
DOCA Storage Zero Copy Target RDMA Application
Guide

Table of contents

Introduction

System Design

Application Architecture

Preparation Stage

Data Path Stage

Teardown Stage

DOCA Libraries

Compiling the Application

Running the Application

Application Execution

Command Line Flags

Troubleshooting

Application Code Flow

Control Thread Flow

Performance Data Path Thread Flow

References

DOCA Storage Zero Copy Target RDMA Application Guide 1

Table of contents

Introduction

System Design

Application Architecture

Preparation Stage

Data Path Stage

Teardown Stage

DOCA Libraries

Compiling the Application

Running the Application

Application Execution

Command Line Flags

Troubleshooting

Application Code Flow

Control Thread Flow

Performance Data Path Thread Flow

References

DOCA Storage Zero Copy Target RDMA Application Guide 2

Introduction

DOCA Storage Zero Copy Target RDMA (target_rdma) acts as a mock storage service,
preparing an area of memory equal in size to the block created by the
doca_storage_zero_copy_initiator_comch (initiator_comch). This application

waits for IO messages from the doca_storage_zero_copy_comch_to_rdma
(comch_to_rdma) and performs the necessary RDMA read or write operations to fulfill the
initiators' read or write request (i.e., RDMA write for a read IO message, DMA read for a
write IO message).

System Design

DOCA Storage Zero Copy Target RDMA uses a TCP socket for out-of-band control
messages, then uses two DOCA RDMA connections:

One for the data path to receive and reply to IO messages; and

Another to perform the RDMA read and write operations which actually move data
to or from the memory created by initiator_comch

https://docs.nvidia.com/doca/sdk/DOCA+Storage+Zero+Copy+Initiator+Comch+Application+Guide/index.html
https://docs.nvidia.com/doca/sdk/DOCA+Storage+Zero+Copy+Comch+to+RDMA+Application+Guide/index.html
https://docs.nvidia.com/doca/sdk/DOCA+RDMA/index.html

DOCA Storage Zero Copy Target RDMA Application Guide 3

Application Architecture

DOCA Storage Zero Copy Target RDMA executes in three stages:

1. Preparation.

2. Data path.

3. Teardown.

Preparation Stage

During this stage the application performs the following:

1. Creates a TCP server socket.

2. Waits for comch_to_rdma to connect.

3. Waits for a configure data path control message (buffer count, buffer size,
doca_mmap export details) from comch_to_rdma.

1. Imports the received doca_mmap.

2. Create a local memory region.

3. Creates a local doca_mmap.

4. Creates a doca_buf_inventory.

5. Sends a configure data path control message response to comch_to_rdma.

4. Waits for N "create RDMA connection" control messages from comch_to_rdma.

1. Creates the RDMA context.

2. Exports the connection details.

3. Starts connecting using the provided remote connection details.

4. Sends a create RDMA connection control message response to
comch_to_rdma.

5. Waits for a "start data path connections" control message from comch_to_rdma.

https://docs.nvidia.com/doca/sdk/DOCA+Core/index.html
https://docs.nvidia.com/doca/sdk/DOCA+Core/index.html

DOCA Storage Zero Copy Target RDMA Application Guide 4

1. Verifies that all RDMA connections are ready to use.

2. Sends a start data path connections control message response to
comch_to_rdma.

6. Waits for a start storage control message from comch_to_rdma.

1. Starts data path threads.

2. Sends a start storage control message response to comch_to_rdma.

Data Path Stage

In this stage, the data path threads start. Each thread begins by submitting receive RDMA
tasks then executing a tight loop and polling the progress engine (PE) as quickly as
possible until a "data path stop" IO message is received.

