
MLNX-15-060497 _v1.2 | January 2022

NVIDIA DOCA gRPC Infrastructure

User Guide

NVIDIA DOCA gRPC Infrastructure MLNX-15-060497 _v1.2 | ii

Table of Contents

Chapter 1. Introduction.. 1

Chapter 2. Prerequisites.. 3

Chapter 3. gRPC Overview... 4

Chapter 4. OVS and Connectivity..5

Chapter 5. gRPC-Enabled DOCA Applications...8

Chapter 6. Compilation Instructions..9
6.1. Installing gRPC Development Setup..9

Chapter 7. Running gRPC-Enabled Application.. 10
7.1. Running Application Server on BlueField..10

7.2. Running Application Client on Host...10

7.3. Installing gRPC on RHEL CentOS 7.6 and Older...11

Chapter 8. DOCA gRPC Service... 12
8.1. Enabling and Configuring DOCA gRPC Service...13

8.2. Running DOCA gRPC Client... 13

8.3. Running gRPC-Enabled DOCA Libs...14

8.4. Running DOCA Application gRPC Client..15

NVIDIA DOCA gRPC Infrastructure MLNX-15-060497 _v1.2 | 1

Chapter 1. Introduction

The recommended setup for deploying DOCA applications and services is deployment on
the DPU itself. However, in some cases it is useful to be able to manage and configure the
applications running on top of it directly from the host (x86).

For this purpose, DOCA now includes built-in gRPC support, thereby exposing to the host the
application's logical interface in the form of a gRPC-equivalent API.

Introduction

NVIDIA DOCA gRPC Infrastructure MLNX-15-060497 _v1.2 | 2

This guide elaborates on the different components that enable this support, including
instructions for developers who wish to modify the gRPC support of the example applications.

NVIDIA DOCA gRPC Infrastructure MLNX-15-060497 _v1.2 | 3

Chapter 2. Prerequisites

‣ Refer to the DOCA Installation Guide for details on how to install BlueField related
software

‣ BlueField OS version required is 3.8.0 and higher (Ubuntu 20.04)

http://docs.nvidia.com/doca/sdk/pdf/installation-guide.pdf

NVIDIA DOCA gRPC Infrastructure MLNX-15-060497 _v1.2 | 4

Chapter 3. gRPC Overview

gRPC is Google's open-source remote procedure call (RPC) library and is the most widely used
RPC solution.

gRPC consists of two layers:

‣ Protobuf - Google library for semantically defining message formats

‣ gRPC "services" - definitions of the exposed RPC functionality

gRPC's support for different language bindings, combined with the unified protocol
implementation, allows the client and server to run on different machines using different
programming languages.

https://grpc.io/docs/what-is-grpc/introduction/

NVIDIA DOCA gRPC Infrastructure MLNX-15-060497 _v1.2 | 5

Chapter 4. OVS and Connectivity

It is important to differentiate between and separate the application's data path and the gRPC
management interface. The following figure contains an overview of a sample setup for a
bump-on-the wire application:

OVS and Connectivity

NVIDIA DOCA gRPC Infrastructure MLNX-15-060497 _v1.2 | 6

As can be seen above, the application is a bump-on-the-wire, and the gRPC-related traffic
flows through a separate OVS bridge connected to the host using a virtual function (VF). More

OVS and Connectivity

NVIDIA DOCA gRPC Infrastructure MLNX-15-060497 _v1.2 | 7

information about VFs and how to configure them can be found in the NVIDIA DOCA Virtual
Functions User Guide.

The architecture above allows us to associate a network address to SF1, effectively making the
application's gRPC server part of an IP network with the host. This allows for an easy client-
server setup, masking away the hardware details from the logical gRPC interface.

http://docs.nvidia.com/doca/sdk/pdf/virtual-functions.pdf
http://docs.nvidia.com/doca/sdk/pdf/virtual-functions.pdf

NVIDIA DOCA gRPC Infrastructure MLNX-15-060497 _v1.2 | 8

Chapter 5. gRPC-Enabled DOCA
Applications

The process of adding gRPC-support for an existing DOCA application focuses on a single
goal: Extracting the logical (management) interface exposed by the application and converting
it to an equivalent .proto definition.
/opt/mellanox/doca/examples/<app_name>/src/grpc/<app_name>.proto

Once extracted, we define a simple wrapper layer that translates the incoming gRPC
commands to the C API of the application and translates back the results to the equivalent
gRPC messages to be sent back to the Python client running on the host.

