
DOCA Common

Table of contents

DOCA Core 3

Sync Event 64

Mmap Advise 94

DOCA Log 103

DOCA Common 1

Table of contents

DOCA Core

Sync Event

Mmap Advise

DOCA Log

DOCA Common 2

DOCA Common is comprised of the following libraries:

DOCA Core

DOCA Log

DOCA Common 3

DOCA Core
This document provides guidelines on using DOCA Core objects as part of DOCA SDK
programming.

Introduction

DOCA Core objects provide a unified and holistic interface for application developers to
interact with various DOCA libraries. The DOCA Core API and objects bring a standardized
flow and building blocks for applications to build upon while hiding the internal details of
dealing with hardware and other software components. DOCA Core is designed to give the
right level of abstraction while maintaining performance.

DOCA Core has the same API (header files) for both NVIDIA® BlueField® and CPU
installations, but specific API calls may return DOCA_ERROR_NOT_SUPPORTED if the API is
not implemented for that processor. However, this is not the case for Windows and Linux
as DOCA Core does have API differences between Windows and Linux installations.

DOCA Core exposes C-language API to application writers and users must include the
right header file to use according to the DOCA Core facilities needed for their application.

DOCA Core can be divided into the following software modules:

DOCA Core
Module

Description

General
DOCA Core enumerations and basic structures
Header files – doca_error.h , doca_types.h

Note

The DOCA Core library is supported at beta level.

DOCA Common 4

DOCA Core
Module

Description

Device
handling

Queries device information (host-side and BlueField) and device
capabilities (e.g., device's PCIe BDF address)

On BlueField
Gets local BlueField devices
Gets representors list (representing host local devices)

On the host
Gets local devices

Queries device capabilities and library capabilities
Opens and uses the selected device representor
Relevant entities – doca_devinfo , doca_devinfo_rep ,

doca_dev , doca_dev_rep
Header files – doca_dev.h

Memory
manageme
nt

Handles optimized memory pools to be used by applications and
enables sharing resources between DOCA libraries (while hiding
hardware-related technicalities)
Data buffer services (e.g., linked list of buffers to support scatter-
gather list)
Maps host memory to BlueField for direct access
Relevant entities – doca_buf , doca_mmap ,

doca_buf_inventory , doca_buf_array , doca_bufpool
Header files – doca_buf.h , doca_buf_inventory.h ,

doca_mmap.h , doca_buf_array.h , doca_bufpool

Info
There is a symmetry between device entities on host
and its representor (on BlueField). The convention of
adding rep to the API or the object hints that it is
representor-specific.

DOCA Common 5

DOCA Core
Module

Description

Progress
engine and
task
execution

Enables submitting tasks to DOCA libraries and track task progress
(supports both polling mode and event-driven mode)
Relevant ent ities – doca_ctx , doca_task , doca_event ,

doca_event_handle_t , doca_pe
Header files – doca_ctx.h

Sync events

Sync events are used to synchronize different processors (e.g.,
synchronize BlueField and host)
header files – doca_dpa_sync_event.h , doca_sync_event.h

The following sections describe DOCA Core's architecture and subsystems along with
some basic flows that help users get started using DOCA Core.

Prerequisites

DOCA Core objects are supported on NVIDIA® BlueField® networking platforms (DPU or
SuperNIC) and the host machine. Both must meet the following prerequisites:

DOCA version 2.0.2 or greater

NVIDIA® BlueField® software 4.0.2 or greater

NVIDIA® BlueField®-3 firmware version 32.37.1000 and higher

NVIDIA® BlueField®-2 firmware version 24.37.1000 and higher

Please refer to the DOCA Backward Compatibility Policy

Changes From Previous Releases

Changes in 2.8.0

Added

doca_bitfield.h

https://docs.nvidia.com/doca/archive/2-8-0/DOCA+Backward+Compatibility+Policy/index.html

DOCA Common 6

doca_error_t doca_buf_inventory_expand(struct doca_buf_inventory
*inventory, uint32_t num_elements)

void doca_ctx_flush_tasks(struct doca_ctx *ctx)

doca_error_t
doca_devinfo_cap_is_notification_moderation_supported(const
struct doca_devinfo *devinfo, uint8_t
*is_notification_moderation_supported)

New DOCA errors: DOCA_ERROR_AUTHENTICATION , DOCA_ERROR_BAD_CONFIG ,

DOCA_ERROR_SKIPPED

doca_error_t doca_task_submit_ex(struct doca_task *task,
uint32_t flags)

doca_error_t doca_pe_set_notification_affinity(struct doca_pe
*pe, uint32_t core_id)

doca_error_t
doca_pe_is_set_notification_affinity_supported(const struct
doca_devinfo *devinfo, uint8_t
*is_set_notification_affinity_supported

Changed

doca_error_t doca_devinfo_get_active_rate(const struct
doca_devinfo *devinfo, doubleuint64_t *active_rate); // Gb/s ->
bits/s

doca_buf_set_data_len is STABLE API

Imported mmap can be exported to RDMA

Architecture

DOCA Common 7

The following sections describe the architecture for the various DOCA Core software
modules. Please refer to the NVIDIA DOCA Library APIs for DOCA header documentation.

General

All core objects adhere to same flow that later helps in doing no allocations in the fast
path.

The flow is as follows:

1. Create the object instance (e.g., doca_mmap_create).

2. Configure the instance (e.g., doca_mmap_set_memory_range).

3. Start the instance (e.g., doca_mmap_start).

After the instance is started, it adheres to zero allocations and can be used safely in the
data path. After the instance is complete, it must be stopped and destroyed (
doca_mmap_stop , doca_mmap_destroy).

There are core objects that can be reconfigured and restarted again (i.e., create →

configure → start → stop → configure → start). Please read the header file to see if
specific objects support this option.

doca_error_t

All DOCA APIs return the status in the form of doca_error_t .

typedef enum doca_error {
DOCA_SUCCESS,
DOCA_ERROR_UNKNOWN,
DOCA_ERROR_NOT_PERMITTED, /**< Operation not permitted */

DOCA_ERROR_IN_USE, /**< Resource already in use */

DOCA_ERROR_NOT_SUPPORTED, /**< Operation not supported */

DOCA_ERROR_AGAIN, /**< Resource temporarily
unavailable, try again */

DOCA_ERROR_INVALID_VALUE, /**< Invalid input */

DOCA_ERROR_NO_MEMORY, /**< Memory allocation failure */

DOCA_ERROR_INITIALIZATION, /**< Resource initialization failure */

https://docs.nvidia.com/doca/archive/2-8-0/NVIDIA+DOCA+Library+APIs/index.html

DOCA Common 8

See doca_error.h for more.

Generic Structures/Enum

The following types are common across all DOCA APIs.

DOCA_ERROR_TIME_OUT, /**< Timer expired waiting for
resource */

DOCA_ERROR_SHUTDOWN, /**< Shut down in process or
completed */

DOCA_ERROR_CONNECTION_RESET, /**< Connection reset by peer */

DOCA_ERROR_CONNECTION_ABORTED, /**< Connection aborted */

DOCA_ERROR_CONNECTION_INPROGRESS, /**< Connection in progress */

DOCA_ERROR_NOT_CONNECTED, /**< Not Connected */

DOCA_ERROR_NO_LOCK, /**< Unable to acquire required

lock */

DOCA_ERROR_NOT_FOUND, /**< Resource Not Found */

DOCA_ERROR_IO_FAILED, /**< Input/Output Operation Failed
*/

DOCA_ERROR_BAD_STATE, /**< Bad State */

DOCA_ERROR_UNSUPPORTED_VERSION, /**< Unsupported version */

DOCA_ERROR_OPERATING_SYSTEM, /**< Operating system call failure */

DOCA_ERROR_DRIVER, /**< DOCA Driver call failure */

DOCA_ERROR_UNEXPECTED, /**< An unexpected scenario was
detected */

DOCA_ERROR_ALREADY_EXIST, /**< Resource already exist */

DOCA_ERROR_FULL, /**< No more space in resource */

DOCA_ERROR_EMPTY, /**< No entry is available in
resource */

DOCA_ERROR_IN_PROGRESS, /**< Operation is in progress */

 DOCA_ERROR_TOO_BIG, /**< Requested operation too big to

be contained */

 } doca_error_t;

DOCA Common 9

For more see doca_types.h .

DOCA Device

Local Device and Representor

Prerequisites

For the representors model, BlueField must be operated in DPU mode. See NVIDIA
BlueField Modes of Operation.

union doca_data {
 void *ptr;
 uint64_t u64;
};

enum doca_access_flags {

DOCA_ACCESS_LOCAL_READ_ONLY = 0,
DOCA_ACCESS_LOCAL_READ_WRITE = (1 << 0),
DOCA_ACCESS_RDMA_READ = (1 << 1),
DOCA_ACCESS_RDMA_WRITE = (1 << 2),
DOCA_ACCESS_RDMA_ATOMIC = (1 << 3),
DOCA_ACCESS_DPU_READ_ONLY = (1 << 4),
DOCA_ACCESS_DPU_READ_WRITE = (1 << 5),

};

enum doca_pci_func_type {
 DOCA_PCI_FUNC_PF = 0, /* physical function */

 DOCA_PCI_FUNC_VF, /* virtual function */

 DOCA_PCI_FUNC_SF, /* sub function */

};

https://docs.nvidia.com/doca/archive/2-8-0/NVIDIA+BlueField+Modes+of+Operation/index.html
https://docs.nvidia.com/doca/archive/2-8-0/NVIDIA+BlueField+Modes+of+Operation/index.html

DOCA Common 10

Topology

The DOCA device represents an available processing unit backed by hardware or software
implementation. The DOCA device exposes its properties to help an application in
choosing the right device(s). DOCA Core supports two device types:

Local device – this is an actual device exposed in the local system (BlueField or host)
and can perform DOCA library processing tasks.

Representor device – this is a representation of a local device. The local device is
usually on the host (except for SFs) and the representor is always on BlueField side (a
proxy on BlueField for the host-side device).

The following figure provides an example topology:

The diagram shows a BlueField device (on the right side of the figure) connected to a host
(on the left side of the figure). The host topology consists of two physical functions (PF0
and PF1). Furthermore, PF0 has two child virtual functions, VF0 and VF1. PF1 has only one

DOCA Common 11

VF associated with it, VF0. Using the DOCA SDK API, the user gets these five devices as
local devices on the host.

The BlueField side has a representor-device per each host function in a 1-to-1 relation
(e.g., hpf0 is the representor device for the host's PF0 device and so on) as well as a
representor for each SF function, such that both the SF and its representor reside in
BlueField.

If the user queries local devices on the BlueField (not representor devices), they get the
two (in this example) BlueField DPU PFs, p0 and p1 . These two BlueField local devices
are the parent devices for:

7 representor devices –

5 representor devices shown as arrows to/from the host (devices with the
prefix hpf*) in the diagram

2 representor devices for the SF devices, pf0sf0 and pf1sf0

2 local SF devices (not the SF representors), p0s0 and p1s0

In the diagram, the topology is split into two parts (note the dotted line), each part is
represented by a BlueField physical device, p0 and p1 , each of which is responsible for
creating all other local devices (host PFs, host VFs, and BlueField SFs). As such, the
BlueField physical device can be referred to as the parent device of the other devices and
would have access to the representor of every other function (via
doca_devinfo_rep_list_create).

Local Device and Representor Matching

Based on the topology diagram, the mmap export APIs can be used as follows:

Device to Select on Host
When Using
doca_mmap_export_dpu()

BlueField
Matching
Representor

Device to Select on BlueField When
Using
doca_mmap_create_from_export()

pf0 – 0b:00.0 hpf0 – 0b:00.0 p0 – 03:00.0

pf0vf0 – 0b:00.2
hpf0vf0 –
0b:00.2

DOCA Common 12

Device to Select on Host
When Using
doca_mmap_export_dpu()

BlueField
Matching
Representor

Device to Select on BlueField When
Using
doca_mmap_create_from_export()

pf0vf1 – 0b:00.3
hpf0vf1 –
0b:00.3

pf1 – 0b:00.1 hpf1 – 0b:00.1

p1 – 03:00.1
pf1vf0 – 0b:00.4

hpf1vf0 –
0b:00.4

Expected Flow

Device Discovery

To work with DOCA libraries or DOCA Core objects, application must open and use a
device on BlueField or host.

There are usually multiple devices available depending on the setup. See section
"Topology" for more information.

An application can decide which device to select based on capabilities, the DOCA Core
API, and every other library which provides a wide range of device capabilities. The flow is
as follows:

DOCA Common 13

1. The application gets a list of available devices.

2. Select a specific doca_devinfo to work with according to one of its properties
and capabilities. This example looks for a specific PCIe address.

3. Once the doca_devinfo that suits the user's needs is found, open doca_dev .

4. After the user opens the right device, they can close the doca_devinfo list and

continue working with doca_dev . The application eventually must close the

doca_dev .