The process of handling an IO message involves the following steps:

1. Determine memory locations to be used for decoding the IO message.

2. Submit a RDMA read/RDMA write operation.

3. Upon completion of the RDMA read/write, send a response IO message to BlueField.

https://confluence.nvidia.com/display/docadev/.DOCA+Core+v2.8.0#id-.DOCACorev2.8.0-DOCAProgressEngine

DOCA Storage Zero Copy Target RDMA Application Guide 5

4. Resubmit the RDMA receive task.

Teardown Stage

In this stage the application performs the following:

1. Waits for a destroy objects control message from.

2. Destroys data path objects.

3. Sends a destroy objects control message response to comch_to_rdma.

4. Destroys control path objects.

DOCA Libraries

This application leverages the following DOCA libraries:

DOCA RDMA

Compiling the Application

This application is compiled as part of the set of storage zero copy applications. For
compilation instructions, refer to NVIDIA DOCA Storage Zero Copy.

Running the Application

Application Execution

DOCA Storage Zero Copy Comch to RDMA is provided in source form. Therefore, a
compilation is required before the application can be executed.

Application usage instructions:

Usage: doca_storage_zero_copy_target_rdma [DOCA Flags]
[Program Flags]

https://confluence.nvidia.com/display/docadev/.DOCA+RDMA+v2.8.0
https://docs.nvidia.com/doca/sdk/DOCA+Storage+Zero+Copy/index.html

DOCA Storage Zero Copy Target RDMA Application Guide 6

DOCA Flags:
 -h, --help Print a help synopsis
 -v, --version Print program version
information
 -l, --log-level Set the (numeric) log
level for the program <10=DISABLE, 20=CRITICAL, 30=ERROR,
40=WARNING, 50=INFO, 60=DEBUG, 70=TRACE>
 --sdk-log-level Set the SDK (numeric) log
level for the program <10=DISABLE, 20=CRITICAL, 30=ERROR,
40=WARNING, 50=INFO, 60=DEBUG, 70=TRACE>
 -j, --json <path> Parse all command flags
from an input json file

Program Flags:
 -d, --device Device identifier
 -r, --representor Device host side
representor identifier
 --listen-port TCP Port on which to
listen for incoming connections
 --cpu CPU core to which the
process affinity can be set

Info

This usage printout can be printed to the command line using
the -h (or --help) options:

./ doca_storage_zero_copy_target_rdma -h

DOCA Storage Zero Copy Target RDMA Application Guide 7

CLI example for running the application on the BlueField:

The application also supports a JSON-based deployment mode, in which all
command-line arguments are provided through a JSON file:

For example:

For additional information, refer to section "Command Line
Flags".

./doca_storage_zero_copy_target_rdma -d 03:00.0 --listen-port
12345 --cpu 12

Info

The DOCA device PCIe address, 3b:00.0 , should match the
address of the desired PCIe device.

./doca_storage_zero_copy_target_rdma --json [json_file]

./doca_storage_zero_copy_target_rdma --json
doca_storage_zero_copy_comch_to_rdma_params.json

Note

DOCA Storage Zero Copy Target RDMA Application Guide 8

Command Line Flags

Flag
Type

Short
Flag

Long
Flag/JSON
Key

Description JSON Content

Gener
al
flags

h help Print a help synopsis N/A

v version Print program version
information

N/A

l log-level

Set the log level for the
application:

DISABLE=10
CRITICAL=20
ERROR=30
WARNING=40
INFO=50
DEBUG=60
TRACE=70 (requires
compilation with TRACE
log level support)

N/A
sdk-log-
level

Set the log level for the
program:

DISABLE=10
CRITICAL=20
ERROR=30
WARNING=40
INFO=50
DEBUG=60
TRACE=70

Before execution, ensure that the used JSON file contains the
correct configuration parameters, and especially the PCIe
addresses necessary for the deployment.

"log-level":
60

"sdk-log-
level": 40

DOCA Storage Zero Copy Target RDMA Application Guide 9

Flag
Type

Short
Flag

Long
Flag/JSON
Key

Description JSON Content

j json
Parse all command flags from
an input JSON file

N/A

Progra
m
flags

d device

DOCA device identifier. One of:

PCIe address – 3b:00.0
InfiniBand name –
mlx5_0

Network interface name
– en3f0pf0sf0

N/A
--listen-
port

TCP port on which to listen for
incoming connections

N/A --cpu Index of CPU to use. One data
path thread is spawned per
CPU. Index starts at 0.