Together with simple argument parsing, this binding layer serves as the main file of the
application's gRPC server:
/opt/mellanox/doca/examples/<app_name>/src/grpc/server/<app_name>_gRPC_server.cc

The updated folder structure for a gRPC-enabled application is the following:
+ /opt/mellanox/doca
+-+ examples
 | ...
 +-+ <app_name> <== gRPC-Enabled Application
 | +-+ bin
 | | +-- doca_<app_name> <== “Vanilla” Application, without gRPC support
 | | +-+ grpc <== New directory for gRPC
 | | +-+ client <== gRPC Client, to be used from the host (x86)
 | | | +-- doca_<app_name>_gRPC_client.py
 | | | +-- *.py
 | | +-+ server <== gRPC Server, to be used from the DPU (arm)
 | | +-- doca_<app_name>_grpc <== gRPC-Enabled Application
 | +-+ src
 | +-- ...
 | +-- meson_options.txt <== Activate/Disable gRPC compilation support
 | +-+ grpc <== New directory for gRPC
 | +-- <app_name>.proto
 | +-- meson.build
 | +-+ client
 | | +-- doca_<app_name>_gRPC_client.py <== Application gRPC Client source
 | | +-- meson.build
 | +-+ server
 | +-- *.h/*.c
 | +-- <app_name>_gRPC_server.cc <== Application gRPC server source
 | +-- meson.build
 +-+ common
 +-+ src
 | ...
 +-+ grpc <== New directory for common gRPC definitions
 +-- common.proto

NVIDIA DOCA gRPC Infrastructure MLNX-15-060497 _v1.2 | 9

Chapter 6. Compilation Instructions

A gRPC-enabled application consists of two newly added folders within the grpc directory:

‣ client

‣ server

Rebuilding the server and the client must be performed in the same environment to ensure
they both use the same .proto file. We recommend performing this compilation on the
BlueField, where the server is later used.

The server and the client are compiled as part of the default application compilation from the
application’s src directory.

As recompiling the gRPC-enabled application requires a gRPC development setup, there is a
meson_options.txt file that controls the gRPC support and that is set to "off" by default.
option('grpc_support', type : 'boolean', value : false)

Once a gRPC setup is installed, according to the instructions in the next section, the
meson_options.txt file can be updated to enable gRPC support so as to allow for
recompilation of the gRPC-enabled application.
option('grpc_support', type : 'boolean', value : true)

The compiled gRPC-enabled application is created under the grpc/server and grpc/client
directories, inside the configured build directory (usually /tmp/build).

6.1. Installing gRPC Development Setup
Rebuilding a gRPC-enabled DOCA application on BlueField requires a gRPC development
setup. A default such setup is automatically installed as part of all DOCA development
packages that embed gRPC support. Due to the lack of packaging support for gRPC, at
least for C/C++ environments, gRPC is compiled from the source and can be found at /opt/
mellanox/grpc.

Upon compilation, Meson will make sure that the requirements exist. If some environment
variables were somehow corrupted, they can be restored using the following commands:
export PKG_CONFIG_PATH=$PKG_CONFIG_PATH:/opt/mellanox/grpc/lib/pkgconfig
export PATH=$PATH:/opt/mellanox/grpc/bin

If a different gRPC version is needed, these are Google's instructions for creating a
development setup. If a different gRPC setup is used, do not forget to update the above
environment variables to point at your installation directory.

https://grpc.io/docs/languages/cpp/quickstart/

NVIDIA DOCA gRPC Infrastructure MLNX-15-060497 _v1.2 | 10

Chapter 7. Running gRPC-Enabled
Application

7.1. Running Application Server on
BlueField

The gRPC-enabled application is equivalent to the "regular" DOCA application as it:

‣ Requires the same configuration steps (huge pages, etc.)

