet that the egress VTEP receives over the VXLAN tunnel, the VNI in the packet has to specify
the VRF. For symmetric routing, this is a VNI corresponding to the tenant and is different from either
the source VNI or the destination VNI. This VNI is a layer-3 VNI or interconnecting VNI. The regular
VNI, which maps a VLAN, is the layer-2 VNI.

For more details about this, refer to the Cumulus Linux User Manual.

In an EVPN symmetric routing configuration, when the switch announces a type-2 (MAC/IP) route, in
addition to containing two VNIs (L2 and L3 VNIs), the route also contains separate route targets (RTs)

HBN uses a one-to-one mapping between an L3 VNI and a tenant (VRF).

The VRF to L3 VNI mapping has to be consistent across all VTEPs.

An L3 VNI and an L2 VNI cannot have the same ID.

https://docs.nvidia.com/networking-ethernet-software/cumulus-linux/Network-Virtualization/Ethernet-Virtual-Private-Network-EVPN/Inter-subnet-Routing/#symmetric-routing

1268

for L2 and L3. The L3 RT associates the route with the tenant VRF. By default, this is auto-derived
using the L3 VNI instead of the L2 VNI. However, this is configurable.

For EVPN symmetric routing, users must perform the configuration listed in the following
subsections. Optional configuration includes configuring a route distinguisher (RD) and RTs for the
tenant VRF, and advertising the locally-attached subnets.

Sample NVUE Configuration for L3 EVPN

If using NVUE to configure EVPN symmetric routing, the following is a sample configuration using
NVUE commands:

nv set bridge domain br_default vlan 111 vni 1000111
nv set bridge domain br_default vlan 112 vni 1000112
nv set bridge domain br_default vlan 213 vni 1000213
nv set bridge domain br_default vlan 214 vni 1000214
nv set evpn enable on
nv set interface lo ip address 6.0.0.19/32
nv set interface lo type loopback
nv set interface p0_if description 'alias p0_if to leaf-21 swp3'
nv set interface p0_if,p1_if,pf0hpf_if,pf0vf0_if,pf1hpf_if,pf1vf0_if type swp
nv set interface p1_if description 'alias p1_if to leaf-22 swp3'
nv set interface pf0hpf_if bridge domain br_default access 111
nv set interface pf0hpf_if description 'alias pf0hpf_if to host-211 ens2f0np0'
nv set interface pf0vf0_if bridge domain br_default access 112
nv set interface pf0vf0_if description 'alias pf0vf0_if to host-211 ens2f0np0v0'
nv set interface pf1hpf_if bridge domain br_default access 213
nv set interface pf1hpf_if description 'alias pf1hpf_if to host-211 ens2f1np1'
nv set interface pf1vf0_if bridge domain br_default access 214
nv set interface pf1vf0_if description 'alias pf1vf0_if to host-211 ens2f1np0v0'
nv set interface vlan111 ip address 60.1.1.21/24
nv set interface vlan111 ip address 2060:1:1:1::21/64
nv set interface vlan111 ip vrr address 60.1.1.250/24
nv set interface vlan111 ip vrr address 2060:1:1:1::250/64
nv set interface vlan111 vlan 111
nv set interface vlan111,213 ip vrf vrf2
nv set interface vlan111-112,213-214 ip vrr enable on
nv set interface vlan111-112,213-214 ip vrr mac-address 00:00:5e:00:01:01
nv set interface vlan111-112,213-214 ip ipv4 forward on
nv set interface vlan111-112,213-214 ip ipv6 forward on
nv set interface vlan111-112,213-214 type svi
nv set interface vlan112 ip address 50.1.1.21/24
nv set interface vlan112 ip address 2050:1:1:1::21/64
nv set interface vlan112 ip vrr address 50.1.1.250/24
nv set interface vlan112 ip vrr address 2050:1:1:1::250/64
nv set interface vlan112 vlan 112
nv set interface vlan112,214 ip vrf vrf1
nv set interface vlan213 ip address 60.1.210.21/24
nv set interface vlan213 ip address 2060:1:1:210::21/64
nv set interface vlan213 ip vrr address 60.1.210.250/24
nv set interface vlan213 ip vrr address 2060:1:1:210::250/64
nv set interface vlan213 vlan 213
nv set interface vlan214 ip address 50.1.210.21/24
nv set interface vlan214 ip address 2050:1:1:210::21/64
nv set interface vlan214 ip vrr address 50.1.210.250/24
nv set interface vlan214 ip vrr address 2050:1:1:210::250/64
nv set interface vlan214 vlan 214
nv set nve vxlan arp-nd-suppress on
nv set nve vxlan enable on
nv set nve vxlan source address 6.0.0.19
nv set platform
nv set router bgp enable on
nv set router policy route-map ALLOW_LOBR rule 10 action permit
nv set router policy route-map ALLOW_LOBR rule 10 match interface lo
nv set router policy route-map ALLOW_LOBR rule 20 action permit
nv set router policy route-map ALLOW_LOBR rule 20 match interface br_default
nv set router policy route-map ALLOW_VRF1 rule 10 action permit
nv set router policy route-map ALLOW_VRF1 rule 10 match interface vrf1
nv set router policy route-map ALLOW_VRF2 rule 10 action permit
nv set router policy route-map ALLOW_VRF2 rule 10 match interface vrf2
nv set router vrr enable on
nv set system global system-mac 00:01:00:00:1e:03
nv set vrf default router bgp address-family ipv4-unicast enable on
nv set vrf default router bgp address-family ipv4-unicast multipaths ebgp 16
nv set vrf default router bgp address-family ipv4-unicast redistribute connected enable on
nv set vrf default router bgp address-family ipv4-unicast redistribute connected route-map ALLOW_LOBR
nv set vrf default router bgp address-family l2vpn-evpn enable on
nv set vrf default router bgp autonomous-system 650019
nv set vrf default router bgp enable on
nv set vrf default router bgp neighbor p0_if address-family l2vpn-evpn add-path-tx off
nv set vrf default router bgp neighbor p0_if address-family l2vpn-evpn enable on
nv set vrf default router bgp neighbor p0_if peer-group TOR_LEAF_SPINE
nv set vrf default router bgp neighbor p0_if remote-as external
nv set vrf default router bgp neighbor p0_if type unnumbered
nv set vrf default router bgp neighbor p1_if address-family l2vpn-evpn add-path-tx off
nv set vrf default router bgp neighbor p1_if address-family l2vpn-evpn enable on
nv set vrf default router bgp neighbor p1_if peer-group TOR_LEAF_SPINE
nv set vrf default router bgp neighbor p1_if remote-as external
nv set vrf default router bgp neighbor p1_if type unnumbered
nv set vrf default router bgp path-selection multipath aspath-ignore on
nv set vrf default router bgp path-selection routerid-compare on
nv set vrf default router bgp peer-group TOR_LEAF_SPINE address-family ipv4-unicast enable on
nv set vrf default router bgp router-id 6.0.0.19
nv set vrf vrf1 evpn enable on

1269

nv set vrf vrf1 evpn vni 104001
nv set vrf vrf1 loopback ip address 50.1.21.21/32
nv set vrf vrf1 loopback ip address 2050:50:50:21::21/128
nv set vrf vrf1 router bgp address-family ipv4-unicast enable on
nv set vrf vrf1 router bgp address-family ipv4-unicast redistribute connected enable on
nv set vrf vrf1 router bgp address-family ipv4-unicast redistribute connected route-map ALLOW_VRF1
nv set vrf vrf1 router bgp address-family ipv4-unicast route-export to-evpn enable on
nv set vrf vrf1 router bgp address-family ipv6-unicast enable on
nv set vrf vrf1 router bgp address-family ipv6-unicast redistribute connected enable on
nv set vrf vrf1 router bgp address-family ipv6-unicast redistribute connected route-map ALLOW_VRF1
nv set vrf vrf1 router bgp address-family ipv6-unicast route-export to-evpn enable on
nv set vrf vrf1 router bgp autonomous-system 650019
nv set vrf vrf1 router bgp enable on
nv set vrf vrf1 router bgp router-id 50.1.21.21
nv set vrf vrf2 evpn enable on
nv set vrf vrf2 evpn vni 104002
nv set vrf vrf2 loopback ip address 60.1.21.21/32
nv set vrf vrf2 loopback ip address 2060:60:60:21::21/128
nv set vrf vrf2 router bgp address-family ipv4-unicast enable on
nv set vrf vrf2 router bgp address-family ipv4-unicast redistribute connected enable on
nv set vrf vrf2 router bgp address-family ipv4-unicast redistribute connected route-map ALLOW_VRF2
nv set vrf vrf2 router bgp address-family ipv4-unicast route-export to-evpn enable on
nv set vrf vrf2 router bgp address-family ipv6-unicast enable on
nv set vrf vrf2 router bgp address-family ipv6-unicast redistribute connected enable on
nv set vrf vrf2 router bgp address-family ipv6-unicast redistribute connected route-map ALLOW_VRF2
nv set vrf vrf2 router bgp address-family ipv6-unicast route-export to-evpn enable on
nv set vrf vrf2 router bgp autonomous-system 650019
nv set vrf vrf2 router bgp enable on
nv set vrf vrf2 router bgp router-id 60.1.21.21

Sample Flat Files Configuration for L3 EVPN

The following is a sample flat files configuration which has L2 VNIs and L3 VNIs for EVPN bridging
and symmetric routing on BlueField.

This file is located at /etc/network/interfaces :

auto lo
iface lo inet loopback
 address 6.0.0.19/32
 vxlan-local-tunnelip 6.0.0.19

auto vrf1
iface vrf1
 address 2050:50:50:21::21/128
 address 50.1.21.21/32
 vrf-table auto

auto vrf2
iface vrf2
 address 2060:60:60:21::21/128
 address 60.1.21.21/32
 vrf-table auto

auto p0_if
iface p0_if
 alias alias p0_if to leaf-21 swp3

auto p1_if
iface p1_if
 alias alias p1_if to leaf-22 swp3

auto pf0hpf_if
iface pf0hpf_if
 alias alias pf0hpf_if to host-211 ens2f0np0
 bridge-access 111

auto pf0vf0_if
iface pf0vf0_if
 alias alias pf0vf0_if to host-211 ens2f0np0v0
 bridge-access 112

auto pf1hpf_if
iface pf1hpf_if
 alias alias pf1hpf_if to host-211 ens2f1np1
 bridge-access 213

auto pf1vf0_if
iface pf1vf0_if
 alias alias pf1vf0_if to host-211 ens2f1np0v0
 bridge-access 214

auto vlan111
iface vlan111
 address 2060:1:1:1::21/64
 address 60.1.1.21/24
 address-virtual 00:00:5e:00:01:01 2060:1:1:1::250/64 60.1.1.250/24
 hwaddress 00:01:00:00:1e:03
 vrf vrf2
 vlan-raw-device br_default
 vlan-id 111

auto vlan112
iface vlan112
 address 2050:1:1:1::21/64
 address 50.1.1.21/24
 address-virtual 00:00:5e:00:01:01 2050:1:1:1::250/64 50.1.1.250/24

1270

 hwaddress 00:01:00:00:1e:03
 vrf vrf1
 vlan-raw-device br_default
 vlan-id 112

auto vlan213
iface vlan213
 address 2060:1:1:210::21/64
 address 60.1.210.21/24
 address-virtual 00:00:5e:00:01:01 2060:1:1:210::250/64 60.1.210.250/24
 hwaddress 00:01:00:00:1e:03
 vrf vrf2
 vlan-raw-device br_default
 vlan-id 213

auto vlan214
iface vlan214
 address 2050:1:1:210::21/64
 address 50.1.210.21/24
 address-virtual 00:00:5e:00:01:01 2050:1:1:210::250/64 50.1.210.250/24
 hwaddress 00:01:00:00:1e:03
 vrf vrf1
 vlan-raw-device br_default
 vlan-id 214

auto vlan4058_l3
iface vlan4058_l3
 vrf vrf1
 vlan-raw-device br_default
 address-virtual none
 vlan-id 4058

auto vlan4059_l3
iface vlan4059_l3
 vrf vrf2
 vlan-raw-device br_default
 address-virtual none
 vlan-id 4059

auto vxlan48
iface vxlan48
 bridge-vlan-vni-map 111=1000111 112=1000112 213=1000213 214=1000214 4058=104001 4059=104002
 bridge-learning off

auto br_default
iface br_default
 bridge-ports pf0hpf_if pf0vf0_if pf1hpf_if pf1vf0_if vxlan48
 hwaddress 00:01:00:00:1e:03
 bridge-vlan-aware yes
 bridge-vids 111 112 213 214
 bridge-pvid 1

FRR configuration is located at /etc/frr/frr.conf :

frr version 8.4.3
frr defaults datacenter
hostname doca-hbn-service-bf3-s05-1-ipmi
log syslog informational
no zebra nexthop kernel enable
service integrated-vtysh-config
!
vrf vrf1
 vni 104001
exit-vrf
!
vrf vrf2
 vni 104002
exit-vrf
!
router bgp 650019
 bgp router-id 6.0.0.19
 bgp bestpath as-path multipath-relax
 bgp bestpath compare-routerid
 neighbor TOR_LEAF_SPINE peer-group
 neighbor TOR_LEAF_SPINE advertisement-interval 0
 neighbor TOR_LEAF_SPINE timers 3 9
 neighbor TOR_LEAF_SPINE timers connect 10
 neighbor p0_if interface peer-group TOR_LEAF_SPINE
 neighbor p0_if remote-as external
 neighbor p0_if advertisement-interval 0
 neighbor p0_if timers 3 9
 neighbor p0_if timers connect 10
 neighbor p1_if interface peer-group TOR_LEAF_SPINE
 neighbor p1_if remote-as external
 neighbor p1_if advertisement-interval 0
 neighbor p1_if timers 3 9
 neighbor p1_if timers connect 10
 !
 address-family ipv4 unicast
 redistribute connected route-map ALLOW_LOBR
 maximum-paths 16
 maximum-paths ibgp 64
 exit-address-family
 !
 address-family l2vpn evpn
 neighbor p0_if activate
 neighbor p1_if activate
 advertise-all-vni
 exit-address-family

1271

•
•

exit
!
router bgp 650019 vrf vrf1
 bgp router-id 50.1.21.21
 !
 address-family ipv4 unicast
 redistribute connected route-map ALLOW_VRF1
 maximum-paths 64
 maximum-paths ibgp 64
 exit-address-family
 !
 address-family ipv6 unicast
 redistribute connected route-map ALLOW_VRF1
 maximum-paths 64
 maximum-paths ibgp 64
 exit-address-family
 !
 address-family l2vpn evpn
 advertise ipv4 unicast
 advertise ipv6 unicast
 exit-address-family
exit
!
router bgp 650019 vrf vrf2
 bgp router-id 60.1.21.21
 !
 address-family ipv4 unicast
 redistribute connected route-map ALLOW_VRF2
 maximum-paths 64
 maximum-paths ibgp 64
 exit-address-family
 !
 address-family ipv6 unicast
 redistribute connected route-map ALLOW_VRF2
 maximum-paths 64
 maximum-paths ibgp 64
 exit-address-family
 !
 address-family l2vpn evpn
 advertise ipv4 unicast
 advertise ipv6 unicast
 exit-address-family
exit
!
route-map ALLOW_LOBR permit 10
 match interface lo
exit
!
route-map ALLOW_LOBR permit 20
 match interface br_default
exit
!
route-map ALLOW_VRF1 permit 10
 match interface vrf1
exit
!
route-map ALLOW_VRF2 permit 10
 match interface vrf2
exit

17.8.4.3.3.5 Multi-hop eBGP Peering for EVPN (Route Server in Symmetric EVPN Routing)

eBGP multi-hop peering for EVPN support in a route server-like role in EVPN topology, allows the
deployment of EVPN on any cloud that supports IP transport.

Route servers and BF/HBN VTEPs are connected via the IP cloud. That is:

Switches in the cloud provider need not be EVPN-aware
Switches in the provider fabric provide IPv4 and IPv6 transport and do not have to support
EVPN

Sample Route Server Configuration for EVPN

The following is a sample configuration of an Ubuntu server running FRR 9.0 stable, configured as
EVPN route server and an HBN VTEP that is peering to two spine switches for IP connectivity and 3
Route servers for EVPN overlay control.

1272

root@sn1:/home/cumulus# uname -a
Linux sn1 5.15.0-88-generic #98-Ubuntu SMP Mon Oct 2 15:18:56 UTC 2023 x86_64 x86_64 x86_64 GNU/Linux
root@sn1:/home/cumulus# dpkg -l frr
Desired=Unknown/Install/Remove/Purge/Hold
| Status=Not/Inst/Conf-files/Unpacked/halF-conf/Half-inst/trig-aWait/Trig-pend
|/ Err?=(none)/Reinst-required (Status,Err: uppercase=bad)
||/ Name Version Architecture Description
+++-==============-=====================-============-===
ii frr 9.0.1-0~ubuntu22.04.1 amd64 FRRouting suite of internet protocols (BGP, OSPF, IS-IS, ...)
root@sn1:/home/cumulus#

FRR configuration (frr.conf):

sn1# sh run
Building configuration...

Current configuration:
!
frr version 9.0.1
frr defaults datacenter
hostname sn1
no ip forwarding
no ipv6 forwarding
service integrated-vtysh-config
!
router bgp 4200065507
 bgp router-id 6.0.0.7
 timers bgp 60 180
 neighbor rclients peer-group
 neighbor rclients remote-as external
 neighbor rclients ebgp-multihop 10
 neighbor rclients update-source lo
 neighbor rclients advertisement-interval 0
 neighbor rclients timers 3 9
 neighbor rclients timers connect 10
 neighbor rcsuper peer-group
 neighbor rcsuper remote-as external
 neighbor rcsuper advertisement-interval 0
 neighbor rcsuper timers 3 9
 neighbor rcsuper timers connect 10
 neighbor swp1 interface peer-group rcsuper
 bgp listen range 6.0.0.0/24 peer-group rclients
 !
 address-family ipv4 unicast
 redistribute connected
 neighbor fabric route-map pass in
 neighbor fabric route-map pass out
 no neighbor rclients activate
 maximum-paths 64
 maximum-paths ibgp 64
 exit-address-family
 !
 address-family l2vpn evpn
 neighbor rclients activate
 neighbor rcsuper activate
 exit-address-family
exit
!
route-map pass permit 10
 set community 11:11 additive
exit
!
end
sn1#

Interfaces configuration (/etc/network/interfaces):

root@sn1:/home/cumulus# ifquery -a
auto lo
iface lo inet loopback
 address 6.0.0.7/32

auto lo
iface lo inet loopback

auto swp1
iface swp1

auto eth0
iface eth0
 address 192.168.0.15/24
 gateway 192.168.0.2

root@sn1:/home/cumulus#

Sample HBN Configuration for Deployments with EVPN Route Server

root@doca-hbn-service-bf2-s12-1-ipmi:/tmp# nv config show -o commands
nv set bridge domain br_default vlan 101 vni 10101

1273

nv set bridge domain br_default vlan 102 vni 10102
nv set bridge domain br_default vlan 201 vni 10201
nv set bridge domain br_default vlan 202 vni 10202
nv set evpn enable on
nv set evpn route-advertise svi-ip off
nv set interface ilan3200 ip vrf internet1
nv set interface ilan3200 vlan 3200
nv set interface ilan3200,slan3201,vlan101-102,201-202,3001-3002 base-interface br_default
nv set interface ilan3200,slan3201,vlan101-102,201-202,3001-3002 type svi
nv set interface lo ip address 6.0.0.13/32
nv set interface lo ip address 2001::13/128
nv set interface lo type loopback
nv set interface p0_if,p1_if,pf0hpf_if,pf0vf0_if,pf0vf1_if,pf0vf2_if,pf0vf3_if,pf1hpf_if type swp
nv set interface pf0vf0_if bridge domain br_default access 101
nv set interface pf0vf1_if bridge domain br_default access 102
nv set interface pf0vf2_if bridge domain br_default access 201
nv set interface pf0vf3_if bridge domain br_default access 202
nv set interface slan3201 ip vrf special1
nv set interface slan3201 vlan 3201
nv set interface vlan101 ip address 21.1.0.13/16
nv set interface vlan101 ip address 2020:0:1:1::13/64
nv set interface vlan101 ip vrr address 21.1.0.250/16
nv set interface vlan101 ip vrr address 2020:0:1:1::250/64
nv set interface vlan101 ip vrr mac-address 00:00:01:00:00:65
nv set interface vlan101 vlan 101
nv set interface vlan101-102,201-202 ip vrr enable on
nv set interface vlan101-102,3001 ip vrf tenant1
nv set interface vlan102 ip address 21.2.0.13/16
nv set interface vlan102 ip address 2020:0:1:2::13/64
nv set interface vlan102 ip vrr address 21.2.0.250/16
nv set interface vlan102 ip vrr address 2020:0:1:2::250/64
nv set interface vlan102 ip vrr mac-address 00:00:01:00:00:66
nv set interface vlan102 vlan 102
nv set interface vlan201 ip address 22.1.0.13/16
nv set interface vlan201 ip address 2020:0:2:1::13/64
nv set interface vlan201 ip vrr address 22.1.0.250/16
nv set interface vlan201 ip vrr address 2020:0:2:1::250/64
nv set interface vlan201 ip vrr mac-address 00:00:02:00:00:c9
nv set interface vlan201 vlan 201
nv set interface vlan201-202,3002 ip vrf tenant2
nv set interface vlan202 ip address 22.2.0.13/16
nv set interface vlan202 ip address 2020:0:2:2::13/64
nv set interface vlan202 ip vrr address 22.2.0.250/16
nv set interface vlan202 ip vrr address 2020:0:2:2::250/64
nv set interface vlan202 ip vrr mac-address 00:00:02:00:00:ca
nv set interface vlan202 vlan 202
nv set interface vlan3001 vlan 3001
nv set interface vlan3002 vlan 3002
nv set nve vxlan arp-nd-suppress on
nv set nve vxlan enable on
nv set nve vxlan source address 6.0.0.13
nv set platform
nv set router bgp autonomous-system 4200065011
nv set router bgp enable on
nv set router bgp router-id 6.0.0.13
nv set router vrr enable on
nv set system config snippet
nv set system global
nv set vrf default router bgp address-family ipv4-unicast enable on
nv set vrf default router bgp address-family ipv4-unicast redistribute connected enable on
nv set vrf default router bgp address-family ipv6-unicast enable on
nv set vrf default router bgp address-family l2vpn-evpn enable on
nv set vrf default router bgp enable on
nv set vrf default router bgp neighbor 6.0.0.7 peer-group rservers
nv set vrf default router bgp neighbor 6.0.0.7 type numbered
nv set vrf default router bgp neighbor 6.0.0.8 peer-group rservers
nv set vrf default router bgp neighbor 6.0.0.8 type numbered
nv set vrf default router bgp neighbor 6.0.0.9 peer-group rservers
nv set vrf default router bgp neighbor 6.0.0.9 type numbered
nv set vrf default router bgp neighbor p0_if peer-group fabric
nv set vrf default router bgp neighbor p0_if type unnumbered
nv set vrf default router bgp neighbor p1_if peer-group fabric
nv set vrf default router bgp neighbor p1_if type unnumbered
nv set vrf default router bgp peer-group fabric address-family ipv4-unicast enable on
nv set vrf default router bgp peer-group fabric address-family ipv6-unicast enable on

nv set vrf default router bgp peer-group fabric remote-as external
nv set vrf default router bgp peer-group rservers address-family ipv4-unicast enable off
nv set vrf default router bgp peer-group rservers address-family l2vpn-evpn add-path-tx off
nv set vrf default router bgp peer-group rservers address-family l2vpn-evpn enable on
nv set vrf default router bgp peer-group rservers multihop-ttl 3
nv set vrf default router bgp peer-group rservers remote-as external
nv set vrf default router bgp peer-group rservers update-source lo
nv set vrf internet1 evpn enable on
nv set vrf internet1 evpn vni 42000
nv set vrf internet1 loopback ip address 8.1.0.13/32
nv set vrf internet1 loopback ip address 2008:0:1::13/64
nv set vrf internet1 router bgp address-family ipv4-unicast enable on
nv set vrf internet1 router bgp address-family ipv4-unicast redistribute connected enable on
nv set vrf internet1 router bgp address-family ipv4-unicast route-export to-evpn enable on
nv set vrf internet1 router bgp enable on
nv set vrf special1 evpn enable on
nv set vrf special1 evpn vni 42001
nv set vrf special1 loopback ip address 9.1.0.13/32
nv set vrf special1 loopback ip address 2009:0:1::13/64
nv set vrf special1 router bgp address-family ipv4-unicast enable on
nv set vrf special1 router bgp address-family ipv4-unicast redistribute connected enable on
nv set vrf special1 router bgp address-family ipv4-unicast route-export to-evpn enable on
nv set vrf special1 router bgp enable on
nv set vrf tenant1 evpn enable on
nv set vrf tenant1 evpn vni 30001
nv set vrf tenant1 router bgp address-family ipv4-unicast enable on
nv set vrf tenant1 router bgp address-family ipv4-unicast redistribute connected enable on
nv set vrf tenant1 router bgp address-family ipv4-unicast route-export to-evpn enable on
nv set vrf tenant1 router bgp enable on
nv set vrf tenant1 router bgp router-id 6.0.0.13

1274

1.

2.

nv set vrf tenant2 evpn enable on
nv set vrf tenant2 evpn vni 30002
nv set vrf tenant2 router bgp address-family ipv4-unicast enable on
nv set vrf tenant2 router bgp address-family ipv4-unicast redistribute connected enable on
nv set vrf tenant2 router bgp address-family ipv4-unicast route-export to-evpn enable on
nv set vrf tenant2 router bgp enable on
nv set vrf tenant2 router bgp router-id 6.0.0.13
root@doca-hbn-service-bf2-s12-1-ipmi:/tmp#

Verifying BGP sessions in HBN:

doca-hbn-service-bf2-s12-1-ipmi# sh bgp sum

IPv4 Unicast Summary (VRF default):
BGP router identifier 6.0.0.13, local AS number 4200065011 vrf-id 0
BGP table version 20
RIB entries 21, using 4032 bytes of memory
Peers 2, using 40 KiB of memory
Peer groups 2, using 128 bytes of memory

Neighbor V AS MsgRcvd MsgSent TblVer InQ OutQ Up/Down State/PfxRcd PfxSnt Desc
spine11(p0_if) 4 65201 30617 30620 0 0 0 1d01h30m 9 11 N/A
spine12(p1_if) 4 65201 30620 30623 0 0 0 1d01h30m 9 11 N/A

Total number of neighbors 2

IPv6 Unicast Summary (VRF default):
BGP router identifier 6.0.0.13, local AS number 4200065011 vrf-id 0
BGP table version 0
RIB entries 0, using 0 bytes of memory
Peers 2, using 40 KiB of memory
Peer groups 2, using 128 bytes of memory

Neighbor V AS MsgRcvd MsgSent TblVer InQ OutQ Up/Down State/PfxRcd PfxSnt Desc
spine11(p0_if) 4 65201 30617 30620 0 0 0 1d01h30m 0 0 N/A
spine12(p1_if) 4 65201 30620 30623 0 0 0 1d01h30m 0 0 N/A

Total number of neighbors 2

L2VPN EVPN Summary (VRF default):
BGP router identifier 6.0.0.13, local AS number 4200065011 vrf-id 0
BGP table version 0
RIB entries 79, using 15 KiB of memory
Peers 3, using 60 KiB of memory
Peer groups 2, using 128 bytes of memory

Neighbor V AS MsgRcvd MsgSent TblVer InQ OutQ Up/Down State/PfxRcd PfxSnt Desc
sn1(6.0.0.7) 4 4200065507 31410 31231 0 0 0 00:27:51 69 95 N/A
sn2(6.0.0.8) 4 4200065508 31169 31062 0 0 0 02:34:47 69 95 N/A
sn3(6.0.0.9) 4 4200065509 31285 31059 0 0 0 02:34:47 69 95 N/A

Total number of neighbors 3
doca-hbn-service-bf2-s12-1-ipmi#

The command output shows that the HBN has BGP sessions with spine switches exchanging IPv4/IPv6
unicast. BGP sessions with route servers sn1 , sn2 , and sn3 only exchanging L2VPN EVPN AFI/
SAFI.

17.8.4.3.3.6 Downstream VNI (DVNI)

Downstream VNI (symmetric EVPN route leaking) allows users to leak remote EVPN routes without
having the source tenant VRF locally configured. A common use case is where upstream switches
learn the L3VNI from downstream leaf switches and impose the learned L3VNI to the traffic VXLAN
routed to the associated VRF. This eliminates the need to configure L3VNI-SVI interfaces on all leaf
switches and enables shared service and hub-and-spoke scenarios.

To configure access to a shared service in a specific VRF, users must:

Configure route-target import statements, effectively leaking routes from remote tenants to
the shared VRF.
Import shared VRF's route-target at the remote nodes.

The route target import or export statement takes the following format:

route-target import|export <asn>:<vni>

For example:

1275

1.

2.

•
•
•

route-target import 65101:6000

For route target import statements, users can use route-target import ANY:<vni> for NVUE

commands or route-target import *:<vni> in the /etc/frr/frr.conf file. ANY in NVUE

commands or the asterisk (*) in the /etc/frr/frr.conf file use any ASN (autonomous system
number) as a wildcard.

The NVUE commands are as follows:

To configure a route import statement:

nv set vrf <vrf> router bgp route-import from-evpn route-target <asn>:<vni>

To configure a route export statement:

nv set vrf <vrf> router bgp route-export from-evpn route-target <asn>:<vni>

Important considerations when implementing DVNI configuration:

EVPN symmetric mode supports downstream VNI with L3 VNIs and single VXLAN devices only
You can configure multiple import and export route targets in a VRF
You cannot leak (import) overlapping tenant prefixes into the same destination VRF

DVNI Configurations for Shared Internet Service

Configuration example here considers a scenario where External/Internet connectivity is available
via a firewall (FW), which is connected to a shared VRF (vrf external in this example).

The routes on super spine switches have external VRF configured in which the route-targets from
remote tenants are imported.

On BlueField devices with HBN, a local tenant VRF imports route-target corresponding to the shared
external VRF.

L3VNI:

Tenant L3VNI

tenant1 30001 On HBN VTEPs

tenant2 30002 On HBN VTEPs

tenant3 30003 On HBN VTEPs

tenant4 30004 On HBN VTEPs

tenant5 30005 On HBN VTEPs

tenant6 30006 On HBN VTEPs

If symmetric EVPN configuration is using automatic import/export (which is often the case),
when DVNI is configured, automatic import of a tenant's VNI is disabled which isolates the
VRF from the tenant. To avoid this issue, add route-import from-evpn route-target

auto to the command line.

1276

Tenant L3VNI

external 60000 Configured on superspines and connects to external
world

On BlueField devices with HBN, every tenant VRF on HBN one must import VNI of shared external
VRF:

nv set vrf tenant1 router bgp route-import from-evpn route-target ANY:60000
nv set vrf tenant1 router bgp route-import from-evpn route-target auto
nv set vrf tenant2 router bgp route-import from-evpn route-target ANY:60000
nv set vrf tenant2 router bgp route-import from-evpn route-target auto
nv set vrf tenant3 router bgp route-import from-evpn route-target ANY:60000
nv set vrf tenant3 router bgp route-import from-evpn route-target auto
nv set vrf tenant4 router bgp route-import from-evpn route-target ANY:60000
nv set vrf tenant4 router bgp route-import from-evpn route-target auto
nv set vrf tenant5 router bgp route-import from-evpn route-target ANY:60000
nv set vrf tenant5 router bgp route-import from-evpn route-target auto
nv set vrf tenant6 router bgp route-import from-evpn route-target ANY:60000
nv set vrf tenant6 router bgp route-import from-evpn route-target auto
root@doca-hbn-service-bf3-s06-1-ipmi:/tmp#

On super spine switches (SS1 in this example), every remote tenant VRF that needs access to shared
services has to be leaked to the shared external VRF.

nv set vrf external router bgp route-import from-evpn route-target ANY:30001
nv set vrf external router bgp route-import from-evpn route-target ANY:30002
nv set vrf external router bgp route-import from-evpn route-target ANY:30003
nv set vrf external router bgp route-import from-evpn route-target ANY:30004
nv set vrf external router bgp route-import from-evpn route-target ANY:30005
nv set vrf external router bgp route-import from-evpn route-target ANY:30006
nv set vrf external router bgp route-import from-evpn route-target auto
root@superspine1:mgmt:/home/cumulus#

All super spines in this case need this configuration.

DVNI Leaked Routes in VRF Table of HBN

Kernel table for all tenant VRFs, showing the imported shared service:

root@doca-hbn-service-bf3-s06-1-ipmi:/tmp# ip -4 route show table all 6.0.0.4/32
6.0.0.4 table tenant1 proto bgp metric 20
 nexthop encap ip id 60000 src 0.0.0.0 dst 6.0.0.12 ttl 0 tos 0 via 6.0.0.12 dev vxlan48 weight 1 onlink
 nexthop encap ip id 60000 src 0.0.0.0 dst 6.0.0.13 ttl 0 tos 0 via 6.0.0.13 dev vxlan48 weight 1 onlink
 nexthop encap ip id 60000 src 0.0.0.0 dst 6.0.0.14 ttl 0 tos 0 via 6.0.0.14 dev vxlan48 weight 1 onlink
 nexthop encap ip id 60000 src 0.0.0.0 dst 6.0.0.15 ttl 0 tos 0 via 6.0.0.15 dev vxlan48 weight 1 onlink
6.0.0.4 table tenant2 proto bgp metric 20
 nexthop encap ip id 60000 src 0.0.0.0 dst 6.0.0.12 ttl 0 tos 0 via 6.0.0.12 dev vxlan48 weight 1 onlink
 nexthop encap ip id 60000 src 0.0.0.0 dst 6.0.0.13 ttl 0 tos 0 via 6.0.0.13 dev vxlan48 weight 1 onlink
 nexthop encap ip id 60000 src 0.0.0.0 dst 6.0.0.14 ttl 0 tos 0 via 6.0.0.14 dev vxlan48 weight 1 onlink
 nexthop encap ip id 60000 src 0.0.0.0 dst 6.0.0.15 ttl 0 tos 0 via 6.0.0.15 dev vxlan48 weight 1 onlink
6.0.0.4 table tenant3 proto bgp metric 20
 nexthop encap ip id 60000 src 0.0.0.0 dst 6.0.0.12 ttl 0 tos 0 via 6.0.0.12 dev vxlan48 weight 1 onlink
 nexthop encap ip id 60000 src 0.0.0.0 dst 6.0.0.13 ttl 0 tos 0 via 6.0.0.13 dev vxlan48 weight 1 onlink
 nexthop encap ip id 60000 src 0.0.0.0 dst 6.0.0.14 ttl 0 tos 0 via 6.0.0.14 dev vxlan48 weight 1 onlink
 nexthop encap ip id 60000 src 0.0.0.0 dst 6.0.0.15 ttl 0 tos 0 via 6.0.0.15 dev vxlan48 weight 1 onlink
6.0.0.4 table tenant4 proto bgp metric 20
 nexthop encap ip id 60000 src 0.0.0.0 dst 6.0.0.12 ttl 0 tos 0 via 6.0.0.12 dev vxlan48 weight 1 onlink
 nexthop encap ip id 60000 src 0.0.0.0 dst 6.0.0.13 ttl 0 tos 0 via 6.0.0.13 dev vxlan48 weight 1 onlink
 nexthop encap ip id 60000 src 0.0.0.0 dst 6.0.0.14 ttl 0 tos 0 via 6.0.0.14 dev vxlan48 weight 1 onlink
 nexthop encap ip id 60000 src 0.0.0.0 dst 6.0.0.15 ttl 0 tos 0 via 6.0.0.15 dev vxlan48 weight 1 onlink
6.0.0.4 table tenant5 proto bgp metric 20
 nexthop encap ip id 60000 src 0.0.0.0 dst 6.0.0.12 ttl 0 tos 0 via 6.0.0.12 dev vxlan48 weight 1 onlink
 nexthop encap ip id 60000 src 0.0.0.0 dst 6.0.0.13 ttl 0 tos 0 via 6.0.0.13 dev vxlan48 weight 1 onlink
 nexthop encap ip id 60000 src 0.0.0.0 dst 6.0.0.14 ttl 0 tos 0 via 6.0.0.14 dev vxlan48 weight 1 onlink
 nexthop encap ip id 60000 src 0.0.0.0 dst 6.0.0.15 ttl 0 tos 0 via 6.0.0.15 dev vxlan48 weight 1 onlink
6.0.0.4 table tenant6 proto bgp metric 20
 nexthop encap ip id 60000 src 0.0.0.0 dst 6.0.0.12 ttl 0 tos 0 via 6.0.0.12 dev vxlan48 weight 1 onlink
 nexthop encap ip id 60000 src 0.0.0.0 dst 6.0.0.13 ttl 0 tos 0 via 6.0.0.13 dev vxlan48 weight 1 onlink
 nexthop encap ip id 60000 src 0.0.0.0 dst 6.0.0.14 ttl 0 tos 0 via 6.0.0.14 dev vxlan48 weight 1 onlink
 nexthop encap ip id 60000 src 0.0.0.0 dst 6.0.0.15 ttl 0 tos 0 via 6.0.0.15 dev vxlan48 weight 1 onlink
root@doca-hbn-service-bf3-s06-1-ipmi:/tmp#

Each super spine here is advertising reachability providing 4-way overlay ECMP.

1277

FRR RIB table:

root@doca-hbn-service-bf3-s06-1-ipmi:/tmp# vtysh

Hello, this is FRRouting (version 8.4.3).
Copyright 1996-2005 Kunihiro Ishiguro, et al.

doca-hbn-service-bf3-s06-1-ipmi# sh ip route vrf tenant1
Codes: K - kernel route, C - connected, S - static, R - RIP,
 O - OSPF, I - IS-IS, B - BGP, E - EIGRP, N - NHRP,
 T - Table, A - Babel, D - SHARP, F - PBR, f - OpenFabric,
 Z - FRR,
 > - selected route, * - FIB route, q - queued, r - rejected, b - backup
 t - trapped, o - offload failure

VRF tenant1:
K>* 0.0.0.0/0 [255/8192] unreachable (ICMP unreachable), 00:10:36
B>* 6.0.0.4/32 [20/0] via 6.0.0.12, vxlan48 (vrf default) onlink, label 60000, weight 1, 00:05:38
 * via 6.0.0.13, vxlan48 (vrf default) onlink, label 60000, weight 1, 00:05:38
 * via 6.0.0.14, vxlan48 (vrf default) onlink, label 60000, weight 1, 00:05:38
 * via 6.0.0.15, vxlan48 (vrf default) onlink, label 60000, weight 1, 00:05:38
B>* 6.6.0.12/32 [20/0] via 6.0.0.12, vxlan48 (vrf default) onlink, label 60000, weight 1, 00:05:38
B>* 6.6.0.13/32 [20/0] via 6.0.0.13, vxlan48 (vrf default) onlink, label 60000, weight 1, 00:05:38
B>* 6.6.0.14/32 [20/0] via 6.0.0.14, vxlan48 (vrf default) onlink, label 60000, weight 1, 00:05:38
B>* 6.6.0.15/32 [20/0] via 6.0.0.15, vxlan48 (vrf default) onlink, label 60000, weight 1, 00:05:38
B>* 7.1.0.6/32 [20/0] via 6.0.0.6, vlan4052_l3 onlink, weight 1, 00:05:37
C>* 7.1.0.16/32 is directly connected, tenant1, 00:10:36
B>* 7.1.0.18/32 [20/0] via 6.0.0.18, vlan4052_l3 onlink, weight 1, 00:05:37
B>* 7.1.0.20/32 [20/0] via 6.0.0.20, vlan4052_l3 onlink, weight 1, 00:05:37
C>* 21.1.0.0/16 is directly connected, vlan101, 00:10:36
C * 21.1.0.0/16 [0/1024] is directly connected, vlan101-v0, 00:10:36
C * 21.2.0.0/16 [0/1024] is directly connected, vlan102-v0, 00:10:36
C>* 21.2.0.0/16 is directly connected, vlan102, 00:10:36
B>* 101.12.4.0/24 [20/0] via 6.0.0.12, vxlan48 (vrf default) onlink, label 60000, weight 1, 00:05:38
B>* 101.13.4.0/24 [20/0] via 6.0.0.13, vxlan48 (vrf default) onlink, label 60000, weight 1, 00:05:38
B>* 101.14.4.0/24 [20/0] via 6.0.0.14, vxlan48 (vrf default) onlink, label 60000, weight 1, 00:05:38
B>* 101.15.4.0/24 [20/0] via 6.0.0.15, vxlan48 (vrf default) onlink, label 60000, weight 1, 00:05:38
doca-hbn-service-bf3-s06-1-ipmi# sh ip route vrf all
Codes: K - kernel route, C - connected, S - static, R - RIP,
 O - OSPF, I - IS-IS, B - BGP, E - EIGRP, N - NHRP,
 T - Table, A - Babel, D - SHARP, F - PBR, f - OpenFabric,
 Z - FRR,
 > - selected route, * - FIB route, q - queued, r - rejected, b - backup
 t - trapped, o - offload failure

VRF default:
B>* 6.0.0.6/32 [20/0] via fe80::202:ff:fe00:1f, p0_if, weight 1, 00:06:47
 * via fe80::202:ff:fe00:27, p1_if, weight 1, 00:06:47
B>* 6.0.0.7/32 [20/0] via fe80::202:ff:fe00:1f, p0_if, weight 1, 00:05:48
 * via fe80::202:ff:fe00:27, p1_if, weight 1, 00:05:48
B>* 6.0.0.8/32 [20/0] via fe80::202:ff:fe00:1f, p0_if, weight 1, 00:05:38
 * via fe80::202:ff:fe00:27, p1_if, weight 1, 00:05:38
B>* 6.0.0.9/32 [20/0] via fe80::202:ff:fe00:1f, p0_if, weight 1, 00:05:28
 * via fe80::202:ff:fe00:27, p1_if, weight 1, 00:05:28
B>* 6.0.0.10/32 [20/0] via fe80::202:ff:fe00:1f, p0_if, weight 1, 00:06:49
B>* 6.0.0.11/32 [20/0] via fe80::202:ff:fe00:27, p1_if, weight 1, 00:06:47
B>* 6.0.0.12/32 [20/0] via fe80::202:ff:fe00:1f, p0_if, weight 1, 00:06:47
 * via fe80::202:ff:fe00:27, p1_if, weight 1, 00:06:47
B>* 6.0.0.13/32 [20/0] via fe80::202:ff:fe00:1f, p0_if, weight 1, 00:06:47
 * via fe80::202:ff:fe00:27, p1_if, weight 1, 00:06:47
B>* 6.0.0.14/32 [20/0] via fe80::202:ff:fe00:1f, p0_if, weight 1, 00:06:47
 * via fe80::202:ff:fe00:27, p1_if, weight 1, 00:06:47
B>* 6.0.0.15/32 [20/0] via fe80::202:ff:fe00:1f, p0_if, weight 1, 00:06:47
 * via fe80::202:ff:fe00:27, p1_if, weight 1, 00:06:47
C>* 6.0.0.16/32 is directly connected, lo, 00:10:42
B>* 6.0.0.18/32 [20/0] via fe80::202:ff:fe00:1f, p0_if, weight 1, 00:06:47
 * via fe80::202:ff:fe00:27, p1_if, weight 1, 00:06:47
B>* 6.0.0.20/32 [20/0] via fe80::202:ff:fe00:1f, p0_if, weight 1, 00:06:47
 * via fe80::202:ff:fe00:27, p1_if, weight 1, 00:06:47
B>* 192.168.0.0/24 [20/0] via fe80::202:ff:fe00:1f, p0_if, weight 1, 00:05:48
 * via fe80::202:ff:fe00:27, p1_if, weight 1, 00:05:48

VRF internet1:
K>* 0.0.0.0/0 [255/8192] unreachable (ICMP unreachable), 00:10:42
B>* 8.1.0.6/32 [20/0] via 6.0.0.6, vlan4004_l3 onlink, weight 1, 00:05:43
C>* 8.1.0.16/32 is directly connected, internet1, 00:10:42
B>* 8.1.0.18/32 [20/0] via 6.0.0.18, vlan4004_l3 onlink, weight 1, 00:05:43
B>* 8.1.0.20/32 [20/0] via 6.0.0.20, vlan4004_l3 onlink, weight 1, 00:05:43

VRF mgmt:
K>* 0.0.0.0/0 [255/8192] unreachable (ICMP unreachable), 00:10:42
C>* 10.88.0.0/16 is directly connected, eth0, 00:10:42

VRF special1:
K>* 0.0.0.0/0 [255/8192] unreachable (ICMP unreachable), 00:10:42
B>* 9.1.0.6/32 [20/0] via 6.0.0.6, vlan4033_l3 onlink, weight 1, 00:05:43
C>* 9.1.0.16/32 is directly connected, special1, 00:10:42
B>* 9.1.0.18/32 [20/0] via 6.0.0.18, vlan4033_l3 onlink, weight 1, 00:05:43
B>* 9.1.0.20/32 [20/0] via 6.0.0.20, vlan4033_l3 onlink, weight 1, 00:05:43

VRF tenant1:
K>* 0.0.0.0/0 [255/8192] unreachable (ICMP unreachable), 00:10:42
B>* 6.0.0.4/32 [20/0] via 6.0.0.12, vxlan48 (vrf default) onlink, label 60000, weight 1, 00:05:44
 * via 6.0.0.13, vxlan48 (vrf default) onlink, label 60000, weight 1, 00:05:44
 * via 6.0.0.14, vxlan48 (vrf default) onlink, label 60000, weight 1, 00:05:44
 * via 6.0.0.15, vxlan48 (vrf default) onlink, label 60000, weight 1, 00:05:44
B>* 6.6.0.12/32 [20/0] via 6.0.0.12, vxlan48 (vrf default) onlink, label 60000, weight 1, 00:05:44
B>* 6.6.0.13/32 [20/0] via 6.0.0.13, vxlan48 (vrf default) onlink, label 60000, weight 1, 00:05:44
B>* 6.6.0.14/32 [20/0] via 6.0.0.14, vxlan48 (vrf default) onlink, label 60000, weight 1, 00:05:44
B>* 6.6.0.15/32 [20/0] via 6.0.0.15, vxlan48 (vrf default) onlink, label 60000, weight 1, 00:05:44
B>* 7.1.0.6/32 [20/0] via 6.0.0.6, vlan4052_l3 onlink, weight 1, 00:05:43
C>* 7.1.0.16/32 is directly connected, tenant1, 00:10:42

1278

B>* 7.1.0.18/32 [20/0] via 6.0.0.18, vlan4052_l3 onlink, weight 1, 00:05:43
B>* 7.1.0.20/32 [20/0] via 6.0.0.20, vlan4052_l3 onlink, weight 1, 00:05:43
C>* 21.1.0.0/16 is directly connected, vlan101, 00:10:42
C * 21.1.0.0/16 [0/1024] is directly connected, vlan101-v0, 00:10:42
C * 21.2.0.0/16 [0/1024] is directly connected, vlan102-v0, 00:10:42
C>* 21.2.0.0/16 is directly connected, vlan102, 00:10:42
B>* 101.12.4.0/24 [20/0] via 6.0.0.12, vxlan48 (vrf default) onlink, label 60000, weight 1, 00:05:44
B>* 101.13.4.0/24 [20/0] via 6.0.0.13, vxlan48 (vrf default) onlink, label 60000, weight 1, 00:05:44
B>* 101.14.4.0/24 [20/0] via 6.0.0.14, vxlan48 (vrf default) onlink, label 60000, weight 1, 00:05:44
B>* 101.15.4.0/24 [20/0] via 6.0.0.15, vxlan48 (vrf default) onlink, label 60000, weight 1, 00:05:44

VRF tenant2:
K>* 0.0.0.0/0 [255/8192] unreachable (ICMP unreachable), 00:10:42
B>* 6.0.0.4/32 [20/0] via 6.0.0.12, vxlan48 (vrf default) onlink, label 60000, weight 1, 00:05:44
 * via 6.0.0.13, vxlan48 (vrf default) onlink, label 60000, weight 1, 00:05:44
 * via 6.0.0.14, vxlan48 (vrf default) onlink, label 60000, weight 1, 00:05:44
 * via 6.0.0.15, vxlan48 (vrf default) onlink, label 60000, weight 1, 00:05:44
B>* 6.6.0.12/32 [20/0] via 6.0.0.12, vxlan48 (vrf default) onlink, label 60000, weight 1, 00:05:44
B>* 6.6.0.13/32 [20/0] via 6.0.0.13, vxlan48 (vrf default) onlink, label 60000, weight 1, 00:05:44
B>* 6.6.0.14/32 [20/0] via 6.0.0.14, vxlan48 (vrf default) onlink, label 60000, weight 1, 00:05:44
B>* 6.6.0.15/32 [20/0] via 6.0.0.15, vxlan48 (vrf default) onlink, label 60000, weight 1, 00:05:44
B>* 7.2.0.6/32 [20/0] via 6.0.0.6, vlan4037_l3 onlink, weight 1, 00:05:43
C>* 7.2.0.16/32 is directly connected, tenant2, 00:10:42
B>* 7.2.0.18/32 [20/0] via 6.0.0.18, vlan4037_l3 onlink, weight 1, 00:05:43
B>* 7.2.0.20/32 [20/0] via 6.0.0.20, vlan4037_l3 onlink, weight 1, 00:05:43
C * 22.1.0.0/16 [0/1024] is directly connected, vlan201-v0, 00:10:42
C>* 22.1.0.0/16 is directly connected, vlan201, 00:10:42
C * 22.2.0.0/16 [0/1024] is directly connected, vlan202-v0, 00:10:42
C>* 22.2.0.0/16 is directly connected, vlan202, 00:10:42
B>* 101.12.4.0/24 [20/0] via 6.0.0.12, vxlan48 (vrf default) onlink, label 60000, weight 1, 00:05:44
B>* 101.13.4.0/24 [20/0] via 6.0.0.13, vxlan48 (vrf default) onlink, label 60000, weight 1, 00:05:44
B>* 101.14.4.0/24 [20/0] via 6.0.0.14, vxlan48 (vrf default) onlink, label 60000, weight 1, 00:05:44
B>* 101.15.4.0/24 [20/0] via 6.0.0.15, vxlan48 (vrf default) onlink, label 60000, weight 1, 00:05:44

VRF tenant3:
K>* 0.0.0.0/0 [255/8192] unreachable (ICMP unreachable), 00:10:42
B>* 6.0.0.4/32 [20/0] via 6.0.0.12, vxlan48 (vrf default) onlink, label 60000, weight 1, 00:05:44
 * via 6.0.0.13, vxlan48 (vrf default) onlink, label 60000, weight 1, 00:05:44
 * via 6.0.0.14, vxlan48 (vrf default) onlink, label 60000, weight 1, 00:05:44
 * via 6.0.0.15, vxlan48 (vrf default) onlink, label 60000, weight 1, 00:05:44
B>* 6.6.0.12/32 [20/0] via 6.0.0.12, vxlan48 (vrf default) onlink, label 60000, weight 1, 00:05:44
B>* 6.6.0.13/32 [20/0] via 6.0.0.13, vxlan48 (vrf default) onlink, label 60000, weight 1, 00:05:44
B>* 6.6.0.14/32 [20/0] via 6.0.0.14, vxlan48 (vrf default) onlink, label 60000, weight 1, 00:05:44
B>* 6.6.0.15/32 [20/0] via 6.0.0.15, vxlan48 (vrf default) onlink, label 60000, weight 1, 00:05:44
B>* 7.3.0.6/32 [20/0] via 6.0.0.6, vlan4022_l3 onlink, weight 1, 00:05:43
C>* 7.3.0.16/32 is directly connected, tenant3, 00:10:42
B>* 7.3.0.18/32 [20/0] via 6.0.0.18, vlan4022_l3 onlink, weight 1, 00:05:43
B>* 7.3.0.20/32 [20/0] via 6.0.0.20, vlan4022_l3 onlink, weight 1, 00:05:43
C>* 23.17.0.0/16 is directly connected, pf0vf4_if.3, 00:10:42
B>* 23.19.0.0/16 [20/0] via 6.0.0.18, vlan4022_l3 onlink, weight 1, 00:05:43
B>* 23.21.0.0/16 [20/0] via 6.0.0.20, vlan4022_l3 onlink, weight 1, 00:05:43
B>* 101.12.4.0/24 [20/0] via 6.0.0.12, vxlan48 (vrf default) onlink, label 60000, weight 1, 00:05:44
B>* 101.13.4.0/24 [20/0] via 6.0.0.13, vxlan48 (vrf default) onlink, label 60000, weight 1, 00:05:44
B>* 101.14.4.0/24 [20/0] via 6.0.0.14, vxlan48 (vrf default) onlink, label 60000, weight 1, 00:05:44
B>* 101.15.4.0/24 [20/0] via 6.0.0.15, vxlan48 (vrf default) onlink, label 60000, weight 1, 00:05:44

VRF tenant4:
K>* 0.0.0.0/0 [255/8192] unreachable (ICMP unreachable), 00:10:42
B>* 6.0.0.4/32 [20/0] via 6.0.0.12, vxlan48 (vrf default) onlink, label 60000, weight 1, 00:05:44
 * via 6.0.0.13, vxlan48 (vrf default) onlink, label 60000, weight 1, 00:05:44
 * via 6.0.0.14, vxlan48 (vrf default) onlink, label 60000, weight 1, 00:05:44
 * via 6.0.0.15, vxlan48 (vrf default) onlink, label 60000, weight 1, 00:05:44
B>* 6.6.0.12/32 [20/0] via 6.0.0.12, vxlan48 (vrf default) onlink, label 60000, weight 1, 00:05:44
B>* 6.6.0.13/32 [20/0] via 6.0.0.13, vxlan48 (vrf default) onlink, label 60000, weight 1, 00:05:44
B>* 6.6.0.14/32 [20/0] via 6.0.0.14, vxlan48 (vrf default) onlink, label 60000, weight 1, 00:05:44
B>* 6.6.0.15/32 [20/0] via 6.0.0.15, vxlan48 (vrf default) onlink, label 60000, weight 1, 00:05:44
B>* 7.4.0.6/32 [20/0] via 6.0.0.6, vlan4017_l3 onlink, weight 1, 00:05:43
C>* 7.4.0.16/32 is directly connected, tenant4, 00:10:42
B>* 7.4.0.18/32 [20/0] via 6.0.0.18, vlan4017_l3 onlink, weight 1, 00:05:43
B>* 7.4.0.20/32 [20/0] via 6.0.0.20, vlan4017_l3 onlink, weight 1, 00:05:43
C>* 24.17.0.0/16 is directly connected, pf0vf4_if.4, 00:10:42
B>* 24.19.0.0/16 [20/0] via 6.0.0.18, vlan4017_l3 onlink, weight 1, 00:05:43
B>* 24.21.0.0/16 [20/0] via 6.0.0.20, vlan4017_l3 onlink, weight 1, 00:05:43
B>* 101.12.4.0/24 [20/0] via 6.0.0.12, vxlan48 (vrf default) onlink, label 60000, weight 1, 00:05:44
B>* 101.13.4.0/24 [20/0] via 6.0.0.13, vxlan48 (vrf default) onlink, label 60000, weight 1, 00:05:44
B>* 101.14.4.0/24 [20/0] via 6.0.0.14, vxlan48 (vrf default) onlink, label 60000, weight 1, 00:05:44
B>* 101.15.4.0/24 [20/0] via 6.0.0.15, vxlan48 (vrf default) onlink, label 60000, weight 1, 00:05:44

VRF tenant5:
K>* 0.0.0.0/0 [255/8192] unreachable (ICMP unreachable), 00:10:42
B>* 6.0.0.4/32 [20/0] via 6.0.0.12, vxlan48 (vrf default) onlink, label 60000, weight 1, 00:05:44
 * via 6.0.0.13, vxlan48 (vrf default) onlink, label 60000, weight 1, 00:05:44
 * via 6.0.0.14, vxlan48 (vrf default) onlink, label 60000, weight 1, 00:05:44
 * via 6.0.0.15, vxlan48 (vrf default) onlink, label 60000, weight 1, 00:05:44
B>* 6.6.0.12/32 [20/0] via 6.0.0.12, vxlan48 (vrf default) onlink, label 60000, weight 1, 00:05:44
B>* 6.6.0.13/32 [20/0] via 6.0.0.13, vxlan48 (vrf default) onlink, label 60000, weight 1, 00:05:44
B>* 6.6.0.14/32 [20/0] via 6.0.0.14, vxlan48 (vrf default) onlink, label 60000, weight 1, 00:05:44
B>* 6.6.0.15/32 [20/0] via 6.0.0.15, vxlan48 (vrf default) onlink, label 60000, weight 1, 00:05:44
B>* 7.5.0.6/32 [20/0] via 6.0.0.6, vlan4046_l3 onlink, weight 1, 00:05:43
C>* 7.5.0.16/32 is directly connected, tenant5, 00:10:42
B>* 7.5.0.18/32 [20/0] via 6.0.0.18, vlan4046_l3 onlink, weight 1, 00:05:43
B>* 7.5.0.20/32 [20/0] via 6.0.0.20, vlan4046_l3 onlink, weight 1, 00:05:43
C>* 25.17.0.0/16 is directly connected, pf0vf4_if.5, 00:10:42
B>* 25.19.0.0/16 [20/0] via 6.0.0.18, vlan4046_l3 onlink, weight 1, 00:05:43
B>* 25.21.0.0/16 [20/0] via 6.0.0.20, vlan4046_l3 onlink, weight 1, 00:05:43
B>* 101.12.4.0/24 [20/0] via 6.0.0.12, vxlan48 (vrf default) onlink, label 60000, weight 1, 00:05:44
B>* 101.13.4.0/24 [20/0] via 6.0.0.13, vxlan48 (vrf default) onlink, label 60000, weight 1, 00:05:44
B>* 101.14.4.0/24 [20/0] via 6.0.0.14, vxlan48 (vrf default) onlink, label 60000, weight 1, 00:05:44
B>* 101.15.4.0/24 [20/0] via 6.0.0.15, vxlan48 (vrf default) onlink, label 60000, weight 1, 00:05:44

VRF tenant6:
K>* 0.0.0.0/0 [255/8192] unreachable (ICMP unreachable), 00:10:42
B>* 6.0.0.4/32 [20/0] via 6.0.0.12, vxlan48 (vrf default) onlink, label 60000, weight 1, 00:05:44
 * via 6.0.0.13, vxlan48 (vrf default) onlink, label 60000, weight 1, 00:05:44
 * via 6.0.0.14, vxlan48 (vrf default) onlink, label 60000, weight 1, 00:05:44
 * via 6.0.0.15, vxlan48 (vrf default) onlink, label 60000, weight 1, 00:05:44

1279

B>* 6.6.0.12/32 [20/0] via 6.0.0.12, vxlan48 (vrf default) onlink, label 60000, weight 1, 00:05:44
B>* 6.6.0.13/32 [20/0] via 6.0.0.13, vxlan48 (vrf default) onlink, label 60000, weight 1, 00:05:44
B>* 6.6.0.14/32 [20/0] via 6.0.0.14, vxlan48 (vrf default) onlink, label 60000, weight 1, 00:05:44
B>* 6.6.0.15/32 [20/0] via 6.0.0.15, vxlan48 (vrf default) onlink, label 60000, weight 1, 00:05:44
B>* 7.6.0.6/32 [20/0] via 6.0.0.6, vlan4041_l3 onlink, weight 1, 00:05:43
C>* 7.6.0.16/32 is directly connected, tenant6, 00:10:42
B>* 7.6.0.18/32 [20/0] via 6.0.0.18, vlan4041_l3 onlink, weight 1, 00:05:43
B>* 7.6.0.20/32 [20/0] via 6.0.0.20, vlan4041_l3 onlink, weight 1, 00:05:43
C>* 26.17.0.0/16 is directly connected, pf0vf4_if.6, 00:10:42
B>* 26.19.0.0/16 [20/0] via 6.0.0.18, vlan4041_l3 onlink, weight 1, 00:05:43
B>* 26.21.0.0/16 [20/0] via 6.0.0.20, vlan4041_l3 onlink, weight 1, 00:05:43
B>* 101.12.4.0/24 [20/0] via 6.0.0.12, vxlan48 (vrf default) onlink, label 60000, weight 1, 00:05:44
B>* 101.13.4.0/24 [20/0] via 6.0.0.13, vxlan48 (vrf default) onlink, label 60000, weight 1, 00:05:44
B>* 101.14.4.0/24 [20/0] via 6.0.0.14, vxlan48 (vrf default) onlink, label 60000, weight 1, 00:05:44
B>* 101.15.4.0/24 [20/0] via 6.0.0.15, vxlan48 (vrf default) onlink, label 60000, weight 1, 00:05:44
doca-hbn-service-bf3-s06-1-ipmi#

DVNI Debugging

BGP/Zebra debug:

May 7 20:59:49 doca-hbn-service-bf3-s06-1-ipmi bgpd[1775018]: [GKC5Y-XBAX9] vrf tenant1: import evpn prefix [5]:[0]
:[32]:[6.0.0.4] parent 0xaaaafda63a90 flags 0x410
May 7 20:59:49 doca-hbn-service-bf3-s06-1-ipmi bgpd[1775018]: [KZNVF-SX7KT] ... new pi dest 0xaaaafe524650 (l 2)
pi 0xaaaafe5ae400 (l 1, f 0x4010)
May 7 20:59:49 doca-hbn-service-bf3-s06-1-ipmi bgpd[1775018]: [GKC5Y-XBAX9] vrf tenant2: import evpn prefix [5]:[0]
:[32]:[6.0.0.4] parent 0xaaaafda63a90 flags 0x410
May 7 20:59:49 doca-hbn-service-bf3-s06-1-ipmi bgpd[1775018]: [KZNVF-SX7KT] ... new pi dest 0xaaaafe51c420 (l 2)
pi 0xaaaafe55d230 (l 1, f 0x4010)
May 7 20:59:49 doca-hbn-service-bf3-s06-1-ipmi bgpd[1775018]: [GKC5Y-XBAX9] vrf tenant3: import evpn prefix [5]:[0]
:[32]:[6.0.0.4] parent 0xaaaafda63a90 flags 0x410
May 7 20:59:49 doca-hbn-service-bf3-s06-1-ipmi bgpd[1775018]: [KZNVF-SX7KT] ... new pi dest 0xaaaafe51a670 (l 2)
pi 0xaaaafe674820 (l 1, f 0x4010)
May 7 20:59:49 doca-hbn-service-bf3-s06-1-ipmi bgpd[1775018]: [GKC5Y-XBAX9] vrf tenant4: import evpn prefix [5]:[0]
:[32]:[6.0.0.4] parent 0xaaaafda63a90 flags 0x410
May 7 20:59:49 doca-hbn-service-bf3-s06-1-ipmi bgpd[1775018]: [KZNVF-SX7KT] ... new pi dest 0xaaaafe519fb0 (l 2)
pi 0xaaaafe675e40 (l 1, f 0x4010)
May 7 20:59:49 doca-hbn-service-bf3-s06-1-ipmi bgpd[1775018]: [GKC5Y-XBAX9] vrf tenant5: import evpn prefix [5]:[0]
:[32]:[6.0.0.4] parent 0xaaaafda63a90 flags 0x410
May 7 20:59:49 doca-hbn-service-bf3-s06-1-ipmi bgpd[1775018]: [KZNVF-SX7KT] ... new pi dest 0xaaaafe55ae50 (l 2)
pi 0xaaaafe5482f0 (l 1, f 0x4010)
May 7 20:59:49 doca-hbn-service-bf3-s06-1-ipmi bgpd[1775018]: [GKC5Y-XBAX9] vrf tenant6: import evpn prefix [5]:[0]
:[32]:[6.0.0.4] parent 0xaaaafda63a90 flags 0x410
May 7 20:59:49 doca-hbn-service-bf3-s06-1-ipmi bgpd[1775018]: [KZNVF-SX7KT] ... new pi dest 0xaaaafdaf3590 (l 2)
pi 0xaaaafe48fbf0 (l 1, f 0x4010)

DVNI table:

root@doca-hbn-service-bf3-s06-1-ipmi:/tmp# cat /cumulus/nl2docad/run/software-tables/15
{
 "table": {
 "id": 15,
 "name": "HAL Downstream-VNI Table ",
 "count": 1,
 "records": [
 {
 "vni": 60000,
 "fid": 4098,
 "mark-for-del": 0,
 "vtep-users":
 {
 "count": 4,
 "vtep-user-list": [
 {
 "dest-vtep": "6.0.0.12",
 "dest-mac": "44:38:39:f0:00:12",
 "is-dmac-null": 0,
 "ref-cnt": 36
 },
 {
 "dest-vtep": "6.0.0.14",
 "dest-mac": "44:38:39:f0:00:14",
 "is-dmac-null": 0,
 "ref-cnt": 36
 },
 {
 "dest-vtep": "6.0.0.13",
 "dest-mac": "44:38:39:f0:00:13",
 "is-dmac-null": 0,
 "ref-cnt": 36
 },
 {
 "dest-vtep": "6.0.0.15",
 "dest-mac": "44:38:39:f0:00:15",
 "is-dmac-null": 0,
 "ref-cnt": 36
 }
]
 }
 }
]
 }
}root@doca-hbn-service-bf3-s06-1-ipmi:/tmp#

1280

Sample DVNI Configuration

HBN configuration example for BlueField devices:

root@doca-hbn-service-bf3-s06-1-ipmi:/tmp# nv config show -o commands
nv set bridge domain br_default vlan 101 vni 10101
nv set bridge domain br_default vlan 102 vni 10102
nv set bridge domain br_default vlan 201 vni 10201
nv set bridge domain br_default vlan 202 vni 10202
nv set evpn enable on
nv set evpn route-advertise svi-ip off
nv set interface ilan3200 ip vrf internet1
nv set interface ilan3200 vlan 3200
nv set interface ilan3200,slan3201,vlan101-102,201-202,3001-3006 base-interface br_default
nv set interface ilan3200,slan3201,vlan101-102,201-202,3001-3006 type svi
nv set interface lo ip address 6.0.0.16/32
nv set interface lo ip address 2001::16/128
nv set interface lo type loopback
nv set interface p0_if,p1_if,pf0hpf_if,pf0vf0_if,pf0vf1_if,pf0vf2_if,pf0vf3_if,pf0vf4_if,pf1hpf_if type swp
nv set interface pf0vf0_if bridge domain br_default access 101
nv set interface pf0vf1_if bridge domain br_default access 102
nv set interface pf0vf2_if bridge domain br_default access 201
nv set interface pf0vf3_if bridge domain br_default access 202
nv set interface pf0vf4_if.3 ip address 23.17.0.16/16
nv set interface pf0vf4_if.3 ip address 2020:0:3:17::16/64
nv set interface pf0vf4_if.3 vlan 3
nv set interface pf0vf4_if.3,vlan3003 ip vrf tenant3
nv set interface pf0vf4_if.3-6 base-interface pf0vf4_if
nv set interface pf0vf4_if.3-6 type sub
nv set interface pf0vf4_if.4 ip address 24.17.0.16/16
nv set interface pf0vf4_if.4 ip address 2020:0:4:17::16/64
nv set interface pf0vf4_if.4 vlan 4
nv set interface pf0vf4_if.4,vlan3004 ip vrf tenant4
nv set interface pf0vf4_if.5 ip address 25.17.0.16/16
nv set interface pf0vf4_if.5 ip address 2020:0:5:17::16/64
nv set interface pf0vf4_if.5 vlan 5
nv set interface pf0vf4_if.5,vlan3005 ip vrf tenant5
nv set interface pf0vf4_if.6 ip address 26.17.0.16/16
nv set interface pf0vf4_if.6 ip address 2020:0:6:17::16/64
nv set interface pf0vf4_if.6 vlan 6
nv set interface pf0vf4_if.6,vlan3006 ip vrf tenant6
nv set interface slan3201 ip vrf special1
nv set interface slan3201 vlan 3201
nv set interface vlan101 ip address 21.1.0.16/16
nv set interface vlan101 ip address 2020:0:1:1::16/64
nv set interface vlan101 ip vrr address 21.1.0.250/16
nv set interface vlan101 ip vrr address 2020:0:1:1::250/64
nv set interface vlan101 ip vrr mac-address 00:00:01:00:00:65
nv set interface vlan101 vlan 101
nv set interface vlan101-102,201-202 ip vrr enable on
nv set interface vlan101-102,3001 ip vrf tenant1
nv set interface vlan102 ip address 21.2.0.16/16
nv set interface vlan102 ip address 2020:0:1:2::16/64
nv set interface vlan102 ip vrr address 21.2.0.250/16
nv set interface vlan102 ip vrr address 2020:0:1:2::250/64
nv set interface vlan102 ip vrr mac-address 00:00:01:00:00:66
nv set interface vlan102 vlan 102
nv set interface vlan201 ip address 22.1.0.16/16
nv set interface vlan201 ip address 2020:0:2:1::16/64
nv set interface vlan201 ip vrr address 22.1.0.250/16
nv set interface vlan201 ip vrr address 2020:0:2:1::250/64
nv set interface vlan201 ip vrr mac-address 00:00:02:00:00:c9
nv set interface vlan201 vlan 201
nv set interface vlan201-202,3002 ip vrf tenant2
nv set interface vlan202 ip address 22.2.0.16/16
nv set interface vlan202 ip address 2020:0:2:2::16/64
nv set interface vlan202 ip vrr address 22.2.0.250/16
nv set interface vlan202 ip vrr address 2020:0:2:2::250/64
nv set interface vlan202 ip vrr mac-address 00:00:02:00:00:ca
nv set interface vlan202 vlan 202
nv set interface vlan3001 vlan 3001
nv set interface vlan3002 vlan 3002
nv set interface vlan3003 vlan 3003
nv set interface vlan3004 vlan 3004
nv set interface vlan3005 vlan 3005
nv set interface vlan3006 vlan 3006
nv set nve vxlan arp-nd-suppress on
nv set nve vxlan enable on
nv set nve vxlan source address 6.0.0.16
nv set platform
nv set router bgp autonomous-system 65011
nv set router bgp enable on
nv set router bgp router-id 6.0.0.16
nv set router vrr enable on
nv set system config snippet
nv set system global
nv set vrf default router bgp address-family ipv4-unicast enable on
nv set vrf default router bgp address-family ipv4-unicast redistribute connected enable on
nv set vrf default router bgp address-family ipv6-unicast enable on
nv set vrf default router bgp address-family l2vpn-evpn enable on
nv set vrf default router bgp enable on
nv set vrf default router bgp neighbor 6.0.0.7 peer-group rservers
nv set vrf default router bgp neighbor 6.0.0.7 type numbered
nv set vrf default router bgp neighbor 6.0.0.8 peer-group rservers
nv set vrf default router bgp neighbor 6.0.0.8 type numbered
nv set vrf default router bgp neighbor 6.0.0.9 peer-group rservers
nv set vrf default router bgp neighbor 6.0.0.9 type numbered
nv set vrf default router bgp neighbor p0_if peer-group fabric
nv set vrf default router bgp neighbor p0_if type unnumbered
nv set vrf default router bgp neighbor p1_if peer-group fabric
nv set vrf default router bgp neighbor p1_if type unnumbered
nv set vrf default router bgp peer-group fabric address-family ipv4-unicast enable on

1281

nv set vrf default router bgp peer-group fabric address-family ipv6-unicast enable on
nv set vrf default router bgp peer-group fabric bfd detect-multiplier 3
nv set vrf default router bgp peer-group fabric bfd enable on
nv set vrf default router bgp peer-group fabric bfd min-rx-interval 1000
nv set vrf default router bgp peer-group fabric bfd min-tx-interval 1000
nv set vrf default router bgp peer-group fabric remote-as external
nv set vrf default router bgp peer-group rservers address-family ipv4-unicast enable off
nv set vrf default router bgp peer-group rservers address-family l2vpn-evpn add-path-tx off
nv set vrf default router bgp peer-group rservers address-family l2vpn-evpn enable on
nv set vrf default router bgp peer-group rservers multihop-ttl 10
nv set vrf default router bgp peer-group rservers remote-as external
nv set vrf default router bgp peer-group rservers update-source lo
nv set vrf internet1 evpn enable on
nv set vrf internet1 evpn vni 42000
nv set vrf internet1 loopback ip address 8.1.0.16/32
nv set vrf internet1 loopback ip address 2008:0:1::16/64
nv set vrf internet1 router bgp address-family ipv4-unicast enable on
nv set vrf internet1 router bgp address-family ipv4-unicast redistribute connected enable on
nv set vrf internet1 router bgp address-family ipv4-unicast route-export to-evpn enable on
nv set vrf internet1 router bgp address-family ipv6-unicast enable on
nv set vrf internet1 router bgp address-family ipv6-unicast redistribute connected enable on
nv set vrf internet1 router bgp address-family ipv6-unicast route-export to-evpn enable on
nv set vrf internet1 router bgp enable on
nv set vrf special1 evpn enable on
nv set vrf special1 evpn vni 42001
nv set vrf special1 loopback ip address 9.1.0.16/32
nv set vrf special1 loopback ip address 2009:0:1::16/64
nv set vrf special1 router bgp address-family ipv4-unicast enable on
nv set vrf special1 router bgp address-family ipv4-unicast redistribute connected enable on
nv set vrf special1 router bgp address-family ipv4-unicast route-export to-evpn enable on
nv set vrf special1 router bgp address-family ipv6-unicast enable on
nv set vrf special1 router bgp address-family ipv6-unicast redistribute connected enable on
nv set vrf special1 router bgp address-family ipv6-unicast route-export to-evpn enable on
nv set vrf special1 router bgp enable on
nv set vrf tenant1 evpn enable on
nv set vrf tenant1 evpn vni 30001
nv set vrf tenant1 loopback ip address 7.1.0.16/32
nv set vrf tenant1 loopback ip address 2007:0:1::16/64
nv set vrf tenant1 router bgp address-family ipv4-unicast enable on
nv set vrf tenant1 router bgp address-family ipv4-unicast redistribute connected enable on
nv set vrf tenant1 router bgp address-family ipv4-unicast route-export to-evpn enable on
nv set vrf tenant1 router bgp address-family ipv6-unicast enable on
nv set vrf tenant1 router bgp address-family ipv6-unicast redistribute connected enable on
nv set vrf tenant1 router bgp address-family ipv6-unicast route-export to-evpn enable on
nv set vrf tenant1 router bgp enable on
nv set vrf tenant1 router bgp neighbor 21.1.0.17 peer-group hostgroup
nv set vrf tenant1 router bgp neighbor 21.1.0.17 type numbered
nv set vrf tenant1 router bgp peer-group hostgroup address-family ipv4-unicast enable on
nv set vrf tenant1 router bgp peer-group hostgroup address-family ipv6-unicast enable on
nv set vrf tenant1 router bgp peer-group hostgroup remote-as external
nv set vrf tenant1 router bgp route-import from-evpn route-target ANY:60000
nv set vrf tenant1 router bgp route-import from-evpn route-target auto
nv set vrf tenant1 router bgp router-id 6.0.0.16
nv set vrf tenant2 evpn enable on
nv set vrf tenant2 evpn vni 30002
nv set vrf tenant2 loopback ip address 7.2.0.16/32
nv set vrf tenant2 loopback ip address 2007:0:2::16/64
nv set vrf tenant2 router bgp address-family ipv4-unicast enable on
nv set vrf tenant2 router bgp address-family ipv4-unicast redistribute connected enable on
nv set vrf tenant2 router bgp address-family ipv4-unicast route-export to-evpn enable on
nv set vrf tenant2 router bgp address-family ipv6-unicast enable on
nv set vrf tenant2 router bgp address-family ipv6-unicast redistribute connected enable on
nv set vrf tenant2 router bgp address-family ipv6-unicast route-export to-evpn enable on
nv set vrf tenant2 router bgp enable on
nv set vrf tenant2 router bgp neighbor 22.1.0.17 peer-group hostgroup
nv set vrf tenant2 router bgp neighbor 22.1.0.17 type numbered
nv set vrf tenant2 router bgp peer-group hostgroup address-family ipv4-unicast enable on
nv set vrf tenant2 router bgp peer-group hostgroup address-family ipv6-unicast enable on
nv set vrf tenant2 router bgp peer-group hostgroup remote-as external
nv set vrf tenant2 router bgp route-import from-evpn route-target ANY:60000
nv set vrf tenant2 router bgp route-import from-evpn route-target auto
nv set vrf tenant2 router bgp router-id 6.0.0.16
nv set vrf tenant3 evpn enable on
nv set vrf tenant3 evpn vni 30003
nv set vrf tenant3 loopback ip address 7.3.0.16/32
nv set vrf tenant3 loopback ip address 2007:0:3::16/64
nv set vrf tenant3 router bgp address-family ipv4-unicast enable on
nv set vrf tenant3 router bgp address-family ipv4-unicast redistribute connected enable on
nv set vrf tenant3 router bgp address-family ipv4-unicast route-export to-evpn enable on
nv set vrf tenant3 router bgp address-family ipv6-unicast enable on
nv set vrf tenant3 router bgp address-family ipv6-unicast redistribute connected enable on
nv set vrf tenant3 router bgp address-family ipv6-unicast route-export to-evpn enable on
nv set vrf tenant3 router bgp enable on
nv set vrf tenant3 router bgp neighbor 23.17.0.17 peer-group hostgroup
nv set vrf tenant3 router bgp neighbor 23.17.0.17 type numbered
nv set vrf tenant3 router bgp peer-group hostgroup address-family ipv4-unicast enable on
nv set vrf tenant3 router bgp peer-group hostgroup address-family ipv6-unicast enable on
nv set vrf tenant3 router bgp peer-group hostgroup remote-as external
nv set vrf tenant3 router bgp route-import from-evpn route-target ANY:60000
nv set vrf tenant3 router bgp route-import from-evpn route-target auto
nv set vrf tenant3 router bgp router-id 6.0.0.16
nv set vrf tenant3 table auto
nv set vrf tenant4 evpn enable on
nv set vrf tenant4 evpn vni 30004
nv set vrf tenant4 loopback ip address 7.4.0.16/32
nv set vrf tenant4 loopback ip address 2007:0:4::16/64
nv set vrf tenant4 router bgp address-family ipv4-unicast enable on
nv set vrf tenant4 router bgp address-family ipv4-unicast redistribute connected enable on
nv set vrf tenant4 router bgp address-family ipv4-unicast route-export to-evpn enable on
nv set vrf tenant4 router bgp address-family ipv6-unicast enable on
nv set vrf tenant4 router bgp address-family ipv6-unicast redistribute connected enable on
nv set vrf tenant4 router bgp address-family ipv6-unicast route-export to-evpn enable on
nv set vrf tenant4 router bgp enable on
nv set vrf tenant4 router bgp neighbor 24.17.0.17 peer-group hostgroup
nv set vrf tenant4 router bgp neighbor 24.17.0.17 type numbered
nv set vrf tenant4 router bgp peer-group hostgroup address-family ipv4-unicast enable on

1282

nv set vrf tenant4 router bgp peer-group hostgroup address-family ipv6-unicast enable on
nv set vrf tenant4 router bgp peer-group hostgroup remote-as external
nv set vrf tenant4 router bgp route-import from-evpn route-target ANY:60000
nv set vrf tenant4 router bgp route-import from-evpn route-target auto
nv set vrf tenant4 router bgp router-id 6.0.0.16
nv set vrf tenant4 table auto
nv set vrf tenant5 evpn enable on
nv set vrf tenant5 evpn vni 30005
nv set vrf tenant5 loopback ip address 7.5.0.16/32
nv set vrf tenant5 loopback ip address 2007:0:5::16/64
nv set vrf tenant5 router bgp address-family ipv4-unicast enable on
nv set vrf tenant5 router bgp address-family ipv4-unicast redistribute connected enable on
nv set vrf tenant5 router bgp address-family ipv4-unicast route-export to-evpn enable on
nv set vrf tenant5 router bgp address-family ipv6-unicast enable on
nv set vrf tenant5 router bgp address-family ipv6-unicast redistribute connected enable on
nv set vrf tenant5 router bgp address-family ipv6-unicast route-export to-evpn enable on
nv set vrf tenant5 router bgp enable on
nv set vrf tenant5 router bgp neighbor 25.17.0.17 peer-group hostgroup
nv set vrf tenant5 router bgp neighbor 25.17.0.17 type numbered
nv set vrf tenant5 router bgp peer-group hostgroup address-family ipv4-unicast enable on
nv set vrf tenant5 router bgp peer-group hostgroup address-family ipv6-unicast enable on
nv set vrf tenant5 router bgp peer-group hostgroup remote-as external
nv set vrf tenant5 router bgp route-import from-evpn route-target ANY:60000
nv set vrf tenant5 router bgp route-import from-evpn route-target auto
nv set vrf tenant5 router bgp router-id 6.0.0.16
nv set vrf tenant5 table auto
nv set vrf tenant6 evpn enable on
nv set vrf tenant6 evpn vni 30006
nv set vrf tenant6 loopback ip address 7.6.0.16/32
nv set vrf tenant6 loopback ip address 2007:0:6::16/64
nv set vrf tenant6 router bgp address-family ipv4-unicast enable on
nv set vrf tenant6 router bgp address-family ipv4-unicast redistribute connected enable on
nv set vrf tenant6 router bgp address-family ipv4-unicast route-export to-evpn enable on
nv set vrf tenant6 router bgp address-family ipv6-unicast enable on
nv set vrf tenant6 router bgp address-family ipv6-unicast redistribute connected enable on
nv set vrf tenant6 router bgp address-family ipv6-unicast route-export to-evpn enable on
nv set vrf tenant6 router bgp enable on
nv set vrf tenant6 router bgp neighbor 26.17.0.17 peer-group hostgroup
nv set vrf tenant6 router bgp neighbor 26.17.0.17 type numbered
nv set vrf tenant6 router bgp peer-group hostgroup address-family ipv4-unicast enable on
nv set vrf tenant6 router bgp peer-group hostgroup address-family ipv6-unicast enable on
nv set vrf tenant6 router bgp peer-group hostgroup remote-as external
nv set vrf tenant6 router bgp route-import from-evpn route-target ANY:60000
nv set vrf tenant6 router bgp route-import from-evpn route-target auto
nv set vrf tenant6 router bgp router-id 6.0.0.16
nv set vrf tenant6 table auto
root@doca-hbn-service-bf3-s06-1-ipmi:/tmp#

SS1 switch configuration example:

root@superspine1:mgmt:/home/cumulus# nv config show -o commands
nv set bridge domain br_default vlan 101 vni 10101
nv set bridge domain br_default vlan 102 vni 10102
nv set bridge domain br_default vlan 201 vni 10201
nv set bridge domain br_default vlan 202 vni 10202
nv set evpn enable on
nv set interface eth0 ip address 192.168.0.15/24
nv set interface eth0 ip gateway 192.168.0.2
nv set interface eth0 type eth
nv set interface lo ip address 6.0.0.12/32
nv set interface lo ip address 2001::12/128
nv set interface lo type loopback
nv set interface swp1-6 type swp
nv set interface swp6 ip address 101.12.4.12/24
nv set interface swp6 ip address 2101:12::4:12/112
nv set interface swp6 ip vrf external
nv set nve vxlan arp-nd-suppress on
nv set nve vxlan enable on
nv set nve vxlan source address 6.0.0.12
nv set platform
nv set router bgp autonomous-system 65300
nv set router bgp enable on
nv set router bgp router-id 6.0.0.12
nv set system config snippet
nv set system global system-mac 44:38:39:f0:00:12
nv set system hostname superspine1
nv set system ssh-server permit-root-login enabled
nv set vrf default router bgp address-family ipv4-unicast enable on
nv set vrf default router bgp address-family ipv4-unicast redistribute connected enable on
nv set vrf default router bgp address-family ipv6-unicast enable on
nv set vrf default router bgp address-family l2vpn-evpn enable on
nv set vrf default router bgp enable on
nv set vrf default router bgp neighbor swp1 peer-group fabric
nv set vrf default router bgp neighbor swp1 type unnumbered
nv set vrf default router bgp neighbor swp2 peer-group fabric
nv set vrf default router bgp neighbor swp2 type unnumbered
nv set vrf default router bgp neighbor swp3 peer-group rservers
nv set vrf default router bgp neighbor swp3 type unnumbered
nv set vrf default router bgp neighbor swp4 peer-group rservers
nv set vrf default router bgp neighbor swp4 type unnumbered
nv set vrf default router bgp neighbor swp5 peer-group rservers
nv set vrf default router bgp neighbor swp5 type unnumbered
nv set vrf default router bgp peer-group fabric address-family ipv4-unicast enable on
nv set vrf default router bgp peer-group fabric address-family ipv6-unicast enable on
nv set vrf default router bgp peer-group fabric bfd detect-multiplier 3
nv set vrf default router bgp peer-group fabric bfd enable on
nv set vrf default router bgp peer-group fabric bfd min-rx-interval 1000
nv set vrf default router bgp peer-group fabric bfd min-tx-interval 1000
nv set vrf default router bgp peer-group fabric remote-as external
nv set vrf default router bgp peer-group rservers address-family ipv4-unicast enable on

1283

•

nv set vrf default router bgp peer-group rservers address-family l2vpn-evpn add-path-tx off
nv set vrf default router bgp peer-group rservers address-family l2vpn-evpn enable on
nv set vrf default router bgp peer-group rservers remote-as external
nv set vrf external evpn enable on
nv set vrf external evpn vni 60000
nv set vrf external loopback ip address 6.6.0.12/32
nv set vrf external loopback ip address 2006:0:6::12/64
nv set vrf external router bgp address-family ipv4-unicast enable on
nv set vrf external router bgp address-family ipv4-unicast redistribute connected enable on
nv set vrf external router bgp address-family ipv4-unicast route-export to-evpn enable on
nv set vrf external router bgp address-family ipv6-unicast enable on
nv set vrf external router bgp address-family ipv6-unicast redistribute connected enable on
nv set vrf external router bgp address-family ipv6-unicast route-export to-evpn enable on
nv set vrf external router bgp address-family l2vpn-evpn enable on
nv set vrf external router bgp enable on
nv set vrf external router bgp neighbor swp6 peer-group peer-group-fw
nv set vrf external router bgp neighbor swp6 type unnumbered
nv set vrf external router bgp peer-group peer-group-fw address-family ipv4-unicast enable on
nv set vrf external router bgp peer-group peer-group-fw address-family ipv6-unicast enable on
nv set vrf external router bgp peer-group peer-group-fw remote-as external
nv set vrf external router bgp route-import from-evpn route-target ANY:30001
nv set vrf external router bgp route-import from-evpn route-target ANY:30002
nv set vrf external router bgp route-import from-evpn route-target ANY:30003
nv set vrf external router bgp route-import from-evpn route-target ANY:30004
nv set vrf external router bgp route-import from-evpn route-target ANY:30005
nv set vrf external router bgp route-import from-evpn route-target ANY:30006
nv set vrf external router bgp route-import from-evpn route-target auto
root@superspine1:mgmt:/home/cumulus#

17.8.4.3.3.7 Gateway Application Using Downstream VNI and Subinterface

A DPU running the HBN service can be deployed in the role of a border gateway using a combination
of HBN features, specifically, EVPN symmetric routing, downstream VNI, VRF route-leaking, and
VLAN sub-interfaces. Such a border gateway can do the northbound traffic handoff (to external
networks or the Internet) for one or more tenants. In this gateway configuration, the BlueField's
uplinks must carry both the tenant traffic which would be in the "overlay" and VXLAN-encapsulated,
as well as traffic to and from the external network or Internet, which would be direct-routed in the
"underlay". This is accomplished by configuring and running VXLAN-EVPN on the uplink interfaces
while configuring and using additional VLAN sub-interfaces on those same uplinks for the traffic to
and from external networks. These VLAN sub-interfaces would be configured into an Internet or
external VRF for separation from the VXLAN-encapsulated traffic which is carried over the default
VRF.

