
MLNX-15-060475 _v1.1 | August 2021

NVIDIA DOCA RXPBench Performance
Comparison Tool

User Guide

NVIDIA DOCA RXPBench Performance Comparison Tool MLNX-15-060475 _v1.1 | ii

Table of Contents

Chapter 1. Introduction.. 1
1.1. RXPBench Changes and New Features in DOCA v1.1..1

1.2. Document Scope... 1

1.3. Document Glossary...1

1.4. Icons...2

Chapter 2. RXPBench Overview and Installation...4
2.1. Host Installation.. 5

2.1.1. Prerequisites...5

2.2. DPU Installation.. 6

Chapter 3. Example Application Usage... 7
3.1. Configuring RXPBench... 7

3.2. Regular Expressions...8

3.3. Runtime Statistics...9

3.4. End-of-Run Statistics..10

3.4.1. Configuration Statistics Block... 10

3.4.2. Run Overview Block... 12

3.4.3. DPDK RegEx Stats Block...13

3.4.4. Hyperscan Stats Block...14

Chapter 4. General Configuration Options...15
4.1. Configuration File (-C, --config-file).. 15

4.2. DPDK EAL (-D).. 15

4.3. Force Compilation (-F)..16

4.4. Verbose (-V)... 16

4.5. Cores (-c)...17

Chapter 5. Algorithm, Ingress, and Rules Options..18
5.1. Algorithm/Device Select (--Regex-dev, -d)..18

5.2. Input Mode (--input-mode, -m)..18

5.2.1. --input-mode dpdk_port, -m dpdk_port... 19

5.2.2. --input-mode pcap_file, -m pcap_file... 19

5.2.3. --input-mode text_file, -m text_file.. 19

5.3. Compiled Rules File (--rules, -r)... 20

5.4. Uncompiled Rules File (--raw_rules, -R).. 20

5.5. App-Layer Filtering (--run-app-layer, -A)... 20

Chapter 6. DPDK Port Operations... 21

NVIDIA DOCA RXPBench Performance Comparison Tool MLNX-15-060475 _v1.1 | iii

6.1. Primary Port (--dpdk-primary-port, -1)...21

6.2. Secondary Port (--dpdk-secondary-port, -2)...21

Chapter 7. Runtime Options...22
7.1. Runtime Seconds (--run-time-secs, -s).. 22

7.2. Iterations (--run-num-iterations, -n)... 23

7.3. Packet (--run-packets, -p)... 23

7.4. Total Bytes (--run-bytes, -b).. 24

Chapter 8. Search-specific Options... 25
8.1. Buffer Length (--buf-length, -l)... 25

8.2. Buffer Threshold (--buf-thres, -t)..26

8.3. Buffer Overlapping (--buf-overlap, -o)...26

8.4. Batching (--buf-group, -g)..27

8.5. Layer 5 to 7 Payloads Only (--run-app-layer, --A)..27

Chapter 9. BlueField RXP-specific Operations..29
9.1. Max Matches (--rxp-max-matches, -M).. 29

9.2. Max Latency (--rxp-latency, -T)... 29

Chapter 10. Hyperscan-specific Operations.. 30
10.1. HS Single Match (--hs-singlematch, -H)...30

10.2. HS Left Most Match (--hs- leftmost, -L)... 30

Chapter 11. Running RXPBench on BlueField...31

NVIDIA DOCA RXPBench Performance Comparison Tool MLNX-15-060475 _v1.1 | iv

List of Tables

Table 1. Terms and Definitions ..2

Table 2. Acronyms .. 2

NVIDIA DOCA RXPBench Performance Comparison Tool MLNX-15-060475 _v1.1 | 1

Chapter 1. Introduction

RXPBench is a tool that allows for the performance comparison between the NVIDIA® RXP®

hardware RegEx acceleration engine found in the NVIDIA® BlueField®-2 DPU and the Intel®
Hyperscan software library. It provides a comprehensive set of options and can facilitate
ingress of data from live network ports or previously recorded PCAP files.

It is designed to provide a real-world comparison of these technologies, and present results
customers could expect to receive after implementing either technology in their products.

1.1. RXPBench Changes and New
Features in DOCA v1.1

‣ Moved to firmware-controlled card configuration and rules load

‣ rxpbench uses a rof2.binary rules file instead of the standard rof2

‣ Setting max matches variable is no longer supported

‣ Added run-time-secs (-s) support for pcap_file and text_file modes

‣ Tests must now run >0.1 seconds before a throughput is displayed

‣ Warnings are now included at the end of run reports

1.2. Document Scope
This document provides the following information for RXPBench:

‣ Example use case

‣ Breakdown of analysis and runtime statistics

‣ Options and configuration settings available

1.3. Document Glossary
The terms listed in the following table are used in this document.

Introduction

NVIDIA DOCA RXPBench Performance Comparison Tool MLNX-15-060475 _v1.1 | 2

Table 1. Terms and Definitions

Term Definition
Job A unit of data for the RXP to scan. A job can be

a packet, packet header, packet payload, packet
header and payload, or a block of user-defined
data.

Regex A common abbreviation for regular expression.

Regular expression A regular expression is a concise and flexible
means for matching strings of text, such as
particular characters, words, or patterns of
characters. A common abbreviation for this is
"Regex".

ROF file The compiled Regex rules as object code,
produced by the RXP compiler, and programmed
into the RXP engine.

Ruleset A list of regular expressions and strings that can
be compiled into object code by the RXP Compiler
and executed on the RXP.

RXP High-speed, hardware-accelerated regular
expression engine

RXPC The external compiler application that translates
regular expressions into compiled object code
(ROF file)

The acronyms listed in the following table are used in this document.