‣ Requires the same application command line arguments

The only difference is that the application also requires one more command line argument:
doca_<app_name>_grpc [DPDK flags] -- [DOCA flags] [Program flags] --grpc-address
 <ip-address[:port]>

‣ ip-address – IP address to be used by the gRPC server

‣ port – TCP port to be used by the server instead of the application's default gRPC port
(optional)

One could also use the json configuration file as follows:
doca_<app_name>_grpc -j/--json <path to grpc configuration json file>

For more information, refer to NVIDIA DOCA Arg Parser User Guide.

7.2. Running Application Client on Host
While the gRPC Python environment is already installed on the host as part of the DOCA
installation, it has not been added to the default Python path so as to not clutter it. The
environment variable definitions needed for using the gRPC Python environment, as needed by
the client, are:
export PYTHONPATH=${PYTHONPATH}:/opt/mellanox/grpc/python3/lib

To run the Python client of the gRPC-enabled application:
doca_<app_name>_gRPC_client.py -d/--debug <server address[:server port]>

http://docs.nvidia.com/doca/sdk/pdf/arg-parser.pdf

Running gRPC-Enabled Application

NVIDIA DOCA gRPC Infrastructure MLNX-15-060497 _v1.2 | 11

7.3. Installing gRPC on RHEL CentOS 7.6
and Older

On RHEL/CentOS distributions 7.6 and older for x64 host, there is a known issue in the python
grpcio package which causes the following error:
from grpc._cython import cygrpc as _cygrpc
ImportError: /opt/mellanox/grpc/python3/lib/grpc/_cython/cygrpc.cpython-36m-x86_64-
linux-gnu.so: undefined symbol: _ZSt24__throw_out_of_range_fmtPKcz

To fix this error, please run the following commands on the host:
rm -rf /opt/mellanox/grpc/python3/lib/grpc*
wget https://files.pythonhosted.org/
packages/67/3c/53cc28f04fb9bd3e8bad6fa603aa8b01fa399dd74601ab0991e6385dbfe4/
grpcio-1.39.0-cp36-cp36m-manylinux2010_x86_64.whl -P /tmp && unzip /tmp/
grpcio-1.39.0-cp36-cp36m-manylinux2010_x86_64.whl -d /opt/mellanox/grpc/python3/lib

NVIDIA DOCA gRPC Infrastructure MLNX-15-060497 _v1.2 | 12

Chapter 8. DOCA gRPC Service

A gRPC-enabled application must first be executed on BlueField for it to be managed from the
host. This creates a bootstrapping issue that is solved by the DOCA gRPC service, as can be
seen in the following figure:

After a one-time configuration step, the DOCA gRPC service runs on BlueField, listening
for incoming requests from the host to start/stop a given gRPC-enabled DOCA application/
service.

DOCA gRPC Service

NVIDIA DOCA gRPC Infrastructure MLNX-15-060497 _v1.2 | 13

8.1. Enabling and Configuring DOCA gRPC
Service

The doca_grpc service on the DPU starts as "disabled" by default and has a one-time
configuration step for enabling it:
One-time only, enable the DOCA gRPC service
systemctl enable doca_grpc.service
One-time only, start the service
systemctl start doca_grpc.service

The service is controlled via a configuration file stored at /etc/doca_grpc/doca_grpc.conf.

This file comes prepopulated with a list of all gRPC-enabled DOCA programs and can be
modified to support additional proprietary programs. The file also defines the configurations
for every DOCA gRPC server that the service spawns alongside the list of programs it exposes
to the host.

Once the configuration file is modified to suit the requested deployment, the service needs to
be restarted so it could pull the new configuration:
systemctl restart doca_grpc.service

8.2. Running DOCA gRPC Client
The DOCA gRPC client is located at /opt/mellanox/doca/infrastructure/doca_grpc/
orchestrator.

Note: Being a Python client, the same Python environment variable mentioned earlier for using
the application's gRPC client is needed for this client as well.

The usage instructions for the DOCA gRPC client are:
Usage: doca_grpc_client.py [OPTIONS] SERVER_ADDRESS COMMAND [ARGS]...
 DOCA gRPC Client CLI tool
Options:
 -d, --debug
 --help Show this message and exit.