With a BlueField running HBN able to act as a border gateway, there is no longer a dependence on
physical switches and routers to terminate VXLAN traffic and perform this role, hence the
requirements on the underlying network is simply to provide end-to-end IP/UDP connectivity and
facilitate the setup of overlay networks on top. Additionally, multiple border gateways can be easily
deployed in the network, including dedicated gateways per tenant or shared gateways for groups of
tenants.

For more details and configuration of some of the key features that together enable the border
gateway functionality, refer to sections on Downstream VNIs and VLAN Subinterfaces.

Gateway Application Example

The following topology diagram and associated configuration snippets show two different use cases
of border gateway deployment:

tenant1 is an example of a tenant hosted on a server(s) with a non-gateway BlueField, using
a dedicated border gateway on BlueField Gw-HBN1 for Internet connectivity. Traffic flow to
and from the Internet for this tenant is marked in pink.

Since HBN currently does not support network address translation (NAT), a dedicated border
gateway must be deployed per tenant, for those tenants that have overlapping IP
addresses.

1284

•

•

•

gw_tenant1 is an example of a tenant hosted on a server(s) with a gateway BlueField. In
this case, the border gateway for this tenant is provided by BlueField Gw-HBN2. Traffic flow
to and from the Internet for this tenant is depicted in blue.

L3 VNI Origin Map

HBN VRF L3 VNI

gw-hbn1 and gw-hbn2 internet1 10000

gw-hbn1 and gw-hbn2 gw_tenant1 30000

tenant-hbn3 and tenant-hbn4 tenant1 20000

Configuration Snippet for Internet VRF

Internet VRF is established in BGP sessions using sub-interface features with underlay
switches (i.e., p0_if.60 and p1_if.60)
The Internet VRF also imports all the tenant VRFs (local and remote) using the downstream
VNI feature with from-EVPN syntax

nv set interface p0_if.60,p1_if.60,vlan10 ip vrf internet1
nv set vrf internet1 evpn enable on
nv set vrf internet1 evpn vni 10000
 nv set vrf internet1 loopback ip address 6.2.0.1/32
nv set vrf internet1 loopback ip address 2001:cafe:feed::1/128

1285

•

•
•

•

•

nv set vrf internet1 router bgp address-family ipv4-unicast enable on
nv set vrf internet1 router bgp address-family ipv4-unicast redistribute connected enable on
nv set vrf internet1 router bgp address-family ipv4-unicast route-export to-evpn enable on
nv set vrf internet1 router bgp address-family ipv6-unicast enable on
nv set vrf internet1 router bgp address-family ipv6-unicast redistribute connected enable on
nv set vrf internet1 router bgp address-family ipv6-unicast route-export to-evpn enable on
nv set vrf internet1 router bgp address-family l2vpn-evpn enable on
nv set vrf internet1 router bgp autonomous-system 65552
nv set vrf internet1 router bgp enable on
nv set vrf internet1 router bgp neighbor p0_if.60 capabilities source-address internet1
nv set vrf internet1 router bgp neighbor p0_if.60 peer-group l3_pg1
nv set vrf internet1 router bgp neighbor p0_if.60 type unnumbered
nv set vrf internet1 router bgp neighbor p1_if.60 capabilities source-address internet1
nv set vrf internet1 router bgp neighbor p1_if.60 peer-group l3_pg1
nv set vrf internet1 router bgp neighbor p1_if.60 type unnumbered
nv set vrf internet1 router bgp peer-group l3_pg1 address-family ipv4-unicast enable on
nv set vrf internet1 router bgp peer-group l3_pg1 address-family ipv6-unicast enable on
nv set vrf internet1 router bgp peer-group l3_pg1 remote-as external
nv set vrf internet1 router bgp route-export to-evpn route-target 65552:10000
nv set vrf internet1 router bgp route-import from-evpn route-target ANY:20000
nv set vrf internet1 router bgp route-import from-evpn route-target ANY:30000
nv set vrf internet1 router bgp route-import from-evpn route-target auto
nv set vrf internet1 router bgp router-id 27.0.0.5

Configuration Snippet for Gateway Local Tenant

gw_tenant is stretched across 2 gateway and connected using L3 VNI

gw_tenant has multiple SVIs, which are represented as vlan30 and vlan31 SVIs
Internet L3 VNI is imported using DVNI. The example also explicitly adds route targets using
auto.

gw_tenant VRF:

nv set interface vlan30-31 ip vrf gw_tenant1
nv set vrf gw_tenant1 evpn enable on
nv set vrf gw_tenant1 evpn vni 30000
nv set vrf gw_tenant1 loopback ip address 15.3.0.1/32
nv set vrf gw_tenant1 loopback ip address 2001:bad:c0de::1/128
nv set vrf gw_tenant1 router bgp address-family ipv4-unicast enable on
nv set vrf gw_tenant1 router bgp address-family ipv4-unicast redistribute connected enable on
nv set vrf gw_tenant1 router bgp address-family ipv4-unicast route-export to-evpn enable on
nv set vrf gw_tenant1 router bgp address-family ipv6-unicast enable on
nv set vrf gw_tenant1 router bgp address-family ipv6-unicast redistribute connected enable on
nv set vrf gw_tenant1 router bgp address-family ipv6-unicast route-export to-evpn enable on
nv set vrf gw_tenant1 router bgp address-family l2vpn-evpn enable on
nv set vrf gw_tenant1 router bgp autonomous-system 65552
nv set vrf gw_tenant1 router bgp enable on
nv set vrf gw_tenant1 router bgp route-export to-evpn route-target 65552:30000
nv set vrf gw_tenant1 router bgp route-import from-evpn route-target ANY:10000
nv set vrf gw_tenant1 router bgp route-import from-evpn route-target auto
nv set vrf gw_tenant1 router bgp router-id 27.0.0.5

Configuration Snippet for Remote Tenant

tenant1 is stretched across 2 remote HBN VTEP and connected using L3 VNI

tenant1 is importing Internet L3 VNI routes in tenant1 and adding its own using route-
target auto

Tenant VRF:

nv set interface vlan20-21 ip vrf tenant1
nv set vrf tenant1 evpn enable on
nv set vrf tenant1 evpn vni 20000
nv set vrf tenant1 loopback ip address 15.1.0.1/32
nv set vrf tenant1 loopback ip address 2001:c001:c0de::1/128
nv set vrf tenant1 router bgp address-family ipv4-unicast enable on
nv set vrf tenant1 router bgp address-family ipv4-unicast redistribute connected enable on
nv set vrf tenant1 router bgp address-family ipv4-unicast route-export to-evpn enable on
nv set vrf tenant1 router bgp address-family ipv6-unicast enable on
nv set vrf tenant1 router bgp address-family ipv6-unicast redistribute connected enable on
nv set vrf tenant1 router bgp address-family ipv6-unicast route-export to-evpn enable on
nv set vrf tenant1 router bgp address-family l2vpn-evpn enable on
nv set vrf tenant1 router bgp autonomous-system 6300656
nv set vrf tenant1 router bgp enable on
nv set vrf tenant1 router bgp route-export to-evpn route-target 6300656:20000
nv set vrf tenant1 router bgp route-import from-evpn route-target ANY:10000
nv set vrf tenant1 router bgp route-import from-evpn route-target auto
nv set vrf tenant1 router bgp router-id 27.0.0.17

1286

•
•

•

•

•

•

•

HBN Accelerated Routing Plan

The following subsections pick a few IP endpoints from the code snippets above and examine their
route distribution.

The gateway devices have a remote tenant
Internet route is injected using the default originator from the exit node

Gateway-1 Route Info

BGP sharing the uplink via a sub-interface feature in the Internet VRF.

gateway1 - External Routes Internet VRF

root@hbn:/# ip -4 route show vrf internet1 default
default proto bgp metric 20
 nexthop via 169.254.0.1 dev p0_if.60 weight 1 onlink
 nexthop via 169.254.0.1 dev p1_if.60 weight 1 onlink

root@hbn:/# ip -6 route show vrf internet1 default
default proto bgp metric 20 pref medium
 nexthop via fe80::202:ff:fe00:1b dev p0_if.60 weight 1
 nexthop via fe80::202:ff:fe00:23 dev p1_if.60 weight 1

Local Tenant routing information: The Internet is reached using L3 VNI via a peer gateway.

gateway1 - External Routes gw_tenant VRF

root@hbn:/# ip -4 route show vrf gw_tenant1 default
default encap ip id 10000 src 0.0.0.0 dst 27.0.0.7 ttl 0 tos 0 via 27.0.0.7 dev vxlan48 proto bgp metric
20 onlink

root@hbn:/# ip -6 route show vrf gw_tenant1 default
default encap ip id 10000 src 0.0.0.0 dst 27.0.0.7 ttl 0 tos 0 via ::ffff:27.0.0.7 dev vxlan48 proto bgp
metric 20 onlink pref medium

Remote tenant routing reachability via gateway1 using DVNI CFG.

Considering an IP endpoint from the remote tenant1 VRF on Tenant-HBN3.

gateway1 - Routes Internet VRF

root@hbn:/# ip -4 route show vrf internet1 15.1.0.1/32
15.1.0.1 encap ip id 20000 src 0.0.0.0 dst 27.0.0.17 ttl 0 tos 0 via 27.0.0.17 dev vxlan48 proto bgp
metric 20 onlink

root@hbn:/# ip -6 route show vrf internet1 2001:c001:c0de::1/128
2001:c001:c0de::1 encap ip id 20000 src 0.0.0.0 dst 27.0.0.17 ttl 0 tos 0 via ::ffff:27.0.0.17 dev vxlan48
proto bgp metric 20 onlink pref medium

Tenant-HBN3 Route Info

IP endpoint as gateway1 VRF loopback and DVNI handoff for the VNI is reaching the

gateway1 node.

tenant-hbn3 - Routes tenant VRF

root@hbn:/# ip -4 route show vrf tenant1 6.2.0.1/32
6.2.0.1 encap ip id 10000 src 0.0.0.0 dst 27.0.0.5 ttl 0 tos 0 via 27.0.0.5 dev vxlan48 proto bgp metric
20 onlink

root@hbn:/# ip -6 route show vrf tenant1 2001:cafe:feed::1/128

1287

•

2001:cafe:feed::1 encap ip id 10000 src 0.0.0.0 dst 27.0.0.5 ttl 0 tos 0 via ::ffff:27.0.0.5 dev vxlan48
proto bgp metric 20 onlink pref medium

Internet VRF default route is reaching the remote tenant VRF.

tenant-hbn3 external - Routes tenant VRF

root@hbn:/# ip -4 route show vrf tenant1 default
default proto bgp metric 20
 nexthop encap ip id 10000 src 0.0.0.0 dst 27.0.0.5 ttl 0 tos 0 via 27.0.0.5 dev vxlan48 weight 1
 onlink
 nexthop encap ip id 10000 src 0.0.0.0 dst 27.0.0.7 ttl 0 tos 0 via 27.0.0.7 dev vxlan48 weight 1
 onlink

root@hbn:/# ip -6 route show vrf tenant1 default
default proto bgp metric 20 pref medium
 nexthop encap ip id 10000 src 0.0.0.0 dst 27.0.0.5 ttl 0 tos 0 via ::ffff:27.0.0.5 dev vxlan48 weight
1 onlink
 nexthop encap ip id 10000 src 0.0.0.0 dst 27.0.0.7 ttl 0 tos 0 via ::ffff:27.0.0.7 dev vxlan48 weight
1 onlink

Gateway and Tenant Complete Configuration Example

Gateway-1 Full Configuration

Gateway-HBN-1

nv set bridge domain br_default encap 802.1Q
nv set bridge domain br_default type vlan-aware
nv set bridge domain br_default untagged 1
nv set bridge domain br_default vlan 10,30-31
nv set evpn enable on
nv set interface lo ip address 27.0.0.5/32
nv set interface lo ip address 2001:c001:ff:f00d::5/128
nv set interface lo type loopback
nv set interface p0_if,p1_if,pf0hpf_if,pf0vf0_if,pf0vf1_if,pf0vf2_if,pf0vf3_if,pf0vf4_if,pf1hpf_if type swp
nv set interface p0_if.60 base-interface p0_if
nv set interface p0_if.60,p1_if.60 type sub
nv set interface p0_if.60,p1_if.60 vlan 60
nv set interface p0_if.60,p1_if.60,vlan10 ip vrf internet1
nv set interface p1_if.60 base-interface p1_if
nv set interface pf0hpf_if bridge domain br_default access 30
nv set interface pf0vf0_if bridge domain br_default access 31
nv set interface vlan10 ip address 12.2.0.1/24
nv set interface vlan10 ip address 2001:c001:d00d::1/96
nv set interface vlan10 vlan 10
nv set interface vlan10,30-31 ip ipv4 forward on
nv set interface vlan10,30-31 ip ipv6 forward on
nv set interface vlan10,30-31 type svi
nv set interface vlan30 ip address 45.3.0.1/24
nv set interface vlan30 ip address 2001:b055:b00c::1/96
nv set interface vlan30 vlan 30
nv set interface vlan30-31 ip vrf gw_tenant1
nv set interface vlan31 ip address 45.3.1.1/24
nv set interface vlan31 ip address 2001:b055:b00c::1:0:1/96
nv set interface vlan31 vlan 31
nv set nve vxlan arp-nd-suppress on
nv set nve vxlan enable on
nv set nve vxlan mac-learning off
nv set nve vxlan source address 27.0.0.5
nv set platform
nv set router bgp enable on
nv set system config snippet
nv set system global anycast-mac 44:38:39:42:42:17
nv set vrf default router bgp address-family ipv4-unicast enable on
nv set vrf default router bgp address-family ipv4-unicast redistribute connected enable on
nv set vrf default router bgp address-family ipv6-unicast enable on
nv set vrf default router bgp address-family ipv6-unicast redistribute connected enable on
nv set vrf default router bgp address-family l2vpn-evpn enable on
nv set vrf default router bgp autonomous-system 65552
nv set vrf default router bgp enable on
nv set vrf default router bgp neighbor 27.0.0.11 peer-group rs_client
nv set vrf default router bgp neighbor 27.0.0.11 type numbered
nv set vrf default router bgp neighbor 27.0.0.12 peer-group rs_client
nv set vrf default router bgp neighbor 27.0.0.12 type numbered
nv set vrf default router bgp neighbor p0_if capabilities source-address lo
nv set vrf default router bgp neighbor p0_if peer-group fabric
nv set vrf default router bgp neighbor p0_if type unnumbered
nv set vrf default router bgp neighbor p1_if capabilities source-address lo
nv set vrf default router bgp neighbor p1_if peer-group fabric
nv set vrf default router bgp neighbor p1_if type unnumbered
nv set vrf default router bgp path-selection multipath aspath-ignore on
nv set vrf default router bgp peer-group fabric address-family ipv4-unicast enable on
nv set vrf default router bgp peer-group fabric address-family ipv6-unicast enable on
nv set vrf default router bgp peer-group fabric address-family l2vpn-evpn add-path-tx off
nv set vrf default router bgp peer-group fabric address-family l2vpn-evpn enable off

1288

nv set vrf default router bgp peer-group fabric remote-as external
nv set vrf default router bgp peer-group fabric timers connection-retry 5
nv set vrf default router bgp peer-group fabric timers hold 30
nv set vrf default router bgp peer-group fabric timers keepalive 10
nv set vrf default router bgp peer-group rs_client address-family ipv4-unicast enable off
nv set vrf default router bgp peer-group rs_client address-family ipv6-unicast enable off
nv set vrf default router bgp peer-group rs_client address-family l2vpn-evpn add-path-tx off
nv set vrf default router bgp peer-group rs_client address-family l2vpn-evpn enable on
nv set vrf default router bgp peer-group rs_client multihop-ttl 5
nv set vrf default router bgp peer-group rs_client remote-as external
nv set vrf default router bgp peer-group rs_client timers connection-retry 5
nv set vrf default router bgp peer-group rs_client timers hold 30
nv set vrf default router bgp peer-group rs_client timers keepalive 10
nv set vrf default router bgp router-id 27.0.0.5
nv set vrf gw_tenant1 evpn enable on
nv set vrf gw_tenant1 evpn vni 30000
nv set vrf gw_tenant1 loopback ip address 15.3.0.1/32
nv set vrf gw_tenant1 loopback ip address 2001:bad:c0de::1/128
nv set vrf gw_tenant1 router bgp address-family ipv4-unicast enable on
nv set vrf gw_tenant1 router bgp address-family ipv4-unicast redistribute connected enable on
nv set vrf gw_tenant1 router bgp address-family ipv4-unicast route-export to-evpn enable on
nv set vrf gw_tenant1 router bgp address-family ipv6-unicast enable on
nv set vrf gw_tenant1 router bgp address-family ipv6-unicast redistribute connected enable on
nv set vrf gw_tenant1 router bgp address-family ipv6-unicast route-export to-evpn enable on
nv set vrf gw_tenant1 router bgp address-family l2vpn-evpn enable on
nv set vrf gw_tenant1 router bgp autonomous-system 65552
nv set vrf gw_tenant1 router bgp enable on
nv set vrf gw_tenant1 router bgp route-export to-evpn route-target 65552:30000
nv set vrf gw_tenant1 router bgp route-import from-evpn route-target ANY:10000
nv set vrf gw_tenant1 router bgp route-import from-evpn route-target auto
nv set vrf gw_tenant1 router bgp router-id 27.0.0.5
nv set vrf internet1 evpn enable on
nv set vrf internet1 evpn vni 10000
nv set vrf internet1 loopback ip address 6.2.0.1/32
nv set vrf internet1 loopback ip address 2001:cafe:feed::1/128
nv set vrf internet1 router bgp address-family ipv4-unicast enable on
nv set vrf internet1 router bgp address-family ipv4-unicast redistribute connected enable on
nv set vrf internet1 router bgp address-family ipv4-unicast route-export to-evpn enable on
nv set vrf internet1 router bgp address-family ipv6-unicast enable on
nv set vrf internet1 router bgp address-family ipv6-unicast redistribute connected enable on
nv set vrf internet1 router bgp address-family ipv6-unicast route-export to-evpn enable on
nv set vrf internet1 router bgp address-family l2vpn-evpn enable on
nv set vrf internet1 router bgp autonomous-system 65552
nv set vrf internet1 router bgp enable on
nv set vrf internet1 router bgp neighbor p0_if.60 capabilities source-address internet1
nv set vrf internet1 router bgp neighbor p0_if.60 peer-group l3_pg1
nv set vrf internet1 router bgp neighbor p0_if.60 type unnumbered
nv set vrf internet1 router bgp neighbor p1_if.60 capabilities source-address internet1
nv set vrf internet1 router bgp neighbor p1_if.60 peer-group l3_pg1
nv set vrf internet1 router bgp neighbor p1_if.60 type unnumbered
nv set vrf internet1 router bgp peer-group l3_pg1 address-family ipv4-unicast enable on
nv set vrf internet1 router bgp peer-group l3_pg1 address-family ipv6-unicast enable on
nv set vrf internet1 router bgp peer-group l3_pg1 remote-as external
nv set vrf internet1 router bgp route-export to-evpn route-target 65552:10000
nv set vrf internet1 router bgp route-import from-evpn route-target ANY:20000
nv set vrf internet1 router bgp route-import from-evpn route-target ANY:30000
nv set vrf internet1 router bgp route-import from-evpn route-target auto
nv set vrf internet1 router bgp router-id 27.0.0.5

Gateway-2 Full Configuration

Gateway-HBN-2

nv set bridge domain br_default encap 802.1Q
nv set bridge domain br_default type vlan-aware
nv set bridge domain br_default untagged 1
nv set bridge domain br_default vlan 10,30-31
nv set evpn enable on
nv set interface lo ip address 27.0.0.7/32
nv set interface lo ip address 2001:c001:ff:f00d::7/128
nv set interface lo type loopback
nv set interface p0_if,p1_if,pf0hpf_if,pf0vf0_if,pf0vf1_if,pf0vf2_if,pf0vf3_if,pf0vf4_if,pf1hpf_if type swp
nv set interface p0_if.60 base-interface p0_if
nv set interface p0_if.60,p1_if.60 type sub
nv set interface p0_if.60,p1_if.60 vlan 60
nv set interface p0_if.60,p1_if.60,vlan10 ip vrf internet1
nv set interface p1_if.60 base-interface p1_if
nv set interface pf0hpf_if bridge domain br_default access 30
nv set interface pf0vf0_if bridge domain br_default access 31
nv set interface vlan10 ip address 12.2.1.1/24
nv set interface vlan10 ip address 2001:c001:d00d::1:0:1/96
nv set interface vlan10 vlan 10
nv set interface vlan10,30-31 ip ipv4 forward on
nv set interface vlan10,30-31 ip ipv6 forward on
nv set interface vlan10,30-31 type svi
nv set interface vlan30 ip address 45.3.2.1/24
nv set interface vlan30 ip address 2001:b055:b00c::2:0:1/96
nv set interface vlan30 vlan 30
nv set interface vlan30-31 ip vrf gw_tenant1
nv set interface vlan31 ip address 45.3.3.1/24
nv set interface vlan31 ip address 2001:b055:b00c::3:0:1/96
nv set interface vlan31 vlan 31
nv set nve vxlan arp-nd-suppress on
nv set nve vxlan enable on
nv set nve vxlan mac-learning off
nv set nve vxlan source address 27.0.0.7

1289

nv set platform
nv set router bgp enable on
nv set system config snippet
nv set system global anycast-mac 44:38:39:42:42:19
nv set vrf default router bgp address-family ipv4-unicast enable on
nv set vrf default router bgp address-family ipv4-unicast redistribute connected enable on
nv set vrf default router bgp address-family ipv6-unicast enable on
nv set vrf default router bgp address-family ipv6-unicast redistribute connected enable on
nv set vrf default router bgp address-family l2vpn-evpn enable on
nv set vrf default router bgp autonomous-system 65554
nv set vrf default router bgp enable on
nv set vrf default router bgp neighbor 27.0.0.11 peer-group rs_client
nv set vrf default router bgp neighbor 27.0.0.11 type numbered
nv set vrf default router bgp neighbor 27.0.0.12 peer-group rs_client
nv set vrf default router bgp neighbor 27.0.0.12 type numbered
nv set vrf default router bgp neighbor p0_if capabilities source-address lo
nv set vrf default router bgp neighbor p0_if peer-group fabric
nv set vrf default router bgp neighbor p0_if type unnumbered
nv set vrf default router bgp neighbor p1_if capabilities source-address lo
nv set vrf default router bgp neighbor p1_if peer-group fabric
nv set vrf default router bgp neighbor p1_if type unnumbered
nv set vrf default router bgp path-selection multipath aspath-ignore on
nv set vrf default router bgp peer-group fabric address-family ipv4-unicast enable on
nv set vrf default router bgp peer-group fabric address-family ipv6-unicast enable on
nv set vrf default router bgp peer-group fabric address-family l2vpn-evpn add-path-tx off
nv set vrf default router bgp peer-group fabric address-family l2vpn-evpn enable off
nv set vrf default router bgp peer-group fabric remote-as external
nv set vrf default router bgp peer-group fabric timers connection-retry 5
nv set vrf default router bgp peer-group fabric timers hold 30
nv set vrf default router bgp peer-group fabric timers keepalive 10
nv set vrf default router bgp peer-group rs_client address-family ipv4-unicast enable off
nv set vrf default router bgp peer-group rs_client address-family ipv6-unicast enable off
nv set vrf default router bgp peer-group rs_client address-family l2vpn-evpn add-path-tx off
nv set vrf default router bgp peer-group rs_client address-family l2vpn-evpn enable on
nv set vrf default router bgp peer-group rs_client multihop-ttl 5
nv set vrf default router bgp peer-group rs_client remote-as external
nv set vrf default router bgp peer-group rs_client timers connection-retry 5
nv set vrf default router bgp peer-group rs_client timers hold 30
nv set vrf default router bgp peer-group rs_client timers keepalive 10
nv set vrf default router bgp router-id 27.0.0.7
nv set vrf gw_tenant1 evpn enable on
nv set vrf gw_tenant1 evpn vni 30000
nv set vrf gw_tenant1 loopback ip address 15.3.0.2/32
nv set vrf gw_tenant1 loopback ip address 2001:bad:c0de::2/128
nv set vrf gw_tenant1 router bgp address-family ipv4-unicast enable on
nv set vrf gw_tenant1 router bgp address-family ipv4-unicast redistribute connected enable on
nv set vrf gw_tenant1 router bgp address-family ipv4-unicast route-export to-evpn enable on
nv set vrf gw_tenant1 router bgp address-family ipv6-unicast enable on
nv set vrf gw_tenant1 router bgp address-family ipv6-unicast redistribute connected enable on
nv set vrf gw_tenant1 router bgp address-family ipv6-unicast route-export to-evpn enable on
nv set vrf gw_tenant1 router bgp address-family l2vpn-evpn enable on
nv set vrf gw_tenant1 router bgp autonomous-system 65554
nv set vrf gw_tenant1 router bgp enable on
nv set vrf gw_tenant1 router bgp route-export to-evpn route-target 65554:30000
nv set vrf gw_tenant1 router bgp route-import from-evpn route-target ANY:10000
nv set vrf gw_tenant1 router bgp route-import from-evpn route-target auto
nv set vrf gw_tenant1 router bgp router-id 27.0.0.7
nv set vrf internet1 evpn enable on
nv set vrf internet1 evpn vni 10000
nv set vrf internet1 loopback ip address 6.2.0.2/32
nv set vrf internet1 loopback ip address 2001:cafe:feed::2/128
nv set vrf internet1 router bgp address-family ipv4-unicast enable on
nv set vrf internet1 router bgp address-family ipv4-unicast redistribute connected enable on
nv set vrf internet1 router bgp address-family ipv4-unicast route-export to-evpn enable on
nv set vrf internet1 router bgp address-family ipv6-unicast enable on
nv set vrf internet1 router bgp address-family ipv6-unicast redistribute connected enable on
nv set vrf internet1 router bgp address-family ipv6-unicast route-export to-evpn enable on
nv set vrf internet1 router bgp address-family l2vpn-evpn enable on
nv set vrf internet1 router bgp autonomous-system 65554
nv set vrf internet1 router bgp enable on
nv set vrf internet1 router bgp neighbor p0_if.60 capabilities source-address internet1
nv set vrf internet1 router bgp neighbor p0_if.60 peer-group l3_pg1
nv set vrf internet1 router bgp neighbor p0_if.60 type unnumbered
nv set vrf internet1 router bgp neighbor p1_if.60 capabilities source-address internet1
nv set vrf internet1 router bgp neighbor p1_if.60 peer-group l3_pg1
nv set vrf internet1 router bgp neighbor p1_if.60 type unnumbered
nv set vrf internet1 router bgp peer-group l3_pg1 address-family ipv4-unicast enable on
nv set vrf internet1 router bgp peer-group l3_pg1 address-family ipv6-unicast enable on
nv set vrf internet1 router bgp peer-group l3_pg1 remote-as external
nv set vrf internet1 router bgp route-export to-evpn route-target 65554:10000
nv set vrf internet1 router bgp route-import from-evpn route-target ANY:20000
nv set vrf internet1 router bgp route-import from-evpn route-target ANY:30000
nv set vrf internet1 router bgp route-import from-evpn route-target auto
nv set vrf internet1 router bgp router-id 27.0.0.7

Tenant-HBN-3 Full Configuration

Tenant-HBN-3

nv set bridge domain br_default encap 802.1Q
nv set bridge domain br_default type vlan-aware
nv set bridge domain br_default untagged 1
nv set bridge domain br_default vlan 20-21
nv set evpn enable on
nv set interface lo ip address 27.0.0.17/32
nv set interface lo ip address 2001:c001:ff:f00d::11/128

1290

nv set interface lo type loopback
nv set interface p0-1,pf0hpf,pf0vf0-12,pf1hpf,pf1vf0-4 type swp
nv set interface pf0hpf bridge domain br_default access 20
nv set interface pf0vf0 bridge domain br_default access 21
nv set interface vlan20 ip address 45.1.0.1/24
nv set interface vlan20 ip address 2001:c001:b00c::1/96
nv set interface vlan20 vlan 20
nv set interface vlan20-21 ip ipv4 forward on
nv set interface vlan20-21 ip ipv6 forward on
nv set interface vlan20-21 ip vrf tenant1
nv set interface vlan20-21 type svi
nv set interface vlan21 ip address 45.1.1.1/24
nv set interface vlan21 ip address 2001:c001:b00c::1:0:1/96
nv set interface vlan21 vlan 21
nv set nve vxlan arp-nd-suppress on
nv set nve vxlan enable on
nv set nve vxlan mac-learning off
nv set nve vxlan source address 27.0.0.17
nv set platform
nv set router bgp enable on
nv set system global anycast-mac 44:38:39:42:42:21
nv set vrf default router bgp address-family ipv4-unicast enable on
nv set vrf default router bgp address-family ipv4-unicast redistribute connected enable on
nv set vrf default router bgp address-family ipv6-unicast enable on
nv set vrf default router bgp address-family ipv6-unicast redistribute connected enable on
nv set vrf default router bgp address-family l2vpn-evpn enable on
nv set vrf default router bgp autonomous-system 6300656
nv set vrf default router bgp enable on
nv set vrf default router bgp neighbor 27.0.0.11 peer-group rs_client
nv set vrf default router bgp neighbor 27.0.0.11 type numbered
nv set vrf default router bgp neighbor 27.0.0.12 peer-group rs_client
nv set vrf default router bgp neighbor 27.0.0.12 type numbered
nv set vrf default router bgp neighbor p0 capabilities source-address lo
nv set vrf default router bgp neighbor p0 peer-group fabric
nv set vrf default router bgp neighbor p0 type unnumbered
nv set vrf default router bgp neighbor p1 capabilities source-address lo
nv set vrf default router bgp neighbor p1 peer-group fabric
nv set vrf default router bgp neighbor p1 type unnumbered
nv set vrf default router bgp path-selection multipath aspath-ignore on
nv set vrf default router bgp peer-group fabric address-family ipv4-unicast enable on
nv set vrf default router bgp peer-group fabric address-family ipv6-unicast enable on
nv set vrf default router bgp peer-group fabric address-family l2vpn-evpn add-path-tx off
nv set vrf default router bgp peer-group fabric address-family l2vpn-evpn enable off
nv set vrf default router bgp peer-group fabric remote-as external
nv set vrf default router bgp peer-group fabric timers connection-retry 5
nv set vrf default router bgp peer-group fabric timers hold 30
nv set vrf default router bgp peer-group fabric timers keepalive 10
nv set vrf default router bgp peer-group rs_client address-family ipv4-unicast enable off
nv set vrf default router bgp peer-group rs_client address-family ipv6-unicast enable off
nv set vrf default router bgp peer-group rs_client address-family l2vpn-evpn add-path-tx off
nv set vrf default router bgp peer-group rs_client address-family l2vpn-evpn enable on
nv set vrf default router bgp peer-group rs_client multihop-ttl 5
nv set vrf default router bgp peer-group rs_client remote-as external
nv set vrf default router bgp peer-group rs_client timers connection-retry 5
nv set vrf default router bgp peer-group rs_client timers hold 30
nv set vrf default router bgp peer-group rs_client timers keepalive 10
nv set vrf default router bgp router-id 27.0.0.17
nv set vrf tenant1 evpn enable on
nv set vrf tenant1 evpn vni 20000
nv set vrf tenant1 loopback ip address 15.1.0.1/32
nv set vrf tenant1 loopback ip address 2001:c001:c0de::1/128
nv set vrf tenant1 router bgp address-family ipv4-unicast enable on
nv set vrf tenant1 router bgp address-family ipv4-unicast redistribute connected enable on
nv set vrf tenant1 router bgp address-family ipv4-unicast route-export to-evpn enable on
nv set vrf tenant1 router bgp address-family ipv6-unicast enable on
nv set vrf tenant1 router bgp address-family ipv6-unicast redistribute connected enable on
nv set vrf tenant1 router bgp address-family ipv6-unicast route-export to-evpn enable on
nv set vrf tenant1 router bgp address-family l2vpn-evpn enable on
nv set vrf tenant1 router bgp autonomous-system 6300656
nv set vrf tenant1 router bgp enable on
nv set vrf tenant1 router bgp route-export to-evpn route-target 6300656:20000
nv set vrf tenant1 router bgp route-import from-evpn route-target ANY:10000
nv set vrf tenant1 router bgp route-import from-evpn route-target auto
nv set vrf tenant1 router bgp router-id 27.0.0.17

Tenant-HBN-4 Full Configuration

Tenant-HBN4

nv set bridge domain br_default encap 802.1Q
nv set bridge domain br_default type vlan-aware
nv set bridge domain br_default untagged 1
nv set bridge domain br_default vlan 20-21
nv set evpn enable on
nv set interface lo ip address 27.0.0.19/32
nv set interface lo ip address 2001:c001:ff:f00d::13/128
nv set interface lo type loopback
nv set interface p0-1,pf0hpf,pf0vf0-12,pf1hpf,pf1vf0-4 type swp
nv set interface pf0hpf bridge domain br_default access 20
nv set interface pf0vf0 bridge domain br_default access 21
nv set interface vlan20 ip address 45.1.2.1/24
nv set interface vlan20 ip address 2001:c001:b00c::2:0:1/96
nv set interface vlan20 vlan 20
nv set interface vlan20-21 ip ipv4 forward on
nv set interface vlan20-21 ip ipv6 forward on
nv set interface vlan20-21 ip vrf tenant1

1291

•

•

nv set interface vlan20-21 type svi
nv set interface vlan21 ip address 45.1.3.1/24
nv set interface vlan21 ip address 2001:c001:b00c::3:0:1/96
nv set interface vlan21 vlan 21
nv set nve vxlan arp-nd-suppress on
nv set nve vxlan enable on
nv set nve vxlan mac-learning off
nv set nve vxlan source address 27.0.0.19
nv set platform
nv set router bgp enable on
nv set system global anycast-mac 44:38:39:42:42:23
nv set vrf default router bgp address-family ipv4-unicast enable on
nv set vrf default router bgp address-family ipv4-unicast redistribute connected enable on
nv set vrf default router bgp address-family ipv6-unicast enable on
nv set vrf default router bgp address-family ipv6-unicast redistribute connected enable on
nv set vrf default router bgp address-family l2vpn-evpn enable on
nv set vrf default router bgp autonomous-system 6300658
nv set vrf default router bgp enable on
nv set vrf default router bgp neighbor 27.0.0.11 peer-group rs_client
nv set vrf default router bgp neighbor 27.0.0.11 type numbered
nv set vrf default router bgp neighbor 27.0.0.12 peer-group rs_client
nv set vrf default router bgp neighbor 27.0.0.12 type numbered
nv set vrf default router bgp neighbor p0 capabilities source-address lo
nv set vrf default router bgp neighbor p0 peer-group fabric
nv set vrf default router bgp neighbor p0 type unnumbered
nv set vrf default router bgp neighbor p1 capabilities source-address lo
nv set vrf default router bgp neighbor p1 peer-group fabric
nv set vrf default router bgp neighbor p1 type unnumbered
nv set vrf default router bgp path-selection multipath aspath-ignore on
nv set vrf default router bgp peer-group fabric address-family ipv4-unicast enable on
nv set vrf default router bgp peer-group fabric address-family ipv6-unicast enable on
nv set vrf default router bgp peer-group fabric address-family l2vpn-evpn add-path-tx off
nv set vrf default router bgp peer-group fabric address-family l2vpn-evpn enable off
nv set vrf default router bgp peer-group fabric remote-as external
nv set vrf default router bgp peer-group fabric timers connection-retry 5
nv set vrf default router bgp peer-group fabric timers hold 30
nv set vrf default router bgp peer-group fabric timers keepalive 10
nv set vrf default router bgp peer-group rs_client address-family ipv4-unicast enable off
nv set vrf default router bgp peer-group rs_client address-family ipv6-unicast enable off
nv set vrf default router bgp peer-group rs_client address-family l2vpn-evpn add-path-tx off
nv set vrf default router bgp peer-group rs_client address-family l2vpn-evpn enable on
nv set vrf default router bgp peer-group rs_client multihop-ttl 5
nv set vrf default router bgp peer-group rs_client remote-as external
nv set vrf default router bgp peer-group rs_client timers connection-retry 5
nv set vrf default router bgp peer-group rs_client timers hold 30
nv set vrf default router bgp peer-group rs_client timers keepalive 10
nv set vrf default router bgp router-id 27.0.0.19
nv set vrf tenant1 evpn enable on
nv set vrf tenant1 evpn vni 20000
nv set vrf tenant1 loopback ip address 15.1.0.2/32
nv set vrf tenant1 loopback ip address 2001:c001:c0de::2/128
nv set vrf tenant1 router bgp address-family ipv4-unicast enable on
nv set vrf tenant1 router bgp address-family ipv4-unicast redistribute connected enable on
nv set vrf tenant1 router bgp address-family ipv4-unicast route-export to-evpn enable on
nv set vrf tenant1 router bgp address-family ipv6-unicast enable on
nv set vrf tenant1 router bgp address-family ipv6-unicast redistribute connected enable on
nv set vrf tenant1 router bgp address-family ipv6-unicast route-export to-evpn enable on
nv set vrf tenant1 router bgp address-family l2vpn-evpn enable on
nv set vrf tenant1 router bgp autonomous-system 6300658
nv set vrf tenant1 router bgp enable on
nv set vrf tenant1 router bgp route-export to-evpn route-target 6300658:20000
nv set vrf tenant1 router bgp route-import from-evpn route-target ANY:10000
nv set vrf tenant1 router bgp route-import from-evpn route-target auto
nv set vrf tenant1 router bgp router-id 27.0.0.19

17.8.4.3.4 Access Control Lists

Access Control Lists (ACLs) are a set of rules that are used to filter network traffic. These rules are
used to specify the traffic flows that must be permitted or blocked at networking device interfaces.
There are two types of ACLs:

Stateless ACLs – rules that are applied to individual packets. They inspect each packet
individually and permit/block the packets based on the packet header information and the
match criteria specified by the rule.
Stateful ACLs – rules that are applied to traffic sessions/connections. They inspect each
packet with respect to the state of the session/connection to which the packet belongs to
determine whether to permit/block the packet.

17.8.4.3.4.1 Stateless ACLs

HBN supports configuration of stateless ACLs for IPv4 packets, IPv6 packets, and Ethernet (MAC)
frames. The following examples depict how stateless ACLs are configured for each case, with NVUE
and with flat files (cl-acltool).

1292

NVUE Examples for Stateless ACLs

NVUE IPv4 ACLs Example

The following is an example of an ingress IPv4 ACL that permits DHCP request packets ingressing on
the pf0hpf_if port towards the DHCP server:

root@hbn01-host01:~# nv set acl acl1_ingress type ipv4
root@hbn01-host01:~# nv set acl acl1_ingress rule 100 match ip protocol udp
root@hbn01-host01:~# nv set acl acl1_ingress rule 100 match ip dest-port 67
root@hbn01-host01:~# nv set acl acl1_ingress rule 100 match ip source-port 68
root@hbn01-host01:~# nv set acl acl1_ingress rule 100 action permit

Bind the ingress IPv4 ACL to host representor port pf0hpf_if of BlueField in the inbound direction:

root@hbn01-host01:~# nv set interface pf0hpf_if acl acl1_ingress inbound
root@hbn01-host01:~# nv config apply

The following is an example of an egress IPv4 ACL that permits DHCP reply packets egressing out of
the pf0hpf_if port towards the DHCP client:

root@hbn01-host01:~# nv set acl acl2_egress type ipv4
root@hbn01-host01:~# nv set acl acl2_egress rule 200 match ip protocol udp
root@hbn01-host01:~# nv set acl acl2_egress rule 200 match ip dest-port 68
root@hbn01-host01:~# nv set acl acl2_egress rule 200 match ip source-port 67
root@hbn01-host01:~# nv set acl acl2_egress rule 200 action permit

Bind the egress IPv4 ACL to host representor port pf0hpf_if of BlueField in the outbound
direction:

root@hbn01-host01:~# nv set interface pf0hpf_if acl acl2_egress outbound
root@hbn01-host01:~# nv config apply

NVUE IPv6 ACLs Example

The following is an example of an ingress IPv6 ACL that permits traffic with matching dest-ip and

protocol tcp ingress on port pf0hpf_if :

root@hbn01-host01:~# nv set acl acl5_ingress type ipv6
root@hbn01-host01:~# nv set acl acl5_ingress rule 100 match ip protocol tcp
root@hbn01-host01:~# nv set acl acl5_ingress rule 100 match ip dest-ip 48:2034::80:9
root@hbn01-host01:~# nv set acl acl5_ingress rule 100 action permit

Bind the ingress IPv6 ACL to host representor port pf0hpf_if of BlueField in the inbound direction:

root@hbn01-host01:~# nv set interface pf0hpf_if acl acl5_ingress inbound
root@hbn01-host01:~# nv config apply

The following is an example of an egress IPv6 ACL that permits traffic with matching source-ip

and protocol tcp egressing out of port pf0hpf_if :

root@hbn01-host01:~# nv set acl acl6_egress type ipv6
root@hbn01-host01:~# nv set acl acl6_egress rule 101 match ip protocol tcp
root@hbn01-host01:~# nv set acl acl6_egress rule 101 match ip source-ip 48:2034::80:9
root@hbn01-host01:~# nv set acl acl6_egress rule 101 action permit

Bind the egress IPv6 ACL to host representor port pf0hpf_if of BlueField in the outbound
direction:

1293

root@hbn01-host01:~# nv set interface pf0hpf_if acl acl6_egress outbound
root@hbn01-host01:~# nv config apply

NVUE MAC ACLs Example

The following is an example of an ingress MAC ACL that permits traffic with matching source-mac

and dest-mac ingressing to port pf0hpf_if :

root@hbn01-host01:~# nv set acl acl3_ingress type mac
root@hbn01-host01:~# nv set acl acl3_ingress rule 1 match mac source-mac 00:00:00:00:00:0a
root@hbn01-host01:~# nv set acl acl3_ingress rule 1 match mac dest-mac 00:00:00:00:00:0b
root@hbn01-host01:~# nv set interface pf0hpf_if acl acl3_ingress inbound

Bind the ingress MAC ACL to host representor port pf0hpf_if of BlueField in the inbound direction:

root@hbn01-host01:~# nv set interface pf0hpf_if acl acl3_ingress inbound
root@hbn01-host01:~# nv config apply

The following is an example of an egress MAC ACL that permits traffic with matching source-mac

and dest-mac egressing out of port pf0hpf_if :

root@hbn01-host01:~# nv set acl acl4_egress type mac
root@hbn01-host01:~# nv set acl acl4_egress rule 2 match mac source-mac 00:00:00:00:00:0b
root@hbn01-host01:~# nv set acl acl4_egress rule 2 match mac dest-mac 00:00:00:00:00:0a
root@hbn01-host01:~# nv set acl acl4_egress rule 2 action permit

Bind the egress MAC ACL to host representor port pf0hpf_if of BlueField in the outbound
direction:

root@hbn01-host01:~# nv set interface pf0hpf_if acl acl4_egress outbound
root@hbn01-host01:~# nv config apply

Flat Files (cl-acltool) Examples for Stateless ACLs

For the same examples cited above, the following are the corresponding ACL rules which must be
configured under /etc/cumulus/acl/policy.d/<rule_name.rules> followed by invoking cl-

acltool -i . The rules in /etc/cumulus/acl/policy.d/<rule_name.rules> are configured using
Linux iptables/ip6tables/ebtables.

Flat Files IPv4 ACLs Example

The following example configures an ingress IPv4 ACL rule matching with DHCP request under /etc/

cumulus/acl/policy.d/<rule_name.rules> with the ingress interface as the host representor of

BlueField followed by invoking cl-acltool -i :

[iptables]
ACL acl1_ingress in dir inbound on interface pf1vf1_if
-t filter -A FORWARD -m physdev --physdev-in pf1vf1_if -p udp --sport 68 --dport 67 -j ACCEPT

The following example configures an egress IPv4 ACL rule matching with DHCP reply under /etc/

cumulus/acl/policy.d/<rule_name.rules> with the egress interface as the host representor of

BlueField followed by invoking cl-acltool -i :

[iptables]
ACL acl2_egress in dir outbound on interface pf1vf1_if

1294

-t filter -A FORWARD -m physdev --physdev-out pf1vf1_if -p udp --sport 67 --dport 68 -j ACCEPT

Flat File IPv6 ACLs Example

The following example configures an ingress IPv6 ACL rule matching with dest-ip and tcp

protocol under /etc/cumulus/acl/policy.d/<rule_name.rules> with the ingress interface as

the host representor of BlueField followed by invoking cl-acltool -i :

[ip6tables]
ACL acl5_ingress in dir inbound on interface pf0hpf_if
-t filter -A FORWARD -m physdev --physdev-in pf0hpf_if -d 48:2034::80:9 -p tcp -j ACCEPT

The following example configures an egress IPv6 ACL rule matching with source-ip and tcp

protocol under /etc/cumulus/acl/policy.d/<rule_name.rules> with the egress interface as the

host representor of BlueField followed by invoking cl-acltool -i :

[ip6tables]
ACL acl6_egress in dir outbound on interface pf0hpf_if
-t filter -A FORWARD -m physdev --physdev-out pf0hpf_if -s 48:2034::80:9 -p tcp -j ACCEPT

Flat Files MAC ACLs Example

The following example configures an ingress MAC ACL rule matching with source-mac and dest-

mac under /etc/cumulus/acl/policy.d/<rule_name.rules> with the ingress interface as the

host representor of BlueField followed by invoking cl-acltool -i :

[ebtables]
ACL acl3_ingress in dir inbound on interface pf0hpf_if
-t filter -A FORWARD -m physdev --physdev-in pf0hpf_if -s 00:00:00:00:00:0a/ff:ff:ff:ff:ff:ff -d 00:00:00:00:00:0b/
ff:ff:ff:ff:ff:ff -j ACCEPT

The following example configures an egress MAC ACL rule matching with source-mac and dest-

mac under /etc/cumulus/acl/policy.d/<rule_name.rules> with egress interface as host

representor of BlueField followed by invoking cl-acltool -i :

[ebtables]
ACL acl4_egress in dir outbound on interface pf0hpf_if
-t filter -A FORWARD -m physdev --physdev-out pf0hpf_if -s 00:00:00:00:00:0b/ff:ff:ff:ff:ff:ff -d
00:00:00:00:00:0a/ff:ff:ff:ff:ff:ff -j ACCEPT

17.8.4.3.4.2 Stateful ACLs

Stateful ACLs facilitate monitoring and tracking traffic flows to enforce per-flow traffic filtering
(unlike stateless ACLs which filter traffic on a per-packet basis). HBN supports stateful ACLs using
reflexive ACL mechanism. Reflexive ACL mechanism is used to allow initiation of connections from
"within" the network to "outside" the network and allow only replies to the initiated connections
from "outside" the network (or vice versa).

HBN supports stateful ACL configuration for IPv4 traffic. Stateful ACL configuration is supported for
TCP, UDP, and ICMP protocols.

Stateful ACLs can be applied for native routed traffic (north-south underlay routed traffic in EVPN
deployments), EVPN bridged traffic (east-west overlay bridged/L2 traffic in EVPN deployments) and
EVPN routed traffic (east-west overlay routed traffic in EVPN deployments). Stateful ACLs applied
for native routed traffic are called "Native-L3 stateful ACLs". Stateful ACLs applied for EVPN bridged

1295

•

•

1.

2.

3.

4.

traffic and EVPN routed traffic are called "EVPN-L2 stateful ACLs" and "EVPN-L3 stateful ACLs",
respectively.

Stateful ACLs in HBN are enabled by default. To enable stateful ACL functionality, use the following
NVUE commands:

root@hbn03-host00:~# nv set system reflexive-acl enable
root@hbn03-host00:~# nv config apply

If using flat-file configuration (and not NVUE), edit the file /etc/cumulus/nl2docad.d/acl.conf

and set the knob rflx.reflexive_acl_enable to TRUE . To apply this change, execute:

root@hbn03-host00:~# supervisorctl start nl2doca-reload

NVUE Example for Stateful ACLs

The following is an example of allowing HTTP (TCP) connection originated by the host, where
BlueField is hosted, to an HTTP server (with the IP address 11.11.11.11) on an external network.
Two sets of ACLs matching with CONNTRACK state must be configured for a CONNTRACK entry to be
established in the kernel which would be offloaded to hardware:

Configure an ACL rule matching TCP/HTTP connection/flow details with CONNTRACK state of
NEW, ESTABLISHED and bind it to the SVI in the inbound direction.
Configure an ACL rule matching TCP/HTTP connection/flow details with CONNTRACK state of
ESTABLISHED and bind it to the SVI in the outbound direction.

 Stateful ACLs should be bound to a physical interface. In this example, the physical interface is
pf1vf7_if .

Configure the ingress ACL rule:

root@hbn03-host00:~# nv set acl allow_tcp_conn_from_host rule 11 action permit
root@hbn03-host00:~# nv set acl allow_tcp_conn_from_host rule 11 match conntrack new
root@hbn03-host00:~# nv set acl allow_tcp_conn_from_host rule 11 match conntrack established
root@hbn03-host00:~# nv set acl allow_tcp_conn_from_host rule 11 match ip dest-ip 11.11.11.11/32
root@hbn03-host00:~# nv set acl allow_tcp_conn_from_host rule 11 match ip dest-port 80
root@hbn03-host00:~# nv set acl allow_tcp_conn_from_host rule 11 match ip protocol tcp
root@hbn03-host00:~# nv set acl allow_tcp_conn_from_host type ipv4

Bind this ACL to the physical interface in the inbound direction:

root@hbn03-host00:~# nv set interface pf1vf7_if acl allow_tcp_conn_from_host inbound
root@hbn03-host00:~# nv config apply

Configure the egress ACL rule:

root@hbn03-host00:~# nv set acl allow_tcp_resp_from_server rule 21 action permit
root@hbn03-host00:~# nv set acl allow_tcp_resp_from_server rule 21 match conntrack established
root@hbn03-host00:~# nv set acl allow_tcp_resp_from_server rule 21 match ip protocol tcp
root@hbn03-host00:~# nv set acl allow_tcp_resp_from_server type ipv4
root@hbn03-host00:~# nv config apply

Bind this ACL to the physical interface in the outbound direction:

root@hbn03-host00:~# nv set interface pf1vf7_if acl allow_tcp_resp_from_server outbound
root@hbn03-host00:~# nv config apply

Flat Files (cl-acltool) Example for Stateful ACLs

1296

1.

2.

For the same NVUE example for stateful ACLs cited above (HTTP server at IP address 11.11.11.11 on
an external network), the following are the corresponding ACL rules which must be configured under
/etc/cumulus/acl/policy.d/<rule_name.rules> followed by invoking cl-acltool -i to
install the rules in BlueField hardware.

Configure an ingress ACL rule matching with TCP flow details and CONNTRACK state of NEW,
ESTABLISHED under /etc/cumulus/acl/policy.d/stateful_acl.rules with the ingress

interface as the SVI followed by invoking cl-acltool -i :

[iptables]
ACL allow_tcp_conn_from_host in dir inbound on interface pf1vf7_if
-t filter -A FORWARD -m physdev --physdev-in pf1vf7_if -p tcp –d 11.11.11.11/32 --dport 80 -m conntrack --
ctstate EST,NEW -j ACCEPT -m mark --mark 0xdead

Configure an egress ACL rule matching the TCP flow and CONNTRACK state of ESTABLISHED,
RELATED under /etc/cumulus/acl/policy.d/stateful_acl.rules file with the egress

interface as SVI followed by invoking cl-acltool -i :

[iptables]
ACL allow_tcp_resp_from_server in dir outbound on interface pf1vf7_if
-t filter -A FORWARD -m physdev --physdev-out pf1vf7_if -p tcp -s 11.11.11.11/32 --sport 80 -m conntrack
--ctstate EST -j ACCEPT -m mark --mark 0xdead

17.8.4.3.5 DHCP Relay on HBN

DHCP is a client server protocol that automatically provides IP hosts with IP addresses and other
related configuration information. A DHCP relay (agent) is a host that forwards DHCP packets
between clients and servers. DHCP relays forward requests and replies between clients and servers
that are not on the same physical subnet.

DHCP relay can be configured using either flat file (supervisord configuration) or through NVUE.

17.8.4.3.5.1 Configuration

HBN is a non-systemd based container. Therefore, the DHCP relay must be configured as explained
in the following subsections.

Flat File Configuration (Supervisord)

The HBN initialization script installs default configuration files on BlueField in /var/lib/hbn/etc/

supervisor/conf.d/ . BlueField directory is mounted to /etc/supervisor/conf.d which
achieves configuration persistence.

By default, DHCP relay is disabled. Default configuration applies to one instance of DHCPv4 relay
and DHCPv6 relay in the default VRF.

NVUE Configuration

The user can use NVUE to configure and maintain DHCPv4 and DHCPv6 relays with CLI and REST API.
NVUE generates all the required configurations and maintains the relay service.

DHCPv4 Relay Configuration

NVUE Example

1297

The following configuration starts a relay service which listens for the DHCP messages on p0_if ,

p1_if , and vlan482 and relays the requests to DHCP server 10.89.0.1 with gateway-interface

as lo .

nv set service dhcp-relay default gateway-interface lo
nv set service dhcp-relay default interface p0_if
nv set service dhcp-relay default interface p1_if
nv set service dhcp-relay default interface vlan482 downstream
nv set service dhcp-relay default server 10.89.0.1

Flat Files Example

[program: isc-dhcp-relay-default]
command = /usr/sbin/dhcrelay --nl -d -i p0_if -i p1_if -id vlan482 -U lo 10.89.0.1
autostart = true
autorestart = unexpected
startsecs = 3
startretries = 3
exitcodes = 0
stopsignal = TERM
stopwaitsecs = 3

Where:

Option Description

-i Network interface to listen on for requests and replies

-iu Upstream network interface

-id Downstream network interface

-U [address]%%ifname Gateway IP address interface. Use %% for IP%%ifname . % is
used as an escape character.

--loglevel-debug Debug logging. Location: /var/log/syslog .

-a Append an agent option field to each request before forwarding
it to the server with default values for circuit-id and

remote-id

-r remote-id Set a custom remote ID string (max of 255 chars). To use this
option, you must also enable the -a option.

--use-pif-circuit-id Set the underlying physical interface which receives the packet
as the circuit-id . To use this option you must also enable the

-a option.

DHCPv4 Relay Option 82

NVUE Example

The following NVUE command is used to enable option 82 insertion in DHCP packets with default
values:

nv set service dhcp-relay default agent enable on

To provide a custom remote-id (e.g., host10) using NVUE:

nv set service dhcp-relay default agent remote-id host10

1298

•

To use the underlying physical interface on which the request is received as circuit-id using
NVUE:

nv set service dhcp-relay default agent use-pif-circuit-id enable on

Flat Files Example

[program: isc-dhcp-relay-default]
command = /usr/sbin/dhcrelay --nl -d -i p0_if -i p1_if -id vlan482 -U lo -a --use-pif-circuit-id -r host10
10.89.0.1
autostart = true
autorestart = unexpected
startsecs = 3
startretries = 3
exitcodes = 0
stopsignal = TERM
stopwaitsecs = 3

DHCPv6 Relay Configuration

NVUE Example

The following NVUE command starts the DHCPv6 Relay service which listens for DHCPv6 requests on
vlan482 and sends relayed DHCPv6 requests towards p0_if and p1_if .

nv set service dhcp-relay6 default interface downstream vlan482
nv set service dhcp-relay6 default interface upstream p0_if
nv set service dhcp-relay6 default interface upstream p1_if

 Flat Files Example

[program: isc-dhcp-relay6-default]
command = /usr/sbin/dhcrelay --nl -6 -d -l vlan482 -u p0_if -u p1_if
autostart = true
autorestart = unexpected
startsecs = 3
startretries = 3
exitcodes = 0
stopsignal = TERM
stopwaitsecs = 3

Where:

Option Description

-l [address]%%ifname[#index] Downstream interface. Use %% for IP%%ifname . % i
s used as escape character.

-u [address]%%ifname Upstream interface. Use % % for IP%%ifname . % is
used as escape character.

-6 IPv6

--loglevel-debug Debug logging located at /var/log/syslog

17.8.4.3.5.2 DHCP Relay and VRF Considerations

DHCP relay can be spawned inside a VRF context to handle the DHCP requests in that VRF. There can
only be 1 instance each of DHCPv4 relay and DHCPv6 relay per VRF. To achieve that, the user can
follow these guidelines:

DHCPv4 on default VRF:

1299

•

•

•

1.

2.
3.

•

•

/usr/sbin/dhcrelay --nl -i <interface> -U [address]%%<interface> <server_ip>

DHCPv4 on VRF:

/usr/sbin/ip vrf exec <vrf> /usr/sbin/dhcrelay –-nl -i <interface> -U [address]%%<interface> <server_ip>

DHCPv6 on default VRF:

/usr/sbin/dhcrelay --nl -6 -l <interface> -u <interface>

DHCPv6 on VRF:

/usr/sbin/ip vrf exec <vrf> /usr/sbin/dhcrelay --nl -6 -l <interface> -u <interface>

17.8.5 HBN Service Troubleshooting

17.8.5.1 HBN Container Stuck in init-sfs

The HBN container starts as init-sfs and should transition to doca-hbn within 2 minutes as can

be seen using crictl ps . But sometimes it may remain as init-sfs .

This can happen if interface p0_if is missing. Run the command ip -br link show dev p0_if

in BlueField and inside the container to check if p0_if is present or not. If its missing, make sure
the firmware is upgraded to the latest version. Perform BlueField system-level reset for the new
firmware to take effect.

17.8.5.2 Host-side PF/VF Down After BlueField Reboot
In general, the host can use any interface manager to manage host interfaces belonging to
BlueField. When the host uses an interface manager other than Netplan or NetworkManager, some
ports may remain down after BlueField reboot.

Apply the following workaround if interfaces stay down:

Restart openibd:

systemctl restart openibd

Recreate SR-IOV interfaces if they are needed.
Replay interface config. For example:

If using ifupdown2:

ifreload -a

If using Netplan:

netplan apply

1300

17.8.5.3 BGP Session not Establishing
One of the main causes of a BGP session not getting established is a mismatch in MTU configuration.
Make sure the MTU on all interfaces is the same. For example, if BGP is failing on p0 , check and

verify that there is a matching MTU value for p0 , p0_if_r , p0_if , and the remote peer of p0 .

17.8.5.4 Generating Support Information

The HBN container image can be collected from /etc/image-version using the hbn-support
command inside container:

root@bf2:/tmp# hbn-support
Please send /var/support/hbn_support_doca-hbn-service-bf2-s15-1-ipmi_20240820_211214.txz to Cumulus support.

The generated dump would be available under /var/support in the HBN container and should

contain any process core dump and log files. The generated cores can be found under /var/

support/core and collected by hbn-support . The /var/support directory is also mounted on

the BlueField Arm side at /var/lib/hbn/var/support .

For BlueField, the BFB version can be checked from /etc/mlnx-release .

The firmware version can be collect from mlxfwmanager .

BlueField support dump can be collect using the sos command:

root@bf2:/tmp/#sos report -a --all-logs --batch

Example output:

sos report (version 4.8.0)

This command will collect system configuration and diagnostic
information from this Ubuntu system.
...
...
 Finished running plugins

Creating compressed archive...

Your sos report has been generated and saved in:
 /tmp/sosreport-bf2-s15-1-ipmi-2024-08-20-cpdvegw.tar.xz

 Size 19.37MiB
 Owner root
 sha256 0890a855623a1a2dd5089c9cd6d57d81e71f3805ac06c2d9fc0dab556ccd5ffc

Please send this file to your support representative.

17.8.5.5 SFC Troubleshooting

To troubleshoot flows going through SFC interfaces, the first step is to disable the nl2doca service
in the HBN container:

root@bf2:/tmp# supervisorctl stop nl2doca
nl2doca: stopped

1301

1.
2.

3.

4.

5.

•

Stopping nl2doca effectively stops hardware offloading and switches to software forwarding. All

packets would appear on tcpdump capture on BlueField interfaces.

tcpdump can be performed on SF interfaces as well as VLAN, VXLAN, and uplinks to determine
where a packet gets dropped or which flow a packet is taking.

17.8.5.6 General nl2doca Troubleshooting
The following steps can be used to make sure the nl2doca daemon is up and running:

Make sure there are no errors in the nl2doca log file at /var/log/hbn/nl2docad.log .
To check the status of the nl2doca daemon under supervisor, run:

supervisorctl status nl2doca

Use ps to check that the actual nl2doca process is running:

ps -eaf | grep nl2doca
root 18 1 0 06:31 ? 00:00:00 /bin/bash /usr/bin/nl2doca-docker-start
root 1437 18 0 06:31 ? 00:05:49 /usr/sbin/nl2docad

The core file should be in /var/support/core/ .

Check if the /cumulus/nl2docad/run/stats/punt is accessible. Otherwise, nl2doca may be
stuck and should be restarted:

supervisorctl restart nl2doca

17.8.5.7 nl2doca Offload Troubleshooting
If a certain traffic flow does not work as expected, disable nl2doca (i.e., disable hardware
offloading):

supervisorctl stop nl2doca

With hardware offloading disabled, you can confirm it is an offloading issue if the traffic starts
working. If it is not an offloading issue, use tcpdump on various interfaces to see where the packet
gets dropped.

Offloaded entries can be checked in following files, which contain the programming status of every
IP prefix and MAC address known to system.

Bridge entries are available in the file /cumulus/nl2docad/run/software-tables/17 . It
includes all the MAC addresses in the system including local and remote MAC addresses.
Example format:

- flow-entry: 0xaaab0cef4190
 flow-pattern:
 fid: 112
 dst mac: 00:00:5e:00:01:01
 flow-actions:
 SET VRF: 2
 OUTPUT-PD-PORT: 20(TO_RTR_INTF)
 STATS:
 pkts: 1719
 bytes: 191286

1302

•

•

1.

2.

Router entries are available in the file /cumulus/nl2docad/run/software-tables/18 . It
includes all the IP prefixes known to the system.
Example format for Entry with ECMP:

Entry with ECMP:
- flow-entry: 0xaaaada723700
 flow-pattern:
 IPV6: LPM
 VRF: 0
 destination-ip: ::/0
 flow-actions :
 ECMP: 2
 STATS:
 pkts: 0
 bytes: 0

Entry without ECMP: - flow-entry: 0xaaaada7e1400
 flow-pattern:
 IPV4: LPM
 VRF: 0
 destination-ip: 60.1.0.93/32
 flow-actions :
 SET FID: 200
 SMAC: 00:04:4b:a7:88:00
 DMAC: 00:03:00:08:00:12
 OUTPUT-PD-PORT: 19(TO_BR_INTF)
 STATS:
 pkts: 0
 bytes: 0

ECMP entries are available in the file /cumulus/nl2docad/run/software-tables/19 . It
includes all the next hops in the system.
Example format:

- ECMP: 2
 ref-count: 2
 num-next-hops: 2
 entries:
 - { index: 0, fid: 4100, src mac: 'b8:ce:f6:99:49:6a', dst mac: '00:02:00:00:00:0a' }
 - { index: 1, fid: 4101, src mac: 'b8:ce:f6:99:49:6b', dst mac: '00:02:00:00:00:0e' }

To check counters for packets going to the kernel, run:

cat /cumulus/nl2docad/run/stats/punt
PUNT miss pkts:3154 bytes:312326
PUNT miss drop pkts:0 bytes:0
PUNT control pkts:31493 bytes:2853186
PUNT control drop pkts:0 bytes:0
ACL PUNT pkts:68 bytes:7364
ACL drop pkts:0 bytes:0

For a specific type of packet flow, programming can be referenced in block specific files. The
typical flow is as follows:

For example, to check L2 EVPN ENCAP flows for remote MAC 8a:88:d0:b1:92:b1 on port

pf0vf0_if , the basic offload flow should look as follows: RxPort (pf0vf0_if) -> BR (Overlay) ->

RTR (Underlay) -> BR (Underlay) -> TxPort (one of the uplink p0_if or p1_if based on ECMP
hash).

Step-by-step procedure:

Navigate to the interface file /cumulus/nl2docad/run/software-tables/20 .

Check for the RxPort (pf0vf0_if):

Interface: pf0vf0_if
 PD PORT: 6
 HW PORT: 16
 NETDEV PORT: 11
 Bridge-id: 61
 Untagged FID: 112

1303

3.

4.

5.

6.

FID 112 is given to the receive port.
Check the bridge table file /cumulus/nl2docad/run/software-tables/17 with destination

MAC 8a:88:d0:b1:92:b1 and FID 112:

flow-pattern:
 fid: 112
 dst mac: 8a:88:d0:b1:92:b1
 flow-actions:
 VXLAN ENCAP:
 ENCAP dst ip: 6.0.0.26
 ENCAP vni id: 1000112
 SET VRF: 0
 OUTPUT-PD-PORT: 20(TO_RTR_INTF)
 STATS:
 pkts: 100
 bytes: 10200

Check the router table file /cumulus/nl2docad/run/software-tables/18 with destination

IP 6.0.0.26 and VRF 0:

flow-pattern:
 IPV4: LPM
 VRF: 0
 ip dst: 6.0.0.26/32
 flow-actions :
 ECMP: 1
 OUTPUT PD PORT: 2(TO_BR_INTF)
 STATS:
 pkts: 300
 bytes: 44400

Check the ECMP table file /cumulus/nl2docad/run/software-tables/19 with ECMP 1:

- ECMP: 1
 ref-count: 7
 num-next-hops: 2
 entries:
 - { index: 0, fid: 4100, src mac: 'b8:ce:f6:99:49:6a', dst mac: '00:02:00:00:00:2f' }
 - { index: 1, fid: 4115, src mac: 'b8:ce:f6:99:49:6b', dst mac: '00:02:00:00:00:33' }

The ECMP hash calculation picks one of these paths for next-hop rewrite. Check bridge table
file for them (fid=4100, dst mac: 00:02:00:00:00:2f or fid=4115, dst mac:

00:02:00:00:00:33):

flow-pattern:
 fid: 4100
 dst mac: 00:02:00:00:00:2f
flow-actions:
 OUTPUT-PD-PORT: 36(p0_if)
 STATS:
 pkts: 1099
 bytes: 162652

This will show the packet going out on the uplink.