Table 2. Acronyms

Acronym Definition
HS Intel® Hyperscan Software Library

PCRE Perl Compatible Regular Expressions

RE Regular Expression

ROF RXP Object Format (currently at version 2)

RXP Regular eXpression Processor

RXPC Regular eXpression Processor Compiler

1.4. Icons
The following icons are used within this document:

Introduction

NVIDIA DOCA RXPBench Performance Comparison Tool MLNX-15-060475 _v1.1 | 3

‣

– the configuration option is related to a physical DPDK port

‣

– the configuration option is related to a PCAP format file

‣

– the configuration option is related to a standard text file

NVIDIA DOCA RXPBench Performance Comparison Tool MLNX-15-060475 _v1.1 | 4

Chapter 2. RXPBench Overview and
Installation

Whilst the primary focus of this tool is to provide accurate real-world performance
comparisons between the Intel® Hyperscan software library (HS) and the BlueField-2 RXP
hardware acceleration engine has additional functionality. This functionality includes:

‣ Execution on both Intel host and the BlueField-2 DPU Arm cores

‣ Multicore support

‣ Ingress of traffic from live DPDK network ports, or PCAP files

‣ Can act as a "bump in the wire"

‣ Ability to accept RXP, Hyperscan, and generic rules files

‣ Asynchronous operations, similar to end-user applications

‣ Comprehensive configuration through a configuration file or command line options

‣ A high-performance reference application for DPDK RegEx operations

RXPBench utilizes the DPDK framework to provide both packet operations and the hardware
accelerated Regular Expression offloading (dpdk_regex). Hyperscan is provided through the
HS.

The following is an overview of the RXPBench architecture.

RXPBench Overview and Installation

NVIDIA DOCA RXPBench Performance Comparison Tool MLNX-15-060475 _v1.1 | 5

This diagram shows the relationship between RXPBench and the underlying BlueField-2
hardware when the application is being run on the x86 host (left side) or on the BlueField-2
Arm cores (right).

At the core of the application is a packet processing engine designed to acquire packets
from a network or file source. These packets are then processed through DPDK threads and
offloaded to the RXP hardware accelerator for pattern matching (or via the Hyperscan library).

2.1. Host Installation
RXPBench is included as part of the DOCA installation. Separate installation packages are
provided for Ubuntu 18.04 and Ubuntu 20.04, whilst CentOS 7.6, 8.0 and 8.2 are supported
through a single package:

Linux Distribution Required RXPBench Package
Ubuntu 18.04 rxpbench_21.03_20210325_0_ubuntu_18_amd64.deb

Ubuntu 20.04 rxpbench_21.03_20210401_0_ubuntu_20_amd64.deb

CentOS 7.6, 8.0 and 8.2 rxpbench-21.03-20210326.x86_64.rpm

2.1.1. Prerequisites
Prior to execution of the RXPBench, an installation of Hyperscan must be present on the host.
Hyperscan can be obtained from your Linux distributions package manager (APT, dpkg, yum,
etc.) or alternatively compiled from the source. Depending on your installation the following
version of Hyperscan is required:

Linux
Distribution

Hyperscan
Version Installation Command

Ubuntu 18.04 4 apt install libhyperscan4

Ubuntu 20.04 5 apt install libhyperscan5

RXPBench Overview and Installation

NVIDIA DOCA RXPBench Performance Comparison Tool MLNX-15-060475 _v1.1 | 6

Linux
Distribution

Hyperscan
Version Installation Command

CentOS 7.x – Hyperscan is provided through 3rd party vendors. The following
command will install Hyperscan 5.3.0 on CentOS 7:
yum install epel-release sudo yum install
 http://repo.openfusion.net/centos7-x86_64/
hyperscan-5.3.0-1.of.el7.x86_64.rpm

CentOS 8.x – Hyperscan is provided through 3rd party vendors. The following
command will install Hyperscan 5.3.0 on CentOS 8:
yum install epel-release
sudo yum install https://download-
ib01.fedoraproject.org/pub/epel/8/Everything/
x86_64/Packages/h/hyperscan-5.3.0-5.el8.x86_64.rpm

2.2. DPU Installation
The RXPBench utility is provided as part of the DOCA framework and is therefore installed by
default with the BFB.

NVIDIA DOCA RXPBench Performance Comparison Tool MLNX-15-060475 _v1.1 | 7

Chapter 3. Example Application Usage

This section details an example use case of the RXPBench application, providing in depth
explanations of the processes and statistics produced.

This example will focus on the execution of RXPBench using a simple text file containing the
works of William Shakespeare (shakespeare.txt), using rules in Hyperscan format (henry.hs)
whilst executing on the BlueField-2 RXP engine.

3.1. Configuring RXPBench
RXPBench supports the configuration of options through a "configuration" file, or through
the command line. In practice if a configure file is used, the command line options are still
available and will override any options already present in the configuration file.

By default, RXPBench will always search for a "rxpbench.conf", this allows common set-up
commands to be removed from the command line. Commonly the DPDK EAL (-D) options are
placed in this file as they rarely change after being initially set.

For a full list of options please see section General Configuration Options.

In this example we are providing all the options on the command-line; there is no
configuration file.

The command-line required to execute our example (simple text file containing the works of
William Shakespeare (shakespeare.txt), using rules in Hyperscan format (henry.hs) whilst
executing on the BlueField-2 RXP engine) is as follows:
./rxpbench -D "-l 0,1,2,3 -n 1 -a 5e:00.0,class=regex –file-prefix=rxpbench -a
 5e:00.01" --input-mode text_file -f ../Shakespeare.txt -d rxp -R ../henry.hs -l
 2048 -n 10000 -c 1

The "-D" option provides the DPDK EAL options, contained within a set of quotation marks (").
These options are passed directly to DPDK during the initialization of the application and are in
general specific to your host. "

The first RXPBench option is the "--input-mode" which states that RXPBench will pull data
from a "text_file", the "-f" option then specifies the location and name of the text file to be
searched.