Representor Device Discovery

To work with DOCA libraries or DOCA Core objects, some applications must open and use
a representor device on BlueField. Before they can open the representor device and use it,
applications need tools to allow them to select the appropriate representor device with
the necessary capabilities. The DOCA Core API provides a wide range of device capabilities
to help the application select the right device pair (device and its BlueField representor).
The flow is as follows:

1. The application "knows" which device it wants to use (e.g., by its PCIe BDF address).
On the host, it can be done using DOCA Core API or OS services.

2. On the BlueField side, the application gets a list of device representors for a specific
BlueField local device.

DOCA Common 14

3. Select a specific doca_devinfo_rep to work with according to one of its
properties. This example looks for a specific PCIe address.

4. Once the doca_devinfo_rep that suits the user's needs is found, open

doca_dev_rep .

5. After the user opens the right device representor, they can close the
doca_devinfo_rep list and continue working with doca_dev_rep . The

application eventually must close doca_dev_rep too.

As mentioned previously, the DOCA Core API can identify devices and their representors
that have a unique property (e.g., the BDF address, the same BDF for the device, and its
BlueField representor).

DOCA Memory Subsystem

DOCA memory subsystem is designed to optimize performance while keeping a minimal
memory footprint (to facilitate scalability) as main design goal.

DOCA memory has the following main components:

doca_buf – this is the data buffer descriptor. This is not the actual data buffer,
rather, it is a descriptor that holds metadata on the "pointed" data buffer.

Note

Regarding representor device property caching, the function
doca_devinfo_rep_create_list provides a snapshot of the

DOCA representor device properties when it is called. If any
representor's properties are changed dynamically (e.g., BDF address
changes after bus reset), t he device properties that the function
returns would not reflect this change. One should create the list again
to get the updated properties of the representors.

DOCA Common 15

doca_mmap – this is the data buffers pool which doca_buf points at. The
application provides the memory as a single memory region, as well as permissions
for certain devices to access it.

As the doca_mmap serves as the memory pool for data buffers, there is also an entity

called doca_buf_inventory which serves as a pool of doca_buf with same
characteristics (see more in sections "DOCA Core Buffers" and "DOCA Core Inventories").
As all DOCA entities, memory subsystem objects are opaque and can be instantiated by
DOCA SDK only.

The following diagram shows the various modules within the DOCA memory subsystem.

In the diagram, you may see two doca_buf_inventory s. Each doca_buf points to a

portion of the memory buffer which is part of a doca_mmap . The mmap is populated

with one continuous memory buffer memrange and is mapped to two devices, dev1
and dev2 .

Requirements and Considerations

The DOCA memory subsystem mandates the usage of pools as opposed to dynamic
allocation

Pool for doca_buf → doca_buf_inventory

DOCA Common 16

Pool for data memory → doca_mmap

The memory buffer in the mmap can be mapped to one device or more

Devices in the mmap are restricted by access permissions defining how they can
access the memory buffer

doca_buf points to a specific memory buffer (or part of it) and holds the metadata
for that buffer

The internals of mapping and working with the device (e.g., memory registrations) is
hidden from the application

As best practice, the application should start the doca_mmap in the initialization

phase as the start operation is time consuming. doca_mmap should not be started
as part of the data path unless necessary.

The host-mapped memory buffer can be accessed by BlueField

doca_mmap

doca_mmap is more than just a data buffer as it hides a lot of details (e.g., RDMA
technicalities, device handling, etc.) from the application developer while giving the right
level of abstraction to the software using it. doca_mmap is the best way to share
memory between the host and BlueField so BlueField can have direct access to the host-
side memory or vice versa.

DOCA SDK supports several types of mmap that help with different use cases: local
mmap and mmap from export.

Local mmap

This is the basic type of mmap which maps local buffers to the local device(s).

1. The application creates the doca_mmap .

2. The application sets the memory range of the mmap using
doca_mmap_set_memrange . The memory range is memory that the application

allocates and manages (usually holding the pool of data sent to the device's
processing units).

DOCA Common 17

3. The application adds devices, g ranting the devices access to the memory region.

4. The application can specify the access permission for the devices to that memory
range using doca_mmap_set_permissions .

If the mmap is used only locally, then DOCA_ACCESS_LOCAL_* must be
specified

If the mmap is created on the host but shared with BlueField (see step 6), then
DOCA_ACCESS_PCI_* must be specified

If the mmap is created on BlueField but shared with the host (see step 6), then
DOCA_ACCESS_PCI_* must be specified

If the mmap is shared with a remote RDMA target, then
DOCA_ACCESS_RDMA_* must be specified

5. The application starts the mmap.

6. To share the mmap with BlueField/host or the RDMA remote target, call
doca_mmap_export_pci or doca_mmap_export_rdma respectively. If

appropriate access has not been provided, the export fails.

7. The generated blob from the previous step can be shared out of band using a
socket. If shared with a BlueField, it is recommended to use the DOCA Comm

Note

From this point no more changes can be made to the mmap.

Warning

The exported data contains sensitive information. Make sure to
pass this data through a secure channel!

DOCA Common 18

Channel instead. See the DMA Copy application for the exact flow.

mmap from Export

This mmap is used to access the host memory (from BlueField) or the remote RDMA
target's memory.

1. The application receives a blob from the other side. The blob contains data returned
from step 6 in the former bullet.

2. The application calls doca_mmap_create_from_export and receives a new mmap
that represents memory defined by the other side.

Now the application can create doca_buf to point to this imported mmap and have
direct access to the other machine's memory.

Note

BlueField can access memory exported to BlueField if the exporter is a
host on the same machine. Or it can access memory exported

https://docs.nvidia.com/doca/archive/2-8-0/NVIDIA+DOCA+DMA+Copy+Application+Guide/index.html

DOCA Common 19

Buffers

The DOCA buffer object is used to reference memory that is accessible by BlueField
hardware. The buffer can be utilized across different BlueField accelerators. The buffer
may reference CPU, GPU, host, or even RDMA memory. However, this is abstracted so
once a buffer is created, it can be handled in a similar way regardless of how it got
created. This section covers usage of the DOCA buffer after it is allocated.

The DOCA buffer has an address and length describing a memory region. Each buffer can
also point to data within the region using the data address and data length. This
distinguishes three sections of the buffer: The headroom, the dataroom, and the tailroom.

through RDMA which can be on the same machine, a remote host, or
on a remote BlueField.

Note

The host can only access memory exported through RDMA. This can
be memory on a remote host, remote BlueField, or BlueField on same
machine.

DOCA Common 20

Headroom – memory region starting from the buffer's address up to the buffer's
data address

Dataroom – memory region starting from the buffer's data address with a length
indicated by the buffer's data length

Tailroom – memory region starting from the end of the dataroom to the end of the
buffer

Buffer length – the total length of the headroom, the dataroom, and the tailroom

Buffer Considerations

There are multiple ways to create the buffer but, once created, it behaves in the
same way (see section "Inventories").

The buffer may reference memory that is not accessible by the CPU (e.g., RDMA
memory)

The buffer is a thread-unsafe object

The buffer can be used to represent non-continuous memory regions
(scatter/gather list)

The buffer does not own nor manage the data it references. Freeing a buffer does
not affect the underlying memory.

Headroom

The headroom is considered user space. For example, this can be used by the user to hold
relevant information regarding the buffer or data coupled with the data in the buffer's
dataroom.

This section is ignored and remains untouched by DOCA libraries in all operations.

Dataroom

The dataroom is the content of the buffer, holding either data on which the user may
want to perform different operations using DOCA libraries or the result of such
operations.

DOCA Common 21

Tailroom

The tailroom is considered as free writing space in the buffer by DOCA libraries (i.e., a
memory region that may be written over in different operations where the buffer is used
as output).

Buffer as Source

When using doca_buf as a source buffer, the source data is considered as the data
section only (the dataroom).

Buffer as Destination

When using doca_buf as a destination buffer, data is written to the tailroom (i.e.,
appended after existing data, if any).

When DOCA libraries append data to the buffer, the data length is increased accordingly.

Scatter/Gather List

To execute operations on non-continuous memory regions, it is possible to create a buffer
list. The list would be represented by a single doca_buf which represents the head of
the list.

To create a list of buffers, the user must first allocate each buffer individually and then
chain them. Once they are chained, they can be unchained as well:

The chaining operation, doca_buf_chain_list() , receives two lists (heads) and
appends the second list to the end of the first list

The unchaining operation, doca_buf_unchain_list() , receives the list (head)
and an element in the list, and separates them

Once the list is created, it can be traversed using
doca_buf_get_next_in_list() . NULL is returned once the last element is

DOCA Common 22

reached.

Passing the list to another library is same as passing a single buffer; the application sends
the head of the list. DOCA libraries that support this feature can then treat the memory
regions that comprise the list as one contiguous.

When using the buffer list as a source, the data of each buffer (in the dataroom) is
gathered and used as continuous data for the given operation.

When using the buffer list as destination, data is scattered in the tailroom of the buffers
in the list until it is all written (some buffers may not be written to).

Buffer Use Cases

The DOCA buffer is widely used by the DOCA acceleration libraries (e.g., DMA, compress,
SHA). In these instances, the buffer can be provided as a source or as a destination.

Buffer use-case considerations:

If the application wishes to use a linked list buffer and concatenate several
doca_buf s to a scatter/gather list, the application is expected to ensure the library

indeed supports a linked list buffer. For example, to check linked-list support for
DMA memcpy task, the application may call
doca_dma_cap_task_memcpy_get_max_buf_list_len() .

Operations made on the buffer's data are not atomic unless stated otherwise

Once a buffer has been passed to the library as part of the task, ownership of the
buffer moves to the library until that task is complete

Note

When using doca_buf as an input to some processing library

(e.g., doca_dma), doca_buf must remain valid and unmodified
until processing is complete.

DOCA Common 23

Writing to an in-flight buffer may result in anomalous behavior. Similarly, there are no
guarantees for data validity when reading from an in-flight buffer.

Inventories

The inventory is the object responsible for allocating DOCA buffers. The most basic
inventory allows allocations to be done without having to allocate any system memory.
Other inventories involve enforcing that buffer addresses do not overlap.

Inventory Considerations

All inventories adhere to zero allocation after start.

Allocation of a DOCA buffer requires a data source and an inventory.

The data source defines where the data resides, what can access it, and with
what permissions.

The data source must be created by the application. For creation of mmaps,
see doca_mmap .

The inventory describes the allocation pattern of the buffers, such as, random
access or pool, variable-size or fixed-size buffers, and continuous or non-continuous
memory.

Some inventories require providing the data source, doca_mmap , when allocating
the buffers, others require it on creation of the inventory.

All inventory types are thread-unsafe.

Inventory Types

Invento
ry Type

Characteristics When to Use Notes

doca_
buf_i
nvent
ory

Multiple mmaps, flexible
address, flexible buffer
size.

When multiple sizes or
mmaps are used.

Most common use
case.

DOCA Common 24

Invento
ry Type

Characteristics When to Use Notes

doca_
buf_a
rray

Single mmap, fixed buffer
size. User receives an array
of pointers to DOCA
buffers.
In case of DPA, mmap and
buffer size can be
unconfigured and later
can be set from the DPA.

Use for creating DOCA
buffers on GPU or DPA.

doca_buf_arr can
be configured on the
CPU and created on
the GPU or DPA

doca_
bufpo
ol

Single mmap, fixed buffer
size, address not
controlled by the user.

Use as a pool of buffers
of the same
characteristics when
buffer address is not
important.

Slightly faster than
doca_buf_invento
ry

.

Example Flow

The following is a simplified example of the steps expected for exporting the host mmap
to BlueField to be used by DOCA for direct access to the host memory (e.g., for DMA):

1. Create mmap on the host (see section "Expected Flow" for information on how to
choose the doca_dev to add to mmap if exporting to BlueField). This example adds

a single doca_dev to the mmap and exports it so the BlueField/RDMA endpoint
can use it.

DOCA Common 25

2. Import to the BlueField/RDMA endpoint (e.g., use the mmap descriptor output
parameter as input to doca_mmap_create_from_export).

DOCA Execution Model

DOCA Common 26

The execution model is based on hardware processing on data and application threads.
DOCA does not create an internal thread for processing data.

The workload is made up of tasks and events. Some tasks transform source data to
destination data. The basic transformation is a DMA operation on the data which simply
copies data from one memory location to another. Other operations allow users to receive
packets from the network or involve calculating the SHA value of the source data and
writing it to the destination.

For instance, a transform workload can be broken into three steps:

1. Read source data (doca_buf see memory subsystem).

2. Apply an operation on the read data (handled by a dedicated hardware accelerator).

3. Write the result of the operation to the destination (doca_buf see memory
subsystem).

Each such operation is referred to as a task (doca_task).