17.8.5.8 NVUE Troubleshooting
To check the status of the NVUE daemon, run:

supervisorctl status nvued

To restart the NVUE daemon, run:

supervisorctl restart nvued

1304

•

•

17.9 NVIDIA DOCA Management Service Guide
This guide provides instructions on how to use the DOCA Management Service on top of NVIDIA®
BlueField® Networking Platform or ConnectX® Network Adapters.

17.9.1 Introduction
DOCA Management Service (DMS) is a one-stop shop for the user to configure and operate NVIDIA
BlueField and ConnectX devices. DMS governs all scripts/tools of NVIDIA with an easy and industry-
standard API created by the OpenConfig community. The user can configure BlueField or ConnectX
for any mode whether locally (ssh) or remotely (grpc). It makes it easy to migrate and bootstrap
any customer for any NVIDIA network device.

DMS exposes configurable BlueField/ConnectX parameters over the external interface to support a
management station in an automated configuration of the NVIDIA Network Adapters. The exposed
interface presents a uniform approach for BF/CX device configuration and keeps hidden details
about the internal tools used for the configuration of BlueField or ConnectX features.

The DMS is a Client-Server architecture. Using a daemon, the service handles the discovery of
resources, and is ready to receive commands from clients, the user can use DMSc (DMS Client) which
delivers as part of the DMS, or use/create any other client.

The Yang models describe a config tree which is easy to navigate and find any "config leaf" using
XPath capabilities. Most gNMI/gNOI protocols are common with the OpenConfig community, utilizing
gRPC protocol for transferring the command.

17.9.2 Requirements
DMS requires DOCA to be installed on the target system, where DMS Service will be running:

DMS for Host - requires DOCA for Host package to be installed on the host system (with doca-
networking or doca-all profiles).
DMS for DPU (BlueField Arm) - requires DOCA Image to be installed on BlueField Arm.

DOCA DMS service is currently supported at Alpha level.

Please refer to the OpenConfig site for an explanation of the OpenConfig protocol.

The DOCA Yang model is experimental.

The gNMI Subscribe mechanism for streaming telemetry is not currently supported yet.

DMS can run either on the host machine where BlueField or ConnectX devices are installed
or on BlueField Arm itself (when BlueField is operating in DPU mode).

https://www.openconfig.net/

1305

•
•

•

•
•

1.
2.
3.

4.

Please follow these instructions to install DOCA: NVIDIA DOCA Installation Guide for Linux.

17.9.3 Service Deployment
DMS has 3 major components:

DMSD – Server – DMS server inside the BlueField or on the host with an NVIDIA PCIe device
DMSC – Client – DOCA provides OpenConfig client. Customers can choose to use this client,
any other open-source client, or develop their own (gRPC-based) client.
Yang files – Yang model files contain the data model used to configure the BlueField device,
NVIDIA-specific extension to common OpenConfig YANG Models.

OpenConfig consists of 2 main protocols:

gNMI – gRPC Network Management Interface, protocol to configure of network device.
gNOI – gRPC Network Operations Interface, a protocol to perform operational commands on
network device (i.e., provision, upgrade, reboot).

The following is an architectural diagram of DMS:

The following diagram presents the DMS mode of operation, as the DMS client can operate from
anywhere:

Both DMS client and server components are deployed on the Host
Both DMS client and server components are deployed on DPU (BlueField Arm)
DMS server component is deployed on the Host, while DMS client is deployed remotely
(connecting to DMS server over management network)
DMS server component is deployed on DPU (BlueField Arm), while DMS client is deployed
remotely (connecting to DMS server over management network)

DMS supports only Linux-based environments today.

https://www.openconfig.net/projects/models/

1306

•

•

•

•
•

•
•

•

•
•

•
•

•

•
•

•
•

DMSD is a systemd service installed on the DPU by default with the BFB-Bundle and can be enable/
disabled using systemctl . DMSD can be accessed using the command dmscli and provided the

dmsd user password (default is the root OS password). A systemd template is provided on host
packages.

17.9.4 Configuration
To see the full list of flags, user the help flag (i.e., dmsd -help , dmsd -h).

17.9.4.1 General Flags
-bind_address <string> – Bind to <address>:<port> or just :<port> (default

is :9339). Can be localhost for local use case, or an IP address for remote use case.

-v <value> – log level for V logs

-target_pci <string> – The target PCIe address (i.e., 03:00). Auto-select if only one
NVIDIA network device is present; otherwise, the PCIe address must be specified.

17.9.4.2 Security Flags

-auth string – this flag has 3 options:

Shadow
Zero-touch, admin not required to create any dedicated additional user for DMS (re-
use OS user)
Read the hashed password in real time on each client request
Use flags -username -shadow

Example: -username root -shadow /etc/shadow/

To disable: -noauth flag
Credentials

Admin must set a strong password
Use flags -username -password

Example: -username root -password 123456

To disable: -noauth flag
Can leave password flag empty to invoke prompt for password at demon boot

Certificate File
The most secure option, based on (m)TLS

1307

•

•

•

•

•

•

Example: -ca /tmp/ca.crt -ca_key /tmp/ca.key

To disable: -notls option

17.9.4.3 Provisioning Flags
-target_pci <string> – The target PCIe address (i.e., 03:00). Auto-select if only one
NVIDIA network device is present; otherwise, the PCIe address must be specified.
-image_folder <string> – Specify image install folder. Can copy images directly to the

folder to avoid transfer over the net. Default create folder: /tmp/dms .

-chunk_size_ack <uint> – The chunk size of the image to respond with a transfer response
in bytes (default: 12000000)
-exec_timeout <uint> – The maximum execution timeout in seconds for a command if not

responding (not printing to stdout); 0 (default) is unlimited

17.9.5 Description

17.9.5.1 gNMI Command
In DMSC, the gNMI part is powered by the GNMIC project.

dmsc -a localhost:9339 -u root -p <password> --file /opt/mellanox/doca/service/dms/yang <command>

Prompt mode with autocomplete options can be invoked using the command prompt . It can be

accessed using the command dmscli and provided the dmsd user password (default is the root OS
password).

17.9.5.1.1 Get Supported Paths

dmsc --file /opt/mellanox/doca/service/dms/yang path --types --descr

/interfaces/interface[name=*]/config/enabled (type=boolean)
 This leaf contains the configured, desired state of the
 interface.

 Systems that implement the IF-MIB use the value of this
 leaf in the 'running' datastore to set
 IF-MIB.ifAdminStatus to 'up' or 'down' after an ifEntry
 has been initialized, as described in RFC 2863.

 Changes in this leaf in the 'running' datastore are
 reflected in ifAdminStatus, but if ifAdminStatus is
 changed over SNMP, this leaf is not affected.
/interfaces/interface[name=*]/config/mtu (type=uint16)
 Set the max transmission unit size in octets
 for the physical interface. If this is not set, the mtu is
 set to the operational default -- e.g., 1514 bytes on an
 Ethernet interface.
/interfaces/interface[name=*]/config/type (type=identityref)
 The type of the interface.

 When an interface entry is created, a server MAY
 initialize the type leaf with a valid value, e.g., if it
 is possible to derive the type from the name of the
 interface.

 If a client tries to set the type of an interface to a
 value that can never be used by the system, e.g., if the
 type is not supported or if the type does not match the
 name of the interface, the server MUST reject the request.

For more information, please refer to GNMIC documentation.

https://github.com/openconfig/gnmic
https://gnmic.openconfig.net/

1308

 A NETCONF server MUST reply with an rpc-error with the
 error-tag 'invalid-value' in this case.
/interfaces/interface[name=*]/ethernet/nvidia/config/inter-packet-gap (type=uint8)
 Inter packet gap configuration, in 4B unit
/interfaces/interface[name=*]/ethernet/nvidia/config/rate-limit (type=uint16)
 The percentage of bandwidth, in permile units, to be used on the port.
/interfaces/interface[name=*]/name (type=leafref)
 References the name of the interface
/interfaces/interface[name=*]/nvidia/cc/config/priority[id=*]/id (type=leafref)

/interfaces/interface[name=*]/nvidia/cc/config/priority[id=*]/np_enabled (type=boolean)
 Enable CC NP for a given priority on the interface
/interfaces/interface[name=*]/nvidia/cc/config/priority[id=*]/rp_enabled (type=boolean)
 Enable CC RP for a given priority on the interface
/interfaces/interface[name=*]/nvidia/cc/slot[id=*]/config/enabled (type=boolean)
 Enable a CC algo slot execution.
/interfaces/interface[name=*]/nvidia/cc/slot[id=*]/id (type=leafref)
 CC algo slot ID.
/interfaces/interface[name=*]/nvidia/cc/slot[id=*]/param[id=*]/config/value (type=algo_param_value)
 Parameter value within the CC algo slot.
/interfaces/interface[name=*]/nvidia/cc/slot[id=*]/param[id=*]/id (type=leafref)
 Parameter ID within the CC algo slot.
/interfaces/interface[name=*]/nvidia/qos/config/pfc (type=boolean)
 Enables PFC
/interfaces/interface[name=*]/nvidia/qos/config/priority[id=*]/id (type=prio)
 Priority id.
/interfaces/interface[name=*]/nvidia/qos/config/trust-mode (type=identityref)
 Trust mode for the interface QoS.
/interfaces/interface[name=*]/nvidia/roce/config/adaptive-retransmission (type=boolean)
 Enable adaptive retransmission
/interfaces/interface[name=*]/nvidia/roce/config/adaptive-routing-force (type=boolean)
 Force adaptive routing even if feature was not negotiated between a requestor and responder.
/interfaces/interface[name=*]/nvidia/roce/config/rtt-resp-dscp (type=uint8)
 Defines the DSCP fixed value used if mode is set to FIXED.
/interfaces/interface[name=*]/nvidia/roce/config/rtt-resp-dscp-mode (type=identityref)
 Defines the method for setting DSCP in RTT response packets.
/interfaces/interface[name=*]/nvidia/roce/config/slow-restart (type=boolean)
 Enable slow restart when congestion
/interfaces/interface[name=*]/nvidia/roce/config/slow-restart-idle (type=boolean)
 Enable slow restart when idle
/interfaces/interface[name=*]/nvidia/roce/config/tos (type=tos)
 ToS value for RoCE traffic.
/interfaces/interface[name=*]/nvidia/roce/config/tx-window (type=boolean)
 Enable transmission window
/nvidia/cc/config/user-programmable (type=boolean)
 Enables user-programmable CC functionality.
/nvidia/mode/config/mode (type=identityref)
 Mode can take one one of several predefined
 values representing operational modes of DPU.
/nvidia/roce/config/adaptive-routing (type=boolean)
 Enable adaptive routing between a requestor and responder.
/nvidia/roce/config/multipath-dscp (type=identityref)
 Multipath on transmit, set the DSCP bit to hold the MP eligible info
/nvidia/roce/config/tx-sched-locality-mode (type=identityref)
 Transmission scheduler adaptation to locality

17.9.5.1.2 Get Request

Get requests happen in real-time without cache. Get command require providing the Yang Xpath as
described in the following:

dmsc <flags> get --path /interfaces/interface[name=p0]/config/mtu
[
 {
 "source": "localhost:9339",
 "timestamp": 1712485149723248511,
 "time": "2024-04-07T10:19:09.723248511Z",
 "updates": [
 {
 "Path": "interfaces/interface[name=p0]/config/mtu",
 "values": {
 "interfaces/interface/config/mtu": "1500"
 }
 }
]
 }
]

17.9.5.1.3 Set Request

Set requests happen immediately, invoking tools to configure the OS.

Set commands require providing Yang Xpath as described in the following:

To insert params in the path, as an indication of the interface name (p0).

1309

dmsc <flags> set --update /interfaces/interface[name=p0]/config/mtu:::int:::9216
{
 "source": "localhost:9339",
 "time": "1970-01-01T00:00:00Z",
 "results": [
 {
 "operation": "UPDATE",
 "path": "interfaces/interface[name=p0]/config/mtu"
 }
]
}

It is also possible to invoke a command JSON list:

dmsc <flags> set --request-file req.json

req.json example:

{
 "updates":
 [
 {
 "path": "/interfaces/interface[name=p0]/config/mtu",
 "value": 9216,
 "encoding": "uint"
 },
 {
 "path": "/interfaces/interface[name=p0]/config/enabled",
 "value": true,
 "encoding": "bool"
 }
]
}

17.9.5.2 gNOI Commands
In DMSc, the gNOI part is powered by GNOIC project, for full docs refer to GNOIC docs

dmsc -a localhost --port 9339 --tls-cert client.crt --tls-key client.key <command>

Prompt mode with autocomplete options can be invoked using the command prompt .

All commands are blocking unless specified otherwise.

17.9.5.2.1 OS

The following subsections present actions for provisioning a new DOCA Image (BFB) or firmware on
BlueField.

To insert params in the path, as an indication of the interface name (p0).

The value provided must be separated by value type and char.

Currently, only the --update flag is supported in set.

Some leafs' updates take effect only after system reboot. Refer to gNOI system reboot for
information.

https://github.com/karimra/gnoic
https://gnoic.kmrd.dev/

1310

17.9.5.2.1.1 Install

This command transmits the file from the client to the server and authenticates the file's validity:

dmsc <flags> os install --version <free_text_version> --pkg <bfb|cfg|fw path>
dmsc <flags> os install --version 2_7_0 --pkg DOCA_2.7.0_Ubuntu.bfb
dmsc <flags> os install --version 2_7_0 --pkg config.cfg
dmsc <flags> os install --version 1_3_5_custom.bfb --pkg custom.bfb

The file is saved to the folder specified in the -image_folder flag (default /tmp/dms) if the file

authenticates successfully. The file's extension is autodetected and is written automatically if none

is provided in the --version field. Users may copy the file to the folder manually and invoke the
command with file extension to authenticate the file. No file transfer is initiated if the file already
exists in the folder and the version specified with the extension.

17.9.5.2.1.2 Activate

Activate the command deploy the BFB bundle/firmware to the hardware:

dmsc <flags> os activate --version 2_7_0 # Invoke all files under 2_7_0 name
dmsc <flags> os activate --version "2_7_0.bfb;0_0_1.cfg;24_29_0046.fw"

The --version flag provides a version to search for in the folder specified by the -image_folder

flag (default /tmp/dms). If no extension is provided, the command uses all files under the version
name.

To activate separate files, use the --version flag separated by semi-colon.

17.9.5.2.1.3 Verify

Verify command retrieves the firmware and BFB bundle version:

dmsc <flags> os verify

The return value consists of both versions separated by semi-colon.

17.9.5.2.2 System

The following subsections provide actions for rebooting the BFB bundle/firmware on the BlueField.

17.9.5.2.2.1 Reboot Status

To verify BFB is rebooting:

After running the command to activate firmware, firmware reset is automatically invoked.

Currently, the BFB bundle can only be retrieved if it was installed via DMS.

1311

•

•

•

dmsc <flags> system reboot-status

The value returned is false if the system is active. It is true if the system is rebooting. If the
status cannot be retrieved, the status appears as a failure and the message field indicates what the
issue is.

The flag --reboot_status_check <string> checks if firmware reboot is needed:

If set to fast (default), a quick test occurs but not accurate (any config can trigger this
flag)
If set to strict , a more accurate test occurs but slower

If set to none , then firmware check is skipped

17.9.5.2.2.2 Reboot

To reboot the BlueField Arm and firmware:

dmsc <flags> system reboot --delay <uint>s --subcomponent <string> --method <string>

This command is non-blocking and returns immediately.

The flag --delay specifies the time interval to wait before invoking the reset.

The subcomponent and method are optional. By default, the reboot executes with the lowest reset
level and type available.

17.10 NVIDIA OpenvSwitch Acceleration (OVS in DOCA)

Currently, DMS supports --subcomponent ARM --method <WARM|POWERDOWN> flags.

•
•

Note on naming conventions:
OVS – Refers to the Open vSwitch distribution within DOCA framework
OVS-DOCA – Describes the datapath offloading layer (DPIF) that utilizes the DOCA
Flow library for offloading tasks. This layer is a component of OVS, along with
additional DPIF implementations that facilitate offloading via DPDK or Kernel, known
respectively as OVS-DPDK and OVS-Kernel.

NVIDIA advises utilizing the OVS-DOCA DPIF to maximize efficiency, performance, scalability,
and feature support.

The DPDK and Kernel DPIFs are maintained in their current form primarily for backward
compatibility and are not planned to be updated with new features.

1312

•

17.10.1 Introduction
Open vSwitch (OVS) is a software-based network technology that enhances virtual machine (VM)
communication within internal and external networks. Typically deployed in the hypervisor, OVS
employs a software-based approach for packet switching, which can strain CPU resources, impacting
system performance and network bandwidth utilization. Addressing this, NVIDIA's Accelerated
Switching and Packet Processing (ASAP2) technology offloads OVS data-plane tasks to specialized
hardware, like the embedded switch (eSwitch) within the NIC subsystem, while maintaining an
unmodified OVS control-plane. This results in notably improved OVS performance without burdening
the CPU.

NVIDIA's DOCA-OVS extends the traditional OVS-DPDK and OVS-Kernel data-path offload interfaces
(DPIF), introducing OVS-DOCA as an additional DPIF implementation. DOCA-OVS, built upon NVIDIA's
networking API, preserves the same interfaces as OVS-DPDK and OVS-Kernel while utilizing the DOCA
Flow library with the additional OVS-DOCA DPIF. Unlike the use of the other DPIFs (DPDK, Kernel),
OVS-DOCA DPIF exploits unique hardware offload mechanisms and application techniques,
maximizing performance and features for NVIDA NICs and DPUs. This mode is especially efficient due
to its architecture and DOCA library integration, enhancing e-switch configuration and accelerating
hardware offloads beyond what the other modes can achieve.

NVIDIA OVS installation contains all three OVS flavors. The following subsections describe the three
flavors (default is OVS-Kernel) and how to configure each of them.

17.10.2 OVS and Virtualized Devices
When OVS is combined with NICs and DPUs (such as NVIDIA® ConnectX®-6 Lx/Dx and NVIDIA®
BlueField®-2 and later), it utilizes the hardware data plane of ASAP2. This data plane can establish
connections to VMs using either SR-IOV virtual functions (VFs) or virtual host data path acceleration
(vDPA) with virtio.

In both scenarios, an accelerator engine within the NIC accelerates forwarding and offloads the OVS
rules. This integrated solution accelerates both the infrastructure (via VFs through SR-IOV or virtio)
and the data plane. For DPUs (which include a NIC subsystem), an alternate virtualization
technology implements full virtio emulation within the DPU, enabling the host server to
communicate with the DPU as a software virtio device.

When using ASAP2 data plane over SR-IOV virtual functions (VFs), the VF is directly passed
through to the VM, with the NVIDIA driver running within the VM.

1313

•

1.

2.

When using vDPA, the vDPA driver allows VMs to establish their connections through VirtIO. As
a result, the data plane is established between the SR-IOV VF and the standard virtio driver
within the VM, while the control plane is managed on the host by the vDPA application.

17.10.3 OVS-Kernel Hardware Acceleration
OVS-Kernel is the default OVS flavor enabled on your NVIDIA device.

17.10.3.1 Switchdev Configuration
Unbind the VFs:

echo 0000:04:00.2 > /sys/bus/pci/drivers/mlx5_core/unbind
echo 0000:04:00.3 > /sys/bus/pci/drivers/mlx5_core/unbind

Change the eSwitch mode from legacy to switchdev on the PF device:

devlink dev eswitch set pci/0000:3b:00.0 mode switchdev

This also creates the VF representor netdevices in the host OS.

On OSes or kernels that do not support devlink, moving to switchdev mode can be done using
sysfs:

echo switchdev > /sys/class/net/enp4s0f0/compat/devlink/mode

VMs with attached VFs must be powered off to be able to unbind the VFs.

Before changing the mode, make sure that all VFs are unbound.

To return to SR-IOV legacy mode, run:

devlink dev eswitch set pci/0000:3b:00.0 mode legacy

This also removes the VF representor netdevices.

1314

3.

•

•

4.

•

•

•

•

•

•
•
•

At this stage, VF representors have been created. To map a representor to its VF, make sure
to obtain the representor's switchid and portname by running:

ip -d link show eth4
41: enp0s8f0_1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq state UP mode DEFAULT group default
 qlen 1000
 link/ether ba:e6:21:37:bc:d4 brd ff:ff:ff:ff:ff:ff promiscuity 0 addrgenmode eui64 numtxqueues 10
 numrxqueues 10 gso_max_size 65536 gso_max_segs 65535 portname pf0vf1 switchid f4ab580003a1420c

Where:
switchid – used to map representor to device, both device PFs have the same

switchid

portname – used to map representor to PF and VF. Value returned is pf<X>vf<Y> ,

where X is the PF number and Y is the number of VF.
Bind the VFs:

echo 0000:04:00.2 > /sys/bus/pci/drivers/mlx5_core/bind
echo 0000:04:00.3 > /sys/bus/pci/drivers/mlx5_core/bind

17.10.3.2 Switchdev Performance Tuning
Switchdev tuning improves its performance.

17.10.3.2.1 Steering Mode

OVS-kernel supports two steering modes for rule insertion into hardware:

SMFS (software-managed flow steering) – default mode; rules are inserted directly to the
hardware by the software (driver). This mode is optimized for rule insertion.
DMFS (device-managed flow steering) – rule insertion is done using firmware commands. This
mode is optimized for throughput with a small amount of rules in the system.

The steering mode can be configured via sysfs or devlink API in kernels that support it:

For sysfs:

echo <smfs|dmfs> > /sys/class/net/<pf-netdev>/compat/devlink/steering_mode

For devlink:

devlink dev param set pci/0000:00:08.0 name flow_steering_mode value "<smfs|dmfs>" cmode runtime

Notes:

The mode should be set prior to moving to switchdev, by echoing to the sysfs or invoking the
devlink command.
Only when moving to switchdev will the driver use the mode configured.
Mode cannot be changed after moving to switchdev.
The steering mode is applicable for switchdev mode only (i.e., it does not affect legacy SR-
IOV or other configurations).

1315

•

•

17.10.3.2.2 Troubleshooting SMFS

mlx5 debugfs supports presenting Software Steering resources. dr_domain including its tables,
matchers and rules. The interface is read-only.

The steering information is dumped in the CSV form in the following format:
<object_type>,<object_ID>, <object_info>,...,<object_info> .

This data can be read at the following path: /sys/kernel/debug/mlx5/<BDF>/steering/fdb/

<domain_handle> .

Example:

cat /sys/kernel/debug/mlx5/0000:82:00.0/steering/fdb/dmn_000018644
3100,0x55caa4621c50,0xee802,4,65533
3101,0x55caa4621c50,0xe0100008

You can then use the steering dump parser to make the output more human-readable.

The parser can be found in this GitHub repository.

17.10.3.2.3 vPort Match Mode

OVS-kernel support two modes that define how the rules match on vport.

Mode Description

Metadata Rules match on metadata instead of vport number (default mode).
This mode is needed to support SR-IOV live migration and dual-port RoCE.

Legacy Rules match on vport number.
In this mode, performance can be higher in comparison to Metadata. It can
be used only if SR-IOV live migration or dual port RoCE are enabled/used.

vPort match mode can be controlled via sysfs:

Set legacy:

echo legacy > /sys/class/net/<PF netdev>/compat/devlink/vport_match_mode

Set metadata:

echo metadata > /sys/class/net/<PF netdev>/compat/devlink/vport_match_mode

New steering rules cannot be inserted/deleted while the dump is being created,

Matching on Metadata can have a performance impact.

This mode must be set prior to moving to switchdev.

https://github.com/Mellanox/mlx_steering_dump

1316

•

•

1.

2.

3.

4.

5.

17.10.3.2.4 Flow Table Large Group Number

Offloaded flows, including connection tracking (CT), are added to the virtual switch forwarding data
base (FDB) flow tables. FDB tables have a set of flow groups, where each flow group saves the same
traffic pattern flows. For example, for CT offloaded flow, TCP and UDP are different traffic patterns
which end up in two different flow groups.

A flow group has a limited size to save flow entries. By default, the driver has 15 big FDB flow
groups. Each of these big flow groups can save 4M/(15+1)=256k different 5-tuple flow entries at
most. For scenarios with more than 15 traffic patterns, the driver provides a module parameter
(num_of_groups) to allow customization and performance tuning.

The mode can be controlled via module param or devlink API for kernels that support it:

Module param:

echo <num_of_groups> > /sys/module/mlx5_core/parameters/num_of_groups

Devlink:

devlink dev param set pci/0000:82:00.0 name fdb_large_groups cmode driverinit value 20

17.10.3.3 Open vSwitch Configuration
OVS configuration is a simple OVS bridge configuration with switchdev.

Run the OVS service:

systemctl start openvswitch

Create an OVS bridge (named ovs-sriov here):

ovs-vsctl add-br ovs-sriov

Enable hardware offload (disabled by default):

ovs-vsctl set Open_vSwitch . other_config:hw-offload=true

Restart the OVS service:

systemctl restart openvswitch

This step is required for hardware offload changes to take effect.
Add the PF and the VF representor netdevices as OVS ports:

The change takes effect immediately if no flows are inside the FDB table (no traffic running
and all offloaded flows are aged out). And it can be dynamically changed without reloading
the driver. If there are still offloaded flows when changing this parameter, it takes effect
after all flows have aged out.

1317

6.

•

•

•

ovs-vsctl add-port ovs-sriov enp4s0f0
ovs-vsctl add-port ovs-sriov enp4s0f0_0
ovs-vsctl add-port ovs-sriov enp4s0f0_1

Make sure to bring up the PF and representor netdevices:

ip link set dev enp4s0f0 up
ip link set dev enp4s0f0_0 up
ip link set dev enp4s0f0_1 up

The PF represents the uplink (wire):

ovs-dpctl show
system@ovs-system:
 lookups: hit:0 missed:192 lost:1
 flows: 2
 masks: hit:384 total:2 hit/pkt:2.00
 port 0: ovs-system (internal)
 port 1: ovs-sriov (internal)
 port 2: enp4s0f0
 port 3: enp4s0f0_0
 port 4: enp4s0f0_1

Run traffic from the VFs and observe the rules added to the OVS data-path:

ovs-dpctl dump-flows

recirc_id(0),in_port(3),eth(src=e4:11:22:33:44:50,dst=e4:1d:2d:a5:f3:9d),
eth_type(0x0800),ipv4(frag=no), packets:33, bytes:3234, used:1.196s, actions:2

recirc_id(0),in_port(2),eth(src=e4:1d:2d:a5:f3:9d,dst=e4:11:22:33:44:50),
eth_type(0x0800),ipv4(frag=no), packets:34, bytes:3332, used:1.196s, actions:3

In this example, the ping is initiated from VF0 (OVS port 3) to the outer node (OVS port 2),
where the VF MAC is e4:11:22:33:44:50 and the outer node MAC is e4:1d:2d:a5:f3:9d .
As previously shown, two OVS rules are added, one in each direction.

17.10.3.4 OVS Performance Tuning

17.10.3.4.1 Flow Aging

The aging timeout of OVS is given in milliseconds and can be controlled by running:

ovs-vsctl set Open_vSwitch . other_config:max-idle=30000

17.10.3.4.2 TC Policy

Specifies the policy used with hardware offloading:

none – adds a TC rule to both the software and the hardware (default)

skip_sw – adds a TC rule only to the hardware

skip_hw – adds a TC rule only to the software

Users can also verify offloaded packets by adding type=offloaded to the command.
For example:

ovs-appctl dpctl/dump-flows type=offloaded

1318

1.

2.

Example:

ovs-vsctl set Open_vSwitch . other_config:tc-policy=skip_sw

17.10.3.4.3 max-revalidator

Specifies the maximum time (in milliseconds) for the revalidator threads to wait for kernel statistics
before executing flow revalidation.

ovs-vsctl set Open_vSwitch . other_config:max-revalidator=10000

17.10.3.4.4 n-handler-threads

Specifies the number of threads for software datapaths to use to handle new flows.

ovs-vsctl set Open_vSwitch . other_config:n-handler-threads=4

The default value is the number of online CPU cores minus the number of revalidators.

17.10.3.4.5 n-revalidator-threads

Specifies the number of threads for software datapaths to use to revalidate flows in the datapath.

ovs-vsctl set Open_vSwitch . other_config:n-revalidator-threads=4

17.10.3.4.5.1 vlan-limit

Limits the number of VLAN headers that can be matched to the specified number.

ovs-vsctl set Open_vSwitch . other_config:vlan-limit=2

17.10.3.5 Basic TC Rules Configuration

Offloading rules can also be added directly, and not only through OVS, using the tc utility.

To create an offloading rule using TC:

Create an ingress qdisc (queueing discipline) for each interface that you wish to add rules
into:

tc qdisc add dev enp4s0f0 ingress
tc qdisc add dev enp4s0f0_0 ingress
tc qdisc add dev enp4s0f0_1 ingress

Add TC rules using flower classifier in the following format:

TC policy should only be used for debugging purposes.

1319

3.

•
•
•

1.

2.

3.

tc filter add dev NETDEVICE ingress protocol PROTOCOL prio PRIORITY [chain CHAIN] flower [MATCH_LIST]
[action ACTION_SPEC]

Dump the existing tc rules using flower classifier in the following format:

tc [-s] filter show dev NETDEVICE ingress

17.10.3.6 SR-IOV VF LAG
SR-IOV VF LAG allows the NIC's physical functions (PFs) to get the rules that the OVS tries to offload
to the bond net-device, and to offload them to the hardware e-switch.

The supported bond modes are as follows:

Active-backup
XOR
LACP

SR-IOV VF LAG enables complete offload of the LAG functionality to the hardware. The bonding
creates a single bonded PF port. Packets from the up-link can arrive from any of the physical ports
and are forwarded to the bond device.

When hardware offload is used, packets from both ports can be forwarded to any of the VFs. Traffic
from the VF can be forwarded to both ports according to the bonding state. This means that when in
active-backup mode, only one PF is up, and traffic from any VF goes through this PF. When in XOR or
LACP mode, if both PFs are up, traffic from any VF is split between these two PFs.

17.10.3.6.1 SR-IOV VF LAG Configuration on ASAP2

To enable SR-IOV VF LAG, both physical functions of the NIC must first be configured to SR-IOV
switchdev mode, and only afterwards bond the up-link representors.

The following example shows the creation of a bond interface over two PFs:

Load the bonding device and subordinate the up-link representor (currently PF) net-device
devices:

modprobe bonding mode=802.3ad
Ifup bond0 (make sure ifcfg file is present with desired bond configuration)
ip link set enp4s0f0 master bond0
ip link set enp4s0f1 master bond0

Add the VF representor net-devices as OVS ports. If tunneling is not used, add the bond
device as well.

ovs-vsctl add-port ovs-sriov bond0
ovs-vsctl add-port ovs-sriov enp4s0f0_0
ovs-vsctl add-port ovs-sriov enp4s0f1_0

Bring up the PF and the representor netdevices:

A list of supported matches (specifications) and actions can be found in section
"Classification Fields (Matches)".

1320

•

a.

b.

c.

•
a.

b.

ip link set dev bond0 up
ip link set dev enp4s0f0_0 up
ip link set dev enp4s0f1_0 up

17.10.3.6.2 Using TC with VF LAG

Both rules can be added either with or without shared block:

With shared block (supported from kernel 4.16 and RHEL/CentOS 7.7 and above):

tc qdisc add dev bond0 ingress_block 22 ingress
tc qdisc add dev ens4p0 ingress_block 22 ingress
tc qdisc add dev ens4p1 ingress_block 22 ingress

Add drop rule:

tc filter add block 22 protocol arp parent ffff: prio 3 \
 flower \
 dst_mac e4:11:22:11:4a:51 \
 action drop

Add redirect rule from bond to representor:

tc filter add block 22 protocol arp parent ffff: prio 3 \
 flower \
 dst_mac e4:11:22:11:4a:50 \
 action mirred egress redirect dev ens4f0_0

Add redirect rule from representor to bond:

tc filter add dev ens4f0_0 protocol arp parent ffff: prio 3 \
 flower \
 dst_mac ec:0d:9a:8a:28:42 \
 action mirred egress redirect dev bond0

Without shared block (supported from kernel 4.15 and below):
Add redirect rule from bond to representor:

tc filter add dev bond0 protocol arp parent ffff: prio 1 \
 flower \
 dst_mac e4:11:22:11:4a:50 \
 action mirred egress redirect dev ens4f0_0

Add redirect rule from representor to bond:

tc filter add dev ens4f0_0 protocol arp parent ffff: prio 3 \
 flower \
 dst_mac ec:0d:9a:8a:28:42 \
 action mirred egress redirect dev bond0

17.10.3.7 Classification Fields (Matches)
OVS-Kernel supports multiple classification fields which packets can fully or partially match.

Once the SR-IOV VF LAG is configured, all VFs of the two PFs become part of the bond and
behave as described above.

1321

•
•
•

•
•
•

•
•
•

17.10.3.7.1 Ethernet Layer 2
Destination MAC
Source MAC
Ethertype

Supported on all kernels.

In OVS dump flows:

skb_priority(0/0),skb_mark(0/0),in_port(eth6),eth(src=00:02:10:40:10:0d,dst=68:54:ed:00:af:de),eth_type(0x8100),
packets:1981, bytes:206024, used:0.440s, dp:tc, actions:eth7

Using TC rules:

tc filter add dev $rep parent ffff: protocol arp pref 1 \
flower \
dst_mac e4:1d:2d:5d:25:35 \
src_mac e4:1d:2d:5d:25:34 \
action mirred egress redirect dev $NIC

17.10.3.7.2 IPv4/IPv6
Source address
Destination address
Protocol

TCP/UDP/ICMP/ICMPv6
TOS
TTL (HLIMIT)

Supported on all kernels.

In OVS dump flows:

Ipv4:
ipv4(src=0.0.0.0/0.0.0.0,dst=0.0.0.0/0.0.0.0,proto=17,tos=0/0,ttl=0/0,frag=no)
Ipv6:
ipv6(src=::/::,dst=1:1:1::3:1040:1008,label=0/0,proto=58,tclass=0/0x3,hlimit=64),

Using TC rules:

IPv4:
tc filter add dev $rep parent ffff: protocol ip pref 1 \
flower \
dst_ip 1.1.1.1 \
src_ip 1.1.1.2 \
ip_proto TCP \
ip_tos 0x3 \
ip_ttl 63 \
action mirred egress redirect dev $NIC

IPv6:
tc filter add dev $rep parent ffff: protocol ipv6 pref 1 \
flower \
dst_ip 1:1:1::3:1040:1009 \
src_ip 1:1:1::3:1040:1008 \
ip_proto TCP \
ip_tos 0x3 \
ip_ttl 63\
action mirred egress redirect dev $NIC

1322

•
•

•
•
•

•
•
•
•
•
•

17.10.3.7.3 TCP/UDP Source and Destination Ports and TCP Flags
TCP/UDP source and destinations ports
TCP flags

Supported on kernel >4.13 and RHEL >7.5.

In OVS dump flows:

TCP: tcp(src=0/0,dst=32768/0x8000),
UDP: udp(src=0/0,dst=32768/0x8000),
TCP flags: tcp_flags(0/0)

Using TC rules:

tc filter add dev $rep parent ffff: protocol ip pref 1 \
flower \
ip_proto TCP \
dst_port 100 \
src_port 500 \
tcp_flags 0x4/0x7 \
action mirred egress redirect dev $NIC

17.10.3.7.4 VLAN
ID
Priority
Inner vlan ID and Priority

Supported kernels: All (QinQ: kernel 4.19 and higher, and RHEL 7.7 and higher).

In OVS dump flows:

eth_type(0x8100),vlan(vid=2347,pcp=0),

Using TC rules:

tc filter add dev $rep parent ffff: protocol 802.1Q pref 1 \
 flower \
 vlan_ethtype 0x800 \
 vlan_id 100 \
 vlan_prio 0 \
 action mirred egress redirect dev $NIC
QinQ:
tc filter add dev $rep parent ffff: protocol 802.1Q pref 1 \
 flower \
 vlan_ethtype 0x8100 \
 vlan_id 100 \
 vlan_prio 0 \
 cvlan_id 20 \
 cvlan_prio 0 \
 cvlan_ethtype 0x800 \
 action mirred egress redirect dev $NIC

17.10.3.7.5 Tunnel
ID (Key)
Source IP address
Destination IP address
Destination port
TOS (supported from kernel 4.19 and above & RHEL 7.7 and above)
TTL (support from kernel 4.19 and above & RHEL 7.7 and above)

1323

•

•
•
•

•
•
•

Tunnel options (Geneve)

Supported kernels:

VXLAN: All
GRE: Kernel >5.0, RHEL 7.7 and above
Geneve: Kernel >5.0, RHEL 7.7 and above

In OVS dump flows:

tunnel(tun_id=0x5,src=121.9.1.1,dst=131.10.1.1,ttl=0/0,tp_dst=4789,flags(+key))

Using TC rules:

tc filter add dev $rep protocol 802.1Q parent ffff: pref 1
flower \
vlan_ethtype 0x800 \
vlan_id 100 \
vlan_prio 0 \
action mirred egress redirect dev $NIC
QinQ:
tc filter add dev vxlan100 protocol ip parent ffff: \
 flower \
 skip_sw \
 dst_mac e4:11:22:11:4a:51 \
 src_mac e4+:11:22:11:4a:50 \
 enc_src_ip 20.1.11.1 \
 enc_dst_ip 20.1.12.1 \
 enc_key_id 100 \
 enc_dst_port 4789 \
 action tunnel_key unset \
 action mirred egress redirect dev ens4f0_0

17.10.3.8 Supported Actions

17.10.3.8.1 Forward

Forward action allows for packet redirection:

From VF to wire
Wire to VF
VF to VF

Supported on all kernels.

In OVS dump flows:

skb_priority(0/0),skb_mark(0/0),in_port(eth6),eth(src=00:02:10:40:10:0d,dst=68:54:ed:00:af:de),eth_type(0x8100),
packets:1981, bytes:206024, used:0.440s, dp:tc, actions:eth7

Using TC rules:

tc filter add dev $rep parent ffff: protocol arp pref 1 \
 flower \
 dst_mac e4:1d:2d:5d:25:35 \
 src_mac e4:1d:2d:5d:25:34 \
 action mirred egress redirect dev $NIC

17.10.3.8.2 Drop

Drop action allows to drop incoming packets.

1324

•
•
•

•
•

•
•
•

Supported on all kernels.

In OVS dump flows:

skb_priority(0/0),skb_mark(0/0),in_port(eth6),eth(src=00:02:10:40:10:0d,dst=68:54:ed:00:af:de),eth_type(0x8100),
packets:1981, bytes:206024, used:0.440s, dp:tc, actions:drop

Using TC rules:

tc filter add dev $rep parent ffff: protocol arp pref 1 \
 flower \
 dst_mac e4:1d:2d:5d:25:35 \
 src_mac e4:1d:2d:5d:25:34 \
 action drop

17.10.3.8.3 Statistics

By default, each flow collects the following statistics:

Packets – number of packets which hit the flow
Bytes – total number of bytes which hit the flow
Last used – the amount of time passed since last packet hit the flow

Supported on all kernels.

In OVS dump flows:

skb_priority(0/0),skb_mark(0/0),in_port(eth6),eth(src=00:02:10:40:10:0d,dst=68:54:ed:00:af:de),eth_type(0x8100),
packets:1981, bytes:206024, used:0.440s, dp:tc, actions:drop

Using TC rules:

#tc -s filter show dev $rep ingress

filter protocol ip pref 2 flower chain 0
filter protocol ip pref 2 flower chain 0 handle 0x2
eth_type ipv4
ip_proto tcp
src_ip 192.168.140.100
src_port 80
skip_sw
in_hw
 action order 1: mirred (Egress Redirect to device p0v11_r) stolen
 index 34 ref 1 bind 1 installed 144 sec used 0 sec
 Action statistics:
 Sent 388344 bytes 2942 pkt (dropped 0, overlimits 0 requeues 0)
 backlog 0b 0p requeues 0

17.10.3.8.4 Tunnels: Encapsulation/Decapsulation

OVS-kernel supports offload of tunnels using encapsulation and decapsulation actions.

Encapsulation – pushing of tunnel header is supported on Tx
Decapsulation – popping of tunnel header is supported on Rx

Supported Tunnels:

VXLAN (IPv4/IPv6) – supported on all Kernels
GRE (IPv4/IPv6) – supported on kernel 5.0 and above & RHEL 7.6 and above
Geneve (IPv4/IPv6) – supported on kernel 5.0 and above & RHEL 7.6 and above

OVS configuration:

1325

•

•

•
•

In case of offloading tunnel, the PF/bond should not be added as a port in the OVS datapath. It
should rather be assigned with the IP address to be used for encapsulation.

The following example shows two hosts (PFs) with IPs 1.1.1.177 and 1.1.1.75, where the PF device
on both hosts is enp4s0f0, and the VXLAN tunnel is set with VNID 98:

On the first host:

ip addr add 1.1.1.177/24 dev enp4s0f1
ovs-vsctl add-port ovs-sriov vxlan0 -- set interface vxlan0 type=vxlan options:local_ip=1.1.1.177
 options:remote_ip=1.1.1.75 options:key=98

On the second host:

ip addr add 1.1.1.75/24 dev enp4s0f1
ovs-vsctl add-port ovs-sriov vxlan0 -- set interface vxlan0 type=vxlan options:local_ip=1.1.1.75
 options:remote_ip=1.1.1.177 options:key=98

Tunnel offload using TC rules:

Encapsulation:
tc filter add dev ens4f0_0 protocol 0x806 parent ffff: \
 flower \
 skip_sw \
 dst_mac e4:11:22:11:4a:51 \
 src_mac e4:11:22:11:4a:50 \
 action tunnel_key set \
 src_ip 20.1.12.1 \
 dst_ip 20.1.11.1 \
 id 100 \
 action mirred egress redirect dev vxlan100

Decapsulation:
tc filter add dev vxlan100 protocol 0x806 parent ffff: \
 flower \
 skip_sw \
 dst_mac e4:11:22:11:4a:51 \
 src_mac e4:11:22:11:4a:50 \
 enc_src_ip 20.1.11.1 \
 enc_dst_ip 20.1.12.1 \
 enc_key_id 100 \
 enc_dst_port 4789 \
 action tunnel_key unset \
 action mirred egress redirect dev ens4f0_0

17.10.3.8.5 VLAN Push/Pop

OVS-kernel supports offload of VLAN header push/pop actions:

Push – pushing of VLAN header is supported on Tx
Pop – popping of tunnel header is supported on Rx

17.10.3.8.5.1 OVS Configuration

Add a tag=$TAG section for the OVS command line that adds the representor ports. For example,
VLAN ID 52 is being used here.

For a GRE IPv4 tunnel, use type=gre . For a GRE IPv6 tunnel, use type=ip6gre . For

a Geneve tunnel, use type=geneve .

When encapsulating guest traffic, the VF's device MTU must be reduced to allow the host/
hardware to add the encap headers without fragmenting the resulted packet. As such, the
VF's MTU must be lowered by 50 bytes from the uplink MTU for IPv4 and 70 bytes for IPv6.

1326

•
•

ovs-vsctl add-port ovs-sriov enp4s0f0
ovs-vsctl add-port ovs-sriov enp4s0f0_0 tag=52
ovs-vsctl add-port ovs-sriov enp4s0f0_1 tag=52

The PF port should not have a VLAN attached. This will cause OVS to add VLAN push/pop actions
when managing traffic for these VFs.

Dump Flow Example

recirc_id(0),in_port(3),eth(src=e4:11:22:33:44:50,dst=00:02:c9:e9:bb:b2),eth_type(0x0800),ipv4(frag=no), \
packets:0, bytes:0, used:never, actions:push_vlan(vid=52,pcp=0),2

recirc_id(0),in_port(2),eth(src=00:02:c9:e9:bb:b2,dst=e4:11:22:33:44:50),eth_type(0x8100), \
vlan(vid=52,pcp=0),encap(eth_type(0x0800),ipv4(frag=no)), packets:0, bytes:0, used:never, actions:pop_vlan,3

VLAN Offload Using TC Rules Example

tc filter add dev ens4f0_0 protocol ip parent ffff: \
 flower \
 skip_sw \
 dst_mac e4:11:22:11:4a:51 \
 src_mac e4:11:22:11:4a:50 \
 action vlan push id 100 \
 action mirred egress redirect dev ens4f0

tc filter add dev ens4f0 protocol 802.1Q parent ffff: \
 flower \
 skip_sw \
 dst_mac e4:11:22:11:4a:51 \
 src_mac e4:11:22:11:4a:50 \
 vlan_ethtype 0x800 \
 vlan_id 100 \
 vlan_prio 0 \
 action vlan pop \
 action mirred egress redirect dev ens4f0_0

17.10.3.8.5.2 TC Configuration

Example of VLAN Offloading with popping header on Tx and pushing on Rx using TC rules:

tc filter add dev ens4f0_0 ingress protocol 802.1Q parent ffff: \
 flower \
 vlan_id 100 \
 action vlan pop \
 action tunnel_key set \
 src_ip 4.4.4.1 \
 dst_ip 4.4.4.2 \
 dst_port 4789 \
 id 42 \
 action mirred egress redirect dev vxlan0

tc filter add dev vxlan0 ingress protocol all parent ffff: \
 flower \
 enc_dst_ip 4.4.4.1 \
 enc_src_ip 4.4.4.2 \
 enc_dst_port 4789 \
 enc_key_id 42 \
 action tunnel_key unset \
 action vlan push id 100 \
 action mirred egress redirect dev ens4f0_0

17.10.3.8.6 Header Rewrite

This action allows for modifying packet fields.

17.10.3.8.7 Ethernet Layer 2
Destination MAC
Source MAC

Supported kernels:

1327

•
•

•
•
•
•
•

•
•

Kernel 4.14 and above
RHEL 7.5 and above

In OVS dump flows:

skb_priority(0/0),skb_mark(0/0),in_port(eth6),eth(src=00:02:10:40:10:0d,dst=68:54:ed:00:af:de),eth_type(0x8100),
packets:1981, bytes:206024, used:0.440s, dp:tc, actions: set(eth(src=68:54:ed:00:f4:ab,dst=fa:16:3e:dd:69:c4)),eth7

Using TC rules:

tc filter add dev $rep parent ffff: protocol arp pref 1 \
 flower \
 dst_mac e4:1d:2d:5d:25:35 \
 src_mac e4:1d:2d:5d:25:34 \
 action pedit ex \
 munge eth dst set 20:22:33:44:55:66 \
 munge eth src set aa:ba:cc:dd:ee:fe \
 action mirred egress redirect dev $NIC

17.10.3.8.8 IPv4/IPv6
Source address
Destination address
Protocol
TOS
TTL (HLIMIT)

Supported kernels:

Kernel 4.14 and above
RHEL 7.5 and above

In OVS dump flows:

Ipv4:
 set(eth(src=de:e8:ef:27:5e:45,dst=00:00:01:01:01:01)),
 set(ipv4(src=10.10.0.111,dst=10.20.0.122,ttl=63))
Ipv6:
 set(ipv6(dst=2001:1:6::92eb:fcbe:f1c8,hlimit=63)),

Using TC rules:

IPv4:
tc filter add dev $rep parent ffff: protocol ip pref 1 \
 flower \
 dst_ip 1.1.1.1 \
 src_ip 1.1.1.2 \
 ip_proto TCP \
 ip_tos 0x3 \
 ip_ttl 63 \
 pedit ex \
 munge ip src set 2.2.2.1 \
 munge ip dst set 2.2.2.2 \
 munge ip tos set 0 \
 munge ip ttl dec \
 action mirred egress redirect dev $NIC

IPv6:
tc filter add dev $rep parent ffff: protocol ipv6 pref 1 \
 flower \
 dst_ip 1:1:1::3:1040:1009 \
 src_ip 1:1:1::3:1040:1008 \
 ip_proto tcp \
 ip_tos 0x3 \
 ip_ttl 63\
 pedit ex \
 munge ipv6 src set 2:2:2::3:1040:1009 \
 munge ipv6 dst set 2:2:2::3:1040:1008 \
 munge ipv6 hlimit dec \
 action mirred egress redirect dev $NIC

1328

•

•
•

•

17.10.3.8.8.1 TCP/UDP Source and Destination Ports
TCP/UDP source and destinations ports

Supported kernels:

Kernel 4.16 and above
RHEL 7.6 and above

In OVS dump flows:

TCP:

 set(tcp(src= 32768/0xffff,dst=32768/0xffff)),
UDP:

 set(udp(src= 32768/0xffff,dst=32768/0xffff)),

Using TC rules:

TCP:

 tc filter add dev $rep parent ffff: protocol ip pref 1 \
 flower \
 dst_ip 1.1.1.1 \
 src_ip 1.1.1.2 \
 ip_proto tcp \
 ip_tos 0x3 \
 ip_ttl 63 \
 pedit ex \
 pedit ex munge ip tcp sport set 200
 pedit ex munge ip tcp dport set 200
 action mirred egress redirect dev $NIC

UDP:
 tc filter add dev $rep parent ffff: protocol ip pref 1 \
 flower \
 dst_ip 1.1.1.1 \
 src_ip 1.1.1.2 \
 ip_proto udp \
 ip_tos 0x3 \
 ip_ttl 63 \
 pedit ex \
 pedit ex munge ip udp sport set 200
 pedit ex munge ip udp dport set 200
 action mirred egress redirect dev $NIC

17.10.3.8.8.2 VLAN
ID

Supported on all kernels.

In OVS dump flows:

Set(vlan(vid=2347,pcp=0/0)),

Using TC rules:

tc filter add dev $rep parent ffff: protocol 802.1Q pref 1 \
 flower \
 vlan_ethtype 0x800 \
 vlan_id 100 \
 vlan_prio 0 \
 action vlan modify id 11 pipe
 action mirred egress redirect dev $NIC

IPv4 and IPv6 header rewrite is only supported with match on UDP/TCP/ICMP protocols.

1329

•

•

17.10.3.8.9 Connection Tracking

The TC connection tracking (CT) action performs CT lookup by sending the packet to netfilter
conntrack module. Newly added connections may be associated, via the ct commit action, with a
32 bit mark, 128 bit label, and source/destination NAT values.

The following example allows ingress TCP traffic from the uplink representor to vf1_rep , while

assuring that egress traffic from vf1_rep is only allowed on established connections. In addition,
mark and source IP NAT is applied.

In OVS dump flows:

ct(zone=2,nat)
ct_state(+est+trk)
actions:ct(commit,zone=2,mark=0x4/0xffffffff,nat(src=5.5.5.5))

Using TC rules:

tc filter add dev $uplink_rep ingress chain 0 prio 1 proto ip \
 flower \
 ip_proto tcp \
 ct_state -trk \
 action ct zone 2 nat pipe
 action goto chain 2
tc filter add dev $uplink_rep ingress chain 2 prio 1 proto ip \
 flower \
 ct_state +trk+new \
 action ct zone 2 commit mark 0xbb nat src addr 5.5.5.7 pipe \
 action mirred egress redirect dev $vf1_rep
tc filter add dev $uplink_rep ingress chain 2 prio 1 proto ip \
 flower \
 ct_zone 2 \
 ct_mark 0xbb \
 ct_state +trk+est \
 action mirred egress redirect dev $vf1_rep

// Setup filters on $vf1_rep, allowing only established connections of zone 2 through, and reverse nat (dst nat in
this case)

tc filter add dev $vf1_rep ingress chain 0 prio 1 proto ip \
 flower \
 ip_proto tcp \
 ct_state -trk \
 action ct zone 2 nat pipe \
 action goto chain 1
tc filter add dev $vf1_rep ingress chain 1 prio 1 proto ip \
 flower \
 ct_zone 2 \
 ct_mark 0xbb \
 ct_state +trk+est \
 action mirred egress redirect dev eth0

17.10.3.8.9.1 CT Performance Tuning
Max offloaded connections – specifies the limit on the number of offloaded connections.
Example:

devlink dev param set pci/${pci_dev} name ct_max_offloaded_conns value $max cmode runtime

Allow mixed NAT/non-NAT CT – allows offloading of the following scenario:

• cookie=0x0, duration=21.843s, table=0, n_packets=4838718, n_bytes=241958846, ct_state=-
trk,ip,in_port=enp8s0f0 actions=ct(table=1,zone=2)
• cookie=0x0, duration=21.823s, table=1, n_packets=15363, n_bytes=773526, ct_state=+new+trk,ip,in_port=en
p8s0f0 actions=ct(commit,zone=2,nat(dst=11.11.11.11)),output:"enp8s0f0_1" • cookie=0x0, duration=21.806s,
table=1, n_packets=4767594, n_bytes=238401190, ct_state=+est+trk,ip,in_port=enp8s0f0 actions=ct(zone=2,nat)
,output:"enp8s0f0_1"

Example:

1330

•

•

echo enable > /sys/class/net/<device>/compat/devlink/ct_action_on_nat_conns

17.10.3.8.10 Forward to Chain (TC Only)

TC interface supports adding flows on different chains. Only chain 0 is accessed by default. Access
to the other chains requires using the goto action.

In this example, a flow is created on chain 1 without any match and redirect to wire.

The second flow is created on chain 0 and match on source MAC and action goto chain 1.

This example simulates simple MAC spoofing:

#tc filter add dev $rep parent ffff: protocol all chain 1 pref 1 \
 flower \
 action mirred egress redirect dev $NIC

#tc filter add dev $rep parent ffff: protocol all chain 1 pref 1 \
 flower \
 src_mac aa:bb:cc:aa:bb:cc \
 action goto chain 1

17.10.3.9 Port Mirroring: Flow-based VF Traffic Mirroring for ASAP²
Unlike para-virtual configurations, when the VM traffic is offloaded to hardware via SR-IOV VF, the
host-side admin cannot snoop the traffic (e.g., for monitoring).

ASAP² uses the existing mirroring support in OVS and TC along with the enhancement to the
offloading logic in the driver to allow mirroring the VF traffic to another VF.

The mirrored VF can be used to run traffic analyzer (e.g., tcpdump, wireshark, etc.) and observe
the traffic of the VF being mirrored.

The following example shows the creation of port mirror on the following configuration:

ovs-vsctl show
 09d8a574-9c39-465c-9f16-47d81c12f88a
 Bridge br-vxlan
 Port "enp4s0f0_1"
 Interface "enp4s0f0_1"
 Port "vxlan0"
 Interface "vxlan0"
 type: vxlan
 options: {key="100", remote_ip="192.168.1.14"}
 Port "enp4s0f0_0"
 Interface "enp4s0f0_0"
 Port "enp4s0f0_2"
 Interface "enp4s0f0_2"
 Port br-vxlan
 Interface br-vxlan
 type: internal
 ovs_version: "2.14.1"

To set enp4s0f0_0 as the mirror port and mirror all the traffic:

ovs-vsctl -- --id=@p get port enp4s0f0_0 \
 -- --id=@m create mirror name=m0 select-all=true output-port=@p \
 -- set bridge br-vxlan mirrors=@m

To set enp4s0f0_0 as the mirror port, only mirror the traffic, and set enp4s0f0_1 as the
destination port:

ovs-vsctl -- --id=@p1 get port enp4s0f0_0 \

1331

•

•

•

•

•

•

 -- --id=@p2 get port enp4s0f0_1 \
 -- --id=@m create mirror name=m0 select-dst-port=@p2 output-port=@p1 \
 -- set bridge br-vxlan mirrors=@m

To set enp4s0f0_0 as the mirror port, only mirror the traffic, and set enp4s0f0_1 as the
source port:

ovs-vsctl -- --id=@p1 get port enp4s0f0_0 \
 -- --id=@p2 get port enp4s0f0_1 \
 -- --id=@m create mirror name=m0 select-src-port=@p2 output-port=@p1 \
 -- set bridge br-vxlan mirrors=@m

To set enp4s0f0_0 as the mirror port and mirror all the traffic on enp4s0f0_1 :

ovs-vsctl -- --id=@p1 get port enp4s0f0_0 \
 -- --id=@p2 get port enp4s0f0_1 \
 -- --id=@m create mirror name=m0 select-dst-port=@p2 select-src-port=@p2 output-port=@p1 \
 -- set bridge br-vxlan mirrors=@m

To clear the mirror port:

ovs-vsctl clear bridge br-vxlan mirrors

Mirroring using TC:

Mirror to VF:

tc filter add dev $rep parent ffff: protocol arp pref 1 \
 flower \
 dst_mac e4:1d:2d:5d:25:35 \
 src_mac e4:1d:2d:5d:25:34 \
 action mirred egress mirror dev $mirror_rep pipe \
 action mirred egress redirect dev $NIC

Mirror to tunnel:

tc filter add dev $rep parent ffff: protocol arp pref 1 \
 flower \
 dst_mac e4:1d:2d:5d:25:35 \
 src_mac e4:1d:2d:5d:25:34 \
 action tunnel_key set \
 src_ip 1.1.1.1 \
 dst_ip 1.1.1.2 \
 dst_port 4789 \
 id 768 \
 pipe \
 action mirred egress mirror dev vxlan100 pipe \
 action mirred egress redirect dev $NIC

17.10.3.10 Forward to Multiple Destinations
Forwarding to up 32 destinations (representors and tunnels) is supported using TC:

Example 1 – forwarding to 32 VFs:

tc filter add dev $NIC parent ffff: protocol arp pref 1 \
 flower \
 dst_mac e4:1d:2d:5d:25:35 \
 src_mac e4:1d:2d:5d:25:34 \
 action mirred egress mirror dev $rep0 pipe \
 action mirred egress mirror dev $rep1 pipe \
...
 action mirred egress mirror dev $rep30 pipe \
 action mirred egress redirect dev $rep31

Example 2 – forwarding to 16 tunnels:

1332

tc filter add dev $rep parent ffff: protocol arp pref 1 \
 flower \
 dst_mac e4:1d:2d:5d:25:35 \
 src_mac e4:1d:2d:5d:25:34 \
 action tunnel_key set src_ip $ip_src dst_ip $ip_dst \
 dst_port 4789 id 0 nocsum \
 pipe action mirred egress mirror dev vxlan0 pipe \
 action tunnel_key set src_ip $ip_src dst_ip $ip_dst \
 dst_port 4789 id 1 nocsum \
 pipe action mirred egress mirror dev vxlan0 pipe \
 ...
 action tunnel_key set src_ip $ip_src dst_ip $ip_dst \
 dst_port 4789 id 15 nocsum \
 pipe action mirred egress redirect dev vxlan0

17.10.3.11 sFlow
sFlow allows for monitoring traffic sent between two VMs on the same host using an sFlow collector.

The following example assumes the environment is configured as described later.

ovs-vsctl show
 09d8a574-9c39-465c-9f16-47d81c12f88a
 Bridge br-vxlan
 Port "enp4s0f0_1"
 Interface "enp4s0f0_1"
 Port "vxlan0"
 Interface "vxlan0"
 type: vxlan
 options: {key="100", remote_ip="192.168.1.14"}
 Port "enp4s0f0_0"
 Interface "enp4s0f0_0"
 Port "enp4s0f0_2"
 Interface "enp4s0f0_2"
 Port br-vxlan
 Interface br-vxlan
 type: internal
 ovs_version: "2.14.1"

To sample all traffic over the OVS bridge:

ovs-vsctl -- --id=@sflow create sflow agent=\"$SFLOW_AGENT\" \
 target=\"$SFLOW_TARGET:$SFLOW_PORT\" \
 header=$SFLOW_HEADER \
 sampling=$SFLOW_SAMPLING polling=10 \
 -- set bridge br-vxlan sflow=@sflow

Parameter Description

SFLOW_AGENT Indicates that the sFlow agent should send traffic from
SFLOW_AGENT 's IP address

SFLOW_TARGET Remote IP address of the sFlow collector

SFLOW_HEADER Size of packet header to sample (in bytes)

SFLOW_SAMPLING Sample rate

To clear the sFlow configuration:

TC supports up to 32 actions.

If header rewrite is used, then all destinations should have the same header rewrite.

If VLAN push/pop is used, then all destinations should have the same VLAN ID and actions.

1333

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

ovs-vsctl clear bridge br-vxlan sflow

To list the sFlow configuration:

ovs-vsctl list sflow

sFlow using TC:

Sample to VF
tc filter add dev $rep parent ffff: protocol arp pref 1 \
 flower \
 dst_mac e4:1d:2d:5d:25:35 \
 src_mac e4:1d:2d:5d:25:34 \
 action sample rate 10 group 5 trunc 96 \
 action mirred egress redirect dev $NIC

17.10.3.12 Rate Limit
OVS-kernel supports offload of VF rate limit using OVS configuration and TC.

The following example sets the rate limit to the VF related to representor eth0 to 10Mb/s:

OVS:

ovs-vsctl set interface eth0 ingress_policing_rate=10000

TC:

tc_filter add dev eth0 root prio 1 protocol ip matchall skip_sw action police rate 10mbit burst 20k

17.10.3.13 Kernel Requirements
This kernel config should be enabled to support switchdev offload.

CONFIG_NET_ACT_CSUM – needed for action csum

CONFIG_NET_ACT_PEDIT – needed for header rewrite

CONFIG_NET_ACT_MIRRED – needed for basic forward

CONFIG_NET_ACT_CT – needed for CT (supported from kernel 5.6)

CONFIG_NET_ACT_VLAN – needed for action vlan push/pop

CONFIG_NET_ACT_GACT

CONFIG_NET_CLS_FLOWER

CONFIG_NET_CLS_ACT

CONFIG_NET_SWITCHDEV

CONFIG_NET_TC_SKB_EXT – needed for CT (supported from kernel 5.6)

CONFIG_NET_ACT_CT – needed for CT (supported from kernel 5.6)

CONFIG_NFT_FLOW_OFFLOAD

CONFIG_NET_ACT_TUNNEL_KEY

A userspace application is needed to process the sampled packet from the kernel. An
example is available on Github.

https://github.com/Mellanox/libpsample

1334

•

•

•

•

•

•

•

CONFIG_NF_FLOW_TABLE – needed for CT (supported from kernel 5.6)

CONFIG_SKB_EXTENSIONS – needed for CT (supported from kernel 5.6)

CONFIG_NET_CLS_MATCHALL

CONFIG_NET_ACT_POLICE

CONFIG_MLX5_ESWITCH

17.10.3.14 VF Metering
OVS-kernel supports offloading of VF metering (TX and RX) using sysfs. Metering of number of
packets per second (PPS) and bytes per second (BPS) is supported.

The following example sets Rx meter on VF 0 with value 10Mb/s BPS:

echo 10000000 > /sys/class/net/enp4s0f0/device/sriov/0/meters/rx/bps/rate
echo 65536 > /sys/class/net/enp4s0f0/device/sriov/0/meters/rx/bps/burst

The following example sets Tx meter on VF 0 with value 1000 PPS:

echo 1000 > /sys/class/net/enp4s0f0/device/sriov/0/meters/tx/pps/rate
echo 100 > /sys/class/net/enp4s0f0/device/sriov/0/meters/tx/pps/burst

The following counters can be used to query the number dropped packet/bytes:

cat /sys/class/net/enp8s0f0/device/sriov/0/meters/rx/pps/packets_dropped
cat /sys/class/net/enp8s0f0/device/sriov/0/meters/rx/pps/bytes_dropped
cat /sys/class/net/enp8s0f0/device/sriov/0/meters/rx/bps/packets_dropped
cat /sys/class/net/enp8s0f0/device/sriov/0/meters/rx/bps/bytes_dropped
cat /sys/class/net/enp8s0f0/device/sriov/0/meters/tx/pps/packets_dropped
cat /sys/class/net/enp8s0f0/device/sriov/0/meters/tx/pps/bytes_dropped
cat /sys/class/net/enp8s0f0/device/sriov/0/meters/tx/bps/packets_dropped
cat /sys/class/net/enp8s0f0/device/sriov/0/meters/tx/bps/bytes_dropped

17.10.3.15 Representor Metering

Traffic going to a representor device can be a result of a miss in the embedded switch (eSwitch) FDB
tables. This means that a packet which arrives from that representor into the eSwitch has not
matched against the existing rules in the hardware FDB tables and must be forwarded to software to
be handled there and is, therefore, forwarded to the originating representor device driver.

The meter allows to configure the max rate [packets per second] and max burst [packets] for traffic
going to the representor driver. Any traffic exceeding values provided by the user are dropped in
hardware. There are statistics that show the number of dropped packets.

The configuration of representor metering is done via miss_rl_cfg .

Full path of the miss_rl_cfg parameter: /sys/class/net//rep_config/miss_rl_cfg

Usage: echo "<rate> <burst>" > /sys/class/net//rep_config/miss_rl_cfg .

Both rate and burst must not be zero and burst may need to be adjusted according to
the requirements.

Metering for uplink and VF representors traffic is supported.

1335

•

•
•

•

•

1.

2.

3.

4.

rate is the max rate of packets allowed for this representor (in packets/sec units)

burst is the max burst size allowed for this representor (in packets units)
Both values must be specified. Both of their default values is 0, signifying unlimited
rate and burst.

To view the amount of packets and bytes dropped due to traffic exceeding the user-provided rate
and burst, two read-only sysfs for statistics are available:

/sys/class/net//rep_config/miss_rl_dropped_bytes – counts how many FDB-miss bytes
are dropped due to reaching the miss limits
/sys/class/net//rep_config/miss_rl_dropped_packets – counts how many FDB-miss
packets are dropped due to reaching the miss limits

17.10.3.16 OVS Metering
There are two types of meters, kpps (kilobits per second) and pktps (packets per second). OVS-
Kernel supports offloading both of them.

The following example is to offload a kpps meter.

Create OVS meter with a target rate:

 ovs-ofctl -O OpenFlow13 add-meter ovs-sriov meter=1,kbps,band=type=drop,rate=204800

Delete the default rule:

 ovs-ofctl del-flows ovs-sriov

Configure OpenFlow rules:

ovs-ofctl -O OpenFlow13 add-flow ovs-sriov 'ip,dl_dst=e4:11:22:33:44:50,actions= meter:1,output:enp4s0f0_0'
ovs-ofctl -O OpenFlow13 add-flow ovs-sriov 'ip,dl_src=e4:11:22:33:44:50,actions= output:enp4s0f0'
ovs-ofctl -O OpenFlow13 add-flow ovs-sriov 'arp,actions=normal'

Here, the VF bandwidth on the receiving side is limited by the rate configured in step 1.
Run iperf server and be ready to receive UDP traffic. On the outer node, run iperf client to
send UDP traffic to this VF. After traffic starts, check the offloaded meter rule:

ovs-appctl dpctl/dump-flows --names type=offloaded

recirc_id(0),in_port(enp4s0f0),eth(dst=e4:11:22:33:44:50),eth_type(0x0800),ipv4(frag=no), packets:11626587,
bytes:17625889188, used:0.470s, actions:meter(0),enp4s0f0_0

To verify metering, iperf client should set the target bandwidth with a number which is larger than
the meter rate configured. Then it should apparent that packets are received with the limited rate
on the server side and the extra packets are dropped by hardware.

17.10.3.17 Multiport eSwitch Mode
The multiport eswitch mode allows adding rules on a VF representor with an action forwarding the
packet to the physical port of the physical function. This can be used to implement failover or
forward packets based on external information such as the cost of the route.

1336

1.

2.

1.

2.

To configure multiport eswitch mode, the nvconfig parameter LAG_RESOURCE_ALLOCATION
must be set.
After the driver loads, configure multiport eSwitch for each PF where enp8s0f0 and

enp8s0f1 represent the netdevices for the PFs:

echo multiport_esw > /sys/class/net/enp8s0f0/compat/devlink/lag_port_select_mode
echo multiport_esw > /sys/class/net/enp8s0f1/compat/devlink/lag_port_select_mode

The mode becomes operational after entering switchdev mode on both PFs.

Rule example:

tc filter add dev enp8s0f0_0 prot ip root flower dst_ip 7.7.7.7 action mirred egress redirect dev enp8s0f1

17.10.4 OVS-DPDK Hardware Acceleration

17.10.4.1 OVS-DPDK Hardware Offloads Configuration
To configure OVS-DPDK HW offloads:

Unbind the VFs:

echo 0000:04:00.2 > /sys/bus/pci/drivers/mlx5_core/unbind
echo 0000:04:00.3 > /sys/bus/pci/drivers/mlx5_core/unbind

Change the e-switch mode from legacy to switchdev on the PF device (make sure all VFs are
unbound). This also creates the VF representor netdevices in the host OS.

echo switchdev > /sys/class/net/enp4s0f0/compat/devlink/mode

To revert to SR-IOV legacy mode:

echo legacy > /sys/class/net/enp4s0f0/compat/devlink/mode

VMs with attached VFs must be powered off to be able to unbind the VFs.

This command removes the VF representor netdevices.

1337

3.

4.

5.

6.

7.

8.

9.

10.

Bind the VFs:

echo 0000:04:00.2 > /sys/bus/pci/drivers/mlx5_core/bind
echo 0000:04:00.3 > /sys/bus/pci/drivers/mlx5_core/bind

Run the OVS service:

systemctl start openvswitch

Enable hardware offload (disabled by default):

ovs-vsctl --no-wait set Open_vSwitch . other_config:dpdk-init=true
ovs-vsctl set Open_vSwitch . other_config:hw-offload=true

Configure the DPDK whitelist:

ovs-vsctl --no-wait set Open_vSwitch . other_config:dpdk-extra="-a
0000:01:00.0,representor=[0],dv_flow_en=1,dv_esw_en=1,dv_xmeta_en=1"

Where representor=[0-N] .
Restart the OVS service:

systemctl restart openvswitch

Create OVS-DPDK bridge:

ovs-vsctl --no-wait add-br br0-ovs -- set bridge br0-ovs datapath_type=netdev

Add PF to OVS:

ovs-vsctl add-port br0-ovs pf -- set Interface pf type=dpdk options:dpdk-devargs=0000:88:00.0

Add representor to OVS:

ovs-vsctl add-port br0-ovs representor -- set Interface representor type=dpdk options:dpdk-devargs=0000:88:0
0.0,representor=[0]

Where representor=[0-N] .

17.10.4.2 Offloading VXLAN Encapsulation/Decapsulation Actions
vSwitch in userspace requires an additional bridge. The purpose of this bridge is to allow use of the
kernel network stack for routing and ARP resolution.

The datapath must look up the routing table and ARP table to prepare the tunnel header and
transmit data to the output port.

17.10.4.2.1 Configuring VXLAN Encap/Decap Offloads

This step is required for the hardware offload changes to take effect.

The configuration is done with:

1338

1.

2.

3.

4.

5.

6.

1.

To configure OVS-DPDK VXLAN:

Create a br-phy bridge:

ovs-vsctl add-br br-phy -- set Bridge br-phy datapath_type=netdev -- br-set-external-id br-phy bridge-id
br-phy -- set bridge br-phy fail-mode=standalone other_config:hwaddr=98:03:9b:cc:21:e8

Attach PF interface to br-phy bridge:

ovs-vsctl add-port br-phy p0 -- set Interface p0 type=dpdk options:dpdk-devargs=0000:03:00.0

Configure IP to the bridge:

ip addr add 56.56.67.1/24 dev br-phy

Create a br-ovs bridge:

ovs-vsctl add-br br-ovs -- set Bridge br-ovs datapath_type=netdev -- br-set-external-id br-ovs bridge-id
br-ovs -- set bridge br-ovs fail-mode=standalone

Attach representor to br-ovs:

ovs-vsctl add-port br-ovs pf0vf0 -- set Interface pf0vf0 type=dpdk options:dpdk-devargs=0000:03:00.0,repres
entor=[0]

Add a port for the VXLAN tunnel:

ovs-vsctl add-port ovs-sriov vxlan0 -- set interface vxlan0 type=vxlan options:local_ip=56.56.67.1
 options:remote_ip=56.56.68.1 options:key=45 options:dst_port=4789

17.10.4.3 CT Offload
CT enables stateful packet processing by keeping a record of currently open connections. OVS flows
using CT can be accelerated using advanced NICs by offloading established connections.

To view offloaded connections, run:

ovs-appctl dpctl/offload-stats-show

17.10.4.4 SR-IOV VF LAG
To configure OVS-DPDK SR-IOV VF LAG:

Enable SR-IOV in the NIC firmware:

// It is recommended to query the parameters first to determine if change is needed, to save unnecessary
reboot
mst start
mlxconfig -d <mst device> -y set PF_NUM_OF_VF_VALID=0 SRIOV_EN=1 NUM_OF_VFS=8

•
•
•

PF on 0000:03:00.0 PCIe and MAC 98:03:9b:cc:21:e8
Local IP 56.56.67.1 – br-phy interface is configured to this IP
Remote IP 56.56.68.1

1339

2.

3.

4.

5.

6.

7.

8.

9.

If configuration changes were made, unless the NIC is BlueField DPU Mode, perform a warm
reboot of the Server OS. Otherwise, please perform BlueField System-Level Reset.
Allocate the desired number of VFs per port:

echo $n > /sys/class/net/<net name>/device/sriov_numvfs

Unbind all VFs:

echo <VF PCI> >/sys/bus/pci/drivers/mlx5_core/unbind

Change both devices' mode to switchdev:

devlink dev eswitch set pci/<PCI> mode switchdev

Create Linux bonding using kernel modules:

modprobe bonding mode=<desired mode>

Bring all PFs and VFs down:

ip link set <PF/VF> down

Attach both PFs to the bond:

ip link set <PF> master bond0

To use VF-LAG with OVS-DPDK, add the bond master (PF) to the bridge:

ovs-vsctl add-port br-phy p0 -- set Interface p0 type=dpdk options:dpdk-devargs=0000:03:00.0 options:dpdk-
lsc-interrupt=true

Add representor $N of PF0 or PF1 to a bridge:

ovs-vsctl add-port br-phy rep$N -- set Interface rep$N type=dpdk options:dpdk-devargs=<PF0
PCI>,representor=pf0vf$N

Or:

ovs-vsctl add-port br-phy rep$N -- set Interface rep$N type=dpdk options:dpdk-devargs=<PF0
PCI>,representor=pf1vf$N

17.10.4.5 VirtIO Acceleration Through VF Relay: Software and
Hardware vDPA

Other bonding parameters can be added here. The supported bond modes are:
Active-backup, XOR and LACP.

Hardware vDPA is enabled by default. If your hardware does not support vDPA, the driver
will fall back to Software vDPA.

1340

•

•

1.

2.

In user space, there are two main approaches for communicating with a guest (VM), either through
SR-IOV or virtio.

PHY ports (SR-IOV) allow working with port representor, which is attached to the OVS and a
matching VF is given with pass-through to the guest. HW rules can process packets from up-link and
direct them to the VF without going through SW (OVS). Therefore, using SR-IOV achieves the best
performance.

However, SR-IOV architecture requires the guest to use a driver specific to the underlying HW.
Specific HW driver has two main drawbacks:

Breaks virtualization in some sense (guest is aware of the HW). It can also limit the type of
images supported.
Gives less natural support for live migration.

Using a virtio port solves both problems, however, it reduces performance and causes loss of some
functionalities, such as, for some HW offloads, working directly with virtio. The netdev type
dpdkvdpa solves this conflict as it is similar to the regular DPDK netdev yet introduces several
additional functionalities.

dpdkvdpa translates between the PHY port to the virtio port. It takes packets from the Rx queue
and sends them to the suitable Tx queue, and allows transfer of packets from the virtio guest (VM)
to a VF and vice-versa, benefitting from both SR-IOV and virtio.

To add a vDPA port:

ovs-vsctl add-port br0 vdpa0 -- set Interface vdpa0 type=dpdkvdpa \
options:vdpa-socket-path=<sock path> \
options:vdpa-accelerator-devargs=<vf pci id> \
options:dpdk-devargs=<pf pci id>,representor=[id] \
options: vdpa-max-queues =<num queues> \
options: vdpa-sw=<true/false>

17.10.4.5.1 vDPA Configuration in OVS-DPDK Mode

Prior to configuring vDPA in OVS-DPDK mode, perform the following:

Generate the VF:

echo 0 > /sys/class/net/enp175s0f0/device/sriov_numvfs
echo 4 > /sys/class/net/enp175s0f0/device/sriov_numvfs

 Unbind each VF:

To check which vDPA mode is activated on your driver, run: ovs-ofctl -O OpenFlow14

dump-ports br0-ovs and look for hw-mode flag.