The "-d" option states the mode in which RXPBench will operate, available options are "rxp" or
"hs" and in this instance we are requesting that the BlueField-2 hardware accelerator is used.

The "-R" option provides the tool with a set of uncompiled rules, in this case they are
presented in Hyperscan format. RXPBench supports the use of rules formats that are different

Example Application Usage

NVIDIA DOCA RXPBench Performance Comparison Tool MLNX-15-060475 _v1.1 | 8

from the selected device/algorithm. For example, the RXP can accept Hyperscan rules and the
Hyperscan library can received RXP formatted rules. The conversion process within RXPBench
is automatic.

The "-l" option supplies the size of the data block sent to the device/algorithm. In this instance
a buffer of 2KB is received and pattern matched from the text file.

The number of iterations is controlled by the "-n" option; due to the high performance of the
BlueField-2 RXP engine the input file must be iterated 10,000 times to provide enough input
data to ensure are run-time of a few seconds.

The final option is the core count (-c), this defines how many CPU cores the tool can use. In
this instance we are using a single core.

3.2. Regular Expressions
RXPBench accept regular expressions in two different formats:

‣ Uncompiled – The regular expressions are presented in a text file which follows with the
RXP rules file format, or the Hyperscan file format.

‣ Compiled – In the case for the RXP, rules are externally compiled using the RXP Compiler
(rxpc) and presented to RXPBench as a ROF file.

If uncompiled rule files are used, RXPBench can cross compile the rules regardless of the file
format or device selected, i.e. A Hyperscan format rules file will be converted for use by the
RXP engine, whilst an RXP format rules file will be converted for use by the Hyperscan engine.

In this example we have requested the Hyperscan rules be used on the RXP engine; in this
instance you will see the rxpc compiler being invoked by RXPBench to provide the on-demand
compilation of the rules:

Example Application Usage

NVIDIA DOCA RXPBench Performance Comparison Tool MLNX-15-060475 _v1.1 | 9

After this process is complete, the tool will automatically program the compiled rules into the
hardware and begin the process of Regex pattern matching.

3.3. Runtime Statistics
During the execution of RXPBench a series of run-time statistics are presented by the utility.
This provides detailed information on the current process:

For each core in use by the tool, the following statistic are presented:

‣ Received Bytes – These are bytes received from the input source

‣ Regex Bytes – These are the bytes transmitted to the Regex engine; this value can be less
than the received byte count if certain confirmation options are used (such as payload
thresholds or if “app layer” payloads are only being scanned)

‣ Recv Bufs – The total buffers received from the input source; in this case due to the “-l
2048” option each buffer contains 2048 bytes.

‣ Regex Bugfs – The number of buffers transmitted to the Regex device.

‣ Matches – The total number of Regex matches seen in the input data.

The total number of Regex matches seen in the input data.

In addition to each core statistic, a running total output is provided, including aggregated
values for the above fields and a duration field it also provides:

Example Application Usage

NVIDIA DOCA RXPBench Performance Comparison Tool MLNX-15-060475 _v1.1 | 10

‣ Regex Perf (total) – The performance total in Gigabits per second (Gb/s) for the entire
duration of the run.

‣ Regex Perf (split) – The performance total in Gigabits per second (Gb/s) for the past update
period.

3.4. End-of-Run Statistics
When the execution is completed, or aborted using Ctrl + C, several statistics blocks are
output to the console. This allows users to verify and understand the execution of the
performance test.

3.4.1. Configuration Statistics Block
This section of statistics provides an overview of the RXPBench configuration, most of this
information is simply the mirroring of configuration files.

Example Application Usage

NVIDIA DOCA RXPBench Performance Comparison Tool MLNX-15-060475 _v1.1 | 11

The “Preloaded Data Info” section details any preloading of data, when using PCAP or text
files, that has occurred during the initialization of the application:

‣ Data Length – When the input is file based (PCAP or Text) this is the total data that is
preloaded/cached to reduce I/O operations

Example Application Usage

NVIDIA DOCA RXPBench Performance Comparison Tool MLNX-15-060475 _v1.1 | 12

‣ App Layer Mode – Whether the application is effectively scanning the application layer
(TCP/UDP frames) and ignore the headers (Ethernet, MAC, etc.) prior to the application
layer.

‣ Valid Packets – If app layer mode is enabled, these are packets that contain a valid payload

‣ Invalid Length – This value is incremented if a PCAP packet is found to be unexpectantly
truncated

‣ Unsupported Prot – If app layer mode is enabled, the packet did not contain one of the
required protocols (VLAN/IPv4/IPv6/TCP or UDP)

3.4.2. Run Overview Block
This section provides an overview of the RXPBench execution; it provides the core statistics
which allow you to gauge the performance of the algorithm using the supplied rules and input
data.

Example Application Usage

NVIDIA DOCA RXPBench Performance Comparison Tool MLNX-15-060475 _v1.1 | 13

Whilst most of these fields are self-explanatory some fields require further definition:

‣ Packet Processing Rate (Mpps) – This is the rate which, in million packets per second,
RXPBench has been able to acquire packets from the input source (Physical port or
precached PCAP/text file). For the physical ports this rate may be different that the RegEx
PPR value as not all packets (depending on configuration) may be sent to the Regex device.