Tasks describe operations that an application would like to submit to DOCA (hardware or
BlueField). To do so, the application requires a means of communicating with the
hardware/BlueField. This is where the doca_pe comes into play. The progress engine (PE)
is a per-thread object used to queue tasks to offload to DOCA and eventually receive their
completion status.

doca_pe introduces three main operations:

1. Submission of tasks.

2. Checking progress/status of submitted tasks.

3. Receiving a notification on task completion (in the form of a callback).

A workload can be split into many different tasks that can be executed on different
threads; each thread represented by a different PE. Each task must be associated to some
context, where the context defines the type of task to be done.

A context can be obtained from some libraries within the DOCA SDK. For example, to
submit DMA tasks, a DMA context can be acquired from doca_dma.h , whereas SHA

context can be obtained using doca_sha.h . Each such context may allow submission of
several task types.

DOCA Common 27

A task is considered asynchronous in that once an application submits a task, the DOCA
execution engine (hardware or BlueField) would start processing it, and the application can
continue to do some other processing until the hardware finishes. To keep track of which
task has finished, there are two modes of operation: polling mode and event-driven mode.

Requirements and Considerations

The task submission/execution flow/API is optimized for performance (latency)

DOCA does not manage internal (operating system) threads. Rather, progress is
managed by application resources (calling DOCA API in polling mode or waiting on
DOCA notification in event-driven mode).

The basic object for executing the task is a doca_task . Each task is allocated from
a specific DOCA library context.

doca_pe represents a logical thread of execution for the application and tasks
submitted to the progress engine (PE)

Execution-related elements (e.g., doca_pe , doca_ctx , doca_task) are opaque
and the application performs minimal initialization/configuration before using these
elements

A task submitted to PE can fail (even after the submission succeeds). In some cases,
it is possible to recover from the error. In other cases, the only option is to reinitialize
the relevant objects.

PE does not guarantee order (i.e., tasks submitted in certain order might finish out-
of-order). If the application requires order, it must impose it (e.g., submit a
dependent task once the previous task is done).

A PE can either work in polling mode or event-driven mode, but not in both at same
time

Note

PE is not thread safe and it is expected that each PE is managed
by a single application thread (to submit a task and manage the
PE).

DOCA Common 28

All DOCA contexts support polling mode (i.e., can be added to a PE that supports
polling mode)

DOCA Context

DOCA Context (struct doca_ctx) defines and provides (implements) task/event
handling. A context is an instance of a specific DOCA library (i.e., when the library provides
a DOCA Context, its functionality is defined by the list of tasks/events it can handle).
When more than one type of task is supported by the context, it means that the
supported task types have a certain degree of similarity to implement and utilize common
functionality.

The following list defines the relationship between task contexts:

Each context utilizes at least one DOCA Device functionality/accelerated processing
capabilities

For each task type there is one and only context type supporting it

A context virtually contains an inventory per supported task type

A context virtually defines all parameters of processing/execution per task type (e.g.,
size of inventory, device to accelerate processing)

Each context needs an instance of progress engine (PE) as a runtime for its tasks (i.e., a
context must be associated with a PE to execute tasks).

The following diagram shows the high-level (domain model) relations between various
DOCA Core entities.

1. doca_task is associated to a relevant doca_ctx that executes the task (with the

help of the relevant doca_dev).

DOCA Common 29

2. doca_task , after it is initialized, is submitted to doca_pe for execution.

3. doca_ctx s are connected to the doca_pe . Once a doca_task is queued to

doca_pe , it is executed by the doca_ctx that is associated with that task in this
PE.

The following diagram describes the initialization sequence of a context:

After the context is started, it can be used to enable the submission of tasks to a PE
based on the types of tasks that the context supports. See section "DOCA Progress
Engine" for more information.

Configuration Phase

A DOCA context must be configured before attempting to start it using
doca_ctx_start() . Some configurations are mandatory (e.g., providing doca_dev)

while others are not.

Configurations can be useful to allow certain tasks/events, to enable features which
are disabled by default, and to optimize performance depending on a specific
workload.

Configurations are provided using setter functions. Refer to context documentation
for a list of mandatory and optional configurations and their corresponding APIs.

Note

Context is a thread-unsafe object which can be connected to a single
PE only.

DOCA Common 30

Configurations are provided after creating the context and before starting it. Once
the context is started, it can no longer be configured unless it is stopped again.

Examples of common configurations:

Providing a device – usually done as part of the create API

Enabling tasks or registering to events – all tasks are disabled by default

Execution Phase

Once context configuration is complete, the context can be used to execute tasks. The
context executes the tasks by offloading the workload to hardware, while software polls
the tasks (i.e., waits) until they are complete.

In this phase, an application uses the context to allocate and submit asynchronous tasks,
and then polls tasks (waits) until completion.

The application must build an event loop to poll the tasks (wait), utilizing one of the
following modes:

Polling Mode

Notification-driven Mode

In this phase, the context and all core objects perform zero allocations by utilizing memory
pools. It is recommended that the application utilizes same approach for its own logic.

State Machine

Stat
e

Description

Idle

0 in-flight tasks
On init (right after doca_<T>_create(ctx)): All configuration APIs
enabled
On reconf (on transition from stopping state): Some configuration APIs
enabled

DOCA Common 31

Stat
e

Description

Star
ting

This state is mandatory for CTXs where transition to running state is conditioned
by one or more async op completions/external events.
For example, when a client connects to comm channel, it enters running state.
Waiting for state change can be terminated by a voluntary (user)
doca_ctx_stop() call or involuntary context state change due to internal error.

Run
ning

Task allocation/submission enabled (disabled in all other states)
All configuration APIs are disabled

Stop
ping

Preparation before stopped state
Clean all in-flight tasks that may not complete in near future
Procedures relying on external entity actions should be terminated by CTX
logic

The following diagram describes DOCA Context state transitions:

DOCA Common 32

Internal Error

DOCA Context states can encounter internal errors at any time. If the state is starting or
running, an internal error can cause an involuntary transition to stopping state.

For instance, an involuntary transition from running to stopping can happen when a task
execution fails. This results in a completion with error for the failed task and all
subsequent task completions.

After stopping, the state may become idle. However, doca_ctx_start() may fail if
there is a configuration issue or if an error event prevented proper transition to starting or
running state.

DOCA Common 33

DOCA Task

A task is a unit of (functional/processing) workload offload-able to hardware. The majority
of tasks utilize NVIDIA® BlueField® and NVIDIA® ConnectX® hardware to provide
accelerated processing of the workload defined by the task. Tasks are asynchronous
operations (e.g., tasks submitted for processing via non-blocking doca_task_submit()
API).

Upon task completion, the preset completion callback is executed in context of
doca_pe_progress() call. The completion callback is a basic/generic property of the

task, similar to user data. Most tasks are IO operations executed/accelerated by NVIDIA
device hardware.

Task Properties

Task properties share generic properties which are common to all task types and type-
specific properties. Since task structure is opaque (i.e., its content not exposed to the
user), the access to task properties provided by set/get APIs.

The following are generic task properties:

Setting completion callback – it has separate callbacks for successful completion
and completion with failure.

Getting/setting user data – used in completion callback as some structure
associated with specific task object.

Getting task status – intended to retrieve error code on completion with failure.

For each task there is only one owner: a context object. There is a
doca_task_get_ctx() API to get generic context object.

The following are generic task APIs:

Allocating and freeing from CTX (internal/virtual) inventory

Configuring via setters (or init API)

Submit-able (i.e., implements doca_task_submit(task))

Upon completion, there is a set of getters to access the results of the task execution.

DOCA Common 34

Task Lifecycle

This section describes the lifecycle of DOCA Task. Each DOCA Task object lifecycle:

starts on the event of entering Running state by the DOCA Context owning the task
i.e., once Running state entered application can obtain the task from CTX by calling
doca_<CTX name>_task_<Task name>_alloc_init(ctx, ... &task) .

ends on the event of entering Stopped state by the DOCA Context owning the task
i.e., application can no longer allocate tasks once the related DOCA Context left the
Running state.

From application perspective DOCA Context provides a virtual task inventory The diagram
below shows the how ownership if the DOCA Task passed from DOCA Context virtual
inventory to application and than from application back to CTX, pay attention to the
colors used in activation bars for application (APP) participant & DOCA Context (CTX)
participant and DOCA Context Task virtual inventory (Task).

The diagram below shows the lifecycle of DOCA Task staring from its allocation to its
submission.

DOCA Common 35

The diagram above displays following ownership transitions during DOCA Task object
lifecycle:

starting from allocation task ownership passed from context to application

application may modify task attributes via API templated as
doca_<CTX name>_task_<Task name>_set_<Parameter name>(task,
param)

; on return from the task modification call the ownership of the task object returns
to application.

submit the task for processing in the PE, once all required modifications/settings of
the task object completed. On task submission the ownership of the object passed
to the related context.

The next two diagrams below shows the lifecycle of DOCA Task on its completion.

DOCA Common 36

The diagram above displays following ownership transitions during DOCA Task object
lifecycle:

on DOCA Task completion the appropriate handler provided by application invoked;
on handler invocation the DOCA Task ownership passed to application.

after DOCA Task completion application may access task attributes & result fields
utilizing appropriate APIs; application remains owner of the task object.

application may call doca_task_free() when task is no longer needed; on return
from the call task ownership passed to DOCA Context while task became
uninitialized & pre-allocated till the context enters Idle state.

DOCA Common 37

The diagram above displays similar to the previous diagram ownership transitions during
DOCA Task object lifecycle with the only difference that instead of
doca_task_free(task) doca_task_submit(task) was called:

DOCA Task result (related attributes) can be accessed right after enter successful
task completion callback, similar to the previous case

lifecycle of the DOCA Task results ends on exit from the task completion callback
scope.

On doca_task_free() or

doca_<CTX name>_task_<Task name>_set_<Parameter name>(task,
param)

call all task results should be considered invalidated regardless of scope.

The diagram below shows the lifecycle of DOCA Task set-able parameters while API to set
such a parameter templated as
doca_<CTX name>_task_<Task name>_set_<Parameter name>(task, param) .

DOCA Common 38

Green activation of param participant describes the time slice when all DOCA Task
parameters owned by DOCA library. On doca_task_submit() call the ownership on all
task arguments passed from application to the DOCA Context the related Task object
belongs to. The ownership of task arguments passed back to application on task
completion. The application should not modify and/or destroy/free Task argument related
objects if it doesn’t own the argument.

DOCA Progress Engine

The progress engine (PE) enables asynchronous processing and handling of multiple tasks
and events of different types in a single-threaded execution environment. It is an event
loop for all context-based DOCA libraries, with I/O completion being the most common
event type.

PE is designed to be thread unsafe (i.e., it can only be used in one thread at a time) but a
single OS thread can use multiple PEs. The user can assign different priorities to different
contexts by adding them to different PEs and adjusting the polling frequency for each PE

DOCA Common 39

accordingly. Another way to view the PE is as a queue of workload units that are scheduled
for execution.

There are no explicit APIs to add and/or schedule a workload to/on a PE but a workload
can be added by:

Adding a DOCA context to PE

Registering a DOCA event to probe (by the PE) and executing the associated handler
if the probe is positive

PE is responsible for scheduling workloads (i.e., picking the next workload to execute). The
order of workload execution is independent of task submission order, event registration
order, or order of context associations with a given PE object. Multiple task completion
callbacks may be executed in an order different from the order of related task
submissions.

The following diagram describes the initialization flow of the PE:

After a PE is created and connected to contexts, it can start progressing tasks which are
submitted to the contexts. Refer to context documentation to find details such as what
tasks can be submitted using the context.

Note that the PE can be connected to multiple contexts. Such contexts can be of the
same type or of different types. This allows submitting different task types to the same
PE and waiting for any of them to finish from the same place/thread.

After initializing the PE, an application can define an event loop using one of these modes:

Polling mode

Blocking (notification-driven) mode

PE as Event Loop Mode of Operation

DOCA Common 40

All completion handlers for both tasks and events are executed in the context of
doca_pe_progress() . doca_pe_progress() loops for every workload (i.e., for each

workload unit) scheduled for execution:

Run the selected workload unit. For the following cases:

Task completion, execute associated handler and break the loop and return status
made some progress

Positive probe of event, execute associated handler and break the loop and return
status made some progress

Considerable progress is made to contribute to future task completion or positive
event probe, break the loop and return status made some progress

Otherwise, reach the end of the loop and return status no progress .

Polling Mode

In this mode, the application submits a task and then does busy-wait to find out when the
task has completed.

The following diagram demonstrates this sequence:

DOCA Common 41

1. The application submits all tasks (one or more) and tracks the number of task
completions to know if all tasks are done.

2. The application waits for a task to complete by consecutive polls on
doca_pe_progress() .

1. If doca_pe_progress() returns 1, it means progress is being made (i.e.,
some task completed or some event handled).

2. Each time a task is completed or an event is handled, its preset completion or
event handling callback is executed accordingly.

3. If a task is completed with an error, preset task completion with error callback
is executed (see section "Error Handling").