This feature has not been accepted to the OVS-DPDK upstream yet, making its API subject
to change.

vdpa-max-queues is an optional field. When the user wants to configure 32 vDPA ports,
the maximum queues number is limited to 8.

1341

3.

4.

5.

1.

2.

3.

•

•

echo <pci> > /sys/bus/pci/drivers/mlx5_core/unbind

Switch to switchdev mode:

echo switchdev >> /sys/class/net/enp175s0f0/compat/devlink/mode

Bind each VF:

echo <pci> > /sys/bus/pci/drivers/mlx5_core/bind

 Initialize OVS:

ovs-vsctl --no-wait set Open_vSwitch . other_config:dpdk-init=true
ovs-vsctl --no-wait set Open_vSwitch . other_config:hw-offload=true

To configure vDPA in OVS-DPDK mode:

OVS configuration:

ovs-vsctl --no-wait set Open_vSwitch . other_config:dpdk-extra="-a
0000:01:00.0,representor=[0],dv_flow_en=1,dv_esw_en=1,dv_xmeta_en=1" /usr/share/openvswitch/scripts/ovs-ctl
restart

Create OVS-DPDK bridge:

ovs-vsctl add-br br0-ovs -- set bridge br0-ovs datapath_type=netdev
ovs-vsctl add-port br0-ovs pf -- set Interface pf type=dpdk options:dpdk-devargs=0000:01:00.0

Create vDPA port as part of the OVS-DPDK bridge:

ovs-vsctl add-port br0-ovs vdpa0 -- set Interface vdpa0 type=dpdkvdpa options:vdpa-socket-path=/var/run/
virtio-forwarder/sock0 options:vdpa-accelerator-devargs=0000:01:00.2 options:dpdk-devargs=0000:01:00.0,repr
esentor=[0] options: vdpa-max-queues=8

To configure vDPA in OVS-DPDK mode on BlueField DPUs, set the bridge with the software or
hardware vDPA port:

To create the OVS-DPDK bridge on the Arm side:

ovs-vsctl add-br br0-ovs -- set bridge br0-ovs datapath_type=netdev
ovs-vsctl add-port br0-ovs pf -- set Interface pf type=dpdk options:dpdk-devargs=0000:af:00.0
ovs-vsctl add-port br0-ovs rep-- set Interface rep type=dpdk options:dpdk-devargs=0000:af:00.0,representor=
[0]

To create the OVS-DPDK bridge on the host side:

ovs-vsctl add-br br1-ovs -- set bridge br1-ovs datapath_type=netdev protocols=OpenFlow14
ovs-vsctl add-port br0-ovs vdpa0 -- set Interface vdpa0 type=dpdkvdpa options:vdpa-socket-path=/var/run/
virtio-forwarder/sock0 options:vdpa-accelerator-devargs=0000:af:00.2

17.10.4.5.2 Software vDPA Configuration in OVS-Kernel Mode

Software vDPA can also be used in configurations where hardware offload is done through TC and not
DPDK.

To configure SW vDPA, add options:vdpa-sw=true to the command.

1342

1.

2.

3.

4.

5.

1.

2.

3.

4.

OVS configuration:

ovs-vsctl set Open_vSwitch . other_config:dpdk-extra="-a
0000:01:00.0,representor=[0],dv_flow_en=1,dv_esw_en=0,idv_xmeta_en=0,isolated_mode=1"
/usr/share/openvswitch/scripts/ovs-ctl restart

Create OVS-DPDK bridge:

ovs-vsctl add-br br0-ovs -- set bridge br0-ovs datapath_type=netdev

Create vDPA port as part of the OVS-DPDK bridge:

ovs-vsctl add-port br0-ovs vdpa0 -- set Interface vdpa0 type=dpdkvdpa options:vdpa-socket-path=/var/run/
virtio-forwarder/sock0 options:vdpa-accelerator-devargs=0000:01:00.2 options:dpdk-devargs=0000:01:00.0,repr
esentor=[0] options: vdpa-max-queues=8

Create Kernel bridge:

ovs-vsctl add-br br-kernel

Add representors to Kernel bridge:

ovs-vsctl add-port br-kernel enp1s0f0_0
ovs-vsctl add-port br-kernel enp1s0f0

17.10.4.6 Large MTU/Jumbo Frame Configuration
To configure MTU/jumbo frames:

Verify that the Kernel version on the VM is 4.14 or above:

cat /etc/redhat-release

Set the MTU on both physical interfaces in the host:

ifconfig ens4f0 mtu 9216

Send a large size packet and verify that it is sent and received correctly:

tcpdump -i ens4f0 -nev icmp &
ping 11.100.126.1 -s 9188 -M do -c 1

Enable host_mtu in XML and add the following values:

host_mtu=9216,csum=on,guest_csum=on,host_tso4=on,host_tso6=on

Example:

<qemu:commandline>
<qemu:arg value='-chardev'/>
<qemu:arg value='socket,id=charnet1,path=/tmp/sock0,server'/>
<qemu:arg value='-netdev'/>
<qemu:arg value='vhost-user,chardev=charnet1,queues=16,id=hostnet1'/>
<qemu:arg value='-device'/>
<qemu:arg value='virtio-net-
pci,mq=on,vectors=34,netdev=hostnet1,id=net1,mac=00:21:21:24:02:01,bus=pci.0,addr=0xC,page-per-
vq=on,rx_queue_size=1024,tx_queue_size=1024,host_mtu=9216,csum=on,guest_csum=on,host_tso4=on,host_tso6=on'/
>
</qemu:commandline>

1343

5.

6.

Add the mtu_request=9216 option to the OVS ports inside the container and restart the
OVS:

ovs-vsctl add-port br0-ovs pf -- set Interface pf type=dpdk options:dpdk-devargs=0000:c4:00.0 mtu_request=9
216

Or:

ovs-vsctl add-port br0-ovs vdpa0 -- set Interface vdpa0 type=dpdkvdpa options:vdpa-socket-path=/tmp/sock0
options:vdpa-accelerator-devargs=0000:c4:00.2 options:dpdk-devargs=0000:c4:00.0,representor=[0]
mtu_request=9216
/usr/share/openvswitch/scripts/ovs-ctl restart

Start the VM and configure the MTU on the VM:

ifconfig eth0 11.100.124.2/16 up
ifconfig eth0 mtu 9216
ping 11.100.126.1 -s 9188 -M do -c1

17.10.4.7 E2E Cache

OVS offload rules are based on a multi-table architecture. E2E cache enables merging the multi-
table flow matches and actions into one joint flow.

This improves CT performance by using a single-table when an exact match is detected.

To set the E2E cache size (default is 4k):

ovs-vsctl set open_vswitch . other_config:e2e-size=<size>
systemctl restart openvswitch

To enable E2E cache (disabled by default):

ovs-vsctl set open_vswitch . other_config:e2e-enable=true
systemctl restart openvswitch

To run E2E cache statistics:

ovs-appctl dpctl/dump-e2e-stats

To run E2E cache flows:

ovs-appctl dpctl/dump-e2e-flows

17.10.4.8 Geneve Encapsulation/Decapsulation
Geneve tunneling offload support includes matching on extension header.

To configure OVS-DPDK Geneve encap/decap:

This feature is supported at beta level.

1344

1.

2.

3.

4.

5.

6.

Create a br-phy bridge:

ovs-vsctl --may-exist add-br br-phy -- set Bridge br-phy datapath_type=netdev -- br-set-external-id br-phy
bridge-id br-phy -- set bridge br-phy fail-mode=standalone

Attach PF interface to br-phy bridge:

ovs-vsctl add-port br-phy pf -- set Interface pf type=dpdk options:dpdk-devargs=<PF PCI>

Configure IP to the bridge:

ifconfig br-phy <$local_ip_1> up

Create a br-int bridge:

ovs-vsctl --may-exist add-br br-int -- set Bridge br-int datapath_type=netdev -- br-set-external-id br-int
 bridge-id br-int -- set bridge br-int fail-mode=standalone

Attach representor to br-int:

ovs-vsctl add-port br-int rep$x -- set Interface rep$x type=dpdk options:dpdk-devargs=<PF
PCI>,representor=[$x]

Add a port for the Geneve tunnel:

ovs-vsctl add-port br-int geneve0 -- set interface geneve0 type=geneve options:key=<VNI>
options:remote_ip=<$remote_ip_1> options:local_ip=<$local_ip_1>

17.10.4.9 Parallel Offloads
OVS-DPDK supports parallel insertion and deletion of offloads (flow and CT). While multiple threads
are supported (only one is used by default).

To configure multiple threads:

ovs-vsctl set Open_vSwitch . other_config:n-offload-threads=3
systemctl restart openvswitch

17.10.4.9.1 sFlow

sFlow allows monitoring traffic sent between two VMs on the same host using an sFlow collector.

To sample all traffic over the OVS bridge, run the following:

ovs-vsctl -- --id=@sflow create sflow agent=\"$SFLOW_AGENT\" \
 target=\"$SFLOW_TARGET:$SFLOW_HEADER\" \
 header=$SFLOW_HEADER \
 sampling=$SFLOW_SAMPLING polling=10 \
 -- set bridge sflow=@sflow

Refer to the OVS user manual for more information.

https://docs.openvswitch.org/en/latest/faq/configuration/

1345

•

•

•

1.

Parameter Description

SFLOW_AGENT Indicates that the sFlow agent should send traffic from
SFLOW_AGENT 's IP address

SFLOW_TARGET Remote IP address of the sFlow collector

SFLOW_PORT Remote IP destination port of the sFlow collector

SFLOW_HEADER Size of packet header to sample (in bytes)

SFLOW_SAMPLING Sample rate

To clear the sFlow configuration, run:

ovs-vsctl clear bridge br-vxlan mirrors

17.10.4.10 CT CT NAT
To enable ct-ct-nat offloads in OVS-DPDK (disabled by default), run:

ovs-vsctl set open_vswitch . other_config:ct-action-on-nat-conns=true

If disabled, ct-ct-nat configurations are not fully offloaded, improving connection offloading rate for
other cases (ct and ct-nat).

If enabled, ct-ct-nat configurations are fully offloaded but ct and ct-nat offloading would be slower
to create.

17.10.4.11 OpenFlow Meters (OpenFlow13+)
OpenFlow meters in OVS are implemented according to RFC 2697 (Single Rate Three Color Marker—
srTCM).

The srTCM meters an IP packet stream and marks its packets either green, yellow, or red. The
color is decided on a Committed Information Rate (CIR) and two associated burst sizes,
Committed Burst Size (CBS), and Excess Burst Size (EBS).
A packet is marked green if it does not exceed the CBS, yellow if it exceeds the CBS but not
the EBS, and red otherwise.
The volume of green packets should never be smaller than the CIR.

To configure a meter in OVS:

Create a meter over a certain bridge, run:

ovs-ofctl -O openflow13 add-meter $bridge
meter=$id,$pktps/$kbps,band=type=drop,rate=$rate,[burst,burst_size=$burst_size]

Parameters:

Currently sFlow for OVS-DPDK is supported without CT.

1346

2.

3.

4.

Parameter Description

bridge Name of the bridge on which the meter should be applied.

id Unique meter ID (32 bits) to be used as an identifier for the meter.

pktps / kbps Indication if the meter should work according to packets or kilobits
per second.

rate Rate of pktps / kbps of allowed data transmission.

burst If set, enables burst support for meter bands through the
burst_size parameter.

burst_size If burst is specified for the meter entry, configures the maximum
burst allowed for the band in kilobits/packets, depending on
whether kbps or pktps has been specified. If unspecified, the
switch is free to select some reasonable value depending on its
configuration. Currently, if burst is not specified, the burst_size

parameter is set the same as rate .

Add the meter to a certain OpenFlow rule. For example:

ovs-ofctl -O openflow13 add-flow $bridge "table=0,actions=meter:$id,normal"

View the meter statistics:

ovs-ofctl -O openflow13 meter-stats $bridge meter=$id

For more information, refer to official OVS documentation.

17.10.5 OVS-DOCA Hardware Acceleration
OVS-DOCA is designed on top of NVIDIA's networking API to preserve the same OpenFlow, CLI, and
data interfaces (e.g., vdpa, VF passthrough), as well as datapath offloading APIs, also known as OVS-
DPDK and OVS-Kernel. While all OVS flavors make use of flow offloads for hardware acceleration,
due to its architecture and use of DOCA libraries, the OVS-DOCA mode provides the most efficient
performance and feature set among them, making the most out of NVIDA NICs and DPUs.

The following subsections provide the necessary steps to launch/deploy OVS DOCA.

http://www.openvswitch.org/support/dist-docs/ovs-ofctl.8.txt

1347

1.

2.

3.

4.

5.

6.

7.

8.

17.10.5.1 Configuring OVS-DOCA
To configure OVS DOCA HW offloads:

Unbind the VFs:

echo 0000:04:00.2 > /sys/bus/pci/drivers/mlx5_core/unbind
echo 0000:04:00.3 > /sys/bus/pci/drivers/mlx5_core/unbind

Change the e-switch mode from legacy to switchdev on the PF device (make sure all VFs
are unbound):

echo switchdev > /sys/class/net/enp4s0f0/compat/devlink/mode

To revert to SR-IOV legacy mode:

echo legacy > /sys/class/net/enp4s0f0/compat/devlink/mode

Bind the VFs:

echo 0000:04:00.2 > /sys/bus/pci/drivers/mlx5_core/bind
echo 0000:04:00.3 > /sys/bus/pci/drivers/mlx5_core/bind

Configure huge pages:

mkdir -p /hugepages
mount -t hugetlbfs hugetlbfs /hugepages
echo 4096 > /sys/devices/system/node/node0/hugepages/hugepages-2048kB/nr_hugepages

Run the Open vSwitch service:

systemctl start openvswitch

Enable DOCA mode and hardware offload (disabled by default):

ovs-vsctl --no-wait set Open_vSwitch . other_config:doca-init=true
ovs-vsctl set Open_vSwitch . other_config:hw-offload=true

Restart the Open vSwitch service.

systemctl restart openvswitch

Create OVS-DOCA bridge:

VMs with attached VFs must be powered off to be able to unbind the VFs.

This command also creates the VF representor netdevices in the host OS.

This step is required for HW offload changes to take effect.

1348

9.

10.

11.
a.

b.

ovs-vsctl --no-wait add-br br0-ovs -- set bridge br0-ovs datapath_type=netdev

Add PF to OVS:

ovs-vsctl add-port br0-ovs enp4s0f0 -- set Interface enp4s0f0 type=dpdk

Add representor to OVS:

ovs-vsctl add-port br0-ovs enp4s0f0_0 -- set Interface enp4s0f0_0 type=dpdk

Optional configuration:
To set port MTU, run:

ovs-vsctl set interface enp4s0f0 mtu_request=9000

To set VF/SF MAC, run:

ovs-vsctl add-port br0-ovs enp4s0f0 -- set Interface enp4s0f0 type=dpdk options:dpdk-vf-
mac=00:11:22:33:44:55

a.

b.

c.

d.

The legacy option to add DPDK ports without using a related netdev by providing
dpdk-devargs still exists:

Add a PF port:

ovs-vsctl add-port br0-ovs pf -- set Interface pf type=dpdk options:dpdk-devargs=0000:88:0
0.0

Add a VF representor port:

ovs-vsctl add-port br0-ovs representor -- set Interface representor type=dpdk
options:dpdk-devargs=0000:88:00.0,representor=[0]

Add a SF representor port:

ovs-vsctl add-port br0-ovs representor -- set Interface representor type=dpdk
options:dpdk-devargs=0000:88:00.0,representor=sf[0]

Add a BlueField host PF representor port:

ovs-vsctl add-port br0-ovs hpf -- set Interface hpf type=dpdk options:dpdk-devargs=0000:8
8:00.0,representor=[65535]

OVS restart is required for changes to take effect.

Unbinding and rebinding the VFs/SFs is required for the change to take effect.

1349

•
•
•

•

17.10.5.2 Notable Differences Between OVS-DPDK and OVS-DOCA
OVS-DOCA shares most of its structure with OVS-DPDK. To benefit from the DOCA offload design,
some of the behavior of userland datapath and ports are however modified.

17.10.5.2.1 Eswitch Dependency

Configured in switchdev mode, the physical port and all supported functions share a single general

domain to execute the offloaded flows, the eswitch .

All ports on the same eswitch are dependent on its physical function. If this main physical function
is deactivated (e.g., removed from OVS or its link set down), dependent ports are disabled as well.

17.10.5.2.2 Pre-allocated Offload Tables

To offer the highest insertion speed, DOCA offloads pre-allocate offload structures (entries and
containers).

When starting the vSwitch daemon, offloads are thus configured with sensible defaults. If different
numbers of offloads are required, configuration entries specific to OVS-DOCA are available and are
described in the next section.

17.10.5.2.3 Unsupported CT-CT-NAT

The special ct-ct-nat mode that can be configured in OVS-kernel and OVS-DPDK is not supported by
OVS-DOCA.

17.10.5.3 OVS-DOCA Specific vSwitch Configuration
The following configuration is particularly useful or specific to OVS-DOCA mode.

17.10.5.3.1 other_config

The following table provides other_config configurations which are global to the vSwitch (non-
exhaustive list, check manpage for more):

Configuration Description

other_config:doca-init Optional string, either true or false
Set this value to true to enable DOCA Flow HW offload
The default value is false. Changing this value requires
restarting the daemon.
This is only relevant for userspace datapath

The full list of OVS vSwitch configuration is documented in man ovs-vswitchd.conf.db .

1350

•
•
•

•

•
•

•

•
•
•
•

•

•
•

•

•
•
•

•
•

•

•
•

•

•
•

•

•

•

•

Configuration Description

other_config:hw-offload-ct-size Optional string, containing an integer, at least 0
Only for the DOCA offload provider on netdev datapath
Configure the usable amount of connection tracking (CT) offload
entries
The default value is 250000. Changing this value requires
restarting the daemon.
Setting a value of 0 disables CT offload
Changing this configuration affects the OVS memory usage as CT
tables are allocated on OVS start
Maximum number of supported connections is 2M

other_config:hw-offload-ct-ipv6-

enabled

Optional string, either true or false
Only for the DOCA offload provider on netdev datapath
Set this value to true to enable IPv6 CT offload
The default value is false. Changing this value requires
restarting the daemon.
Changing this configuration affects the OVS memory usage as CT
tables are allocated on OVS start

other_config:doca-congestion-

threshold

Optional string, containing an integer, in range 30 to 90
The occupancy rate of DOCA offload structures that triggers a
resize, as a percentage
Default to 80, but only relevant if other_config:doca-init is
true. Changing this value requires restarting the daemon.

other_config:ctl-pipe-size Optional string, containing an integer
The initial size of DOCA control pipes
Default to 0, which is DOCA's internal default value

other_config:ctl-pipe-infra-size Optional string, containing an integer
The initial size of infrastructure DOCA control pipes: root, post-
hash, post-ct, post-meter, split, miss.
Default to 0, which fallbacks to other_config:ctl-pipe-size

other_config:pmd-quiet-idle Optional string, either true or false
Allow the PMD threads to go into quiescent mode when idling. If
no packets are received or waiting to be processed and sent,
enter a continuous quiescent period. End this period as soon as
a packet is received.
This option is disabled by default

other_config:pmd-maxsleep Optional string, containing an integer, in range 0 to 10,000
Specifies the maximum sleep time in microseconds per iteration
for a PMD thread which has received zero or a small amount
of packets from the Rx queues it is polling.
The actual sleep time requested is based on the load of the Rx
queues that the PMD polls and may be less than the maximum
value
The default value is 0 microseconds, which means that the PMD
does not sleep regardless of the load from the Rx queues that it
polls
To avoid requesting very small sleeps (e.g., less than 10 µs) the
value is rounded up to the nearest 10 µs
The maximum value is 10000 microseconds.

Setting this parameter to more than 2M might result in
failures.

1351

•
•

•

•
•

•

•

•

1.

Configuration Description

other_config:dpdk-max-memzones Optional string, containing an integer
Specifies the maximum number of memzones that can be
created in DPDK
The default is empty, keeping DPDK’s default. Changing this
value requires restarting the daemon.

other_config:pmd-cpu-mask With PMD multi-threading support, OVS creates one PMD thread for
each NUMA node by default if there is at least one DPDK interface
added to OVS from that NUMA node. However, in cases where there
are multiple ports/rxqs producing traffic, performance can be
improved by creating multiple PMD threads running on separate
cores. These PMD threads can share the workload by each being
responsible for different ports/rxqs. Assignment of ports/rxqs to
PMD threads is done automatically.
A set bit in the mask means a PMD thread is created and pinned to
the corresponding CPU core. For example, to run PMD threads on
cores 1 and 2, run:

$ ovs-vsctl set Open_vSwitch . other_config:pmd-cpu-mask=0x6

17.10.5.3.2 netdev-dpdk

The following table provides netdev-dpdk configurations which only userland (DOCA or DPDK)
netdevs support (non-exhaustive list, check manpage for more):

Configuration Description

options:iface-name Specifies the interface name of the port
Providing this option accelerates processing the port
reconfiguration by querying the sysfs to check if the interface
exists before DPDK attempts to probe the port

17.10.5.4 Offloading VXLAN Encapsulation/Decapsulation Actions
vSwitch in userspace rather than kernel-based Open vSwitch requires an additional bridge. The
purpose of this bridge is to allow use of the kernel network stack for routing and ARP resolution.

The datapath must look up the routing table and ARP table to prepare the tunnel header and
transmit data to the output port.

VXLAN encapsulation/decapsulation offload configuration is done with:

PF on 0000:03:00.0 PCIe and MAC 98:03:9b:cc:21:e8

Local IP 56.56.67.1 – the br-phy interface is configured to this IP

Remote IP 56.56.68.1

To configure OVS DOCA VXLAN:

Create a br-phy bridge:

1352

2.

3.

4.

5.

6.

ovs-vsctl add-br br-phy -- set Bridge br-phy datapath_type=netdev -- br-set-external-id br-phy bridge-id
br-phy -- set bridge br-phy fail-mode=standalone other_config:hwaddr=98:03:9b:cc:21:e8

Attach PF interface to br-phy bridge:

ovs-vsctl add-port br-phy enp4s0f0 -- set Interface enp4s0f0 type=dpdk

Configure IP to the bridge:

ip addr add 56.56.67.1/24 dev br-phy

Create a br-ovs bridge:

ovs-vsctl add-br br-ovs -- set Bridge br-ovs datapath_type=netdev -- br-set-external-id br-ovs bridge-id
br-ovs -- set bridge br-ovs fail-mode=standalone

Attach representor to br-ovs :

ovs-vsctl add-port br-ovs enp4s0f0_0 -- set Interface enp4s0f0_0 type=dpdk

Add a port for the VXLAN tunnel:

ovs-vsctl add-port ovs-sriov vxlan0 -- set interface vxlan0 type=vxlan options:local_ip=56.56.67.1
options:remote_ip=56.56.68.1 options:key=45 options:dst_port=4789

17.10.5.4.1 VXLAN GBP Extension

The VXLAN group-based policy (GBP) model outlines an application-focused policy framework that
specifies connectivity requirements for applications, independent of the network's physical layout.

Setting GBP extension for a VXLAN port allows for matching on and setting a GBP ID per flow. To
enable GBP extension when the port vxlan0 is first added:

ovs-vsctl add-port br-int vxlan0 -- set interface vxlan0 type=vxlan options:key=30 options:remote_ip=10.0.30.1
options:exts=gbp

It is also possible to enable GBP extension for an existing VXLAN port:

ovs-vsctl set interface vxlan1 options:exts=gbp

This approach has a limitation that it does not take effect until after the OVS vswitchd service is
restarted. In cases where there are multiple VXLAN ports, they must all share the same GBP
extension configuration in their port options. A mixed configuration with some VXLAN ports having
the GBP extension enabled and others disabled is not supported.

When GBP extension is enabled, the following OpenFlow rules which match on a GBP ID 32 or set a
GBP ID 64 in the actions, can be offloaded:

ovs-ofctl add-flow br-int table=0,priority=100,in_port=vxlan0,tun_gbp_id=32 actions=output:pf0vf0
ovs-ofctl add-flow br-int table=0,priority=100,in_port=pf0vf0 actions=load:64->NXM_NX_TUN_GBP_ID[],output:vxlan0

1353

1.

2.

3.

4.

5.

6.

7.

17.10.5.5 Offloading Connection Tracking
Connection tracking enables stateful packet processing by keeping a record of currently open
connections.

OVS flows utilizing connection tracking can be accelerated using advanced NICs by offloading
established connections.

To view offload statistics, run:

ovs-appctl dpctl/offload-stats-show

17.10.5.6 SR-IOV VF LAG
To configure OVS-DOCA SR-IOV VF LAG:

Enable SR-IOV on the NICs:

// It is recommended to query the parameters first to determine if a change is needed, to save potentially
unnecessary reboot.
mst start
mlxconfig -d <mst device> -y set PF_NUM_OF_VF_VALID=0 SRIOV_EN=1 NUM_OF_VFS=8

Allocate the desired number of VFs per port:

echo $n > /sys/class/net/<net name>/device/sriov_numvfs

Unbind all VFs:

echo <VF PCI> >/sys/bus/pci/drivers/mlx5_core/unbind

Change both NICs' mode to SwitchDev:

devlink dev eswitch set pci/<PCI> mode switchdev

Create Linux bonding using kernel modules:

modprobe bonding mode=<desired mode>

Bring all PFs and VFs down:

ip link set <PF/VF> down

Attach both PFs to the bond:

If configuration did change, perform a BlueField system reboot for the mlxconfig
settings to take effect.

Other bonding parameters can be added here. The supported bond modes are Active-
Backup, XOR, and LACP.

1354

8.

9.

10.

1.

2.

ip link set <PF> master bond0

Bring PFs and bond link up:

ip link set <PF0> up
ip link set <PF1> up
ip link set bond0 up

Add the bond interface to the bridge as type=dpdk :

ovs-vsctl add-port br-phy bond0 -- set Interface bond0 type=dpdk options:dpdk-lsc-interrupt=true

Add representor of PF0 or PF1 to a bridge:

ovs-vsctl add-port br-phy enp4s0f0_0 -- set Interface enp4s0f0_0 type=dpdk

Or:

ovs-vsctl add-port br-phy enp4s0f1_0 -- set Interface enp4s0f1_0 type=dpdk

17.10.5.7 Multiport eSwitch Mode
Multiport eswitch mode allows adding rules on a VF representor with an action, forwarding the
packet to the physical port of the physical function. This can be used to implement failover or to
forward packets based on external information such as the cost of the route.

To configure multiport eswitch mode, the nvconig parameter LAG_RESOURCE_ALLOCATION=1
must be set in the BlueField Arm OS, according to the following instructions:

mst start
mlxconfig -d /dev/mst/mt*conf0 -y s LAG_RESOURCE_ALLOCATION=1

Perform a BlueField system reboot for the mlxconfig settings to take effect.

The legacy option to work with VF-LAG in OVS-DPDK is to add the bond master (PF)
interface to the bridge:

ovs-vsctl add-port br-phy p0 -- set Interface p0 type=dpdk options:dpdk-devargs=<PF0-
PCI>,dv_flow_en=2,dv_xmeta_en=4 options:dpdk-lsc-interrupt=true

The legacy option to add DPDK ports:

ovs-vsctl add-port br-phy rep$N -- set Interface rep$N type=dpdk options:dpdk-devargs=<PF0-
PCI>,representor=pf0vf$N,dv_flow_en=2,dv_xmeta_en=4

Or:

ovs-vsctl add-port br-phy rep$N -- set Interface rep$N type=dpdk options:dpdk-devargs=<PF0-
PCI>,representor=pf1vf$N,dv_flow_en=2,dv_xmeta_en=4

1355

3.

4.

After the driver loads, and before moving to switchdev mode, configure multiport eswitch for
each PF where p0 and p1 represent the netdevices for the PFs:

devlink dev param set pci/0000:03:00.0 name esw_multiport value 1 cmode runtime
devlink dev param set pci/0000:03:00.1 name esw_multiport value 1 cmode runtime

This mode can be activated by default in BlueField by adding the following line into /etc/

mellanox/mlnx-bf.conf :

ENABLE_ESWITCH_MULTIPORT="yes"

While in this mode, the second port is not an eswitch manager, and should be add to OVS using this
command:

ovs-vsctl add-port br-phy enp4s0f1 -- set interface enp4s0f1 type=dpdk

VFs for the second port can be added using this command:

ovs-vsctl add-port br-phy enp4s0f1_0 -- set interface enp4s0f1_0 type=dpdk

17.10.5.8 Offloading Geneve Encapsulation/Decapsulation
Geneve tunneling offload support includes matching on extension header.

The mode becomes operational after entering switchdev mode on both PFs.

The legacy option to add DPDK ports:

ovs-vsctl add-port br-phy p1 -- set interface p1 type=dpdk options:dpdk-devargs="0000:08:00.0,dv_xmeta_en
=4,dv_flow_en=2,representor=pf1

VFs for the second port can be added using this command:

ovs-vsctl add-port br-phy p1vf0 -- set interface p1 type=dpdk options:dpdk-devargs="0000:08:00.0,dv_xmeta
_en=4,dv_flow_en=2,representor=pf1vf0

•
•
•

•

OVS-DOCA Geneve option limitations:
Only 1 Geneve option is supported
Max option len is 7
To change the Geneve option currently being matched and encapsulated, users must
remove all ports or restart OVS and configure the new option
Matching on Geneve options can work with FLEX_PARSER profile 0 (the default

profile). Working with FLEX_PARSER profile 8 is also supported as well. To configure
it, run:

1356

1.

2.

3.

4.

5.

6.

1.

2.

3.

To configure OVS-DOCA Geneve encapsulation/decapsulation:

Create a br-phy bridge:

ovs-vsctl --may-exist add-br br-phy -- set Bridge br-phy datapath_type=netdev -- br-set-external-id br-phy
bridge-id br-phy -- set bridge br-phy fail-mode=standalone

Attach a PF interface to br-phy bridge:

ovs-vsctl add-port br-phy enp4s0f0 -- set Interface enp4s0f0 type=dpdk

Configure an IP to the bridge:

ifconfig br-phy <$local_ip_1> up

Create a br-int bridge:

ovs-vsctl add-port br-int enp4s0f0_0 -- set Interface enp4s0f0_0 type=dpdk

Attach a representor to br-int :

ovs-vsctl add-port br-int rep$x -- set Interface rep$x type=dpdk options:dpdk-devargs=<PF
PCI>,representor=[$x],dv_flow_en=2,dv_xmeta_en=4

Add a port for the Geneve tunnel:

ovs-vsctl add-port br-int geneve0 -- set interface geneve0 type=geneve options:key=<VNI>
options:remote_ip=<$remote_ip_1> options:local_ip=<$local_ip_1>

17.10.5.9 GRE Tunnel Offloads
To configure OVS-DOCA GRE encapsulation/decapsulation:

Create a br-phy bridge:

ovs-vsctl --may-exist add-br br-phy -- set Bridge br-phy datapath_type=netdev -- br-set-external-id br-phy
bridge-id br-phy -- set bridge br-phy fail-mode=standalone

Attach a PF interface to br-phy bridge:

ovs-vsctl add-port br-phy enp4s0f0 -- set Interface enp4s0f0 type=dpdk

Configure an IP to the bridge:

ifconfig br-phy <$local_ip_1> up

mst start
mlxconfig -d <mst device> s FLEX_PARSER_PROFILE_ENABLE=8

Perform a BlueField system reboot for the mlxconfig settings to take
effect.

1357

4.

5.

1.

2.

3.

4.

1.

2.

Create a br-int bridge:

ovs-vsctl --may-exist add-br br-int -- set Bridge br-int datapath_type=netdev -- br-set-external-id br-int
bridge-id br-int -- set bridge br-int fail-mode=standalone

Attach a representor to br-int :

ovs-vsctl add-port br-int enp4s0f0_0 -- set Interface enp4s0f0_0 type=dpdk

Add a port for the Geneve tunnel:

ovs-vsctl add-port br-int gre0 -- set interface gre0 type=gre options:key=<VNI> options:remote_ip=<$remote_ip_1>
options:local_ip=<$local_ip_1>

17.10.5.10 Slow Path Rate Limiting/SW-Meter
Slow path rate limiting allows controlling the rate of traffic that bypasses hardware offload rules
and is subsequently processed by software.

To configure slow path rate limiting:

Create a br-phy bridge:

ovs-vsctl --may-exist add-br br-phy -- set Bridge br-phy datapath_type=netdev -- br-set-external-id br-phy
bridge-id br-phy -- set bridge br-phy fail-mode=standalone

Attach a PF interface to br-phy bridge:

ovs-vsctl add-port br-phy pf0 -- set Interface pf0 type=dpdk

Rate limit pf0vf0 to 10Kpps with 6K burst size:

ovs-vsctl set interface pf0 options:sw-meter=pps:10k:6k

Restart OVS:

systemctl restart openvswitch-switch.service

A dry-run option is also supported to allow testing different software meter configurations in a
production environment. This allows gathering statistics without impacting the actual traffic flow.
These statistics can then be analyzed to determine appropriate rate limiting thresholds. When the
dry-run option is enabled, traffic is not dropped or rate-limited, allowing normal operations to
continue without disruption. However, the system simulates the rate limiting process and increment
counters as though packets are being dropped.

To enable slow path rate limiting dry-run:

Create a br-phy bridge:

ovs-vsctl --may-exist add-br br-phy -- set Bridge br-phy datapath_type=netdev -- br-set-external-id br-phy
bridge-id br-phy -- set bridge br-phy fail-mode=standalone

Attach a PF interface to br-phy bridge:

1358

3.

4.

5.

1.

2.

3.

•

ovs-vsctl add-port br-phy pf0 -- set Interface pf0 type=dpdk

Rate limit pf0vf0 to 10Kpps with 6K burst size:

ovs-vsctl set interface pf0 options:sw-meter=pps:10k:6k

Set the sw-meter-dry-run option:

ovs-vsctl set interface pf0vf0 options:sw-meter-dry-run=true

Restart OVS:

systemctl restart openvswitch-switch.service

17.10.5.11 Hairpin
Hairpin allows forwarding packets from wire to wire.

To configure hairpin :

Create a br-phy bridge:

ovs-vsctl --may-exist add-br br-phy -- set Bridge br-phy datapath_type=netdev -- br-set-external-id br-phy
bridge-id br-phy -- set bridge br-phy fail-mode=standalone

Attach a PF interface to br-phy bridge:

ovs-vsctl add-port br-phy pf0 -- set Interface pf0 type=dpdk

Add hairpin OpenFlow rule:

ovs-ofctl add-flow br-phy"in_port=pf0,ip,actions=in_port"

17.10.5.12 OpenFlow Meters
OVS-DOCA supports OpenFlow meter action as covered in this document in section "OpenFlow
Meters". In addition, OVS-DOCA supports chaining multiple meter actions together in a single
datapth rule.

The following is an example configuration of such OpenFlow rules:

ovs-ofctl add-flow br-phy -O OpenFlow13 "table=0,priority=1,in_port=pf0vf0_r,ip actions=meter=1,resubmit(,1)"
ovs-ofctl add-flow br-phy -O OpenFlow13 "table=1,priority=1,in_port=pf0vf0_r,ip actions=meter=2,normal"

Meter actions are applied sequentially, first using meter ID 1 and then using meter ID 2.

Use case examples for such a configuration:

Rate limiting the same logical flow with different meter types—bytes per second and packets
per second

1359

•

•

•

•

•
•

Metering a group of flows. As meter IDs can be used by multiple flows, it is possible to re-use
meter ID 2 from this example with other logical flows; thus, making sure that their
cumulative bandwidth is limited by the meter.

17.10.5.13 DP-HASH Offloads
OVS supports group configuration. The "select" type executes one bucket in the group, balancing
across the buckets according to their weights. To select a bucket, for each live bucket, OVS hashes
flow data with the bucket ID and multiplies that by the bucket weight to obtain a "score". The
bucket with the highest score is selected.

For example:

ovs-ofctl add-group br-int 'group_id=1,type=select,bucket=<port1>'

ovs-ofctl add-flow br-int in_port=<port0>,actions=group=1

Limitations:

Offloads are supported on IP traffic only (IPv4 or IPv6)

17.10.5.14 sFlow
The sFlow standard outlines a method for capturing traffic data in switched or routed networks. It
employs sampling technology to gather statistics from the device, making it suitable for high-speed
networks.

With a predetermined sampling rate, one out of every N packets is captured. While this sampling
method does not yield completely accurate results, it does offer acceptable accuracy.

To activate sampling for 0.2% of all traffic traversing an OVS bridge named br-int , run:

ovs-vsctl -- --id=@sflow create sflow agent=lo target=127.0.0.1:6343 header=96 sampling=512 -- set bridge br-int
sflow=@sflow

With this sFlow configuration on the bridge, captured packets are mirrored to an sFlow collector
application that listens on the default sFlow port, 6343, on localhost.

It is possible to set the sampling rate to 1 while configuring sFlow on a bridge, which effectively
mirrors all traffic to the sFlow collector.

17.10.5.15 OVS-DOCA Known Limitations
Only one insertion thread is supported (n-offload-threads=1)
Only 250K connection are offloadable by default (can be configured)

For more details, refer to the ovs-ofctl man.

sFlow collector applications fall outside the scope of this guide.

https://www.man7.org/linux/man-pages/man8/ovs-ofctl.8.html

1360

•
•

•

Only 8 CT zones are supported by CT offload
When using two PFs with 127 VFs each and adding their representors to OVS bridge, the user
must configure dpdk-memzones :

ovs-vsctl set o . other_config:dpdk-max-memzones=6500
restart ovs

In an OVS topology that includes both physical and internal bridges, sFlow offloads are only
supported on the internal bridge when employing a VXLAN tunnel. Utilizing sFlow on the
physical bridge leads to only partial offload of flows in this scenario.

17.10.5.16 OVS-DOCA Debugging

Additional debugging information can be enabled in the vSwitch log file using the dbg log level:

 (
 topics='netdev|ofproto|ofp|odp|doca'
 IFS=$'\n'; for topic in $(ovs-appctl vlog/list | grep -E "$topics" | cut -d' ' -f1)
 do
 printf "$topic:file:dbg "
 done
) | xargs ovs-appctl vlog/set

The listed topics are relevant to DOCA offload operations.

Coverage counters specific to the DOCA offload provider have been added. The following command
should be used to check them:

ovs-appctl coverage/show # Print the current non-zero coverage counters

The following table provides the meaning behind these DOCA-specific counters:

Counter Description

doca_async_queue_full The asynchronous offload insertion queue was full while the
daemon attempted to insert a new offload.
The queue will have been flushed and insertion attempted
again.
This is not a fatal error but is the sign of a slowed down
hardware.

doca_async_queue_blocked The asynchronous offload insertion queue has remained full even
after several attempts to flush its currently enqueued requests.
While not a fatal error, it should never happen during normal
offload operations and should be considered a bug.

doca_async_add_failed An asynchronous insertion failed specifically due to its
asynchronous nature. This is not expected to happen and should
be considered a bug.

doca_pipe_resize The number of time a DOCA pipe has been resized. This is
normal and expected as DOCA pipes receives more entries.

The maximum number of supported connections is 2M.

1361

•

•

•

•

Counter Description

doca_pipe_resize_over_10_ms A DOCA pipe resize took longer than 10ms to complete. It can
happen infrequently.
If a sudden drop in insertion rate is measured, this counter could
help identify the root cause.

17.10.5.17 OVS-DOCA Build
To build OVS-DOCA from provided sources and pre-installed DOCA with the same version packages,
run:

$./boot.sh
$./configure --prefix=/usr --localstatedir=/var --sysconfdir=/etc --with-dpdk=static --with-doca=static
$ make -j 10
$ make install

A helper build script is bundled with OVS-DOCA sources that can be used as follows:

$./build.sh --install-ovs

17.10.5.18 Scaling Megaflows
Megaflows aggregate multiple microflows into a single flow entry, reduce the load on the flow table,
and improve packet processing efficiency. Scaling megaflows in OVS is crucial for optimizing network
performance and ensuring efficient handling of high traffic volumes. By default, OVS-DOCA can
handle up to 200k megaflows.

To effectively manage and scale megaflows, several key configurations in the other_config sectio
n of OVS can be adjusted:

The flow-limit parameter sets the maximum number of flows that can be stored in the
flow table, helping to control memory usage and prevent overflow.
The max-revalidator parameter defines the longest duration (in milliseconds) that re-
validator threads will wait before initiating flow revalidation. It is crucial to understand that
this represents the upper limit, and the actual timeout employed by OVS is the lesser of the
max-idle and max-revalidator values. Modifying this parameter is generally not
recommended without a thorough understanding of its effects. For systems with less powerful
CPUs, setting a higher max-revalidator value is suggested to compensate for reduced
computational capacity and ensure revalidation completes.

Fine-tuning these settings can improve the scalability and performance of an OVS deployment,
allowing it to manage a greater number of megaflows efficiently.

To set flow-limit (default is 200k):

$ ovs-vsctl set o . other_config:flow-limit=<desired_value>

 To set max-revalidator (default is 250ms).

1362

1.

2.

3.

1.

$ ovs-vsctl set o . other_config:max-revalidator=<desired_value>

17.10.6 OVS Metrics
OVS exposes Prometheus metrics through its control socket (experimental feature). These metrics
can be accessed using the command:

ovs-appctl metrics/show

A terminal dashboard is also installed with OVS, ovs-metrics . This script is dependent on the OVS

Python API (package python3-openvswitch). Its default mode currently watches over a set of
offload-related metrics.

17.10.7 OVS Inside BlueField

17.10.7.1 Verifying Host Connection on Linux
When the DPU is connected to another DPU on another machine, manually assign IP addresses with
the same subnet to both ends of the connection.

Assuming the link is connected to p3p1 on the other host, run:

$ ifconfig p3p1 192.168.200.1/24 up

On the host which the DPU is connected to, run:

$ ifconfig p4p2 192.168.200.2/24 up

Have one ping the other. This is an example of the DPU pinging the host:

$ ping 192.168.200.1

17.10.7.2 Verifying Connection from Host to BlueField

There are two SFs configured on the BlueField device, enp3s0f0s0 and enp3s0f1s0 , and their
representors are part of the built-in bridge. These interfaces will get IP addresses from the DHCP
server if it is present. Otherwise it is possible to configure IP address from the host. It is possible to
access BlueField via the SF netdev interfaces.

For example:

Verify the default OVS configuration. Run:

ovs-vsctl show
5668f9a6-6b93-49cf-a72a-14fd64b4c82b
 Bridge ovsbr1
 Port pf0hpf
 Interface pf0hpf
 Port ovsbr1
 Interface ovsbr1
 type: internal
 Port p0
 Interface p0

1363

2.

3.

 Port en3f0pf0sf0
 Interface en3f0pf0sf0
 Bridge ovsbr2
 Port en3f1pf1sf0
 Interface en3f1pf1sf0
 Port ovsbr2
 Interface ovsbr2
 type: internal
 Port pf1hpf
 Interface pf1hpf
 Port p1
 Interface p1
 ovs_version: "2.14.1"

Verify whether the SF netdev received an IP address from the DHCP server. If not, assign a
static IP. Run:

ifconfig enp3s0f0s0
enp3s0f0s0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
 inet 192.168.200.125 netmask 255.255.255.0 broadcast 192.168.200.255
 inet6 fe80::8e:bcff:fe36:19bc prefixlen 64 scopeid 0x20<link>
 ether 02:8e:bc:36:19:bc txqueuelen 1000 (Ethernet)
 RX packets 3730 bytes 1217558 (1.1 MiB)
 RX errors 0 dropped 0 overruns 0 frame 0
 TX packets 22 bytes 2220 (2.1 KiB)
 TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

Verify the connection of the configured IP address. Run:

ping 192.168.200.25 -c 5
PING 192.168.200.25 (192.168.200.25) 56(84) bytes of data.
64 bytes from 192.168.200.25: icmp_seq=1 ttl=64 time=0.228 ms
64 bytes from 192.168.200.25: icmp_seq=2 ttl=64 time=0.175 ms
64 bytes from 192.168.200.25: icmp_seq=3 ttl=64 time=0.232 ms
64 bytes from 192.168.200.25: icmp_seq=4 ttl=64 time=0.174 ms
64 bytes from 192.168.200.25: icmp_seq=5 ttl=64 time=0.168 ms

--- 192.168.200.25 ping statistics ---
5 packets transmitted, 5 received, 0% packet loss, time 91ms
rtt min/avg/max/mdev = 0.168/0.195/0.232/0.031 ms

17.10.7.3 Verifying Host Connection on Windows
Set IP address on the Windows side for the RShim or Physical network adapter, please run the
following command in Command Prompt:

PS C:\Users\Administrator> New-NetIPAddress -InterfaceAlias "Ethernet 16" -IPAddress "192.168.100.1" -PrefixLength
22

To get the interface name, please run the following command in Command Prompt:

PS C:\Users\Administrator> Get-NetAdapter

Output should give us the interface name that matches the description (e.g. NVIDIA BlueField
Management Network Adapter).

Ethernet 2 NVIDIA ConnectX-4 Lx Ethernet Adapter 6 Not Present 24-8A-07-0D-E8-1D
Ethernet 6 NVIDIA ConnectX-4 Lx Ethernet Ad...#2 23 Not Present 24-8A-07-0D-E8-1C
Ethernet 16 NVIDIA BlueField Management Netw...#2 15 Up CA-FE-01-CA-FE-02

Once IP address is set, Have one ping the other.

C:\Windows\system32>ping 192.168.100.2

Pinging 192.168.100.2 with 32 bytes of data:
Reply from 192.168.100.2: bytes=32 time=148ms TTL=64
Reply from 192.168.100.2: bytes=32 time=152ms TTL=64
Reply from 192.168.100.2: bytes=32 time=158ms TTL=64
Reply from 192.168.100.2: bytes=32 time=158ms TTL=64

1364

•
•
•
•

•
•
•

17.11 NVIDIA DOCA Telemetry Service Guide
This guide provides instructions on how to use the DOCA Telemetry Service (DTS) container on top of
NVIDIA® BlueField® DPU.

17.11.1 Introduction
DOCA Telemetry Service (DTS) collects data from built-in providers and from external telemetry
applications. The following providers are available:

Data providers:
sysfs
ethtool
tc (traffic control)

Aggregation providers:
fluent_aggr
prometheus_aggr

DTS stores collected data into binary files under the /opt/mellanox/doca/services/telemetry/

data directory. Data write is disabled by default due to BlueField storage restrictions.

DTS can export the data via Prometheus Endpoint (pull) or Fluent Bit (push).

DTS allows exporting NetFlow packets when data is collected from the DOCA Telemetry Exporter
NetFlow API client application. NetFlow exporter is enabled from dts_config.ini by setting
NetFlow collector IP/address and port.

17.11.2 Service Deployment

17.11.2.1 Available Images

17.11.2.1.1 Built-in DOCA Service Image

DOCA Telemetry Service is enabled by default on the DPU and is shipped as part of the BlueField
image. That is, every BlueField image contains a fixed service version so as to provide out-of-the-
box support for programs based on the DOCA Telemetry Exporter library.

Sysfs provider is enabled by default.

1365

•
•

•

•
•

•

•

1.

17.11.2.1.2 DOCA Service on NGC

In addition to the built-in image shipped with the BlueField boot image, DTS is also available on
NGC, NVIDIA's container catalog. This is useful in case a new version of the service has been
released and the user wants to upgrade from the built-in image. For service-specific configuration
steps and deployment instructions, refer to the service's container page.

17.11.2.2 DPU Deployment
As mentioned above, DTS starts automatically on BlueField boot. This is done according to
the .yaml file located at /etc/kubelet.d/doca_telemetry_standalone.yaml . Removing the

.yaml file from this path stops the automatic DTS boot.

DTS files can be found under the directory /opt/mellanox/doca/services/telemetry/ .

Container folder mounts:
config

data

ipc_sockets
Backup files:

doca_telemetry_service_${version}_arm64.tar.gz – DTS image

doca_telemetry_standalone.yaml – copy of the default boot .yaml file

17.11.2.3 Host Deployment
DTS supports x86_64 hosts. The providers and exporters all run from a single docker container.

Initialize and configure host DTS with the desired DTS version:

For more information about the deployment of DOCA containers on top of the BlueField
DPU, refer to NVIDIA DOCA Container Deployment Guide.

https://catalog.ngc.nvidia.com/orgs/nvidia/teams/doca/containers/doca_telemetry
https://catalog.ngc.nvidia.com/orgs/nvidia/teams/doca/containers/doca_telemetry

1366

2.

export DTS_IMAGE=nvcr.io/nvidia/doca/doca_telemetry:<desired-DTS-version>
docker run -v "/opt/mellanox/doca/services/telemetry/config:/config" --rm --name doca-telemetry-init -it
$DTS_IMAGE /bin/bash -c "DTS_CONFIG_DIR=host /usr/bin/telemetry-init.sh"

Run with:

docker run -d --net=host --uts=host --ipc=host \
 --privileged \
 --ulimit stack=67108864 --ulimit memlock=-1 \
 --device=/dev/mst/ \
 --device=/dev/infiniband/ \
 --gpus all \
 -v "/opt/mellanox/doca/services/telemetry/config:/config" \
 -v "/opt/mellanox/doca/services/telemetry/ipc_sockets:/tmp/ipc_sockets" \
 -v "/opt/mellanox/doca/services/telemetry/data:/data" \
 -v "/usr/lib/mft:/usr/lib/mft" \
 -v "/sys/kernel/debug:/sys/kernel/debug" \
 --rm --name doca-telemetry -it $DTS_IMAGE /usr/bin/telemetry-run.sh

17.11.2.4 Deployment with Grafana Monitoring
Refer to section "Deploying with Grafana Monitoring".

17.11.3 Configuration
The configuration of DTS is placed under /opt/mellanox/doca/services/telemetry/config by

DTS during initialization. The user can interact with the dts_config.ini file and

fluent_bit_configs folder. dts_config.ini contains the main configuration for the service and
must be used to enable/disable providers, exporters, data writing. More details are provided in the
corresponding sections. For every update in this file, DST must be restarted. Interaction with
fluent_bit_configs folder is described in section Fluent Bit.

Per NGC policy, the "latest" tag does not exist. This means that when deploying DTS,
the user must pick the desired tag from NGC and ensure that the DTS_IMAGE

variable points to the full image. Example from version 1.16.5-doca2.6.0-host :

export DTS_IMAGE=nvcr.io/nvidia/doca/doca_telemetry:1.16.5-doca2.6.0-host

•

•

•

•
•

•

•

•

The following mounts are required by specific services only:
hcaperf provider:

--device=/dev/mst/

-v "/usr/lib/mft:/usr/lib/mft"

-v "/sys/kernel/debug:/sys/kernel/debug"
UCX/RDMA export modes:

--device=/dev/infiniband/

GPU providers (nvidia-smi and dcgm):

--gpu all

1367

•

•

17.11.3.1 Init Scripts

The InitContainers section of the .yaml file has 2 scripts for config initialization:

/usr/bin/telemetry-init.sh – generates the default configuration files if, and only if, the

/opt/mellanox/doca/services/telemetry/config folder is empty.

/usr/bin/enable-fluent-forward.sh – configures the destination host and port for Fluent
Bit forwarding. The script requires that both the host and port are present, and only in this
case it would start. The script overwrites the /opt/mellanox/doca/services/telemetry/

config/fluent_bit_configs folder and configures the .exp file.

17.11.3.2 Enabling Fluent Bit Forwarding
To enable Fluent Bit forward, add the destination host and port to the command line found in the
initContainers section of the .yaml file:

command: ["/bin/bash", "-c", "/usr/bin/telemetry-init.sh && /usr/bin/enable-fluent-forward.sh -i=127.0.0.1
-p=24224"]

17.11.3.3 Generating Configuration

The configuration folder /opt/mellanox/doca/services/telemetry/config starts empty by
default. Once the service starts, the initial scripts run as a part of the initial container and create
configuration as described in section Enabling Fluent Bit Forwarding.

17.11.3.4 Resetting Configuration
Resetting the configuration can be done by deleting the content found in the configuration folder
and restarting the service to generate the default configuration.

17.11.3.5 Enabling Providers

Providers are enabled from the dts_config.ini configuration file. Uncomment the enable-

provider=$provider-name line to allow data collection for this provider. For example,

uncommenting the following line enables the ethtool provider:

#enable-provider=ethtool

The host and port shown above are just an example. See section Fluent Bit to learn about
manual configuration.

More information about telemetry providers can be found under the Providers section.

1368

1.

2.

3.

17.11.3.5.1 Remote Collection

Certain providers or components are unable to execute properly within the container due to various
container limitations. Therefore, they would have to perform remote collection or execution.

The following steps enable remote collection:

Activate DOCA privileged executer (DPE), as DPE is how remote collection is achieved:

systemctl start dpe

Add grpc before provider-name (i.e., enable-provider=grpc.$provider-name). For

example, the following line configures remote collection of the hcaperf provider:

enable-provider=grpc.hcaperf

If there are any configuration lines that are provider-specific, then add the grpc prefix as
well. Building upon the previous example:

grpc.hcaperf.mlx5_0=sample
grpc.hcaperf.mlx5_1=sample

17.11.3.6 Enabling Data Write

Uncomment the following line in dts_config.ini :

#output=/data

17.11.3.7 Enabling IPC with Non-container Program
For information on enabling IPC between DTS and an application that runs outside of a container,
refer to section "Using IPC with Non-container Application" in the DOCA Telemetry Exporter.

17.11.4 Description

17.11.4.1 Providers

DTS supports on-board data collection from sysf , ethtool , and tc providers. Fluent and
Prometheus aggregator providers can collect the data from other applications.

Other providers are available based on different conditions (e.g., specific container mounts or host
only such as amber , ppcc_eth , etc). Such providers are described with their dependencies in their
corresponding sections.

Changes in dts_config.ini force the main DTS process to restart in 60 seconds to apply
the new settings.

1369

•

•

•

17.11.4.1.1 Sysfs Counters List

The sysfs provider has several components: ib_port , hw_port , mr_cache , eth , hwmon and bf

_ptm . By default, all the components (except bf_ptm) are enabled when the provider is enabled:

#disable-provider=sysfs

The components can be disabled separately. For instance, to disable eth :

enable-provider=sysfs
disable-provider=sysfs.eth

ib_port counters:

{hca_name}:{port_num}:ib_port_state
{hca_name}:{port_num}:VL15_dropped
{hca_name}:{port_num}:excessive_buffer_overrun_errors
{hca_name}:{port_num}:link_downed
{hca_name}:{port_num}:link_error_recovery
{hca_name}:{port_num}:local_link_integrity_errors
{hca_name}:{port_num}:multicast_rcv_packets
{hca_name}:{port_num}:multicast_xmit_packets
{hca_name}:{port_num}:port_rcv_constraint_errors
{hca_name}:{port_num}:port_rcv_data
{hca_name}:{port_num}:port_rcv_errors
{hca_name}:{port_num}:port_rcv_packets
{hca_name}:{port_num}:port_rcv_remote_physical_errors
{hca_name}:{port_num}:port_rcv_switch_relay_errors
{hca_name}:{port_num}:port_xmit_constraint_errors
{hca_name}:{port_num}:port_xmit_data
{hca_name}:{port_num}:port_xmit_discards
{hca_name}:{port_num}:port_xmit_packets
{hca_name}:{port_num}:port_xmit_wait
{hca_name}:{port_num}:symbol_error
{hca_name}:{port_num}:unicast_rcv_packets
{hca_name}:{port_num}:unicast_xmit_packets

ib_hw counters:

{hca_name}:{port_num}:hw_state
{hca_name}:{port_num}:hw_duplicate_request
{hca_name}:{port_num}:hw_implied_nak_seq_err
{hca_name}:{port_num}:hw_lifespan
{hca_name}:{port_num}:hw_local_ack_timeout_err
{hca_name}:{port_num}:hw_out_of_buffer
{hca_name}:{port_num}:hw_out_of_sequence
{hca_name}:{port_num}:hw_packet_seq_err
{hca_name}:{port_num}:hw_req_cqe_error
{hca_name}:{port_num}:hw_req_cqe_flush_error
{hca_name}:{port_num}:hw_req_remote_access_errors
{hca_name}:{port_num}:hw_req_remote_invalid_request
{hca_name}:{port_num}:hw_resp_cqe_error
{hca_name}:{port_num}:hw_resp_cqe_flush_error
{hca_name}:{port_num}:hw_resp_local_length_error
{hca_name}:{port_num}:hw_resp_remote_access_errors
{hca_name}:{port_num}:hw_rnr_nak_retry_err
{hca_name}:{port_num}:hw_rx_atomic_requests
{hca_name}:{port_num}:hw_rx_dct_connect
{hca_name}:{port_num}:hw_rx_icrc_encapsulated
{hca_name}:{port_num}:hw_rx_read_requests
{hca_name}:{port_num}:hw_rx_write_requests

ib_mr_cache counters:

{hca_name}:mr_cache:size_{n}:cur
{hca_name}:mr_cache:size_{n}:limit
{hca_name}:mr_cache:size_{n}:miss
{hca_name}:mr_cache:size_{n}:size

ib_port and ib_hvw are state counters which are collected per port. These counters are
only collected for ports whose state is active.

1370

•

•

•

•

eth counters:

{hca_name}:{device_name}:eth_collisions
{hca_name}:{device_name}:eth_multicast
{hca_name}:{device_name}:eth_rx_bytes
{hca_name}:{device_name}:eth_rx_compressed
{hca_name}:{device_name}:eth_rx_crc_errors
{hca_name}:{device_name}:eth_rx_dropped
{hca_name}:{device_name}:eth_rx_errors
{hca_name}:{device_name}:eth_rx_fifo_errors
{hca_name}:{device_name}:eth_rx_frame_errors
{hca_name}:{device_name}:eth_rx_length_errors
{hca_name}:{device_name}:eth_rx_missed_errors
{hca_name}:{device_name}:eth_rx_nohandler
{hca_name}:{device_name}:eth_rx_over_errors
{hca_name}:{device_name}:eth_rx_packets
{hca_name}:{device_name}:eth_tx_aborted_errors
{hca_name}:{device_name}:eth_tx_bytes
{hca_name}:{device_name}:eth_tx_carrier_errors
{hca_name}:{device_name}:eth_tx_compressed
{hca_name}:{device_name}:eth_tx_dropped
{hca_name}:{device_name}:eth_tx_errors
{hca_name}:{device_name}:eth_tx_fifo_errors
{hca_name}:{device_name}:eth_tx_heartbeat_errors
{hca_name}:{device_name}:eth_tx_packets
{hca_name}:{device_name}:eth_tx_window_errors

BlueField-2 hwmon counters:

{hwmon_name}:{l3cache}:CYCLES
{hwmon_name}:{l3cache}:HITS_BANK0
{hwmon_name}:{l3cache}:HITS_BANK1
{hwmon_name}:{l3cache}:MISSES_BANK0
{hwmon_name}:{l3cache}:MISSES_BANK1
{hwmon_name}:{pcie}:IN_C_BYTE_CNT
{hwmon_name}:{pcie}:IN_C_PKT_CNT
{hwmon_name}:{pcie}:IN_NP_BYTE_CNT
{hwmon_name}:{pcie}:IN_NP_PKT_CNT
{hwmon_name}:{pcie}:IN_P_BYTE_CNT
{hwmon_name}:{pcie}:IN_P_PKT_CNT
{hwmon_name}:{pcie}:OUT_C_BYTE_CNT
{hwmon_name}:{pcie}:OUT_C_PKT_CNT
{hwmon_name}:{pcie}:OUT_NP_BYTE_CNT
{hwmon_name}:{pcie}:OUT_NP_PKT_CNT
{hwmon_name}:{pcie}:OUT_P_PKT_CNT
{hwmon_name}:{tile}:MEMORY_READS
{hwmon_name}:{tile}:MEMORY_WRITES
{hwmon_name}:{tile}:MSS_NO_CREDIT
{hwmon_name}:{tile}:VICTIM_WRITE
{hwmon_name}:{tilenet}:CDN_DIAG_C_OUT_OF_CRED
{hwmon_name}:{tilenet}:CDN_REQ
{hwmon_name}:{tilenet}:DDN_REQ
{hwmon_name}:{tilenet}:NDN_REQ
{hwmon_name}:{trio}:TDMA_DATA_BEAT
{hwmon_name}:{trio}:TDMA_PBUF_MAC_AF
{hwmon_name}:{trio}:TDMA_RT_AF
{hwmon_name}:{trio}:TPIO_DATA_BEAT
{hwmon_name}:{triogen}:TX_DAT_AF
{hwmon_name}:{triogen}:TX_DAT_AF

BlueField-3 hwmon counters:

{hwmon_name}:{llt}:GDC_BANK0_RD_REQ
{hwmon_name}:{llt}:GDC_BANK1_RD_REQ
{hwmon_name}:{llt}:GDC_BANK0_WR_REQ
{hwmon_name}:{llt}:GDC_BANK1_WR_REQ
{hwmon_name}:{llt_miss}:GDC_MISS_MACHINE_RD_REQ
{hwmon_name}:{llt_miss}:GDC_MISS_MACHINE_WR_REQ
{hwmon_name}:{mss}:SKYLIB_DDN_TX_FLITS
{hwmon_name}:{mss}:SKYLIB_DDN_RX_FLITS

BlueField-3 bf_ptm counters:

bf:ptm:active_power_profile
bf:ptm:atx_power_available
bf:ptm:core_temp
bf:ptm:ddr_temp
bf:ptm:error_state
bf:ptm:power_envelope
bf:ptm:power_throttling_event_count
bf:ptm:power_throttling_state

Where n ranges from 0 to 24.

1371

bf:ptm:thermal_throttling_event_count
bf:ptm:thermal_throttling_state
bf:ptm:throttling_state
bf:ptm:total_power
bf:ptm:vr0_power
bf:ptm:vr1_power

17.11.4.1.1.1 Port Counters

The following parameters are located in /sys/class/infiniband/mlx5_0/ports/1/counters .

Counter Description InfiniBand Spec
Name

Group

port_rcv_data The total number of data octets,
divided by 4, (counting in double
words, 32 bits), received on all VLs
from the port.

PortRcvData Informative

port_rcv_packets Total number of packets (this may
include packets containing Errors. This
is 64 bit counter.

PortRcvPkts Informative

port_multicast_rcv_pa

ckets

Total number of multicast packets,
including multicast packets containing
errors.

PortMultiCastRcvPkts Informative

port_unicast_rcv_pack

ets

Total number of unicast packets,
including unicast packets containing
errors.

PortUnicastRcvPkts Informative

port_xmit_data The total number of data octets,
divided by 4, (counting in double
words, 32 bits), transmitted on all VLs
from the port.

PortXmitData Informative

port_xmit_packets

port_xmit_packets_64

Total number of packets transmitted
on all VLs from this port. This may
include packets with errors.
This is 64 bit counter.

PortXmitPkts Informative

port_rcv_switch_rela

y_errors

Total number of packets received on
the port that were discarded because
they could not be forwarded by the
switch relay.

PortRcvSwitchRelayE

rrors

Error

port_rcv_errors Total number of packets containing an
error that were received on the port.

PortRcvErrors Informative

port_rcv_constraint_

errors

Total number of packets received on
the switch physical port that are
discarded.

PortRcvConstraintEr

rors

Error

local_link_integrity

_errors

The number of times that the count of
local physical errors exceeded the
threshold specified by
LocalPhyErrors .

LocalLinkIntegrityE

rrors

Error

port_xmit_wait The number of ticks during which the
port had data to transmit but no data
was sent during the entire tick (either
because of insufficient credits or
because of lack of arbitration).

PortXmitWait Informative

1372

Counter Description InfiniBand Spec
Name

Group

port_multicast_xmit_

packets

Total number of multicast packets
transmitted on all VLs from the port.
This may include multicast packets
with errors.

PortMultiCastXmitPk

ts

Informative

port_unicast_xmit_pa

ckets

Total number of unicast packets
transmitted on all VLs from the port.
This may include unicast packets with
errors.

PortUnicastXmitPkts Informative

port_xmit_discards Total number of outbound packets
discarded by the port because the
port is down or congested.

PortXmitDiscards Error

port_xmit_constraint

_errors

Total number of packets not
transmitted from the switch physical
port.

PortXmitConstraintE

rrors

Error

port_rcv_remote_phys

ical_errors

Total number of packets marked with
the EBP delimiter received on the
port.

PortRcvRemotePhysic

alErrors

Error

symbol_error Total number of minor link errors
detected on one or more physical
lanes.

SymbolErrorCounter Error

VL15_dropped Number of incoming VL15 packets
dropped due to resource limitations
(e.g., lack of buffers) of the port.

VL15Dropped Error

link_error_recovery Total number of times the Port
Training state machine has
successfully completed the link error
recovery process.

LinkErrorRecoveryCo

unter

Error

link_downed Total number of times the Port
Training state machine has failed the
link error recovery process and
downed the link.

LinkDownedCounter Error

17.11.4.1.1.2 Hardware Counters

The hardware counters, found under /sys/class/infiniband/mlx5_0/ports/1/hw_counters/ ,
are counted per function and exposed on the function. Some counters are not counted per function.
These counters are commented with a relevant comment.

Counter Description Group

duplicate_request Number of received packets. A duplicate request is
a request that had been previously executed.

Error

implied_nak_seq_err Number of time the requested decided an ACK. with
a PSN larger than the expected PSN for an RDMA
read or response.

Error

lifespan The maximum period in ms which defines the aging
of the counter reads. Two consecutive reads within
this period might return the same values

Informative

1373

Counter Description Group

local_ack_timeout_err The number of times QP's ack timer expired for RC,
XRC, DCT QPs at the sender side.
The QP retry limit was not exceed, therefore it is
still recoverable error.

Error

np_cnp_sent The number of CNP packets sent by the Notification
Point when it noticed congestion experienced in the
RoCEv2 IP header (ECN bits).

Informative

np_ecn_marked_roce_packets The number of RoCEv2 packets received by the
notification point which were marked for
experiencing the congestion (ECN bits where '11' on
the ingress RoCE traffic) .

Informative

out_of_buffer The number of drops occurred due to lack of WQE
for the associated QPs.

Error

out_of_sequence The number of out of sequence packets received. Error

packet_seq_err The number of received NAK sequence error
packets. The QP retry limit was not exceeded.

Error

req_cqe_error The number of times requester detected CQEs
completed with errors.

Error

req_cqe_flush_error The number of times requester detected CQEs
completed with flushed errors.

Error

req_remote_access_errors The number of times requester detected remote
access errors.

Error

req_remote_invalid_request The number of times requester detected remote
invalid request errors.

Error

resp_cqe_error The number of times responder detected CQEs
completed with errors.

Error

resp_cqe_flush_error The number of times responder detected CQEs
completed with flushed errors.

Error

resp_local_length_error The number of times responder detected local
length errors.

Error

resp_remote_access_errors The number of times responder detected remote
access errors.

Error

rnr_nak_retry_err The number of received RNR NAK packets. The QP
retry limit was not exceeded.

Error

rp_cnp_handled The number of CNP packets handled by the Reaction
Point HCA to throttle the transmission rate.

Informative

rp_cnp_ignored The number of CNP packets received and ignored by
the Reaction Point HCA. This counter should not
raise if RoCE Congestion Control was enabled in the
network. If this counter raise, verify that ECN was
enabled on the adapter. See HowTo Configure
DCQCN (RoCE CC) values for ConnectX-4 (Linux).

Error

rx_atomic_requests The number of received ATOMIC request for the
associated QPs.

Informative

rx_dct_connect The number of received connection request for the
associated DCTs.

Informative

https://enterprise-support.nvidia.com/s/article/howto-configure-dcqcn--roce-cc--values-for-connectx-4--linux-x

1374

Counter Description Group

rx_read_requests The number of received READ requests for the
associated QPs.

Informative

rx_write_requests The number of received WRITE requests for the
associated QPs.

Informative

rx_icrc_encapsulated The number of RoCE packets with ICRC errors. Error

roce_adp_retrans Counts the number of adaptive retransmissions for
RoCE traffic

Informative

roce_adp_retrans_to Counts the number of times RoCE traffic reached
timeout due to adaptive retransmission

Informative

roce_slow_restart Counts the number of times RoCE slow restart was
used

Informative

roce_slow_restart_cnps Counts the number of times RoCE slow restart
generated CNP packets

Informative

roce_slow_restart_trans Counts the number of times RoCE slow restart
changed state to slow restart

Informative

roce_adp_retrans_to Counts the number of adaptive retransmissions for
RoCE traffic

Informative

roce_slow_restart Counts the number of times RoCE traffic reached
timeout due to adaptive retransmission

Informative

17.11.4.1.1.3 Debug Status Counters

The following parameters are located in /sys/class/net/<interface>/debug .

Parameter Description Default

lro_timeout Sets the LRO timer period value in usecs which will be
used as LRO session expiration time. For example:

cat /sys/class/net/eth2/debug/lro_timeout
Actual timeout: 32
Supported timeout: 8 16 32 1024

32

link_down_reason Link down reason will allow the user to query the
reason which is preventing the link from going up. For
example:

$ cat /sys/class/net/ethXX/debug/link_down_reason
monitor_opcode: 0x0
status_message: The port is Active.

Refer to the adapter PRM for all possible options
(PDDR register).

N/A

17.11.4.1.2 Power Thermal Counters

The bf_ptm component collects BlueField-3 power thermal counters using remote collection. It is
disabled by default and can be enabled as follows:

1375

1.

2.

•
•
•

•

•

•

•

•

•

•

•

•

Load kernel module mlxbf-ptm :

modprobe -v mlxbf-ptm

Enable component using remote collection:

enable-provider=grpc.sysfs.bf_ptm

17.11.4.1.3 Ethtool Counters

Ethtool counters is the generated list of counters which corresponds to Ethtool utility. Counters are
generated on a per-device basis.

There are several counter groups, depending on where the counter is counted:

Ring – software ring counters
Software port – an aggregation of software ring counters
vPort counters – traffic counters and drops due to steering or no buffers. May indicate
BlueField issues. These counters include Ethernet traffic counters (including raw Ethernet)
and RDMA/RoCE traffic counters.
Physical port counters – the physical port connecting BlueField to the network. May indicate
device issues or link or network issues. This measuring point holds information on
standardized counters like IEEE 802.3, RFC2863, RFC 2819, RFC 3635 and additional counters
like flow control, FEC, and more. Physical port counters are not exposed to virtual machines.
Priority port counters – a set of the physical port counters, per priory per port

Each group of counters may have different counter types:

Traffic informative counters – counters which counts traffic. These counters can be used for
load estimation of for general debug.
Traffic acceleration counters – counters which counts traffic accelerated by NVIDIA drivers or
by hardware. The counters are an additional layer to the informative counter set and the
same traffic is counted in both informative and acceleration counters. Acceleration counters
are marked with [A].
Error counters – increment of these counters might indicate a problem

The following acceleration mechanisms have dedicated counters:

TCP segmentation offload (TSO) – increasing outbound throughput and reducing CPU
utilization by allowing the kernel to buffer multiple packets in a single large buffer. The
BlueField splits the buffer into packet and transmits it.
Large receive offload (LRO) – increasing inbound throughput and reducing CPU utilization by
aggregation of multiple incoming packets of a single stream to a single buffer
CHECKSUM – calculation of TCP checksum (by the BlueField). The following checksum offloads
are available (refer to skbuff.h for detailed explanation)

CHECKSUM_UNNECESSARY

DPE server should be active before changing the dts_config.ini file. See section
"Remote Collection" for details.

https://linux.die.net/man/8/ethtool
http://lxr.free-electrons.com/source/include/linux/skbuff.h

1376

•

•

•
•

CHECKSUM_NONE – no checksum acceleration was used

CHECKSUM_COMPLETE – device provided checksum on the entire packet

CHECKSUM_PARTIAL – device provided checksum
CQE compress – compression of completion queue events (CQE) used for sparing bandwidth on
PCIe and hence achieve better performance.

17.11.4.1.3.1 Ring/Software Port Counters

The following counters are available per ring or software port.

These counters provide information on the amount of traffic accelerated by the BlueField. The
counters tally the accelerated traffic in addition to the standard counters which tally that (i.e.
accelerated traffic is counted twice).

The counter names in the table below refers to both ring and port counters. the notation for ring
counters includes the [i] index without the braces. the notation for port counters does not

include the [i] . a counter name rx[i]_packets will be printed as rx0_packets for ring 0 and

rx_packets for the software port

Counter Description Type

rx[i]_packets The number of packets received on ring i. Informative

rx[i]_bytes The number of bytes received on ring i. Informative

tx[i]_packets The number of packets transmitted on ring i. Informative

tx[i]_bytes The number of bytes transmitted on ring i. Informative

tx[i]_tso_packets The number of TSO packets transmitted on ring i [A]. Acceleration

tx[i]_tso_bytes The number of TSO bytes transmitted on ring i [A]. Acceleration

tx[i]_tso_inner_packets The number of TSO packets which are indicated to be
carry internal encapsulation transmitted on ring i [A]

Acceleration

tx[i]_tso_inner_bytes The number of TSO bytes which are indicated to be
carry internal encapsulation transmitted on ring i [A].

Acceleration

rx[i]_lro_packets The number of LRO packets received on ring i [A]. Acceleration

rx[i]_lro_bytes The number of LRO bytes received on ring i [A]. Acceleration

rx[i]_csum_unnecessary Packets received with a CHECKSUM_UNNECESSARY on
ring i [A].

Acceleration

rx[i]_csum_none Packets received with CHECKSUM_NONE on ring i [A]. Acceleration

rx[i]_csum_complete Packets received with a CHECKSUM_COMPLETE on ring
i [A].

Acceleration

rx[i]_csum_unnecessary_i

nner

Packets received with inner encapsulation with a
CHECK_SUM UNNECESSARY on ring i [A].

Acceleration

tx[i]_csum_partial Packets transmitted with a CHECKSUM_PARTIAL on
ring i [A].

Acceleration

tx[i]_csum_partial_inner Packets transmitted with inner encapsulation with a
CHECKSUM_PARTIAL on ring i [A].

Acceleration

1377

Counter Description Type

tx[i]_csum_none Packets transmitted with no hardware checksum
acceleration on ring i.

Informative

tx[i]_stopped

tx_queue_stopped 1

Events where SQ was full on ring i. If this counter is
increased, check the amount of buffers allocated for
transmission.

Error

tx[i]_wake

tx_queue_wake 1

Events where SQ was full and has become not full on
ring i.

Error

tx[i]_dropped

tx_queue_dropped 1

Packets transmitted that were dropped due to DMA
mapping failure on ring i. If this counter is increased,
check the amount of buffers allocated for
transmission.

Error

rx[i]_wqe_err The number of wrong opcodes received on ring i. Error

tx[i]_nop The number of no WQEs (empty WQEs) inserted to the
SQ (related to ring i) due to the reach of the end of
the cyclic buffer. When reaching near to the end of
cyclic buffer the driver may add those empty WQEs to
avoid handling a state the a WQE start in the end of
the queue and ends in the beginning of the queue.
This is a normal condition.

Informative

rx[i]_mpwqe_frag The number of WQEs that failed to allocate
compound page and hence fragmented MPWQE's
(multipacket WQEs) were used on ring i. If this
counter raise, it may suggest that there is no enough
memory for large pages, the driver allocated
fragmented pages. This is not abnormal condition.

Informative

rx[i]_mpwqe_filler_cqes The number of filler CQEs events that where issued
on ring i.

Informative

rx[i]_cqe_compress_blks The number of receive blocks with CQE compression
on ring i [A].

Acceleration

rx[i]_cqe_compress_pkts The number of receive packets with CQE compression
on ring i [A].

Acceleration

rx[i]_cache_reuse The number of events of successful reuse of a page
from a driver's internal page cache

Acceleration

rx[i]_cache_full The number of events of full internal page cache
where driver can't put a page back to the cache for
recycling (page will be freed)

Acceleration

rx[i]_cache_empty The number of events where cache was empty - no
page to give. driver shall allocate new page

Acceleration

rx[i]_cache_busy The number of events where cache head was busy
and cannot be recycled. driver allocated new page

Acceleration

rx[i]_xmit_more The number of packets sent with xmit_more
indication set on the skbuff (no doorbell)

Acceleration

tx[i]_cqes The number of completions received on the CQ of TX
ring.