‣ Packet Processing Perf (Gb/s) – The actual data-rate of the input source in Gigabits per
second

‣ Total Regex Buffers – This is the number of complete buffers that were sent to the RegEx
device for processing

‣ Total Regex Bytes – The total bytes contained within all buffers transmitted to the RegEx
device for processing

‣ Total Regex Batches – RegEx buffers are gathered together into batches (based on the "-g"
flag) and submitted to the RegEx device in a single operation

3.4.3. DPDK RegEx Stats Block
If the selected RegEx device is "rxp" or "regex_dpdk" the following block of statistics is
provided. It presents more internal statistics from the DPDK RegEx device (BlueField-2 RXP):

The following are the definitions of each of these counters:

‣ Invalid Responses – These are responses from operations that have not completed
successfully

‣ Timeout – When processing a block of input data a hardware triggered timeout occurred
and the search was aborted

‣ Max Matches – The maximum number of configured matches was exceeded, and the job
was aborted

‣ Max Prefixes – The maximum prefixes per scan was exceeded, and the job was aborted

‣ Resource Limit – A generic/internal resourcing limit was reached; the job was aborted

Example Application Usage

NVIDIA DOCA RXPBench Performance Comparison Tool MLNX-15-060475 _v1.1 | 14

‣ Latency Figures – These provides max/min and average latency of jobs from transmitted to
the DPDK RegEx device

3.4.4. Hyperscan Stats Block
If the selected Regex device is “hs” (or “Hyperscan”) then an additional block of statistics is
provided detailing the latency of requests to and response from the Hyperscan Library:

NVIDIA DOCA RXPBench Performance Comparison Tool MLNX-15-060475 _v1.1 | 15

Chapter 4. General Configuration
Options

Configuration options to control the operation of RXPBench can be provided either through
a pre-defined configuration file or through the command line. If both a configuration file is
supplied and a set of command line options then the command line options will supersede,
effectively overriding, the options present in the configuration file.

4.1. Configuration File (-C, --config-file)
The configuration file option allows you to supply a text file that contains one or more options
that would normally be present on the command line.
-C configuration.file
--config-file configuration.file

The file should contain each configuration option stripped of the leading dashes on a new line.
A colon (:) should be placed between the option and the value. You may use either the short (-)
or long (--) option name. For example:
input-mode : dpdk_port
m : inputfile.pcap
run-time-secs : 10

If the “-C” or “--config-file” option is used without any supplied parameter, RXPBench will
attempt to open the default file “rxpbench.conf”.

Note: Providing any additional command line options after the -C or --config-file will
override any present within the configuration file.

4.2. DPDK EAL (-D)
RXPBench utilizes the DPDK framework to provide core memory management, packet ingress
and Regular expression offloading. As common with DPDK applications there are several EAL
options that can be used to ensure DPDK is optimally configured for the host environment.

EAL options should be enclosed in quotations (“..”) and are passed directly to DPDK without
any processing by RXPBench.

General Configuration Options

NVIDIA DOCA RXPBench Performance Comparison Tool MLNX-15-060475 _v1.1 | 16

Please ensure if you’re are created a custom set of EAL commands that the “class=regex”
parameter is included to ensure the Regex devices is available for use. You should use the
“class=eth:regex” if you wish to use packet acquisition from physical ports and Regex.

Note: The CPU cores selected for use through the EAL options will be the same cores used by
the whole RXPBench application.

Note: Care should be taken when selecting EAL options. Misconfiguration may affect the
utilities ability to obtain maximum performance on the target hardware. A full list of EAL
options is provided by DPDK.

4.3. Force Compilation (-F)
RXPBench can accept both uncompiled and compiled rules. As part of the initialization
process any uncompiled regular expressions rules must be compiled into object code that can
be executed on the BF2 RXP hardware accelerator, or Intel™ Hyperscan software library.

Whilst the BlueField-2 RXP supports a wide range of Regular Expression constructs, both
itself and Hyperscan cannot provide for all constructs due to complexity and performance
impacts.

When a supplied set of Regular expressions is compiled either algorithm may abort the
compilation due to the inclusion of (one or more) unsupported rule constructs. This option
prevents the compilers from aborting, and forces RXPBench to continue with the rules that did
successful compile.

4.4. Verbose (-V)
This option provides additional verbose output on any matching patterns found by the Regex
algorithm. The supplied integer value dictates the amount of information provided:
-V 1
-V 2
-V 3

All verbose levels will write out to a CSV files named
"rxpbench_matches_main_core_XX.csv", where XX is the main logical core ID returned
by DPDK, and "rxpbench_matches_core_XX.csv" for additional cores in a multicore
environment.

Each entry in the CSV file provides match information including queue ID, rule ID, start offset
and length. If the verbose level is set to “3” then the match string is also returned.

Note: -V 2 and -V 3 will cause the writing of large amounts of data if a substantial number
of matches are reported and it may result in characters that break the CSV format (such as
comma’s, new lines, etc.) being placed in the output file. In extreme cases this may result in a
performance reduction.

https://doc.dpdk.org/guides/linux_gsg/linux_eal_parameters.html
https://doc.dpdk.org/guides/linux_gsg/linux_eal_parameters.html

General Configuration Options

NVIDIA DOCA RXPBench Performance Comparison Tool MLNX-15-060475 _v1.1 | 17

4.5. Cores (-c)
The "Cores" option allows for the configuration of the total number of cores available to
RXPBench.
-c 4

The use of the CPU cores is dependent on the application’s Regular Expression algorithm and
whether packets are being received from an ingress port or PCAP capture file.

If the BlueField-2 RXP hardware accelerator is used each core will be given a unique DPDK
Regex queue to operate on; if the accelerator is Hyperscan then each core will be used to
execute the Hyperscan software library.

In addition, if packets are being received from a physical port, the value will be used to allocate
X number of DPDK Tx and Rx queues on the port.

Note: The value supplied here must be <= the number of cores provided in the -D (EAL) options.
If an invalid value is supplied a warning will be produced and the EAL (-D) core count will be
used.

