
DOCA YARA Inspection Application Guide

Table of contents

Introduction

System Design

Application Architecture

DOCA Libraries

Limitations

Compiling the Application

Compiling All Applications

Compiling Only the Current Application

Troubleshooting

Running the Application

Prerequisites

Application Execution

Command Line Flags

Troubleshooting

Application Code Flow

References

DOCA YARA Inspection Application Guide 1

Table of contents

Introduction

System Design

Application Architecture

DOCA Libraries

Limitations

Compiling the Application

Compiling All Applications

Compiling Only the Current Application

Troubleshooting

Running the Application

Prerequisites

Application Execution

Command Line Flags

Troubleshooting

Application Code Flow

References

DOCA YARA Inspection Application Guide 2

This guide provides YARA inspection implementation on top of NVIDIA® BlueField® DPU.

Introduction

YARA inspection monitors all processes in the host system for speci�c YARA rules using
the DOCA App Shield library.

This security capability helps identify malware detection patterns in host processes from
an independent and trusted DPU. This is an innovative Intrusion Detection System (IDS) as
it is designed to run independently on the DPU's Arm cores without hindering the host.

This DOCA App Shield based application provides the capability to read, analyze, and
authenticate the host (bare metal/VM) memory directly from the DPU.

Using the library, this application scans host processes and looks for pre-de�ned YARA
rules. After every scan iteration, the application indicates if any of the rules matched.
Once there is a match, the application reports which rules were detected in which
process. The reports are both printed to the console and exported to the DOCA Telemetry
Service (DTS) using inter-process communication (IPC).

This guide describes how to build YARA inspection using the DOCA App Shield library
which leverages DPU abilities such as hardware-based DMA, integrity, and more.

System Design

The host's involvement is limited to generating the required ZIP and JSON �les to pass to
the DPU. This is done before the app is triggered, when the host is still in a "safe" state.

Generating the needed �les can be done by running DOCA App Shield's
doca_apsh_config.py tool on the host. See DOCA App Shield for more info.

Note

As the DOCA App Shield library only supports the YARA API for
Windows hosts, this application can only be used to inspect Windows
hosts.

https://docs.nvidia.com/doca/sdk/DOCA+App+Shield/index.html
https://docs.nvidia.com/doca/sdk/DOCA+Telemetry+Service+Guide/index.html
https://docs.nvidia.com/doca/sdk/DOCA+Telemetry+Service+Guide/index.html
https://docs.nvidia.com/doca/sdk/DOCA+App+Shield/index.html

DOCA YARA Inspection Application Guide 3

Application Architecture

The user creates the ZIP and JSON �les using the DOCA tool doca_apsh_config.py
and copies them to the DPU.

The application can report YARA rules detection to the:

File

Terminal

DTS

DOCA YARA Inspection Application Guide 4

1. The �les are generated by running doca_apsh_config.py on the host against the
process at time zero.

2. The following steps recur at regular time intervals:

1. The YARA inspection app requests a list of all apps from the DOCA App Shield
library.

2. The app loops over all processes and checks for YARA rules match using the
DOCA App Shield library.

3. If YARA rules are found (1 or more), the YARA attestation app reports results
with a timestamp and details about the process and rules to:

Local telemetry �les – a folder and �les representing the data a real DTS
would have received

DOCA log

Note

These �les are used for the purpose of this example
only as normally this data is not exported into user-
readable �les.

DOCA YARA Inspection Application Guide 5

DTS IPC interface (even if no DTS is active)

3. The App Shield agent exits on �rst YARA rule detection.

DOCA Libraries

This application leverages the following DOCA libraries:

DOCA App Shield

2024-10-09_07-10-18_DOCA Telemetry

Refer to their respective programming guide for more information.

Limitations

The application is only available on Ubuntu 22.04 environments

The application only supports the inspection of Windows hosts

Compiling the Application

The installation of DOCA's reference applications contains the sources of the applications,
alongside the matching compilation instructions. This allows for compiling the
applications "as-is" and provides the ability to modify the sources, then compile a new
version of the application.

Info

Please refer to the DOCA Installation Guide for Linux for details on
how to install BlueField-related software.

