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Chapter 1. Introduction

Deep packet inspection (DPI) is a method of examining the full content of data packets as they
traverse a monitored network checkpoint.

DPI provides a more robust mechanism for enforcing network packet filtering as it can be
used to identify and block a range of complex threats hiding in network data streams more
accurately. This includes:

‣ Malicious applications

‣ Malware data exfiltration attempts

‣ Content policy violations

‣ Application recognition

‣ Load balancing

1.1.  Intended Audience
This document is intended for software developers writing DPI-based applications such as
application recognition (AR), intrusion prevention system (IPS), and intrusion detection system
(IDS).

The document assumes familiarity with the TCP/UDP stack and data plane development kit
(DPDK).

1.2.  Changes and New Features in 1.1
This section provides information regarding the features added and changes made in this
software version.

‣ Added support for IP-based matching

‣ Added support for non-TCP/UDP streams

‣ Added support for IP-based signatures

‣ Added support for action field in signatures
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Chapter 2. Setup Configuration

DPI-based application can run either on the host machine, or on the BlueField DPU target.
As the DPI leverages the Regular Expressions (RegEx) Engine, users must make sure it is
enabled.

 1. The RegEx engine is enabled by default on the DPU. However, to enable the RegEx on the
host, run the following commands:
host$ sudo /etc/init.d/openibd stop
dpu$ echo 1 > /sys/class/net/p0/smart_nic/pf/regex_en
dpu$ cat /sys/kernel/mm/hugepages/hugepages-2048kB/nr_hugepages
400                                       // make sure to allocate 200 additional
 hugepages
dpu$ echo 600 > /sys/kernel/mm/hugepages/hugepages-2048kB/nr_hugepages
dpu$ systemctl start mlx-regex      // To verify the service is properly running,
 use "systemctl status mlx-regex"
host$ sudo /etc/init.d/openibd start

Note: Commands with the host$ prompt must be run on the host. Commands with the dpu
$ prompt must be run on BlueField.

 2. Ensure that the BlueField DPU is operating in Ethernet mode, please refer to the DOCA
Installation Guide for more information.

 3. Ensure that the BlueField DPU is running in embedded CPU function (ECPF) mode
(default).

Note: Refer to DPU Modes of Operation > "Configuring ECPF Mode from Separated Host
Mode" under DPU Runtime Guides in the SDK DOCA Developer Zone documentation.

2.1.  Known Issues
‣ The DOCA DPI library only supports inspection of the following protocols:

‣ http 2.0/1.1/1.0

‣ TLS/SSL ClientHello and certificate messages

‣ DNS

‣ FTP

‣ TCP/UDP stream-based signatures may detect applications on other protocols

http://docs.nvidia.com/doca/sdk/pdf/installation-guide.pdf
http://docs.nvidia.com/doca/sdk/pdf/installation-guide.pdf
http://docs.nvidia.com/doca/sdk/pdf/modes-of-operation.pdf
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Chapter 3. DPI Architecture

The following diagram shows how packets are identified by the connection tracking protocol
and then injected into the DPI library for processing.

 

 

3.1.  Signature Database
The signature database is compiled into a CDO file by the DPI compiler. The CDO file includes:

‣ Post-processing table

‣ Compiled RegEx engine rules

‣ Other signature information

The application may load a new database while the DPI is processing packets.

For more information on DPI compiler, please refer to the DOCA DPI Compiler document.

3.2.  DPI Queue
A DPI queue is designed to be used by a worker thread. The DPI queue holds the flow’s
state. Therefore, all packets from both directions of the flow must be submitted to the same
DPI queue "in order". The connection tracking logic will handle out of order packets or
retransmission.

http://docs.nvidia.com/doca/sdk/pdf/dpi-programming-guide.pdf
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3.3.  Connection Tracking
For the DPI library to process cross-packet content, each packet must be injected along with
a flow context and a direction. Packets from the same flow direction must be injected "in
order". A flow direction is usually represented by a 5-tuple, but it can also be a 3-tuple for
other protocols.

The connection tracking (CT) logic must handle out of order packets as well as fragmented
packets. Once a connection has timed out or terminated, the application must notify the DPI
library as well.
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Chapter 4. DPI Initialization and
Teardown

Before enqueueing packets for processing the DPI library must be initialized and loaded with
signatures by the main thread:
struct doca_dpi_ctx *dpi_ctx  = doca_dpi_init(doca_dpi_config);
doca_dpi_load_signatures(dpi_ctx, cdo_filename);

The following configuration parameters are available:

‣ nb_queues – number of DPI queues

‣ max_packets_per_queue – maximum number of packets concurrently processing per
queue

‣ max_sig_match_len – maximum signature length guaranteed to be matched by the DPI
library

For example: A.*B and max_sig_match_len = 4 guarantees to match AxxB but does not
guarantee to match AxxxB.