NVIDIA DOCA RXPBench Performance Comparison Tool MLNX-15-060475 _v1.1 | 18

Chapter 5. Algorithm, Ingress, and
Rules Options

This group of options provides the ability to select the Algorithm (BF2 RXP or Hyperscan),
where input data should be received from (physical ports, text files, or PCAP files) and Regular
Expression rules information.

5.1. Algorithm/Device Select (--Regex-
dev, -d)

The algorithm or device to be used is supplied through this option. The available options are
"regex_dpdk"/"rxp" for the BlueField-2 RXP Hardware accelerator, or "hyperscan"/"hs" for the
Intel Hyperscan software library.
--Regex-dev regex_dpdk
--Regex-dev rxp
--Regex-dev hyperscan
--Regex-dev hs

5.2. Input Mode (--input-mode, -m)
RXPBench can receive data from various input sources. This option allows you to provide
which method you require:
--input-mode dpdk_port --dpdp-primary-port X --dpdk-secondary-port Y
--input-mode pcap_file
--input-mode text_file

Algorithm, Ingress, and Rules Options

NVIDIA DOCA RXPBench Performance Comparison Tool MLNX-15-060475 _v1.1 | 19

5.2.1. --input-mode dpdk_port, -m dpdk_port

The DPDK port option enables RXPBench to receive live traffic from a port, specified in the --
dpdk-primary-port. If the secondary port option exists (--dpdk-second-port) then any packets
received, after pattern matching has occurred, are transmitted onto the second port.

See section DPDK Port Operations for more information.

5.2.2. --input-mode pcap_file, -m pcap_file

This option allows you to supply an external PCAP file. This allows for reproducible results
using a known input file. The entire payload recorded in each frame within the pcap file is
made available to RXPBench.

5.2.3. --input-mode text_file, -m text_file

Algorithm, Ingress, and Rules Options

NVIDIA DOCA RXPBench Performance Comparison Tool MLNX-15-060475 _v1.1 | 20

If processing of a standard text file is required, this option allows you to select any file. The
entire text file contents are made available to the RXPBench application with no parsing or
changes made.

5.3. Compiled Rules File (--rules, -r)
The RXP hardware accelerator can accept regular expressions that have been externally
compiled using the RXPC (RXP Compiler) into a ROFF file. This option allows you to specify this
ROF2 file.

5.4. Uncompiled Rules File (--raw_rules,
-R)

RXPBench can accept an input file containing raw regular expressions. The uncompiled rules
file can be in either of these formats:

‣ RXP rules file

‣ Hyperscan rules file

The tool can accept either format of rules file, regardless of which algorithm (BlueField-2 RXP,
or Intel Hyperscan) is used. In the case where a rules file is not in the expected format for the
algorithm, a conversion process is employed to ensure they operate correctly.

Note: In this configuration, the BlueField-2 RXP compiler is configured with its default
optimizations; enhanced performance can be obtained through the adjustment of these
parameters. For more information see the NVIDIA RXP Compiler User Guide, and provide any
compiled rules through the –rules/-r option.

5.5. App-Layer Filtering (--run-app-layer,
-A)

This option will cause RXPBench to extract the upper-layer data from the received packets and
submit them for regular expression testing. Upper-layer data includes data found in TCP and
UDP streams found in IPv4 and IPv6 packets (including any such data contained within VLAN
tagged packets).

NVIDIA DOCA RXPBench Performance Comparison Tool MLNX-15-060475 _v1.1 | 21

Chapter 6. DPDK Port Operations

When input data is received from a physical network port, the options in the subsequent
sections can be used to configure the ports.

6.1. Primary Port (--dpdk-primary-port,
-1)

This is the port where packets will be received from. The supplied ID is used directly to access
the requested DPDK port.

6.2. Secondary Port (--dpdk-secondary-
port, -2)

RXPBench can be used as a "bump" in the wire, where received packets are pattern matched
before transmission through a secondary port. This option provides the port ID, as used by
DPDK, for the onwards transmission of scanned packets.

NVIDIA DOCA RXPBench Performance Comparison Tool MLNX-15-060475 _v1.1 | 22

Chapter 7. Runtime Options

This groups of options allows for the specific duration of any execution to be controlled
through various metrics.

7.1. Runtime Seconds (--run-time-secs, -
s)

Runtime Options

NVIDIA DOCA RXPBench Performance Comparison Tool MLNX-15-060475 _v1.1 | 23

This option sets the time in seconds that a test ought to be run for. If a file is used as input and
no --run-num-iterations/-n are set then the file is looped over until the time period is met.

7.2. Iterations (--run-num-iterations, -n)

If input data is being received from either a PCAP File or text file, this option is used to limit
the execute to a complete number of iterations of the input file.

For example, if an iteration count of 4 was given on a PCAP file contains 1,000 packets. The
total number of packets processed would be 4,000. If the input file was a standard text file
containing 5,000 bytes of information, an iteration count of 4 would mean 20,000 bytes would
be read by RXPBench.

Note: If iterations are used along with a runtime-seconds option, the test will finish with
whatever limit comes first.

7.3. Packet (--run-packets, -p)

For both live traffic reception and PCAP input files, this option limits the total execution to the
supplied number of packets.

Runtime Options

NVIDIA DOCA RXPBench Performance Comparison Tool MLNX-15-060475 _v1.1 | 24

7.4. Total Bytes (--run-bytes, -b)

Regardless of the input mode this is the total number of bytes received that is required to
mark the execution as complete.

For live traffic this is the total number of bytes received from the physical port. For both the
PCAP input file and text file this is the total bytes to read from the input files.

NVIDIA DOCA RXPBench Performance Comparison Tool MLNX-15-060475 _v1.1 | 25

Chapter 8. Search-specific Options

These options allow for finer control of data to be transmitted to the RegEx device for pattern
matching.