Informative

The counter name before kernel 4.19 was
rx[i]_mpwqe_filler .

1378

Counter Description Type

ch[i]_poll The number of invocations of NAPI poll of channel. Informative

ch[i]_arm The number of times the NAPI poll function
completed and armed the completion queues on
channel

Informative

ch[i]_aff_change The number of times the NAPI poll function explicitly
stopped execution on a CPU due to a change in
affinity, on channel.

Informative

rx[i]_congst_umr The number of times an outstanding UMR request is
delayed due to congestion, on ring.

Error

ch[i]_events The number of hard interrupt events on the
completion queues of channel.

Informative

rx[i]_mpwqe_filler_strid

es

The number of strides consumed by filler CQEs on
ring.

Informative

rx[i]_xdp_tx_xmit The number of packets forwarded back to the port
due to XDP program XDP_TX action (bouncing). these
packets are not counted by other software counters.
These packets are counted by physical port and vPort
counters.

Informative

rx[i]_xdp_tx_full The number of packets that should have been
forwarded back to the port due to XDP_TX action but
were dropped due to full tx queue. these packets are
not counted by other software counters. These
packets are counted by physical port and vPort
counters
You may open more rx queues and spread traffic rx
over all queues and/or increase rx ring size.

Error

rx[i]_xdp_tx_err The number of times an XDP_TX error such as frame
too long and frame too short occurred on XDP_TX
ring of RX ring.

Error

rx[i]_xdp_tx_cqes

rx_xdp_tx_cqe 1

The number of completions received on the CQ of the
XDP-TX ring.

Informative

rx[i]_xdp_drop The number of packets dropped due to XDP program
XDP_DROP action. these packets are not counted by
other software counters. These packets are counted
by physical port and vPort counters.

Informative

rx[i]_xdp_redirect The number of times an XDP redirect action has been
triggered on ring.

Acceleration

tx[i]_xdp_xmit The number of packets redirected to the interface
(due to XDP redirect). These packets are not counted
by other software counters. These packets are
counted by physical port and vPort counters.

Informative

Supported from kernel 4.19.

Supported from kernel 4.19.

https://en.wikipedia.org/wiki/New_API

1379

Counter Description Type

tx[i]_xdp_full The number of packets redirected to the interface
(due to XDP redirect) but were dropped due to the Tx
queue being full. These packets are not counted by
other software counters. Users may enlarge Tx
queues.

Informative

tx[i]_xdp_err The number of packets redirected to the interface
(due to XDP redirect) but were dropped due to an
error (e.g., frame too long and frame too short).

Error

tx[i]_xdp_cqes The number of completions received for packets
redirected to the interface (due to XDP redirect) on
the CQ.

Informative

rx[i]_cache_waive The number of cache evacuation. This can occur due
to page move to another NUMA node or page was
pfmemalloc-ed and should be freed as soon as
possible.

Acceleration

1. The corresponding ring and global counters do not share the same name (i.e., do not
follow the common naming scheme).

17.11.4.1.3.2 vPort Counters

Counters on the eswitch port that is connected to the vNIC.

Counter Description Type

rx_vport_unicast_packets Unicast packets received, steered to a port
including raw Ethernet QP/DPDK traffic,
excluding RDMA traffic

Informative

rx_vport_unicast_bytes Unicast bytes received, steered to a port
including raw Ethernet QP/DPDK traffic,
excluding RDMA traffic

Informative

tx_vport_unicast_packets Unicast packets transmitted, steered from a
port including raw Ethernet QP/DPDK traffic,
excluding RDMA traffic

Informative

tx_vport_unicast_bytes Unicast bytes transmitted, steered from a port
including raw Ethernet QP/DPDK traffic,
excluding RDMA traffic

Informative

rx_vport_multicast_packets Multicast packets received, steered to a port
including raw Ethernet QP/DPDK traffic,
excluding RDMA traffic

Informative

rx_vport_multicast_bytes Multicast bytes received, steered to a port
including raw Ethernet QP/DPDK traffic,
excluding RDMA traffic

Informative

tx_vport_multicast_packets Multicast packets transmitted, steered from a
port including raw Ethernet QP/DPDK traffic,
excluding RDMA traffic

Informative

tx_vport_multicast_bytes Multicast bytes transmitted, steered from a
port including raw Ethernet QP/DPDK traffic,
excluding RDMA traffic

Informative

1380

Counter Description Type

rx_vport_broadcast_packets Broadcast packets received, steered to a port
including raw Ethernet QP/DPDK traffic,
excluding RDMA traffic

Informative

rx_vport_broadcast_bytes Broadcast bytes received, steered to a port
including raw Ethernet QP/DPDK traffic,
excluding RDMA traffic

Informative

tx_vport_broadcast_packets Broadcast packets transmitted, steered from a
port including raw Ethernet QP/DPDK traffic,
excluding RDMA traffic

Informative

tx_vport_broadcast_bytes Broadcast packets transmitted, steered from a
port including raw Ethernet QP/DPDK traffic,
excluding RDMA traffic

Informative

rx_vport_rdma_unicast_packet

s

RDMA unicast packets received, steered to a
port (counters counts RoCE/UD/RC traffic) [A]

Acceleration

rx_vport_rdma_unicast_bytes RDMA unicast bytes received, steered to a port
(counters counts RoCE/UD/RC traffic) [A]

Acceleration

tx_vport_rdma_unicast_packet

s

RDMA unicast packets transmitted, steered
from a port (counters counts RoCE/UD/RC
traffic) [A]

Acceleration

tx_vport_rdma_unicast_bytes RDMA unicast bytes transmitted, steered from
a port (counters counts RoCE/UD/RC traffic)
[A]

Acceleration

rx_vport_ rdma

_multicast_packets

RDMA multicast packets received, steered to a
port (counters counts RoCE/UD/RC traffic) [A]

Acceleration

rx_vport_ rdma

_multicast_bytes

RDMA multicast bytes received, steered to a
port (counters counts RoCE/UD/RC traffic) [A]

Acceleration

tx_vport_ rdma

_multicast_packets

RDMA multicast packets transmitted, steered
from a port (counters counts RoCE/UD/RC
traffic) [A]

Acceleration

tx_vport_ rdma

_multicast_bytes

RDMA multicast bytes transmitted, steered
from a port (counters counts RoCE/UD/RC
traffic) [A]

Acceleration

rx_steer_missed_packets Number of packets received by the NIC but
discarded due to not matching any flow in the
NIC flow table.

Error

rx_packets Representor only: packets received, that were
handled by the hypervisor.

Informative

Supported from kernel 4.16.

Supported from kernel 4.18.

1381

Counter Description Type

rx_bytes Representor only: bytes received, that were
handled by the hypervisor.

Informative

tx_packets Representor only: packets transmitted which
have been handled by the hypervisor.

Informative

tx_bytes Representor only: bytes transmitted which
have been handled by the hypervisor.

Informative

17.11.4.1.3.3 Physical Port Counters

The physical port counters are the counters on the external port connecting adapter to the network.
This measuring point holds information on standardized counters like IEEE 802.3, RFC2863, RFC
2819, RFC 3635 and additional counters like flow control, FEC and more.

Counter Description Type

rx_packets_phy The number of packets received on the physical
port. This counter doesn’t include packets that were
discarded due to FCS, frame size and similar errors.

Informative

tx_packets_phy The number of packets transmitted on the physical
port.

Informative

rx_bytes_phy The number of bytes received on the physical port,
including Ethernet header and FCS.

Informative

tx_bytes_phy The number of bytes transmitted on the physical
port.

Informative

rx_multicast_phy The number of multicast packets received on the
physical port.

Informative

tx_multicast_phy The number of multicast packets transmitted on the
physical port.

Informative

rx_broadcast_phy The number of broadcast packets received on the
physical port.

Informative

tx_broadcast_phy The number of broadcast packets transmitted on the
physical port.

Informative

rx_crc_errors_phy The number of dropped received packets due to
frame check sequence (FCS) error on the physical
port. If this counter is increased in high rate, check
the link quality using rx_symbol_error_phy and r

x_corrected_bits_phy counters below.

Error

rx_in_range_len_errors_phy The number of received packets dropped due to
length/type errors on a physical port.

Error

Supported from kernel 4.18.

Supported from kernel 4.18.

Supported from kernel 4.18.

1382

Counter Description Type

rx_out_of_range_len_phy The number of received packets dropped due to
length greater than allowed on a physical port.
If this counter is increasing, it implies that the peer
connected to the adapter has a larger
MTU configured. Using same MTU configuration shall
resolve this issue.

Error

rx_oversize_pkts_phy The number of dropped received packets due to
length which exceed MTU size on a physical port. If
this counter is increasing, it implies that the peer
connected to the adapter has a larger
MTU configured. Using same MTU configuration shall
resolve this issue.

Error

rx_symbol_err_phy The number of received packets dropped due to
physical coding errors (symbol errors) on a physical
port.

Error

rx_mac_control_phy The number of MAC control packets received on the
physical port.

Informative

tx_mac_control_phy The number of MAC control packets transmitted on
the physical port.

Informative

rx_pause_ctrl_phy The number of link layer pause packets received on a
physical port. If this counter is increasing, it implies
that the network is congested and cannot absorb the
traffic coming from to the adapter.

Informative

tx_pause_ctrl_phy The number of link layer pause packets transmitted
on a physical port. If this counter is increasing, it
implies that the NIC is congested and cannot absorb
the traffic coming from the network.

Informative

rx_unsupported_op_phy The number of MAC control packets received with
unsupported opcode on a physical port.

Error

rx_discards_phy The number of received packets dropped due to lack
of buffers on a physical port. If this counter is
increasing, it implies that the adapter is congested
and cannot absorb the traffic coming from the
network.

Error

tx_discards_phy The number of packets which were discarded on
transmission, even no errors were detected. the drop
might occur due to link in down state, head of line
drop, pause from the network, etc.

Error

tx_errors_phy The number of transmitted packets dropped due to a
length which exceed MTU size on a physical port.

Error

rx_undersize_pkts_phy The number of received packets dropped due to
length which is shorter than 64 bytes on a physical
port. If this counter is increasing, it implies that the
peer connected to the adapter has a non-standard
MTU configured or malformed packet had arrived.

Error

rx_fragments_phy The number of received packets dropped due to a
length which is shorter than 64 bytes and has FCS
error on a physical port. If this counter is increasing,
it implies that the peer connected to the adapter has
a non-standard MTU configured.

Error

1383

Counter Description Type

rx_jabbers_phy The number of received packets d due to a length
which is longer than 64 bytes and had FCS error on a
physical port.

Error

rx_64_bytes_phy The number of packets received on the physical port
with size of 64 bytes.

Informative

rx_65_to_127_bytes_phy The number of packets received on the physical port
with size of 65 to 127 bytes.

Informative

rx_128_to_255_bytes_phy The number of packets received on the physical port
with size of 128 to 255 bytes.

Informative

rx_256_to_511_bytes_phy The number of packets received on the physical port
with size of 256 to 512 bytes.

Informative

rx_512_to_1023_bytes_phy The number of packets received on the physical port
with size of 512 to 1023 bytes.

Informative

rx_1024_to_1518_bytes_phy The number of packets received on the physical port
with size of 1024 to 1518 bytes.

Informative

rx_1519_to_2047_bytes_phy The number of packets received on the physical port
with size of 1519 to 2047 bytes.

Informative

rx_2048_to_4095_bytes_phy The number of packets received on the physical port
with size of 2048 to 4095 bytes.

Informative

rx_4096_to_8191_bytes_phy The number of packets received on the physical port
with size of 4096 to 8191 bytes.

Informative

rx_8192_to_10239_bytes_phy The number of packets received on the physical port
with size of 8192 to 10239 bytes.

Informative

link_down_events_phy The number of times where the link operative state
changed to down. In case this counter is increasing it
may imply on port flapping. You may need to replace
the cable/transceiver.

Error

rx_out_of_buffer Number of times receive queue had no software
buffers allocated for the adapter's incoming traffic.

Error

module_bus_stuck The number of times that module's I2C bus (data or
clock) short-wire was detected. You may need to
replace the cable/transceiver.

Error

module_high_temp The number of times that the module temperature
was too high. If this issue persists, you may need to
check the ambient temperature or replace the
cable/transceiver module.

Error

module_bad_shorted The number of times that the module cables were
shorted. You may need to replace the cable/
transceiver module.

Error

Supported from kernel 4.10.

Supported from kernel 4.10.

Supported from kernel 4.10.

1384

Counter Description Type

module_unplug The number of times that module was ejected. Informative

rx_buffer_passed_thres_phy The number of events where the port receive buffer
was over 85% full.

Informative

tx_pause_storm_warning_eve

nts

The number of times the device was sending pauses
for a long period of time.

Informative

tx_pause_storm_error_event

s

The number of times the device was sending pauses
for a long period of time, reaching time out and
disabling transmission of pause frames. on the period
where pause frames were disabled, drop could have
been occurred.

Error

rx[i]_buff_alloc_err /

rx_buff_alloc_err

Failed to allocate a buffer to received packet (or
SKB) on port (or per ring)

Error

rx_bits_phy This counter provides information on the total
amount of traffic that could have been received and
can be used as a guideline to measure the ratio of
errored traffic in rx_pcs_symbol_err_phy and

rx_corrected_bits_phy .

Informative

rx_pcs_symbol_err_phy This counter counts the number of symbol errors that
wasn’t corrected by FEC correction algorithm or that
FEC algorithm was not active on this interface. If this
counter is increasing, it implies that the link
between the NIC and the network is suffering from
high BER, and that traffic is lost. You may need to
replace the cable/transceiver. The error rate is the
number of rx_pcs_symbol_err_phy divided by the

number of rx_phy_bits on a specific time frame.

Error

rx_corrected_bits_phy The number of corrected bits on this port according
to active FEC (RS/FC). If this counter is increasing, it
implies that the link between the NIC and the
network is suffering from high BER. The corrected bit
rate is the number of rx_corrected_bits_phy divi

ded by the number of rx_phy_bits on a specific
time frame

Error

Supported from kernel 4.10.

Supported from kernel 4.14.

Supported from kernel 4.15.

Supported from kernel 4.15.

1385

Counter Description Type

phy_raw_errors_lane[l] This counter counts the number of physical raw
errors per lane [l] index. The counter counts errors
before FEC corrections. If this counter is increasing,
it implies that the link between the NIC and the
network is suffering from high BER, and that traffic
might be lost. You may need to replace the cable/
transceiver. Please check in accordance
with rx_corrected_bits_phy .

Error

17.11.4.1.3.4 Priority Port Counters

The following counters are physical port counters that being counted per L2 priority (0-7).

Counter Description Type

rx_prio[p]_bytes The number of bytes received with priority p on the
physical port.

Informative

rx_prio[p]_packets The number of packets received with priority p on the
physical port.

Informative

tx_prio[p]_bytes The number of bytes transmitted on priority p on the
physical port.

Informative

tx_prio[p]_packets The number of packets transmitted on priority p on
the physical port.

Informative

rx_prio[p]_pause The number of pause packets received with priority p
on a physical port. If this counter is increasing, it
implies that the network is congested and cannot
absorb the traffic coming from the adapter.
Note: This counter is available only if PFC was
enabled on priority p. Refer to HowTo Configure PFC
on ConnectX-4.

Informative

rx_prio[p]_pause_duration The duration of pause received (in microSec) on
priority p on the physical port. The counter
represents the time the port did not send any traffic
on this priority. If this counter is increasing, it implies
that the network is congested and cannot absorb the
traffic coming from the adapter.
Note: This counter is available only if PFC was
enabled on priority p. Refer to HowTo Configure PFC
on ConnectX-4.

Informative

rx_prio[p]_pause_transiti

on

The number of times a transition from Xoff to Xon on
priority p on the physical port has occurred.
Note: This counter is available only if PFC was
enabled on priority p. Refer to HowTo Configure PFC
on ConnectX-4.

Informative

Supported from kernel 4.20.

p in the counter name represents the priority.

https://enterprise-support.nvidia.com/s/article/howto-configure-pfc-on-connectx-4
https://enterprise-support.nvidia.com/s/article/howto-configure-pfc-on-connectx-4
https://enterprise-support.nvidia.com/s/article/howto-configure-pfc-on-connectx-4

1386

Counter Description Type

tx_prio[p]_pause The number of pause packets transmitted on priority
p on a physical port. If this counter is increasing, it
implies that the adapter is congested and cannot
absorb the traffic coming from the network.
Note: This counter is available only if PFC was
enabled on priority p. Refer to HowTo Configure PFC
on ConnectX-4.

Informative

tx_prio[p]_pause_duration The duration of pause transmitter (in microSec) on
priority p on the physical port.
Note: This counter is available only if PFC was
enabled on priority p. Refer to HowTo Configure PFC
on ConnectX-4.

Informative

rx_prio[p]_buf_discard The number of packets discarded by device due to
lack of per host receive buffers.

Informative

rx_prio[p]_cong_discard The number of packets discarded by device due to
per host congestion.

Informative

rx_prio[p]_marked The number of packets ecn marked by device due to
per host congestion.

Informative

rx_prio[p]_discard The number of packets discarded by device due to
lack of receive buffers.

Infornative

17.11.4.1.3.5 Device Counters

Counter Description Type

rx_pci_signal_integrity Counts physical layer PCIe signal integrity errors,
the number of transitions to recovery due to
Framing errors and CRC (dlp and tlp).
If this counter is raising, try moving the adapter
card to a different slot to rule out a bad PCIe slot.
Validate that you are running with the latest
firmware available and latest server BIOS version.

Error

tx_pci_signal_integrity Counts physical layer PCIe signal integrity errors,
the number of transition to recovery initiated by the
other side (moving to recovery due to getting TS/
EIEOS).
If this counter is raising, try moving the adapter
card to a different slot to rule out a bad PCI slot.
Validate that you are running with the latest
firmware available and latest server BIOS version.

Error

Supported from kernel 5.3.

Supported from kernel 5.3.

Supported from kernel 5.3.

Supported from kernel 5.6.

https://enterprise-support.nvidia.com/s/article/howto-configure-pfc-on-connectx-4
https://enterprise-support.nvidia.com/s/article/howto-configure-pfc-on-connectx-4

1387

Counter Description Type

outbound_pci_buffer_overfl

ow

The number of packets dropped due to pci buffer
overflow. If this counter is raising in high rate, it
might indicate that the receive traffic rate for a
host is larger than the PCIe bus and therefore a
congestion occurs.

Informative

outbound_pci_stalled_rd The percentage (in the range 0...100) of time within
the last second that the NIC had outbound non-
posted reads requests but could not perform the
operation due to insufficient posted credits.

Informative

outbound_pci_stalled_wr The percentage (in the range 0...100) of time within
the last second that the NIC had outbound posted
writes requests but could not perform the operation
due to insufficient posted credits.

Informative

outbound_pci_stalled_rd_ev

ents

The number of seconds where
outbound_pci_stalled_rd was above 30%.

Informative

outbound_pci_stalled_wr_ev

ents

The number of seconds where
outbound_pci_stalled_wr was above 30%.

Informative

dev_out_of_buffer The number of times the device owned queue had
not enough buffers allocated.

Error

17.11.4.1.3.6 Full List of Counters

ethtool -S eth5

NIC statistics:
rx_packets: 10
rx_bytes: 3420
tx_packets: 18
tx_bytes: 1296
tx_tso_packets: 0
tx_tso_bytes: 0
tx_tso_inner_packets: 0
tx_tso_inner_bytes: 0
tx_added_vlan_packets: 0
tx_nop: 0
rx_lro_packets: 0
rx_lro_bytes: 0
rx_ecn_mark: 0
rx_removed_vlan_packets: 0
rx_csum_unnecessary: 0
rx_csum_none: 0
rx_csum_complete: 10
rx_csum_unnecessary_inner: 0
rx_xdp_drop: 0

Supported from kernel 4.14.

Supported from kernel 4.14.

Supported from kernel 4.14.

Supported from kernel 4.14.

Supported from kernel 4.14.

1388

rx_xdp_redirect: 0
rx_xdp_tx_xmit: 0
rx_xdp_tx_full: 0
rx_xdp_tx_err: 0
rx_xdp_tx_cqe: 0
tx_csum_none: 18
tx_csum_partial: 0
tx_csum_partial_inner: 0
tx_queue_stopped: 0
tx_queue_dropped: 0
tx_xmit_more: 0
tx_recover: 0
tx_cqes: 18
tx_queue_wake: 0
tx_udp_seg_rem: 0
tx_cqe_err: 0
tx_xdp_xmit: 0
tx_xdp_full: 0
tx_xdp_err: 0
tx_xdp_cqes: 0
rx_wqe_err: 0
rx_mpwqe_filler_cqes: 0
rx_mpwqe_filler_strides: 0
rx_buff_alloc_err: 0
rx_cqe_compress_blks: 0
rx_cqe_compress_pkts: 0
rx_page_reuse: 0
rx_cache_reuse: 0
rx_cache_full: 0
rx_cache_empty: 2688
rx_cache_busy: 0
rx_cache_waive: 0
rx_congst_umr: 0
rx_arfs_err: 0
ch_events: 75
ch_poll: 75
ch_arm: 75
ch_aff_change: 0
ch_eq_rearm: 0
rx_out_of_buffer: 0
rx_if_down_packets: 15
rx_steer_missed_packets: 0
rx_vport_unicast_packets: 0
rx_vport_unicast_bytes: 0
tx_vport_unicast_packets: 0
tx_vport_unicast_bytes: 0
rx_vport_multicast_packets: 2
rx_vport_multicast_bytes: 172
tx_vport_multicast_packets: 12
tx_vport_multicast_bytes: 936
rx_vport_broadcast_packets: 37
rx_vport_broadcast_bytes: 9270
tx_vport_broadcast_packets: 6
tx_vport_broadcast_bytes: 360
rx_vport_rdma_unicast_packets: 0
rx_vport_rdma_unicast_bytes: 0
tx_vport_rdma_unicast_packets: 0
tx_vport_rdma_unicast_bytes: 0
rx_vport_rdma_multicast_packets: 0
rx_vport_rdma_multicast_bytes: 0
tx_vport_rdma_multicast_packets: 0
tx_vport_rdma_multicast_bytes: 0
tx_packets_phy: 0
rx_packets_phy: 0
rx_crc_errors_phy: 0
tx_bytes_phy: 0
rx_bytes_phy: 0
tx_multicast_phy: 0
tx_broadcast_phy: 0
rx_multicast_phy: 0
rx_broadcast_phy: 0
rx_in_range_len_errors_phy: 0
rx_out_of_range_len_phy: 0
rx_oversize_pkts_phy: 0
rx_symbol_err_phy: 0
tx_mac_control_phy: 0
rx_mac_control_phy: 0
rx_unsupported_op_phy: 0
rx_pause_ctrl_phy: 0
tx_pause_ctrl_phy: 0
rx_discards_phy: 0
tx_discards_phy: 0
tx_errors_phy: 0
rx_undersize_pkts_phy: 0
rx_fragments_phy: 0
rx_jabbers_phy: 0
rx_64_bytes_phy: 0
rx_65_to_127_bytes_phy: 0
rx_128_to_255_bytes_phy: 0
rx_256_to_511_bytes_phy: 0
rx_512_to_1023_bytes_phy: 0
rx_1024_to_1518_bytes_phy: 0
rx_1519_to_2047_bytes_phy: 0
rx_2048_to_4095_bytes_phy: 0
rx_4096_to_8191_bytes_phy: 0
rx_8192_to_10239_bytes_phy: 0
link_down_events_phy: 0
rx_prio0_bytes: 0
rx_prio0_packets: 0
tx_prio0_bytes: 0
tx_prio0_packets: 0
rx_prio1_bytes: 0
rx_prio1_packets: 0
tx_prio1_bytes: 0

1389

tx_prio1_packets: 0
rx_prio2_bytes: 0
rx_prio2_packets: 0
tx_prio2_bytes: 0
tx_prio2_packets: 0
rx_prio3_bytes: 0
rx_prio3_packets: 0
tx_prio3_bytes: 0
tx_prio3_packets: 0
rx_prio4_bytes: 0
rx_prio4_packets: 0
tx_prio4_bytes: 0
tx_prio4_packets: 0
rx_prio5_bytes: 0
rx_prio5_packets: 0
tx_prio5_bytes: 0
tx_prio5_packets: 0
rx_prio6_bytes: 0
rx_prio6_packets: 0
tx_prio6_bytes: 0
tx_prio6_packets: 0
rx_prio7_bytes: 0
rx_prio7_packets: 0
tx_prio7_bytes: 0
tx_prio7_packets: 0
module_unplug: 0
module_bus_stuck: 0
module_high_temp: 0
module_bad_shorted: 0
ch0_events: 9
ch0_poll: 9
ch0_arm: 9
ch0_aff_change: 0
ch0_eq_rearm: 0
ch1_events: 23
ch1_poll: 23
ch1_arm: 23
ch1_aff_change: 0
ch1_eq_rearm: 0
ch2_events: 8
ch2_poll: 8
ch2_arm: 8
ch2_aff_change: 0
ch2_eq_rearm: 0
ch3_events: 19
ch3_poll: 19
ch3_arm: 19
ch3_aff_change: 0
ch3_eq_rearm: 0
ch4_events: 8
ch4_poll: 8
ch4_arm: 8
ch4_aff_change: 0
ch4_eq_rearm: 0
ch5_events: 8
ch5_poll: 8
ch5_arm: 8
ch5_aff_change: 0
ch5_eq_rearm: 0
rx0_packets: 0
rx0_bytes: 0
rx0_csum_complete: 0
rx0_csum_unnecessary: 0
rx0_csum_unnecessary_inner: 0
rx0_csum_none: 0
rx0_xdp_drop: 0
rx0_xdp_redirect: 0
rx0_lro_packets: 0
rx0_lro_bytes: 0
rx0_ecn_mark: 0
rx0_removed_vlan_packets: 0
rx0_wqe_err: 0
rx0_mpwqe_filler_cqes: 0
rx0_mpwqe_filler_strides: 0
rx0_buff_alloc_err: 0
rx0_cqe_compress_blks: 0
rx0_cqe_compress_pkts: 0
rx0_page_reuse: 0
rx0_cache_reuse: 0
rx0_cache_full: 0
rx0_cache_empty: 448
rx0_cache_busy: 0
rx0_cache_waive: 0
rx0_congst_umr: 0
rx0_arfs_err: 0
rx0_xdp_tx_xmit: 0
rx0_xdp_tx_full: 0
rx0_xdp_tx_err: 0
rx0_xdp_tx_cqes: 0
rx1_packets: 10
rx1_bytes: 3420
rx1_csum_complete: 10
rx1_csum_unnecessary: 0
rx1_csum_unnecessary_inner: 0
rx1_csum_none: 0
rx1_xdp_drop: 0
rx1_xdp_redirect: 0
rx1_lro_packets: 0
rx1_lro_bytes: 0
rx1_ecn_mark: 0
rx1_removed_vlan_packets: 0
rx1_wqe_err: 0
rx1_mpwqe_filler_cqes: 0
rx1_mpwqe_filler_strides: 0

1390

rx1_buff_alloc_err: 0
rx1_cqe_compress_blks: 0
rx1_cqe_compress_pkts: 0
rx1_page_reuse: 0
rx1_cache_reuse: 0
rx1_cache_full: 0
rx1_cache_empty: 448
rx1_cache_busy: 0
rx1_cache_waive: 0
rx1_congst_umr: 0
rx1_arfs_err: 0
rx1_xdp_tx_xmit: 0
rx1_xdp_tx_full: 0
rx1_xdp_tx_err: 0
rx1_xdp_tx_cqes: 0
rx2_packets: 0
rx2_bytes: 0
rx2_csum_complete: 0
rx2_csum_unnecessary: 0
rx2_csum_unnecessary_inner: 0
rx2_csum_none: 0
rx2_xdp_drop: 0
rx2_xdp_redirect: 0
rx2_lro_packets: 0
rx2_lro_bytes: 0
rx2_ecn_mark: 0
rx2_removed_vlan_packets: 0
rx2_wqe_err: 0
rx2_mpwqe_filler_cqes: 0
rx2_mpwqe_filler_strides: 0
rx2_buff_alloc_err: 0
rx2_cqe_compress_blks: 0
rx2_cqe_compress_pkts: 0
rx2_page_reuse: 0
rx2_cache_reuse: 0
rx2_cache_full: 0
rx2_cache_empty: 448
rx2_cache_busy: 0
rx2_cache_waive: 0
rx2_congst_umr: 0
rx2_arfs_err: 0
rx2_xdp_tx_xmit: 0
rx2_xdp_tx_full: 0
rx2_xdp_tx_err: 0
rx2_xdp_tx_cqes: 0
...
tx0_packets: 1
tx0_bytes: 60
tx0_tso_packets: 0
tx0_tso_bytes: 0
tx0_tso_inner_packets: 0
tx0_tso_inner_bytes: 0
tx0_csum_partial: 0
tx0_csum_partial_inner: 0
tx0_added_vlan_packets: 0
tx0_nop: 0
tx0_csum_none: 1
tx0_stopped: 0
tx0_dropped: 0
tx0_xmit_more: 0
tx0_recover: 0
tx0_cqes: 1
tx0_wake: 0
tx0_cqe_err: 0
tx1_packets: 5
tx1_bytes: 300
tx1_tso_packets: 0
tx1_tso_bytes: 0
tx1_tso_inner_packets: 0
tx1_tso_inner_bytes: 0
tx1_csum_partial: 0
tx1_csum_partial_inner: 0
tx1_added_vlan_packets: 0
tx1_nop: 0
tx1_csum_none: 5
tx1_stopped: 0
tx1_dropped: 0
tx1_xmit_more: 0
tx1_recover: 0
tx1_cqes: 5
tx1_wake: 0
tx1_cqe_err: 0
tx2_packets: 0
tx2_bytes: 0
tx2_tso_packets: 0
tx2_tso_bytes: 0
tx2_tso_inner_packets: 0
tx2_tso_inner_bytes: 0
tx2_csum_partial: 0
tx2_csum_partial_inner: 0
tx2_added_vlan_packets: 0
tx2_nop: 0
tx2_csum_none: 0
tx2_stopped: 0
tx2_dropped: 0
tx2_xmit_more: 0
tx2_recover: 0
tx2_cqes: 0
tx2_wake: 0
tx2_cqe_err: 0
...

1391

•
•

•
•
•

•
•
•
•
•
•
•

•

•

•

17.11.4.1.4 Traffic Control Info

The following TC objects are supported and reported regarding the ingress filters:

Filters
flower

Actions
mirred
tunnel_key

The info is provided as one of the following events:

Basic filter event
Flower/IPv4 filter event
Flower/IPv6 filter event
Basic action event
Mirred action event
Tunnel_key/IPv4 action event
Tunnel_key/IPv6 action event

General notes:

Actions always belong to a filter, so action events share the filter event's ID via the event_id
data member
Basic filter event only contains textual kind (so users can see which real life objects' support
they are lacking)
Basic action event only contains textual kind and some basic common statistics if available

17.11.4.1.5 Amber Provider

Amber data for both InfiniBand and Ethernet MST devices in amBER format.

The following config files are available:

amber_devices=DEV1,DEV2,DEV3 # Default:all, or set comma separated list of devices under /dev/mst
amber_update_interval_sec=30 # Sample rate for collection amber counters

17.11.4.1.6 PPCC_ETH Provider

Programmable congestion control counters are based on an algorithm defined by an end-user,
although default algorithms are also available.

Counters are collected per MST device and algorithm parameters.

MST device names can be found under /dev/mst/ .

/dev/mst should be accessible within DTS container.

https://www.man7.org/linux/man-pages/man8/tc-flower.8.html
https://man7.org/linux/man-pages/man8/tc-mirred.8.html
https://www.man7.org/linux/man-pages/man8/tc-tunnel_key.8.html

1392

The counter list depends on the installed MFT version.

A comma-separated list of device names is required to enable this provider:

ppcc_eth_devices=mt41692_pciconf0,mt41692_pciconf0.1

The following algorithm parameters are available:

ppcc_algo_slot=1
ppcc_algo_param_index=0
local_port=1
pnat=0
lp_msb=0

17.11.4.1.7 Fluent Aggregator

fluent_aggr listens on a port for Fluent Bit Forward protocol input connections. Received data
can be streamed via a Fluent Bit exporter.

The default port is 42442. This can be changed by updating the following option:

fluent-aggr-port=42442

17.11.4.1.8 Prometheus Aggregator

prometheus_aggr polls data from a list of Prometheus endpoints.

Each endpoint is listed in the following format:

prometheus_aggr_endpoint.{N}={host_name},{host_port_url},{poll_inteval_msec}

MST device names can be found under /dev/mst/ .

/dev/mst should be accessible within the DTS container.

/usr/lib64/mft or /usr/lib/mft should be mounted to the DTS container to get the
counter list according to the installed MFT version. If not mounted, the internal DTS version
of the counters is used.

For more details, consult the official PPCC documentation.

•
•

Some of the algo_slots are not implemented:
If there are no counters to collect, the device is ignored
If there are no devices to collect, the provider is disabled

https://docs.fluentbit.io/manual/pipeline/outputs/forward

1393

Where N starts from 0.

Aggregated data can be exported via a Prometheus Aggr Exporter endpoint.

17.11.4.1.9 Network Interfaces

ifconfig collects network interface data. To enable, set:

enable-provider=ifconfig

If the Prometheus endpoint is enabled, add the following configuration to cache every collected
network interface and arrange the index according to their names:

prometheus-fset-indexes=name

Metrices are collected for each network interface as follows:

name
rx_packets
tx_packets
rx_bytes
tx_bytes
rx_errors
tx_errors
rx_dropped
tx_dropped
multicast
collisions
rx_length_errors
rx_over_errors
rx_crc_errors
rx_frame_errors
rx_fifo_errors
rx_missed_errors
tx_aborted_errors
tx_carrier_errors
tx_fifo_errors
tx_heartbeat_errors
tx_window_errors
rx_compressed
tx_compressed
rx_nohandler

17.11.4.1.10 HCA Performance

hcaperf collects HCA performance data. Since it requires access to an RDMA device, it must use
remote collection on the DPU. On the host, the user runs the container in privileged mode and RDMA
device mount.

The counter list is device dependent.

17.11.4.1.10.1 hcaperf DPU Configuration

To enable hcaperf in remote collection mode, set:

enable-provider=grpc.hcaperf

specify HCAs to sample
grpc.hcaperf.mlx5_0=sample
grpc.hcaperf.mlx5_1=sample

DPE server should be active before changing the dts_config.ini file. See section
"Remote Collection" for details.

1394

•
•
•
•
•

17.11.4.1.10.2 hcaperf Host Configuration

To enable hcaperf in regular mode, set:

enable-provider=hcaperf

specify HCAs to sample
hcaperf.mlx5_0=sample
hcaperf.mlx5_1=sample

17.11.4.1.11 NVIDIA System Management Interface

The nvidia-smi provider collects GPU and GPU process information provided by the NVIDIA system
management interface.

This provider is supported only on x86_64 hosts with installed GPUs. All GPU cards supported
by nvidia-smi are supported by this provider.

The counter list is GPU dependent. Additionally, per-process information is collected for the first 20
(by default) nvidia_smi_max_processes processes.

Counters can be either collected as string data "as is" in nvidia-smi or converted to numbers

when nvsmi_with_numeric_fields is set.

To enable nvidia-smi provider and change parameters, set:

enable-provider=nvidia-smi

Optional parameters:
#nvidia_smi_max_processes=20
#nvsmi_with_numeric_fields=1

17.11.4.1.12 NVIDIA Data Center GPU Manager

The dcgm provider collects GPU information provided by the NVIDIA data center GPU manager
(DCGM) API.

This provider is supported only on x86_64 hosts with installed GPUs, and requires running the nv-

hostengine service (refer to DCGM documentation for details).

DCGM counters are split into several groups by context:

GPU – basic GPU information (always)
COMMON – common fields that can be collected from all devices
PROF – profiling fields
ECC – ECC errors
NVLINK / NVSWITCH / VGPU – fields depending on the device type

To enable DCGM provider and counter groups, set:

enable-provider=dcgm

dcgm_events_enable_common_fields=1
#dcgm_events_enable_prof_fields=0
#dcgm_events_enable_ecc_fields=0
#dcgm_events_enable_nvlink_fields=0
#dcgm_events_enable_nvswitch_fields=0

https://docs.nvidia.com/datacenter/dcgm/latest/index.html

1395

•

•

#dcgm_events_enable_vgpu_fields=0

17.11.4.1.13 BlueField Performance

The bfperf provider collects calculated performance counters of BlueField Arm cores. It requires

the executable bfperf_pmc , which is integrated in the DOCA BFB bundle of BlueField-3, as well as
an active DPE.

To enable BlueField performance provider, set:

enable-provider=bfperf

17.11.4.1.14 Ngauge

Ngauge is comprised of two providers which gather diagnostic data counters from network interface
cards (NICs). These providers support the same counters (as defined in a YAML file), but they differ
in usage and collection frequency:

Low frequency provider is defined in dts_config.ini and is controlled by DTS collection
loop
High frequency provider is defined in dts_high_freq_config.ini and operates in a distinct
flow for a limited duration

The fwctl and mlx5_fwctl drivers (supported on NVIDIA networking devices from BlueField-3 and
ConnectX-7 and onward) are required for firmware interaction, and are part of MLNX_OFED driver.
To load them, run:

modprobe -a fwctl mlx5_fwctl

Both providers get the counter set from a YAML file.

17.11.4.1.14.1 Ngauge Low Frequency

To enable the Ngauge low frequency provider, set:

enable-provider=ngauge_low_freq

To verify that the YAML file name matches the connected NIC's type:

ngauge-yml-file=/config/ngauge_configs/all-single-port.yml

To configure the Ngauge timestamp collection type, set the following:

ngauge-timestamp-collection-type=<method>

When running, the bfperf provider is expected to recurrently reset the counters of the

sysfs.hwmon component. Consider disabling it if bfperf is enabled.

1396

•

•

•

•

•

Where <method> can be one of the following:

no_counters – Do not collect timestamp counters. Default.

start_and_end – Collect sample start and end timestamps

per_counter – Collect every counter collection timestamp

To configure the clock firmware should use when collecting time stamps, set the following:

ngauge-timestamp-source=<clock>

Where <clock> can be one of the following:

RTC - Real-time clock. Default.

RFC - Free-running clock

17.11.4.1.14.2 Ngauge High Frequency

This provider is designed to support higher sampling frequencies with sub-millisecond resolution.
Due to the large scale of the collected data, this provider is aimed to run ad-hoc, for a limited time
period, unlike the usual DTS providers which are configured with the DTS configuration file /opt/

mellanox/doca/services/telemetry/config/dts_config.ini .

If the DTS standard flow constitutes an endless collect-export loop, then High Frequency Telemetry
(HFT) is an additional external flow designed for the Ngauge high-frequency provider, based on the
HFT configuration, located in /opt/mellanox/doca/services/telemetry/config/

dts_high_freq_config.ini . This file defines the HFT session timing parameters, provider
settings, and export settings. This means that an HFT session can export to different endpoints and/
or protocols than those DTS used in the standard collection loop.The standard DTS configuration file
references the HFT configuration file, enabling DTS to monitor the file's status. The HFT
configuration file is also the trigger for the HFT session. That is, when the HFT configuration file is
modified, the current HFT session is removed, and a new HFT session is configured (if defined).
Removing the HFT configuration file stops pending sessions.

Required HFT Parameters

This table provides the details of the required HFT parameters. Refer to section "HFT Configuration
File Example" for more helpful tips.

Option Description

start-time HFT session start time. If not used, the session starts
immediately.
UTC epoch timestamp (in microseconds). Syntax: HH:MM:SS /
HH:MM

end-time HFT session end time. Ignored if start-time is missing.

If not used, end-time is calculated using num-iterations .
UTC epoch timestamp (in microseconds). Syntax: HH:MM:SS /
HH:MM

num-iterations Number of iterations.
If not used, start-time and end-time are required, and the
number of iterations is calculated.

1397

Option Description

sample-time-us Time interval between iterations (in microseconds)

provider Provider to use. Should be ngauge_high_freq .

file-write Whether to write collected telemetry to files.
If enabled, could potentially write several MB of data every
second.

data-root Root folder for file writing.
Ignored if file-write=false .

provider.ngauge-num-samples Number of samples to collect in one iteration.
Affects the buffer used by the firmware for diagnostic data.

provider.ngauge-sample-period Sample period between samples (in nanoseconds).
This option specifies the sample interval per iteration, as the
provider collects N samples during each iteration.

provider.ngauge-yml-file The Ngauge counters YAML file to use

17.11.4.1.14.3 Provider Compatibility

Both low and high frequency providers can run concurrently. The low frequency provider samples at
the DTS standard frequency (defined in dts_config.ini), and the high frequency provider

samples counters based on the HFT configuration file (dts_high_freq_config.ini).

To allow both providers to run concurrently, verify that the counters, the timestamp collection type,
and the timestamp collection source are identical. Otherwise, when the high frequency provider
starts sampling, the low frequency provider hangs until the end of the HFT session.

HFT Configuration File Example

DTS configuration file for ad-hoc high frequency collection
When modified, the file is parsed and applied.
Note that the folders path is the container path, not the host path.

Each section defines a collection. A file may have several sections, each one defines a high frequency
collection.
Section names must be unique and will be used as collection name by clx.
[hft-collection-session]

Time between samples in microseconds
sample-time-us=100000

Start time of high frequency collection. Can be in the format HH:MM:SS or HH:MM or as epoch timestamp in
microseconds
Note - in container, the time is in UTC
start-time=18:00:00

End time of high frequency collection. Can be in the format HH:MM:SS or HH:MM or as epoch timestamp in
microseconds
Note - in container, the time is in UTC
end-time=18:01:00
Alternatively, you can set the number of iterations. This and start_time field will determine the end time
#num-iterations=300
 ### Data provider to use
provider=ngauge_high_freq

Write data to file system. Could potentially fill up the disk
file-write=false

Root directory to store the data
Ignored if file-write is set to false
data-root=/data

Enable busy wait between iterations, for a more accurate sample time (default is false)
#busy-wait-sampling=true

Set prometheus endpoint to enable http endpoint
#prometheus-endpoint=http://0.0.0.0:9112

Set fluentbit config dir to enable fluentbit export

1398

•

•

•

•

•

•

#fluentbit-config-dir=/config/fluent_bit_configs

Set open telemetry receiver to enable open telemetry export
#open-telemetry-receiver=http://0.0.0.0:9502/v1/metrics

Set remote write receiver to enable remote write export
#remote-write-receiver=http://0.0.0.0:9090/api/v1/write

Provider specific parameters. Format is 'provider.$KEY=$VALUE'.
The options below are specific to the ngauge high frequency provider

Number of samples to collect on each iteration
provider.ngauge-num-samples=1000

The time period (in nanoseconds) between samples
provider.ngauge-sample-period-nsec=1000

The YAML file with the configuration for the ngauge provider
provider.ngauge-yml-file=/config/ngauge_configs/all-dual-port.yml

Ngauge timestamp collection type. Options are ['no_counters', 'start_and_end', 'per_counter']. default:
'no_counters'
#provider.ngauge-timestamp-collection-type=start_and_end

Ngauge timestamp source. Options are ['RTC', 'FRC']. default: 'RTC'
#provider.ngauge-timestamp-source=FRC

17.11.4.1.14.4 Ngauge YAML File

For Ngauge compatibility, the counter set is defined in a YAML file.

There are 4 existing YAML files within a DTS container (one per permutation of BlueField-3 and
ConnectX-7 with dual or single ports). The path to the YAMLs folder is /opt/mellanox/doca/

services/telemetry/config/ngauge_configs which is mounted to /config/ngauge_configs .

By default, YAML files include a counter set that is not device-specific. This implies that the same
counter set is utilized across all devices by default.

It is possible to assign a specific device within a YAML file; however, this requires maintaining a
separate copy of the YAML file for each device. To manage multiple devices, use the ngauge-yml-

dir option to specify a directory for YAML files, where each .yml / .yaml file is utilized. This

folder should be available to the container under /opt/mellanox/doca/services/telemetry/

config .

The following list describes the expected entries in the YAML file:

counters – sequence of counters to collect

id – counter data ID

desc – counter description (optional)

unit – name of unit to collect from (optional)

name – name of counter to use (optional). If not specified, the generated name is
based on the counter description. Otherwise, it is based on the data ID.

device – name of the mlx device to collect (optional). If not used, the provider requires a
single file containing a list of counters, which it then applies to all available devices on the
host.

YAML File Example

The following is the default all-dual-port.yml provided in DTS:

counters:
 - id: 0x1020000100000000
 desc: RX bytes port 0
 unit: RX port
 - id: 0x1020000100000001
 desc: RX bytes port 1
 unit: RX port
 - id: 0x1020000300000000

1399

 desc: RX packets port 0
 unit: RX port
 - id: 0x1020000300000001
 desc: RX packets port 1
 unit: RX port
 - id: 0x1140000100000000
 desc: TX bytes port 0
 unit: TX port
 - id: 0x1140000100000001
 desc: TX bytes port 1
 unit: TX port
 - id: 0x1140000300000000
 desc: TX packets port 0
 unit: TX port
 - id: 0x1140000300000001
 desc: TX packets port 1
 unit: TX port
 - id: 0x1100000100000000
 desc: CNP sent packets port 0
 unit: TX Transport
 - id: 0x1100000100000001
 desc: CNP sent packets port 1
 unit: TX Transport
 - id: 0x1080000400000000
 desc: CNP handled packets port 0
 unit: RX Transport
 - id: 0x1080000400000001
 desc: CNP handled packets port 1
 unit: RX Transport
 - id: 0x1080000500000000
 desc: ECN RoCE packets port 0
 unit: RX Transport
 - id: 0x1080000500000001
 desc: ECN RoCE packets port 1
 unit: RX Transport
 - id: 0x1160000b00000000
 desc: PCIe link latency total read ns
 unit: PCIe
 cutoff_min: 1
 cutoff_max: 2e6
 - id: 0x1160000c00000000
 desc: PCIe link latency total read packets
 unit: PCIe
 cutoff_min: 1
 cutoff_max: 3000
 - id: 0x1160000d00000000
 desc: PCIe link latency max read ns
 unit: PCIe
 cutoff_min: 1
 cutoff_max: 3000
 - id: 0x1160000e00000000
 desc: PCIe link latency min read ns
 unit: PCIe
 cutoff_min: 1
 cutoff_max: 3000

17.11.4.1.14.5 Counters

The following counters are available from the DTS default YAML files (and correspond the YAML file
example):

cnp_handled_packets_port_0
cnp_handled_packets_port_1
cnp_sent_packets_port_0
cnp_sent_packets_port_1
ecn_roce_packets_port_0
ecn_roce_packets_port_1
pcie_link_latency_max_read_ns
pcie_link_latency_min_read_ns
pcie_link_latency_total_read_ns
pcie_link_latency_total_read_packets
rx_bytes_port_0
rx_bytes_port_1
rx_packets_port_0
rx_packets_port_1
tx_bytes_port_0
tx_bytes_port_1
tx_packets_port_0
tx_packets_port_1

17.11.4.2 Data Outputs
DTS can send the collected data to the following outputs:

The NVIDIA Adapters Programmer's Reference Manual (PRM) "Diagnostic Data" section defines
the rules for data IDs.

1400

•
•
•

Data writer (saves binary data to disk)
Fluent Bit (push-model streaming)
Prometheus endpoint (keeps the most recent data to be pulled)

17.11.4.2.1 Data Writer

The data writer is disabled by default to save space on BlueField. Steps for activating data write
during debug can be found under section Enabling Data Write.

The schema folder contains JSON-formatted metadata files which allow reading the binary files
containing the actual data. The binary files are written according to the naming convention shown
in the following example (apt install tree):

tree /opt/mellanox/doca/services/telemetry/data/
/opt/mellanox/doca/services/telemetry/data/
├── {year}
│ └── {mmdd}
│ └── {hash}
│ ├── {source_id}
│ │ └── {source_tag}{timestamp}.bin
│ └── {another_source_id}
│ └── {another_source_tag}{timestamp}.bin
└── schema
 └── schema_{MD5_digest}.json

New binary files appears when the service starts or when binary file age/size restriction is reached.
If no schema or no data folders are present, refer to the Troubleshooting section.

Reading the binary data can be done from within the DTS container using the following command:

crictl exec -it <Container ID> /opt/mellanox/collectx/bin/clx_read -s /data/schema /data/path/to/datafile.bin

Example output:

{
 "timestamp": 1634815738799728,
 "event_number": 0,
 "iter_num": 0,
 "string_number": 0,
 "example_string": "example_str_1"
}
{
 "timestamp": 1634815738799768,
 "event_number": 1,
 "iter_num": 0,
 "string_number": 1,
 "example_string": "example_str_2"
}
…

17.11.4.2.2 Prometheus

The Prometheus endpoint keeps the most recent data to be pulled by the Prometheus server and is
enabled by default.

To check that data is available, run the following command on BlueField:

source_id is usually set to the machine hostname. source_tag is a line describing the
collected counters, and it is often set as the provider's name or name of user-counters.

The path to the data file must be an absolute path.

1401

curl -s http://0.0.0.0:9100/metrics

The command dumps every counter in the following format:

counter_name {list of meta fields} counter_value timestamp

Additionally, endpoint supports JSON and CSV formats:

curl -s http://0.0.0.0:9100/json/metrics
curl -s http://0.0.0.0:9100/csv/metrics

17.11.4.2.3 Configuration Details

Prometheus is configured as a part of dts_config.ini .

By default, the Prometheus HTTP endpoint is set to port 9100. Comment this line out to disable
Prometheus export.

prometheus=http://0.0.0.0:9100

Prometheus can use the data field as an index to keep several data records with different index
values. Index fields are added to Prometheus labels.

Comma-separated counter set description for Prometheus indexing:
#prometheus-indexes=idx1,idx2

Comma-separated fieldset description for prometheus indexing
#prometheus-fset-indexes=idx1,idx2

The default fset index is device_name . It allows Prometheus to keep ethtool data up for both

the p0 and p1 devices.

prometheus-fset-indexes=device_name

If fset index is not set, the data from p1 overwrites p0 's data.

For quick name filtering, the Prometheus exporter supports being provided with a comma-separated
list of counter names to be ignored:

#prometheus-ignore-names=counter_name1,counter_name_2

For quick filtering of data by tag, the Prometheus exporter supports being provided with a comma-
separated list of data source tags to be ignored.

Users should add tags for all streaming data since the Prometheus exporter cannot be used for
streaming. By default, FI_metrics are disabled.

prometheus-ignore-tags=FI_metrics

The default port for Prometheus can be changed in dts_config.ini .

1402

1.

2.

3.
4.
5.
6.

•
•
•
•
•
•

17.11.4.2.4 Prometheus Aggregator Exporter

Prometheus aggregator exporter is an endpoint that keeps the latest aggregated data using
prometheus_aggr .

This exporter labels data according to its source.

To enable this provider, users must set 2 parameters in dts_config.ini :

prometheus-aggr-exporter-host=0.0.0.0
prometheus-aggr-exporter-port=33333

17.11.4.2.5 Fluent Bit

Fluent Bit allows streaming to multiple destinations. Destinations are configured in .exp files that
are documented in-place and can be found under:

/opt/mellanox/doca/services/telemetry/config/fluent_bit_configs

Fluent Bit allows exporting data via "Forward" protocol which connects to the Fluent Bit/FluentD
instance on customer side.

Export can be enabled manually:

Uncomment the line with fluent_bit_configs=… in dts_config.ini .

Set enable=1 in required .exp files for the desired plugins.

Additional configurations can be set according to instructions in the .exp file if needed.
Restart the DTS.
Set up receiving instance of Fluent Bit/FluentD if needed.
See the data on the receiving side.

Export file destinations are set by configuring .exp files or creating new ones. It is recommended
to start by going over documented example files. Documented examples exist for the following
supported plugins:

forward
file
stdout
kafka
es (elastic search)
influx

All .exp files are disabled by default if not configured by initContainer entry point

through .yaml file.

To forward the data to several destinations, create several forward_{num}.exp files. Each
of these files must have their own destination host and port.

1403

•

•

•

•

•

•

•

•

•

•
•

17.11.4.2.5.1 Export File Configuration Details

Each export destination has the following fields:

name – configuration name

plugin_name – Fluent Bit plugin name

enable – 1 or 0 values to enable/disable this destination

host – the host for Fluent Bit plugin

port – port for Fluent Bit plugin

msgpack_data_layout – the msgpacked data format. Default is flb_std . The other option
is custom. See section Msgpack Data Layout for details.
plugin_key=val – key-value pairs of Fluent Bit plugin parameter (optional)

counterset / fieldset – file paths (optional). See details in section Cset/Fset Filtering.

source_tag=source_tag1,source_tag2 – comma-separated list of data page source tags
for filtering. The rest tags are filtered out during export. Event tags are event provider
names. All counters can be enabled/disabled only simultaneously with a counters keyword.

17.11.4.2.5.2 Msgpack Data Layout

Data layout can be configured using .exp files by setting msgpack_data_layout=layout . There
are two available layouts: Standard and Custom.

The standard flb_std data layout is an array of 2 fields:

timestamp double value
a plain dictionary (key-value pairs)

The standard layout is appropriate for all Fluent Bit plugins. For example:

[timestamp_val, {"timestamp"->ts_val, type=>"counters/events", "source"=>"source_val", "key_1"=>val_1,
"key_2"=>val_2,...}]

The custom data layout is a dictionary of meta-fields and counter fields. Values are placed into a
separate plain dictionary. Custom data format can be dumped with stdout_raw output plugin of

Fluent-Bit installed or can be forwarded with forward output plugin.

Counters example:

{"timestamp"=>timestamp_val, "type"=>"counters", "source"=>"source_val", "values"=> {"key_1"=>val_1,
"key_2"=>val_2,...}}

Events example:

{"timestamp"=>timestamp_val, "type"=>"events", "type_name"=>"type_name_val", "source"=>" source_val",
"values"=>{"key_1"=>val_1, "key_2"=>val_2,...}}

Use # to comment a configuration line.

1404

•

•

17.11.4.2.5.3 Cset/Fset Filtering

Each export file can optionally use one cset and one fset file to filter UFM telemetry counters
and events data.

cset contains tokens per line to filter data with "type"="counters" .

fset contains several blocks started with the header line [event_type_name] and tokens

under that header. An Fset file is used to filter data with "type"="events" .

If several tokens must be matched simultaneously, use <tok1>+<tok2>+<tok3> . Exclusive tokens

are available as well. For example, the line <tok1>+<tok2>-<tok3>-<tok4> filters names that
match both tok1 and tok2 and do not match tok3 or tok4.

The following are the details of writing cset files:

Put tokens on separate lines
Tokens are the actual name 'fragments' to be matched
port$ # match names ending with token "port"
^port # match names starting with token "port"
^port$ # include name that is exact token "port
port+xmit # match names that contain both tokens "port" and "xmit"
port-support # match names that contain the token "port" and do not match the "-" token "support"
#
Tip: To disable counter export put a single token line that fits nothing

The following are the details of writing fset files:

Put your events here
Usage:
#
[type_name_1]
tokens
[type_name_2]
tokens
[type_name_3]
tokens
...
Tokens are the actual name 'fragments' to be matched
port$ # match names ending with token "port"
^port # match names starting with token "port"
^port$ # include name that is exact token "port
port+xmit # match names that contain both tokens "port" and "xmit"
port-support # match names that contain the token "port" and do not match the "-" token "support"

The next example will export all the "tc" events and all events with type prefix "ethtool_" "ethtool" are
filtered with token "port":
[tc]
#
[ethtool_*]
packet

To know which event type names are available check export and find field "type_name"=>"ethtool_event_p0"
...
Corner cases:
1. Empty fset file will export all events.
2. Tokens written above/without [event_type] will be ignored.
3. If cannot open fset file, warning will be printed, all event types will be exported.

17.11.4.2.6 NetFlow Exporter

NetFlow exporter must be used when data is collected as NetFlow packets from the telemetry client
applications. In this case, DOCA Telemetry Exporter NetFlow API sends NetFlow data packages to
DTS via IPC. DTS uses NetFlow exporter to send data to the NetFlow collector (3rd party service).

Event type names could be prefixed to apply the same tokens to all fitting types. For
example, to filter all ethtool events, use [ethtool_event_*] .

1405

•

•

•

To enable NetFlow exporter, set netflow-collector-ip and netflow-collector-port in

dts_config.ini . netflow-collector-ip could be set either to IP or an address.

For additional information, refer to the dts_config.ini file.

17.11.5 DOCA Privileged Executer
DOCA Privileged Executer (DPE) is a daemon that allows specific DOCA services (DTS included) to
access BlueField information that is otherwise inaccessible from a container due to technology
limitations or permission granularity issues.

When enabled, DPE enriches the information collected by DTS. However, DTS can still be used if DPE
is disabled (default).

17.11.5.1 DPE Usage
DPE is controlled by systemd, and can be used as follows:

To check DPE status:

sudo systemctl status dpe

To start DPE:

sudo systemctl start dpe

To stop DPE:

sudo systemctl stop dpe

DPE logs can be found in /var/log/doca/telemetry/dpe.log .

17.11.5.2 DPE Configuration File
DPE can be configured by the user. This section covers the syntax and implications of its
configuration file.

The DPE configuration file allows users to define the set of commands that DPE should support. This
may be done by passing the -f option in the following line of /etc/systemd/system/dpe.service :

ExecStart=/opt/mellanox/doca/services/telemetry/dpe/bin/dpeserver -vvv

To use the configuration file:

ExecStart=/opt/mellanox/doca/services/telemetry/dpe/bin/dpeserver -vvv -f /path/to/dpe_config.ini

The configuration file supports the following sections:

The DPU telemetry collected by DTS does not require for this configuration file to be used.

1406

•

•

•

•

•
•
•

•

[server] - list of key=value lines for general server configuration. Allowed keys: socket .

[commands] - list of bash command lines that are not using custom RegEx

[commands_regex] - list of bash command lines that are using custom RegEx

[regex_macros] - custom RegEx definitions used in the commands_regex section

Consider the following example configuration file:

[server]
socket=/tmp/dpe.sock

[commands]
hostname
cat /etc/os-release

[commands_regex]
crictl inspect $HEXA # resolved as "crictl inspect [a-f0-9]+"
lspci $BDF # resolved as "lspci ([0-9a-f]{4}\:|)[0-9a-f]{2}\:[0-9a-f]{2}\.[0-9a-f]"

[regex_macros]
HEXA=[a-f0-9]+
BDF=([0-9a-f]{4}\:|)[0-9a-f]{2}\:[0-9a-f]{2}\.[0-9a-f]

17.11.6 Deploying with Grafana Monitoring
This chapter provides an overview and deployment configuration of DOCA Telemetry Service with
Grafana.

17.11.6.1 Grafana Deployment Prerequisites
BlueField DPU running DOCA Telemetry Service.
Optional remote server to host Grafana and Prometheus.
Prometheus installed on the host machine. Please refer to the Prometheus website for more
information.
Grafana installed on the host machine. Please refer to Grafana Labs website for more
information.

DPE is shipped with a preconfigured file that matches the commands used by the
standalone DTS version included in the same DOCA installation. The file is located in /opt/

mellanox/doca/services/telemetry/dpe/etc/dpe_config.ini .

Using a DPE configuration file allows for a fine-grained control over the interface exposed
by it to the rest of the DOCA services. However, even when using the pre-supplied
configuration file mentioned above, one should remember that it has been configured to
match a fixed DTS version. That is, replacing the standalone DTS version with a new one
downloaded from NGC means that the used configuration file might not cover additional
features added in the new DTS version.

https://grafana.com
https://prometheus.io/
https://grafana.com/

1407

1.

2.

1.

•

17.11.6.2 Grafana Deployment Configuration

17.11.6.2.1 DTS Configuration (DPU Side)

Configuring DTS to export the sysfs counter using the Prometheus plugin:

Make sure the sysfs counter is enabled.

vim /opt/mellanox/doca/services/telemetry/config/dts_config.ini

enable-provider=sysfs

Enable Prometheus exporter by setting the prometheus address and port.

vim /opt/mellanox/doca/services/telemetry/config/dts_config.ini

prometheus=http://0.0.0.0:9100

17.11.6.2.2 Prometheus Configuration (Remote Server)

Please download Prometheus for your platform.

Prometheus is configured via command-line flags and a configuration file, prometheus.yml .

Open the prometheus.yml file and configure the DPU as the endpoint target.

vim prometheus.yml
metrics_path defaults to '/metrics'
scheme defaults to 'http'.

static_configs:
- targets: ["<dpu-ip>:<prometheus-port>"]

Where:
<dpu-ip> is the DPU IP address. Prometheus reaches to this IP to pull data.

Sysfs is used as an example, other counters are available.

In this example, the Prometheus plugin exports data on localhost port 9100, this is an
arbitrary value and can changed.

DTS must be restarted to apply changes.

1408

•
2.

1.
2.

3.

4.

<prometheus-port> the exporter port that set in DTS configuration.
Run Prometheus server:

./prometheus --config.file="prometheus.yml"

17.11.6.2.3 Grafana Configuration (Remote Server)

Please download and install Grafana for your platform.

Setup Grafana. Please refer to Install Grafana guide in Grafana documentation.
Log into the Grafana dashboard at http://localhost:3000.

Add Prometheus as data source by navigating to Settings → Data sources → Add data
source → Prometheus.

Configure the Prometheus data source. Under the HTTP section, set the Prometheus server
address.

Prometheus services are available as Docker images. Please refer to Using Docker in
Prometheus' Installation guide.

Port 3000 is the default port number set by Grafana. This can be changed if
needed. The default credentials are admin/admin.

https://grafana.com/docs/grafana/latest/setup-grafana/installation/
https://prometheus.io/docs/prometheus/latest/installation/#using-docker

1409

5.

•
•
•

Save and test.

17.11.6.3 Exploring Telemetry Data
Go to the Explore page on the left-hand side, and choose a Prometheus provider.

Choose a metric to display and specify a label. The label can be used to filter out data based on the
source and HCA devices.

Graph display after selecting a metric and specifying a label to filter by:

17.11.7 Troubleshooting
On top of the Troubleshooting section in the NVIDIA DOCA Container Deployment Guide, here are
additional troubleshooting tips for DTS:

For general troubleshooting, refer to the NVIDIA DOCA Troubleshooting Guide.
If the pod's state fails to be marked as "Ready", refer to /var/log/syslog .
Check if the service is configured to write data to the disk as this may cause the system to
run out of disk space.

The Prometheus server's default listen port is 9090. Prometheus and Grafana are both
running on the same server, thus the address is localhost.

1410

• If a PIC bus error occurs, configure the following files inside the container:

crictl exec -it <container-id> /bin/bash
Add to /config/clx.env the following line:
"
export UCX_TLS=tcp
"

17.12 NVIDIA DOCA UROM Service Guide
This guide provides instructions on how to use the DOCA UROM Service on top of the NVIDIA®
BlueField® networking platform.

17.12.1 Introduction
The DOCA UROM service provides a framework for offloading significant portions of HPC software
stack directly from the host and to the BlueField device.

Using a daemon, the service handles the discovery of resources, the coordination between the host
and BlueField, and the spawning, management, and teardown of the BlueField workers themselves.

The first step in initiating an offload request involves the UROM host application establishing a
connection with the UROM service. Upon receiving the plugin discovery command, the UROM service
responds by providing the application with a list of plugins available on the BlueField. The

1411

•

•

application then attaches the plugin IDs that correspond to the desired workers to their network
identifiers. Finally, the service triggers UROM worker plugin instances on the BlueField to execute
the parallel computing tasks. Within the service's Kubernetes pod, workers are spawned by the
daemon in response to these offload requests. Each computation can utilize either a single library or
multiple computational libraries.

17.12.2 Requirements
Before deploying the UROM service container, ensure that the following prerequisites are satisfied:

Allocate huge pages as needed by DOCA (this requires root privileges):

$ sudo echo 2048 > /sys/kernel/mm/hugepages/hugepages-2048kB/nr_hugepages

Or alternatively:

$ sudo echo '2048' | sudo tee -a /sys/kernel/mm/hugepages/hugepages-2048kB/nr_hugepages
$ sudo mkdir /mnt/huge
$ sudo mount -t hugetlbfs nodev /mnt/huge

17.12.3 Service Deployment
For information about the deployment of DOCA containers on top of the BlueField, refer to
the NVIDIA BlueField Container Deployment Guide.

Service-specific configuration steps and deployment instructions can be found under the service's
container page.

17.12.4 Description

17.12.4.1 Plugin Discovery and Reporting
When the application initiates a connection request to the DOCA UROM Service, the daemon reads
the UROM_PLUGIN_PATH environment variable. This variable stores directory paths to .so files for
the plugins with multiple paths separated by semicolons. The daemon scans these paths sequentially
and tries loading each .so file. Once the daemon finishes the scan, it reports the available
BlueField plugins to the host application.

The host application gets the list of available plugins as a list of doca_urom_service_plugin_info
structures:

struct doca_urom_service_plugin_info {
 uint64_t id; // Unique ID to send commands to the plugin
 uint64_t version; // Plugin version
 char plugin_name[DOCA_UROM_PLUGIN_NAME_MAX_LEN]; // .so filename
};

The UROM daemon is responsible for generating unique identifiers for the plugins, which are
necessary to enable the worker to distinguish between different plugin tasks.

https://catalog.ngc.nvidia.com/orgs/nvidia/teams/doca/containers/doca_urom

1412

•

•

•

•

•

17.12.4.2 Loading Plugin in Worker
During the spawning of UROM workers by the UROM daemon, the daemon attaches a list of desired
plugins in the worker command line. Each plugin is passed in a format of so_path:id .

As part of worker bootstrapping, the flow iterates all .so files and tries to load them by using

dlopen system call and look for urom_plugin_get_iface() symbol to get the plugin operations
interface.

17.12.4.3 Yaml File

The .yaml file downloaded from NGC can be easily edited according to users' needs:

 env:
 # Service-Specific command line arguments
 - name: SERVICE_ARGS
 value: "-l 60 -m 4096"
 - name: UROM_PLUGIN_PATH
 value: "/opt/mellanox/doca/samples/doca_urom/plugins/worker_sandbox/;/opt/mellanox/doca/samples/doca_urom/
plugins/worker_graph/"

The SERVICE_ARGS are the runtime arguments received by the service:

-l , --log-level <value> – sets the (numeric) log level for the program

<10=DISABLE, 20=CRITICAL, 30=ERROR, 40=WARNING, 50=INFO, 60=DEBUG,

70=TRACE>

--sdk-log-level – sets the SDK (numeric) log level for the program <10=DISABLE,

20=CRITICAL, 30=ERROR, 40=WARNING, 50=INFO, 60=DEBUG, 70=TRACE>

-m , --max-msg-size – specify UROM communication channel maximum message size

 The UROM_PLUGIN_PATH is an env variable that stores directory paths to .so files for the
plugins

For each plugin on the BlueField, it is necessary to add a volume mount inside the service container.
For example:

volumes:
 - name: urom-sandbox-plugin
 hostPath:
 path: /opt/mellanox/doca/samples/doca_urom/plugins/worker_sandbox
 type: DirectoryOrCreate
...
volumeMounts:
 - mountPath: /opt/mellanox/doca/samples/doca_urom/plugins/worker_sandbox
 name: urom-sandbox-plugin

17.12.5 Troubleshooting
When troubleshooting a container deployment issues, it is highly recommended to follow the
deployment steps and tips found in the "Review Container Deployment" section of the NVIDIA
BlueField Container Deployment Guide.

One could also check the /var/log/doca/urom log files for more details about the running cycles
of service components (daemon and workers).

1413

The log file name for workers is urom_worker_<pid>_dev.log and for the daemon it is

urom_daemon_dev.log .

17.12.5.1 Pod is Marked as "Ready" and No Container is Listed

17.12.5.1.1 Error

When deploying the container, the pod's STATE is marked as Ready and an image is listed, however,
no container can be seen running:

$ sudo crictl pods
POD ID CREATED STATE NAME
NAMESPACE ATTEMPT RUNTIME
3162b71e67677 4 seconds ago Ready doca-urom-my-dpu default
0 (default)

$ sudo crictl images
IMAGE TAG IMAGE ID SIZE
k8s.gcr.io/pause 3.2 2a060e2e7101d 487kB
nvcr.io/nvidia/doca/doca_urom 1.0.0-doca2.7.0 2af1e539eb7ab 86.8MB

$ sudo crictl ps
CONTAINER IMAGE CREATED STATE NAME ATTEMPT
POD ID POD

17.12.5.1.2 Solution

In most cases, the container did start but immediately exited. This could be checked using the
following command:

$ sudo crictl ps -a
CONTAINER IMAGE CREATED STATE NAME ATTEMPT
POD ID POD
556bb78281e1d 2af1e539eb7ab 6 seconds ago Exited doca-urom 1
 3162b71e67677 doca-urom-my-dpu

Should the container fail (i.e., reporting a state of Exited), it is recommended to examine the

UROM's main log at /var/log/doca/urom/urom_daemon_dev.log .

In addition, for a short period of time after termination, the container logs could also be viewed
using the container's ID:

$ sudo crictl logs 556bb78281e1d
...

17.12.5.2 Pod is Not Listed

17.12.5.2.1 Error

When placing the container's YAML file in the Kubelet's input folder, the service pod is not listed in
the list of pods:

$ sudo crictl pods
POD ID CREATED STATE NAME
NAMESPACE ATTEMPT RUNTIME

1414

•

•

•

•

17.12.5.2.2 Solution

In most cases, the pod has not started because of the absence of the requested hugepages. This can
be verified using the following command:

$ sudo journalctl -u kubelet -e. . .
Oct 04 12:12:19 <my-dpu> kubelet[2442376]: I1004 12:12:19.905064 2442376 predicate.go:103] "Failed to admit pod,
unexpected error while attempting to recover from admission failure" pod="default/doca-urom-service-<my-dpu>" err="
preemption: error finding a set of pods to preempt: no set of running pods found to reclaim resources: [(res:
hugepages-2Mi, q: 104563999874),]"

17.13 NVIDIA DOCA SNAP Virtio-fs Service Guide
This guide provides instructions on using the DOCA SNAP Virtio-fs service on top of the NVIDIA®
BlueField®-3 DPU.

17.13.1 Introduction

NVIDIA® BlueField® enables hardware-accelerated software-defined virtio-fs PCIe device emulation.
This leverages the power of BlueField networking platforms (DPUs or SuperNICs) to provide high-
performance file system access in bare-metal and virtualized environments. Using BlueField, users
can offload and accelerate networked file system operations from the host/guest, freeing up
resources for other tasks and improving overall system efficiency. In this solution, the host/guest
uses its own standard virtio-fs driver which is fully isolated from the networked filesystem mounted
within the BlueField.

Built upon the DOCA and SPDK frameworks, virtio-fs device emulation on BlueField devices offers a
comprehensive set of libraries for BlueField-based solutions and for storage solutions. This
architecture consists of several key components:

DOCA DevEmu subsystem and DOCA Virtio-fs library – These core libraries are responsible for
the low-level hardware management and the translation of virtio descriptors carrying FUSE
(filesystem in userspace) requests into abstract virtio-fs requests, which are then processed
by the SPDK virtio-fs DOCA transport component.
SPDK virtio-fs transport – This component is responsible for the interaction with the low-level
DOCA components and translating the incoming abstract DOCA SNAP Virtio-fs requests into
generic virtio-fs request which are then processed by the virtio-fs target core.
SPDK virtio-fs target – This component implements and manages the virtio-fs device,
transports, and the interface with a backend file system. Upon arrival on a new generic
virtio-fs request from the transport, it processes and translates the requests according to
virtio-fs and FUSE specifications, translating FUSE-based commands into the generic
filesystem protocol.
SPDK FSdev – This component provides generic filesystem abstraction and interfaces with the
low-level filesystem modules implementing a specific backend filesystem protocol.

The DOCA SNAP Virtio-fs Service is currently supported at alpha level.

1415

•
•
•
•

17.13.1.1 DOCA SNAP Virtio-fs as Container
The DOCA SNAP Virtio-fs container image may be downloaded from NVIDIA NGC and easily deployed
on the BlueField using a YAML file. The YAML file points to the docker image that includes DOCA
SNAP Virtio-fs binaries aligned with the latest spdk.nvda version.

DOCA SNAP Virtio-fs is not pre-installed on the BFB but can be downloaded manually on demand. For
instructions on how to install the DOCA SNAP Virtio-fs container, refer to section "DOCA SNAP Virtio-
fs Container Deployment".

17.13.2 Release Notes
The release notes provide information for the DOCA SNAP Virtio-fs Service such as changes and new
features, software known issues, and bug fixes.

17.13.2.1 Changes and New Features

17.13.2.1.1 Key Features in Version 1.0.0-doca2.8.0
NVIDIA® BlueField®-3 support
Virtio-fs emulation
Virtio-fs hotplug emulation support
Container support

1416

•
•
•
•
•

•

17.13.2.2 Limitations
The following features are currently not supported and are still under development in this version of
the application:

Crash Recovery – the ability to handle device recovery.
Live Update
Live Migration
Dynamic MSIX
254 Queues per Emulation Function: (Currently, only 62 queues per emulation function are
supported)
Build Custom Container - SDK: The ability to build custom container via the SDK is not yet
available.

17.13.2.3 Known Issues

17.13.2.3.1 DOCA SNAP Virtio-fs Issues

The following are known limitations of DOCA SNAP Virtio-fs software version.

Ref # Issue

– Description: The following FUSE commands are currently unsupported: GETLK,
SETLK if FUSE_LK_FLOCK not set, SETLKW, ACCESS, BMAP, IOCTL, POLL,
SETUPMAPPING, REMOVEMAPPING, DAX, and SYNCFS.

Workaround: N/A

Keywords: FUSE

Discovered in version: 1.0.0-doca2.8.0

– Description: App or controller restart is not allowed if the controller has processed
FUSE commands.

Workaround: Unload the virtio-fs driver on the host, then restart the app or
controller.

Keywords: FUSE

Discovered in version: 1.0.0-doca2.8.0

– Description: Currently, only a single hotplug function is supported.

Workaround: N/A

Keywords: Hotplug

Discovered in version: 1.0.0-doca2.8.0

– Description: Currently, the only supported protocol is NFS-over-TCP. NFS-over-RDMA
is not supported.

Workaround: N/A

Keywords: NFS-over-TCP; NFS-over-RDMA

Discovered in version: 1.0.0-doca2.8.0

– Description: Due to the lack of recovery support, it is not possible to perform any
negative/resilience operations.

1417

1.

2.

a.

b.

3.

Ref # Issue

Workaround: N/A

Keywords: Recovery; negative/resilience operations

Discovered in version: 1.0.0-doca2.8.0

17.13.2.3.2 OS or Vendor Issues

Ref # Issue

– Description: After FLR, the virtio-fs driver does not create virt queues again,
resulting in IO failures.

Workaround: FLR should only be performed without any mount over virtio-fs on the
host. To run IO after FLR, reload the virtio-fs host.

Keywords: Driver; FLR

Discovered in version: 1.0.0-doca2.8.0

– Description: On the host, when the virtio-fs mount is idle (i.e., no I/O operations),
dmesg logs are filled with repeated AppArmor DENIED messages. These messages
indicate that the ntpd service is being denied access to specific files by AppArmor.
The ntpd service is trying to access /snap/bin/ and /etc/ssl/openssl.cnf , but
the AppArmor profile for ntpd does not permit these accesses, resulting in denied
requests.

Workaround: Modify the AppArmor profile for ntpd to grant the required read
permissions.

Locate the AppArmor profile for ntpd. It is typically located in /etc/

apparmor.d/ and named usr.sbin.ntpd .
Edit the profile and add the required permissions by using a text editor. For
example:

Run:

sudo nano /etc/apparmor.d/usr.sbin.ntpd

Add the following lines to allow ntpd to read the necessary files:

/snap/bin/ r,
/etc/ssl/openssl.cnf r`

Apply the changes by reloading the AppArmor profile:

sudo apparmor_parser -r /etc/apparmor.d/usr.sbin.ntpd

Keywords: AppArmor, ntpd

Discovered in version: 1.0.0-doca2.8.0

– Description: With a kernel version older than 6.10, if loading and unloading of the
virtio_pci and virtiofs drivers is done in a loop, unloading the driver may
hang.

The following are not DOCA SNAP Virtio-fs limitations.

1418

1.

2.

Ref # Issue

Workaround: Add a delay of 1 second between loading and unloading of the drivers.

Keywords: virtio_pci; virtiofs

Discovered in version: 1.0.0-doca2.8.0

17.13.3 DOCA SNAP Virtio-fs Deployment
This section describes how to deploy DOCA SNAP Virtio-fs as a container.

17.13.3.1 Installing Full DOCA Image on BlueField
To install the BFB on BlueField:

[host] sudo bfb-install --rshim <rshimN> --bfb <image_path.bfb>

For more information, please refer to section "Installing Full DOCA Image on DPU" in the NVIDIA
DOCA Installation Guide for Linux.