Note
This is a
mandatory
flag.

"device":
"03:00.0"

Note
This is a
mandatory
flag.

"lister-
port": 12345

Note
The user
can

"cpu": 6

DOCA Storage Zero Copy Target RDMA Application Guide 10

Flag
Type

Short
Flag

Long
Flag/JSON
Key

Description JSON Content

Troubleshooting

Refer to the DOCA Troubleshooting for any issue encountered with the installation or
execution of the DOCA applications.

Application Code Flow

Control Thread Flow

1. Parse application arguments:

specify
this
argument
multiple
times to
create
more
threads.

Note
This is a
mandatory
flag.

auto const cfg = parse_cli_args(argc, argv);

https://docs.nvidia.com/doca/sdk/DOCA+Troubleshooting/index.html

DOCA Storage Zero Copy Target RDMA Application Guide 11

1. Prepare the parser (doca_argp_init).

2. Register parameters (doca_argp_param_create).

3. Parse the arguments (doca_argp_start).

4. Destroy the parser (doca_argp_destroy).

2. Display the configuration:

3. Create application instance:

4. Run the application:

1. Find and open the specified device:

2. Start the TCP server and wait for comch_to_rdma to connect:

print_config(cfg);

g_app.reset(storage::zero_copy::make_storage_application(cfg))

g_app->run()

m_dev = storage::common::open_device(m_cfg.device_id);

start_listening();
wait_for_tcp_client();

DOCA Storage Zero Copy Target RDMA Application Guide 12

3. Wait for a "configure storage" control message from comch_to_rdma.

4. Configure storage:

1. Create thread contexts:

1. Create transaction contexts.

2. Create IO messages.

3. Create PE.

4. Create mmap for IO message buffers.

5. Send configure storage control message response to comch_to_rdma.

6. Wait for N "create RDMA connection" control messages from comch_to_rdma:

1. Create RDMA context.

2. Export connection details.

3. Start connection using received remote connection details.

4. Send a "create RDMA connection" control message response (containing
RDMA connection details from target_rdma RDMA context) to
comch_to_rdma.

7. Wait for "start data path" control message from comch_to_rdma:

1. Verify all connections are ready (comch and RDMA):

8. Send a "start storage" control message response to comch_to_rdma.

9. Wait for start storage control message from comch_to_rdma:

configure_storage(configuration);

establish_rdma_connections();

DOCA Storage Zero Copy Target RDMA Application Guide 13

1. Create data path threads.

2. Start data path threads.

10. Send a "start storage" control message response to comch_to_rdma.

11. Run all threads until completion.

12. Wait for "destroy objects" control message.

13. Destroy data path objects.

14. Send destroy objects control message response to BlueField.

5. Display stats:

printf("+==+\n");
printf("| Stats\n");
printf("+==+\n");
for (uint32_t ii = 0; ii != stats.size(); ++ii) {

printf("| Thread[%u]\n", ii);
auto const pe_hit_rate_pct = (static_cast<double>

(stats[ii].pe_hit_count) /
 (static_cast<double>

(stats[ii].pe_hit_count) +
 static_cast<double>

(stats[ii].pe_miss_count))) *
 100.;

printf("| PE hit rate: %2.03lf%% (%lu:%lu)\n",
 pe_hit_rate_pct,
 stats[ii].pe_hit_count,
 stats[ii].pe_miss_count);

printf("+--+\n");

}
printf("+==+\n");

DOCA Storage Zero Copy Target RDMA Application Guide 14

6. Destroy control path objects.

Performance Data Path Thread Flow

The data path involves polling the PE as quickly as possible to receive IO messages from
BlueField.