DOCA Common 42

3. The application may add code to completion callbacks or event handlers for tracking
the amount of completed and pending workloads.

Blocking Mode - Notification Driven

In this mode, the application submits a task and then waits for a notification to be
received before querying the status.

The following diagram demonstrates this sequence:

Note

In this mode, the application is always using the CPU even when it is
doing nothing (busy-wait).

DOCA Common 43

1. The application gets a notification handle from the doca_pe representing a Linux
file descriptor which is used to signal the application that some work has finished.

2. The application then arms the PE with doca_pe_request_notification() .

Note

DOCA Common 44

3. The application submits a task.

4. The application waits (e.g., Linux epoll/select) for a signal to be received on the
pe-fd .

5. The application clears the notifications received, notifying the PE that a signal has
been received and allowing it to perform notification handling.

6. The application attempts to handle received notifications via (multiple) calls to
doca_pe_progress() .

7. The application handles its internal state changes caused by task completions and
event handlers called in the previous step.

8. Repeat steps 2-7 until all tasks are completed and all expected events are handled.

This must be done every time an application is interested in
receiving a notification from the PE.

Note

After doca_pe_request_notification() , no calls to

doca_pe_progress() are allowed. In other words,

doca_pe_request_notification() should be followed by

doca_pe_clear_notification before any calls to

doca_pe_progress() .

Note

There is no guarantee that the call to doca_pe_progress()
would execute any task completion/event handler, but the PE
can continue the operation.

DOCA Common 45

Progress Engine versus Epoll

The epoll mechanism in Linux and the DOCA PE handles high concurrency in event-driven
architectures. Epoll, like a post office, tracks "mailboxes" (file descriptors) and notifies the
"postman" (the epoll_wait function) when a "letter" (event) arrives. DOCA PE, like a
restaurant, uses a single "waiter" to handle "orders" (workload units) from "customers"
(DOCA contexts). When an order is ready, it is placed on a "tray" (task completion
handler/event handler execution) and delivered in the order received. Both systems
efficiently manage resources while waiting for events or tasks to complete.

DOCA Event

An event is a type of occurrence that can be detected or verified by the DOCA software,
which can then trigger a handler (a callback function) to perform an action. Events are
associated with a specific source object, which is the entity whose state or attribute
change defines the event's occurrence. For example, a context state change event is
caused by the change of state of a context object.

To register an event, the user must call the doca_<event_type>_reg(pe, ...)
function, passing a pointer to the user handler function and an opaque argument for the
handler. The user must also associate the event handler with a PE, which is responsible for
running the workloads that involve event detection and handler execution.

Once an event is registered, it is periodically checked by the doca_pe_progress()
function, which runs in the same execution context as the PE to which the event is bound.
If the event condition is met, the handler function is invoked. Events are not thread-safe
objects and should only be accessed by the PE to which they are bound.

DOCA Common 46

Error Handling

After a task is submitted successfully, consequent calls to doca_pe_progress() may
fail (i.e., task failure completion callback is called).

Once a task fails, the context may transition to stopping state, in this state, the
application has to progress all in-flight tasks until completion before destroying or
restarting the context.

The following diagram shows how an application may handle an error from
doca_pe_progress() :

DOCA Common 47

1. Application runs event loop.

2. Any of the following may happen:

[Optional] Task fails, and the task failed completion handler is called

This may be caused by bad task parameters or another fatal error

Handler releases the task and all associated resources

[Optional] Context transitions to stopping state, and the context state
changed handler is called

This may be caused by failure of a task or another fatal error

DOCA Common 48

In this state, all in-flight tasks are guaranteed to fail

Handler releases tasks that are not in-flight if such tasks exist

[Optional] Context transitions to idle state, and the context state changed
handler is called

This may happen due to encountering an error and the context does not
have any resources that must be freed by the application

In this case, the application may decide to recover the context by calling
start again or it may decide to destroy the context and possibly exit the
application

Task and Event Batching

DOCA Batching is an approach for grouping multiple tasks or events of the same type and
handling them as a single unit. DOCA offers two options of achieving this as described in
the following subsections.

Batch Task/Event

In this batching option, a library (e.g., doca_eth_txq) offers a task that represents a
batched operation (e.g., sending multiple packets), the task is considered a batch task and
has a task type that is separate from the non-batched operation (e.g., sending a single
packet).

To submit the batch task, the user is required to build the batch and then submit it at
once, similar to submitting a regular task.

The completion of the batch is based on the completion of all items in the batch and is
handled as the completion of a single unit. This allows for multiple DOCA Task
initialization/submission and multiple DOCA Task/Event completion handling in a single API
call (see DOCA Ethernet for example).

Iterative Batch

In this batching option, it is possible to utilize existing task types to build a batch
operation, where each task within the batch is submitted individually and each task
receives its own completion.

https://docs.nvidia.com/doca/archive/2-8-0/DOCA+Ethernet/index.html

DOCA Common 49

Furthermore, the batch is built iteratively, where the user is not required to have
information for the entire batch ahead of time.

To utilize this option, the user can submit each task in the batch using an extended
submit API doca_task_submit_ex while providing additional submit flags.

The extended submit API is similar to a regular submit API (doca_task_submit) but
with the ability to receive submit flags. These flags are used as hints to the library that
executes the tasks. They can have implications on the current task but may also have
implications on previously submitted flags, as described in the following table:

Submi
t Flag
1

Effect on Current Task
Effect on Previous
Tasks 2

Defa
ult
Beha
vior
of
doca
_task
_sub
mit

Comments

Flag Provided
Flag not
Provided

Flag
Provide
d

Flag not
Provided

DOCA
_TAS
K_SU
BMIT
_FLA
G_FL
USH

Task is
submitted for
hardware
execution
immediately,
and is
considered
"flushed".

Task may not
be submitted
for hardware
execution,
and is
considered
"unflushed".

All
previou
s tasks
which
are
conside
red
unflush
ed
become
flushed.

None

Flag
is
provi
ded

As long as the
task is
unflushed, it
never
completes.
The flag allows
batching such
that multiple
tasks are
flushed at once,
instead of
individually.

DOCA Common 50

Submi
t Flag
1

Effect on Current Task
Effect on Previous
Tasks 2

Defa
ult
Beha
vior
of
doca
_task
_sub
mit

Comments

DOCA
_TAS
K_SU
BMIT
_FLA
G_OP
TIMI
ZE_R
EPOR
TS

The user does
not receive
task
completion
after hardware
has completed
execution of
the task, and
the completion
is considered
"unreported".

The user
receives task
completion
after
hardware has
completed
execution of
the task, and
the
completion is
considered
"reported".

None

Once the
hardware
completes
execution
of this task,
all previous
3

unreported
completion
s become
reported.

Flag
is not
provi
ded

As long as the
task is
unreported, the
user would
never know that
it has been
completed.
The completion
of a task is
reported
through a
completion
callback using
the progress
engine.
The library does
not guarantee
any order of
execution/compl
etion of tasks.
The flag allows
batching, such
that multiple
task
completions are
reported using a
single hardware
completion,
instead of
receiving a
completion for
every task.

1. Note that these flags are hints which may allow internal optimizations. However, on a
task by task basis, the library may decide to ignore user flags and revert to default

DOCA Common 51

submit behavior.

2. "Previous tasks" only refers to tasks submitted to the same library instance
(doca_ctx). The flags do not allow optimizations across different library instances.

3. "previous" refers to tasks that have been submitted before this one.

DOCA Graph Execution

DOCA Graph facilitates running a set of actions (tasks, user callbacks, graphs) in a specific
order and dependencies. DOCA Graph runs on a DOCA progress engine.

DOCA Graph creates graph instances that are submitted to the progress engine (
doca_graph_instance_submit).

Nodes

DOCA Graph is comprised of context, user, and sub-graph nodes. Each of these types can
be in any of the following positions in the network:

Root nodes – a root node does not have a parent. The graph can have one or more
root nodes. All roots begin running when the graph instance is submitted.

Edge nodes – an edge node is a node that does not have child nodes connected to it.
The graph instance is completed when all edge nodes are completed.

Intermediate node – a node connected to parent and child nodes

Context Node

A context node runs a specific DOCA task and uses a specific DOCA context (doca_ctx
). The context must be connected to the progress engine before the graph is started.

The task lifespan must be longer or equal to the life span of the graph instance.

User Node

A user node runs a user callback to facilitate performing actions during the run time of
the graph instance (e.g., adjust next node task data, compare results).

DOCA Common 52

Sub-graph Node

A sub-graph node runs an instance of another graph.

Using DOCA Graph

1. Create the graph using doca_graph_create .

2. Create the graph nodes (e.g., doca_graph_node_create_from_ctx).

3. Define dependencies using doca_graph_add_dependency .

4. Start the graph using doca_graph_start .

5. Create the graph instance using doca_graph_instance_create .

6. Set the nodes data (e.g., doca_graph_instance_set_ctx_node_data).

7. Submit the graph instance to the pe using doca_graph_instance_submit .

8. Call doca_pe_progress until the graph callback is invoked.

Progress engine can run graph instances and standalone tasks simultaneously.

DOCA Graph Limitations

Note

DOCA graph does not support circle dependencies (e.g., A => B
=> A).

DOCA Common 53

DOCA Graph does not support circle dependencies

DOCA Graph must contain at least one context node. A graph containing a sub-
graph with at least one context node is a valid configuration.

DOCA Graph Sample

The graph sample is based on the DOCA DMA library. The sample copies 2 buffers using
DMA.

The graph ends with a user callback node that compares source and destinations.

Running DOCA Graph Sample

1. Refer to the following documents:

NVIDIA DOCA Installation Guide for Linux for details on how to install BlueField-
related software.

NVIDIA DOCA Troubleshooting Guide for any issue you may encounter with the
installation, compilation, or execution of DOCA samples.

2. To build a given sample:

3. Sample (e.g., doca_graph) usage:

No parameters required.

cd /opt/mellanox/doca/samples/doca_common/graph/
meson build
ninja -C build

./build/doca_graph

https://confluence.nvidia.com/display/NMAR/NVIDIA+DOCA+Installation+Guide+for+Linux
https://confluence.nvidia.com/display/NMAR/NVIDIA+DOCA+Troubleshooting+Guide

DOCA Common 54

Alternative Data Path

DOCA Progress Engine utilizes the CPU to offload data path operations to hardware.
However, some libraries support utilization of DPA and/or GPU.

Considerations:

Not all contexts support alternative datapath

Configuration phase is always done on CPU

Datapath operations are always offloaded to hardware. The unit that offloads the
operation itself can be either CPU/DPA/GPU.

The default mode of operation is CPU

Each mode of operation introduces a different set of APIs to be used in execution
path. The used APIs are mutually exclusive for specific context instance.

DPA

Users must first refer to the programming guide of the relevant context (e.g., DOCA
RDMA) to check if datapath on DPA is supported. Additionally, the guide provides what
operations can be used.

To set the datapath mode to DPA, acquire a DOCA DPA instance, then use the
doca_ctx_set_datapath_on_dpa() API.

After the context has been started with this mode, it becomes possible to get a DPA
handle, using an API defined by the relevant context (e.g.,
doca_rdma_get_dpa_handle()). This handle can then be used to access DPA data

path APIs within DPA code.

GPU

Users must first refer to the programming guide of the relevant context (E.g., DOCA
Ethernet) to check if datapath on GPU is supported. Additionally, the guide provides what
operations can be used.

https://docs.nvidia.com/doca/archive/2-8-0/DOCA+RDMA/index.html
https://docs.nvidia.com/doca/archive/2-8-0/DOCA+RDMA/index.html
https://docs.nvidia.com/doca/archive/2-8-0/DOCA+DPA/index.html
https://docs.nvidia.com/doca/archive/2-8-0/DOCA+Ethernet/index.html
https://docs.nvidia.com/doca/archive/2-8-0/DOCA+Ethernet/index.html

DOCA Common 55

To set the data path mode to GPU, acquire a DOCA GPU instance, then use the
doca_ctx_set_datapath_on_gpu() API.

After the context has been started with this mode, it becomes possible to get a GPU
handle, using an API defined by the relevant context (e.g.,
doca_eth_rxq_get_gpu_handle()). This handle can then be used to access GPU data

path APIs within GPU code.

Object Life Cycle

Most DOCA Core objects share the same handling model in which:

1. The object is allocated by DOCA so it is opaque for the application (e.g.,
doca_buf_inventory_create , doca_mmap_create).

2. The application initializes the object and sets the desired properties (e.g.,
doca_mmap_set_memrange).

3. The object is started, and no configuration or attribute change is allowed (e.g.,
doca_buf_inventory_start , doca_mmap_start).

4. The object is used.

5. The object is stopped and deleted (e.g., doca_buf_inventory_stop →

doca_buf_inventory_destroy , doca_mmap_stop → doca_mmap_destroy).