17.13.3.2 Firmware Installation

[dpu] sudo /opt/mellanox/mlnx-fw-updater/mlnx_fw_updater.pl --force-fw-update

For more information, please refer to section "Upgrading Firmware" in the NVIDIA DOCA Installation
Guide for Linux.

17.13.3.3 Firmware Configuration

Clear the firmware config before implementing the required configuration:

[dpu] mst start
[dpu] mlxconfig -d /dev/mst/mt41692_pciconf0 reset

Verify the firmware configuration:

[dpu] mlxconfig -d /dev/mst/mt41692_pciconf0 query

Output example:

DOCA SNAP Virtio-fs does not come pre-installed with the BFB bundle.

Firmware configuration may expose new emulated PCIe functions, which can be later used
by the host's OS. As such, the user must make sure all exposed PCIe functions (static/
hotplug) are backed by a supporting virtio-fs software configuration. Otherwise, these
functions would malfunction and host behavior would be anomalous.

https://docs.nvidia.com/doca/sdk/installation-guide-for-linux/index.html
https://docs.nvidia.com/doca/sdk/installation-guide-for-linux/index.html

1419

•
•
•
•
•

3.

4.

mlxconfig -d /dev/mst/mt41692_pciconf0 -e query | grep VIRTIO_FS
Configurations: Default Current Next Boot
* VIRTIO_FS_EMULATION_ENABLE False(0) True(1) True(1)
 VIRTIO_FS_EMULATION_NUM_VF 0 0 0
* VIRTIO_FS_EMULATION_NUM_PF 0 2 2
 VIRTIO_FS_EMU_SUBSYSTEM_VENDOR_ID 6900 6900 6900
 VIRTIO_FS_EMULATION_SUBSYSTEM_ID 4186 4186 4186
* VIRTIO_FS_EMULATION_NUM_MSIX 2 3 3

The output provides 5 columns (listed from left to right):
Non-default configuration marker (*)
Firmware configuration name
Default firmware value
Current firmware value
Firmware value after reboot – shows configuration update pending system reboot

To enable storage emulation options, BlueField must be set to work in internal CPU model:

[dpu] mlxconfig -d /dev/mst/mt41692_pciconf0 s INTERNAL_CPU_MODEL=1

To enable the firmware config with virtio-fs emulation PF:

[dpu] mlxconfig -d /dev/mst/mt41692_pciconf0 s VIRTIO_FS_EMULATION_ENABLE=1 VIRTIO_FS_EMULATION_NUM_PF=1
VIRTIO_FS_EMULATION_NUM_MSIX=3

17.13.3.3.1 RDMA/RoCE Firmware Configuration

RoCE communication is blocked for the default interfaces of BlueField OS's (named ECPFs), mlx5_0

and mlx5_1 typically. If RoCE traffic is required, scalable functions (or SFs) must be added which
are network functions which support RoCE transport.

To enable RDMA/RoCE:

[dpu] mlxconfig -d /dev/mst/mt41692_pciconf0 s PER_PF_NUM_SF=1
[dpu] mlxconfig -d /dev/mst/mt41692_pciconf0 s PF_SF_BAR_SIZE=8 PF_TOTAL_SF=2
[dpu] mlxconfig -d /dev/mst/mt41692_pciconf0.1 s PF_SF_BAR_SIZE=8 PF_TOTAL_SF=2

17.13.3.3.2 Hot-plug Firmware Configuration

When PCIe switch emulation is enabled, BlueField can support 1 hotplug virtio-fs function. These
PCIe functions are shared among all BlueField users and applications and may hold hot-plugged
devices of type NVMe, virtio-blk, virtio-fs, and more (e.g., virtio-net).

To enable PCIe switch emulation and configure 1 hot-plugged ports to be used, run:

For a complete list of the DOCA SNAP Virtio-fs firmware configuration options, refer to
"Appendix – BlueField Firmware Configuration".

Power cycle is required to apply firmware configuration changes.

This is not required when working over TCP or RDMA over InfiniBand.

1420

1.

2.

3.

1.
2.

3.
4.
5.
6.
7.
8.
9.

10.

11.

[dpu] mlxconfig -d /dev/mst/mt41692_pciconf0 s PCI_SWITCH_EMULATION_ENABLE=1 PCI_SWITCH_EMULATION_NUM_PORT=2

PCI_SWITCH_EMULATION_NUM_PORT equals 1 plus the number of hot-plugged PCIe functions.

17.13.3.4 DOCA SNAP Virtio-fs Container Deployment
DOCA SNAP Virtio-fs container is available on the DOCA SNAP Virtio-fs NVIDIA™ NGC page.

To deploy DOCA SNAP Virtio-fs container on top of BlueField, the following procedure is required:

Setup preparation and DOCA SNAP Virtio-fs resource download for container deployment. See
section "Preparation Steps" for details.
Adjust the doca_vfs.yaml for advanced configuration if needed according to section
"Adjusting YAML Configuration".
Deploy the container. The image is automatically pulled from NGC. See section "Spawning
DOCA SNAP Virtio-fs Container" for details.

17.13.3.4.1 Preparation Steps

17.13.3.4.1.1 Step 0: Connect to NGC Container Registry

The Early Adopters (EA) NGC is used to distribute the DOCA SNAP Virtio-fs container before it
becomes available in the public NGC:

Use the welcome email that invites you to continue the activation and sign-in process.
Follow the instruction under section "Joining an Org or Team with a New NVIDIA Account" in
the NGC Private Registry User Guide.
Under "[EA] DOCA", select "doca_vfs" and click "Continue".
In the top-right corner, click your user account icon and select "Setup".
Click "Get API key" to open the "Setup" → "API Key" page.
Click "Generate API Key" to generate your API key.
Click "Confirm" to generate the key.
Save the key for later usage.
Convert your API key to an auth token using the following command:

echo -n '$oauthtoken:<your-api-key>' | base64 -w 128

Update containerd 's configuration file at /etc/containerd/config.toml by removing the
comments from the following configuration lines and inserting your authentication token
where indicated:

[plugins."io.containerd.grpc.v1.cri".registry.configs]
[plugins."io.containerd.grpc.v1.cri".registry.configs."nvcr.io".auth]
auth = "<your-auth-token>"

Restart the containerd service:

On AMD machines, hotplug is not guaranteed to work and enabling
PCI_SWITCH_EMULATION_ENABLE may impact SR-IOV capabilities.

https://registry.ngc.nvidia.com/orgs/cjlqyxpwuczn/teams/doca_vfs/containers/doca_vfs
https://docs.nvidia.com/ngc/ngc-private-registry-user-guide/index.html

1421

1.

2.

3.

[dpu] systemctl restart containerd.service

17.13.3.4.1.2 Step 1: Allocate Hugepages

Allocate 4GiB hugepages for the DOCA SNAP Virtio-fs container according to the DPU OS's

Hugepagesize value:

Query the Hugepagesize value:

[dpu] grep Hugepagesize /proc/meminfo

In Ubuntu, the value should be 2048KB.
Append the following line to the end of the /etc/sysctl.conf file:

vm.nr_hugepages = 2048

Run the following:

[dpu] sysctl --system

17.13.3.4.1.3 Step 2: Create /etc/virtiofs Folder

The folder /etc/virtiofs is used by the container for automatic configuration after deployment.

17.13.3.4.2 Downloading YAML from Early Access NGC

The .yaml configuration file for the DOCA SNAP Virtio-fs container, doca_vfs.yaml , is uploaded
to EA DOCA NGC.

To download the file, in the top-left corner in NGC page, click "PRIVATE REGISTERY" → "Resources"
→ "DOCA SNAP Virtio-fs Container Resources" → "File Browser".

Download latest version file and move it to BlueField.

If live upgrade is utilized in this deployment, it is necessary to allocate twice the amount of
resources listed above for the upgraded container.

If other applications are running concurrently within the setup and are consuming
hugepages, make sure to allocate a number of hugepages appropriate to accommodate all
applications.

The default YAML configuration only mounts the /etc/virtiofs folder for exposure and
sharing between the container and the BlueField. This folder is used to expose
configuration files or local file backends (e.g., AIO FSdev) from the DPU to the container.

https://registry.ngc.nvidia.com/orgs/cjlqyxpwuczn/teams/doca_vfs/resources/doca_vfs

1422

•

•

•
a.

b.

17.13.3.4.3 Adjusting YAML Configuration

The .yaml file can easily be edited for advanced configuration.

The DOCA SNAP Virtio-fs .yaml file is configured by default to support Ubuntu setups (i.e.,

Hugepagesize = 2048 kB) by using hugepages-2Mi.

To support other setups, edit the hugepages section according to the relevant Hugepagesize

value for the BlueField OS. For example, to support CentOS 8.x configure Hugepagesize to
512MB:

 limits:
 hugepages-512Mi: "<number-of-hugepages>Gi"

The following example edits the .yaml file to request 8 CPU cores for the DOCA SNAP Virtio-
fs container:

resources:
 cpu: "8"
 limits:
 cpu: "8"
env:
 - name: APP_ARGS
 value: "-m 0xff"

To automatically configure the DOCA SNAP Virtio-fs container upon deployment:
Add the spdk_rpc_init.conf file under /etc/virtiofs/ . File example:

fsdev_aio_create aio0 /etc/virtiofs/test
virtio_fs_transport_create -t DOCA
virtio_fs_transport_start -t DOCA
virtio_fs_device_create --transport-name DOCA --dev-name vfsdev0 --tag docatag --fsdev aio0 --num-
request-queues 1 --queue-size 32 --driver-platform x86_64
virtio_fs_doca_device_modify --dev-name vfsdev0 --manager mlx5_0 --vuid "MT2251XZ02WZVFSS0D0F3"
virtio_fs_device_start --dev-name vfsdev0

Edit the .yaml file accordingly (uncomment):

env:
 - name: SPDK_RPC_INIT_CONF
 value: "/etc/virtiofs/spdk_rpc_init.conf"

Internet connectivity is necessary to download DOCA SNAP Virtio-fs resources.

If all BlueField-3 cores are requested, the user must verify no other containers are in
conflict over CPU resources.

It is user responsibility to make sure DOCA SNAP Virtio-fs configuration
matches firmware configuration. That is, an emulated controller must be
opened on all existing (static/hotplug) emulated PCIe functions (either
through automatic or manual configuration). A PCIe function without a
supporting controller is considered malfunctioned, and host behavior with it is
anomalous.

1423

•

•

•

17.13.3.4.4 Spawning DOCA SNAP Virtio-fs Container

Run the Kubernetes tool:

[dpu] systemctl restart containerd
[dpu] systemctl restart kubelet
[dpu] systemctl enable kubelet
[dpu] systemctl enable containerd

Copy the updated doca_vfs.yaml file to the /etc/kubelet.d directory.

Kubelet automatically pulls the container image from NGC described in the YAML file and spawns a
pod executing the container.

cp doca_vfs.yaml /etc/kubelet.d/

The DOCA SNAP Virtio-fs Service starts initialization immediately, which may take a few seconds.

To verify whether DOCA SNAP Virtio-fs is running, send spdk_rpc.py spdk_get_version to confirm
whether DOCA SNAP Virtio-fs is operational or still initializing.

17.13.3.4.5 Debug and Log

Unable to render include or excerpt-include. Could not retrieve page.

17.13.3.4.6 Stop, Start, Restart DOCA SNAP Virtio-fs Container
To stop the container, remove the .yaml file form /etc/kubelet.d/ .

To start the container, copy the .yaml file to the same path:

cp doca_vfs.yaml /etc/kubelet.d

To restart the container (with sig-term), use the -t (timeout) option:

crictl stop -t 10 <container-id>

17.13.3.5 DOCA SNAP Virtio-fs with SNAP Support
The DOCA SNAP Virtio-fs container, along with associated packages, natively supports DOCA SNAP
4.x.x, which is implemented as an SPDK subsystem module, allowing the concurrent operation of

General Kublet Comment

After containers in a pod exit, the kubelet restarts them with an exponential back-
off delay (10s, 20s, 40s, etc.) which is capped at five minutes. Once a container has
run for 10 minutes without an issue, the kubelet resets the restart back-off timer for
that container.

https://catalog.ngc.nvidia.com/orgs/nvidia/teams/doca/containers/doca_snap

1424

•

•

both virtio-fs and virtio-blk as a unified service. Additionally, DOCA SNAP is deployed as part of the
DOCA SNAP Virtio-fs deployment.

17.13.4 RPC Commands
Like other standard SPDK applications, the remote procedure call (RPC) protocol is used to control
the DOCA SNAP Virtio-fs Service and supports JSON-based RPC protocol commands to control any
resources and create, delete, query, or modify commands easily from the CLI.

DOCA SNAP Virtio-fs supports all standard SPDK RPC commands in addition to an extended DOCA
SNAP Virtio-fs-specific command set. Standard SPDK commands are executed by the spdk_rpc.py
tool.

To invoke the extended DOCA SNAP Virtio-fs-specific command set, users must add the --plugin

rpc_virtio_fs_tgt flag to the SPDK's rpc.py command. The SPDK RPC plugin

rpc_virtio_fs_tgt.py is implemented as an RPC plugin. This flag is not needed when working
with containers.

The following is an example of an RPC when using DOCA SNAP Virtio-fs from the source:

/opt/nvidia/spdk-subsystem/src/spdk/install-$(hostname)/bin/spdk_rpc --plugin spdk.rpc.rpc_virtio_fs_tgt --help

DOCA SNAP Virtio-fs extended commands are detailed in the following subsections.

17.13.4.1 Using JSON-based RPC Protocol

The JSON-based RPC protocol can be used with the rpc.py script inside the DOCA SNAP Virtio-fs

container and crictl tool.

To query the active container ID:

crictl ps -s running -q --name virtiofs

To post RPCs to the container using crictl :

Refer to NVIDIA BlueField-3 SNAP for NVMe and Virtio-blk documentation here.

Users may need to define the path to the virtio-fs-target folder using the PYTHONPATH
environment variable. More details on the RPC plugins can be found in SPDK's official
documentation.

Full spdk_rpc.py command set documentation can be found in the SPDK official
documentation site.

The DOCA SNAP Virtio-fs container is CRI-compatible.

https://docs.nvidia.com/networking/display/bluefield3snap
https://spdk.io/doc/jsonrpc.html#:~:text=Adding%20external%20RPC%20methods
https://spdk.io/doc/jsonrpc.html

1425

•

crictl exec <container-id> spdk_rpc.py -v <RPC-method>

The flag -v controls verbosity. For example:

crictl exec 0379ac2c4f34c spdk_rpc.py -v virtio_fs_doca_get_functions

Alternatively, an alias can be used:

crictl exec -it $(crictl ps -s running -q --name virtiofs) spdk_rpc.py -v virtio_fs_doca_get_functions

To open a bash shell to the container that can be used to post RPCs:

crictl exec -it <container-id> bash

17.13.4.2 PCIe Function Management
Emulated PCIe functions are managed through DOCA devices called emulation managers. Emulation
managers have special privileges to control, manipulate, and expose the emulated PCIe devices
towards the host PCIe subsystem.

To operate a virtio-fs device/function by the DOCA transport, it is necessary to locate the
appropriate emulation manager for it. The emulation manager maintains a list of the emulated PCIe
functions it controls. Each of those functions is assigned a globally unique serial called a vendor
unique identifier or VUID (e.g., MT2251XZ02WZVFSS0D0F2), which serves as unambiguous reference
for identification and tracking purposes.

Command Description

virtio_fs_doca_get_managers List emulation managers for virtio-fs

virtio_fs_doca_get_functions List functions for virtio-fs

17.13.4.2.1 virtio_fs_doca_get_managers

List emulation managers for virtio-fs. This method has no input parameters.

Example response:

{
 "jsonrpc": "2.0",
 "id": 1,
 "result": [
 {
 "name": "mlx5_0"
 }
]
}

17.13.4.2.2 virtio_fs_doca_get_functions

List functions for virtio-fs with their characteristics. The user may specify no parameters to list all
emulated virtio-fs functions managed by any emulation manager device, or specify an emulation
manager device name to list virtio-fs functions managed by that emulation manager device.

Example response:

1426

{
 "jsonrpc": "2.0",
 "id": 1,
 "result": [
 {
 "manager": "mlx5_0",
 "Function List": [
 {
 "hot pluggable": "false",
 "pci_address": "0000:29:00.2",
 "vuid": "MT2251XZ02WZVFSS0D0F2",
 "function_type": "PF"
 }
]
 }
]
}

Parameter Name Optional/Mandatory Type Description

manager Optional String Emulation manager device name to
list emulated virtio-fs functions
specific to it

17.13.4.3 Hot-pluggable PCIe Functions Management
Hotplug PCIe functions are configured dynamically at runtime using RPCs.

The commands outlined in the following subsections hot plug a new PCIe function to the system.

17.13.4.3.1 virtio_fs_doca_get_functions

List DOCA transport functions for virtio-fs with their characteristics.

Users may specify no parameters to list all emulated virtio-fs functions managed by any emulation
manager device, or an emulation manager device name to list virtio-fs functions managed by a
specific emulation manager device.

Parameter Name Optional/Mandatory Type Description

manager Mandatory String Emulation manager device name for
creating a new Virtio FS function

17.13.4.3.2 virtio_fs_doca_function_create

Create a DOCA virtio FS function. The return value of this method is a VUID.

Parameter Name Optional/Mandatory Type Description

manager Mandatory String Emulation manager device name for
creating a new virtio-fs function

17.13.4.3.3 virtio_fs_doca_function_destroy

Destroy a DOCA SNAP Virtio-fs function.

This function should not be associated to any virtio-fs device.

1427

Parameter Name Optional/Mandatory Type Description

manager Mandatory String Emulation manager device name for
destroying a virtio-fs function

vuid Mandatory String VUID of the function to destroy

17.13.4.3.4 virtio_fs_doca_device_hotplug

Hot plug a DOCA SNAP Virtio-fs device. The virtio-fs device must be started.

Parameter Name Optional/Mandatory Type Description

dev_name Mandatory String Virtio-fs device name to hot plug

wait-for-done Optional Flag If used, the method waits until the device
is visible by the host PCIe subsystem.
Otherwise, only issue hot-plug operation
and exit.

17.13.4.3.5 virtio_fs_doca_device_hotunplug

Hot unplug a DOCA virtio FS device. The virtio FS device must be started.

Parameter Name Optional/Mandatory Type Description

dev_name Mandatory String Virtio-fs device name to hot unplug

wait-for-done Optional Flag If exists, the method waits until the device
is non-visible by the host PCIe subsystem.
Otherwise, only issue hot-unplug operation
and exit.

17.13.4.4 SPDK FSdev Module Configuration

17.13.4.4.1 fsdev_set_opts

Set SPDK FSdev module options.

Parameter Name Optional/Mandatory Type Description

fsdev_io_pool_size Mandatory int SPDK FSdev IO objects pool size

fsdev_io_cache_size Mandatory int SPDK FSdev IO per-thread objects
cache size

17.13.4.4.2 fsdev_get_opts

Get SPDK FSdev module options.

1428

17.13.4.5 SPDK FSDEV Management
DOCA SNAP Virtio-fs uses the SPDK file system (FSdev) device framework as a backend for its virtio-
fs controllers. Therefore, an SPDK FSdev must created and configured in advance.

Although the SPDK FSdev framework is generic and allows different types of the backend file system
devices to be implemented. Currently, the only available backend device is AIO. This is the file
system device that provides passthrough access to a local folder using either the Linux-native async
I/O or POSIX async I/O.

17.13.4.5.1 fsdev_get_fsdevs

Get information about the SPDK filesystem devices (fsdevs). The user may specify no parameters to
list all filesystem devices, or a filesystem device may be specified by name.

Parameter Name Optional/Mandatory Type Description

name Optional string Name of the fsdev of interest

17.13.4.5.2 fsdev_aio_create

Create an SPDK AIO FSdev,

Parameter Name Optional/Mandatory Type Description

name Mandatory string Name of the AIO FSdev to create

root_path Mandatory string Path on the system directory to be
exposed as an SPDK filesystem

enable_xattr Optional bool Enable extended attributes if set to
true ; false by default

enable_writeback_cache Optional bool Enable the writeback cache if set to
true ; false by default

max_write Optional int Maximum write size in bytes;
0x00020000 by default

enable_skip_rw Optional bool Enable skipping read/write IOs if set
to true ; false by default

17.13.4.5.3 fsdev_aio_delete

Delete an AIO FSdev.

Parameter Name Optional/Mandatory Type Description

name Mandatory string Name of the AIO FSdev to
delete

For debug purposes only.

https://github.com/anlongfei/libaio
https://www.man7.org/linux/man-pages/man7/aio.7.html

1429

17.13.4.6 Virtio-fs Emulation Management
Virtio-fs emulation is a protocol belonging to the virtio family of devices. These mount points are
found in virtual environments yet by design look like physical mount points to the user within the
virtual machine. Each virtio-fs mount point (e.g., virtio-fs PCIe entry) exposed to the host, whether
it is PF or VF, must be backed by a virtio-fs controller.

Command Description

virtio_fs_transport_create Create a virtio-fs transport

virtio_fs_transport_destroy Destroy a virtio-fs transport

virtio_fs_transport_start Start a virtio-fs transport

virtio_fs_transport_stop Stop a virtio-fs transport

virtio_fs_get_transports Display virtio-fs transports or requested transport

virtio_fs_device_create Create a virtio-fs device

virtio_fs_device_start Start a virtio-fs device

virtio_fs_device_stop Stop a virtio-fs device

virtio_fs_device_destroy Destroy a virtio-fs device

virtio_fs_get_devices Display virtio-fs devices with their characteristics

virtio_fs_doca_device_modify Modify a virtio-fs device created from DOCA transport

17.13.4.6.1 virtio_fs_transport_create

Create a virtio-fs transport. This RPC includes all the common parameters/options for all transports.
The transport becomes operational once it is started.

Parameter Name Optional/Mandatory Type Description

transport_name Mandatory String Transport type name. For DOCA
SNAP Virtio-fs,
transport_name should be
DOCA.

17.13.4.6.2 virtio_fs_transport_destroy

Destroy a virtio-fs transport.

Probing a virtio-fs driver on the host without an already functioning virtio-fs controller may
cause the host to hang until such controller is opened successfully (no timeout mechanism
exists).

The transport must be stopped for destruction.

1430

Parameter Name Optional/Mandatory Type Description

transport_name Mandatory String Transport type name. For DOCA
SNAP Virtio-fs, transport_name
should be DOCA.

17.13.4.6.3 virtio_fs_transport_start

Start a virtio-fs transport. This RPC finalizes the transport configuration. From this point, the
transport is fully operational and can be used to create new devices.

Parameter Name Optional/Mandatory Type Description

transport_name Mandatory String Transport type name. For DOCA
SNAP Virtio-fs, transport_name
should be DOCA.

17.13.4.6.4 virtio_fs_transport_stop

Stop a virtio-fs transport. This RPC makes the transport configurable again.

Parameter Name Optional/Mandatory Type Description

transport_name Mandatory String Transport type name. For DOCA
SNAP Virtio-fs, transport_name
should be DOCA.

17.13.4.6.5 virtio_fs_get_transports

Display virtio-fs transports or requested transport.

Parameter Name Optional/Mandatory Type Description

transport_name Optional String Transport type name. For DOCA
SNAP Virtio-fs, transport_name
should be DOCA.

17.13.4.6.6 virtio_fs_device_create

Create a virtio-fs device. This RPC creates a device with common parameters which are acceptable
to all the transport types. To configure transport-specific parameters, users should use the
virtio_fs_doca_device_modify command. The device becomes operational once it is started.

A transport cannot be stopped if any devices are associated to it.

1431

Parameter Name Optional/Mandatory Type Description

transport_name Mandatory String Transport type name. For DOCA SNAP
Virtio-fs, transport_name should be
DOCA.

dev_name Mandatory String Virtio-fs device name to use

tag Optional String Virtio-fs tag according to the virtio
specification.

num_request_queues Optional Number Virtio-fs num_request_queues according
to the virtio specification (default 31,
range 1-62)

queue_size Optional Number The maximal queue size for all virtio
queues (default 64, range 1-256)

fsdev Optional String The name of the SPDK filesystem backend
device

packed_vq Optional Bool Expose packed virtqueues feature to the
driver for negotiation.

driver_platform Optional String Set the driver's platform architecture.
Possible values: native ; x86 ; x86_64 ;

aarch32 ; aarch64 .

Using the native platform option sets the
driver platform to be identical to the
device platform.

17.13.4.6.7 virtio_fs_device_start

Start a virtio-fs device. This RPC finalizes the device configuration. From this point, the transport is
fully operational.

Must be provided during the
virtio_fs_device_create RPC
before the
virtio_fs_device_start RPC.

Must be provided during the
virtio_fs_device_create
RPC before the
virtio_fs_device_start RPC.

RPC does not verify if FSdev is
valid. If a wrong FSdev is
attached to the device, the user
would experience failure during
mount of the FS on the host.

1432

Parameter Name Optional/Mandatory Type Description

dev_name Mandatory String Virtio-fs device name

17.13.4.6.8 virtio_fs_device_stop

Stop a virtio-fs device.

Parameter Name Optional/Mandatory Type Description

dev_name Mandatory String Virtio-fs device name

17.13.4.6.9 virtio_fs_device_destroy

Destroy a virtio-fs device.

Parameter Name Optional/Mandatory Type Description

dev_name Mandatory String Virtio-fs device name

17.13.4.6.10 virtio_fs_device_modify

Modify a virtio-fs device. This RPC is used to modify/set common properties of the device which are
acceptable to all the transports.

Parameter Name Optional/Mandatory Type Description

dev_name Mandatory String Virtio-fs device name to use

tag Optional String Virtio-fs tag according to the virtio
specification

num_request_queues Optional Number Virtio-fs num_request_queues according
to the virtio specification (default 31;
range 1-62)

queue_size Optional Number The maximal queue size for all virtio
queues (default 64; range 1-256)

The device must be stopped before destruction.

Must be provided during
virtio_fs_device_create or

virtio_fs_device_modify
RPCs, before
virtio_fs_device_start RPC.

1433

•
•
•

Parameter Name Optional/Mandatory Type Description

fsdev Optional String The name of the SPDK filesystem backend
device

packed_vq Optional Bool Expose packed virtqueues feature to the
driver for negotiation

driver_platform Optional String Set the driver's platform architecture.
Possible values: native ; x86 ; x86_64 ;

aarch32 ; aarch64 .

Using the native platform option sets the
driver platform to be identical to the
device platform.

17.13.4.6.11 virtio_fs_get_devices

Display virtio-fs devices with their characteristics.

The user may specify no parameters to list the virtio-fs devices associated with all transports
The user may specify the name of a transport to list the virtio-fs devices associated with it
The user may specify the name of a virtio-fs device to display its characteristics

Transport name and device name parameters should be mutually exclusive.

Example response:

{
 "jsonrpc": "2.0",
 "id": 1,
 "result": [
 {
 "name": "vfsdev0",
 "transport_name": "DOCA",
 "state": "idle",
 "fsdev": "aio0",
 "tag": "docatag",
 "queue_size": 256,
 "num_request_queues": 1,
 "packed_ring": true
 }
]
}

Parameter Name Optional/Mandatory Type Description

transport_name Optional String Name of transport whose
associated virtio-fs devices to list

Must be provided during
virtio_fs_device_create or

virtio_fs_device_modify
RPCs, before
virtio_fs_device_start RPC.

RPC does not verify if FSdev is
valid. If a wrong FSdev is
attached to the device, the user
would experience failure during
mount of the FS on the host.

1434

•
a.

b.

c.

d.

Parameter Name Optional/Mandatory Type Description

dev_name Optional String Virtio-fs device name

17.13.4.6.12 virtio_fs_doca_device_modify

Modify a virtio-fs device created from DOCA transport.

Parameter Name Optional/Mandatory Type Description

dev_name Mandatory String Virtio-fs device name

manager Optional (must be provided
before start)

String Emulation manager

vuid Optional (must be provided
before start)

String Vendor unique identifier

17.13.4.7 Configuration Example

17.13.4.7.1 Static Function – Bring up

The following is an example of creating virtio-fs DOCA transport and associating it to a virtio-fs
device using a static physical function.

In BlueField:
Create an AIO FSdev backend:

rpc.py fsdev_aio_create aio0 /etc/virtiofs

Create and start the DOCA transport:

rpc.py --plugin rpc_virtio_fs_tgt -v virtio_fs_transport_create -t DOCA
rpc.py --plugin rpc_virtio_fs_tgt -v virtio_fs_transport_start -t DOCA

Get transport information:

rpc.py --plugin rpc_virtio_fs_tgt -v virtio_fs_get_transports

Get managers information:

rpc.py --plugin rpc_virtio_fs_tgt -v virtio_fs_doca_get_managers

This RPC is for configuring DOCA target specific parameters.

VUID validation is not
done. If an invalid VUID is
set,
virtio_fs_device_sta

rt RPC fails.

1435

e.

f.

g.

h.

i.

•
•

•
a.

b.

c.

•
•

Get function information, including their VUIDs:

rpc.py --plugin rpc_virtio_fs_tgt -v virtio_fs_doca_get_functions

Create the virtio-fs device associated with DOCA transport:

rpc.py --plugin rpc_virtio_fs_tgt -v virtio_fs_device_create --transport-name DOCA --dev-name
vfsdev0 --tag doca_test --fsdev aio0 --num-request-queues 8 --queue-size 256 --driver-platform
x86_64

Set and modify virtio-fs parameters (VUID must be provided before calling
virtio_fs_device_start RPC):

rpc.py --plugin rpc_virtio_fs_tgt -v virtio_fs_doca_device_modify --dev-name vfsdev0 --manager
mlx5_0 --vuid MT2333XZ0VJQVFSS0D0F2

Start the virtio-fs device:

rpc.py --plugin rpc_virtio_fs_tgt -v virtio_fs_device_start --dev-name vfsdev0

Get device information:

rpc.py --plugin rpc_virtio_fs_tgt -v virtio_fs_get_devices

In VM/host:
To mount a device with the tag docatag and load virtio_pci driver if not loaded:

mkdir "/tmp/test"
modprobe -v virtioFS
mount -t virtiofs docatag /tmp/test

17.13.4.7.2 Static Function – Teardown
In BlueField:

Get device information:

rpc.py --plugin rpc_virtio_fs_tgt -v virtio_fs_get_devices

Stop and destroy the virtio-fs device:

rpc.py --plugin rpc_virtio_fs_tgt -v virtio_fs_device_stop --dev-name vfsdev0
rpc.py --plugin rpc_virtio_fs_tgt -v virtio_fs_device_destroy --dev-name vfsdev0

Stop and destroy the DOCA transport:

rpc.py --plugin rpc_virtio_fs_tgt -v virtio_fs_transport_stop -t DOCA
rpc.py --plugin rpc_virtio_fs_tgt -v virtio_fs_transport_destroy -t DOCA

In VM/host:
To unmount the device:

umount /tmp/test
modprobe -rv virtiofs

1436

•
a.

b.

c.

d.

e.

f.

g.

h.

i.

j.

17.13.4.7.3 Hotplug Function

The following is an example of creating virtio-fs DOCA transport, creating a virtio-fs function,
associating it to a virtio-fs device, and hot-plugging it:

In BlueField:
Create AIO FSdev backend:

rpc.py fsdev_aio_create aio0 /etc/virtiofs

Create and start the DOCA transport:

rpc.py --plugin rpc_virtio_fs_tgt -v virtio_fs_transport_create -t DOCA
rpc.py --plugin rpc_virtio_fs_tgt -v virtio_fs_transport_start -t DOCA

Get transport information:

rpc.py --plugin rpc_virtio_fs_tgt -v virtio_fs_get_transports

Get managers information:

rpc.py --plugin rpc_virtio_fs_tgt -v virtio_fs_doca_get_managers

Some managers would show hotplug capability.
Get functions information:

rpc.py --plugin rpc_virtio_fs_tgt -v virtio_fs_doca_get_functions

Create virtio-fs function:

rpc.py --plugin rpc_virtio_fs_tgt -v virtio_fs_doca_function_create --manager mlx5_0

Returns VUID MT2333XZ0VJQVFSS0D0F2 .
Get functions information:

rpc.py --plugin rpc_virtio_fs_tgt -v virtio_fs_doca_get_functions

Returns the function that has been created with the appropriate VUID.
Create the virtio-fs device associated with DOCA transport:

rpc.py --plugin rpc_virtio_fs_tgt -v virtio_fs_device_create --transport-name DOCA --dev-name
vfsdev0 --tag doca_test --fsdev aio0 --num-request-queues 8 --queue-size 256 --driver-platform
x86_64

Set and modify virtio-fs parameters:

rpc.py --plugin rpc_virtio_fs_tgt -v virtio_fs_device_create --transport-name DOCA --dev-name
vfsdev0 --tag doca_test --fsdev aio0 --num-request-queues 8 --queue-size 256 --driver-platform
x86_64

The VUID must be provided before calling the virtio_fs_device_start RPC.
Start the virtio FS device:

rpc.py --plugin rpc_virtio_fs_tgt -v virtio_fs_device_start --dev-name vfsdev0

1437

k.

l.

•
•

•
•

•
a.

b.

c.

d.

e.

f.

Get device information:

rpc.py --plugin rpc_virtio_fs_tgt -v virtio_fs_get_devices

The output for vfsdev0 would show it is not yet plugged.
Hot plug the DOCA device to the host and wait until it becomes visible by the host:

rpc.py --plugin rpc_virtio_fs_tgt -v virtio_fs_doca_device_hotplug --dev-name vfsdev0 --wait-for-
done

In VM/host:
To mount a device with the tag docatag and load virtio_pci driver if not loaded:

mkdir "/tmp/test"
modprobe -v virtiofs
mount -t virtiofs docatag /tmp/test

17.13.4.7.4 Hot-unplug Function

The following is an example of how to cleanup and destroy the flow described under section
"Hotplug Function":

In VM/host:
To unmount the device:

umount /tmp/test
modprobe -rv virtiofs

In BlueField:
Get device information:

rpc.py --plugin rpc_virtio_fs_tgt -v virtio_fs_get_devices

Hot unplug the DOCA device from the host and wait until it becomes non-visible by the
host:

rpc.py --plugin rpc_virtio_fs_tgt -v virtio_fs_doca_device_hotunplug --dev-name vfsdev0 --wait-for-
done

Get device information:

rpc.py --plugin rpc_virtio_fs_tgt -v virtio_fs_get_devices

Stop and destroy the virtio-fs DOCA device:

rpc.py --plugin rpc_virtio_fs_tgt -v virtio_fs_device_stop --dev-name vfsdev0
rpc.py --plugin rpc_virtio_fs_tgt -v virtio_fs_device_destroy --dev-name vfsdev0

Destroy the virtio-fs function:

rpc.py --plugin rpc_virtio_fs_tgt -v virtio_fs_doca_function_destroy --manager mlx5_0 --vuid
MT2333XZ0VJQVFSS0D0F2

Stop and destroy the DOCA transport:

1438

rpc.py --plugin rpc_virtio_fs_tgt -v virtio_fs_transport_stop -t DOCA
rpc.py --plugin rpc_virtio_fs_tgt -v virtio_fs_transport_destroy -t DOCA

17.13.5 Appendix – BlueField Firmware Configuration
Before configuring DOCA SNAP Virtio-fs, the user must ensure that all firmware configuration
requirements are met. By default, virtio-fs is disabled and must be enabled by running both
common DOCA SNAP Virtio-fs configurations and additional protocol-specific configurations
depending on the expected usage of the application (e.g., hot-plug, SR-IOV, UEFI boot, etc).

After configuration is finished, the host must be power cycled for the changes to take effect.

17.13.5.1 System Configuration Parameters
Parameter Description Possible Values

INTERNAL_CPU_MODEL Enable BlueField to work in internal CPU
model

0/1

PCI_SWITCH_EMULATION_ENABLE Enable PCIe switch for emulated PFs 0/1

PCI_SWITCH_EMULATION_NUM_PORT The maximum number of hotplug
emulated PFs which equals 
PCI_SWITCH_EMULATION_NUM_PORT minu
s 2. For example, if
PCI_SWITCH_EMULATION_NUM_PORT=16 ,
then the maximum number of hotplug
emulated PFs would be 14.

[0,3-16]

17.13.5.2 RDMA/RoCE Configuration
BlueField's RDMA/RoCE communication is blocked for BlueField's default OS interfaces (nameds
ECPFs, typically mlx5_0 and mlx5_1). If RoCE traffic is required, additional network functions
(scalable functions) must be added which support RDMA/RoCE traffic.

To verify that all configuration requirements are satisfied, users may query the current/
next configuration by running the following:

mlxconfig -d /dev/mst/mt41692_pciconf0 -e query

Must be set to 1 for storage
emulations.

One switch port is reserved for
all static PFs.

The following is not required when working over TCP or even RDMA/IB.

1439

•

•

•

To enable RoCE interfaces, run the following from within the BlueField device:

[dpu] mlxconfig -d /dev/mst/mt41692_pciconf0 s PER_PF_NUM_SF=1
[dpu] mlxconfig -d /dev/mst/mt41692_pciconf0 s PF_SF_BAR_SIZE=8 PF_TOTAL_SF=2
[dpu] mlxconfig -d /dev/mst/mt41692_pciconf0.1 s PF_SF_BAR_SIZE=8 PF_TOTAL_SF=2

17.13.5.3 Virtio-fs Configuration

Parameter Description Possible Values

VIRTIO_VFS_EMULATION_ENABLE Enable virtio-fs device emulation 0/1

VIRTIO_VFS_EMULATION_NUM_PF Number of static emulated virtio-fs PFs [0-4]

VIRTIO_VFS_EMULATION_NUM_MSIX Number of MSIX assigned to emulated
virtio-fs PF/VF

[0-63]

17.13.6 Appendix – Host OS Configuration
With Linux environment on host OS, additional kernel boot parameters may be required to support
DOCA SNAP Virtio-fs related features:

To use PCIe hotplug, pci=realloc must be added

modprobe.blacklist=virtio_pci,virtiofs for the virtio-fs driver which is not built-in

modprobe.blacklist=virtio_pci for the virtio_pci driver which is not built-in

To view boot parameter values, run:

cat /proc/cmdline

It is recommended to use the following command with virtio-fs:

[dpu] cat /proc/cmdline BOOT_IMAGE … pci=realloc modprobe.blacklist=virtio_pci,virtiofs

•

•

Due to virtio-fs protocol limitations, using bad configuration while working with static
virtio-fs PFs may cause the host server OS to fail on boot.

Before continuing, make sure you have configured:
A working channel to access Arm even when the host is shut down. Setting such
channel is out of the scope of this document. Please refer to NVIDIA BlueField DPU
BSP documentation for more details.
Use the initial configure file to create a controller on the static virtio-fs PF.

For more information, please refer to section "Virtio-fs Emulation
Management"

See WARNING above.

https://docs.nvidia.com/networking/display/bluefielddpuos
https://confluence.nvidia.com/pages/viewpage.action?spaceKey=docadev&title=.NVIDIA+DOCA+Virtio-fs+Service+Guide+v2.8.0#id-.NVIDIADOCAVirtioFSServiceGuidev2.8.0-Virtio-FSEmulationManagement

1440

17.13.6.1 Intel Server Performance Optimizations

cat /proc/cmdline
BOOT_IMAGE=(hd0,msdos1)/vmlinuz-5.15.0_mlnx root=UUID=91528e6a-b7d3-4e78-9d2e-9d5ad60e8273 ro crashkernel=auto
resume=UUID=06ff0f35-0282-4812-894e-111ae8d76768 rhgb quiet pci=realloc modprobe.blacklist=virtio_pci,virtiofs

17.13.6.2 AMD Server Performance Optimizations

cat /proc/cmdline
cat /proc/cmdline BOOT_IMAGE=(hd0,msdos1)/vmlinuz-5.15.0_mlnx root=UUID=91528e6a-b7d3-4e78-9d2e-9d5ad60e8273 ro
crashkernel=auto resume=UUID=06ff0f35-0282-4812-894e-111ae8d76768 rhgb quiet pci=realloc
modprobe.blacklist=virtio_pci,virtiofs

17.13.7 References
Title Description

NVIDIA DOCA NVIDIA DOCA™ SDK enables developers to rapidly create
applications and services on top of NVIDIA® BlueField® networking
platform, leveraging industry-standard APIs

NVIDIA BlueField BSP BlueField Board Support Package includes the bootloaders and
other essentials for loading and setting software components

BlueField DPU Hardware User Manual This document provides details as to the interfaces of
the BlueField DPU, specifications, required software and firmware
for operating the device, and a step-by-step plan for bringing the
DPU up

NVIDIA BlueField BSP Documentation This document provides product release notes as well as
information on the BlueField software distribution and how to
develop and/or customize applications, system software, and file
system images for the BlueField platform

DOCA Device Emulation DOCA Device Emulation library documentation. The DOCA Device
Emulation subsystem provides a low-level software API for users to
develop PCIe devices and their controllers.

DOCA DevEmu Virtio-fs DOCA Device Emulation Virtio-fs library documentation. The DOCA
DevEmu Virtio-fs library is part of the DOCA DevEmu Virtio
subsystem. It provides low-level software APIs that provide building
blocks for developing and manipulating virtio filesystem devices
using the device emulation capability of BlueField platforms.

DOCA DevEmu PCI DOCA Device Emulation PCI library documentation. DOCA DevEmu
PCI is part of the DOCA Device Emulation subsystem. It provides
low-level software APIs that allow management of an emulated
PCIe device using the emulation capability of NVIDIA® BlueField®
networking platforms.

https://docs.nvidia.com/doca/sdk/index.html
https://docs.nvidia.com/networking/display/bluefielddpuos
https://docs.mellanox.com/category/bluefieldsnic
https://docs.nvidia.com/networking/display/bluefielddpuos

1441

•
•

18 API References
This section contains the following pages:

NVIDIA DOCA Driver APIs
NVIDIA DOCA Library APIs

18.1 NVIDIA DOCA Driver APIs
The driver APIs for this DOCA version are available here.

18.2 NVIDIA DOCA Library APIs
The library APIs for this DOCA version are available here.

https://docs.nvidia.com/doca/api/2.8.0/doca-driver-apis/index.html
https://docs.nvidia.com/doca/api/2.8.0/doca-libraries-api/index.html

1442

•
•
•
•
•
•
•
•
•
•
•
•

19 Miscellaneous (Runtime)
This section contains the following pages:

NVIDIA DOCA Glossary
NVIDIA DOCA Crypto Acceleration
NVIDIA DOCA Services Fluent Logger
NVIDIA DOCA DPU CLI
NVIDIA DOCA Emulated Devices
NVIDIA BlueField Modes of Operation
DOCA Switching
NVIDIA DOCA with OpenSSL
NVIDIA BlueField DPU Scalable Function User Guide
NVIDIA TLS Offload Guide
NVIDIA DOCA Troubleshooting Guide
NVIDIA DOCA Virtual Functions User Guide

19.1 NVIDIA DOCA Glossary
Term Description

ACS Access control services

ASAP2 Accelerated Switching and Packet Processing

ASN Autonomous system number

ATF Arm-trusted firmware

BAR Base address register

BDF address Bus, device, function address. This is the device's PCIe bus address to
uniquely identify the specific device.

BFB BlueField bootstream

BGP Border gateway protocol

BMC Board management controller

BUF Buffer

BSP BlueField support package

CBS Committed burst size

CIR Committed information rate

CMDQ Command queue

CPDS Control pipe dynamic size

CQE Completion queue events

CTX Context

DEK Data encryption key

DMA Direct memory access

DOCA DPU SDK

1443

•
•

Term Description

DPA Data path accelerator; an auxiliary processor designed to accelerate
data-path operations

DPCP Direct packet control plane

DPDK Data plane development kit

DPI Deep packet inspection

DPIF Datapath offload interface

DPU Data processing unit, the third pillar of the data center with CPU and
GPU. BlueField is available as a DPU and as a SuperNIC.

DW Dword

EBS Excess burst size

ECE Enhanced connection establishment

ECPF Embedded CPU physical function

EIR Excess information rate

EM Exact match

eMMC Embedded multi-media card

ESP EFI system partition

ESP Encapsulating security payload

EU Execution unit. HW thread; a logical DPA processing unit.

FLR Function level reset

FIFO First-in-first-out

FIPS Federal Information Processing Standards

FPGA Field-programmable gate arrays

FW Firmware

GDAKIN GPUDirect async kernel-initiated network

GDB GNU debugger

HCA Host-channel adapter

Host When referring to "the host" this documentation is referring to the
server host. When referring to the Arm based host, the
documentation will specifically call out "Arm host".

Server host OS refers to the Host Server OS (Linux or Windows)
Arm host refers to the AARCH64 Linux OS which is running on the
BlueField Arm Cores

HW Hardware

hwmon Hardware monitoring

IB InfiniBand

ICM Interface configuration memory

ICV Integrity check value

IDE Integrated development environment

IKE Internet key exchange

1444

Term Description

IR Intermediate representation

IRQ Interrupt request

KPI Key performance indicator

LRO Large receive offload

LSO Large send offload

LTO Link-time optimization

MFT Mellanox firmware tools

MLNX_OFED Mellanox OpenFabrics Enterprise Distribution

MPU Message passing interface

MSB Most significant bit

MSI-X Message signaled interrupts extended

MSS Maximum segment size

MSS Memory subsystem

MST Mellanox software tools

MTU Maximum transmission unit

NAT Network address translation

NIC Network interface card

NIST National Institute of Standards and Technology

NP Notification point

NS Namespace

NUMA Non-uniform memory access

OOB Out-of-band

OS Operating system

OVS Open vSwitch

PBA Pending bit array

PBS Peak burst size

PCIe PCI Express; Peripheral Component Interconnect Express

PF Physical function

PE Progress engine

PHC Physical hardware clock

PIR Peak information rate

PK Platform key

PKA Public key accelerator

POC Proof of concept

PUD Process under debug

RD Route distinguisher

1445

Term Description

RDMA Remote direct memory access

RDMA CM RDMA connection manager

RegEx Regular expression

REQ Request

RES Response

RN Request node
RN-F – Fully coherent request node
RN-D – IO coherent request node with DVM support
RN-I – IO coherent request node

RNG Random number generator/generation

RoCE Ethernet and RDMA over converged Ethernet

RP Reaction point

RQ Receive queue

RShim Random shim

RSP Remote serial protocol

RT Route target

RTOS Real-time operating system

RTT Round-trip time

RX Receive

RXP Regular expression processor

SA Security association

SBSA Server base system architecture

SDK Software development kit

SF Sub-function or scalable function

SFC Services function chaining

SG Scatter-gather

SHA Secure hash algorithm

SN Sequence number

SNAP Storage-defined network-accelerated processing

SPDK Storage performance development kit

SPI Security parameters index

SQ Send queue

SR-IOV Single-root IO virtualization

SuperNIC a configuration of a DPU that is specific for E-W networking.
BlueField has a SuperNIC configuration

SVI Switch virtual interface

Sync event Synchronization event

TAI International Atomic Time

1446

•
•

Term Description

TIR Transport interface receive

TIS Transport interface send

TLS Transport layer security

TSO TCP segmentation offload

TX Transmit

UDS Unix domain socket

UEFI Unified extensible firmware interface

UTC Coordinated Universal Time

vDPA Virtual data path acceleration

VF Virtual function

VFE Virtio full emulation

VM Virtual machine

VMA NVIDIA® Messaging Accelerator

VNI Virtual network identifier
VXLAN network identifier

VPI Virtual protocol interconnect

VRF Virtual routing and forwarding

VTEP VXLAN tunnel endpoint

WorkQ or workq Work queue

WQE Work queue elements

WR Write

XLIO NVIDIA® Accelerated IO

19.2 NVIDIA DOCA Crypto Acceleration
NVIDIA® BlueField® DPU incorporates several Public Key Acceleration (PKA) engines to offload the
processor of the Arm host, providing high-performance computation of PK algorithms. BlueField's
PKA is useful for a wide range of security applications. It can assist with SSL acceleration, or a
secure high-performance PK signature generator/checker and certificate related operations.

BlueField's PKA software libraries implement a simple, complete framework for crypto public key
infrastructure (PKI) acceleration. It provides direct access to hardware resources from the user
space, and makes available a number of arithmetic operations—some basic (e.g., addition and
multiplication), and some complex (e.g., modular exponentiation and modular inversion)—and high-
level operations such as RSA, Diffie-Hallman, Elliptic Curve Cryptography, and the Federal Digital
Signature Algorithm (DSA as documented in FIPS-186) public-private key systems.

Some of the use cases for the BlueField PKA involve integrating OpenSSL software applications with
BlueField's PKA hardware. The BlueField PKA dynamic engine for OpenSSL allows applications
integrated with OpenSSL (e.g., StrongSwan) to accomplish a variety of security-related goals and to

1447

•
•
•
•
•
•

accelerate the cryptographic processing with the BlueField PKA hardware. OpenSSL versions ≥1.0.0,
≤1.1.1, and 3.0.2 are supported.

The engine supports the following operations:

RSA
DH
DSA
ECDSA
ECDH
Random number generation that is cryptographically secure.

Up to 4096-bit keys for RSA, DH, and DSA operations are supported. Elliptic Curve Cryptography
support of (nist) prime curves for 160, 192, 224, 256, 384 and 521 bits.

For example:

To sign a file using BlueField's PKA engine:

$ openssl dgst -engine pka -sha256 -sign <privatekey> -out <signature> <filename>

To verify the signature, execute:

$ openssl dgst -engine pka -sha256 -verify <publickey> -signature <signature> <filename>

For further details on BlueField PKA, please refer to "PKA Driver Design and Implementation
Architecture Document" and/or "PKA Programming Guide". Directions and instructions on how to
integrate the BlueField PKA software libraries are provided in the README files on our PKA GitHub.

19.3 NVIDIA DOCA Services Fluent Logger
This guide provides instructions on how to use the logging infrastructure for DOCA services on top of
NVIDIA® BlueField® DPU.

19.3.1 Introduction
Fluent Bit is a fast log collector that collects information from multiple sources and then forwards
the data onward using Fluent.

On NVIDIA DPUs, the Fluent Bit logger can be easily configured to collect system data and the logs
from the different DOCA services.

19.3.2 Deployment
The deployment is based on a recommended configuration template for the existing Fluent Bit
container.

With CentOS 7.6, only OpenSSL 1.1 (not 1.0) works with PKA engine and keygen.
Use openssl11 with PKA engine and keygen.

https://github.com/Mellanox/pka
https://fluentbit.io/
https://hub.docker.com/r/fluent/fluent-bit/

1448

•

•

•

For information about the deployment of DOCA containers on top of the BlueField DPU, refer
to NVIDIA DOCA Container Deployment Guide.

The following is an example YAML file for deploying the Fluent Bit pod:

apiVersion: v1
kind: Pod
metadata:
 name: fluent-bit
spec:
 hostNetwork: true
 containers:
 - name: fluent-bit
 image: fluent/fluent-bit:latest
 imagePullPolicy: Always
 # Example resource definitions
 resources:
 requests:
 memory: "100Mi"
 cpu: "200m"
 limits:
 memory: "200Mi"
 cpu: "300m"
 volumeMounts:
 - name: varlog
 mountPath: /var/log
 - name: config-file
 mountPath: /fluent-bit/etc/fluent-bit.conf
 volumes:
 - name: varlog
 hostPath:
 path: /var/log
 - name: config-file
 hostPath:
 path: /opt/mellanox/doca/services/fluent-bit.conf
 type: File

As explained in the "Configuration" section, Fluent Bit uses a configuration file. As such, to ensure
that the example YAML file is shared from the DPU to the deployed Fluent Bit container, use the
following:

 path: /opt/mellanox/doca/services/fluent-bit.conf

19.3.3 Configuration
The Fluent Bit configuration file should have the following sections:

[SERVICE] – to define the service specifications

[INPU] – to define folders to collect logs from (there could be multiple inputs)

[OUTPUT] – IP and port to stream the data to

Example configuration file:

[SERVICE]
 Flush 2
 Log_Level info
 Daemon off
 Parsers_File parsers.conf
 HTTP_Server On
 HTTP_Listen 0.0.0.0
 HTTP_Port 2020

[INPUT]
 Name tail
 Tag kube.*
 Path /var/log/containers/*.log
 Parser docker
 Mem_Buf_Limit 5MB

The path below is just an example for where the user can place the fluent-bit.conf file.
The file could be placed in a different directory on the DPU as long as the YAML file points
to the updated location.

1449

•
•

 Skip_Long_Lines On
 Refresh_Interval 10

[INPUT]
 Name tail
 Tag sys.*
 Path /var/log/doca/*/*.log
 Mem_Buf_Limit 5MB
 Skip_Long_Lines On
 Refresh_Interval 10

[OUTPUT]
 Name es
 Match *
 Host 10.20.30.40
 Port 9201
 Index fluent_bit
 Type cpu_metrics

More information about the full specifications can be found in the official Fluent Bit manual.

19.3.4 Troubleshooting
For container-related troubleshooting, refer to the "Troubleshooting" section in the NVIDIA DOCA
Container Deployment Guide.

For general troubleshooting, refer to the NVIDIA DOCA Troubleshooting Guide.

When copying the above YAML file, it is possible that the container infrastructure logs give an error
related to RFC 1123". These errors are usually a result of a spacing error in the file, which
sometimes occur when copying the file as is from this page. To fix this issue, make sure that only
the space character (' ') is used as a spacer in the file and not other whitespace characters that
might have been added during the copy operation.

19.4 NVIDIA DOCA DPU CLI
This guide provides quick access to a useful set of CLI commands and utilities on the NVIDIA®
BlueField® DPU environment.

19.4.1 Introduction
This guide provides a concise guide on useful commands for DOCA deployment and configuration.

The tables in this guide provide two categories of commands:

General commands for Linux/networking environment
DOCA/DPU-specific commands

The most important field to pay attention to is Path for the INPUT section. DOCA services

report their logs to a unique directory under /var/log/doca/<service_name>/*.log per

the respective DOCA service. As such, the configuration above defines the /var/log/doca/

/.log input definition.

For more information about these commands, such as usage instructions, flag options,
arguments and so on, use the -h option after the command or use the manual (e.g., man

lspci).

https://docs.fluentbit.io/manual/administration/configuring-fluent-bit/classic-mode/configuration-file

1450

19.4.2 General Commands
Command Description

ifconfig Used to configure kernel-resident network interfaces. It is used
at boot time to set up interfaces as necessary. After that, it is
usually only needed when debugging or when system tuning is
needed.
If no arguments are given, ifconfig displays the status of the
currently active interfaces. If a single interface argument is
given, it displays the status of the given interface only. If a
single -a argument is given, it displays the status of all
interfaces, even those that are down. Otherwise, it configures
an interface.

ethtool <devname> Used to query and control network device driver and hardware
settings, particularly for wired Ethernet devices.
<devname> is the name of the network device on

which ethtool should operate.

lspci Displays information about PCIe buses in the system and devices
connected to them. By default, it shows a brief list of devices.

tcpdump Dump traffic on a network. Usage: tcpdump -i <interface> w

here <interface> is any port interface (physical/SF rep/VF
port rep).

ovs-vsctl Utility for querying and configuring ovs-vswitchd . The ovs-

vsctl program supports the model of a bridge implemented by
Open vSwitch in which a single bridge supports ports on
multiple VLANs.

mount 10.0.0.10:/vol/myshare/

myshare/

Used for mounting a work directory on the DPU.

scp Secure copy (remote file copy program). Useful for copying files
from BlueField to the host and vice versa.

iperf Used for server-client connection. Useful to check if the
network connection achieves the speed of the network card on
the DPU (line rate).

19.4.3 DPU/DOCA Commands
Command Description

ibdev2netdev Displays available mlnx interfaces

This command shows the speed of the network card of
the DPU.

Must be used after creating a new directory
named myshare under root (i.e., mkdir /myshare)

1451

Command Description

mst Used to start MST service, to stop it, and for other
operations with NVIDIA devices like reset and enabling
remote access

cat /etc/mlnx-release Displays the full BlueField image (bfb) version

cat /etc/os-release Displays the details of the underlying OS installed on
BlueField

ibv_devinfo Displays the current InfiniBand connected devices and
relevant information. Useful for checking current
firmware version.

ipmitool power cycle Power cycle

echo 1024 > /sys/kernel/mm/hugepages/

hugepages-2048kB/nr_hugepages

DPDK setup. Allocates hugepages for DPDK environment
abstraction layer (EAL).

mlxdevm tool The mlxdevm tool is found under /opt/mellanox/

iproute2/sbin/ . With this tool it is possible to create
an SF and set its state to active, configure a HW
address and set it to trusted, deploy the created SF and
print info about it.

/opt/mellanox/iproute2/sbin/mlxdevm port

add pci/<pci_address> flavour pcisf pfnum

<correspondig_physical_function_number>

sfnum <unique_sf_number>

Creates an SF in the flavor of the given PF with the
given unique SF number. Example:

/opt/mellanox/iproute2/sbin/mlxdevm port add pci/0000:0
3`:00.0 flavour pcisf pfnum 0 sfnum 4

/opt/mellanox/iproute2/sbin/mlxdevm port

show

Displays information about the available SFs

/opt/mellanox/iproute2/sbin/mlxdevm port

function set pci/0000:03:00.0/<sf_index>

hw_addr <HW_address> trust on state active

Configures SF capabilities such as setting the HW
address, making it "trusted", and setting its state to
active. <sf_index> the SF. To obtain this index, you

may run mlxdevm port show . Example:

/opt/mellanox/iproute2/sbin/mlxdevm port function set
pci/0000:03:00.0/229377 hw_addr 02:25:f2:8d:a2:4c trust
on state active

$ echo mlx5_core.sf.<next_serial> > /sys/

bus/auxiliary/drivers/mlx5_core.sf_cfg/

unbind

$ echo mlx5_core.sf. <next_serial> > /sys/

bus/auxiliary/drivers/mlx5_core.sf/bind

These two commands deploy the created SF. The first
command unbinds the SF from the default driver, while
the second command binds the SF to the actual driver.
The deployment phase should be done after the
capabilities of the SF are configured. The SF is
identified by <next_serial> which can be obtained
by running the command below.

Prior to performing a power cycle, make sure
to do a graceful shutdown.

1452

Command Description

ls /sys/bus/auxiliary/devices/

mlx5_core.sf.*

Displays additional information about the created SFs
and their "next serial numbers".
For example, if mlx5_core.sf.2 exists in the output

of the command, then running cat /sys/bus/

auxiliary/devices/mlx5_core.sf.2/sfnum would

output the sfnum related to mlx5_core.sf.2 .

/opt/mellanox/iproute2/sbin/mlxdevm port

function set pci/<pci_address>/<sf_index>

state inactive

/opt/mellanox/iproute2/sbin/mlxdevm port

del pci/<pci_address>/<sf_index>

These two commands must be executed to delete a
given SF. First, users must set the state of the SF to
inactive, and only then should it be deleted.

/opt/mellanox/iproute2/sbin/mlxdevm port

help

Displays additional information about operations that
can be used on created SF ports

crictl pods Displays currently active K8S pods, and their IDs (it
might take up to 20-30 seconds for the pod to start)

crictl ps Displays currently active containers and their IDs

crictl ps -a Displays all containers, including containers that
recently finished their execution

crictl logs <container-id> Examines the logs of a given container

crictl exec -it <container-id> /bin/bash Attaches a shell to a running container

journalctl -u kubelet Examines the Kubelet logs. Useful when a pod/
container fails to spawn.

crictl stopp <pod-id> Stops a running K8S pod

crictl stop <container-id> Stops a running container

crictl rmi <image-id> Removes a container image from the local K8S registry

19.5 NVIDIA DOCA Emulated Devices

Unable to render include or excerpt-include. Could not retrieve page.

19.6 NVIDIA BlueField Modes of Operation
This document describes the modes of operation available for NVIDIA® BlueField® networking
platforms (DPUs or SuperNICs).

19.6.1 Introduction

Unable to render include or excerpt-include. Could not retrieve page.

1453

1.

2.

•

•

•

19.7 DOCA Switching
NVIDIA® BlueField® and NVIDIA® ConnectX® platforms provide robust support for diverse
applications through hardware-based offloads, offering unparalleled scalability, performance, and
efficiency.

This section lists the extensive switching capabilities enabled by DOCA libraries and services on
these platforms. It includes detailed configurations of Open Virtual Switch (OVS) such as the setup
of representors, virtualization options, and optional bridge configurations. These subsections guide
users through the steps to effectively implement these software components.

19.7.1 DOCA Representors Model

BlueField® DPU uses netdev representors to map each one of the host side physical and virtual
functions:

Serve as the tunnel to pass traffic for the virtual switch or application running on the Arm
cores to the relevant PF or VF on the Arm side.
Serve as the channel to configure the embedded switch with rules to the corresponding
represented function.

Those representors are used as the virtual ports being connected to OVS or any other virtual switch
running on the Arm cores.

When in ECPF ownership mode, we see 2 representors for each one of the DPU’s network ports: one
for the uplink, and another one for the host side PF (the PF representor created even if the PF is not
probed on the host side). For each one of the VFs created on the host side a corresponding
representor would be created on the Arm side. The naming convention for the representors is as
follows:

Uplink representors: p<port_number>

PF representors: pf<port_number>hpf

VF representors: pf<port_number>vf<function_number>

The diagram below shows the mapping of between the PCIe functions exposed on the host side and
the representors. For the sake of simplicity, we show a single port model (duplicated for the second
port).

This model is only applicable when the BlueField is operating DPU mode.

1454

•
•
•
•

The red arrow demonstrates a packet flow through the representors, while the green arrow
demonstrates the packet flow when steering rules are offloaded to the embedded switch. More
details on that are available in the switch offload section.

This section contains the following pages:

Virtio Acceleration through Hardware vDPA
Bridge Offload
Link Aggregation
Controlling Host PF and VF Parameters

The MTU of host functions (PF/VF) must be smaller than the MTUs of both the uplink and
corresponding PF/VF representor. For example, if the host PF MTU is set to 9000, both
uplink and PF representor must be set to above 9000.

DOCA also provides OpenvSwitch Acceleration (OVS in DOCA) which implements a virtual
switch service, designed to work with NVIDIA NICs and DPUs to utilize ASAP2 (Accelerated
Switching and Packet Processing) technology for data-path acceleration, providing the most
efficient performance and feature set due to its architecture and use of DOCA libraries.

1455

1.

2.

1.

2.

3.

4.

5.

19.7.2 Virtio Acceleration through Hardware vDPA

19.7.2.1 Hardware vDPA Installation
Hardware vDPA requires QEMU v2.12 (or with upstream 6.1.0) and DPDK v20.11 as minimal versions.

To install QEMU:

Clone the sources:

git clone https://git.qemu.org/git/qemu.git
cd qemu
git checkout v2.12

Build QEMU:

mkdir bin
cd bin
../configure --target-list=x86_64-softmmu --enable-kvm
make -j24

To install DPDK:

Clone the sources:

git clone git://dpdk.org/dpdk
cd dpdk
git checkout v20.11

Install dependencies (if needed):

yum install cmake gcc libnl3-devel libudev-devel make pkgconfig valgrind-devel pandoc libibverbs libmlx5
libmnl-devel -y

Configure DPDK:

export RTE_SDK=$PWD
make config T=x86_64-native-linuxapp-gcc
cd build
sed -i 's/\(CONFIG_RTE_LIBRTE_MLX5_PMD=\)n/\1y/g' .config
sed -i 's/\(CONFIG_RTE_LIBRTE_MLX5_VDPA_PMD=\)n/\1y/g' .config

Build DPDK:

make -j

Build the vDPA application:

cd $RTE_SDK/examples/vdpa/
make -j

19.7.2.2 Hardware vDPA Configuration
To configure huge pages:

1456

1.

2.
a.

b.

c.

d.

e.

f.

mkdir -p /hugepages
mount -t hugetlbfs hugetlbfs /hugepages
echo <more> > /sys/devices/system/node/node0/hugepages/hugepages-1048576kB/nr_hugepages
echo <more> > /sys/devices/system/node/node1/hugepages/hugepages-1048576kB/nr_hugepages

To configure a vDPA VirtIO interface in an existing VM's xml file (using libvirt):

Open the VM's configuration XML for editing:

virsh edit <domain name>

Perform the following:
Change the top line to:

<domain type='kvm' xmlns:qemu='http://libvirt.org/schemas/domain/qemu/1.0'>

Assign a memory amount and use 1GB page size for huge pages (size must be the same
as that used for the vDPA application), so that the memory configuration looks as
follows.

<memory unit='KiB'>4194304</memory>
<currentMemory unit='KiB'>4194304</currentMemory>
<memoryBacking>
 <hugepages>
 <page size='1048576' unit='KiB'/>
 </hugepages>
</memoryBacking>

Assign an amount of CPUs for the VM CPU configuration, so that the vcpu and cputun

e configuration looks as follows:

<vcpu placement='static'>5</vcpu>
<cputune>
 <vcpupin vcpu='0' cpuset='14'/>
 <vcpupin vcpu='1' cpuset='16'/>
 <vcpupin vcpu='2' cpuset='18'/>
 <vcpupin vcpu='3' cpuset='20'/>
 <vcpupin vcpu='4' cpuset='22'/>
</cputune>

Set the memory access for the CPUs to be shared, so that the cpu configuration looks
as follows:

<cpu mode='custom' match='exact' check='partial'>
 <model fallback='allow'>Skylake-Server-IBRS</model>
 <numa>
 <cell id='0' cpus='0-4' memory='8388608' unit='KiB' memAccess='shared'/>
 </numa>
</cpu>

Set the emulator in use to be the one built in step 2, so that the emulator
configuration looks as follows:

<emulator><path to qemu executable></emulator>

Add a virtio interface using QEMU command line argument entries, so that the new
interface snippet looks as follows:

<qemu:commandline>
 <qemu:arg value='-chardev'/>
 <qemu:arg value='socket,id=charnet1,path=/tmp/sock-virtio0'/>
 <qemu:arg value='-netdev'/>
 <qemu:arg value='vhost-user,chardev=charnet1,queues=16,id=hostnet1'/>
 <qemu:arg value='-device'/>

1457

1.
a.
b.
c.

2.

3.

4.

 <qemu:arg value='virtio-net-pci,mq=on,vectors=6,netdev=hostnet1,id=net1,mac=e4:11:c6:d3:45:f2,bus
=pci.0,addr=0x6,
 page-per-vq=on,rx_queue_size=1024,tx_queue_size=1024'/>
</qemu:commandline>

19.7.2.3 Running Hardware vDPA

Create the ASAP2 environment:
Create the VFs.
Enter switchdev mode.
Set up OVS.

Run the vDPA application:

cd $RTE_SDK/examples/vdpa/build
./vdpa -w <VF PCI BDF>,class=vdpa --log-level=pmd,info -- -i

Create a vDPA port via the vDPA application CLI:

create /tmp/sock-virtio0 <PCI DEVICE BDF>

Start the VM:

virsh start <domain name>

For further information on the vDPA application, visit the Vdpa Sample Application DPDK
documentation.

19.7.3 Bridge Offload

A Linux bridge is an in-kernel software network switch (based on and implementing a subset of IEEE
802.1D standard) used to connect Ethernet segments together in a protocol-independent manner.
Packets are forwarded based on L2 Ethernet header addresses.

mlx5 provides the ability to offload bridge dataplane unicast packet forwarding and VLAN
management to hardware.

In this snippet, the vhostuser socket file path, the amount of queues, the MAC
and the PCIe slot of the virtio device can be configured.

Hardware vDPA supports switchdev mode only.

The vhostuser socket file path must be the one used when configuring the VM.

Bridge offload is supported switchdev mode only.

Bridge offload is supported from kernel version 5.15 onward.

https://doc.dpdk.org/guides/sample_app_ug/vdpa.html

1458

1.
a.
b.

2.

1.

2.

3.

19.7.3.1 Basic Configuration
Initialize the ASAP2 environment:

Create the VFs.
Enter switchdev mode.

Create a bridge and add mlx5 representors to bridge:

ip link add name bridge0 type bridge
ip link set enp8s0f0_0 master bridge0

19.7.3.2 Configuring VLAN
Enable VLAN filtering on the bridge:

ip link set bridge0 type bridge vlan_filtering 1

Configure port VLAN matching (trunk mode). In this configuration, only packets with specified
VID are allowed.

bridge vlan add dev enp8s0f0_0 vid 2

Configure port VLAN tagging (access mode). In this configuration, VLAN header is pushed/
popped upon reception/transmission on port.

bridge vlan add dev enp8s0f0_0 vid 2 pvid untagged

19.7.3.3 VF LAG Support
Bridge supports offloading on bond net device that is fully initialized with mlx5 uplink representors
and is in single (shared) FDB LAG mode. Details about initialization of LAG are provided in section
"SR-IOV VF LAG".

To add a bonding net device to bridge:

ip link set bond0 master bridge0

For further information on interacting with Linux bridge via iproute2 bridge tool, refer to man 8
bridge.

19.7.4 Link Aggregation

Unable to render include or excerpt-include. Could not retrieve page.

19.7.5 Controlling Host PF and VF Parameters

Unable to render include or excerpt-include. Could not retrieve page.

https://www.man7.org/linux/man-pages/man8/bridge.8.html

1459

•

•

19.8 NVIDIA DOCA with OpenSSL
This guide provides instructions on using DOCA SHA for OpenSSL implementations.

19.8.1 Introduction
The doca_sha_offload_engine is an OpenSSL dynamic engine with the ability of offloading SHA
calculation. It can offload the OpenSSL one-shot SHA-1, SHA-256, and SHA-512. It supports
synchronous mode and asynchronous mode by leveraging the OpenSSL async_jobs library. For more

information on the async_jobs library, please refer to official OpenSSL documentation.

This engine is based on the doca_sha library and the OpenSSL dynamic engine interface API. For
more information on the OpenSSL dynamic engine, please refer to official OpenSSL documentation.

This engine can be called by an OpenSSL application through the OpenSSL high-level algorithm call
interface, EVP_Digest . For more information on the EVP_Digest , please refer to official OpenSSL
documentation.

19.8.2 Prerequisites
Hardware-based doca_sha engine which can be verified by calling

doca_sha_get_hardware_supported()
Installed OpenSSL version ≥ 1.1.1

19.8.3 Architecture
The following diagram shows the software hierarchy of doca_sha_offload_engine and its location
in the whole DOCA repository.

From the perspective of OpenSSL, this engine is an instantiation of the OpenSSL dynamic engine
interface API by leveraging the doca_sha library.

https://www.openssl.org/docs/man1.1.1/man3/ASYNC_pause_job.html
https://www.openssl.org/docs/man1.1.1/man1/openssl-engine.html
https://www.openssl.org/docs/manmaster/man3/EVP_Digest.html

1460

•
•

•

•

•

19.8.4 Capabilities and Limitations
Only one-shot OpenSSL SHA is supported
The maximum message length ≤ 2GB, the same as doca_sha library

19.8.5 OpenSSL Command Line Verification
Verify that the engine can be loaded:

$ openssl engine dynamic -pre NO_VCHECK:1 -pre SO_PATH:${DOCA_DIR}/infrastructure/doca_sha_offload_engine/
libdoca_sha_offload_engine.so -pre LOAD -vvv -t -c
(dynamic) Dynamic engine loading support
[Success]: SO_PATH:${DOCA_DIR}/infrastructure/doca_sha_offload_engine/libdoca_sha_offload_engine.so
[Success]: LOAD
Loaded: (doca_sha_offload_engine) Openssl SHA offloading engine based on doca_sha
 [SHA1, SHA256, SHA512]
 [available]
 set_pci_addr: set the pci address of the doca_sha_engine
 (input flags): STRING

For SHA-1:

$ echo "hello world" | openssl dgst -sha1 -engine {DOCA_DIR}/infrastructure/doca_sha_offload_engine/
libdoca_sha_offload_engine.so -engine_impl

For SHA-256:

$ echo "hello world" | openssl dgst -sha256 -engine {DOCA_DIR}/infrastructure/doca_sha_offload_engine/
libdoca_sha_offload_engine.so -engine_impl

For SHA-512:

1461

•

•

•

1.

2.

3.

$ echo "hello world" | openssl dgst -sha512 -engine {DOCA_DIR}/infrastructure/doca_sha_offload_engine/
libdoca_sha_offload_engine.so -engine_impl

19.8.6 OpenSSL Throughput Test
openssl-speed is the OpenSSL throughput benchmark tool. For more information, consult official

OpenSSL documentation. doca_sha_offload_engine throughput can also be measured using

openssl-speed .

SHA-1, each job 10000 bytes, using engine:

$ openssl speed -evp sha1 -bytes 10000 -elapsed --engine {DOCA_DIR}/infrastructure/doca_sha_offload_engine/
libdoca_sha_offload_engine.so

SHA-256, each job 10000 bytes, using engine, async_jobs=256 :

$ openssl speed -evp sha256 -bytes 10000 -elapsed --engine {DOCA_DIR}/infrastructure/
doca_sha_offload_engine/libdoca_sha_offload_engine.so -async_jobs 256

SHA-512, each job 10000 bytes, using engine, async_jobs=256 , threads=8 :

$ openssl speed -evp sha512 -bytes 10000 -elapsed --engine {DOCA_DIR}/infrastructure/
doca_sha_offload_engine/libdoca_sha_offload_engine.so -async_jobs 256 -multi 8

19.8.7 Using DOCA SHA Offload Engine in OpenSSL Application
More information on the dynamic engine usage can be found in the official OpenSSL documentation.

To load the doca_sha_offload_engine (optionally, set engine PCIe address):

ENGINE *e;
const char *doca_engine_path = "${DOCA_DIR}/infrastructure/doca_sha_offload_engine/
libdoca_sha_offload_engine.so";
const char *default_doca_pci_addr = "03:00.0";
ENGINE_load_dynamic();
e = ENGINE_by_id(doca_engine_path);
ENGINE_ctrl_cmd_string(e, "set_pci_addr", doca_engine_pci_addr, 0);
ENGINE_init(e);
ENGINE_set_default_digests(e);

To perform SHA calculation by calling the OpenSSL high-level function EVP_XXX:

const EVP_MD *evp_md = EVP_sha1();
EVP_MD_CTX *mdctx = EVP_MD_CTX_create();
EVP_DigestInit_ex(mdctx, evp_md, e);
EVP_DigestUpdate(mdctx, msg, msg_len);
EVP_DigestFinal_ex(mdctx, digest, digest_len);
EVP_MD_CTX_destroy(mdctx);

To unload the engine:

ENGINE_unregister_digests(e);
ENGINE_finish(e);
ENGINE_free(e);

https://www.openssl.org/docs/man1.1.1/man1/openssl-speed.html
https://www.openssl.org/docs/man1.0.2/man3/engine.html

1462

19.9 NVIDIA BlueField DPU Scalable Function User Guide
This document provides an overview and configuration of scalable functions (sub-functions, or SFs)
for NVIDIA® BlueField® DPU.

19.9.1 Introduction
Scalable functions (SFs), or sub-functions, are very similar to virtual functions (VFs) which are part
of a Single Root I/O Virtualization (SR-IOV) solution. I/O virtualization is one of the key features
used in data centers today. It improves the performance of enterprise servers by giving virtual
machines direct access to hardware I/O devices. The SR-IOV specification allows one PCI Express
(PCIe) device to present itself to the host as multiple distinct "virtual" devices. This is done with a
new PCIe capability structure added to a traditional PCIe function (i.e., a physical function or PF).

The PF provides control over the creation and allocation of new VFs. VFs share the device's
underlying hardware and PCIe. A key feature of the SR-IOV specification is that VFs are very
lightweight so that many of them can be implemented in a single device.

To utilize the capabilities of VF in the BlueField, SFs are used. SFs allow support for a larger number
of functions than VFs, and more importantly, they allow running multiple services concurrently on
the DPU.

An SF is a lightweight function which has a parent PCIe function on which it is deployed. The SF,
therefore, has access to the capabilities and resources of its parent PCIe function and has its own
function capabilities and its own resources. This means that an SF would also have its own dedicated
queues (i.e., txq, rxq).

SFs co-exist with PCIe SR-IOV virtual functions (on the host) but also do not require enabling PCIe
SR-IOV.

SFs support E-Switch representation offload like existing PF and VF representors. An SF shares PCIe-
level resources with other SFs and/or with its parent PCIe function.

1463

•
•

1.

19.9.2 Prerequisites
Refer to the NVIDIA DOCA Installation Guide for Linux for details on how to install BlueField related
software.