Commands:
 create Create PROGRAM_NAME [PROGRAM_ARGS]...
 destroy Destroy PROGRAM_UID Terminate the execution of the program...
 list List the names of gRPC-supported program.

For example:
/opt/mellanox/doca/infrastructure/doca_grpc/orchestrator/doca_grpc_client.py
 192.168.103.2:1234 list

The supported commands are:

‣ list – prints a list of names of all DOCA gRPC-enabled programs currently supported

‣ create – spawns a gRPC-enabled program on the DPU based on its name and arguments

‣ destroy – terminates the execution of a gRPC-enabled program based on the program's
UID as returned from the "create" command

DOCA gRPC Service

NVIDIA DOCA gRPC Infrastructure MLNX-15-060497 _v1.2 | 14

The SERVER_ADDRESS argument is of the form <server address[:server port]> allowing
the client to use a TCP port other than the default one if the server uses a proprietary port.

The command-specific options are shown when passing the --help flag to the respective
command:
/opt/mellanox/doca/infrastructure/doca_grpc/orchestrator/doca_grpc_client.py
 192.168.103.2 destroy --help

Note: The create command expects the same list of arguments as described under
a particular application's page in the Reference Applications section of the DOCA SDK
Documentation. Taking the NVIDIA DOCA URL Filter Reference App as an example, the
command will be:
/opt/mellanox/doca/infrastructure/doca_grpc/orchestrator/doca_grpc_client.py
 192.168.103.2 create doca_url_filter -a 0000:03:00.0,class=regex -a
 auxiliary:mlx5_core.sf.4,sft_en=1 -a auxiliary:mlx5_core.sf.5,sft_en=1 -c3 ––
 -p

The gRPC-specific command line arguments (listed under Running gRPC-Enabled
Application) are only needed when directly invoking the gRPC-enabled application. When
invoked through the DOCA gRPC client, the arguments must match those of the "regular"
DOCA application.

Note: The orchestrator client supports the option to spawn a gRPC-enabled program using a
non-default port. This option is mandatory for programs that do not support a default gRPC
port.

For example, the following command line will spawn the same URL Filter application shown
earlier, but this time using the network port 1234:
/opt/mellanox/doca/infrastructure/doca_grpc/orchestrator/doca_grpc_client.py
 192.168.103.2 create -p 1234 doca_url_filter -a 0000:03:00.0,class=regex -a
 auxiliary:mlx5_core.sf.4,sft_en=1 -a auxiliary:mlx5_core.sf.5,sft_en=1 -c3 ––
 -p

8.3. Running gRPC-Enabled DOCA Libs
All servers for gRPC-enabled DOCA libraries accept the following arguments:
Usage: doca_<lib_name>_grpc [DPDK Flags] -- [DOCA Flags]
DOCA Flags:
 -h, --help Print a help synopsis
 -l, --log-level Set the log level for the program
CRITICAL=0, DEBUG=4>
 --grpc-address ip_address[:port] Set the IP address for the grpc server

Therefore, they should be invoked using the orchestrator client as follows:
/opt/mellanox/doca/infrastructure/doca_grpc/orchestrator/doca_grpc_client.py
 192.168.103.2 create doca_dpi_grpc -a 0000:03:00.0,class=regex -a
 auxiliary:mlx5_core.sf.4,sft_en=1 –– -l 3

https://docs.nvidia.com/doca/sdk/index.html
https://docs.nvidia.com/doca/sdk/index.html
http://docs.nvidia.com/doca/sdk/pdf/url-filter.pdf

DOCA gRPC Service

NVIDIA DOCA gRPC Infrastructure MLNX-15-060497 _v1.2 | 15

8.4. Running DOCA Application gRPC
Client

Once the application's gRPC server is spawned on BlueField, you can connect to it directly
from the host using the respective gRPC client.

If the application's gRPC server is configured to use a TCP port that is not the default port
of the application, please remember to also configure the gRPC client to use the same non-
default port.

Notice

This document is provided for information purposes only and shall not be regarded as a warranty of a certain functionality, condition, or quality of a product. NVIDIA
Corporation nor any of its direct or indirect subsidiaries and affiliates (collectively: “NVIDIA”) make no representations or warranties, expressed or implied, as to the
accuracy or completeness of the information contained in this document and assume no responsibility for any errors contained herein. NVIDIA shall have no liability
for the consequences or use of such information or for any infringement of patents or other rights of third parties that may result from its use. This document is not
a commitment to develop, release, or deliver any Material (defined below), code, or functionality.