Tip

https://docs.nvidia.com/doca/sdk/DOCA+App+Shield/index.html
https://docs.nvidia.compages/createpage.action?spaceKey=docadev&title=2024-10-09+07-10-18+DOCA+Telemetry&linkCreation=true&fromPageId=3453016144
https://docs.nvidia.com/doca/sdk/DOCA+Installation+Guide+for+Linux/index.html

DOCA YARA Inspection Application Guide 6

The sources of the application can be found under the application's directory:
/opt/mellanox/doca/applications/yara_inspection/ .

Compiling All Applications

All DOCA applications are de�ned under a single meson project. So, by default, the
compilation includes all of them.

To build all the applications together, run:

Compiling Only the Current Application

To directly build only the YARA inspection application:

For more information about the applications as well as development
and compilation tips, refer to the DOCA Reference Applications page.

cd /opt/mellanox/doca/applications/
meson /tmp/build
ninja -C /tmp/build

Info

doca_yara_inspection is created under

/tmp/build/yara_inspection/ .

cd /opt/mellanox/doca/applications/

https://docs.nvidia.com/doca/sdk/DOCA+Reference+Applications/index.html

DOCA YARA Inspection Application Guide 7

Alternatively, one can set the desired �ags in the meson_options.txt �le instead of
providing them in the compilation command line:

1. Edit the following �ags in
/opt/mellanox/doca/applications/meson_options.txt :

Set enable_all_applications to false

Set enable_yara_inspection to true

2. Run the following compilation commands :

meson /tmp/build -Denable_all_applications=false -
Denable_yara_inspection=true

ninja -C /tmp/build

Info

doca_yara_inspection is created under

/tmp/build/yara_inspection/ .

cd /opt/mellanox/doca/applications/
meson /tmp/build
ninja -C /tmp/build

Info

doca_yara_inspection is created under

/tmp/build/yara_inspection/ .

DOCA YARA Inspection Application Guide 8

Troubleshooting

Refer to the DOCA Troubleshooting for any issue encountered with the compilation of the
application .

Running the Application

Prerequisites

1. Con�gure the BlueField's �rmware

1. On the BlueField system, con�gure the PF base address register and NVME
emulation. Run:

2. Perform a BlueField system reboot for the mlxconfig settings to take e�ect.

3. This con�guration can be veri�ed using the following command:

2. Download target system (host/VM) symbols.

For Ubuntu:

dpu> mlxconfig -d /dev/mst/mt41686_pciconf0 s
PF_BAR2_SIZE=2 PF_BAR2_ENABLE=1 NVME_EMULATION_ENABLE=1

dpu> mlxconfig -d /dev/mst/mt41686_pciconf0 q | grep -E
"NVME|BAR"

host> sudo tee /etc/apt/sources.list.d/ddebs.list << EOF
deb http://ddebs.ubuntu.com/ $(lsb_release -cs) main restricted universe multiverse

https://docs.nvidia.com/doca/sdk/DOCA+Troubleshooting/index.html
https://docs.nvidia.com/doca/sdk/NVIDIA+BlueField+Reset+and+Reboot+Procedures/index.html

DOCA YARA Inspection Application Guide 9

For CentOS:

No action is needed for Windows

3. Perform IOMMU passthrough. This stage is only needed on some of the cases where
IOMMU is not enabled by default (e.g., when the host is using an AMD CPU).

deb http://ddebs.ubuntu.com/ $(lsb_release -cs)-updates main restricted universe
multiverse

deb http://ddebs.ubuntu.com/ $(lsb_release -cs)-proposed main restricted universe
multiverse

EOF
host> sudo apt install ubuntu-dbgsym-keyring
host> sudo apt-get update
host> sudo apt-get install linux-image-$(uname -r)-
dbgsym

host> yum install --enablerepo=base-debuginfo kernel-
devel-$(uname -r) kernel-debuginfo-$(uname -r) kernel-
debuginfo-common-$(uname -m)-$(uname -r)

Note

Skip this step if you are not sure whether you need it. Return to
it only if DMA fails with a message in dmesg similar to the
following:

host> dmesg
[3839.822897] mlx5_core 0000:81:00.0: AMD-Vi:
Event logged [IO_PAGE_FAULT domain=0x0047
address=0x2a0aff8 flags=0x0000]