1. Run until BlueField sends a stop IO message:

2. Handle BlueField IO message:

1. Calculate memory addresses to use for local and remote memory.

2. Set buffer addresses and sizes into source and destination buffers into RDMA
task.

3. Start RDMA read/write task.

4. Upon completion of RDMA task respond to BlueField.

5. Re-submit RDMA recv task.

References

/opt/mellanox/doca/applications/storage/

Notice

This document is provided for information purposes only and shall not be regarded as a
warranty of a certain functionality, condition, or quality of a product. NVIDIA Corporation (“NVIDIA”) makes no
representations or warranties, expressed or implied, as to the accuracy or completeness of the information contained in
this document and assumes no responsibility for any errors contained herein. NVIDIA shall have no liability for the
consequences or use of such information or for any infringement of patents or other rights of third parties that may
result from its use. This document is not a commitment to develop, release, or deliver any Material (defined below), code,
or functionality.

NVIDIA reserves the right to make corrections, modifications, enhancements, improvements,

while (hot_data->running_flag) {
doca_pe_progress(pe) ? ++(hot_data->pe_hit_count) :

++(hot_data->pe_miss_count);
}

DOCA Storage Zero Copy Target RDMA Application Guide 15

and any other changes to this document, at any time without notice.

Customer should obtain the latest
relevant information before placing orders and should verify that such information is current and complete.

NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the time of
order acknowledgement, unless otherwise agreed in an individual sales agreement signed by authorized representatives
of NVIDIA and customer (“Terms of Sale”). NVIDIA hereby expressly objects to applying any customer general terms and
conditions with regards to the purchase of the NVIDIA product referenced in this document. No contractual obligations
are formed either directly or indirectly by this document.

NVIDIA products are not designed, authorized, or
warranted to be suitable for use in medical, military, aircraft, space, or life support equipment, nor in applications where
failure or malfunction of the NVIDIA product can reasonably be expected to result in personal injury, death, or property
or environmental damage. NVIDIA accepts no liability for inclusion and/or use of NVIDIA products in such equipment or
applications and therefore such inclusion and/or use is at customer’s own risk.

NVIDIA makes no
representation or warranty that products based on this document will be suitable for any specified use. Testing of all
parameters of each product is not necessarily performed by NVIDIA. It is customer’s sole responsibility to evaluate and
determine the applicability of any information contained in this document, ensure the product is suitable and fit for the
application planned by customer, and perform the necessary testing for the application in order to avoid a default of the
application or the product. Weaknesses in customer’s product designs may affect the quality and reliability of the
NVIDIA product and may result in additional or different conditions and/or requirements beyond those contained in this
document. NVIDIA accepts no liability related to any default, damage, costs, or problem which may be based on or
attributable to: (i) the use of the NVIDIA product in any manner that is contrary to this document or (ii) customer
product designs.

No license, either expressed or implied, is granted under any NVIDIA patent right, copyright,
or other NVIDIA intellectual property right under this document. Information published by NVIDIA regarding third-party
products or services does not constitute a license from NVIDIA to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other
intellectual property rights of the third party, or a license from NVIDIA under the patents or other intellectual property
rights of NVIDIA.

Reproduction of information in this document is permissible only if approved in
advance by NVIDIA in writing, reproduced without alteration and in full compliance with all applicable export laws and
regulations, and accompanied by all associated conditions, limitations, and notices.

THIS
DOCUMENT AND ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS,
AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA MAKES
NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE MATERIALS, AND
EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A
PARTICULAR PURPOSE. TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL NVIDIA BE LIABLE FOR ANY
DAMAGES, INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR
CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF
ANY USE OF THIS DOCUMENT, EVEN IF NVIDIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
Notwithstanding any damages that customer might incur for any reason whatsoever, NVIDIA’s aggregate and
cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms of
Sale for the product.

Trademarks

NVIDIA and the NVIDIA logo are
trademarks and/or registered trademarks of NVIDIA Corporation in the U.S. and other countries. Other company and
product names may be trademarks of the respective companies with which they are associated.

© Copyright 2025, NVIDIA. PDF Generated on 05/05/2025

	Introduction
	System Design
	Application Architecture
	Preparation Stage
	Data Path Stage
	Teardown Stage

	DOCA Libraries
	Compiling the Application
	Running the Application
	Application Execution
	Command Line Flags
	Troubleshooting

	Application Code Flow
	Control Thread Flow
	Performance Data Path Thread Flow

	References