8.1. Buffer Length (--buf-length, -l)

When the RXPBench is reading from input files (whether PCAP, or text files) it has all the
information readily available (unlike live traffic which must be received). This allows the
application to read a variable amount of input data per iteration.

This option controls the amount of data that is read from the input file and passed to the
Regular Expression algorithm.

Note: With PCAP capture files this option may result in data be transmitted from part of packet,
or alternatively multiple packets, if the buffer length supplied is less than or greater than the
PCAP’s frame length.

Search-specific Options

NVIDIA DOCA RXPBench Performance Comparison Tool MLNX-15-060475 _v1.1 | 26

8.2. Buffer Threshold (--buf-thres, -t)

When live traffic is being received from a physical port, this option specifies the received
packets minimum size before it will be processed.

For example, setting this value to 256 bytes means that if a packet arrives that is less than 256
bytes in length it will not be processed by RXPBench.

Packets that are dropped by this threshold are recorded in the statistics under “UNDER
THRES” field.

8.3. Buffer Overlapping (--buf-overlap, -o)

When the input is being read from files (either PCAP, or text files) this option allows a certain
number of bytes to be overlapped from the previous frame.

Search-specific Options

NVIDIA DOCA RXPBench Performance Comparison Tool MLNX-15-060475 _v1.1 | 27

8.4. Batching (--buf-group, -g)

Most high-performance applications obtain additional performance by batching together
multiple operations into a single process.

DPDK Regex provides the capability of enqueuing multiple buffers to the BlueField-2 RXP
Hardware accelerator. This option allows you to specify how many payloads should be grouped
together before enqueuing on the hardware.

If receiving packets from a physical port this also determines the batch size to read (and write)
to the network ports.

8.5. Layer 5 to 7 Payloads Only (--run-
app-layer, --A)

Search-specific Options

NVIDIA DOCA RXPBench Performance Comparison Tool MLNX-15-060475 _v1.1 | 28

This option will process each received payload packet and identify any layer 5 to layer 7
information present in them. It will then send only this layer 5 to layer 7 data to the RegEx
algorithm.

For example, if a 500-byte packet is received that contains 60 bytes of layer 1 to layer 4 data,
then the first 60 bytes are ignored and the 440 bytes of layer 5 to layer 7 data is sent to the
RegEx algorithm.

For PCAP-based input files, any -l (or --buf-length) option will be overwritten and lengths
will be assigned on a per-packet basis. Similarly, for live traffic received from a physical port,
each packet is processed independently with data from their layer 5 through 7 being sent to
the RegEx algorithm. It may be appropriate to use the threshold option (--buf-thres, -t) to
remove small payloads.

Note: Using this option in live mode may actually increase the average job size due to the
skipping of certain “no payload” frames (such as TCP ACKs) that would otherwise be included.

NVIDIA DOCA RXPBench Performance Comparison Tool MLNX-15-060475 _v1.1 | 29

Chapter 9. BlueField RXP-specific
Operations

Several options that are specific to the RXP hardware accelerator exist. These allow you to
modify the behavior of the Regular Expression pattern matching engine.

9.1. Max Matches (--rxp-max-matches, -
M)

The RXP engine provides a method to alter the maximum number of matches reported by any
operation; by default, this value is set to its maximum value of 255.

Altering this value will result in the engine completing its processing of the data as soon as the
maximum matches is found.

Note: This may result in the engine finding and reporting fewer matches than there are.
This operation may be desirable if you simply want to find “any” match, and will improve
performance by avoiding more extensive scanning.

9.2. Max Latency (--rxp-latency, -T)
Like all algorithms, the RXP engine takes a certain amount of time to complete its scanning of
data for regular expression matches.

This option can alter the maximum time that the hardware will execute any given job for. After
this time has been exceeded the job will be aborted.

Note: This max latency is designed to detect when Denial of Service (DOS) attacks are being
executed against the hardware (e.g. specially crafted input data is being supplied that is
resulting in considerable RegEx processing overheads). This latency value can abort those jobs
freeing up processing for other operations.

NVIDIA DOCA RXPBench Performance Comparison Tool MLNX-15-060475 _v1.1 | 30

Chapter 10. Hyperscan-specific
Operations

Several options that are specific to the Hyperscan software library exist. These allow you to
modify the behavior of the Regular Expression pattern matching engine.

Note: Hyperscan does not support both flags being enabled at the same time.

10.1. HS Single Match (--hs-singlematch, -
H)

The Hyperscan algorithm provides an option called "HS_FLAG_SINGLEMATCH", please see
the Hyperscan documentation for more information.

10.2. HS Left Most Match (--hs- leftmost, -
L)

The Hyperscan algorithm provides an option called "HS_FLAG_SOM_LEFTMOST", please see
the Hyperscan documentation for more information.

NVIDIA DOCA RXPBench Performance Comparison Tool MLNX-15-060475 _v1.1 | 31

Chapter 11. Running RXPBench on
BlueField

RXPBench utilizes the DPDK framework to provide packet operations and hardware-
accelerated regular expression (RegEx) offloading (dpdk_regex).

RXPBench can run in the following input modes: Port, PCAP, or text file.

‣ In port mode, live traffic is received from a DPDK port to receive live traffic from a port
specified in the --dpdk-primary-port configuration option. If the secondary port option
exists (--dpdk-second-port), then any packet received, after pattern matching has
occurred, is transmitted onto the second port.

‣ In PCAP mode, traffic is supplied via an external PCAP file. This allows for reproducible
results using a known input file. The entire payload recorded in each frame within the
PCAP file is made available to RXPBench.

‣ Text file mode allows the user to select any file when processing of a standard text file is
required. The entire text file contents are made available to the RXPBench application with
no parsing or changes made.

