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Chapter 1. Introduction

Domain name system (DNS) translates domain names to IP addresses so browsers can load
internet resources. Each device connected to the internet has a unique IP address which other

machines use to find the device.
The DNS process includes several steps:

1. Once a user tries to log into a website using a browser, the user’'s device creates a DNS
query and sends it to a DNS resolver.

2. The DNS resolver queries the DNS domain to get an IP address by searching its cache or
sending the request to another DNS server.

3. Once a match is found, the DNS resolver returns the correct IP matching the DNS domain.

4. The user can log into the required website using the correct IP.

DNS filter is used to offload DNS requests from the host to the BlueField DPU Arm which
allows reducing CPU overhead as Arm allows further DNS processing to be done (e.g.,

whitelisting, logging, filtering, etc].
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Chapter 2. System Design

The DNS filter application is designed to run as a "bump-on-the-wire” on the BlueField-2
DPU instance. The DPU intercepts the traffic coming (ingress traffic) from the wire and either
passes it to the Arm or forwards it to the egress port using hairpin. The decision is made by
traffic classification.
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System Design
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System Design
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Chapter 3. Application Architecture

The DNS filter runs on top of DOCA FLOW to classify DNS requests.

Packet stream

Ingress traffic DNS traffic

>

Hairpin
traffic

Egress traffic

Non-DNS
packet stream

1. Ingress packet types are identified using pipes which encapsulate flow rule matching
patterns and actions.

2. Matched flows are identified, and FORWARDING actions can be executed.

» DNS traffic is forwarded to the Arm for further processing

» Non-DNS traffic is forwarded to the egress port using hairpin
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Chapter 4. Configuration Flow

1. DPDK initialization.

dpdk init (&argc, &argv, &nb queues, &nb ports);
2. Stateful flow table (SFT) and port initialization.

dpdk ports init (nb queues,nb ports);

» Mempool allocation

» Rx/Tx and hairpin queue initialization

» DPDK portinitialization
3. Hairpin binding.

enable hairpin queues (portid, &peer ports , 1);
» Binds hairpin queues for the given port ID
4. DOCA flow initialization.
doca flow init (&dns flow cfg, &error);
5. DOCA flow ports initialization.
dns filter port init (&port cfg, portid);

» Initializes DOCA flow port with the given port configuration for the given port ID.

S| Note: DOCA flow port initialization is done for both ports of the BlueField and after the
DPDK ports have been initialized.

6. Non-DNS hairpin traffic.
build hairpin pipes (ports[portid], portid, nb queues);

» Builds two hairpin pipes, that forward packets to Arm. For a given port, each pipe has
one entry for the relevant matching patterns. The first hairpin pipe is for matching UDP
non-DNS traffic and the second one is for matching TCP traffic. Note that these pipes
are built for both ports of the BlueField.

7. Build DNS pipe.
build dns pipes (ports[portid], portid, nb queues);
» Builds DNS pipe for a given port. The built pipe has one entry for matching DNS traffic
and forwarding it to Arm.

8. Processing packets.
main loop (nb_queues, nb_ports);
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Configuration Flow

» All received packets on Arm, are DNS packets, while non-DNS packets are forwarded
to the egress port using hairpin allowing DNS packets to be filtered.
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Chapter 5.  Running Application on
BlueField

1. Please refer to the DOCA Installation Guide for details on how to install BlueField related
software.

2. To build the application

al. The DNS filter example is installed as part of the doca-dpi-1ib package, the binary is
located under /opt/mellanox/doca/examples/dns filter/bin/doca dns filter.
To re-build the DNS filter sample, run:
cd /opt/mellanox/doca/examples/dns filter/src

meson /tmp/build
ninja -C /tmp/build

doca dns filter will be created under tmp/build.

b). The build process depends on the PKG_CONFIG PATH environment variable to locate
the DPDK libraries. If the variable was accidently corrupted, and the build fails, run the
following command:

» For Ubuntu:

export PKG CONFIG PATH=$PKG CONFIG PATH:/opt/mellanox/dpdk/lib/aarch64-
linux-gnu/pkgconfig

» For CentOS:
export PKG CONFIG PATH=$PKG CONFIG PATH:/opt/mellanox/dpdk/l1ib64/pkgconfig
c). The DNS filter example is a DPDK application. Therefore, the user is required to
provide DPDK flags and allocate huge pages. Run:
echo 1024 > /sys/kernel/mm/hugepages/hugepages-2048kB/nr hugepages

3. Torun the application:
./doca_dns filter [dpdk flags] -- -1 [log level]

Note: SFs must be enabled according to Scalable Function Setup Guide.

For example:

/opt/mellanox/doca/examples/dns filter/bin/doca dns filter -a
auxiliary:mlx5 core.sf.4 -a auxiliary:mlx5 core.sf.5 -- -1 3

S Note: The flag -a auxiliary:mlx5 core.sf.4 -a auxiliary:mlx5 core.sf.5Is
a must for proper usage of the application. Modifying this flag will result unexpected
behavior as only two ports are supported. The SF number is arbitrary and configurable.
For additional information on available flags for DPDK, use -h before the -- separator. For
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Running Application on BlueField

information on available flags for the application, use -h after the -- separator. The -1 or
--log_level flag sets the log level for the app (ERR=0, DEBUG=3).
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Chapter 6. Running Application on
Host

Please refer to Running Reference Applications Over Host Guide.
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Chapter 7. References

> /opt/mellanox/doca/examples/dns filter/src/dns_ filter.c
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