NVIDIA.

NVIDIA DOCA DNS Filter

Reference Application

MLNX-15-060486 _v1.1 August 2021

Chapter 1.
Chapter 2.
Chapter 3.
Chapter 4.
Chapter 5.
Chapter 6.
Chapter 7.

Table of Contents

a4 o [V o1 (o] o PSRRI 1
0NV =T 0 0T L= o | o SRR 2
Application ArChItECTUIE. .. .uuiiiiieei e)
ConfiIgUration FLOW.......ueii e 6
Running Application on BlueField. ... 8
Running Application on HOSt.....ooiiii e 10
RO OB CES . . 11

NVIDIA DOCA DNS Filter MLNX-15-060486 _v1.1 | i

Chapter 1. Introduction

Domain name system (DNS) translates domain names to IP addresses so browsers can load
internet resources. Each device connected to the internet has a unique IP address which other

machines use to find the device.
The DNS process includes several steps:

1. Once a user tries to log into a website using a browser, the user’'s device creates a DNS
query and sends it to a DNS resolver.

2. The DNS resolver queries the DNS domain to get an IP address by searching its cache or
sending the request to another DNS server.

3. Once a match is found, the DNS resolver returns the correct IP matching the DNS domain.

4. The user can log into the required website using the correct IP.

DNS filter is used to offload DNS requests from the host to the BlueField DPU Arm which
allows reducing CPU overhead as Arm allows further DNS processing to be done (e.g.,

whitelisting, logging, filtering, etc].

NVIDIA DOCA DNS Filter MLNX-15-060486 _v1.1 |

1

Chapter 2. System Design

The DNS filter application is designed to run as a "bump-on-the-wire” on the BlueField-2
DPU instance. The DPU intercepts the traffic coming (ingress traffic) from the wire and either
passes it to the Arm or forwards it to the egress port using hairpin. The decision is made by
traffic classification.

NVIDIA DOCA DNS Filter MLNX-15-060486 v1.1 | 2

System Design

DNS filter app

Traffic From
the Network

NVIDIA DOCA DNS Filter MLNX-15-060486 v1.1 | 3

System Design

NVIDIA DOCA DNS Filter MLNX-15-060486 v1.1 | 4

Chapter 3. Application Architecture

The DNS filter runs on top of DOCA FLOW to classify DNS requests.

Packet stream

Ingress traffic DNS traffic

>

Hairpin
traffic

Egress traffic

Non-DNS
packet stream

1. Ingress packet types are identified using pipes which encapsulate flow rule matching
patterns and actions.

2. Matched flows are identified, and FORWARDING actions can be executed.

» DNS traffic is forwarded to the Arm for further processing

» Non-DNS traffic is forwarded to the egress port using hairpin

NVIDIA DOCA DNS Filter MLNX-15-060486 v1.1 | 5

Chapter 4. Configuration Flow

1. DPDK initialization.

dpdk init (&argc, &argv, &nb queues, &nb ports);
2. Stateful flow table (SFT) and port initialization.

dpdk ports init (nb queues,nb ports);

» Mempool allocation

» Rx/Tx and hairpin queue initialization

» DPDK portinitialization
3. Hairpin binding.

enable hairpin queues (portid, &peer ports , 1);
» Binds hairpin queues for the given port ID
4. DOCA flow initialization.
doca flow init (&dns flow cfg, &error);
5. DOCA flow ports initialization.
dns filter port init (&port cfg, portid);

» Initializes DOCA flow port with the given port configuration for the given port ID.

S| Note: DOCA flow port initialization is done for both ports of the BlueField and after the
DPDK ports have been initialized.

6. Non-DNS hairpin traffic.
build hairpin pipes (ports[portid], portid, nb queues);

» Builds two hairpin pipes, that forward packets to Arm. For a given port, each pipe has
one entry for the relevant matching patterns. The first hairpin pipe is for matching UDP
non-DNS traffic and the second one is for matching TCP traffic. Note that these pipes
are built for both ports of the BlueField.

7. Build DNS pipe.
build dns pipes (ports[portid], portid, nb queues);
» Builds DNS pipe for a given port. The built pipe has one entry for matching DNS traffic
and forwarding it to Arm.

8. Processing packets.
main loop (nb_queues, nb_ports);

NVIDIA DOCA DNS Filter MLNX-15-060486 v1.1 | 6

Configuration Flow

» All received packets on Arm, are DNS packets, while non-DNS packets are forwarded
to the egress port using hairpin allowing DNS packets to be filtered.

NVIDIA DOCA DNS Filter MLNX-15-060486 v1.1 | 7

Chapter 5. Running Application on
BlueField

1. Please refer to the DOCA Installation Guide for details on how to install BlueField related
software.

2. To build the application

al. The DNS filter example is installed as part of the doca-dpi-1ib package, the binary is
located under /opt/mellanox/doca/examples/dns filter/bin/doca dns filter.
To re-build the DNS filter sample, run:
cd /opt/mellanox/doca/examples/dns filter/src

meson /tmp/build
ninja -C /tmp/build

doca dns filter will be created under tmp/build.

b). The build process depends on the PKG_CONFIG PATH environment variable to locate
the DPDK libraries. If the variable was accidently corrupted, and the build fails, run the
following command:

» For Ubuntu:

export PKG CONFIG PATH=$PKG CONFIG PATH:/opt/mellanox/dpdk/lib/aarch64-
linux-gnu/pkgconfig

» For CentOS:
export PKG CONFIG PATH=$PKG CONFIG PATH:/opt/mellanox/dpdk/l1ib64/pkgconfig
c). The DNS filter example is a DPDK application. Therefore, the user is required to
provide DPDK flags and allocate huge pages. Run:
echo 1024 > /sys/kernel/mm/hugepages/hugepages-2048kB/nr hugepages

3. Torun the application:
./doca_dns filter [dpdk flags] -- -1 [log level]

Note: SFs must be enabled according to Scalable Function Setup Guide.