To close the DPI library, the user should call the following function:
doca_dpi_destroy(dpi_ctx)
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Chapter 5. Packet Processing

5.1.  Flow Life Cycle
‣ Once a new flow was detected by the connection tracking SW, the user should call

doca_dpi_flow_create()

‣ Every incoming packet classified for this flow should be enqueued by calling
doca_dpi_enqueue()

‣ To poll for the results the application must call doca_dpi_dequeue(). The result will
contain matching information (if matched).

‣ When the connection tracking SW detected that the flow was terminated or aged-out the
application should notify the DPI library by calling doca_dpi_flow_destroy()

5.2.  Enqueueing Packets for Processing
A call to doca_dpi_enqueue() may reject packets for processing for the following reasons:

‣ Packet is empty

‣ DPI queue is full (doca_dpi_dequeue() must be called first)

5.2.1.  Packet Ownership
For every mbuf injected, the DPI engine creates an indirect mbuf. This allows the user to free
the mbuf at any time after injection. The mbuf mechanism ensures the mbuf returns to the
pool only after both the direct and the indirect mbufs are free.

If an external attach is used, users must follow the DPDK guidelines for
rte_pktmbuf_attach_extbuf() to make sure the mbuf is freed when both the user and the
DPI free the mbuf.

5.2.2.  Flow Matching
A flow may match one or more signatures. The match result will be available to the application
on doca_dpi_dequeue(). The DPI library will only report the matched signature with the
highest priority. Another way to see the match result for a given flow is to use the function
doca_dpi_flow_match_get().
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The application may query for the application name using doca_dpi_signature_get(). To
preserve performance, it is not recommended to call those functions while packets are being
processed.

It is recommended that the application calls doca_dpi_signatures_get() after loading the
database to acquire a copy of the signature names.
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Chapter 6. Performance

6.1.  Multithreading
The DPI library is designed to achieve optimal results in a multi-threaded environment. To
achieve best performance, it is recommended that both the packet acquisition and the DPI
processing will be done by the same thread.

Because some of the DPI work is offloaded to the HW, it is highly recommended that the
worker thread will work in a pipeline mode, meaning, it should never wait for a DPI job to be
completed but rather go and fetch more packets to be processed. This way the SW can best
utilize the CPU while the RegEx accelerator is processing the job.

The following pseudocode shows the recommended way to call the DPI library: 
while(true) {
   mbufs = rx_burst()
   foreach mbuf in mbufs {
     flow_id = connection_tacking(qid, mbuf)
     if (new flow)
        doca_dpi_flow_create(qid, flow_id, parsing_info)
     status = doca_dpi_enqueue(flow_ctx, mbuf, offset)
     if (status ....)
   }
   while(doca_dpi_dequeue(qid, &result) == DOCA_DPI_DEQUEUE_READY)
     ... inspect result ...
   // At this point processing may not be completed for all packets, so the worker
   // should continue handling more incoming packets.
}

6.2.  RSS and RTE_FLOW
Each flow’s packets must be submitted exclusively to the same queue, for both directions. To
achieve that users must either use symmetric RSS or manually (using rte_flow) direct both
directions of the flow to the same DPDK queue.
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Chapter 7. Packet Life Cycle Example

 

 

 1. The packet is sent to the SFT for processing by calling sft_process_packet() to see if
the hardware recognizes the flow.

 2. If the packet is not marked with a zone ID by the HW, the SW must explicitly inform the SFT
the zone of the packet with sft_process_packet_with_zone().

 3. If the packet is not marked with a flow ID by the HW or the SW, a new flow is created by
calling sft_activate().

 4. If a new flow ID is assigned by the SFT, doca_dpi_flow_create() must be invoked before
enqueuing the packet.

 5. The packet is then processed by the DPI by calling doca_dpi_enqueue().
 6. If the packet is accepted by the DPI for processing, the result is dequeued by calling

doca_dpi_dequeue().
 7. If a match is found, the result is printed and counted for statistics. The flow then is

offloaded (sent directly to the host) because no further inspection is required.
 8. To retrieve the match from the DPI engine, doca_dpi_signature_get() allows access to

the sig_data struct which contains the signature ID and string. This action might affect DPI
performance.

 9. When the flow is terminated by the SFT, it should also be destroyed by invoking
doca_dpi_flow_destroy() with the corresponding flow ID.

 10.Additional statistics can be retrieved using doca_dpi_stat_get().
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