NVIDIA reserves the right to make corrections, modifications, enhancements, improvements, and any other changes to this document, at any time without notice.

Customer should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the time of order acknowledgement, unless otherwise agreed
in an individual sales agreement signed by authorized representatives of NVIDIA and customer (“Terms of Sale”). NVIDIA hereby expressly objects to applying any
customer general terms and conditions with regards to the purchase of the NVIDIA product referenced in this document. No contractual obligations are formed
either directly or indirectly by this document.

NVIDIA products are not designed, authorized, or warranted to be suitable for use in medical, military, aircraft, space, or life support equipment, nor in applications
where failure or malfunction of the NVIDIA product can reasonably be expected to result in personal injury, death, or property or environmental damage. NVIDIA
accepts no liability for inclusion and/or use of NVIDIA products in such equipment or applications and therefore such inclusion and/or use is at customer’s own risk.

NVIDIA makes no representation or warranty that products based on this document will be suitable for any specified use. Testing of all parameters of each product
is not necessarily performed by NVIDIA. It is customer’s sole responsibility to evaluate and determine the applicability of any information contained in this document,
ensure the product is suitable and fit for the application planned by customer, and perform the necessary testing for the application in order to avoid a default of
the application or the product. Weaknesses in customer’s product designs may affect the quality and reliability of the NVIDIA product and may result in additional
or different conditions and/or requirements beyond those contained in this document. NVIDIA accepts no liability related to any default, damage, costs, or problem
which may be based on or attributable to: (i) the use of the NVIDIA product in any manner that is contrary to this document or (ii) customer product designs.

No license, either expressed or implied, is granted under any NVIDIA patent right, copyright, or other NVIDIA intellectual property right under this document.
Information published by NVIDIA regarding third-party products or services does not constitute a license from NVIDIA to use such products or services or a warranty
or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property rights of the third party,
or a license from NVIDIA under the patents or other intellectual property rights of NVIDIA.

Reproduction of information in this document is permissible only if approved in advance by NVIDIA in writing, reproduced without alteration and in full compliance
with all applicable export laws and regulations, and accompanied by all associated conditions, limitations, and notices.

THIS DOCUMENT AND ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS
(TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR
OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND
FITNESS FOR A PARTICULAR PURPOSE. TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL NVIDIA BE LIABLE FOR ANY DAMAGES, INCLUDING
WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF
THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF NVIDIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
Notwithstanding any damages that customer might incur for any reason whatsoever, NVIDIA’s aggregate and cumulative liability towards customer for the products
described herein shall be limited in accordance with the Terms of Sale for the product.

Trademarks

NVIDIA, the NVIDIA logo, and Mellanox are trademarks and/or registered trademarks of Mellanox Technologies Ltd. and/or NVIDIA Corporation in the U.S. and in
other countries. The registered trademark Linux® is used pursuant to a sublicense from the Linux Foundation, the exclusive licensee of Linus Torvalds, owner of the
mark on a world¬wide basis. Other company and product names may be trademarks of the respective companies with which they are associated.

Copyright
© 2022 NVIDIA Corporation & affiliates. All rights reserved.

NVIDIA Corporation | 2788 San Tomas Expressway, Santa Clara, CA 95051
http://www.nvidia.com

http://www.nvidia.com

	Table of Contents
	Introduction
	Prerequisites
	gRPC Overview
	OVS and Connectivity
	gRPC-Enabled DOCA Applications
	Compilation Instructions
	6.1. Installing gRPC Development Setup

	Running gRPC-Enabled Application
	7.1. Running Application Server on BlueField
	7.2. Running Application Client on Host
	7.3. Installing gRPC on RHEL CentOS 7.6 and Older

	DOCA gRPC Service
	8.1. Enabling and Configuring DOCA gRPC Service
	8.2. Running DOCA gRPC Client
	8.3. Running gRPC-Enabled DOCA Libs
	8.4. Running DOCA Application gRPC Client