DOCA YARA Inspection Application Guide 10

Locate your OS's grub �le (most likely /boot/grub/grub.conf ,

/boot/grub2/grub.cfg , or /etc/default/grub) and open it for editing.
Run:

Search for the line de�ning GRUB_CMDLINE_LINUX_DEFAULT and add the

argument iommu=pt . For example:

Run:

For Ubuntu:

For CentOS:

host> vim /etc/default/grub

GRUB_CMDLINE_LINUX_DEFAULT="iommu=pt <intel/amd>_iommu=on"

Note

Prior to performing a power cycle, make sure to do a
graceful shutdown.

host> sudo update-grub
host> ipmitool power cycle

host> grub2-mkconfig -o /boot/grub2/grub.cfg
host> ipmitool power cycle

https://docs.nvidia.com/doca/sdk/DOCA+Troubleshooting/index.html

DOCA YARA Inspection Application Guide 11

For Windows targets: Turn o� Hyper-V capability.

4. The DOCA App Shield library uses hugepages for DMA bu�ers. Therefore, the user
must allocate 42 huge pages.

1. Run:

2. Create the ZIP and JSON �les. Run:

If the target system does not have DOCA installed, the script can be copied
from the BlueField.

The required dwaf2json and pdbparse-to-json.py are not provided with
DOCA.

dpu> nr_huge=$(cat
/sys/devices/system/node/node0/hugepages/hugepages-
2048kB/nr_hugepages)
 nr_huge=$((42+$nr_huge))
 echo $nr_huge | sudo tee -a
/sys/devices/system/node/node0/hugepages/hugepages-
2048kB/nr_hugepages

target-system> cd /opt/mellanox/doca/tools/
target-system> python3 doca_apsh_config.py <pid-of-
process-to-monitor> --os <windows/linux> --path <path to
dwarf2json executable or pdbparse-to-json.py>
target-system> cp /opt/mellanox/doca/tools/*.* <shared-
folder-with-baremetal>
dpu> scp <shared-folder-with-baremetal>/* <path-to-app-
shield-binary>

Note

DOCA YARA Inspection Application Guide 12

Application Execution

The YARA inspection application is provided in source form. Therefore, a compilation is
required before the application can be executed.

1. Application usage instructions:

If the kernel and process .exe have not changed, there
no need to redo this step.

Usage: doca_yara_inspection [DOCA Flags] [Program Flags]

DOCA Flags:
 -h, --help Print a help synopsis
 -v, --version Print program version
information
 -l, --log-level Set the (numeric) log
level for the program <10=DISABLE, 20=CRITICAL, 30=ERROR,
40=WARNING, 50=INFO, 60=DEBUG, 70=TRACE>
 --sdk-log-level Set the SDK (numeric) log
level for the program <10=DISABLE, 20=CRITICAL, 30=ERROR,
40=WARNING, 50=INFO, 60=DEBUG, 70=TRACE>
 -j, --json <path> Parse all command flags
from an input json file

Program Flags:
 -m, --memr <path> System memory regions map
 -f, --vuid VUID of the System device
 -d, --dma DMA device name
 -o, --osym <path> System OS symbol map path
 -t, --time <seconds> Scan time interval in
seconds

DOCA YARA Inspection Application Guide 13

2. CLI example for running the application on the BlueField:

Command Line Flags

Info

This usage printout can be printed to the command line using
the -h (or --help) options:

./doca_yara_inspection -h

Info

For additional information, refer to section "Command Line
Flags".

./doca_yara_inspection -m mem_regions.json -o symbols.json -f
MT2125X03335MLNXS0D0F0VF1 -d mlx5_0 -t 3

Note

All used identi�ers (-f and -d �ags) should match the
identi�er of the desired devices.