The following procedure describes the mmap export mechanism between two machines
(remote machines or host-BlueField):

1. Memory is allocated on Machine1.

2. Mmap is created and is provided memory from step 1.

3. Mmap is exported to the Machine2 pinning the memory.

4. On the Machine2, an imported mmap is created and holds a reference to actual
memory residing on Machine1.

5. Imported mmap can be used by Machine2 to allocate buffers.

https://docs.nvidia.com/doca/archive/2-8-0/DOCA+GPUNetIO/index.html

DOCA Common 56

6. Imported mmap is destroyed.

7. Exported mmap is destroyed.

8. Original memory is destroyed.

RDMA Bridge

The DOCA Core library provides building blocks for applications to use while abstracting
many details relying on the RDMA driver. While this takes away complexity, it adds
flexibility especially for applications already based on rdma-core. The RDMA bridge allows
interoperability between DOCA SDK and rdma-core such that existing applications can
convert DOCA-based objects to rdma-core-based objects.

Requirements and Considerations

This library enables applications already using rdma-core to port their existing
application or extend it using DOCA SDK.

Bridge allows converting DOCA objects to equivalent rdma-core objects.

DOCA Core Objects to RDMA Core Objects Mapping

The RDMA bridge allows translating a DOCA Core object to a matching RDMA Core object.
The following table shows how the one object maps to the other.

RDMA Core
Object

DOCA
Equivalent

RDMA Object to DOCA Object
DOCA Object to RDMA
Object

ibv_pd doca_dev doca_rdma_bridge_open_
dev_from_pd

doca_rdma_bridge_ge
t_dev_pd

ibv_mr doca_buf - doca_rdma_bridge_ge
t_buf_mkey

DOCA Core Samples

DOCA Common 57

Progress Engine Samples

All progress engine (PE) samples use DOCA DMA because of its simplicity. PE samples
should be used to understand the PE not DOCA DMA.

pe_common

pe_common.c and pe_common.h contain code that is used in most or all PE samples.

Users can find core code (e.g., create MMAP) and common code that uses PE (e.g.,
poll_for_completion).

Struct pe_sample_state_base (defined in pe_common.h) is the base state for all PE
samples, containing common members that are used by most or all PE samples.

pe_polling

The polling sample is the most basic sample for using PE. Start with this sample to learn
how to use DOCA PE.

The sample demonstrates the following functions:

Info

All the DOCA samples described in this section are governed under
the BSD-3 software license agreement.

Info

You can diff between pe_polling_sample.c and any other

pe_x_sample.c to see the unique features that the other sample
demonstrates.

DOCA Common 58

How to create a PE

How to connect a context to the PE

How to allocate tasks

How to submit tasks

How to run the PE

How to cleanup (e.g., destroy context, destroy PE)

The sample performs the following:

1. Uses one DMA context.

2. Allocates and submits 16 DMA tasks.

3. Polls until all tasks are completed.

pe_async_stop

A context can be stopped while it still processes tasks. This stop is asynchronous because
the context must complete/abort all tasks.

Note

Pay attention to the order of destruction (e.g., all contexts must
be destroyed before the PE).

Info

Task completion callback checks that the copied content is valid.

DOCA Common 59

The sample demonstrates the following functions:

How to asynchronously stop a context

How to implement a context state changed callback (with regards to context moving
from stopping to idle)

How to implement task error callback (check if this is a real error or if the task is
flushed)

The sample performs the following:

1. Submits 16 tasks and stops the context after half of the tasks are completed.

2. Polls until all tasks are complete (half are completed successfully, half are flushed).

The difference between pe_polling_sample.c and pe_async_stop_sample.c is to
learn how to use PE APIs for event-driven mode.

pe_event

Event-driven mode reduces CPU utilization (wait for event until a task is complete) but
may increase latency or reduce performance.

The sample demonstrates the following functions:

How to run the PE in event-driven mode

The sample performs the following:

1. Runs 16 DMA tasks.

2. Waits for event.

The difference between pe_polling_sample.c and pe_event_sample.c is to learn
how to use PE APIs for event-driven mode.

pe_multi_context

DOCA Common 60

A PE can host more than one instance of a specific context. This facilitates running a
single PE with multiple BlueField devices.

The sample demonstrates the following functions:

How to run a single PE with multiple instances of a specific context

The sample performs the following:

1. Connects 4 instances of DOCA DMA context to the PE.

2. Allocates and submits 4 tasks to every context instance.

3. Polls until all tasks are complete.

The difference between pe_polling_sample.c and pe_multi_context_sample.c
is to learn how to use PE with multiple instances of a context.

pe_reactive

PE and contexts can be maintained in callbacks (task completion and state changed).

The sample demonstrates the following functions:

How to maintain the context and PE in the callbacks instead of the program's main
function

The user must make sure to:

Review the task completion callback and the state changed callbacks

Review the difference between poll_to_completion and the polling loop in main

The sample performs the following:

1. Runs 16 DMA tasks.

2. Stops the DMA context in the completion callback after all tasks are complete.

The difference between pe_polling_sample.c and pe_reactive_sample.c is to
learn how to use PE in reactive model.

DOCA Common 61

pe_single_task_cb

A DOCA task can invoke a success or error callback. Both callbacks share the same
structure (same input parameters).

DOCA recommends using 2 callbacks:

Success callback – does not need to check the task status, thereby improving
performance

Error callback – may need to run a different flow than success callback

The sample demonstrates the following functions:

How to use a single callback instead of two callbacks

The sample performs the following:

1. Runs 16 DMA tasks.

2. Handles completion with a single callback.

The difference between pe_polling_sample.c and

pe_single_task_comp_cb_sample.c is to learn how to use PE with a single
completion callback.

pe_task_error

Task execution may fail causing the associated context (e.g., DMA) to move to stopping
state due to this fatal error.

The sample demonstrates the following functions:

How to mitigate a task error during runtime

The user must make sure to:

Review the state changed callback and the error callback to see how the sample
mitigates context error

DOCA Common 62

The sample performs the following:

1. Submits 255 tasks.

2. Allocates the second task with invalid parameters that cause hardware to fail.

3. Mitigates the failure and polls until all submitted tasks are flushed.

The difference between pe_polling_sample.c and pe_task_error_sample.c is to
learn how to mitigate context error.

pe_task_resubmit

A task can be freed or reused after it is completed:

Task resubmit can improve performance because the program does not free and
allocate the task.

Task resubmit can reduce memory usage (using a smaller task pool).

Task members (e.g., source or destination buffer) can be set, so resubmission can be
used if the source or destination are changed every iteration.

The sample demonstrates the following functions:

How to re-submit a task in the completion callback

How to replace buffers in a DMA task (similar to other task types)

The sample performs the following:

1. Allocates a set of 4 tasks and 16 buffer pairs.

2. Uses the tasks to copy all sources to destinations by resubmitting the tasks.

The difference between pe_polling_sample.c and pe_task_resubmit_sample.c
is to learn how to use task resubmission.

pe_task_try_submit

DOCA Common 63

doca_task_submit does not validate task inputs (to increase performance). Developers

can use doca_task_try_submit to validate the tasks during development.

The sample demonstrates the following functions:

How to use doca_task_try_submit instead of doca_task_submit

The sample performs the following:

1. Allocates and tries to submit tasks using doca_task_try_submit .

The difference between pe_polling_sample.c and

pe_task_try_submit_sample.c is to learn how to use doca_task_try_submit .

Graph Sample

The graph sample demonstrates how to use DOCA graph with PE. The sample can be used
to learn how to build and use DOCA graph.

The sample uses two nodes of DOCA DMA and one user node.

The graph runs both DMA nodes (copying a source buffer to two destinations). Once both
nodes are complete, the graph runs the user node that compares the buffers.

The sample runs 10 instances of the graph in parallel.

Backward Compatibility of DOCA Core doca_buf

Note

Task validation impacts performance and should not be used in
production.

DOCA Common 64

This section lists changes to the DOCA SDK which impacts backward compatibility.

DOCA Core doca_buf

Up to DOCA 2.0.2, the data length of the buffer is ignored when using the buffer as an
output parameter, and the new data was written over the data that was there beforehand.
From now on, new data is appended after existing data (if any) while updating the data
length accordingly.

Because of this change, it is recommended that a destination buffer is allocated without a
data section (data length 0), for ease of use.

In cases where the data length is 0 in a destination buffer, this change would go unnoticed
(as appending the data and writing to the data section has the same result).

Reusing buffers requires resetting the data length when wishing to write to the same
data address (instead of appending the data), overwriting the existing data. A new
function, doca_buf_reset_data_len() , has been added specifically for this need.

Sync Event

Introduction

Note

DOCA Sync Event API is considered thread-unsafe

Note

DOCA Sync Event does not currently support GPU related features.

DOCA Common 65

DOCA Sync Event (SE) is a software synchronization mechanism for parallel execution
across the CPU, DPU, DPA and remote nodes. The SE holds a 64-bit counter which can be
updated, read, and waited upon from any of these units to achieve synchronization
between executions on them.

To achieve the best performance, DOCA SE defines a subscriber and publisher locality,
where:

Publisher – the entity which updates (sets or increments) the event value

Subscriber – the entity which gets and waits upon the SE

Based on hints, DOCA selects memory locality of the SE counter, closer to the subscriber
side. Each DOCA SE is configured with a single publisher location and a single subscriber
location which can be the CPU or DPU.

The SE control path happens on the CPU (either host CPU or DPU CPU) through the
DOCA SE CPU handle. It is possible to retrieve different execution-unit-specific handles
(DPU/DPA/GPU/remote handles) by exporting the SE instance through the CPU handle.
Each SE handle refers to the DOCA SE instance from which it is retrieved. By using the
execution-unit-specific handle, the associated SE instance can be operated from that
execution unit.

In a basic scenario, synchronization is achieved by updating the SE from one execution
and waiting upon the SE from another execution unit.

Prerequisites

DOCA SE can be used as a context which follows the architecture of a DOCA Core
Context, it is recommended to read the following sections of the DOCA Core page before
proceeding:

DOCA Execution Model

DOCA Device

Info

Both publisher and subscriber can read (get) the actual
counter's value.

DOCA Common 66

DOCA Memory Subsystem

Environment

DOCA SE based applications can run either on the host machine or on the NVIDIA®
BlueField® DPU target and can involve DPA, GPU and other remote nodes.

Using DOCA SE with DPU requires BlueField to be configured to work in DPU mode as
described in NVIDIA BlueField Modes of Operation .

Architecture

DOCA SE can be converted to a DOCA Context as defined by DOCA Core. See DOCA
Context for more information.

As a context, DOCA SE leverages DOCA Core architecture to expose asynchronous
tasks/events offloaded to hardware.

The figure that follows demonstrates components used by DOCA SE. DOCA Device
provides information on the capabilities of the configured HW used by SE to control
system resources.

DOCA DPA, GPUNetIO, and RDMA modules are required for cross-device synchronization
(could be DPA, GPU, or remote peer respectively).

DOCA SE allows flexible memory management by its ability to specify an external buffer,
where a DOCA mmap module handles memory registration for advanced synchronization
scenarios.

For asynchronous operation scheduling, SE uses the DOCA Progress Engine (PE) module.

DOCA Sync Event Components Diagram

Info

Asynchronous wait on a DOCA SE requires NVIDIA® BlueField-3® or
newer.

https://docs.nvidia.com/doca/archive/2-8-0/NVIDIA+BlueField+Modes+of+Operation/index.html

DOCA Common 67

The following diagram represents DOCA SE synchronization abilities on various devices.

DOCA Sync Event Interaction Diagram

DOCA Sync Event Objects

DOCA SE exposes different types of handles per execution unit as detailed in the
following table.

DOCA Common 68

Execution
Unit

Type Description

CPU
(host/DPU) struct doca_sync_event

Handle for interacting with the SE
from the CPU

DPU struct doca_sync_event
Handle for interacting with the SE
from the DPU

DPA doca_dpa_dev_sync_event_t
Handle for interacting with the SE
from the DPA

GPU doca_gpu_dev_sync_event_t
Handle for interacting with the SE
from the GPU

Remote net
CPU

doca_sync_event_remote_ne
t

Handle for interacting with the SE
from a remote CPU

Remote net
DPA

doca_dpa_dev_sync_event_r
emote_net_t

Handle for interacting with the SE
from a remote DPA

Remote net
GPU

doca_gpu_dev_sync_event_r
emote_net_t

Handle for interacting with the SE
from a remote GPU

Each one of these handle types has its own dedicated API for creating the handle and
interacting with it.

Configuration Phase

Any DOCA SE creation starts with creating CPU handle by calling
doca_sync_event_create API.

After creation, the SE entity could be shared with local PCIe, remote CPU, DPA, and GPU
by a dedicated handle creation via the DOCA SE export flow, as illustrated in the following
diagram:

DOCA Common 69

Operation Modes

DOCA SE exposes two different APIs for starting it depending on the desired operation
mode, synchronous or asynchronous.

Synchronous Mode

Start the SE to operate in synchronous mode by calling doca_sync_event_start .