To run RXPBench on BlueField, please follow this procedure:

 1. Please refer to the DOCA Installation Guide for details on how to install BlueField related
software.

 2. The RXPBench tool is supplied in both binary and source package formats as described
earlier in this document.

 3. Before executing RXPBench, an installation of Hyperscan must be present on the host.
Hyperscan can be obtained from the Linux distribution package manager (APT, dpkg, yum,
etc.) or alternatively compiled from the source. Depending on the Linux distribution on the
host, the following Hyperscan versions are required:

Host Linux Distribution Hyperscan Version Installation Command
Ubuntu 18.04 4 apt install libhyperscan4

Ubuntu 20.04 5 apt install libhyperscan5

CentOS 7.x – Hyperscan is provided
through 3rdparty vendors. The
following command will install
Hyperscan 5.3.0 on CentOS 7:
yum install epel-release
 sudo yum install http://
repo.openfusion.net/

http://docs.nvidia.com/doca/sdk/pdf/installation-guide.pdf

Running RXPBench on BlueField

NVIDIA DOCA RXPBench Performance Comparison Tool MLNX-15-060475 _v1.1 | 32

Host Linux Distribution Hyperscan Version Installation Command
centos7-x86_64/
hyperscan-5.3.0-1.of.el7.x86_64.rpm

CentOS 8.x – Hyperscan is provided through
3rd party vendors. The following
command installs Hyperscan
5.3.0 on CentOS 8:
yum install epel-release
sudo yum install
 https://download-
ib01.fedoraproject.org/
pub/epel/8/Everything/
x86_64/Packages/h/
hyperscan-5.3.0-5.el8.x86_64.rpm

 4. Build the RXPBench tool from the source code. RXPBench source code packages are
found in the following locations:

‣ Ubuntu 18.04 – /usr/share/doca-repo-ubuntu1804-1.1/repo/pool/

‣ Ubuntu 20.04 – /usr/share/doca-repo-ubuntu2004-1.1/repo/pool/

‣ CentOS 7.5 – /usr/share/doca-repo-rhel75-1.1/source/Packages/

‣ CentOS 7.6 – /usr/share/doca-repo-rhel76-1.1/source/Packages/

‣ CentOS 8.0 – /usr/share/doca-repo-rhel80-1.1/source/Packages/

‣ CentOS 8.2 – /usr/share/doca-repo-rhel82-1.1/source/Packages/

The source code is unpacked using the following commands for example.

‣ For Ubuntu:
dpkg-source -x rxpbench_21.06.0.dsc

‣ For CentOS:
rpmbuild --recompile rxpbench-21.06-1.el7.src.rpm

 5. To re-build the RXPBench tool. Run:
cd <source extract directory>/rxpbench-21.06.0
make

The RXPBench executable will be located in the build subdirectory.

The build process depends on the PKG_CONFIG_PATH environment variable to locate the
DPDK libraries. If the variable was accidently corrupted, and the build fails, please run the
following command.

‣ For Ubuntu:
export PKG_CONFIG_PATH=$PKG_CONFIG_PATH:/opt/mellanox/dpdk/lib64/pkgconfig

‣ For CentOS:
export PKG_CONFIG_PATH=/opt/mellanox/dpdk/lib64/pkgconfig:/usr/local/lib64/
pkgconfig:/usr/lib64/pkgconfig/

 6. RXPBench requires the following configurations to enable RegEx.

 a). On the host side, stop the driver. Run:
host$ sudo /etc/init.d/openibd stop

 b). Log onto the BlueField-2 and run the following commands:
dpu$ sudo /etc/init.d/openibd start
dpu$ echo 1 > /sys/class/net/p0/smart_nic/pf/regex_en

Running RXPBench on BlueField

NVIDIA DOCA RXPBench Performance Comparison Tool MLNX-15-060475 _v1.1 | 33

dpu$ current_huge='cat /sys/kernel/mm/hugepages/hugepages-2048kB/nr_hugepages'
dpu$ echo $((200 + current_huge)) > /sys/kernel/mm/hugepages/hugepages-2048kB/
nr_hugepages
dpu$ systemctl start mlx-regex

 c). Verify that the service is running. Run:
dpu$ systemctl status mlx-regex

 d). On the host, start the driver and add hugepages. Run:
host$ sudo /etc/init.d/openibd start
host$ echo 1024 > /sys/kernel/mm/hugepages/hugepages-2048kB/nr_hugepages

 7. To run the application:
cd build
./rxpbench [dpdk_flags] -- [additional application flags]

For example:
./rxpbench -D "-l 0,1,2,3 -n 1 -a 5e:00.0,class=regex –file-prefix=rxpbench -a
 5e:00.01" --input-mode text_file -f ../Shakespeare.txt -d rxp -R ../rules.hs -l
 2048 -n 10000 -c 1

‣ This command runs in the text file input mode (--input-mode).

‣ The input file is Shakeseare.txt (-f).

‣ This command uses the RXP device for pattern matching (-d).

‣ The RXP device is programmed with the rules specified in rules.hs (-R).

‣ This command sends 2048 bytes of data to be searched in each job (-l).

‣ This command reads and processes the input text file 10,000 times (-n).

‣ This command uses 1 CPU core during the run (-c).

Information on the complete set of configuration settings and options may be found in
other sections of this document.

As RXPBench executes, statistics will be updated on screen periodically. On exit, summary
information will be displayed on screen.

Notice

This document is provided for information purposes only and shall not be regarded as a warranty of a certain functionality, condition, or quality of a product. NVIDIA
Corporation nor any of its direct or indirect subsidiaries and affiliates (collectively: “NVIDIA”) make no representations or warranties, expressed or implied, as to the
accuracy or completeness of the information contained in this document and assume no responsibility for any errors contained herein. NVIDIA shall have no liability
for the consequences or use of such information or for any infringement of patents or other rights of third parties that may result from its use. This document is not
a commitment to develop, release, or deliver any Material (defined below), code, or functionality.