DOCA YARA Inspection Application Guide 14

Flag
Type

Shor
t
Flag

Long
Flag

Description

Gene
ral
�ags

h help Prints a help synopsis

v
vers
ion

Prints program version information

l
log-
leve
l

Set the log level for the application:

DISABLE=10
CRITICAL=20
ERROR=30
WARNING=40
INFO=50
DEBUG=60
TRACE=70 (requires compilation with TRACE log level
support)

N/A

sdk-
log-
leve
l

Sets the log level for the program:

DISABLE=10
CRITICAL=20
ERROR=30
WARNING=40
INFO=50
DEBUG=60
TRACE=70

j json Parse all command �ags from an input JSON �le

Progr
am
�ags

m memr Path to the pre-generated mem_regions.json �le transferred
from the host

f pcif System PCIe function vendor unique identi�er (VUID) of the VF/PF
exposed to the target system. Used for DMA operations.
To obtain this argument, run:

Example output:

target-system> lspci -vv | grep "\[VU\] Vendor specific:"

[VU] Vendor specific: MT2125X03335MLNXS0D0F0

DOCA YARA Inspection Application Guide 15

Flag
Type

Shor
t
Flag

Long
Flag

Description

Two VUIDs are printed for each DPU connected to the target
system. The �rst is of the DPU on pf0 and the second is of the

DPU on port pf1 .

The VUID of a VF allocated on PF0/1 is the VUID of the PF with an
additional su�x, VF<vf-number> , where vf-number is the VF
index +1.
For example, for the output in the example above:

PF0 VUID = MT2125X03335MLNXS0D0F0
PF1 VUID = MT2125X03335MLNXS0D0F1
VUID of VF0 on PF0 = MT2125X03335MLNXS0D0F0VF1

VUIDs are persistent even on reset.

d dma DMA device name to use

o osym Path to the pre-generated symbols.json �le transferred from
the host

t time Number of seconds to sleep between scans

[VU] Vendor specific: MT2125X03335MLNXS0D0F1

Note
Running this command on the DPU outputs
VUIDs with an additional "EC" string in the
middle. You must remove the "EC" to arrive at
the correct VUID.

Info

DOCA YARA Inspection Application Guide 16

Troubleshooting

Refer to the DOCA Troubleshooting for any issue encountered with the installation or
execution of the DOCA applications .

Application Code Flow

1. Parse application argument.

1. Initialize arg parser resources and register DOCA general parameters.

2. Register application parameters.

3. Parse the arguments.

2. Initialize DOCA App Shield lib context.

1. Create lib context.

Refer to DOCA Arg Parser for more information regarding the
supported �ags and execution modes.

doca_argp_init();

register_apsh_params();

doca_argp_start();

https://docs.nvidia.com/doca/sdk/DOCA+Troubleshooting/index.html
https://docs.nvidia.com/doca/sdk/DOCA+Arg+Parser/index.html

DOCA YARA Inspection Application Guide 17

2. Set DMA device for lib.

3. Start the context

3. Initialize DOCA App Shield lib system context handler.

1. Get the representor of the remote PCIe function exposed to the system.

2. Create and start the system context handler.

4. Telemetry initialization.

doca_apsh_create();

open_doca_device_with_ibdev_name();
doca_apsh_dma_dev_set();

doca_apsh_start();
apsh_system_init();

open_doca_device_rep_with_vuid();

doca_apsh_system_create();
doca_apsh_sys_os_symbol_map_set();
doca_apsh_sys_mem_region_set();
doca_apsh_sys_dev_set();
doca_apsh_sys_os_type_set();
doca_apsh_system_start();

DOCA YARA Inspection Application Guide 18

1. Initialize a new telemetry schema.

2. Register YARA type event.

3. Set up output to �le (in addition to default IPC).

4. Start the telemetry schema.

5. Initialize and start a new DTS source with the gethostname() name as
source ID.

5. Loop until YARA rule is matched.

1. Get all processes from the host.

2. Check for YARA rule identi�cation and send a DTS event if there is a match.

6. Telemetry destroy.

telemetry_start();

doca_apsh_processes_get();

doca_apsh_yara_get();
if (yara_matches_size != 0) {

/* event fill logic
doca_telemetry_exporter_source_report();

DOCA_LOG_INFO();
sleep();

telemetry_destroy();