In synchronous operation mode, each data path operation (get, update, wait) blocks the
calling thread from continuing until the operation is done.

Note

Once started, SE operation mode cannot be changed.

Note

An operation is considered done if the requested change fails and the
exact error can be reported or if the requested change has taken
effect.

DOCA Common 70

Asynchronous Mode

To start the SE to operate in asynchronous mode, convert the SE instance to doca_ctx
by calling doca_sync_event_as_ctx . Then use DOCA CTX API to start the SE and
DOCA PE API to submit tasks on the SE (see section "DOCA Progress Engine" for more).

Configurations

Mandatory Configurations

These configurations must be set by the application before attempting to start the SE:

DOCA SE CPU handle must be configured by providing the runtime hints on the
publisher and subscriber locations. Both the subscriber and publisher locations must
be configured using the following APIs:

doca_sync_event_add_publisher_location_<cpu|dpa|gpu|remote_pc

doca_sync_event_add_subscriber_location_<cpu|dpa|gpu|remote_p

For the asynchronous use case, at least one task/event type must be configured. See
configuration of tasks.

Optional Configurations

These configurations provide an 8-byte buffer to be used as the backing memory of
the SE. If set, it is user responsibility to handle the memory (i.e., preserve the
memory allocated during DOCA SE lifecycle and free it after DOCA SE destruction).
If not provided, the SE backing memory is allocated by the SE.

Info

If these configurations are not set, a default value is used.

DOCA Common 71

doca_sync_event_set_addr

doca_sync_event_set_doca_buf

Export DOCA Sync Event to Another Execution Unit

To use an SE from an execution unit other than the CPU, it must be exported to get a
handle for the specific execution unit:

DPA – doca_sync_event_get_dpa_handle returns a DOCA SE DPA handle (

doca_dpa_dev_sync_event_t) which can be passed to the DPA SE data path
APIs from the DPA kernel

GPU – doca_sync_event_get_gpu_handle returns a DOCA SE GPU handle (

doca_gpu_dev_sync_event_t) which can be passed to the GPU SE data path
APIs for the CUDA kernel

DPU – doca_sync_event_export_to_remote_pci returns a blob which can be
used from the DPU CPU to instantiate a DOCA SE DPU handle (
struct doca_sync_event) using the

doca_sync_event_create_from_export function

DOCA SE allows notifications from remote peers (remote net) utilizing capabilities of the
DOCA RDMA library. The following figure illustrates the remote net export flow:

Remote net CPU – doca_sync_event_export_to_remote_net returns a blob
which can be used from the remote net CPU to instantiate a DOCA SE remote net
CPU handle (struct doca_sync_event_remote_net) using the

DOCA Common 72

doca_sync_event_remote_net_create_from_export function. The handle

can be used directly for submitting asynchronous tasks through the doca_rdma
library or exported to the remote DPA/GPU.

Remote net DPA – doca_sync_event_remote_net_get_dpa_handle returns a

DOCA SE remote net DPA handle (doca_dpa_dev_sync_event_remote_net_t)
which can be passed to the DPA RDMA data path APIs from a DPA kernel

Remote net GPU – doca_sync_event_remote_net_get_gpu_handle returns a

DOCA SE remote net GPU handle (doca_gpu_dev_sync_event_remote_net_t)
which can be passed to the GPU RDMA data path APIs from a CUDA kernel

Note

The CPU handle (struct doca_sync_event) can be exported only
to the location where the SE is configured.

Note

Prior to calling any export function, users must first verify it is
supported by calling the corresponding export capability getter:
doca_sync_event_cap_is_export_to_dpa_supported ,

doca_sync_event_cap_is_export_to_gpu_supported ,

doca_sync_event_cap_is_export_to_remote_pci_supported
, or
doca_sync_event_cap_is_export_to_remote_net_supported

.

Note

Prior to calling any *_create_from_export function, users must
first verify it is supported by calling the corresponding create from

DOCA Common 73

Device Support

DOCA SE needs a device to operate. For instructions on picking a device, see DOCA Core
device discovery.

the export capability getter:
doca_sync_event_cap_is_create_from_export_supported

or
doca_sync_event_cap_remote_net_is_create_from_export_supported

.

Note

Once created from an export, both the SE DPU handle
struct doca_sync_event and the SE remote net CPU handle

struct doca_sync_event_remote_net cannot be configured,
but only the SE DPU handle must be started before it is used.

Warning

Data exported in doca_sync_event_export_to_* functions
contains sensitive information. Make sure to pass this data through a
secure channel!

Info

DOCA Common 74

As device capabilities may change in the future (see DOCA Capability Check), it is
recommended to choose your device using any relevant capability method (starting with
the prefix doca_sync_event_cap_*).

Capability APIs to query whether sync event can be constructed from export blob:

doca_sync_event_cap_is_create_from_export_supported

doca_sync_event_cap_remote_net_is_create_from_export_supported

Capability APIs to query whether sync event can be exported to other execution units:

doca_sync_event_cap_is_export_to_remote_pci_supported

doca_sync_event_cap_is_export_to_dpa_supported

doca_sync_event_cap_is_export_to_gpu_supported

doca_sync_event_cap_is_export_to_remote_net_supported

doca_sync_event_cap_remote_net_is_export_to_dpa_supported

doca_sync_event_cap_remote_net_is_export_to_gpu_supported

Capability APIs to query whether an asynchronous task is supported:

doca_sync_event_cap_task_get_is_supported

Both NVIDIA® BlueField ® -2 and BlueField ® -3 devices are supported
as well as any doca_dev is supported.

Info

Asynchronous wait (blocking/polling) is supported on NVIDIA®
BlueField ® -3 and NVIDIA® ConnectX®-7 and later.

https://docs.nvidia.com/doca/archive/2-8-0/Capability+Checking/index.html

DOCA Common 75

doca_sync_event_cap_task_notify_set_is_supported

doca_sync_event_cap_task_notify_add_is_supported

doca_sync_event_cap_task_wait_eq_is_supported

doca_sync_event_cap_task_wait_neq_is_supported

Execution Phase

This section describes execution on CPU. For additional execution environments refer to
section "Alternative Datapath Options".

DOCA Sync Event Data Path Operations

The DOCA SE synchronization mechanism is achieved using exposed datapath operations.
The API exposes a function for "writing" to the SE and for "reading" the SE.

The synchronous API is a set of functions which can be called directly by the user, while
the asynchronous API is exposed by defining a corresponding doca_task for each
synchronous function to be submitted on a DOCA PE (see DOCA Progress Engine and
DOCA Context for additional information).

Info

Remote net CPU handle (struct doca_sync_event_remote_net)
can be used for submitting asynchronous tasks using the DOCA
RDMA library.

Note

Prior to asynchronous task submission, users must check if the job is
supported using

https://docs.nvidia.com/doca/archive/2-8-0/DOCA+RDMA/index.html
https://docs.nvidia.com/doca/archive/2-8-0/DOCA+RDMA/index.html

DOCA Common 76

The following subsections describe the DOCA SE datapath operation with respect to
synchronous and asynchronous operation modes.

Publishing on DOCA Sync Event

Setting DOCA Sync Event Value

Users can set DOCA SE to a 64-bit value:

Synchronously by calling doca_sync_event_update_set

Asynchronously by submitting a doca_sync_event_task_notify_set task

Adding to DOCA Sync Event Value

Users can atomically increment the value of a DOCA SE:

Synchronously by calling doca_sync_event_update_add

Asynchronously by submitting a doca_sync_event_task_notify_add task

Subscribe on DOCA Sync Event

Getting DOCA Sync Event Value

Users can get the value of a DOCA SE:

Synchronously by calling doca_sync_event_get

Asynchronously by submitting a doca_sync_event_task_get task

doca_error_t
doca_sync_event_cap_task_<task_type>_is_supported

.

DOCA Common 77

Waiting on DOCA Sync Event

Waiting for an event is the main operation for achieving synchronization between
different execution units.

Users can wait until an SE reaches a specific value in a variety of ways.

Synchronously

doca_sync_event_wait_gt waits for the value of a DOCA SE to be greater than a
specified value in a "polling busy wait" manner (100% processor utilization). This API
enables users to wait for an SE in real time.

doca_sync_event_wait_gt_yield waits for the value of a DOCA SE to be greater
than a specified value in a "periodically busy wait" manner. After each polling iteration, the
calling thread relinquishes the CPU, so a new thread gets to run. This API allows a tradeoff
between real-time polling to CPU starvation.

doca_sync_event_wait_eq waits for the value of a DOCA SE to be equal to a specified
value in a "polling busy wait" manner (100% processor utilization). This API enables users
to wait for an SE in real time.

doca_sync_event_wait_eq_yield waits for the value of a DOCA SE to be equal to a
specified value in a "periodically busy wait" manner. After each polling iteration, the calling
thread relinquishes the CPU so a new thread gets to run. This API allows a tradeoff
between real-time polling to CPU starvation.

doca_sync_event_wait_neq waits for the value of a DOCA SE to not be equal to a
specified value in a "polling busy wait" manner (100% processor utilization). This API
enables users to wait for an SE in real time.

doca_sync_event_wait_neq_yield waits for the value of a DOCA SE to not be equal
to a specified value in a "periodically busy wait" manner. After each polling iteration, the
calling thread relinquishes the CPU so a new thread gets to run. This API allows a tradeoff
between real-time polling to CPU starvation.

Note

This wait method is supported only from the CPU.

DOCA Common 78

Asynchronously

DOCA SE exposes an asynchronous wait method by defining a
doca_sync_event_task_wait_eq and doca_sync_event_task_wait_neq tasks.

Users can wait for wait-job completion in the following methods:

Blocking – get a doca_event_handle_t from the doca_pe to blocking-wait on

Polling – poll the wait task by calling doca_pe_progress

Tasks

DOCA SE context exposes asynchronous tasks that leverage the DPU hardware according
to the DOCA Core architecture. See DOCA Core Task.

Info

Asynchronous wait (blocking/polling) is supported on BlueField-3 and
ConnectX-7 and later.

Note

Users may leverage the doca_sync_event_task_get job to
implement asynchronous wait by asynchronously submitting the task
on a DOCA PE and comparing the result to some threshold.

DOCA Common 79

Get Task

The get task retrieves the value of a DOCA SE.

Task Configuration

Description API to Set the Configuration API to Query Support

Enable the
task

doca_sync_event_task_get
_set_conf

doca_sync_event_cap_task_get_
is_supported

Number of
tasks

doca_sync_event_task_get
_set_conf

-

Task Input

Common input described in DOCA Core Task.

Name Description

Return value 8-bytes memory pointer to hold the DOCA SE value

Task Output

Common output described in DOCA Core Task .

Task Completion Success

After the task is completed successfully, the return value memory holds the DOCA SE
value.

Task Completion Failure

If the task fails midway:

The context may enter a stopping state if a fatal error occurs

DOCA Common 80

The return value memory may be modified

Task Limitations

All limitations are described in DOCA Core Task.

Notify Set Task

The notify set task allows setting the value of a DOCA SE.

Task Configuration

Descriptio
n

API to Set the Configuration API to Query Support

Enable the
task

doca_sync_event_task_noti
fy_set_set_conf

doca_sync_event_cap_task_notif
y_set_is_supported

Number of
tasks

doca_sync_event_task_noti
fy_set_set_conf

-

Task Input

Common input described in DOCA Core Task.

Name Description

Set value 64-bit value to set the DOCA SE value to

Task Output

Common output described in DOCA Core Task.

DOCA Common 81

Task Completion Success

After the task is completed successfully, the DOCA SE value is set to the given set value.

Task Completion Failure

If the task fails midway, the context may enter a stopping state if a fatal error occurs.

Task Limitations

This operation is not atomic. Other limitations are described in DOCA Core Task.

Notify Add Task

The notify add task allows atomically setting the value of a DOCA SE.

Task Configuration

Descriptio
n

API to Set the Configuration API to Query Support

Enable the
task

doca_sync_event_task_noti
fy_add_set_conf

doca_sync_event_cap_task_notif
y_add_is_supported

Number of
tasks

doca_sync_event_task_noti
fy_add_set_conf

-

Task Input

Common input described in DOCA Core Task.

Name Description

Increment
value

64-bit value to atomically increment the DOCA SE value by

DOCA Common 82

Name Description

Fetched value
8-bytes memory pointer to hold the DOCA SE value before the
increment

Task Output

Common output described in DOCA Core Task.

Task Completion Success

After the task is completed successfully, the following occurs:

The DOCA SE value is incremented according to the given increment value

The fetched value memory holds the DOCA SE value before the increment

Task Completion Failure

If the task fails midway:

The context may enter a stopping state if a fatal error occurs

The fetched value memory may be modified.

Task Limitations

All limitations are described in DOCA Core Task.