Make sure your firmware version is 20.30.1004 or higher
To enable SF support on the device, change the PCIe address for each port:

$ mlxconfig -d 0000:03:00.0 s PF_BAR2_ENABLE=0 PER_PF_NUM_SF=1 PF_TOTAL_SF=236
 PF_SF_BAR_SIZE=10

PF_BAR2_ENABLE: if this config is set, then all PFs and ECPFs have the same number of SFs. This should be
off (deprecated).
If set. PF_TOTAL_SF and PF_SF_BAR_SIZE won’t work.
PER_PF_NUM_SF: If this config is set, each PF and ECPF configure/control its own number of SFs.
THE ABOVE TWO CONFIGS AFFECS BOTH BF AND HOST, TREAT WITH CARE!
Also, only one of them can be set. It is INVALID to set them both

PF_TOTAL_SF: maximum number of SFs we wish to configure for the given PF/ECPF.
PF_SF_BAR_SIZE: size of each SF at the BAR2. The size is in powers of 2 in KB.
For example: PF_SF_BAR_SIZE=10 means each SF is taking 1MB of the BAR.
 PF_TOTAL_SF=14 means this PCI function can create up to 14 SFs.
 In total: FW will allocate 14MB of BAR2.

19.9.3 SF Configuration
To use an SF, a 3-step setup sequence must be followed first:

Create.

Perform a BlueField system-level reset for the mlxconfig settings to take effect.

1464

2.
3.

1.

Configure.
Deploy.

These steps can be performed using mlxdevm tool.

19.9.3.1 Configuration Using mlxdevm Tool
Create the SF.
SFs are managed using the mlxdevm tool supplied with iproute2 package. The tool is found at

/opt/mellanox/iproute2/sbin/mlxdevm .

An SF is created using the mlxdevm tool. The SF is created by adding a port of pcisf flavor.
To create an SF port representor, run:

/opt/mellanox/iproute2/sbin/mlxdevm port add pci/<pci_address> flavour pcisf pfnum <corresponding pfnum>
sfnum <sfnum>

For example:

/opt/mellanox/iproute2/sbin/mlxdevm port add pci/0000:03:00.0 flavour pcisf pfnum 0 sfnum 4

Output example:

pci/0000:30:00.0/229409: type eth netdev eth0 flavour pcisf controller 0 pfnum 0 sfnum 4
 function:
 hw_addr 00:00:00:00:00:00 state inactive opstate detached roce true max_uc_macs 128 trust off

The number 229409 is required to complete the following two steps (i.e., configuration and
deployment).
pci/0000:03:00.0/229409 is called the SF index.

pci/<pci_address>/<sf_index> can be replaced with <representor_name> . For
example:

pci/0000:03:00.0/229409 = en3f0pf0sf4

To see information about the created SF such as its MAC address, trust mode, or state
(active/inactive), run the following command:

When working on top of an upstream-based kernel, on which the mlxdevm tool is
unavailable, please refer to the Upstream Guide on Scalable Functions for instructions on
using the devlink tool which should be used instead.

Each SF must have a unique number (<sfnum>).

https://github.com/Mellanox/scalablefunctions/wiki/Upstream-step-by-step-guide

1465

2.

•

•

•

3.

/opt/mellanox/iproute2/sbin/mlxdevm port show

Output example:

pci/0000:30:00.0/229409: type eth netdev en3f0pf0sf4 eth0 flavor pcisf controller 0 pfnum 0 sfnum 4
 function:
 hw_addr 00:00:00:00:00:00 state inactive opstate detached roce true max_uc_macs 128 trust off

Configure the SF.
A subfunction representor (SF port representor) is created but it is not deployed yet. Users
should configure the hardware address (e.g., MAC address), set trust mode to on, and
activate the SF before deploying it.
The following steps can be executed as separate commands (at any order) or combined as
one:

To configure the hardware address, run:

/opt/mellanox/iproute2/sbin/mlxdevm port function set pci/<pci_address>/<sf_index> hw_addr <MAC
address>

To set the trust mode to on, run:

/opt/mellanox/iproute2/sbin/mlxdevm port function set pci/<pci_address>/<sf_index> trust on

To activate the created SF, run:

/opt/mellanox/iproute2/sbin/mlxdevm port function set pci/<pci_address>/<sf_index> state active

Alternatively, to configure the MAC address, set trust mode on, and set the state as active,
run:

/opt/mellanox/iproute2/sbin/mlxdevm port function set pci/<pci_address>/<sf_index> hw_addr <mac_address>
trust on state active

For example:

/opt/mellanox/iproute2/sbin/mlxdevm port function set pci/0000:03:00.0/229409 hw_addr 00:00:00:00:04:0
 trust on state active

Deploy the SF.
To unbind the SF from the default config driver and bind the actual SF driver, run:

echo mlx5_core.sf.<next_serial> > /sys/bus/auxiliary/drivers/mlx5_core.sf_cfg/unbind
echo mlx5_core.sf.<next_serial> > /sys/bus/auxiliary/drivers/mlx5_core.sf/bind

For example:

echo mlx5_core.sf.4 > /sys/bus/auxiliary/drivers/mlx5_core.sf_cfg/unbind
echo mlx5_core.sf.4 > /sys/bus/auxiliary/drivers/mlx5_core.sf/bind

The SF capabilities above must be set before deploying the SF.

1466

•

•

•

4.

Useful commands:
To see the available sub-functions, run:

$ devlink dev show

For example, if you run the command before creating, configuring, and deploying the
SF (using the steps detailed earlier), the output would appear as follows:

pci/0000:03:00.0
pci/0000:03:00.1
auxiliary/mlx5_core.sf.2
auxiliary/mlx5_core.sf.3

After creating, configuring, and deploying the SF, the output would be:

pci/0000:03:00.0
pci/0000:03:00.1
auxiliary/mlx5_core.sf.2
auxiliary/mlx5_core.sf.3
auxiliary/mlx5_core.sf.4

Note that the <next_serial> number is 4 for the created SF.

To see the sfnum of each sub-function, run:

cat /sys/bus/auxiliary/devices/mlx5_core.sf.<next_serial>/sfnum

For example:

cat /sys/bus/auxiliary/devices/mlx5_core.sf.4/sfnum

Example output:

cat /sys/bus/auxiliary/devices/mlx5_core.sf.4/sfnum
4

To remove an SF, you must first make its state inactive and only then remove the SF
representor.
To make the SF's state inactive, run:

/opt/mellanox/iproute2/sbin/mlxdevm port function set pci/<pci_address>/<sf_index> state inactive

To delete the SF port representor, run:

/opt/mellanox/iproute2/sbin/mlxdevm port del pci/<pci_address>/<sf_index>

For example:

/opt/mellanox/iproute2/sbin/mlxdevm port function set pci/0000:03:00.0/229409 state inactive
/opt/mellanox/iproute2/sbin/mlxdevm port del pci/0000:03:00.0/229409

Use the SF.

<next_serial> is a number produced by the firmware when creating the SF (this is

the gvmi number of the SF). mlxdevm tool when creating the SF. To obtain it, refer
to the useful commands provided below.

1467

a.

b.

Running the application on the DPU requires OVS configuration. By creating SFs, an SF
representor for the OVS is also created and named en3f0pf*sf* . Therefore, each
representor needs to be connected to the correct OVS bridge.

The following example configures 2 SFs and adds their representors to the OVS.
Create, configure, and deploy the SFs. Run:

/opt/mellanox/iproute2/sbin/mlxdevm port add pci/0000:03:00.0 flavour pcisf pfnum 0 sfnum 4
/opt/mellanox/iproute2/sbin/mlxdevm port add pci/0000:03:00.0 flavour pcisf pfnum 0 sfnum 5

Using the command mlxdevm port show , you can see the SF indices of the created
SFs.

/opt/mellanox/iproute2/sbin/mlxdevm port show

Output example:

pci/0000:30:00.0/229409: type eth netdev en3f0pf0sf4 flavour pcisf controller 0 pfnum 0 sfnum 4
 function:
 hw_addr 00:00:00:00:00:00 state inactive opstate detached roce true max_uc_macs 128 trust off
pci/0000:30:00.0/229410: type eth netdev en3f0pf0sf5 flavour pcisf controller 0 pfnum 0 sfnum 5
 function:
 hw_addr 00:00:00:00:00:00 state inactive opstate detached roce true max_uc_macs 128 trust off

Configure the MAC address, set trust mode on, and activate the created SFs:

Two SFs related to the same PCIe are necessary for the configuration in the
illustration.

1468

c.

d.

e.

/opt/mellanox/iproute2/sbin/mlxdevm port function set pci/0000:03:00.0/229409 hw_addr
02:25:f2:8d:a2:4c trust on state active
/opt/mellanox/iproute2/sbin/mlxdevm port function set pci/0000:03:00.0/229410 hw_addr
02:25:f2:8d:a2:5c trust on state active

Using ifconfig , you may see that there are 2 added network interfaces:

en3f0pf0sf4 and en3f0pf0sf5 for the two respective SF port representors.
Delete existing OVS bridges (optional).
For example, run the following command to delete an OVS bridge called ovsbr1 :

ovs-vsctl del-br ovsbr1

Create two bridges sf_bridge1 and sf_bridge2 and configure them as follows:

ovs-vsctl add-br sf_bridge1
ovs-vsctl add-br sf_bridge2
ovs-vsctl add-port sf_bridge1 p0
ovs-vsctl add-port sf_bridge2 pf0hpf

Add the port representors to the OVS bridges:

ovs-vsctl add-port sf_bridge1 en3f0pf0sf4
ovs-vsctl add-port sf_bridge2 en3f0pf0sf5

The OVS bridges after adding the SF representors:

Bridge sf_bridge1
 Port p0
 Interface p0
 Port sf_bridge1
 Interface sf_bridge1
 type: internal
 Port en3f0pf0sf4
 Interface en3f0pf0sf4
Bridge sf_bridge2
 Port sf_bridge2
 Interface sf_bridge2
 type: internal
 Port en3f0pf0sf5
 Interface en3f0pf0sf5
 Port pf0hpf
 Interface pf0hpf
ovs_version: "2.14.1"

To run the application, use the following command to initialize the SFs during runtime:

Executable_binary -a auxiliary:mlx5_core.sf.* -a auxiliary:mlx5_core.sf.*

For example:

doca_<app_name> -a auxiliary:mlx5_core.sf.4 -a auxiliary:mlx5_core.sf.5 -- [application_flags]

The interface might be down by default. Remember to ifconfing the interface to
"up" status.

When deleting the SF port representor, you must also de-attach it from the bridge it
is connected to using the command ovs-vsctl port-del en3f0pf0sf* . Otherwise,
the port representor will still be connected to the bridge but would not be
recognizable.

1469

1.
2.
3.

1.
•
•

•
•

•
•
•

2.
•
•
•
•

3.
•

19.10 NVIDIA TLS Offload Guide
This guide provides an overview and configuration steps of TLS hardware offloading via kernel-TLS,
using hardware capabilities of NVIDIA® BlueField® DPU.

19.10.1 Introduction
Transport layer security (TLS) is a cryptographic protocol designed to provide communications
security over a computer network. The protocol is widely used in applications such as email, instant
messaging, and voice over IP (VoIP), but its use in securing HTTPS remains the most publicly visible.

The TLS protocol aims primarily to provide cryptography, including privacy (confidentiality),
integrity, and authenticity using certificates, between two or more communicating computer
applications. It runs in the application layer and is itself composed of two layers: the TLS record and
the TLS handshake protocols.

TLS works over TCP and consists of 3 phases:

Handshake – establishment of a connection
Application – sending and receiving encrypted packets
Termination – connection termination

19.10.1.1 TLS Handshake
In the handshake phase, the client and server decide on which cipher suites they will use, and
exchange keys and certificates according to the following flow:

Client hello, provides the server at a minimum with the following:
A key exchange algorithm, to determine how symmetric keys are exchanged
An authentication or digital signature algorithm, which dictates how server
authentication and client authentication (if required) are implemented
A bulk encryption cipher, which is used to encrypt the data
A hash/MAC (message authentication code) function, which determines how data
integrity checks are carried out
The version of the protocol it understands
The cipher suites it is capable of working with
A unique random number, which is important to guard against replay attacks

Server hello:
Selects a cipher suite
Generates its own random number
Assigns a session ID to the TLS connection
Sends enough information to complete a key exchange—most often, this means sending
a certificate including an RSA public key

Client:
Responsible for completing the key exchange using the information the server provided

At this point, the connection is secured, both sides have agreed on an encryption algorithm, a MAC
algorithm, and respective keys.

1470

•
•

•

•

•

•

1.

2.
•
•

19.10.1.2 kTLS
The Linux kernel provides TLS offload infrastructure. kTLS (kernel TLS) offloads TLS handling from
the user-space to the kernel-space.

kTLS has 3 modes of operation:

SW – all operation is handled in kernel (i.e., handshake, encryption, decryption)
HW-offload (the focus of this guide) – handshake and error handling are performed in
software. Packets are encrypted/decrypted in hardware. In this case, there is an additional
offload from the kernel to the hardware.
HW-record – all operations are handled by the hardware (driver and firmware) including the
handshake. It also handles its own TCP session. This option is currently not supported.

19.10.1.3 HW-offloading kTLS
In general, the TLS HW-offload performs best and provides optimal value on longer lived sessions,
with relatively large packets. Scaling in terms of concurrent connections and connections per second
is use-case dependent (e.g., the amount of active concurrent connections from the overall open
concurrent connections is material).

It is necessary to learn the following terms before proceeding:

The transport interface send (TIS) object is responsible for performing all transport-related
operations of the transmit side. Messages from Send Queues (SQs) get segmented and
transmitted by the TIS including all transport required implications. For example, in the case
of a large send offload, the TIS is responsible for the segmentation. The NVIDIA® ConnectX®
hardware uses a TIS object to save and access the TLS crypto information and state of an
offloaded Tx kTLS connection.
The transport interface receive (TIR) object is responsible for performing all transport-
related operations on the receive side. TIR performs the packet processing and reassembly
and is also responsible for demultiplexing the packets into different receive queues (RQs).
Both TIS and TIR hold the data encryption key (DEK).

19.10.1.3.1 kTLS Offload Flow in High Level

Establishes a TLS connection with remote host (server or client) by handling a TLS handshake
by kernel on current host.
Initializes the following state for each connection, Rx and Tx:

Crypto secrets (e.g., public key)
Crypto processing state

It is important to understand that Rx (receiving) and Tx (sending) can have two separate
modes. For example, Rx can be dealt in SW mode but Tx in HW-offload mode (i.e., the
hardware will only encrypt but not decrypt).

The following flow does not include resync and errors.

1471

•
•

1.

2.
3.
4.

1.

2.

3.
4.

Record metadata (e.g., record sequence number, offset)
Expected TCP sequence number

Tx flow:

Packets belonging to device offloaded sockets arrive to the kernel and it does not encrypt
them.
Kernel performs record framing and marks the packet with a connection identifier.
Kernel sends packets to the device driver for offloading.
Device checks that the sequence number matches the state in the TIS and performs
encryption and authentication.

Rx flow:

When the connection is created, a HW steering rule is added to steer packets to their
respective TIR.
Device receives the packet then validates and checks that sequence number of TCP matches
the state in the TIR.
Performs decryption and authentication, and indicates in the CQE (completion queue entry).
Kernel understands that the packet is already decrypted so it does not decrypt it itself and
passes it on to the user-space.

19.10.1.3.2 Resync and Error Handling

When the sequence number does not match expectations or if any other error occurs, the hardware
gives control back to the SW which handles the problem.

See more about kTLS modes, resync, and error handling in the Linux Kernel documentation.

19.10.2 Prerequisites
All commands in this section should be performed on host (not on BlueField) unless stated
otherwise.

19.10.2.1 Checking Hardware Support for Crypto Acceleration
To check if the BlueField or ConnectX have crypto acceleration, run the following command from
host:

host> mst start # turn on mst driver
host> flint -d <device under /dev/mst/ directory> dc | grep Crypto

The output should include Crypto Enabled . For example:

host> flint -d /dev/mst/mt41686_pciconf0 dc | grep Crypto
....
;;Description = NVIDIA BlueField-2 E-Series Eng. sample DPU; 200GbE single-port QSFP56; PCIe Gen4 x16; Secure Boot
Disabled; Crypto Enabled; 16GB on-board DDR; 1GbE OOB management
....

https://docs.kernel.org/networking/tls-offload.html

1472

•
•
•

•

•

a.

b.

19.10.2.2 Kernel Requirements
Operating system must be either:

FreeBSD 13.0+.
A Linux distribution built on Linux kernel version 5.3 or later for Tx support and version
5.9 or later for Rx support. We recommend using the latest version when possible for
the best available optimizations.

Check the current kernel version on the host. Run:

host> uname -r

The kernel must be configured to support TLS by setting the options TLS_DEVICE and

MLX5_TLS to y . To check if TLS is configured, run:

host> cat /boot/config-$(uname -r) | grep TLS

Example output:

host> cat /boot/config-5.4.0-121-generic | grep TLS
...
CONFIG_TLS_DEVICE=y
CONFIG_MLX5_TLS=y
...

If the current kernel does not support one of the options, you can change the configurations
and recompile, or build a new kernel.

Schematic flow for building a Linux kernel:
Enter the Linux kernel directory downloaded (usually in /usr/src/):

host> make menuconfig # Set TLS_DEVICE=y and MLX5_TLS=y in options. Setting location in the menu
can be found by pressing '/' and typing 'setting'.
host> make -j <num-of-cores> && make -j <num-of-cores> modules_install && make -j <num of cores>
install

Update the grub to the new configured kernel then reboot.

TIS Pool optimization is added to Linux kernel version 6.0. Instead of creating
TIS per new connection, unused TIS from previous connection, will be
recycled. This will improve Tx connection rate. No further installations
required beyond installing the kernel itself.

Follow the build instructions provided with the kernel provider.

1473

•

19.10.3 Configurations and Useful Commands

19.10.3.1 TLS Setup

19.10.3.2 Finding NVIDIA Interfaces

host> mst start # if mst driver is not loaded.
host> mst status -v

NVIDIA's netdev interfaces are found be under the NET column.

For example:

host> mst status -v
....
DEVICE_TYPE MST PCI RDMA NET NUMA
BlueField2(rev:0) /dev/mst/mt41686_pciconf0.1 b1:00.1 mlx5_1 net-ens5f1 1

BlueField2(rev:0) /dev/mst/mt41686_pciconf0 b1:00.0 mlx5_0 net-ens5f0 1

In this example, the interfaces ens5f1 and ens5f0 are NVIDIA's netdev interfaces.

19.10.3.3 Configuring TLS Offload
To check if the offload option is on or off, run:

host> ethtool -k $iface | grep tls

Example output:

1474

•

•

tls-hw-tx-offload: on
tls-hw-rx-offload: off
tls-hw-record: off [fixed]

To turn Tx offload on or off:

host> ethtool -K $iface tls-hw-tx-offload <on | off>

To turn Rx offload on or off:

host> ethtool -K $iface tls-hw-rx-offload <on | off>

19.10.3.4 Configuring OVS Bridge on BlueField
When the host is connected to a BlueField device, an OVS bridge must be configured on the
BlueField so traffic passes bidirectionally from host to uplink. If no OVS bridge is configured, the
host is isolated from the network (see diagram above).

 To configure the OVS bridge on BlueField, run the following commands on BlueField:

dpu> for br in $(ovs-vsctl list-br); do ovs-vsctl del-br $br; done # erasing existing bridges
dpu> ovs-vsctl add-br ovs-br0 && ovs-vsctl add-port ovs-br0 p0 && ovs-vsctl add-port ovs-br0 pf0hpf
dpu> ovs-vsctl add-br ovs-br1 && ovs-vsctl add-port ovs-br1 p1 && ovs-vsctl add-port ovs-br1 pf1hpf
dpu> ovs-vsctl set Open_vSwitch . other_config:hw-offload=true && systemctl restart openvswitch-switch

Where p0 / p1 are the uplink interfaces and pf0hpf / pf1hpf are the interfaces facing the host.

19.10.4 Common Use Cases

19.10.4.1 OpenSSL
OpenSSL is an all-around cryptography library that offers open-source application of the TLS
protocol. It is the main library for using kTLS and other applications since Nginx depends on it as
their base library.

kTLS is supported only in OpenSSL version 3.0.0 or higher, and only on the supported kernel versions.
The supported OpenSSL version is available for download from distro packages, or it can be
downloaded and compiled from the OpenSSL GitHub.

tls-hw-record is not required for the device as kTLS does not support "HW Record"
mode.

On BlueField image version 3.7.0 or higher the default OVS configuration can be used
without additional modifications.

The kTLS and HW offloading do not depend on OpenSSL. Any program that can implement a
TLS stack can be run instead. However, because of the vast use of OpenSSL, this guide
addresses installation recommendations.

1475

1.

2.

3.

Check the version of the default OpenSSL:

host> openssl version

Follow OpenSSL installation instructions from OpenSSL's supplied guides. During the
configuration process, make sure to set the enable-ktls option before building it by
running it from within the OpenSSL directory (works in version 3.0 and higher). For example:

host> ./Configure linux-$(uname -p) enable-ktls --prefix=/var/tmp/ssl --openssldir=/var/tmp/ssl # Add
"threads" as well for multithread support

Check if kTLS is enabled in OpenSSL by running the following command from within the
OpenSSL directory, and check whether ktls is listed under Enabled features :

host> perl configdata.pm --dump | less

If OpenSSL has been downloaded manually, the OpenSSL executable would be located in the /

<openssl-dir>/apps/ directory. For example, checking the version from within OpenSSL directory

is done using the command ./apps/openssl version .

19.10.4.2 Nginx
Nginx is a free and open-source software web server that can also be used as a reverse proxy, load
balancer, mail proxy and HTTP cache. Nginx can be configured to depend on OpenSSL library and
therefore Nginx could have the great advantages of TLS HW-offload on ConnectX-6 Dx, ConnectX-7
or the DPU.

19.10.4.2.1 Prerequisites

Refer to the OpenSSL section for setting OpenSSL.

Many modules depend on OpenSSL. Changing the default version may cause problems.
Adding --prefix=/var/tmp/ssl --openssldir=/var/tmp/ssl in the ./Configure com
mand below may prevent the built OpenSSL from becoming the default one used by the
system. Make sure the directory of the OpenSSL you build manually is not located in any
paths listed in the PATH environment variable.

Installing a new OpenSSL requires recompiling user tools that were configured over OpenSSL
(e.g., Nginx).

In OpenSSL's master source code, there is a feature "Support for kTLS Zero-Copy sendfile()
on Linux" (Zero-Copy commit). If the Zero-Copy option is set, SSL_sendfile() uses the
Zero-Copy TX mode which means that the data itself is not copied from the user space to
Kernel space. This gives a performance boost when used with kTLS hardware offload. Be
aware that invalid TLS records may be transmitted if the file is changed while being sent.

https://github.com/openssl/openssl/pull/18650

1476

1.

2.

3.

4.

5.

6.

7.

19.10.4.2.2 Configuration
Install dependencies. For Ubuntu distribution, for example:

host> apt install libpcre3 libpcre3-dev

Clone Nginx's repository and enter directory:

host> git clone https://github.com/nginx/nginx.git && cd nginx

Configure Nginx components to support kTLS:

host> ./auto/configure --with-openssl=/<insert_path_to_openssl_directory> --with-debug --with-
http_ssl_module --with-openssl-opt="enable-ktls -DOPENSSL_LINUX_TLS -g3"

Build Nginx:

host> make -j <num of cores> && sudo make -j <num-of-cores> install

Add the following lines to the end of the /usr/local/nginx/conf/nginx.conf file (before
the last closing bracket):

server {
 listen 443 ssl default_server reuseport;
 server_name localhost;
 root /tmp/nginx/docs/html/;

 include /etc/nginx/default.d/*.conf;
 ssl_certificate /usr/local/nginx/conf/cert.pem;
 ssl_certificate_key /usr/local/nginx/conf/key.pem;
 ssl_ciphers ECDHE-RSA-AES128-GCM-SHA256;
 ssl_protocols TLSv1.2;

 location / {
 index index.html;
 }

 error_page 404 /404.html;
 location = /40x.html {
 }

 error_page 500 502 503 504 /50x.html;
 location = /50x.html {
 }
}

Notice that the key and certificate of the Nginx server should be located in /usr/local/

nginx/conf/ . Therefore, after creating a key and certificate (as mentioned in section
"Adding Certificate and Key") they should be copied to the aforementioned directory:

host> cp key.pem /usr/local/nginx/conf/ && cp cert.pem /usr/local/nginx/conf/

To run Nginx:

host> cd nginx && objs/nginx

This command starts Nginx Server in the background.

If make fails with a deprecated openssl functions error, remove -Werror for

CFLAGS in objs/Makefile and try again.

1477

19.10.4.2.3 Stopping Nginx

host> pkill nginx

19.10.4.2.4 Wrk – Client

A simple client for requesting Nginx's server is "wrk". It can be installed by running the following:

host> git clone https://github.com/wg/wrk.git && cd wrk/ && make -j <num-of-cores>

19.10.4.2.5 Using Wrk

The following is an example of using the wrk client to request the page index.html from the Nginx

server in address 4.4.4.4 (run within wrk's directory):

host> taskset -c 0 ./wrk -t1 -c10 -d30s https://4.4.4.4:443/index.html

19.10.5 Testing Offload via OpenSSL
This chapter demonstrates how to test the kTLS hardware offload.

19.10.5.1 TLS Testing Setup
For testing purposes, a server and a client are required. The testing section only tests a single setup
of a host and BlueField-2 or a host ConnectX which will participate either as a server or as a client.
Setting a back-to-back setup of the same kind and installing the same OpenSSL version can help
avoid misconfigurations. Nevertheless, it is required to have the same OpenSSL version on both the
client and server.

Make sure the desired kTLS is configured as detailed in section "Configuring TLS Offload". To test
hardware offload, make sure tls-hw-tx-offload and/or tls-hw-rx-offload are on. To test
kTLS software mode, make sure to turn them off.

In addition, make sure both hosts (server and client) can communicate bidirectionally through
ConnectX or BlueField. One can set the interface that supports the offload (on the host) with an IP,
in same subnet. Make sure that when using BlueField, an OVS bridge is set on BlueField as shown in
"Configuring OVS Bridge on BlueField".

Testing the kTLS offload (with or without hardware offload) is in the same manner as
mentioned in section "Testing kTLS". TBD

Make sure to refer to section "OpenSSL" before proceeding.

1478

•

•

19.10.5.2 Adding Certificate and Key
The server side should create a certificate and key. The client can also use a certificate, but it is
not necessary for this test case. Run the following command in the installed OpenSSL directory and
fill in all the requested details:

host> openssl req -x509 -newkey rsa:2048 -keyout key.pem -out cert.pem -days 365 -nodes

The following files are created:

key.pem – private-key file used to generate the CSR and, later, to secure and verify
connections using the certificate
cert.pem – certificate signing request (CSR) file used to order your SSL certificate and,
later, to encrypt messages that only its corresponding private key can decrypt

19.10.5.3 Running Server Side
The following example works on OpenSSL version 3.1.0:

host> openssl s_server -key key.pem -cert cert.pem -tls1_2 -cipher ECDHE-RSA-AES128-GCM-SHA256 -accept 443 -ktls

The server side should be run before client side so that client's request are answered by
server.

Notice the -ktls flag.

1479

In this example, the key and certificate are provided, the cipher suite and TLS version are
configured, and the server listens to port 443 and is instructed to use kTLS.

19.10.5.4 Running Client Side
The following example works on OpenSSL version 3.1.0:

host> openssl s_client -connect 4.4.4.4:443 -tls1_2

Where 4.4.4.4 is the IP of the remote server.

19.10.5.5 Testing kTLS
After the connection is established (handshake is done), a prompt will open and the user, both on
the client and server side, can send a message to other side in a chat-like manner. Messages should
appear on the other side once they are received.

The following example checks kTLS hardware offload on the tested setup by tracking Rx and Tx TLS
on device counters:

host> ethtool -S $iface | grep -i 'tx_tls_encrypted\|rx_tls_decrypted' # ($iface is the interface that offloads)

To check kTLS over kernel counters:

host> cat /proc/net/tls_stat

Output example:

host> cat /proc/net/tls_stat
TlsCurrTxSw 0 # Current Tx connections opened in SW mode
TlsCurrRxSw 0 # Current Rx connections opened in SW mode
TlsCurrTxDevice 0 # Current Tx connections opened in HW-offload mode
TlsCurrRxDevice 0 # Current Rx connections opened in HW-offload mode
TlsTxSw 2323828 # Accumulated number of Tx connections opened in SW mode
TlsRxSw 1 # Accumulated number of Rx connections opened in SW mode
TlsTxDevice 12203652 # Accumulated number of Tx connections opened in HW-offload
mode
TlsRxDevice 0 # Accumulated number of Rx connections opened in HW-offload
mode
TlsDecryptError 0 # Failed record decryption (e.g., due to incorrect
authentication tag)
TlsRxDeviceResync 0 # Rx resyncs sent to HW's handling cryptography
TlsDecryptRetry 0 # All Rx records re-decrypted due to TLS_RX_EXPECT_NO_PAD
misprediction
TlsRxNoPadViolation 0 # Data Rx records re-decrypted due to TLS_RX_EXPECT_NO_PAD
misprediction

Refer to official OpenSSL documentation on s_server for more information.

Refer to official OpenSSL documentation on s_client for more information.

The comments are not part of the output and are added as explanation.

1480

1.

a.

b.

19.10.6 Optimizations over kTLS

19.10.6.1 XLIO
The NVIDIA accelerated IO (XLIO) software library boosts the performance of TCP/IP applications
based on Nginx (e.g., CDN, DoH) and storage solutions as part of SPDK. XLIO is a user-space software
library that exposes standard socket APIs with kernel-bypass architecture, enabling a hardware-
based direct copy between an application's user-space memory and the network interface. In
particular, XLIO can boost the performance of applications that use the kTLS hardware offload as
OpenSSL and Nginx. Read more about XLIO in the NVIDIA XLIO Documentation and XLIO TLS HW-
offload over kTLS in the TLS HW Offload section.

19.10.7 Performance Tuning Options
TLS offload performance is related to how fast data can be pumped though the offload engine. In
the case of user space applications, certain system configurations can be tuned to optimize its
performance.

The following are items that can be tuned for optimal performance, mainly focusing on dedicating
the server's work to the NUMA, or non-uniform memory access, cores:

Add NUMA cores of the NIC to the isolcpus kernel boot arguments for each server so that
the kernel scheduler does not interrupt the core's running user thread. The following are
examples of adding commands:

Identify the NIC NUMA node (see NUMA column):

host> mst status -v
DEVICE_TYPE MST PCI RDMA NET NUMA
ConnectX6DX(rev:0) /dev/mst/mt4125_pciconf0 41:00.0 mlx5_0 net-enp65s0f0np0 1

Identify the cores of the NIC NUMA node using the NUMA node number acquired from
the previous output:

host> lscpu | grep "NUMA node1"
NUMA node1 CPU(s): 1,3,5,7,9,11,13,15,17,19,21,23

More information about the kernel counters can be found in the Statistics section of the
Kernel TLS documentation.

Even though XLIO is a kernel-bypass library, the kernel must support kTLS for the bypass to
work properly.

Non-uniform memory access (NUMA) cores are cores with a dedicated memory for each of
them, granting cores fast access to their own memory and slower access to others'. This
architecture is best for scenarios when it is not necessary to share memory between cores.

https://docs.nvidia.com/networking/display/xliov135
https://docs.nvidia.com/networking/display/XLIOv135/Advanced+Features#AdvancedFeatures-TLSHWOffloadTLSHWOffload
https://www.kernel.org/doc/html/latest/networking/tls.html#statistics

1481

c.

d.

e.

2.

3.

4.

5.

6.

Add the NIC NUMA cores to a grub file (e.g., /etc/default/grub) by adding the line

GRUB_CMDLINE_LINUX_DEFAULT="isolcpus=<NUMA-cores-from-previous-output>" .
For example:

GRUB_CMDLINE_LINUX_DEFAULT="isolcpus=1,3,5,7,9,11,13,15,17,19,21,23"

Update grub:

host> sudo update-grub

Reboot and check that the configuration has been applied:

host> cat /proc/cmdline
BOOT_IMAGE=/vmlinuz-5.10.12 root=UUID=1879326c-711f-4f95-a974-d732af14ef04 ro department=general
user_notifier=dovd osi_string None BOOTIF=01-90-b1-1c-14-02-44 quiet splash
isolcpus=1,3,5,7,9,11,13,15,17,19,21,23

Disable irqbalance service:

host> service irqbalance stop

Run set_irq_affinity.sh to redistribute IRQs to various cores.

host> ./set_irq_affinity.sh <ConnectX_or_BlueField_network_interface>

Set the interface RSS to the number of cores to use:

host> ethtool -X <ConnectX_or_BlueField_network_interface> equal <number_of_isolcpus_cores>

Set the interface queues for number of cores to use:

host> ethtool -L <ConnectX_or_BlueField_network_interface> combined <number_of_isolcpus_cores>

Pin the application with taskset to the isolcpus cores used. For example:

host> taskset -c 1,3,5,7,9,11,13,15,17,19,21,23 openssl s_server -key key.pem -cert cert.pem -tls1_2
-cipher ECDHE-RSA-AES128-GCM-SHA256 -accept 443 -ktls

Interrupt request, or IRQ, determines what hardware interrupts arrive to each core.

a.
b.

c.

d.

The script is within MLNX_OFED's sources:
You can find it in MLNX_OFED downloads.
Under "Download" select the correct version and download the
"SOURCES" .tgz file.

Extract the .tgz .

Under SOURCES, extract the mlnx_tools .

You should find both files set_irq_affinity.sh and its helper file

common_irq_affinity.sh under the sbin directory.

https://network.nvidia.com/products/infiniband-drivers/linux/mlnx_ofed/

1482

•
•
•

1.

2.

19.10.8 Additional Reading
Linux kernel TLS documentation
Linux kernel TLS offload documentation
Autonomous NIC offloads research paper

19.11 NVIDIA DOCA Troubleshooting Guide
This guide provides troubleshooting information for common issues and misconfigurations
encountered when using DOCA for NVIDIA® BlueField® DPU.

19.11.1 DOCA Infrastructure

19.11.1.1 RShim Troubleshooting and How-Tos

19.11.1.1.1 Another backend already attached

Several generations of BlueField DPUs are equipped with a USB interface in which RShim can be
routed, via USB cable, to an external host running Linux and the RShim driver.

In this case, typically following a system reboot, the RShim over USB prevails and the DPU host
reports RShim status as " another backend already attached ". This is correct behavior, since
there can only be one RShim backend active at any given time. However, this means that the DPU
host does not own RShim access.

To reclaim RShim ownership safely:

Stop the RShim driver on the remote Linux. Run:

systemctl stop rshim
systemctl disable rshim

Restart RShim on the DPU host. Run:

systemctl enable rshim
systemctl start rshim

The " another backend already attached " scenario can also be attributed to the RShim backend
being owned by the BMC in DPUs with integrated BMC. This is elaborated on further down on this
page.

19.11.1.1.2 RShim driver not loading

Verify whether your DPU features an integrated BMC or not. Run:

sudo sudo lspci -s $(sudo lspci -d 15b3: | head -1 | awk '{print $1}') -vvv | grep "Product Name"

Example output for DPU with integrated BMC:

https://nam11.safelinks.protection.outlook.com/?url=https%3A%2F%2Fdocs.kernel.org%2Fnetworking%2Ftls.html&data=05%7C01%7Cyelbaum%40nvidia.com%7C74a81311efe9415d54e508da93c346dd%7C43083d15727340c1b7db39efd9ccc17a%7C0%7C0%7C637984764170110522%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=jRWiPCGmBApLxlUO5LIx%2FlJq4T6dGdVRC1045S%2BwIU0%3D&reserved=0
https://nam11.safelinks.protection.outlook.com/?url=https%3A%2F%2Fdocs.kernel.org%2Fnetworking%2Ftls-offload.html&data=05%7C01%7Cyelbaum%40nvidia.com%7C74a81311efe9415d54e508da93c346dd%7C43083d15727340c1b7db39efd9ccc17a%7C0%7C0%7C637984764170110522%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=6f9vuBYbhvgoBtjVVqUoGaeXE%2FLWh5i26rgp6jl6OeU%3D&reserved=0
https://nam11.safelinks.protection.outlook.com/?url=https%3A%2F%2Fdl.acm.org%2Fdoi%2F10.1145%2F3445814.3446732&data=05%7C01%7Cyelbaum%40nvidia.com%7C74a81311efe9415d54e508da93c346dd%7C43083d15727340c1b7db39efd9ccc17a%7C0%7C0%7C637984764170110522%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=GUDTTpSYgJwB2CI6rrBi4Uhs9v%2BZibHDKcgjLMA%2BkF0%3D&reserved=0

1483

1.
2.

3.

4.

5.

1.

2.

3.

Product Name: BlueField-2 DPU 25GbE Dual-Port SFP56, integrated BMC, Crypto and Secure Boot Enabled, 16GB on-board
DDR, 1GbE OOB management, Tall Bracket, FHHL

If your DPU has an integrated BMC, refer to RShim driver not loading on host with integrated BMC.

If your DPU does not have an integrated BMC, refer to RShim driver not loading on host on DPU
without integrated BMC.

19.11.1.1.2.1 RShim driver not loading on DPU with integrated BMC

RShim driver not loading on host

Access the BMC via the RJ45 management port of the DPU.
Delete RShim on the BMC:

systemctl stop rshim
systemctl disable rshim

Enable RShim on the host:

systemctl enable rshim
systemctl start rshim

Restart RShim service. Run:

sudo systemctl restart rshim

If RShim service does not launch automatically, run:

sudo systemctl status rshim

This command is expected to display " active (running) ".
Display the current setting. Run:

cat /dev/rshim<N>/misc | grep DEV_NAME
DEV_NAME pcie-0000:04:00.2

This output indicates that the RShim service is ready to use.

RShim driver not loading on BMC

Verify that the RShim service is not running on host. Run:

systemctl status rshim

If the output is active , then it may be presumed that the host has ownership of the RShim.
Delete RShim on the host. Run:

systemctl stop rshim
systemctl disable rshim

Enable RShim on the BMC. Run:

systemctl enable rshim
systemctl start rshim

1484

4.

1.

2.
•

•

3.

4.

1.

2.
3.

4.

Display the current setting. Run:

cat /dev/rshim<N>/misc | grep DEV_NAME
DEV_NAME usb-1.0

This output indicates that the RShim service is ready to use.

19.11.1.1.2.2 RShim driver not loading on host on DPU without integrated BMC
Download the suitable DEB/RPM for RShim (management interface for DPU from the host)
driver.
Reinstall RShim package on the host.

For Ubuntu/Debian, run:

sudo dpkg --force-all -i rshim-<version>.deb

For RHEL/CentOS, run:

sudo rpm -Uhv rshim-<version>.rpm

Restart RShim service. Run:

sudo systemctl restart rshim

If RShim service does not launch automatically, run:

sudo systemctl status rshim

This command is expected to display " active (running) ".
Display the current setting. Run:

cat /dev/rshim<N>/misc | grep DEV_NAME
DEV_NAME pcie-0000:04:00.2

This output indicates that the RShim service is ready to use.

19.11.1.1.3 Change ownership of RShim from NIC BMC to host
Verify that your card has BMC. Run the following on the host:

sudo sudo lspci -s $(sudo lspci -d 15b3: | head -1 | awk '{print $1}') -vvv |grep "Product Name"
Product Name: BlueField-2 DPU 25GbE Dual-Port SFP56, integrated BMC, Crypto and Secure Boot Enabled, 16GB
on-board DDR, 1GbE OOB management, Tall Bracket, FHHL

The product name is supposed to show "integrated BMC".
Access the BMC via the RJ45 management port of the DPU.
Delete RShim on the BMC:

systemctl stop rshim
systemctl disable rshim

Enable RShim on the host:

systemctl enable rshim
systemctl start rshim

1485

5.

6.

1.

2.

3.

Restart RShim service. Run:

sudo systemctl restart rshim

If RShim service does not launch automatically, run:

sudo systemctl status rshim

This command is expected to display " active (running) ".
Display the current setting. Run:

cat /dev/rshim<N>/misc | grep DEV_NAME
DEV_NAME pcie-0000:04:00.2

This output indicates that the RShim service is ready to use.

19.11.1.2 Connectivity Troubleshooting

19.11.1.2.1 Connection (ssh, screen console) to the DPU is lost

The UART cable in the Accessories Kit (OPN: MBF20-DKIT) can be used to connect to the DPU console
and identify the stage at which BlueField is hanging.

Follow this procedure:

Connect the UART cable to a USB socket, and find it in your USB devices.

sudo lsusb
Bus 002 Device 003: ID 0403:6001 Future Technology Devices International, Ltd FT232 Serial (UART) IC

Install the minicom application.

OS Command

CentOS/RHEL

sudo yum install minicom -y

Ubuntu/Debian

sudo apt-get install minicom

Open the minicom application.

For more information on the UART connectivity, please refer to the DPU's hardware
user guide under Supported Interfaces > Interfaces Detailed Description > NC-SI
Management Interface.

It is good practice to connect the other end of the NC-SI cable to a different host
than the one on which the BlueField DPU is installed.

https://docs.mellanox.com/category/bluefieldsnic

1486

4.
5.
6.
7.
8.
9.

•
•
•
•

1.
2.
3.

4.

sudo minicom -s -c on

Go to "Serial port setup".
Enter "F" to change "Hardware Flow control" to NO.
Enter "A" and change to /dev/ttyUSB0 and press Enter.
Press ESC.
Type on "Save setup as dfl".
Exit minicom by pressing Ctrl + a + z.

19.11.1.2.2 Driver not loading in host server

What this looks like in dmsg:

[275604.216789] mlx5_core 0000:af:00.1: 63.008 Gb/s available PCIe bandwidth, limited by 8 GT/s x8 link at
0000:ae:00.0 (capable of 126.024 Gb/s with 16 GT/s x8 link)
[275624.187596] mlx5_core 0000:af:00.1: wait_fw_init:316:(pid 943): Waiting for FW initialization, timeout abort in
100s
[275644.152994] mlx5_core 0000:af:00.1: wait_fw_init:316:(pid 943): Waiting for FW initialization, timeout abort in
79s
[275664.118404] mlx5_core 0000:af:00.1: wait_fw_init:316:(pid 943): Waiting for FW initialization, timeout abort in
59s
[275684.083806] mlx5_core 0000:af:00.1: wait_fw_init:316:(pid 943): Waiting for FW initialization, timeout abort in
39s
[275704.049211] mlx5_core 0000:af:00.1: wait_fw_init:316:(pid 943): Waiting for FW initialization, timeout abort in
19s
[275723.954752] mlx5_core 0000:af:00.1: mlx5_function_setup:1237:(pid 943): Firmware over 120000 MS in pre-
initializing state, aborting
[275723.968261] mlx5_core 0000:af:00.1: init_one:1813:(pid 943): mlx5_load_one failed with error code -16
[275723.978578] mlx5_core: probe of 0000:af:00.1 failed with error -16

The driver on the host server is dependent on the Arm side. If the driver on Arm is up, then the
driver on the host server will also be up.

Please verify that:

The driver is loaded in the BlueField DPU
The Arm is booted into OS
The Arm is not in UEFI Boot Menu
The Arm is not hanged

Then:

Perform graceful shutdown.
Power cycle on the host server.
If the problem persists, reset nvconfig (sudo mlxconfig -d /dev/mst/<device> -y reset)
and power cycle the host.

If this problem persists, please make sure to install the latest bfb image and then restart the
driver in host server. Please refer to this page for more information.

If your DPU is VPI capable, please be aware that this configuration will reset the link
type on the network ports to IB. To change the network port's link type to Ethernet,
run:

sudo mlxconfig -d <device> s LINK_TYPE_P1=2 LINK_TYPE_P2=2

1487

•

•

•

•

19.11.1.2.3 No connectivity between network interfaces of source host to
destination device

Verify that the bridge is configured properly on the Arm side.

The following is an example for default configuration:

$ sudo ovs-vsctl show
f6740bfb-0312-4cd8-88c0-a9680430924f
 Bridge ovsbr1
 Port pf0sf0
 Interface pf0sf0
 Port p0
 Interface p0
 Port pf0hpf
 Interface pf0hpf
 Port ovsbr1
 Interface ovsbr1
 type: internal
 Bridge ovsbr2
 Port p1
 Interface p1
 Port pf1sf0
 Interface pf1sf0
 Port pf1hpf
 Interface pf1hpf
 Port ovsbr2
 Interface ovsbr2
 type: internal
 ovs_version: "2.14.1"

If no bridge configuration exists, refer to "Virtual Switch on DPU".

19.11.1.2.4 Uplink in Arm down while uplink in host server up

Please check that the cables are connected properly into the network ports of the DPU and the peer
device.

19.11.1.3 Performance Degradation
Degradation in performance indicates that openvswitch may not be offloaded.

Verify offload state. Run:

ovs-vsctl get Open_vSwitch . other_config:hw-offload

If hw-offload = true – Fast Pass is configured (desired result)

If hw-offload = false – Slow Pass is configured

If hw-offload = false :

For RHEL/CentOS, run:

ovs-vsctl set Open_vSwitch . other_config:hw-offload=true;
systemctl restart openvswitch;
systemctl enable openvswitch;

For Ubuntu/Debian, run:

ovs-vsctl set Open_vSwitch . other_config:hw-offload=true;
/etc/init.d/openvswitch-switch restart

1488

1.
2.

3.

1.

2.

3.

19.11.1.4 SR-IOV Troubleshooting

19.11.1.4.1 Unable to create VFs
Please make sure that SR-IOV is enabled in BIOS.
Verify SRIOV_EN is true and NUM_OF_VFS bigger than 1. Run:

mlxconfig -d /dev/mst/mt41686_pciconf0 -e q |grep -i "SRIOV_EN\|num_of_vf"
Configurations: Default Current Next Boot
* NUM_OF_VFS 16 16 16
* SRIOV_EN True(1) True(1) True(1)

Verify that GRUB_CMDLINE_LINUX="iommu=pt intel_iommu=on pci=assign-busses" .

19.11.1.4.2 No traffic between VF to external host
Please verify creation of representors for VFs inside the Bluefield DPU. Run:

/opt/mellanox/iproute2/sbin/rdma link |grep -i up
...
link mlx5_0/2 state ACTIVE physical_state LINK_UP netdev pf0vf0
...

Make sure the representors of the VFs are added to the bridge. Run:

ovs-vsctl add-port <bridage_name> pf0vf0

Verify VF configuration. Run:

$ ovs-vsctl show
bb993992-7930-4dd2-bc14-73514854b024
 Bridge ovsbr1
 Port pf0vf0
 Interface pf0vf0
 type: internal
 Port pf0hpf
 Interface pf0hpf
 Port pf0sf0
 Interface pf0sf0
 Port p0
 Interface p0
 Bridge ovsbr2
 Port ovsbr2
 Interface ovsbr2
 type: internal
 Port pf1sf0
 Interface pf1sf0
 Port p1
 Interface p1
 Port pf1hpf
 Interface pf1hpf
 ovs_version: "2.14.1"

19.11.1.5 eSwitch Troubleshooting

19.11.1.5.1 Unable to configure legacy mode

To set devlink to "Legacy" mode in BlueField, run:

devlink dev eswitch set pci/0000:03:00.0 mode legacy
devlink dev eswitch set pci/0000:03:00.1 mode legacy

Please verify that:

1489

•

•

1.
2.

No virtual functions are open. To verify if VFs are configured, run:

/opt/mellanox/iproute2/sbin/rdma link | grep -i up
link mlx5_0/2 state ACTIVE physical_state LINK_UP netdev pf0vf0
link mlx5_1/2 state ACTIVE physical_state LINK_UP netdev pf1vf0

If any VFs are configured, destroy them by running:

echo 0 > /sys/class/infiniband/mlx5_0/device/mlx5_num_vfs
echo 0 > /sys/class/infiniband/mlx5_1/device/mlx5_num_vfs

If any SFs are configured, delete them by running:

/sbin/mlnx-sf -a delete --sfindex <SF-Index>

If the error " Error: mlx5_core: Can't change mode when flows are configured " is
encountered while trying to configure legacy mode, please make sure that

Any configured SFs are deleted (see above for commands).
Shut down the links of all interfaces, delete any ip xfrm rules, delete any configured OVS
flows, and stop openvswitch service. Run:

ip link set dev p0 down
ip link set dev p1 down
ip link set dev pf0hpf down
ip link set dev pf1hpf down
ip link set dev vxlan_sys_4789 down

ip x s f ;
ip x p f ;

tc filter del dev p0 ingress
tc filter del dev p1 ingress
tc qdisc show dev p0
tc qdisc show dev p1
tc qdisc del dev p0 ingress
tc qdisc del dev p1 ingress
tc qdisc show dev p0
tc qdisc show dev p1

systemctl stop openvswitch-switch

You may retrieve the <SF-Index> of the currently installed SFs by running:

mlnx-sf -a show

SF Index: pci/0000:03:00.0/229408
 Parent PCI dev: 0000:03:00.0
 Representor netdev: en3f0pf0sf0
 Function HWADDR: 02:61:f6:21:32:8c
 Auxiliary device: mlx5_core.sf.2
 netdev: enp3s0f0s0
 RDMA dev: mlx5_2

SF Index: pci/0000:03:00.1/294944
 Parent PCI dev: 0000:03:00.1
 Representor netdev: en3f1pf1sf0
 Function HWADDR: 02:30:13:6a:2d:2c
 Auxiliary device: mlx5_core.sf.3
 netdev: enp3s0f1s0
 RDMA dev: mlx5_3

Pay attention to the SF Index values. For example:

/sbin/mlnx-sf -a delete --sfindex pci/0000:03:00.0/229408
/sbin/mlnx-sf -a delete --sfindex pci/0000:03:00.1/294944

1490

•

•

•
•

19.11.1.5.2 DPU appears as two interfaces

What this looks like:

sudo /opt/mellanox/iproute2/sbin/rdma link
link mlx5_0/1 state ACTIVE physical_state LINK_UP netdev p0
link mlx5_1/1 state ACTIVE physical_state LINK_UP netdev p1

Check if you are working in legacy mode.

devlink dev eswitch show pci/0000:03:00.<0|1>

If the following line is printed, this means that you are working in legacy mode:

pci/0000:03:00.<0|1>: mode legacy inline-mode none encap enable

Please configure the DPU to work in switchdev mode. Run:

devlink dev eswitch set pci/0000:03:00.<0|1> mode switchdev

Check if you are working in separated mode:

mlxconfig -d /dev/mst/mt41686_pciconf0 q | grep -i cpu
* INTERNAL_CPU_MODEL SEPERATED_HOST(0)

Please configure the DPU to work in embedded mode. Run:

mlxconfig -d /dev/mst/mt41686_pciconf0 s INTERNAL_CPU_MODEL=1

19.11.2 DOCA Applications
This chapter deals with troubleshooting issues related to DOCA applications.

19.11.2.1 EAL Initialization Failure
EAL initialization failure is a common error that may appear while running various DPDK-related
applications.

19.11.2.1.1 Error

The error looks like this:

[DOCA][ERR][NUTILS]: EAL initialization failed

There may be many causes for this error. Some of them are as follows:

The application requires huge pages and none were allocated
The application requires root privileges to run and it was run without elevated privileges

1491

•

•

•

•
•

•
•

19.11.2.1.2 Solution

The following solutions are respective to the possible causes listed above:

Allocate huge pages. For example, run (on the host or the DPU, depending on where you are
running the application):

sudo echo 2048 > /sys/kernel/mm/hugepages/hugepages-2048kB/nr_hugepages

Run the application using sudo (or as root):

sudo <run_command>

19.11.2.2 Ring Memory Issue
This is a common memory issue when running application on the host.

19.11.2.2.1 Error

The error looks as follows:

RING: Cannot reserve memory
[13:00:57:290147][DOCA][ERR][UFLTR::Core:156]: DPI init failed

The most common cause for this error is lack of memory (i.e., not enough huge pages per worker
threads).

19.11.2.2.2 Solution

Possible solutions:

Recommended: Increase the amount of allocated huge pages. Instructions for allocating huge
pages can be found here.

Alternatively, one can also limit the number of cores used by the application:
-c <core-mask> – Set the hexadecimal bitmask of the cores to run on.

-l <core-list> – list of cores to run on.
For example:

./doca_<app_name> -a 3b:00.3 -a 3b:00.4 -l 0-64 -- -l 60

19.11.2.3 DOCA Apps Using DPDK in Parallel Issue
When running two DOCA apps in parallel that use DPDK, the first app runs but the second one fails.

For an SFT application with 64 cores, it is recommended to increase the allocation
from 2048 to 8192.

1492

19.11.2.3.1 Error

The following error is received:

Failed to start URL Filter with output: EAL: Detected 16 lcore(s)
EAL: Detected 1 NUMA nodes
EAL: RTE Version: 'MLNX_DPDK 20.11.4.0.3' EAL: Detected shared linkage of DPDK
EAL: Cannot create lock on '/var/run/dpdk/rte/config'. Is another primary process running?
EAL: FATAL: Cannot init config
EAL: Cannot init config
[15:01:57:246339][DOCA][ERR][NUTILS]: EAL initialization failed

The cause of the error is that the second application is using /var/run/dpdk/rte/config when
the first application is already using it.

19.11.2.3.2 Solution

To run two applications in parallel, the second application needs to be run with DPDK EAL option --

file-prefix <name> .

In this example, after running the first application (without adding the eal option), to run the
second with the EAL option. Run:

./doca_<app_name> --file-prefix second -a 0000:01:00.6,sft_en=1 -a 0000:01:00.7,sft_en=1 -v -c 0xff -- -l 60

19.11.2.4 Failure to Set Huge Pages
When trying to configure the huge pages from an unprivileged user account, a permission error is
raised.

19.11.2.4.1 Error

Configuring the huge pages results in the following error:

$ sudo echo 600 > /sys/kernel/mm/hugepages/hugepages-2048kB/nr_hugepages
-bash: /sys/kernel/mm/hugepages/hugepages-2048kB/nr_hugepages: Permission denied

19.11.2.4.2 Solution

Using sudo with echo works differently than users usually expect. Instead, the command should
be as follows:

$ echo '600' | sudo tee -a /sys/kernel/mm/hugepages/hugepages-2048kB/nr_hugepages

19.11.3 DOCA Libraries
This chapter deals with troubleshooting issues related to DOCA libraries.

1493

•

•

19.11.3.1 DOCA Flow Error
When trying to add new entry to the pipe, an error is received.

19.11.3.1.1 Error

The error happens after trying to add new entry function. The error message would look similar to
the following:

mlx5_common: Failed to create TIR using DevX
mlx5_net: Port 0 cannot create DevX TIR.
[10:26:39:622581][DOCA][ERR][dpdk_engine]: create pipe entry fail on index:1, error=Port 0 create flow fail, type 1
 message: cannot get hash queue, type=8

The issue here seems to be caused by SF/ports configuration.

19.11.3.1.2 Solution

To fix the issue, apply the following commands on the DPU:

dpu# /opt/mellanox/iproute2/sbin/devlink dev eswitch set pci/0000:03:00.0 mode legacy
dpu# /opt/mellanox/iproute2/sbin/devlink dev eswitch set pci/0000:03:00.1 mode legacy
dpu# echo none > /sys/class/net/p0/compat/devlink/encap
dpu# echo none > /sys/class/net/p1/compat/devlink/encap
dpu# /opt/mellanox/iproute2/sbin/devlink dev eswitch set pci/0000:03:00.0 mode switchdev
dpu# /opt/mellanox/iproute2/sbin/devlink dev eswitch set pci/0000:03:00.1 mode switchdeV

19.11.4 DOCA SDK Compilation
This chapter deals with troubleshooting issues related to compiling DOCA-based programs to use the
DOCA SDK (e.g., missing dependencies).

19.11.4.1 Meson Complains About Missing Dependencies
As part of DOCA's installation, a basic set of environment variables are defined so that projects
(such as DOCA applications) could easily compile against the DOCA SDK, and to allow users easy
access to the various DOCA tools. In addition, the set of DOCA applications sometimes rely on
various 3rd party dependencies, some of which require specific environment variables so to be
correctly found by the compilation environment (meson).

19.11.4.1.1 Error

There are multiple forms this error may appear in, such as:

DOCA libraries are missing:

Run-time dependency doca-common found: NO (tried pkgconfig)

meson.build:230:0: ERROR: Dependency "doca-common" not found, tried pkgconfig

DPDK definitions are missing:

Dependency libdpdk found: NO (tried pkgconfig and cmake)
meson.build:41:1: ERROR: Dependency "libdpdk" not found, tried pkgconfig and cmake

1494

•

•

•

•

•

•

•

mpicc is missing for DPA All to All application:

====================
Skipped Applications
====================
 * dpa_all_to_all: Missing mpicc

19.11.4.1.2 Solution

All the dependencies mentioned above are installed as part of DOCA's installation, and yet it is
recommended to check that the packages themselves were installed correctly. The packages that
install each dependency define the environment variables needed by it, and apply these settings per
user login session:

If DOCA was just installed (on the host or DPU), user session restart is required to apply these
definitions (i.e., log off and log in).
It is important to compile DOCA using the same logged in user. Logging as ubuntu and using

sudo su , or compiling using sudo , will not work.

If restarting the user session is not possible (e.g., automated non-interactive session), the following
is a list of the needed environment variables:

DOCA Tools:

For Ubuntu:

export PATH=${PATH}:/opt/mellanox/doca/tools

For CentOS:

export PATH=${PATH}:/opt/mellanox/doca/tools

DOCA Applications:

For Ubuntu and CentOS

export PATH=${PATH}:/usr/mpi/gcc/openmpi-4.1.7a1/bin
export LD_LIBRARY_PATH=${LD_LIBRARY_PATH}:/usr/mpi/gcc/openmpi-4.1.7a1/lib

DPDK:

For Ubuntu:

export PKG_CONFIG_PATH=${PKG_CONFIG_PATH}:/opt/mellanox/dpdk/lib/aarch64-linux-gnu/pkgconfig

All the following examples use the required environment variables for the DPU. For the
host, the values should be adjusted accordingly (aarch64 is for the DPU and x86 is for the
host): aarch64-linux-gnu → x86_64-linux-gnu .

It is recommended to define all of the following settings so as to not have to remember
which DOCA application requires which module (whether DPDK, FlexIO, etc).

1495

•

•

•

•

•

For CentOS:

export PKG_CONFIG_PATH=${PKG_CONFIG_PATH}:/opt/mellanox/dpdk/lib64/pkgconfig

FlexIO:

For Ubuntu:

export PKG_CONFIG_PATH=${PKG_CONFIG_PATH}:/opt/mellanox/flexio/lib/pkgconfig

For CentOS:

export PKG_CONFIG_PATH=${PKG_CONFIG_PATH}:/opt/mellanox/flexio/lib/pkgconfig

CollectX:

For Ubuntu and CentOS:

export PKG_CONFIG_PATH=${PKG_CONFIG_PATH}:/opt/mellanox/collectx/lib/aarch64-linux-gnu/pkgconfig

19.11.4.2 Meson Complains About Permissions
Our guides for compiling the reference samples and applications of DOCA's SDK are using the meson
build system.

19.11.4.2.1 Error

A permission error is encountered when trying to reuse a build directory from a previous build:

ubuntu@localhost:/opt/mellanox/doca/samples/doca_flow/flow_acl$ meson /tmp/build
Traceback (most recent call last):
 File "/usr/lib/python3/dist-packages/mesonbuild/mesonmain.py", line 146, in run
 return options.run_func(options)
 File "/usr/lib/python3/dist-packages/mesonbuild/msetup.py", line 294, in run
 app.generate()
 File "/usr/lib/python3/dist-packages/mesonbuild/msetup.py", line 181, in generate
 mlog.initialize(env.get_log_dir(), self.options.fatal_warnings)
 File "/usr/lib/python3/dist-packages/mesonbuild/mlog.py", line 103, in initialize
 log_file = open(os.path.join(logdir, log_fname), 'w', encoding='utf-8')
PermissionError: [Errno 13] Permission denied: '/tmp/build/meson-logs/meson-log.txt'

19.11.4.2.2 Solution

Per the meson build instructions, the user can choose any write-accessible directory to be used as
the build directory, using the following syntax:

meson <build-dir>

When reusing a build directory, it is best to ensure that the existing directory was created by a user
with the same permissions, and only then do one of the following:

Removing the old build directory:

rm -rf /tmp/build

https://mesonbuild.com/
https://mesonbuild.com/Running-Meson.html

1496

• Reconfiguring the build directory:

meson --reconfigure /tmp/build

The above error is an indication that the build directory was created by a different user, and that
our user doesn't have permissions to use it. In such cases, it is best to choose a different build
directory, in a directory that our user has write-access to. For example:

meson /tmp/build2

19.11.4.3 Static Compilation on CentOS: Undefined References to C++
When statically compiling against the DOCA SDK on RHEL 7.x machines, there could be a conflict
between the libstdc++ version available out-of-the-box and the one used when building DOCA's SDK
libraries.

19.11.4.3.1 Error

There are multiple forms this error may appear in, such as:

$ cc test.o -o test_out `pkg-config --libs --static doca`
/opt/mellanox/doca/lib64/libdoca_common.a(doca_common_core_src_doca_dev.cpp.o): In function
`doca_devinfo_rep_list_create':
(.text.experimental+0x2193): undefined reference to `__cxa_throw_bad_array_new_length' /opt/mellanox/doca/lib64/
libdoca_common.a(doca_common_core_src_doca_dev.cpp.o): In function `doca_devinfo_rep_list_create':
(.text.experimental+0x2198): undefined reference to `__cxa_throw_bad_array_new_length' collect2: error: ld returned
1 exit status

19.11.4.3.2 Solution

Upgrading the devtoolset on the machine to the one used when building the DOCA SDK resolves
the undefined references issue:

$ sudo yum install epel-release
$ sudo yum install centos-release-scl-rh
$ sudo yum install devtoolset-8
This will enable the use of devtoolset-8 to the *current* bash session
$ source /opt/rh/devtoolset-8/enable

19.11.4.4 Static Compilation on CentOS: Unresolved Symbols
When statically compiling against the DOCA SDK on RHEL 7.x machines, a known issue in the default
pkg-config version (0.27) causes a linking error.

19.11.4.4.1 Error

There are multiple forms this error may appear in. For example:

$ cc test.o -o test_out 'pkg-config --libs --static doca' ...
/opt/mellanox/dpdk/lib64/librte_net_mlx5.a(net_mlx5_mlx5_sft.c.o): In function 'mlx5_sft_start':
mlx5_sft.c:(.text+0x1827): undefined reference to 'mlx5_malloc' ...

https://doc.dpdk.org/guides/linux_gsg/sys_reqs.html

1497

19.11.4.4.2 Solution

Use an updated version of pkg-config or pkgconf instead when building applications (as is
recommended in DPDK's compilation instructions).

19.11.5 Cross-compiling DOCA and CUDA
This chapter deals with troubleshooting issues related to DOCA-CUDA cross-compilation.

19.11.5.1 Application Build Error
When trying to build with meson, an architecture-related error is received.

19.11.5.1.1 Error

The error may happen when trying to build DOCA or DOCA-CUDA applications.

cc1: error: unknown value 'corei7' for -march

It indicates that some dependency (usually libdpdk) is not taken from the host machine (i.e., the
machine the executable file should be running on). This dependency should be taken from the Arm
dependencies directories (the path is specified in the cross file) but is skipped if the
host's PKG_CONFIG_PATH environment variable is used instead.

19.11.5.1.2 Solution

Make sure that the cross file contains the following PKG_CONFIG related definitions:

[built-in options]
pkg_config_path = '' [properties]
pkg_config_libdir = … // Some content here

In addition, verify that pkg_config_libdir properly points to all pkgconfig -related directories
under your cross-build root directory, and that the dependency reported in the error is not missing.

19.11.6 DOCA Services (Containers)
This section deals with troubleshooting issues related to DOCA-based containers.

19.11.6.1 YAML Syntax Error #1
When deploying the container using the respective YAML file, the pod fails to start.

19.11.6.1.1 Error

The error may happen after modifying a service's YAML file, or after copying an example YAML file
from one of the guides.

https://doc.dpdk.org/guides/linux_gsg/sys_reqs.html

1498

$ crictl pods
POD ID CREATED STATE NAME NAMESPACE ATTEMPT
RUNTIME
$ journalctl -u kubelet
...
Oct 06 12:10:08 dpu-name kubelet[3260]: E1006 12:10:08.552306 3260 file.go:108] "Unable to process watch event"
 err="can't process config file \"/etc/kubelet.d/file_name.yaml\": invalid pod: [metadata.name: Invalid value: \"-
dpu-name\": a lowercase RFC 1123 subdomain must consist of lower case alphanumeric characters, '-' or '.', and must
start and end with an alphanumeric character (e.g. 'example.com', regex used for validation is '[a-z0-9]([-a-
z0-9]*[a-z0-9])?(\\.[a-z0-9]([-a-z0-9]*[a-z0-9])?)*') spec.containers: Required value]"
...

This indicates that some of the fields in the YAML file fail to comply with RFC 1123.

19.11.6.1.2 Solution

Both the pod name and container name have a strict alphabet (RFC 1123) restrictions. This means
that users can only use dash ("-") and not underscore ("_") as the latter is an illegal character and
cannot be used in the pod/container name. However, for the container's image name, use
underscore ("_") instead of dash ("-") to help differentiate the two.

19.11.6.2 YAML Syntax Error #2
When deploying the container using the respective YAML file, the pod fails to start.

19.11.6.2.1 Error

The error may happen after modifying a service's YAML file, or after copying an example YAML file
from one of the guides.

$ crictl pods
POD ID CREATED STATE NAME NAMESPACE ATTEMPT
RUNTIME
$ journalctl -u kubelet
...
Oct 04 12:35:58 dpu-name kubelet[3046]: E1004 12:35:58.744406 3046 file.go:187] "Could not process manifest
file" err="/etc/kubelet.d/file_name.yaml: couldn't parse as pod(yaml: line 48: did not find expected '-'
indicator), please check config file" path="/etc/kubelet.d/file_name.yaml"
...

This indicates that there is a probable indentation issue in line 48 or in the line above it.

19.11.6.2.2 Solution

Go over the file and make sure that the file only uses spaces (" ") for indentations (2 per indent).
Using any other number of spaces causes undefined behavior.

19.11.6.3 Missing Huge Pages
When deploying the container using the respective YAML file, the pod fails to start.

This error can occur when there is a whitespace issue if the YAML file has been copied from
one of the guides causing a formatting mistake. It is important to ensure that the space
characters used in the files are indeed spaces (" ") and not some other whitespace
character.

1499

1.
2.

a.
b.

3.

4.

19.11.6.3.1 Error

$ crictl pods
POD ID CREATED STATE NAME NAMESPACE ATTEMPT
RUNTIME
$ journalctl -u kubelet
...
Oct 04 12:39:41 dpu-name kubelet[3046]: I1004 12:39:41.643621 3046 predicate.go:103] "Failed to admit pod,
unexpected error while attempting to recover from admission failure" pod="default/file_name" err="preemption: error
finding a set of pods to preempt: no set of running pods found to reclaim resources: [(res: hugepages-2Mi, q:
1021313024),]"
...

This error indicates that the service expected 1GB (1021313024 bytes) of huge pages of size 2MB per
page, and could not find them.

19.11.6.3.2 Solution
Remove the YAML file of the service from the deployment directory (/etc/kubelet.d).
Allocate huge pages as described in the service's prerequisites steps:

Make sure that the huge pages are allocated as required per the desired container.
Both the amount and size of the pages are important and must match precisely.

Restart the container infrastructure daemons:

sudo systemctl restart kubelet.service
sudo systemctl restart containerd.service

Once the above operations are completed successfully, the container could be deployed
(YAML can be copied to /etc/kubelet.d).

19.11.6.4 Failed to Reserve Sandbox Name
After rebooting the DPU, the respective pods start. However, the containers repeatedly fail to
spawn and their "attempt" counter does not increment.

19.11.6.4.1 Error

$ crictl pods
POD ID CREATED STATE NAME
NAMESPACE ATTEMPT RUNTIME
bee147792a85b Less than a second ago Ready doca-hbn-service-my-dpu default
0 (default)
ea66ee46e75a5 Less than a second ago Ready doca-telemetry-service-my-dpu default
0 (default)

$ crictl ps -a
CONTAINER IMAGE CREATED STATE NAME
ATTEMPT POD ID POD
6a35c025a3590 ce4c0cafd583e Less than a second ago Exited init-sfs 0
bee147792a85b doca-hbn-service-my-dpu
9048f4c7b8f3c 095a5833a3f80 Less than a second ago Running doca-telemetry-service 0
ea66ee46e75a5 doca-telemetry-service-my-dpu
059d0aa8a3199 095a5833a3f80 Less than a second ago Exited init-telemetry-service 0
ea66ee46e75a5 doca-telemetry-service-my-dpu
bcfbe536271ea ce4c0cafd583e 33 seconds ago Running init-sfs 1
bee147792a85b doca-hbn-service-my-dpu

$ journalctl -u containerd
...
"2023-11-28T08:43:42.408173348+02:00" level=error msg="RunPodSandbox for &PodSandboxMetadata{Name:doca-hbn-service-
my-dpu,Uid:823b1ad0e241a10475edde26e905856b,Namespace:default,Attempt:0,} failed, error" error="failed to reserve
sandbox name \"doca-hbn-service-my-dpu_default_823b1ad0e241a10475edde26e905856b_0\": name \"doca-hbn-service-my-
dpu_default_823b1ad0e241a10475edde26e905856b_0\" is reserved for
\"bee147792a85bc23a3629a9fcd0a5f388794f6b67ef552c959d4d5e49d04f5b2\""
...

1500

1.
2.

3.

4.

5.

6.

This error indicates that there has been some collision with prior instances of the doca-hbn-

service container, probably pre-reboot.

19.11.6.4.2 Solution
Remove all YAML files from the deployment directory (/etc/kubelet.d).
Stop all pods:

sudo crictl stopp $(crictl pods | tail -n +2 | awk '{ print $1 }')

Clear all containers:

sudo ctr -n k8s.io container rm $(ctr -n k8s.io container ls | tail -n +2 | awk '{ print $1 }')

Make sure the system's time is correct, and adjust it if needed:

date

Restart the container infrastructure daemons:

sudo systemctl restart kubelet.service
sudo systemctl restart containerd.service

Once the above operations are completed successfully, the container could be deployed
(YAML can be copied to /etc/kubelet.d).

19.11.7 Collecting DOCA Logs for NVIDIA Inspection
To help NVIDIA Support investigate issues customers may encounter, NVIDIA strongly recommends
collecting all relevant logs using the doca-sosreport tool. This tool includes plugins to gather logs
from various NVIDIA products and more.

On the device customers are facing issues with, run the following command with superuser
privileges:

sudo sos report

This creates a tar file in the /tmp directory. When opening a support ticket for NVIDIA Support,
make sure to upload this tar file.

If there is private information that you wish not to include in the tar file, extract the file and edit or
remove any sensitive information, then create a new tar package.

This issue indicates irregularities in the time of the machine, and usually that the DPU's
time pre-reboot was later than the time post-reboot. This leads to bugs in the recovery of
the container infrastructure daemons. It is of utmost importance that the time of the
system does not jump backwards.

For more options on running the tool, refer to the tool's readme.

https://github.com/NVIDIA/doca-sosreport
https://github.com/NVIDIA/doca-sosreport/blob/main/README.md

1501

1.
a.

19.11.8 NVIDIA BlueField Reset and Reboot Procedures

Unable to render include or excerpt-include. Could not retrieve page.

19.12 NVIDIA DOCA Virtual Functions User Guide
This guide provides an overview and configuration of virtual functions for NVIDIA® BlueField® and
demonstrates a use case for running the DOCA applications over x86 host.

19.12.1 Introduction
Single root IO virtualization (SR-IOV) is a technology that allows a physical PCIe device to present
itself multiple times through the PCIe bus. This technology enables multiple virtual instances of the
device with separate resources. NVIDIA adapters are able to expose virtual instances or functions
(VFs) for each port individually. These virtual functions can then be provisioned separately.

Each VF can be seen as an additional device connected to the physical interface or function (PF). It
shares the same resources with the PF, and its number of ports equals those of the PF.

SR-IOV is commonly used in conjunction with an SR-IOV-enabled hypervisor to provide virtual
machines direct hardware access to network resources, thereby increasing its performance.

There are several benefits to running applications on the host. For example, one may want to utilize
a strong and high-resource host machine, or to start DOCA integration on the host before offloading
it to the BlueField DPU.

The configuration in this document allows the entire application to run on the host's memory, while
utilizing the HW accelerators on BlueField.

When VFs are enabled on the host, VF representors are visible on the Arm side which can be bridged
to corresponding PF representors (e.g., the uplink representor and the host representor). This
allows the application to only scan traffic forwarded to the VFs as configured by the user and to
behave as a simple "bump-on-the-wire". DOCA installed on the host allows access to the hardware
capabilities of the BlueField DPU without comprising features which use HW offload/steering
elements embedded inside the eSwitch.

19.12.2 Prerequisites
To run all the reference applications over the host, you must install the host DOCA package. Refer to
the NVIDIA DOCA Installation Guide for Linux for more information on host installation.
VFs must be configured as trusted for the hardware jump action to work as intended. The following
steps configure "trusted" mode for VFs:

Delete all existing VFs
To delete all VFs on a PF run the following on the host:

$ echo 0 > /sys/class/net/<physical_function>/device/sriov_numvfs

For example:

1502

2.

3.

4.

a.

b.

5.

1.

2.

3.

$ echo 0 > /sys/class/net/ens1f0/device/sriov_numvfs

Delete all existing SFs.

Stop the main driver on the host:

/etc/init.d/openibd stop

Before creating the VFs, set them to "trusted" mode on the device by running the following
commands on the DPU side.

Setting VFs on port 0:

$ mlxreg -d /dev/mst/mt41686_pciconf0 --reg_id 0xc007 --reg_len 0x40 --indexes
"0x0.0:32=0x80000000" --yes --set "0x4.0:32=0x1"

Setting VFs on port 1:

$ mlxreg -d /dev/mst/mt41686_pciconf0.1 --reg_id 0xc007 --reg_len 0x40 --indexes
"0x0.0:32=0x80000000" --yes --set "0x4.0:32=0x1"

Restart the main driver on the host by running the following command:

/etc/init.d/openibd restart

19.12.3 VF Creation
Make sure mst driver is running:

host $ mst status

If it is not loaded, run:

host $ mst start

Enable SR-IOV. Run:

host $ mlxconfig -y -d /dev/mst/mt41686_pciconf0 s SRIOV_EN=1

Set number of VFs. Run:

host $ mlxconfig -y -d /dev/mst/mt41686_pciconf0 s NUM_OF_VFS=X

Refer to NVIDIA BlueField DPU Scalable Function User Guide for instructions on
deleting SFs.

These commands set trusted mode for all created VFs/SFs after their execution on
the DPU.

Setting trusted mode should be performed once per reboot.

1503

4.

host $ echo X > /sys/class/net/<physical_function>/device/sriov_numvfs

For example:

host $ mlxconfig -y -d /dev/mst/mt41686_pciconf0 s NUM_OF_VFS=2
host $ reboot
host $ echo 2 > /sys/class/net/ens1f0/device/sriov_numvfs

After enabling VF, the representor appears on the DPU. The function itself is seen at the x86
side.
To verify that the VFs have been created. Run:

$ lspci | grep Virtual
b1:00.3 Ethernet controller: Mellanox Technologies ConnectX Family mlx5Gen Virtual Function (rev 01)
b1:00.4 Ethernet controller: Mellanox Technologies ConnectX Family mlx5Gen Virtual Function (rev 01)
b1:01.3 Ethernet controller: Mellanox Technologies ConnectX Family mlx5Gen Virtual Function (rev 01)

19.12.4 Running DOCA Application on Host

The following is the CLI example for running a reference application over the host using VF:

doca_<app_name> -a "pci address VF0" -a "pci address VF1" -c 0xff -- [application flags]

The following is an example with specific PCIe addresses for the VFs:

doca_<app_name> -a b1:00.3 -a b1:00.4 -c 0xff -- -l 60

19.12.5 Topology Example
The following is a topology example for running the application over the host.

Perform a BlueField system reboot for the mlxconfig settings to take effect.

2 new virtual Ethernet devices are created in this example.

Allocate the required number of VFs as explained previously.

Allocate any other resources as specified by the application (e.g., huge pages).

By default, a DPDK application initializes all the cores of the device. This is usually
unnecessary and may even cause unforeseeable issues. It is recommended to limit the
number of cores, especially when using an AMD-based system, to 16 cores using the -c flag
when running DPDK.