DOCA YARA Inspection Application Guide 19

7. YARA inspection clean-up.

8. Arg parser destroy.

References

/opt/mellanox/doca/applications/yara_inspection/

Notice

This document is provided for information purposes only and shall not be regarded as a
warranty of a certain functionality, condition, or quality of a product. NVIDIA Corporation (“NVIDIA”) makes no
representations or warranties, expressed or implied, as to the accuracy or completeness of the information contained in
this document and assumes no responsibility for any errors contained herein. NVIDIA shall have no liability for the
consequences or use of such information or for any infringement of patents or other rights of third parties that may
result from its use. This document is not a commitment to develop, release, or deliver any Material (de�ned below), code,
or functionality.

NVIDIA reserves the right to make corrections, modi�cations, enhancements, improvements,
and any other changes to this document, at any time without notice.

Customer should obtain the latest
relevant information before placing orders and should verify that such information is current and complete.

NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the time of
order acknowledgement, unless otherwise agreed in an individual sales agreement signed by authorized representatives
of NVIDIA and customer (“Terms of Sale”). NVIDIA hereby expressly objects to applying any customer general terms and
conditions with regards to the purchase of the NVIDIA product referenced in this document. No contractual obligations
are formed either directly or indirectly by this document.

NVIDIA products are not designed, authorized, or
warranted to be suitable for use in medical, military, aircraft, space, or life support equipment, nor in applications where
failure or malfunction of the NVIDIA product can reasonably be expected to result in personal injury, death, or property
or environmental damage. NVIDIA accepts no liability for inclusion and/or use of NVIDIA products in such equipment or
applications and therefore such inclusion and/or use is at customer’s own risk.

NVIDIA makes no
representation or warranty that products based on this document will be suitable for any speci�ed use. Testing of all
parameters of each product is not necessarily performed by NVIDIA. It is customer’s sole responsibility to evaluate and
determine the applicability of any information contained in this document, ensure the product is suitable and �t for the
application planned by customer, and perform the necessary testing for the application in order to avoid a default of the
application or the product. Weaknesses in customer’s product designs may a�ect the quality and reliability of the
NVIDIA product and may result in additional or di�erent conditions and/or requirements beyond those contained in this
document. NVIDIA accepts no liability related to any default, damage, costs, or problem which may be based on or
attributable to: (i) the use of the NVIDIA product in any manner that is contrary to this document or (ii) customer
product designs.

No license, either expressed or implied, is granted under any NVIDIA patent right, copyright,
or other NVIDIA intellectual property right under this document. Information published by NVIDIA regarding third-party
products or services does not constitute a license from NVIDIA to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other

doca_apsh_system_destroy();
doca_apsh_destroy();
doca_dev_close();
doca_dev_rep_close();

doca_argp_destroy();

DOCA YARA Inspection Application Guide 20

intellectual property rights of the third party, or a license from NVIDIA under the patents or other intellectual property
rights of NVIDIA.

Reproduction of information in this document is permissible only if approved in
advance by NVIDIA in writing, reproduced without alteration and in full compliance with all applicable export laws and
regulations, and accompanied by all associated conditions, limitations, and notices.

THIS
DOCUMENT AND ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS,
AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA MAKES
NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE MATERIALS, AND
EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A
PARTICULAR PURPOSE. TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL NVIDIA BE LIABLE FOR ANY
DAMAGES, INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR
CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF
ANY USE OF THIS DOCUMENT, EVEN IF NVIDIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
Notwithstanding any damages that customer might incur for any reason whatsoever, NVIDIA’s aggregate and
cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms of
Sale for the product.

Trademarks

NVIDIA and the NVIDIA logo are
trademarks and/or registered trademarks of NVIDIA Corporation in the U.S. and other countries. Other company and
product names may be trademarks of the respective companies with which they are associated.

© Copyright 2025, NVIDIA. PDF Generated on 05/05/2025

	Introduction
	System Design
	Application Architecture
	DOCA Libraries
	Limitations
	Compiling the Application
	Compiling All Applications
	Compiling Only the Current Application
	Troubleshooting

	Running the Application
	Prerequisites
	Application Execution
	Command Line Flags
	Troubleshooting

	Application Code Flow
	References