Wait Equal-to Task

The wait-equal task allows atomically waiting for a DOCA SE value to be equal to some
threshold.

https://confluence.nvidia.com/display/doca250/NVIDIA+DOCA+Core+Programming+Guide#NVIDIADOCACoreProgrammingGuide-DOCATask

DOCA Common 83

Task Configuration

Description API to set the configuration API to query support

Enable the
task

doca_sync_event_task_wai
t_eq_set_conf

doca_sync_event_cap_task_wait
_eq_is_supported

Number of
tasks

doca_sync_event_task_wai
t_eq_set_conf

-

Task Input

Common input described in DOCA Core Task.

Name Description

Wait
threshold

64-bit value to wait for the DOCA SE value to be equal to

Mask
64-bit mask to apply on the DOCA SE value before comparing with the
wait threshold

Task Output

Common output described in DOCA Core Task.

Task Completion Success

After the task is completed successfully, the following occurs:

The DOCA SE value is equal to the given wait threshold.

Task Completion Failure

If the task fails midway, the context may enter a stopping state if a fatal error occurs.

DOCA Common 84

Task Limitations

Other limitations are described in DOCA Core Task.

Wait Not-equal-to Task

The wait-not-equal task allows atomically waiting for a DOCA SE value to not be equal to
some threshold.

Task Configuration

Descriptio
n

API to set the configuration API to query support

Enable the
task

doca_sync_event_task_wai
t_neq_set_conf

doca_sync_event_cap_task_wait
_neq_is_supported

Number of
tasks

doca_sync_event_task_wai
t_neq_set_conf

-

Task Input

Common input described in DOCA Core Task.

Name Description

Wait
threshold

64-bit value to wait for the DOCA SE value to be not equal to

Mask
64-bit mask to apply on the DOCA SE value before comparing with the
wait threshold

Task Output

Common output described in DOCA Core Task.

DOCA Common 85

Task Completion Success

After the task is completed successfully, the following occurs:

The DOCA SE value is not equal to the given wait threshold.

Task Completion Failure

If the task fails midway, the context may enter a stopping state if a fatal error occurs.

Task Limitations

Limitations are described in DOCA Core Task.

Events

DOCA SE context exposes asynchronous events to notify about changes that happen
unexpectedly, according to the DOCA Core architecture.

The only event DOCA SE context exposes is common events as described in DOCA Core
Event.

State Machine

The DOCA SE context follows the Context state machine as described in DOCA Core
Context State Machine.

The following subsection describe how to move to specific states and what is allowed in
each state.

Idle

DOCA Common 86

In this state, it is expected that the application will:

Destroy the context; or

Start the context

Allowed operations in this state:

Configure the context according to section "Configurations"

Start the context

It is possible to reach this state as follows:

Previous State Transition Action

None Create the context

Running Call stop after making sure all tasks have been freed

Stopping Call progress until all tasks are completed and then freed

Starting

This state cannot be reached.

Running

In this state, it is expected that the application will:

Allocate and submit tasks

Call progress to complete tasks and/or receive events

Allowed operations in this state:

Allocate previously configured task

Submit an allocated task

Call stop

DOCA Common 87

It is possible to reach this state as follows:

Previous State Transition Action

Idle Call start after configuration

Stopping

In this state, it is expected that the application will:

Call progress to complete all inflight tasks (tasks will complete with failure)

Free any completed tasks

Allowed operations in this state:

Call progress

It is possible to reach this state as follows:

Previous State Transition Action

Running Call progress and fatal error occurs

Running Call stop without freeing all tasks

DOCA Sync Event Tear Down

Multiple SE handles (for different execution units) associated with the same DOCA SE
instance can live simultaneously, though the teardown flow is performed only from the
CPU on the CPU handle.

Note

Users must validate active handles associated with the CPU handle
during the teardown flow because DOCA SE does not do that.

DOCA Common 88

Stopping DOCA Sync Event

To stop a DOCA SE:

Synchronous – call doca_sync_event_stop on the CPU handle

Asynchronous – stop the DOCA context associated with the DOCA SE instance

Destroying DOCA Sync Event

Once stopped, a DOCA SE instance can be destroyed by calling
doca_sync_event_destroy on the CPU handle.

Remote net CPU handle instance terminates and frees by calling
doca_sync_event_remote_net_destroy on the remote net CPU handle.

Upon destruction, all the internal resources are released, allocated memory is freed,
associated doca_ctx (if it exists) is destroyed, and any associated exported handles
(other than CPU handles) and their resources are destroyed.

Alternative Datapath Options

DOCA SE supports datapath on CPU (see section " Execution Phase") and also on DPA and
GPU.

GPU Datapath

DOCA SE does not currently support GPU related features.

Note

Stopping a DOCA SE must be followed by destruction. Refer to
section "Destroying DOCA Sync Event" for details.

DOCA Common 89

DPA Datapath

Once a DOCA SE DPA handle (doca_dpa_dev_sync_event_t) has been retrieved it can
be used within a DOCA DPA kernel as described in DOCA DPA Sync Event.

DOCA Sync Event Sample

This section provides DOCA SE sample implementation on top of the BlueField DPU.

The sample demonstrates how to share an SE between the host and the DPU while
simultaneously interacting with the event from both the host and DPU sides using
different handles.

Running DOCA Sync Event Sample

1. Refer to the following documents:

NVIDIA DOCA Installation Guide for Linux for details on how to install BlueField-
related software.

NVIDIA DOCA Troubleshooting Guide for any issue you may encounter with the
installation, compilation, or execution of DOCA samples.

2. To build a given sample:

Info

An SE with DPA-subscriber configuration currently supports
synchronous APIs only.

cd
/opt/mellanox/doca/samples/doca_common/sync_event_<local|remote

https://docs.nvidia.com/doca/archive/2-8-0/DOCA+DPA/index.html
https://docs.nvidia.com/doca/archive/2-8-0/NVIDIA+DOCA+Installation+Guide+for+Linux/index.html
https://docs.nvidia.com/doca/archive/2-8-0/NVIDIA+DOCA+Troubleshooting+Guide/index.html

DOCA Common 90

3. Sample usage:

meson /tmp/build
ninja -C /tmp/build

Note

The binary doca_sync_event_<local|remote>_pci is

created under /tmp/build/ .

Usage: doca_sync_event_remote_pci [DOCA Flags] [Program
Flags]

DOCA Flags:
 -h, --help Print a help synopsis
 -v, --version Print program version
information
 -l, --log-level Set the (numeric) log
level for the program <10=DISABLE, 20=CRITICAL, 30=ERROR,
40=WARNING, 50=INFO, 60=DEBUG, 70=TRACE>
 --sdk-log-level Set the SDK (numeric) log
level for the program <10=DISABLE, 20=CRITICAL, 30=ERROR,
40=WARNING, 50=INFO, 60=DEBUG, 70=TRACE>
 -j, --json <path> Parse all command flags
from an input json file

Program Flags:
 -d, --pci-addr Device PCI address
 -r, --rep-pci-addr DPU representor PCI
address

DOCA Common 91

4. For additional information per sample, use the -h option:

Samples

Sync Event Remote PCIe

This sample demonstrates creating an SE from an export which is associated with an SE
on a local PCIe (host or the DPU) and interacting with the SE to achieve synchronization
between the host and DPU.

 --async Start DOCA Sync Event in
asynchronous mode (synchronous mode by default)
 --async_num_tasks Async num tasks for
asynchronous mode
 --atomic Update DOCA Sync Event
using Add operation (Set operation by default)

Note

The flag --rep-pci-addr is relevant only for the DPU.

/tmp/build/doca_sync_event_<local|remote>_pci -h

Note

This sample should be run (on the DPU or on the host) before Sync
Event Local PCIe.

DOCA Common 92

The sample logic includes:

1. Reading configuration files and saving their content into local buffers.

2. Locating and opening DOCA devices and DOCA representors (if running on the DPU)
matching the given PCIe addresses.

3. Initializing DOCA Comm Channel.

4. Receiving SE blob through Comm Channel.

5. Creating SE from export.

6. Starting the above SE in the requested operation mode (synchronous or
asynchronous).

7. Interacting with the SE:

1. Waiting for signal from the host – synchronously or asynchronously (with busy
wait polling) according to user input.

2. Signaling the SE for the host – synchronously or asynchronously, using set or
atomic add, according to user input.

8. Cleaning all resources.

Reference:

/opt/mellanox/doca/samples/doca_common/sync_event_remote_pci/sync

/opt/mellanox/doca/samples/doca_common/sync_event_remote_pci/sync

/opt/mellanox/doca/samples/doca_common/sync_event_remote_pci/meso

Sync Event Local PCIe

Note

DOCA Common 93

This sample demonstrates how to initialize a SE to be shared with a remote PCIe (host or
the DPU) how to export it to a remote PCIe, and how to interact with the SE to achieve
synchronization between the host and DPU.

The sample logic includes:

1. Reading configuration files and saving their content into local buffers.

2. Locating and opening DOCA devices and DOCA representors (if running on the DPU)
matching the given PCIe addresses.

3. Creating and configuring the SE to be shared with a remote PCIe.

4. Starting the above SE in the requested operation mode (synchronous or
asynchronous).

5. Initializing DOCA Comm Channel.

6. Exporting the SE and sending it through the Comm Channel.

7. Interacting with the SE :

1. Signaling the SE for the remote PCIe – synchronously or asynchronously, using
set or atomic add, according to user input.

2. Waiting for a signal – synchronously or asynchronously, with busy wait polling,
according to user input.

8. Cleaning all resources.

Reference:

/opt/mellanox/doca/samples/doca_common/sync_event_local_pci/sync_

/opt/mellanox/doca/samples/doca_common/sync_event_local_pci/sync_

/opt/mellanox/doca/samples/doca_common/sync_event_local_pci/meson

This sample should run (on the DPU or on the Host) only after Sync
Event Remote PCIe has been started.

DOCA Common 94

Mmap Advise

Introduction

DOCA Mmap Advise is used to give advanced memory-related instructions to NVIDIA®
BlueField® DPUs in order to improve system or application performance.

The operations in the instructions are meant to influence the performance of the
application, but not its semantics. The operations allow an application to inform the NIC
how it expects it to use some mapped memory areas, so the BlueField's hardware can
choose appropriate optimization techniques.

Prerequisites

DOCA Mmap Advise is a context and follows the architecture of a DOCA Core Context, it is
recommended to read the following sections of the DOCA Core page before proceeding:

DOCA Core Execution Model

DOCA Core Device

DOCA Core Memory Subsystem

Architecture

DOCA Mmap Advise is a DOCA Context as defined by DOCA Core. S ee DOCA Core
Context for more information.

Note

To use DOCA Mmap Advise with BlueField, the device must be
configured to work in DPU mode as described in NVIDIA BlueField
Modes of Operation.

https://docs.nvidia.com/doca/archive/2-8-0/NVIDIA+BlueField+Modes+of+Operation/index.html
https://docs.nvidia.com/doca/archive/2-8-0/NVIDIA+BlueField+Modes+of+Operation/index.html

DOCA Common 95

DOCA Mmap Advise currently supports the following list of advised operations:

Cache Invalidate Operation

Cache Invalidate Operation

When data is processed by BlueField's cores it may be temporarily stored in the cores'
system-level cache (i.e., L3 cache). When a cache line is occupied and new data must be
written to it, the cache management sub-system evicts the existing data, usually based
on LRU policy, by performing a write-back operation to store this data in the main (DDR)
memory. When this data is not required to be stored in the BlueField's memory (e.g., it is
host data and is no longer needed after it is copied to the host's memory), the cache's
write-back operation wastes memory bandwidth that reduces overall system
performance, which is undesirable. The simplest to avoid this write-back operation is to
mark the appropriate cache lines as "invalid". This enables their immediate reuse, without
additional operations.

The cache invalidate operation facilitates invalidating a set of cache lines.

Environment

Applications based on DOCA Mmap Advise can run on the BlueField target.

Objects

Device and Device Representor

The MMAP Advise context requires a DOCA Device to operate. The device is used to
access memory and perform the copy operation. See DOCA Core Device Discovery.

Info

For the same DPU, it does not matter which device is used (i.e., PF, VF,
SF) as all these devices utilize the same hardware components.

DOCA Common 96

Memory Buffers

The cache invalidate task requires one DOCA Buffer containing the address space to
invalidate depending on the allocation pattern of the buffers (refer to the table in section
"Inventory Types"). To find what kind of memory is supported, refer to the table in section
"Buffer Support".

Buffers must not be modified or read during the cache invalidate operation.

Configuration Phase

To start using the context, users must go through a configuration phase as described in
DOCA Core Context Configuration Phase.

This section describes how to configure and start the context, to allow execution of tasks
and retrieval of events.

Configurations

The context can be configured to match the application's use case.

To find if a configuration is supported, or what the min/max value for it is, refer to section
"Device Support".

Mandatory Configurations

Note

The device must stay valid for as long as the MMAP Advise instance is
not destroyed.

https://docs.nvidia.com/doca/archive/2-8-0/DOCA+DMA/index.html

DOCA Common 97

These configurations are mandatory and must be set by the application before
attempting to start the context:

At least one task/event type must be configured. See configuration of tasks and/or
events in sections "Tasks" and "Events" respectively for information.