NVIDIA reserves the right to make corrections, modifications, enhancements, improvements, and any other changes to this document, at any time without notice.

Customer should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the time of order acknowledgement, unless otherwise agreed
in an individual sales agreement signed by authorized representatives of NVIDIA and customer (“Terms of Sale”). NVIDIA hereby expressly objects to applying any
customer general terms and conditions with regards to the purchase of the NVIDIA product referenced in this document. No contractual obligations are formed
either directly or indirectly by this document.

NVIDIA products are not designed, authorized, or warranted to be suitable for use in medical, military, aircraft, space, or life support equipment, nor in applications
where failure or malfunction of the NVIDIA product can reasonably be expected to result in personal injury, death, or property or environmental damage. NVIDIA
accepts no liability for inclusion and/or use of NVIDIA products in such equipment or applications and therefore such inclusion and/or use is at customer’s own risk.

NVIDIA makes no representation or warranty that products based on this document will be suitable for any specified use. Testing of all parameters of each product
is not necessarily performed by NVIDIA. It is customer’s sole responsibility to evaluate and determine the applicability of any information contained in this document,
ensure the product is suitable and fit for the application planned by customer, and perform the necessary testing for the application in order to avoid a default of
the application or the product. Weaknesses in customer’s product designs may affect the quality and reliability of the NVIDIA product and may result in additional
or different conditions and/or requirements beyond those contained in this document. NVIDIA accepts no liability related to any default, damage, costs, or problem
which may be based on or attributable to: (i) the use of the NVIDIA product in any manner that is contrary to this document or (ii) customer product designs.

No license, either expressed or implied, is granted under any NVIDIA patent right, copyright, or other NVIDIA intellectual property right under this document.
Information published by NVIDIA regarding third-party products or services does not constitute a license from NVIDIA to use such products or services or a warranty
or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property rights of the third party,
or a license from NVIDIA under the patents or other intellectual property rights of NVIDIA.

Reproduction of information in this document is permissible only if approved in advance by NVIDIA in writing, reproduced without alteration and in full compliance
with all applicable export laws and regulations, and accompanied by all associated conditions, limitations, and notices.

THIS DOCUMENT AND ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS
(TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR
OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND
FITNESS FOR A PARTICULAR PURPOSE. TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL NVIDIA BE LIABLE FOR ANY DAMAGES, INCLUDING
WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF
THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF NVIDIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
Notwithstanding any damages that customer might incur for any reason whatsoever, NVIDIA’s aggregate and cumulative liability towards customer for the products
described herein shall be limited in accordance with the Terms of Sale for the product.

Trademarks

NVIDIA, the NVIDIA logo, and Mellanox are trademarks and/or registered trademarks of Mellanox Technologies Ltd. and/or NVIDIA Corporation in the U.S. and in
other countries. Other company and product names may be trademarks of the respective companies with which they are associated.

Copyright
© 2021 NVIDIA Corporation & affiliates. All rights reserved.

NVIDIA Corporation | 2788 San Tomas Expressway, Santa Clara, CA 95051
http://www.nvidia.com

http://www.nvidia.com

	Table of Contents
	List of Tables
	Introduction
	1.1. RXPBench Changes and New Features in DOCA v1.1
	1.2. Document Scope
	1.3. Document Glossary
	1.4. Icons

	RXPBench Overview and Installation
	2.1. Host Installation
	2.1.1. Prerequisites

	2.2. DPU Installation

	Example Application Usage
	3.1. Configuring RXPBench
	3.2. Regular Expressions
	3.3. Runtime Statistics
	3.4. End-of-Run Statistics
	3.4.1. Configuration Statistics Block
	3.4.2. Run Overview Block
	3.4.3. DPDK RegEx Stats Block
	3.4.4. Hyperscan Stats Block

	General Configuration Options
	4.1. Configuration File (-C, --config-file)
	4.2. DPDK EAL (-D)
	4.3. Force Compilation (-F)
	4.4. Verbose (-V)
	4.5. Cores (-c)

	Algorithm, Ingress, and Rules Options
	5.1. Algorithm/Device Select (--Regex-dev, -d)
	5.2. Input Mode (--input-mode, -m)
	5.2.1. --input-mode dpdk_port, -m dpdk_port
	5.2.2. --input-mode pcap_file, -m pcap_file
	5.2.3. --input-mode text_file, -m text_file

	5.3. Compiled Rules File (--rules, -r)
	5.4. Uncompiled Rules File (--raw_rules, -R)
	5.5. App-Layer Filtering (--run-app-layer, -A)

	DPDK Port Operations
	6.1. Primary Port (--dpdk-primary-port, -1)
	6.2. Secondary Port (--dpdk-secondary-port, -2)

	Runtime Options
	7.1. Runtime Seconds (--run-time-secs, -s)
	7.2. Iterations (--run-num-iterations, -n)
	7.3. Packet (--run-packets, -p)
	7.4. Total Bytes (--run-bytes, -b)

	Search-specific Options
	8.1. Buffer Length (--buf-length, -l)
	8.2. Buffer Threshold (--buf-thres, -t)
	8.3. Buffer Overlapping (--buf-overlap, -o)
	8.4. Batching (--buf-group, -g)
	8.5. Layer 5 to 7 Payloads Only (--run-app-layer, --A)

	BlueField RXP-specific Operations
	9.1. Max Matches (--rxp-max-matches, -M)
	9.2. Max Latency (--rxp-latency, -T)

	Hyperscan-specific Operations
	10.1. HS Single Match (--hs-singlematch, -H)
	10.2. HS Left Most Match (--hs- leftmost, -L)

	Running RXPBench on BlueField