For example:

/opt/mellanox/doca/examples/dns filter/bin/doca dns filter -a
auxiliary:mlx5 core.sf.4 -a auxiliary:mlx5 core.sf.5 -- -1 3

S Note: The flag -a auxiliary:mlx5 core.sf.4 -a auxiliary:mlx5 core.sf.5Is
a must for proper usage of the application. Modifying this flag will result unexpected
behavior as only two ports are supported. The SF number is arbitrary and configurable.
For additional information on available flags for DPDK, use -h before the -- separator. For

NVIDIA DOCA DNS Filter MLNX-15-060486 v1.1 | 8

http://docs.nvidia.com/doca/sdk/pdf/installation-guide.pdf
http://docs.nvidia.com/doca/sdk/pdf/scalable-functions.pdf

Running Application on BlueField

information on available flags for the application, use -h after the -- separator. The -1 or
--log_level flag sets the log level for the app (ERR=0, DEBUG=3).

NVIDIA DOCA DNS Filter MLNX-15-060486 v1.1 | 9

Chapter 6. Running Application on
Host

Please refer to Running Reference Applications Over Host Guide.

NVIDIA DOCA DNS Filter MLNX-15-060486 _v1.1 | 10

http://docs.nvidia.com/doca/sdk/pdf/running-reference-applications-over-host.pdf

Chapter 7. References

> /opt/mellanox/doca/examples/dns filter/src/dns_ filter.c

NVIDIA DOCA DNS Filter MLNX-15-060486 _v1.1 | 11

Notice

This document is provided for information purposes only and shall not be regarded as a warranty of a certain functionality, condition, or quality of a product. NVIDIA
Corporation nor any of its direct or indirect subsidiaries and affiliates (collectively: "NVIDIA") make no representations or warranties, expressed or implied, as to the
accuracy or completeness of the information contained in this document and assume no responsibility for any errors contained herein. NVIDIA shall have no liability
for the consequences or use of such information or for any infringement of patents or other rights of third parties that may result from its use. This document is not
a commitment to develop, release, or deliver any Material (defined below), code, or functionality.

NVIDIA reserves the right to make corrections, modifications, enhancements, improvements, and any other changes to this document, at any time without notice.
Customer should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the time of order acknowledgement, unless otherwise agreed
in an individual sales agreement signed by authorized representatives of NVIDIA and customer ("Terms of Sale”). NVIDIA hereby expressly objects to applying any
customer general terms and conditions with regards to the purchase of the NVIDIA product referenced in this document. No contractual obligations are formed
either directly or indirectly by this document.

NVIDIA products are not designed, authorized, or warranted to be suitable for use in medical, military, aircraft, space, or life support equipment, nor in applications
where failure or malfunction of the NVIDIA product can reasonably be expected to result in personal injury, death, or property or environmental damage. NVIDIA
accepts no liability for inclusion and/or use of NVIDIA products in such equipment or applications and therefore such inclusion and/or use is at customer’s own risk.

NVIDIA makes no representation or warranty that products based on this document will be suitable for any specified use. Testing of all parameters of each product
is not necessarily performed by NVIDIA. It is customer’s sole responsibility to evaluate and determine the applicability of any information contained in this document,
ensure the product is suitable and fit for the application planned by customer, and perform the necessary testing for the application in order to avoid a default of
the application or the product. Weaknesses in customer’s product designs may affect the quality and reliability of the NVIDIA product and may result in additional
or different conditions and/or requirements beyond those contained in this document. NVIDIA accepts no liability related to any default, damage, costs, or problem
which may be based on or attributable to: (i) the use of the NVIDIA product in any manner that is contrary to this document or (i) customer product designs.

No license, either expressed or implied, is granted under any NVIDIA patent right, copyright, or other NVIDIA intellectual property right under this document.
Information published by NVIDIA regarding third-party products or services does not constitute a license from NVIDIA to use such products or services or a warranty
or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property rights of the third party,
or a license from NVIDIA under the patents or other intellectual property rights of NVIDIA.

Reproduction of information in this document is permissible only if approved in advance by NVIDIA in writing, reproduced without alteration and in full compliance
with all applicable export laws and regulations, and accompanied by all associated conditions, limitations, and notices.

THIS DOCUMENT AND ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS
(TOGETHER AND SEPARATELY, "MATERIALS") ARE BEING PROVIDED “AS IS.” NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR
OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND
FITNESS FOR A PARTICULAR PURPOSE. TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL NVIDIA BE LIABLE FOR ANY DAMAGES, INCLUDING
WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF
THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF NVIDIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
Notwithstanding any damages that customer might incur for any reason whatsoever, NVIDIA's aggregate and cumulative liability towards customer for the products
described herein shall be limited in accordance with the Terms of Sale for the product.

Trademarks

NVIDIA, the NVIDIA logo, and Mellanox are trademarks and/or registered trademarks of Mellanox Technologies Ltd. and/or NVIDIA Corporation in the U.S. and in
other countries. Other company and product names may be trademarks of the respective companies with which they are associated.

Copyright
© 2021 NVIDIA Corporation & affiliates. All rights reserved.

NVIDIA Corporation | 2788 San Tomas Expressway, Santa Clara, CA 95051 @2
http://www.nvidia.com
NVIDIA.

http://www.nvidia.com

	Table of Contents
	Introduction
	System Design
	Application Architecture
	Configuration Flow
	Running Application on BlueField
	Running Application on Host
	References