1504

1.

2.

3.

Configure the OVS on BlueField as follows:

Bridge ovsbr1
 Port ovsbr1
 Interface ovsbr1
 type: internal
 Port pf0hpf
 Interface pf0hpf
 Port pf0vf1
 Interface pf0vf1
Bridge vf_br
 Port p0
 Interface p0
 Port vf_br
 Interface vf_br
 type: internal
 Port pf0vf0
 Interface pf0vf0

When enabling a new VF over the host, VF representors are created on the Arm side. The first OVS
bridge connects the uplink connection (p0) to the new VF representor (pf0vf0), and the second

bridge connects the second VF representor (pf0vf1) to the host representors (pf0phf). On the
host, the 2 PCIe addresses of the newly created function must be initialized when running the
applications.

When traffic is received (e.g., from the uplink), the following occurs:

Traffic is received over p0 .

Traffic is forwarded to pf0vf0 .

Application "listens" to pf0vf0 and pf0vf1 and can, therefore, acquire the traffic

from pf0vf0 , inspect it, and forward to pf0vf1 .

1505

4.

1.

2.

3.

Traffic is forwarded from pf0vf1 to pf0hpf .

19.12.6 VF Creation on Adapter Card

The following steps are required only when running DOCA applications on an adapter card.

Set trust level for all VFs. Run:

host# mlxreg -d /dev/mst/mt4125_pciconf0 --reg_name VHCA_TRUST_LEVEL --yes --set
"all_vhca=0x1,trust_level=0x1" --indexes "vhca_id=0x0,all_vhca=0x0"

Create X VFs (X being the required number of VFs) and run the following to turn on trusted
mode for the created VFs:

echo ON | tee /sys/class/net/enp1s0f0np0/device/sriov/X/trust

For example, if you are creating 2 VFs, the following commands should be used:

echo ON | tee /sys/class/net/enp1s0f0np0/device/sriov/0/trust
echo ON | tee /sys/class/net/enp1s0f0np0/device/sriov/1/trust

Create a VF representor using the following command, replace the PCIe address with the PCIe
address of the created VF:

echo 0000:17:00.2 > /sys/bus/pci/drivers/mlx5_core/unbind
echo 0000:17:00.2 > /sys/bus/pci/drivers/mlx5_core/bind

Supported only for NVIDIA® ConnectX®-6 Dx based adapter cards and higher.

1506

•
•

•
•
•

•
•
•
•

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

20 Archives
This section contains the following pages:

NVIDIA DOCA LTS Versions
NVIDIA DOCA Documentation Archives

20.1 NVIDIA DOCA LTS Versions
Documentation for DOCA long term support (LTS) releases.

20.1.1 Introduction
DOCA LTS releases are stable and verified DOCA versions. LTS updates include bug fixes and security
vulnerability fixes but not ongoing features and enhancements.

20.1.2 LTS Documentation
Follow these links to navigate to the relevant LTS release or specific update:

DOCA 2.5.0 LTS base version
2.5.2 LTS update
2.5.1 LTS update

DOCA 1.5.0 LTS base version
1.5.3 LTS update
1.5.2 LTS update
1.5.1 LTS update

20.2 NVIDIA DOCA Documentation Archives
Archived documentation of previous DOCA software releases.

DOCA v2.7.0 documentation
DOCA v2.6.0 documentation
DOCA v2.5.2 LTS documentation
DOCA v2.5.1 LTS documentation
DOCA v2.5.0 LTS documentation
DOCA v2.2.1 documentation
DOCA v2.2.0 documentation
DOCA v2.0.2 documentation
DOCA v1.5.3 LTS documentation
DOCA v1.5.2 LTS documentation
DOCA v1.5.1 LTS documentation
DOCA v1.5.0 LTS documentation
DOCA v1.4.0 documentation
DOCA v1.3.0 documentation
DOCA v1.2.1 documentation
DOCA v1.2.0 documentation

https://docs.nvidia.com/doca/archive/doca-v2-5-0/index.html
https://docs.nvidia.com/doca/archive/doca-v2-5-2/index.html
https://docs.nvidia.com/doca/archive/doca-v2-5-1/index.html
https://docs.nvidia.com/doca/archive/doca-v1.5.0/
https://docs.nvidia.com/doca/archive/doca-v1.5.3/
https://docs.nvidia.com/doca/archive/doca-v1.5.2/
https://docs.nvidia.com/doca/archive/doca-v1.5.1/
https://docs.nvidia.com/doca/archive/doca-v2-7-0/
https://docs.nvidia.com/doca/archive/doca-v2-6-0/
https://docs.nvidia.com/doca/archive/doca-v2-5-2/index.html
https://docs.nvidia.com/doca/archive/doca-v2-5-1/index.html
https://docs.nvidia.com/doca/archive/doca-v2-5-0/
https://docs.nvidia.com/doca/archive/doca-v2.2.1/
https://docs.nvidia.com/doca/archive/doca-v2.2.0/
https://docs.nvidia.com/doca/archive/doca-v2.0.2/
https://docs.nvidia.com/doca/archive/doca-v1.5.3/
https://docs.nvidia.com/doca/archive/doca-v1.5.2/
https://docs.nvidia.com/doca/archive/doca-v1.5.1/
https://docs.nvidia.com/doca/archive/doca-v1.5.0/
https://docs.nvidia.com/doca/archive/doca-v1.4/
https://docs.nvidia.com/doca/archive/doca-v1.3/
https://docs.nvidia.com/doca/archive/doca-v1.2.1/
https://docs.nvidia.com/doca/archive/doca-v1.2/

1507

•
•
•

DOCA v1.1.1 documentation
DOCA v1.1.0 documentation
DOCA v1.0.0 documentation

https://docs.nvidia.com/doca/archive/doca-v1.1.1/
https://docs.nvidia.com/doca/archive/doca-v1.1/
https://docs.nvidia.com/doca/archive/doca-v1.0/

Notice

This document is provided for information purposes only and shall not be regarded as a warranty of a certain
functionality, condition, or quality of a product. Neither NVIDIA Corporation nor any of its direct or indirect subsidiaries
and affiliates (collectively: “NVIDIA”) make any representations or warranties, expressed or implied, as to the accuracy
or completeness of the information contained in this document and assumes no responsibility for any errors contained
herein. NVIDIA shall have no liability for the consequences or use of such information or for any infringement of patents
or other rights of third parties that may result from its use. This document is not a commitment to develop, release, or
deliver any Material (defined below), code, or functionality.
NVIDIA reserves the right to make corrections, modifications, enhancements, improvements, and any other changes to
this document, at any time without notice. Customer should obtain the latest relevant information before placing orders
and should verify that such information is current and complete.
NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the time of order
acknowledgement, unless otherwise agreed in an individual sales agreement signed by authorized representatives of
NVIDIA and customer (“Terms of Sale”). NVIDIA hereby expressly objects to applying any customer general terms and
conditions with regards to the purchase of the NVIDIA product referenced in this document. No contractual obligations
are formed either directly or indirectly by this document.
NVIDIA products are not designed, authorized, or warranted to be suitable for use in medical, military, aircraft, space, or
life support equipment, nor in applications where failure or malfunction of the NVIDIA product can reasonably be
expected to result in personal injury, death, or property or environmental damage. NVIDIA accepts no liability for
inclusion and/or use of NVIDIA products in such equipment or applications and therefore such inclusion and/or use is at
customer’s own risk.
NVIDIA makes no representation or warranty that products based on this document will be suitable for any specified use.
Testing of all parameters of each product is not necessarily performed by NVIDIA. It is customer’s sole responsibility to
evaluate and determine the applicability of any information contained in this document, ensure the product is suitable
and fit for the application planned by customer, and perform the necessary testing for the application in order to avoid a
default of the application or the product. Weaknesses in customer’s product designs may affect the quality and reliability
of the NVIDIA product and may result in additional or different conditions and/or requirements beyond those contained in
this document. NVIDIA accepts no liability related to any default, damage, costs, or problem which may be based on or
attributable to: (i) the use of the NVIDIA product in any manner that is contrary to this document or (ii) customer product
designs.
No license, either expressed or implied, is granted under any NVIDIA patent right, copyright, or other NVIDIA intellectual
property right under this document. Information published by NVIDIA regarding third-party products or services does not
constitute a license from NVIDIA to use such products or services or a warranty or endorsement thereof. Use of such
information may require a license from a third party under the patents or other intellectual property rights of the third
party, or a license from NVIDIA under the patents or other intellectual property rights of NVIDIA.
Reproduction of information in this document is permissible only if approved in advance by NVIDIA in writing, reproduced
without alteration and in full compliance with all applicable export laws and regulations, and accompanied by all
associated conditions, limitations, and notices.
THIS DOCUMENT AND ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS,
AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA MAKES NO
WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY
DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE.
TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL NVIDIA BE LIABLE FOR ANY DAMAGES, INCLUDING WITHOUT
LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND
REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF NVIDIA HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Notwithstanding any damages that customer might incur for any reason
whatsoever, NVIDIA’s aggregate and cumulative liability towards customer for the products described herein shall be
limited in accordance with the Terms of Sale for the product.

Trademarks
NVIDIA, the NVIDIA logo, and Mellanox are trademarks and/or registered trademarks of NVIDIA Corporation and/or

Mellanox Technologies Ltd. in the U.S. and in other countries. Other company and product names may be trademarks of
the respective companies with which they are associated.

Copyright
© 2024 NVIDIA Corporation & affiliates. All Rights Reserved.

	DOCA Documentation v2.8.0
	DOCA Overview
	Release Notes
	User Types
	NVIDIA DOCA EULA

	Quick Start
	Developer Quick Start Guide

	Installation and Setup
	Profiles
	NVIDIA MLNX_OFED Transition Guide

	Installation Guide for Linux
	Developer Guide

	DOCA Programming Guides
	Applications
	App Shield Agent
	DMA Copy
	DPA All-to-all
	DPA L2 Reflector
	East-west Overlay Encryption
	Ethernet L2 Forwarding
	File Compression
	File Integrity
	GPU Packet Processing
	IPsec Security Gateway
	PCC
	PSP Gateway
	Secure Channel
	Simple Forward VNF
	Switch
	UROM RDMO
	YARA Inspection

	Tools
	DOCA Bench
	Capabilities Print Tool
	Comm Channel Admin Tool
	DPA Tools
	PCC Counter Tool
	Socket Relay

	DOCA Services
	Container Deployment
	DOCA BlueMan Service
	DOCA Firefly Service
	DOCA Flow Inspector Service
	DOCA HBN Service
	DOCA Management Service
	OpenvSwitch Acceleration (OVS in DOCA)
	DOCA Telemetry Service
	DOCA UROM Service

	API References
	DOCA Driver APIs
	DOCA Libraries APIs

	Miscellaneous
	Glossary
	Crypto Acceleration
	DOCA Services Fluent Logger
	DPU CLI
	Emulated Devices
	Modes of Operation
	Switching
	OpenSSL
	Scalable Functions (SFs)
	TLS Offload
	Troubleshooting
	Virtual Functions (VFs)

	Archive
	LTS Versions
	Documentation Archives

	DOCA SDK v2.8.0
	NVIDIA DOCA Overview
	Introduction
	Installation
	API
	Programming Guides
	Applications
	Tools
	Services

	NVIDIA DOCA Release Notes
	Introduction
	Installation Notes
	Supported Device Speeds
	Technical Support
	General Support
	Embedded DOCA Firmware Components
	Supported NIC Firmware Versions
	Embedded DOCA Drivers
	DOCA Packages
	Supported Host OS and Features per DOCA-Host Installation Profile
	DOCA-OFED Version Interoperability
	BF-Bundle (BFB) Version Upgrade/Downgrade
	Supported DOCA Version Upgrade Using Standard Linux Tools on BlueField
	API Changes
	Device Definition
	Unsupported Functionalities/Features/NICs

	Changes and New Features
	New Features and Updates

	Bug Fixes in This Version
	DOCA Bug Fixes
	BSP Bug Fixes
	BMC Bug Fixes

	Known Issues

	BlueField and DOCA User Types
	Introduction
	DOCA Components
	BlueField Networking Platform User Types
	BlueField Administrator
	DOCA Developer

	NVIDIA DOCA EULA
	End-User License Agreement

	Quick Start for BlueField Developers
	NVIDIA DOCA Developer Quick Start Guide
	Introduction
	Install BlueField Networking Platform
	Install DOCA Software Package
	Access BlueField
	Run Reference DOCA Application
	More Information

	Installation and Setup
	NVIDIA DOCA Profiles
	Introduction
	doca-all
	doca-networking
	doca-ofed
	Which Profile to Install?
	DOCA-Host Profile Installation
	Supported Host OS per DOCA-Host Installation Profile
	NVIDIA MLNX_OFED to DOCA-OFED Transition Guide
	Introduction
	What is DOCA-Host?
	What is DOCA-OFED?
	Why Switch to DOCA-OFED and DOCA-Host?
	Switching to DOCA-OFED and DOCA-Host
	Installation Example of DOCA-OFED from Online Repo
	Installation Example of DOCA-OFED Offline Repo

	MLNX_EN Transition
	Transition Timeline
	Summary

	NVIDIA DOCA Installation Guide for Linux
	Introduction
	Supported Platforms
	Supported BlueField Platforms
	Supported ConnectX NICs

	Hardware Prerequisites
	DOCA Packages
	Supported Host OS per DOCA-Host Installation Profile

	BlueField Networking Platform Image Installation
	Installation Files
	Uninstalling Software from Host
	Installing Prerequisites on Host for Target BlueField
	Installing Software on Host
	DOCA Extra Package

	Installing Software on BlueField
	Installing Full DOCA Image on DPU via Host
	Option 1 – No Pre-defined Password
	Option 2 – Set Pre-defined Password

	Installing Full DOCA Image on Multiple BlueField Platforms
	Installing DOCA Local Repo Package on BlueField

	Upgrading Firmware
	Post-installation Procedure

	Upgrading BlueField Using Standard Linux Tools
	Post-Installation Procedure
	Building Your Own BFB Installation Image
	Setting Up Build Environment for Developers
	Additional SDKs for DOCA
	Installing CUDA on NVIDIA Converged Accelerator
	Configuring Operation Mode
	Downloading and Installing CUDA Toolkit and Driver
	GPUDirect RDMA

	Installing Rivermax on BlueField
	Downloading Rivermax Driver
	Installing Rivermax Driver
	Installing Rivermax Libraries from DOCA

	NVIDIA DOCA Developer Guide
	Introduction
	Developing Using BlueField Networking Platform
	Setup
	Development
	Testing
	Publishing

	Developing Without BlueField Networking Platform
	Setup
	Development
	Testing
	Publishing

	DOCA Programming Guide
	DOCA Programming Overview
	Hardware Overview
	DOCA SDK Architecture
	Device Subsystem
	Memory Management Subsystem
	Execution Model

	DOCA Backward Compatibility Policy
	DOCA SDK Versioning
	DOCA SDK API Backwards Compatibility
	Source Compatibility
	Binary Compatibility
	Behavioral Compatibility

	DOCA SDK Protocol Compatibility
	DOCA SDK Dependencies Compatibility

	DOCA Development Best Practices
	Capability Checking
	Device Capability
	Library Capability
	Core Capability

	Debuggability
	Return value
	SDK log

	DOCA Libraries
	DOCA Common
	DOCA Core
	Introduction
	Prerequisites
	Changes From Previous Releases
	Changes in 2.8.0

	Architecture
	General
	DOCA Device
	DOCA Memory Subsystem
	DOCA Execution Model
	Object Life Cycle
	RDMA Bridge

	DOCA Core Samples
	Progress Engine Samples
	Graph Sample

	Backward Compatibility of DOCA Core doca_buf
	DOCA Core doca_buf

	Sync Event
	Introduction
	Prerequisites
	Environment
	Architecture
	 Configuration Phase
	Execution Phase
	State Machine
	DOCA Sync Event Tear Down
	Alternative Datapath Options
	DOCA Sync Event Sample

	Mmap Advise
	Introduction
	Prerequisites
	Architecture
	Environment
	Configuration Phase
	Execution Phase
	State Machine
	Alternative Datapath Options
	Samples

	DOCA Log
	Log Verbosity Level Enumerations
	Logging Backends
	Enabling DOCA SDK Libraries Logging
	Enabling DOCA Application Logging
	Logging DOCA Application Messages

	DOCA Flow
	Introduction
	Prerequisites
	Architecture
	Steering Domains
	List of Steering Domains
	Domains in VNF Mode
	Domains in Switch Mode

	API
	Flow Life Cycle
	Initialization Flow
	Pipe Mode

	Start Point
	Port Operation State
	Use Case Examples
	Limitations

	Create Pipe and Pipe Entry
	Pipe Matching or Action Applying
	Setting Pipe Match or Action
	Relaxed Match
	Setting Pipe Actions
	Setting Pipe Monitoring
	Setting Pipe Forwarding
	Shared Resources
	Basic Pipe Create
	Pipe Entry (doca_flow_pipe_add_entry)
	Pipe Entry With Multiple Actions
	Miss Pipe and Control Pipe
	doca_flow_pipe_lpm
	doca_flow_pipe_acl
	doca_flow_pipe_ordered_list
	doca_flow_pipe_hash
	Hardware Steering Mode
	Isolated Mode
	Pipe Resize
	Hairpin Configuration

	Teardown
	Pipe Entry Teardown
	Pipe Teardown
	Port Teardown
	Flow Teardown

	Metadata
	Packet Processing
	Debug and Trace Features
	Installation
	Using Trace Libraries
	Trace Features
	DOCA Log – Trace Level

	DOCA Flow Samples
	Sample Prerequisites
	Running the Sample
	Samples
	Flow ACL
	Flow Aging
	Flow Control Pipe
	Flow Copy to Meta
	Flow Add to Metadata
	Flow Drop
	Flow ECMP
	Flow ESP
	Flow Forward Miss
	Flow Forward Target (DOCA_FLOW_TARGET_KERNEL)
	Flow GENEVE Encap
	Flow GENEVE Options
	Flow Hairpin VNF
	Flow Switch to Wire
	Flow Hash Pipe
	Flow IPv6 Flow Label
	Flow Loopback
	Flow LPM
	Flow LPM with exact match (EM)
	Flow Modify Header
	Flow Monitor Meter
	Flow Multi-actions
	Flow Multi-fwd
	Flow Ordered List
	Flow Parser Meta
	Flow Random
	Flow RSS ESP
	Flow RSS Meta
	Flow Sampling
	Flow Set Meta
	Flow Shared Counter
	Flow Shared Meter
	Flow Switch Control Pipe
	Flow Switch – Multiple Switches
	Flow Switch – Single Switch
	Flow Switch (Direction Info)
	Flow Switch Hot Upgrade
	Flow VXLAN Encap
	Flow Shared Mirror
	Flow Match Comparison
	Flow Pipe Resize
	Flow Entropy
	Flow VXLAN Shared Encap

	Field String Support Appendix
	Supported Field String
	Supported Non-field String
	Copy Hash Result
	Copy GENEVE Options

	DOCA Flow Connection Tracking
	Introduction
	Architecture
	Aging
	Autonomous Mode
	 Managed Mode

	Prerequisites
	DPU
	ConnectX

	Actions
	Shared Actions
	Non-shared Actions
	Action Sets in Pipe Creation
	Feature Enable
	Using Actions in Autonomous Mode
	Using Actions in Managed Mode

	Changeable Forward
	Using Changeable Forward in Managed Mode
	Using Changeable Forward in Autonomous Mode

	API
	enum doca_flow_ct_flags
	enum doca_flow_ct doca_flow_ct_entry_flags
	enum doca_flow_ct_rule_opr
	struct direction_cfg
	struct doca_flow_ct_worker_callbacks
	struct doca_flow_ct_cfg
	struct doca_flow_ct_actions

	 DOCA Flow Connection Tracking Samples
	Running the Samples
	Samples

	DOCA Flow Tune Server
	Introduction
	Prerequisites
	API
	enum doca_flow_tune_server_kpi_type
	struct doca_flow_tune_server_shared_resources_kpi_res
	struct doca_flow_tune_server_kpi_res
	doca_flow_tune_server_cfg_create
	doca_flow_tune_server_cfg_set_bind_path
	doca_flow_tune_server_cfg_destroy
	doca_flow_tune_server_init
	doca_flow_tune_server_destroy
	doca_flow_tune_server_query_pipe_line
	doca_flow_tune_server_get_port_ids
	doca_flow_tune_server_get_kpi
	doca_flow_tune_server_get_port_kpi

	DOCA Flow Tune Server Samples
	Running the Samples
	Samples

	Flow Visualization

	DPA Subsystem
	Multiple Processes on Multiple Execution Units
	DPA RTOS
	DPA Memory and Caches
	DPA Access to NIC Accelerators
	DPA Development
	Overview
	DOCA Libs and Drivers
	Programming Model

	FlexIO
	Prerequisites
	Architecture
	API
	Resource Management
	DPA Memory Management
	DPA Window
	DPA Event Handler
	Version API and Backward Compatibility
	Application Debugging
	FlexIO Samples

	DPA Application Authentication
	Root of Trust Principles
	ELF File Structure

	Known Limitations
	Supported Devices
	Supported Host OS
	Supported SDKs
	Toolchain
	FlexIO

	DOCA DPA
	Introduction
	Prerequisites
	Library Changes From Previous Releases
	Changes in 2.8.0

	Software Architecture
	Deployment View
	DPA Queries
	Overview of DOCA DPA Software Objects
	Initialization
	Interface to DPACC
	Affinity
	Threading
	Memory Subsystem
	Sync Events
	Communication Model
	Data Structures
	RPC and Kernel Launch
	Logging and Tracing
	Error Handling

	Hello World Example
	Procedure Outline
	Procedure Steps

	Samples
	Basic Initiator Target
	Advanced Initiator Target
	Ping Pong
	Kernel Launch

	DOCA PCC
	Introduction
	Prerequisites
	Changes From Previous Releases
	Changes in 2.8.0

	Dependencies
	Architecture
	Host Library
	Device Libraries
	Development Flow
	System Design

	API
	Host API
	 Device API

	DOCA DMA
	Introduction
	Prerequisites
	Library Changes From Previous Releases
	Changes in 2.8.0
	API Additions

	Environment
	Architecture
	Objects
	Device and Device Representor
	Memory Buffers

	 Configuration Phase
	Configurations
	Mandatory Configurations

	Device Support
	Buffer Support

	Execution Phase
	Tasks
	Memory Copy Task

	Events

	State Machine
	Idle
	Starting
	Running
	Stopping

	Alternative Datapath Options
	GPU Datapath

	DOCA DMA Samples
	Running the Samples
	Samples
	DMA Local Copy
	DMA Copy DPU
	DMA Copy Host

	DOCA Comch
	DOCA Comch – New
	Introduction
	Prerequisites
	Changes From Previous Release
	Modified

	Environment
	Architecture
	Objects
	Security Considerations
	Initialization Flow
	Teardown Flow
	MsgQ (DPA Communication)

	Configuration Phase
	Configurations
	Device Support
	Buffer Support

	Execution Phase
	Tasks
	Events

	State Machine
	Idle
	Starting
	Running
	Stopping

	Alternative Datapath Options
	DPA

	DOCA Comch Samples
	Running the Samples
	Samples

	DOCA Comm Channel – Deprecated
	Introduction
	Prerequisites
	API
	Objects
	Query Device Capabilities
	Creating and Configuring an Endpoint
	Establishing Connections over Endpoints
	Message Event Channel
	doca_comm_channel_ep_sendto()
	doca_comm_channel_ep_recvfrom()
	Information Regarding Each Connection
	 Service State and Events
	doca_comm_channel_ep_disconnect()
	doca_comm_channel_ep_destroy()

	Limitations
	Endpoint Properties
	Multi-client
	Multiple Services
	Threads

	Usage
	Objects
	Endpoint Initialization
	Connection Flow
	Data Transfer Flow
	Event Channel and Event Handling
	Connection Errors
	Connection Statistics
	Service State and Connections
	Disconnection Flow
	Endpoint Destruction

	DOCA Comm Channel Samples
	Running the Sample
	Samples

	DOCA UROM
	Introduction
	Prerequisites
	Architecture
	UROM Deployment
	UROM Framework
	Plugin Task Offloading Flow

	UROM Installation

	API
	 DOCA_UROM_SERVICE_FILE
	doca_urom_service
	 doca_urom_service_plugin_info
	doca_urom_service_get_workers_by_gid_task
	doca_urom_service_create
	doca_urom_service_destroy
	doca_urom_service_set_max_comm_msg_size
	doca_urom_service_as_ctx
	doca_urom_service_get_plugins_list
	doca_urom_service_get_cpuset
	doca_urom_service_get_workers_by_gid_task_allocate_init
	doca_urom_service_get_workers_by_gid_task_release
	doca_urom_service_get_workers_by_gid_task_as_task
	doca_urom_service_get_workers_by_gid_task_get_workers_count
	doca_urom_service_get_workers_by_gid_task_get_worker_ids
	doca_urom_worker
	doca_urom_worker_cmd_task
	doca_urom_worker_cmd_task_completion_cb_t
	doca_urom_worker_create
	doca_urom_worker_destroy
	doca_urom_worker_set_service
	doca_urom_worker_set_id
	doca_urom_worker_set_gid
	doca_urom_worker_set_plugins
	doca_urom_worker_set_env
	doca_urom_worker_as_ctx
	doca_urom_worker_cmd_task_allocate_init
	doca_urom_worker_cmd_task_release
	doca_urom_worker_cmd_task_set_plugin
	doca_urom_worker_cmd_task_set_cb
	doca_urom_worker_cmd_task_get_payload
	doca_urom_worker_cmd_task_get_response
	doca_urom_worker_cmd_task_get_user_data
	doca_urom_worker_cmd_task_as_task
	doca_urom_domain
	doca_urom_domain_allgather_cb_t
	doca_urom_domain_req_test_cb_t
	doca_urom_domain_req_free_cb_t
	doca_urom_domain_oob_coll
	doca_urom_domain_create
	doca_urom_domain_destroy
	doca_urom_domain_set_workers
	doca_urom_domain_add_buffer
	doca_urom_domain_set_oob
	doca_urom_domain_as_ctx

	Execution Model
	UROM Building Blocks
	Program Flow
	DPU
	Host

	Plugin Development
	Developing Offload Plugin on DPU
	Creating Plugin Host Task

	DOCA UROM Samples
	Sample Prerequisite
	Running the Sample
	UROM Plugin Samples
	Graph
	Sandbox

	UROM Program Samples
	UROM Multi-worker Bootstrap
	UROM Ping Pong

	DOCA RDMA
	Introduction
	Prerequisites
	Environment
	Architecture
	Objects
	Device
	Memory Map
	Buffer Inventory and Buffers

	Configuration Phase
	Configurations
	Mandatory Configurations
	Optional Configurations

	Device Support
	Buffer Support
	Establishing RDMA Connections
	Exporting and Connecting RDMA
	Connecting Using RDMA CM Connection Flow
	Using Bridge Functions to Accept CM Connection

	Execution Phase
	Tasks
	Receive Task
	Send Task
	Send With Immediate Task
	Read Task
	Write Task
	Write With Immediate Task
	Atomic Compare and Swap Task
	Atomic Fetch and Add Task
	Get Remote Sync Event Task
	Set Remote Sync Event Task
	Add Remote Sync Event Task

	Events

	State Machine
	Idle
	Starting
	Running
	Stopping

	Alternative Datapath Options
	DPA Datapath
	GPU Datapath

	DOCA RDMA Samples
	Running the Samples
	Samples
	RDMA Read
	RDMA Write
	RDMA Write Immediate
	RDMA Send and Receive
	RDMA Send and Receive with Immediate
	RDMA Remote Sync Event

	DOCA Ethernet
	Introduction
	Prerequisites
	Changes From Previous Releases
	Changes in 2.8.0
	Added
	Changed

	Environment
	Architecture
	DOCA ETH RXQ
	Operating Modes
	Working with DOCA Flow

	DOCA ETH TXQ
	Operating Modes
	Offloads

	Objects

	Configurations Phase
	Configurations
	 Mandatory Configurations
	DOCA ETH RXQ
	DOCA ETH TXQ

	Optional Configurations
	DOCA ETH RXQ
	DOCA ETH TXQ

	Device Support
	Buffer Support

	Execution Phase
	Tasks
	DOCA ETH RXQ
	DOCA ETH TXQ

	Events
	DOCA ETH RXQ
	DOCA ETH TXQ

	Task Batch
	DOCA ETH RXQ
	DOCA ETH TXQ

	Event Batch
	DOCA ETH RXQ
	DOCA ETH TXQ

	State Machine
	Idle
	Starting
	Running
	Stopping

	Alternative Datapath Options
	DOCA ETH Samples
	Running the Samples
	Samples
	ETH TXQ Send Ethernet Frames
	ETH TXQ LSO Send Ethernet Frames
	ETH TXQ Batch Send Ethernet Frames
	ETH TXQ Batch LSO Send Ethernet Frames
	ETH RXQ Regular Receive
	ETH RXQ Managed Receive
	ETH RXQ Batch Managed Receive

	DOCA GPUNetIO
	Introduction
	Changes From Previous Releases
	Changes in 2.8
	Added

	System Configuration
	Application on Host CPU
	Option 1: ConnectX Adapter in Ethernet Mode
	Option 2: DPU Converged Accelerator in NIC mode

	Application on BlueField Converged Arm CPU
	PCIe Configuration
	Hugepages
	GPU Configuration
	BlueField-3 Specific Configuration
	GPU Memory Mapping (nvidia-peermem vs. dmabuf)
	GPU BAR1 Size

	Architecture
	API
	CPU Functions
	doca_gpu_mem_type
	doca_gpu_create
	doca_gpu_mem_alloc
	doca_gpu_semaphore_create
	doca_gpu_semaphore_set_memory_type
	doca_gpu_semaphore_set_items_num
	doca_gpu_semaphore_set_custom_info
	doca_gpu_semaphore_get_status
	doca_gpu_semaphore_get_custom_info_addr

	DOCA PE
	Strong Mode vs. Weak Mode
	GPU Functions – Ethernet
	doca_gpu_dev_eth_rxq_receive_*
	doca_gpu_send_flags
	doca_gpu_dev_eth_txq_send_*
	doca_gpu_dev_eth_txq_wait_*
	doca_gpu_dev_eth_txq_commit_*
	doca_gpu_dev_eth_txq_push

	GPU Functions – RDMA
	doca_gpu_dev_rdma_write_*
	doca_gpu_dev_rdma_read_*
	doca_gpu_dev_rdma_send_*
	doca_gpu_dev_rdma_commit_*
	doca_gpu_dev_rdma_wait_all
	doca_gpu_dev_rdma_recv_*
	doca_gpu_dev_rdma_recv_commit_*
	doca_gpu_dev_rdma_recv_wait_all

	GPU Functions – DMA
	doca_gpu_dev_dma_memcopy
	doca_gpu_dev_dma_commit

	Building Blocks
	Initialize GPU and NIC
	Semaphore
	Ethernet Queue with GPU Data Path
	Receive Queue
	Send Queue
	Receive and Process
	Produce and Send

	RDMA Queue with GPU Data Path
	CUDA Kernel for RDMA Write

	GPUNetIO Samples
	Ethernet Send Wait Time
	Synchronizing Clocks
	Running the Sample

	Ethernet Simple Receive
	RDMA Client Server
	GPU DMA Copy

	DOCA App Shield
	Introduction
	Prerequisites
	Dependencies
	API
	doca_apsh_dma_dev_set
	Capabilities Per System

	App Shield Initialization and Teardown
	doca_apsh_ctx
	doca_apsh_system
	doca_apsh_config.py Tool

	DOCA App Shield Samples
	Sample Prerequisites
	Running the Sample
	Samples
	Apsh Libs Get
	Apsh Modules Get
	Apsh Pslist
	Apsh Threads Get
	Apsh Vads Get
	Apsh Envars Get
	Apsh Privileges Get
	Apsh Containers Get

	DOCA Compress
	Introduction
	Prerequisites
	Changes From Previous Releases
	Changes in 2.8
	Removed

	Environment
	Architecture
	Supported Compress/Decompress Algorithms
	Supported Checksum Methods
	Objects
	Device and Device Representor
	Memory Buffers

	Source and Destination Location
	Local Host
	Local DPU
	Remote

	Configuration Phase
	Configurations
	Mandatory Configurations

	Device Support
	Supported Tasks
	Supported Buffer Size

	Buffer Support

	Execution Phase
	Tasks
	Compress Deflate Task
	Decompress Deflate Task
	Decompress LZ4 Tasks

	Events

	State Machine
	States
	Idle
	Starting
	Running
	Stopping

	Alternative Datapath Options
	DOCA Compress Samples
	Running the Sample
	Samples
	Compress/Decompress Deflate
	Decompress LZ4 Stream

	Backward Compatibility
	Decompress LZ4 Task

	DOCA SHA
	Introduction
	Prerequisites
	Environment
	Architecture
	Objects
	Device and Representor
	Memory Buffers

	Configuration Phase
	Configurations
	Mandatory Configurations

	Device Support
	Buffer Support

	Execution Phase
	Tasks
	SHA Task
	Partial-SHA Task

	Events

	State Machine
	Idle
	Starting
	Running
	Stopping

	Alternative Datapath Options
	DOCA SHA Samples
	Running the Samples
	Samples
	SHA Create
	SHA-Partial Create

	DOCA Erasure Coding
	Introduction
	Glossary

	Prerequisites
	 Environment
	Architecture
	Flows
	Create Redundancy Blocks
	Recover Block
	Objects
	Device and Device Representor
	Memory Buffers

	Configuration Phase
	Configurations
	Mandatory Configurations

	Device Support
	Buffer Support

	Execution Phase
	Matrix Generate
	Matrix Type
	Matrix Functionality

	Tasks
	Task Batching
	Galois Mul Task
	Create Task
	Update Task
	Recover Task

	DOCA Erasure Coding Samples
	Sample Prerequisites
	Running the Sample
	Samples
	Erasure Coding Recover

	DOCA AES-GCM
	Introduction
	Prerequisites
	Environment
	Architecture
	Objects
	Device and Representor
	Memory Buffers

	Configuration Phase
	Configurations
	Mandatory Configurations

	Device Support
	Buffer Support

	Execution Phase
	Tasks
	Encrypt Task
	Decrypt Task

	Events

	State Machine
	Idle
	Starting
	Running
	Stopping

	Alternative Datapath Options
	DOCA AES-GCM Samples
	Running the Samples
	Samples
	AES-GCM Encrypt
	AES-GCM Decrypt

	DOCA Rivermax
	Introduction
	Prerequisites
	Environment
	Architecture
	Objects

	 Configuration Phase
	Configurations
	Mandatory Configurations
	Optional Configurations

	Device Support
	Buffer Support

	Execution Phase
	Events
	Rx Data

	Runtime Configurations

	State Machine
	Idle
	Starting
	Running
	Stopping

	DOCA Rivermax Samples
	Running the Samples
	Samples
	List Devices
	Set CPU Affinity
	Set Clock
	Create Stream
	Create Stream – Header-data Split Mode

	DOCA Telemetry Exporter
	Introduction
	Architecture
	DOCA Telemetry Exporter API Walkthrough
	DOCA Telemetry Exporter NetFlow API Walkthrough

	API
	DOCA Telemetry Exporter Buffer Attributes
	DOCA Telemetry Exporter File Write Attributes
	DOCA Telemetry Exporter IPC Attributes
	DOCA Telemetry Exporter Source Attributes
	DOCA Telemetry Exporter Netflow Collector Attributes
	doca_telemetry_exporter_source_report
	doca_telemetry_exporter_schema_add_type

	Telemetry Data Format
	Data Outputs
	Inter-process Communication
	Using IPC with Non-container Application

	NetFlow
	Fluent Bit
	Prometheus

	DOCA Telemetry Exporter Samples
	Running the Sample
	Samples
	Telemetry Export
	Telemetry Export NetFlow

	DOCA Telemetry Diagnostics
	Introduction
	Architecture
	Synchronized Start
	Output Formats
	Device and Ownership
	State Machine
	Data IDs

	Telemetry Diagnostics Sample
	Appendix - List of Supported Data IDs
	Known Limitations

	DOCA Device Emulation
	Introduction
	Known Limitations
	DOCA DevEmu PCI
	Introduction
	Prerequisites
	Environment
	Architecture
	Pre Defined PCI Type vs. Generic PCI Type
	PCIe Type Name
	Create Emulated Device
	Hot-plug Emulated Device
	Emulated Device Discovery
	Objects Lifecycle and Persistency
	Function Level Reset

	Device Support
	PCIe Device
	Configuration Phase
	Execution Phase
	State Machine

	DOCA DevEmu PCI Generic
	Introduction
	Prerequisites
	Environment
	Architecture
	Device Support
	PCI Type
	PCI Device
	PCI Device DB
	PCIe Device MSI-X Vector
	DOCA DevEmu Generic Samples

	DOCA DevEmu Virtio
	Introduction
	Prerequisites
	Environment
	Architecture
	Virtio Common Configuration
	Virtio Type
	Virtio Device
	Virtio IO

	DOCA DevEmu Virtio-FS
	Introduction
	Prerequisites
	Environment
	Architecture
	Discovery
	Initialization
	Teardown
	Execution Phase

	DOCA Utils
	DOCA Arg Parser
	Introduction
	API
	doca_argp_param
	doca_argp_param_create
	doca_argp_register_param
	doca_argp_set_dpdk_program
	doca_argp_start

	DPDK Flags
	DOCA General Flags
	DOCA Program Flags
	JSON File Example

	DOCA Drivers
	DOCA UCX
	Introduction
	Prerequisites
	Architecture
	UCP Objects
	UCP Context (ucp_context_h)
	UCP Worker (ucp_worker_h)
	UCP Endpoint (ucp_ep_h)
	UCP Listener (ucp_listener_h)
	UCP Request (ucp_request_h)

	API
	ucs_status_t
	ucp_init
	ucp_cleanup
	ucp_worker_create
	ucp_worker_destroy
	ucp_listener_create
	ucp_listener_destroy
	ucp_ep_create
	Create Modes (ucp_ep_params_t)
	User-Defined Error Handling (ucp_ep_params_t)

	ucs_status_ptr_t
	ucp_ep_close_nbx
	ucp_request_param_t
	ucp_worker_progress
	ucp_am_send_nbx
	ucp_worker_set_am_recv_handler
	ucp_am_recv_data_nbx

	UCX Best Practices
	Initialization
	Communications

	MLX Drivers (MLNX_OFED)
	InfiniBand Network
	InfiniBand Interface
	Port Type Management
	RDMA Counters

	NVIDIA SM
	OpenSM Application
	osmtest
	Partitions
	Effect of Topology Changes
	Routing Algorithms
	Unicast Routing Cache
	Quality of Service Management in OpenSM
	Adaptive Routing Manager and Self-Healing Networking
	IB Router Support in OpenSM
	OpenSM Activity Report
	Offsweep Balancing

	QoS - Quality of Service
	QoS Architecture
	Supported Policy
	CMA Features

	IP over InfiniBand (IPoIB)
	Upper Layer Protocol (ULP)
	Enhanced IPoIB
	Port Configuration
	IPoIB Configuration
	Sub-interfaces
	Verifying IPoIB Functionality
	Bonding IPoIB
	Dynamic PKey Change
	Precision Time Protocol (PTP) over IPoIB
	One Pulse Per Second (1PPS) over IPoIB

	Advanced Transport
	Atomic Operations
	XRC - eXtended Reliable Connected Transport Service for InfiniBand
	Dynamically Connected Transport (DCT)
	MPI Tag Matching and Rendezvous Offloads

	Optimized Memory Access
	Memory Region Re-registration
	Memory Window
	User-Mode Memory Registration (UMR)
	On-Demand-Paging (ODP)
	Inline-Receive

	NVIDIA PeerDirect
	PeerDirect Async
	Relaxed Ordering (RSYNC)

	CPU Overhead Distribution
	Out-of-Order (OOO) Data Placement
	Overview

	IB Router
	MAD Congestion Control

	Storage Protocols
	SRP - SCSI RDMA Protocol
	SRP Initiator
	Shutting Down SRP

	iSCSI Extensions for RDMA (iSER)
	iSER Initiator
	iSER Targets

	Lustre
	NVME-oF - NVM Express over Fabrics
	NVME-oF
	NVME-oF Target Offload

	Virtualization
	Single Root IO Virtualization (SR-IOV)
	System Requirements
	Setting Up SR-IOV
	Configuring SR-IOV (Ethernet)
	Configuring SR-IOV (InfiniBand)
	Additional SR-IOV Configurations
	Uninstalling the SR-IOV Driver
	SR-IOV Live Migration

	Enabling Paravirtualization
	VXLAN Hardware Stateless Offloads
	Enabling VXLAN Hardware Stateless Offloads
	Important Note

	Q-in-Q Encapsulation per VF in Linux (VST)
	Setup
	Prerequisites
	Configuring Q-in-Q Encapsulation per Virtual Function for ConnectX-5/ConnectX-6

	802.1Q Double-Tagging
	Configuring 802.1Q Double-Tagging per Virtual Function

	Scalable Functions

	Resiliency
	Reset Flow
	Kernel ULPs
	User Space Applications (IB/RoCE)
	SR-IOV
	Forcing the VF to Reset
	Extended Error Handling (EEH)
	CRDUMP
	Firmware Tracer

	Docker Containers
	Docker Using SR-IOV
	Kubernetes Using SR-IOV
	Kubernetes with Shared HCA

	HPC-X
	Fast Driver Unload

	DOCA Applications
	Introduction
	Installation
	Prerequisites
	Compilation
	Developer Configurations

	Application Use of DOCA Libs
	Applications
	App Shield Agent
	DMA Copy
	DPA All-to-all
	DPA L2 Reflector
	East-West Overlay Encryption
	Ethernet L2 Forwarding
	File Compression
	File Integrity
	GPU Packet Processing
	IPsec Gateway
	Programmable Congestion Control
	PSP Gateway
	Secure Channel
	Simple Forward VNF
	Switch
	UROM RDMO
	YARA Inspection

	NVIDIA DOCA App Shield Agent Application Guide
	Introduction
	System Design
	Application Architecture
	DOCA Libraries
	Compiling the Application
	Compiling All Applications
	Compiling Only the Current Application
	Troubleshooting

	Running the Application
	Prerequisites
	Application Execution
	Command Line Flags
	Troubleshooting

	Application Code Flow
	References

	NVIDIA DOCA DMA Copy Application Guide
	Introduction
	System Design
	Application Architecture
	DOCA Libraries
	Compiling the Application
	Compiling All Applications
	Compiling Only the Current Application
	Troubleshooting

	Running the Application
	Application Execution
	Command Line Flags
	Troubleshooting

	Application Code Flow
	References

	NVIDIA DOCA DPA All-to-all Application Guide
	Introduction
	System Design
	Application Architecture
	DOCA Libraries
	Dependencies
	Compiling the Application
	Compiling All Applications
	Compiling DPA All-to-all Application Only
	Troubleshooting

	Running the Application
	Prerequisites
	Application Execution
	Command Line Flags
	Troubleshooting

	Application Code Flow
	References

	NVIDIA DOCA DPA L2 Reflector Application Guide
	Introduction
	System Design
	Application Architecture
	DOCA Libraries and Drivers
	Dependencies
	Compiling the Application
	Compiling All Applications
	Compiling DPA L2 Reflector Application Only
	Troubleshooting

	Running the Application
	Application Execution
	Command Line Flags
	Troubleshooting

	Application Code Flow
	References

	NVIDIA DOCA East-West Overlay Encryption Application
	Introduction
	System Design
	Application Architecture
	DOCA Libraries
	Configuration Flow
	Enabling IPsec Packet Offload
	Configuring OVS IPsec
	Authentication Methods
	Pre-shared Key
	Self-signed Certificate
	CA-signed Certificate

	Ensuring IPsec is Configured
	Configuring OVS IPsec Using strongSwan Manually
	swanctl.conf Files

	Running the Application
	Installation
	Application Execution
	Script Parameters
	Using JSON Parameters File
	Passing Parameters on Command Line
	Passing Parameters for Pre-shared Key Authentication Method
	Passing Parameters for Self-signed Certificates Authentication Method
	Passing Parameters for CA Certificates Authentication Method

	Troubleshooting
	Building strongSwan
	Reverting IPsec Configuration

	References

	NVIDIA DOCA Eth L2 Forwarding Application Guide
	Introduction
	System Design
	Application Architecture
	DOCA Libraries
	Compiling the Application
	Installation
	Overview
	Compiling All Applications
	Compiling Only the Current Application
	Troubleshooting

	Running the Application
	Application Execution
	Command Line Flags
	Troubleshooting

	Application Code Flow
	References

	NVIDIA DOCA File Compression Application Guide
	Introduction
	System Design
	Application Architecture
	DOCA Libraries
	Compiling the Application
	Compiling All Applications
	Compiling File Compression Application Only
	Troubleshooting

	Running the Application
	Application Execution
	Command Line Flags
	Troubleshooting

	Application Code Flow
	References

	NVIDIA DOCA File Integrity Application Guide
	Introduction
	System Design
	Application Architecture
	DOCA Libraries
	Compiling the Application
	Compiling All Applications
	Compiling Only the Current Application
	Troubleshooting

	Running the Application
	Application Execution
	Command Line Flags
	Troubleshooting

	Application Code Flow
	References

	NVIDIA DOCA GPU Packet Processing Application Guide
	Introduction
	System Design
	Application Architecture
	ICMP Network Traffic
	UDP Network Traffic
	TCP Network Traffic and HTTP Echo Server
	Step 1: TCP Connection Establishment
	Step 2: TCP Data Processing
	Step 3: HTTP Echo Server
	Step 4: TCP Connection Closure

	DOCA Libraries
	Dependencies
	Compiling the Application
	Compiling All Applications
	Compiling Only the Current Application
	Troubleshooting

	Running the Application
	Command Line Flags
	Troubleshooting

	Application Code Flow
	References

	NVIDIA DOCA IPsec Security Gateway Application Guide
	Introduction
	System Design
	Application Architecture
	Static Configuration
	Dynamic Configuration
	DOCA Flow Modes
	VNF Mode
	Encryption
	Decryption

	Switch Mode

	DOCA Libraries
	Compiling the Application
	Prerequisites
	Compiling All Applications
	Compiling Only the Current Application
	Troubleshooting

	Running the Application
	Prerequisites
	Application Execution
	Command Line Flags
	Static Configuration IPsec Rules
	Dynamic Configuration IPsec Rules
	Troubleshooting

	Application Code Flow
	Keying Daemon Integration (StrongSwan)
	End-to-end Architecture
	Running the Solution
	Building strongSwan

	References

	NVIDIA DOCA PCC Application Guide
	Introduction
	System Design
	Application Architecture
	DOCA Libraries
	Dependencies
	Compiling the Application
	Compiling All Applications
	Compiling Only the Current Application
	Compilation Options
	Troubleshooting

	Running the Application
	Prerequisites
	Application Execution
	Command Line Flags
	Troubleshooting

	Application Code Flow
	Port Programmable Congestion Control Register
	Usage
	Internal Default Algorithm
	Counters

	References

	NVIDIA DOCA PSP Gateway Application Guide
	Introduction
	System Design
	Application Architecture
	Startup vs. On-Demand Tunnel Creation
	Sampling
	Pipelines
	Host-to-Network Flows
	Network-to-Host Flows

	DOCA Libraries

	Compiling the Application
	Prerequisites
	Compiling All Applications
	Compiling Only the Current Application
	Troubleshooting

	Running the Application
	Prerequisites
	Application Execution
	Command Line Flags
	Tunnel Mappings File
	Troubleshooting

	Application Code Flow
	References

	NVIDIA DOCA Secure Channel Application Guide
	Introduction
	System Design
	Application Architecture
	DOCA Libraries
	Compiling the Application
	Compiling All Applications
	Compiling Only the Current Application
	Troubleshooting

	Running the Application
	Application Execution
	Command Line Flags
	Troubleshooting

	Application Code Flow
	References

	NVIDIA DOCA Simple Forward VNF Application Guide
	Introduction
	System Design
	Application Architecture
	DOCA Libraries
	Compiling the Application
	Compiling All Applications
	Compiling Simple Forward Application Only
	Troubleshooting

	Running the Application
	Prerequisites
	Application Execution
	Command Line Flags
	Troubleshooting

	Application Code Flow
	References

	NVIDIA DOCA Switch Application Guide
	Introduction
	System Design
	Application Architecture
	DOCA Libraries
	Compiling the Application
	Compiling All Applications
	Recompiling Only the Current Application
	Troubleshooting

	Running the Application
	Prerequisites
	Application Execution
	Command Line Flags
	Supported Commands
	Troubleshooting

	Application Code Flow
	References

	NVIDIA DOCA UROM RDMO Application Guide
	Introduction
	System Design
	Bootstrap Procedure
	Memory Management
	RDMO UROM Worker Operation

	Application Architecture
	UROM RDMO Worker Component
	Init
	RQ Create
	RQ Destroy
	MR Register
	MR Deregister

	Command Format
	Append
	Flush
	Scatter

	DOCA Libraries
	Compiling the Application
	Compiling All Applications
	Compiling Only the Current Application
	Troubleshooting

	Running the Application
	Host Application Execution
	RDMO DPU Plugin Component
	Command Line Flags
	Troubleshooting

	Application Code Flow
	References

	NVIDIA DOCA YARA Inspection Application Guide
	Introduction
	System Design
	Application Architecture
	DOCA Libraries
	Limitations
	Compiling the Application
	Compiling All Applications
	Compiling Only the Current Application
	Troubleshooting

	Running the Application
	Prerequisites
	Application Execution
	Command Line Flags
	Troubleshooting

	Application Code Flow
	References

	DOCA Tools
	Introduction
	Tools
	DOCA Bench
	Capabilities Print Tool
	DPA Tools
	PCC Counter
	Socket Relay

	NVIDIA DOCA Bench
	Introduction
	Feature Overview
	Installation
	Prerequisites
	Granular Build Support

	Operating Modes
	Throughput Measurements
	Latency Measurements
	Bulk Latency
	Precision Latency

	Core Principles
	Host or BlueField Arm Execution
	Pipelines
	Warm-up Period
	Defaults
	Optimizing Performance

	Supported BlueField Feature Matrix
	Remote Operations
	CPU Core and Thread Selection
	Device Selection
	Input Data Selection and Sizing of Jobs
	Input Data Selection
	File
	File Sets
	Random Data

	Job Sizing

	Controlling Test Duration
	Limit to Specific Number of Seconds
	Limited Through Total Number of Jobs

	GGA-specific Attributes
	Command-line Parameters
	CPU Core and Thread Count Configuration
	--core-mask
	--core-list
	--core-count
	--threads-per-core -t

	Device Configuration
	--device -A
	--representor -R

	Input Data and Buffer Size Configuration
	--data-provider -I
	File Data Provider
	File Set Data Provider
	Random-data Data Provider

	--data-provider-job-count
	--data-provider-input-file
	--uniform-job-size
	--job-output-buffer-size
	--input-cwd -i
	Example 1 – Running DOCA Bench from Current Working Directory
	Example 2 – Running DOCA Bench from Another Directory
	Example 3 – Example 2 Revisited Using input-cwd

	Test Execution Control
	--mode
	Throughput Mode
	Bulk-latency Mode
	Precision-latency Mode

	--latency-bucket-range

	Blocking Mode
	--use-blocking-mode
	--record-cpu-usage

	Execution Limits
	--run-limit-seconds -s
	--run-limit-jobs -J
	--run-limit-bytes -b

	Gather/Scatter Support
	--gather-value

	Stats Output
	--rt-stats-interval
	--csv-output-file
	--csv-stats
	Example 1 – Emit Only Statistical Values (No Configuration Values)
	Example 2 – Emit Statistical Values and Some Configuration Values (Remove Attribute Values)

	--csv-append-mode
	--csv-separate-dynamic-values
	--enable-environment-information

	Remote Memory Testing
	--use-remote-input-buffers
	--use-remote-output-buffers

	Network Options
	--mtu-size
	--receive-queue-size
	--send-queue-size
	DOCA Lib Configuration Options
	--task-pool-size

	Pipeline Configuration
	--pipeline-steps
	--attribute
	--warm-up-jobs

	Companion Configuration
	--companion-connection-string
	--companion-core-list
	--companion-core-mask

	Sweep Tests
	--sweep

	Queries
	Device Capabilities
	Supported Sweep Attributes

	Test Memory Footprint
	DOCA Bench Sample Invocations
	Overview
	DOCA Eth Receive Sample
	Command Line
	Results Output
	Results Overview

	DOCA Eth Send Sample
	Command Line
	Results Output
	Results Overview

	Host-side AES-GCM Decrypt Sample
	Command Line
	Results Output
	Results Overview

	BlueField-side AES-GCM Encrypt Sample
	Command Line
	Results Output
	Results Overview

	Host-side AES-GCM Encrypt and Decrypt Sample
	Command Line
	Results Output
	Results Overview

	Host-side SHA with CSV Output File Sample
	Command Line
	Results Output
	Results Overview

	Host-side SHA with CSV Appended Output File Sample
	Command Line
	Results Output
	Results Overview

	BlueField-side SHA with Transient Statistics Sample
	Command Line
	Results Output
	Results Overview

	Host-side Local DMA with Core Sweep Sample
	Command Line
	Results Overview
	Results Overview

	Host-side Local DMA with Job Size Sweep Sample
	Command Line
	Results Overview
	Results Overview

	BlueField-side Remote DMA Sample
	Command Line
	Results Overview
	Results Overview

	Compress BlueField-side Sample
	Command Line
	Result Output
	Results Overview

	BlueField-side Decompress LZ4 Sample
	Command Line
	Results Output
	Results Comment

	Host-side EC Creation in Bulk Latency Mode Sample
	Command Line
	Results Output
	Results Comment

	BlueField-side EC Creation in Precision Latency Mode Sample
	Command Line
	Results Output
	Results Comment

	Comch Consumer from Host Side Sample
	Command Line
	Results Output
	Results Comment

	Host-side Comch Producer Sample
	Command Line
	Results Overview
	Results Comment

	Host-side RDMA Send Sample
	Command Line
	Results Output
	Results Comment

	Host-side RDMA Receive Sample
	Command Line
	Results Output
	Results Overview

	NVIDIA DOCA Capabilities Print Tool
	Introduction
	Prerequisites
	Description
	Execution

	NVIDIA DOCA Comm Channel Admin Tool
	Introduction
	Prerequisites
	Description and Execution
	Sample Output from BlueField Arm
	Sample Output from x86

	NVIDIA DPA Tools
	Introduction
	DPA Tools
	DPACC Compiler
	DPA EU Management Tool
	DPA GDB Server Tool
	DPA PS Tool
	DPA Statistic Tool

	NVIDIA DOCA DPACC Compiler
	Introduction
	Glossary
	Offloading Work on DPA
	DPACC Predefined Macros
	Writing DPA Applications
	Language Support
	Restrictions on DPA Code
	DPA RPC Functions
	DPA Global Functions
	Characteristics of Annotated Functions
	Handling User-defined Data Types
	Characteristics of Annotated Types
	DPA Intrinsics

	Prerequisites
	Supported Versions

	Description
	DPACC Inputs and Outputs
	DPA Program
	DPA Object
	DPA Library

	DPACC Trajectory
	Modes of Operation
	Compile-and-link Mode
	Compile-only Mode
	Library Generation Mode

	Execution
	Mandatory Arguments
	Commonly Used Arguments
	DPA Hardware Architectures
	Architecture Macros
	LTO Usage Guidelines
	Restrictions
	Compatibility

	Deprecated Features
	Examples
	Building Libraries
	Linking with DPA Device Library
	Enabling Link-time Optimizations
	Including Headers
	Generating Output as Source Code

	DPA Compiler Usage
	Compiler Driver Command-line Options
	Linker Command Line Options
	dpacc-extract Command Line Options
	Objdump Command Line Options
	Archiver Command Line Options
	NM Tool Command Line Options
	Common Compiler Options
	Common Linker Options
	Debugging Options
	Miscellaneous Notes

	NVIDIA DOCA DPA Execution Unit Management Tool
	Introduction
	Execution Unit Objects
	dpaeumgmt Commands
	General Commands
	Execution Unit Group Commands
	EU Group Command Flags and Arguments
	Info EU Group
	Create EU Group
	Destroy EU Group
	Query EU Group
	Apply EU Group

	EU Partition Commands
	EU Partition Command Flags and Arguments
	Info EU Partition
	Create EU Partition
	Destroy EU Partition
	Query EU Partition

	vHCAs and Partitions
	Known Limitations

	NVIDIA DOCA DPA GDB Server Tool
	Introduction
	Glossary
	Known Limitations

	DPA-specific Notes
	Token
	Connection on Application Launch
	Dummy Thread Concept
	Watchdog Issues

	Tool TCP Port and Execution Unit (EU)
	Debugging
	Preparation for Debug
	Start Debugging
	DPA-specific Debugging Techniques
	Easy Example of Transitioning from Dummy to Real Thread
	Complicated Example of Transitioning from Dummy to Real Thread
	Finishing Real Thread without Finishing PUD

	Error Reporting
	Tool Log Directory
	Verbosity Level of gdbserver

	Useful Info Regarding Work with GDB
	Command "directory"
	Core Dump Usage
	Debug of Optimized Code
	Disassembly of Advanced RISC-V Commands

	NVIDIA DOCA DPA PS Tool
	Introduction
	Command Flags and Arguments
	Example
	Known Limitations

	NVIDIA DOCA DPA Statistics Tool
	Introduction
	Collecting Performance Statistics Data
	Presenting Statistics List
	Examples

	Known Limitations

	NVIDIA DOCA PCC Counter Tool
	Introduction
	Prerequisites
	Description
	Execution

	NVIDIA DOCA Socket Relay
	Introduction
	Prerequisites
	Dependencies
	Execution
	Arg Parser DOCA Flags

	DOCA Services
	Introduction
	Development Lifecycle
	Development
	Containerization
	Profiling

	Services
	Container Deployment
	DOCA BlueMan
	DOCA Firefly
	DOCA Flow Inspector
	DOCA HBN
	DOCA Management Service
	OpenvSwitch Acceleration (OVS in DOCA)
	DOCA Telemetry
	DOCA UROM

	NVIDIA BlueField Container Deployment Guide
	Introduction
	Prerequisites
	Container Deployment
	Pull Container YAML Configurations
	Container-specific Instructions
	Structure of NGC Resource
	Spawn Container
	Review Container Deployment
	Stop Container

	Troubleshooting Common Errors
	Yaml Syntax
	Huge Pages

	Advanced Troubleshooting
	Manual Execution from Within Container - Debugging

	Air-gapped Container Deployment
	Pulling Container for Offline Deployment
	Importing Container Image
	Built-in Infrastructure Support

	DOCA Services for Host
	Docker Deployment

	NVIDIA DOCA BlueMan Service Guide
	Introduction
	Requirements
	Verifying DTS Status
	Verifying DPE Status

	Service Deployment
	DOCA Service on NGC
	Default Deployment – BlueField BSP
	Enabling BlueMan Service
	Using Script
	Manual Procedure

	Verifying Deployment Success

	Collected Data
	Connecting to BlueMan Web Interface
	Troubleshooting

	NVIDIA DOCA Firefly Service Guide
	Introduction
	Requirements
	Firmware Version
	BlueField BSP Version
	Embedded Mode
	Configuring Firmware Settings on DPU for Embedded Mode
	Ensuring OVS Hardware Offload
	Helper Scripts
	prepare_for_embedded_mode.sh
	set_new_sf.sh

	Setting Up Network Interfaces for DPU Mode

	Separated Mode
	Configuring Firmware Settings on DPU for Separated Mode
	Setting Up Network Interfaces for Separated Mode

	Host-based Deployment

	Service Deployment
	DPU Deployment
	Host Deployment

	Configuration
	Built-In Config File
	Custom Config File
	Overriding Specific Config File Parameters
	Ensuring and Debugging Correctness of Config Files

	Description
	Providers
	Profiles
	Outputs
	Container Output
	Firefly Output
	ptp4l Output
	phc2sys Output
	SyncE Output
	Firefly Servo Output

	Tx Timestamping Support on DPU Mode
	Troubleshooting Tx Timestamp Issues

	PTP
	PHC2SYS
	SYNCE
	PTP Monitor
	Configuration
	Time Representations (PTP Time vs System Time)
	Monitor Server
	Monitor Client

	Firefly Servo
	Firefly Servo Configuration
	Dynamic Packet Rate Support

	 VLAN Tagging
	Separated Mode
	Embedded Mode

	Multiple Interfaces

	Troubleshooting
	Pod is Marked as "Ready" and No Container is Listed
	Error
	Solution

	Custom Config File is Not Found
	Error
	Solution

	Profile is Not Supported
	Error
	Solution

	PPS Capability is Missing
	Error
	Solution

	Timed Out While Polling for Tx Timestamp
	Error
	Solution

	Warning – Time Jumped Backwards
	Error
	Solution

	PTP Profile Default Config Files
	Media Profile
	Default Profile
	Telco (L2) Profile

	Firefly Modules Configuration Options
	PTP Monitor
	monitor-default.conf
	Configuration Options

	Firefly Servo
	servo-default.conf
	Configuration Options

	NVIDIA DOCA Flow Inspector Service Guide
	Introduction
	Service Flow

	Requirements
	Service Deployment
	Configuration
	JSON Input
	Export Unit Attributes

	Yaml File
	Verifying Output

	Troubleshooting
	Pod is Marked as "Ready" and No Container is Listed
	Error
	Solution

	Pod is Not Listed
	Error
	Solution

	NVIDIA DOCA HBN Service Guide
	Introduction
	Service Function Chaining

	HBN Service Release Notes
	Changes and New Features
	Supported Platforms and Interoperability
	Supported BlueField Networking Platforms
	Supported BlueField OS
	Verified Scalability Limits

	Known Issues
	Bug Fixes

	HBN Service Deployment
	HBN Service Requirements
	Enabling BlueField DPU Mode
	Enabling SFC
	Deploying BlueField DOCA Image with SFC from Host
	Deploying BlueField DOCA Image with SFC Using PXE Boot
	Redeploying SFC from BlueField
	Deploying HBN with Other Services

	Launching HBN Service
	HBN Service Container Deployment
	Downloading DOCA Container Resource File
	Running HBN Preparation Script
	Spawning HBN Container
	Verifying HBN Container is Running

	HBN Deployment Configuration
	HBN-only Deployment Configuration
	Dual Bridge HBN Deployment Configuration
	Mixed Mode HBN Deployment Configuration

	HBN Deployment Considerations
	SF Interface State Tracking
	SF Interface MTU
	Connecting to DOCA Services to HBN on BlueField Arm
	Disabling BlueField Uplinks
	HBN NVUE User Credentials
	HBN NVUE Interface Classification
	HBN Files Persistence
	SR-IOV Support in HBN
	Management VRF

	HBN Service Configuration
	General Network Configuration
	Flat Files Configuration

	NVUE Configuration
	NVUE Service
	NVUE REST API
	NVUE REST API Management Through CLI

	NVUE CLI
	NVUE Startup Configuration File

	HBN Configuration Examples
	HBN Default Configuration
	Layer-3 Routing
	Native Routing with BGP and ECMP
	BGP Peering with the Host
	VRF Route Leaking
	VLAN Subinterfaces

	Ethernet Virtual Private Network – EVPN
	Single VXLAN Device
	Sample Switch Configuration for EVPN
	Layer-2 EVPN
	Layer-3 EVPN with Symmetric Routing
	 Multi-hop eBGP Peering for EVPN (Route Server in Symmetric EVPN Routing)
	Downstream VNI (DVNI)
	Gateway Application Using Downstream VNI and Subinterface

	Access Control Lists
	Stateless ACLs
	Stateful ACLs

	DHCP Relay on HBN
	Configuration
	DHCP Relay and VRF Considerations

	HBN Service Troubleshooting
	HBN Container Stuck in init-sfs
	Host-side PF/VF Down After BlueField Reboot
	BGP Session not Establishing
	Generating Support Information
	SFC Troubleshooting
	General nl2doca Troubleshooting
	nl2doca Offload Troubleshooting
	NVUE Troubleshooting

	NVIDIA DOCA Management Service Guide
	Introduction
	Requirements
	Service Deployment
	Configuration
	General Flags
	Security Flags
	Provisioning Flags

	Description
	gNMI Command
	Get Supported Paths
	Get Request
	Set Request

	gNOI Commands
	OS
	Install
	Activate
	Verify

	System
	Reboot Status
	Reboot

	NVIDIA OpenvSwitch Acceleration (OVS in DOCA)
	Introduction
	OVS and Virtualized Devices
	OVS-Kernel Hardware Acceleration
	Switchdev Configuration
	Switchdev Performance Tuning
	Steering Mode
	Troubleshooting SMFS
	vPort Match Mode
	Flow Table Large Group Number

	Open vSwitch Configuration
	OVS Performance Tuning
	Flow Aging
	TC Policy
	max-revalidator
	n-handler-threads
	n-revalidator-threads
	vlan-limit

	Basic TC Rules Configuration
	SR-IOV VF LAG
	SR-IOV VF LAG Configuration on ASAP2
	Using TC with VF LAG

	Classification Fields (Matches)
	Ethernet Layer 2
	IPv4/IPv6
	TCP/UDP Source and Destination Ports and TCP Flags
	VLAN
	Tunnel

	Supported Actions
	Forward
	Drop
	Statistics
	Tunnels: Encapsulation/Decapsulation
	VLAN Push/Pop
	OVS Configuration
	TC Configuration

	Header Rewrite
	Ethernet Layer 2
	IPv4/IPv6
	TCP/UDP Source and Destination Ports
	VLAN

	Connection Tracking
	CT Performance Tuning

	Forward to Chain (TC Only)

	Port Mirroring: Flow-based VF Traffic Mirroring for ASAP²
	Forward to Multiple Destinations
	sFlow
	Rate Limit
	Kernel Requirements
	VF Metering
	Representor Metering
	OVS Metering
	Multiport eSwitch Mode

	OVS-DPDK Hardware Acceleration
	OVS-DPDK Hardware Offloads Configuration
	Offloading VXLAN Encapsulation/Decapsulation Actions
	Configuring VXLAN Encap/Decap Offloads

	CT Offload
	SR-IOV VF LAG
	VirtIO Acceleration Through VF Relay: Software and Hardware vDPA
	vDPA Configuration in OVS-DPDK Mode
	Software vDPA Configuration in OVS-Kernel Mode

	Large MTU/Jumbo Frame Configuration
	E2E Cache
	Geneve Encapsulation/Decapsulation
	Parallel Offloads
	sFlow

	CT CT NAT
	OpenFlow Meters (OpenFlow13+)

	OVS-DOCA Hardware Acceleration
	Configuring OVS-DOCA
	Notable Differences Between OVS-DPDK and OVS-DOCA
	Eswitch Dependency
	Pre-allocated Offload Tables
	Unsupported CT-CT-NAT

	OVS-DOCA Specific vSwitch Configuration
	other_config
	netdev-dpdk

	Offloading VXLAN Encapsulation/Decapsulation Actions
	VXLAN GBP Extension

	Offloading Connection Tracking
	SR-IOV VF LAG
	Multiport eSwitch Mode
	Offloading Geneve Encapsulation/Decapsulation
	GRE Tunnel Offloads
	Slow Path Rate Limiting/SW-Meter
	Hairpin
	OpenFlow Meters
	DP-HASH Offloads
	sFlow
	OVS-DOCA Known Limitations
	OVS-DOCA Debugging
	OVS-DOCA Build
	Scaling Megaflows

	OVS Metrics
	OVS Inside BlueField
	Verifying Host Connection on Linux
	Verifying Connection from Host to BlueField
	Verifying Host Connection on Windows

	NVIDIA DOCA Telemetry Service Guide
	Introduction
	Service Deployment
	Available Images
	Built-in DOCA Service Image
	DOCA Service on NGC

	DPU Deployment
	Host Deployment
	Deployment with Grafana Monitoring

	Configuration
	Init Scripts
	Enabling Fluent Bit Forwarding
	Generating Configuration
	Resetting Configuration
	Enabling Providers
	Remote Collection

	Enabling Data Write
	Enabling IPC with Non-container Program

	Description
	Providers
	Sysfs Counters List
	Port Counters
	Hardware Counters
	Debug Status Counters

	Power Thermal Counters
	Ethtool Counters
	Ring/Software Port Counters
	vPort Counters
	Physical Port Counters
	Priority Port Counters
	Device Counters
	Full List of Counters

	Traffic Control Info
	Amber Provider
	PPCC_ETH Provider
	Fluent Aggregator
	Prometheus Aggregator
	Network Interfaces
	HCA Performance
	hcaperf DPU Configuration
	hcaperf Host Configuration

	NVIDIA System Management Interface
	NVIDIA Data Center GPU Manager
	BlueField Performance
	Ngauge
	Ngauge Low Frequency
	Ngauge High Frequency
	Provider Compatibility
	Ngauge YAML File
	Counters

	Data Outputs
	Data Writer
	Prometheus
	Configuration Details
	Prometheus Aggregator Exporter
	Fluent Bit
	Export File Configuration Details
	Msgpack Data Layout
	Cset/Fset Filtering

	NetFlow Exporter

	DOCA Privileged Executer
	DPE Usage
	DPE Configuration File

	Deploying with Grafana Monitoring
	Grafana Deployment Prerequisites
	Grafana Deployment Configuration
	DTS Configuration (DPU Side)
	Prometheus Configuration (Remote Server)
	Grafana Configuration (Remote Server)

	Exploring Telemetry Data

	Troubleshooting

	NVIDIA DOCA UROM Service Guide
	Introduction
	Requirements
	Service Deployment
	Description
	Plugin Discovery and Reporting
	Loading Plugin in Worker
	Yaml File

	Troubleshooting
	Pod is Marked as "Ready" and No Container is Listed
	Error
	Solution

	Pod is Not Listed
	Error
	Solution

	NVIDIA DOCA SNAP Virtio-fs Service Guide
	Introduction
	DOCA SNAP Virtio-fs as Container

	Release Notes
	Changes and New Features
	Key Features in Version 1.0.0-doca2.8.0

	Limitations
	Known Issues
	DOCA SNAP Virtio-fs Issues
	OS or Vendor Issues

	DOCA SNAP Virtio-fs Deployment
	Installing Full DOCA Image on BlueField
	Firmware Installation
	Firmware Configuration
	RDMA/RoCE Firmware Configuration
	Hot-plug Firmware Configuration

	DOCA SNAP Virtio-fs Container Deployment
	Preparation Steps
	Step 0: Connect to NGC Container Registry
	Step 1: Allocate Hugepages
	Step 2: Create /etc/virtiofs Folder

	Downloading YAML from Early Access NGC
	Adjusting YAML Configuration
	Spawning DOCA SNAP Virtio-fs Container
	Debug and Log
	Stop, Start, Restart DOCA SNAP Virtio-fs Container

	DOCA SNAP Virtio-fs with SNAP Support

	RPC Commands
	Using JSON-based RPC Protocol
	PCIe Function Management
	virtio_fs_doca_get_managers
	virtio_fs_doca_get_functions

	Hot-pluggable PCIe Functions Management
	virtio_fs_doca_get_functions
	virtio_fs_doca_function_create
	virtio_fs_doca_function_destroy
	virtio_fs_doca_device_hotplug
	virtio_fs_doca_device_hotunplug

	SPDK FSdev Module Configuration
	 fsdev_set_opts
	 fsdev_get_opts

	SPDK FSDEV Management
	fsdev_get_fsdevs
	fsdev_aio_create
	fsdev_aio_delete

	Virtio-fs Emulation Management
	virtio_fs_transport_create
	virtio_fs_transport_destroy
	virtio_fs_transport_start
	virtio_fs_transport_stop
	virtio_fs_get_transports
	virtio_fs_device_create
	virtio_fs_device_start
	virtio_fs_device_stop
	virtio_fs_device_destroy
	virtio_fs_device_modify
	virtio_fs_get_devices
	virtio_fs_doca_device_modify

	Configuration Example
	Static Function – Bring up
	Static Function – Teardown
	Hotplug Function
	Hot-unplug Function

	Appendix – BlueField Firmware Configuration
	System Configuration Parameters
	RDMA/RoCE Configuration
	Virtio-fs Configuration

	Appendix – Host OS Configuration
	Intel Server Performance Optimizations
	AMD Server Performance Optimizations

	References

	API References
	NVIDIA DOCA Driver APIs
	NVIDIA DOCA Library APIs

	Miscellaneous (Runtime)
	NVIDIA DOCA Glossary
	NVIDIA DOCA Crypto Acceleration
	NVIDIA DOCA Services Fluent Logger
	Introduction
	Deployment
	Configuration
	Troubleshooting

	NVIDIA DOCA DPU CLI
	Introduction
	General Commands
	DPU/DOCA Commands

	NVIDIA DOCA Emulated Devices
	NVIDIA BlueField Modes of Operation
	Introduction

	DOCA Switching
	DOCA Representors Model
	Virtio Acceleration through Hardware vDPA
	Hardware vDPA Installation
	Hardware vDPA Configuration
	Running Hardware vDPA

	Bridge Offload
	Basic Configuration
	Configuring VLAN
	VF LAG Support

	Link Aggregation
	Controlling Host PF and VF Parameters

	NVIDIA DOCA with OpenSSL
	Introduction
	Prerequisites
	Architecture
	Capabilities and Limitations
	OpenSSL Command Line Verification
	OpenSSL Throughput Test
	Using DOCA SHA Offload Engine in OpenSSL Application

	NVIDIA BlueField DPU Scalable Function User Guide
	Introduction
	Prerequisites
	SF Configuration
	Configuration Using mlxdevm Tool

	NVIDIA TLS Offload Guide
	Introduction
	TLS Handshake
	kTLS
	HW-offloading kTLS
	kTLS Offload Flow in High Level
	Resync and Error Handling

	Prerequisites
	Checking Hardware Support for Crypto Acceleration
	Kernel Requirements

	Configurations and Useful Commands
	TLS Setup
	Finding NVIDIA Interfaces
	Configuring TLS Offload
	Configuring OVS Bridge on BlueField

	Common Use Cases
	OpenSSL
	Nginx
	Prerequisites
	Configuration
	Stopping Nginx
	Wrk – Client
	Using Wrk

	Testing Offload via OpenSSL
	TLS Testing Setup
	Adding Certificate and Key
	Running Server Side
	Running Client Side
	Testing kTLS

	Optimizations over kTLS
	XLIO

	Performance Tuning Options
	Additional Reading

	NVIDIA DOCA Troubleshooting Guide
	DOCA Infrastructure
	RShim Troubleshooting and How-Tos
	Another backend already attached
	RShim driver not loading
	RShim driver not loading on DPU with integrated BMC
	RShim driver not loading on host on DPU without integrated BMC

	Change ownership of RShim from NIC BMC to host

	Connectivity Troubleshooting
	Connection (ssh, screen console) to the DPU is lost
	Driver not loading in host server
	No connectivity between network interfaces of source host to destination device
	Uplink in Arm down while uplink in host server up

	Performance Degradation
	SR-IOV Troubleshooting
	Unable to create VFs
	No traffic between VF to external host

	eSwitch Troubleshooting
	Unable to configure legacy mode
	DPU appears as two interfaces

	DOCA Applications
	EAL Initialization Failure
	Error
	Solution

	Ring Memory Issue
	Error
	Solution

	DOCA Apps Using DPDK in Parallel Issue
	Error
	Solution

	Failure to Set Huge Pages
	Error
	Solution

	DOCA Libraries
	DOCA Flow Error
	Error
	Solution

	DOCA SDK Compilation
	Meson Complains About Missing Dependencies
	Error
	Solution

	Meson Complains About Permissions
	Error
	Solution

	Static Compilation on CentOS: Undefined References to C++
	Error
	Solution

	Static Compilation on CentOS: Unresolved Symbols
	Error
	Solution

	Cross-compiling DOCA and CUDA
	Application Build Error
	Error
	Solution

	DOCA Services (Containers)
	YAML Syntax Error #1
	Error
	Solution

	YAML Syntax Error #2
	Error
	Solution

	Missing Huge Pages
	Error
	Solution

	Failed to Reserve Sandbox Name
	Error
	Solution

	Collecting DOCA Logs for NVIDIA Inspection
	NVIDIA BlueField Reset and Reboot Procedures

	NVIDIA DOCA Virtual Functions User Guide
	Introduction
	Prerequisites
	VF Creation
	Running DOCA Application on Host
	Topology Example
	VF Creation on Adapter Card

	Archives
	NVIDIA DOCA LTS Versions
	Introduction
	LTS Documentation

	NVIDIA DOCA Documentation Archives