A device with appropriate support must be provided upon creation

Device Support

DOCA Mmap Advise requires a device to operate. To pick a device, refer to DOCA Core
Device Discovery.

As device capabilities may change (see DOCA Core Device Support), it is recommended to
select your device using the following method:

doca_mmap_advise_cap_task_cache_invalidate_is_supported

Some devices expose different capabilities as follows:

Maximum cache invalidate buffer size may differ.

Buffer Support

Tasks support buffers with the following features:

Buffer Type Buffer

Local mmap buffer Yes

MMAP from PCIe export buffer No

MMAP from RDMA export buffer No

Linked list buffer No

Execution Phase

DOCA Common 98

This section describes execution on the CPU using DOCA Core Progress Engine.

Tasks

DOCA Mmap Advise exposes asynchronous tasks that leverage DPU hardware according
to the DOCA Core architecture. See DOCA Core Task for information.

Cache Invalidate Task

The cache invalidate task facilitates invalidating a set of cache lines, preventing them
from being written back to the RAM (thus increasing performance).

Task Configuration

Description API to Set the Configuration API to Query Support

Enable the
task

doca_mmap_advise_task_in
validate_cache_set_conf

doca_mmap_advise_cap_task_ca
che_invalidate_is_supported

Number of
tasks

doca_mmap_advise_task_in
validate_cache_set_conf

–

Maximal
buffer size

–
doca_mmap_advise_task_cache_
invalidate_get_max_buf_size

Maximal
buffer list
size

– –

Task Input

Common input as described in DOCA Core Task.

Name Description

buffer Buffer that points to the memory to be invalidated

Task Output

Common output as described in DOCA Core Task.

DOCA Common 99

Task Completion Success

After the task is completed successfully:

The cache is invalidated

Task Completion Failure

If the task fails midway:

The context may enter stopping state, if a fatal error occurs

The cache is not invalidated

Task Limitations

The operation is not atomic

Once the task has been submitted, the buffer should not be read/written to

Other limitations are described in DOCA Core Task

Events

DOCA Mmap Advise exposes asynchronous events to notify on changes that happen
unexpectedly, according to DOCA Core architecture.

The only events DOCA Mmap Advise exposes are common events as described in DOCA
Core Event.

State Machine

DOCA Common 100

DOCA Mmap Advise context follows the context state machine as described in DOCA
Core Context State Machine.

The following section describes how to move states and what is allowed in each state.

Idle

In this state it is expected that the application:

Destroys the context

Starts the context

Allowed operations:

Configuring the context according to section "Configurations"

Starting the context

It is possible to reach this state as follows:

Previous State Transition Action

None Create the context

Running Call stop after making sure all tasks have been freed

Stopping Call progress until all tasks are completed and freed

Starting

This state cannot be reached.

Running

In this state, it is expected that the application:

Allocates and submits tasks

Calls progress to complete tasks and/or receive events

DOCA Common 101

Allowed operations:

Allocating a previously configured task

Submitting a task

Calling stop

It is possible to reach this state as follows:

Previous State Transition Action

Idle Call start after configuration

Stopping

In this state it is expected that the application:

Calls progress to complete all in-flight tasks (tasks complete with failure)

Frees any completed tasks

Allowed operations:

Call progress

It is possible to reach this state as follows:

Previous State Transition Action

Running Call progress and fatal error occurs

Running Call stop without freeing all tasks

Alternative Datapath Options

DOCA Mmap Advise only supports datapath on the CPU. See section "Execution Phase".

Samples

DOCA Common 102

Cache Invalidate Sample

The sample illustrates how to invalidate the cache for a memory range after copying it
using DOCA DMA.

The sample logic includes:

1. Locating DOCA device.

2. Initializing needed DOCA core structures.

3. Populating DOCA memory map with two relevant buffers.

4. Allocating element in DOCA buffer inventory for each buffer.

5. Initializing DOCA DMA memory copy task object.

6. Initializing DOCA Mmap Advise cache invalidate task object

7. Submitting DMA task.

8. Polling for completion:

1. Handling DMA task completion – submitting the cache invalidate task in the
DMA task completion callback body.

2. Handling cache invalidate task completion.

9. Polling for completion.

10. Destroying DMA, DOCA MMAP Advise, and DOCA Core objects.

Reference:

/opt/mellanox/doca/samples/doca_common/cache_invalidate/cache_inv

/opt/mellanox/doca/samples/doca_common/cache_invalidate/cache_inv

/opt/mellanox/doca/samples/doca_common/cache_invalidate/meson.bui

DOCA Common 103

DOCA Log
DOCA logging infrastructure allows printing DOCA SDK library error messages, and
printing debug and error messages from applications.

To work with the DOCA logging mechanism, the header file doca_log.h must be
included in every source code using it.

Log Verbosity Level Enumerations

The following verbosity levels are supported by the DOCA logging:

See doca_log.h for more information.

enum doca_log_level {
DOCA_LOG_LEVEL_DISABLE = 10, /**< Disable log messages */

DOCA_LOG_LEVEL_CRIT = 20, /**< Critical log level */

DOCA_LOG_LEVEL_ERROR = 30, /**< Error log level */

DOCA_LOG_LEVEL_WARNING = 40, /**< Warning log level */

DOCA_LOG_LEVEL_INFO = 50, /**< Info log level */

DOCA_LOG_LEVEL_DEBUG = 60, /**< Debug log level */

DOCA_LOG_LEVEL_TRACE = 70, /**< Trace log level */

};

Note

The DOCA_LOG_LEVEL_TRACE verbosity level is available only if the

macro DOCA_LOGGING_ALLOW_TRACE is set before the compilation.

DOCA Common 104

Logging Backends

DOCA's logging backend is the target to which log messages are directed.

The following backend types are supported:

FILE * – file stream which can be any open file or stdout/stderr

file descriptor – any file descriptor that the system supports, including (but not
limited to) raw files, sockets, and pipes

buf – memory buffer (address and size) that can hold a single message and a
callback to be called for every logged message

syslog – system standard logging

Every logger is created with the following default lower and upper verbosity levels:

Lower level – DOCA_LOG_LEVEL_INFO

Upper level – DOCA_LOG_LEVEL_CRIT

SDK and application logging have different default configuration values and can be
controlled separately using the appropriate API.

Every message is printed to every created backend if its verbosity level allows it.

Enabling DOCA SDK Libraries Logging

The DOCA SDK libraries print debug and error messages to all the backends created using
the following functions:

doca_log_backend_create_with_file_sdk()

doca_log_backend_create_with_fd_sdk()

doca_log_backend_create_with_buf_sdk()

doca_log_backend_create_with_syslog_sdk()

A newly created SDK backend verbosity level is set to the SDK global verbosity level value.
This value can be changed using doca_log_level_set_global_sdk_limit() .

DOCA Common 105

doca_log_level_set_global_sdk_limit() sets the verbosity level for all existing
SDK backends and sets the SDK global verbosity level.

doca_log_backend_set_sdk_level() sets the verbosity level of a specific SDK
backend.

doca_log_level_get_global_sdk_limit() gets the SDK global verbosity level.

Enabling DOCA Application Logging

Any source code that uses DOCA can use DOCA logging infrastructure.

Every debug and error messages is printed to all backends created using the following
functions:

doca_log_backend_create_with_file()

doca_log_backend_create_with_fd()

doca_log_backend_create_with_buf()

doca_log_backend_create_with_syslog()

The lower and upper levels of a newly created backend are set to the default values. Those
values can be changed using doca_log_backend_set_level_lower_limit() and

doca_log_backend_set_level_upper_limit() .

doca_log_backend_create_standard() creates a default non-configurable set of
two backends:

stdout prints the range from a global minimum level up to

DOCA_LOG_LEVEL_INFO

Note

Messages may change between different versions of DOCA. Users
cannot rely on message permanence or formatting.

DOCA Common 106

stderr prints the range from DOCA_LOG_LEVEL_WARNING level up to

DOCA_LOG_LEVEL_CRIT

doca_log_backend_set_level_lower_limit_strict() marks the lower log level
limit of a backend as strict, preventing it from being lowered by future log level changes. It
is both global and direct.

doca_log_backend_set_level_upper_limit_strict() marks the upper log level
limit of a backend as strict, preventing it from being raised by future log level changes. It
is both global and direct.

doca_log_level_set_global_lower_limit() sets the lower limit for all existing
backends not marked as strict and sets the global application lower limit.

doca_log_level_set_global_upper_limit() sets the upper limit for all existing
backends not marked as strict and sets the global application upper limit.

Logging DOCA Application Messages

To use the DOCA logging infrastructure with your source code to log its messages, users
must call, at the beginning of the file, the macro DOCA_LOG_REGISTER(source) just
before using the DOCA logging functionality. This macro handles the registration and the
teardown from the DOCA logging.

Printing a message can be done by calling one of the following macros (with the same
usage as printf()):

DOCA_LOG_CRIT(format, ...)

DOCA_LOG_ERR(format, ...)

DOCA_LOG_WARN(format, ...)

DOCA_LOG_INFO(format, ...)

DOCA_LOG_DBG(format, ...)

DOCA_LOG_TRC(format, ...)

The message is printed to all the application's backends with configured lower and upper
logging limits.

DOCA Common 107

Notice

This document is provided for information purposes only and shall not be regarded as a warranty of a certain
functionality, condition, or quality of a product. NVIDIA Corporation (“NVIDIA”) makes no representations or warranties,
expressed or implied, as to the accuracy or completeness of the information contained in this document and assumes
no responsibility for any errors contained herein. NVIDIA shall have no liability for the consequences or use of such
information or for any infringement of patents or other rights of third parties that may result from its use. This
document is not a commitment to develop, release, or deliver any Material (defined below), code, or functionality.

NVIDIA reserves the right to make corrections, modifications, enhancements, improvements, and any other changes to
this document, at any time without notice.

Customer should obtain the latest relevant information before placing orders and should verify that such information is
current and complete.

NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the time of order
acknowledgement, unless otherwise agreed in an individual sales agreement signed by authorized representatives of
NVIDIA and customer (“Terms of Sale”). NVIDIA hereby expressly objects to applying any customer general terms and
conditions with regards to the purchase of the NVIDIA product referenced in this document. No contractual obligations
are formed either directly or indirectly by this document.

NVIDIA products are not designed, authorized, or warranted to be suitable for use in medical, military, aircraft, space, or
life support equipment, nor in applications where failure or malfunction of the NVIDIA product can reasonably be
expected to result in personal injury, death, or property or environmental damage. NVIDIA accepts no liability for
inclusion and/or use of NVIDIA products in such equipment or applications and therefore such inclusion and/or use is at
customer’s own risk.

NVIDIA makes no representation or warranty that products based on this document will be suitable for any specified
use. Testing of all parameters of each product is not necessarily performed by NVIDIA. It is customer’s sole responsibility
to evaluate and determine the applicability of any information contained in this document, ensure the product is
suitable and fit for the application planned by customer, and perform the necessary testing for the application in order
to avoid a default of the application or the product. Weaknesses in customer’s product designs may affect the quality
and reliability of the NVIDIA product and may result in additional or different conditions and/or requirements beyond
those contained in this document. NVIDIA accepts no liability related to any default, damage, costs, or problem which
may be based on or attributable to: (i) the use of the NVIDIA product in any manner that is contrary to this document or
(ii) customer product designs.

No license, either expressed or implied, is granted under any NVIDIA patent right, copyright, or other NVIDIA intellectual
property right under this document. Information published by NVIDIA regarding third-party products or services does
not constitute a license from NVIDIA to use such products or services or a warranty or endorsement thereof. Use of
such information may require a license from a third party under the patents or other intellectual property rights of the
third party, or a license from NVIDIA under the patents or other intellectual property rights of NVIDIA.

Reproduction of information in this document is permissible only if approved in advance by NVIDIA in writing,
reproduced without alteration and in full compliance with all applicable export laws and regulations, and accompanied by
all associated conditions, limitations, and notices.

THIS DOCUMENT AND ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS,
LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA
MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE MATERIALS, AND
EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A
PARTICULAR PURPOSE. TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL NVIDIA BE LIABLE FOR ANY
DAMAGES, INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR
CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF
ANY USE OF THIS DOCUMENT, EVEN IF NVIDIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

DOCA Common 108

Notwithstanding any damages that customer might incur for any reason whatsoever, NVIDIA’s aggregate and
cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms of
Sale for the product.

Trademarks

NVIDIA and the NVIDIA logo are trademarks and/or registered trademarks of NVIDIA Corporation in the U.S. and other
countries. Other company and product names may be trademarks of the respective companies with which they are
associated.

Copyright 2025. PDF Generated on 06/05/2025

	DOCA Core
	Sync Event
	Mmap Advise

	DOCA Log

