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Chapter 1. Introdution

Simple forward is a forwarding application which takes VXLAN traffic from a single RX port
and transmits it on a single TX port.

For a packet received on an RX port, simple forward will create a flow based on the packet’s
tunnel and 5-tuples. For the following packets with the same key, simple forward checks the
packet’s keys. If it finds that the packet matches the existing flow, then it does not create a
new flow. Otherwise, a new flow is created. And then the packets are forwarded on the other
port.

Simple forward should be run with dual ports. By using a traffic generator, the RX port
receives the VXLAN packets and forwarding forwards them back to the traffic generator.
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Chapter 2. System Design

The following diagram illustrates simple forward's packet flows. It receives traffic coming
from the wire and passes it to the other port.
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Chapter 3. Application Architecture

Simple forward first initializes DPDK, after which the application handles the incoming
packets.

The following diagram illustrates the initialization process.
 

 

 1. Init_DPDK – EAL init, parse argument from command line and register signal.
 2. Start port – mbuf_create, dev_configure, rx/tx/hairpin queue setup and start the port.
 3. Simple_fwd INIT – create flow tables, build default forward pipes.

The following diagram illustrates how to process the packet.
 

 

 1. Based on the packet's info, find the key values (e.g. src/dst IP, src/dst port, etc).
 2. Traverse the inner flow tables, check if the keys exist or not.

‣ If yes, update inner counter

‣ If no, a new flow table is added and new pipes are configured on the DPU

 3. Forward the packet to the other port.
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Chapter 4. Configuration Flow

 1. Parse application argument.
arg_parser_init();

 a). Initialize arg parser resources.
 b). Register DOCA general flags.

register_simple_fwd_params();

 c). Register simple fwd application flags.
arg_parser_start();

 d). Parse DPDK flags and call rte_eal_init() function.
 e). Parse APP flags.

 2. DPDK port initialization and start.
dpdk_init();

 a). Initialize DPDK ports.
 b). Create mbuf pool using rte_pktmbuf_pool_create
 c). Driver initialization – use rte_eth_dev_configure to configure the number of queues
 d). Rx/Tx queue initialization – use rte_eth_rx_queue_setup and

rte_eth_tx_queue_setup to initialize the queues
 e). Rx hairpin queue initialization – use rte_eth_rx_hairpin_queue_setup to initialize

the queues
 f). Start the port using rte_eth_dev_start

 3. Simple forward initialization.
simple_fwd_init();

 a). simple_fwd_create_ins - create flow tables using simple_fwd_ft_create
 b). simple_fwd_init_ports_and_pipes – initialize DOCA port using

simple_fwd_init_doca_port and build default pipes for each port.
 4. Main loop.

simple_fwd_process_pkts();

 a). Receive packets using rte_eth_rx_burst in a loop
 b). Process packets using simple_fwd_process_offload
 c). Transmit the packets on the other port by calling rte_eth_tx_burst. Or free the

packet mbuf if rx_only is set to true.
 5. Process packets.

simple_fwd_process_offload();
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 a). Parse the packet's rte_mbuf using simple_fwd_pkt_info.
 b). Handle the packet using simple_fwd_handle_packet. If the packet's key does

not match the existed the flow entry, create a new flow entry and PIPE using
simple_fwd_handle_new_flow. Otherwise, increase the total packet's counter.

 6. Simple forward destroy.
simple_fwd_destroy();

 7. Simple forward close port.
simple_fwd_close_port()
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Chapter 5. Running Application on
BlueField

 1. Please refer to the DOCA Installation Guide for details on how to install BlueField related
software.

 2. To build the application

 a). The simple forward binary is located under /opt/mellanox/doca/examples/
simple_fwd_vnf/bin/doca_simple_fwd_vnf. To re-build the simple forward
sample, run the following:
cd /opt/mellanox/doca/examples/simple_fwd_vnf/src
meson /tmp/build
ninja -C /tmp/build

doca_simple_fwd_vnf will be created under tmp/build.
 b). The build process depends on the PKG_CONFIG_PATH environment variable to locate

the DPDK libraries. If the variable was accidently corrupted, and the build fails, run the
following command:

‣ For Ubuntu:
export PKG_CONFIG_PATH=$PKG_CONFIG_PATH:/opt/mellanox/dpdk/lib/aarch64-
linux-gnu/pkgconfig

‣ For CentOS:
export PKG_CONFIG_PATH=$PKG_CONFIG_PATH:/opt/mellanox/dpdk/lib64/pkgconfig

 c). The simple forward example is based on DPDK libraries. Therefore, the user is
required to provide DPDK flags, and allocate huge pages. Run:
echo 1024 > /sys/kernel/mm/hugepages/hugepages-2048kB/nr_hugepages
sudo mkdir /mnt/huge
sudo mount -t hugetlbfs nodev /mnt/huge

 3. Pre-run setup.

The simple forward example is based on DPDK libraries. Therefore, the user is required to
provide DPDK flags, and allocate huge pages. Run:
echo 1024 > /sys/kernel/mm/hugepages/hugepages-2048kB/nr_hugepages

 4. To run the application:
Usage: doca_simple_forward_vnf [DPDK Flags] -- [DOCA Flags] [Program Flags]
DOCA Flags:
  -h, --help                    Print a help synopsis
  -l, --log-level               Set the log level for the app <CRITICAL=0,
 DEBUG=4>
Program Flags:
  -t, --stats-timer <time>      Set interval to dump stats information

http://docs.nvidia.com/doca/sdk/pdf/installation-guide.pdf
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  -q, --nr-queues <num>         Set queues number
  -r, --rx-only                 Set rx only
  -o, --hw-offload              Set hw offload
  -hq, --hairpinq               Set forwarding to hairpin queue
  -a, --age-thread              Start thread do aging

For example:
/opt/mellanox/doca/examples/simple_fwd_vnf/bin/doca_simple_fwd_vnf -a
 auxiliary:mlx5_core.sf.4 -a auxiliary:mlx5_core.sf.5 -- --nr-queues 4 --stats-
timer 2

Using a JSON file:
doca_simple_fwd_vnf --json [json_file]

For example:
/opt/mellanox/doca/examples/simple_fwd_vnf/bin/doca_simple_fwd_vnf --json /root/
simple_fwd_params.json

Note: SFs must be enabled according to Scalable Function Setup Guide.

Note: The flag -a auxiliary:mlx5_core.sf.4 -a auxiliary:mlx5_core.sf.5 is
mandatory for proper usage of the application. Modifying this flag will result unexpected
behavior as only 2 ports are supported. The SF number is arbitrary and configurable.

For additional information on available flags for DPDK, use -h before the -- separator:
/opt/mellanox/doca/examples/simple_fwd_vnf/bin/doca_simple_fwd_vnf -h

For additional information on the app, use -h after the -- separator:
/opt/mellanox/doca/examples/simple_fwd_vnf/bin/doca_simple_fwd_vnf -- -h

http://docs.nvidia.com/doca/sdk/pdf/scalable-functions.pdf
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Chapter 6. Arg Parser DOCA Flags

Refer to NVIDIA DOCA Arg Parser User Guide for more information.

Flag Type Short Flag
Long Flag/JSON
Key Description JSON Content

DPDK Flags a devices Add a PCIe device
into the list of
devices to probe

"devices":
[
    {"device":
 "sf", "id":
 “4”,"sft":
 true},
    {"device":
 "sf", "id":
 “5”,"sft":
 true},
]

l log-level Set the log level
for the application:

‣ CRITICAL=0

‣ ERROR=1

‣ WARNING=2

‣ INFO=3

‣ DEBUG=4

"log-level": 4General Flags

h help Print a help
synopsis

N/A

t stats-timer Set interval
to dump stats
information

"stats-timer":
 2

q nr-queues Set queues
number

"nr-queues": 4

r rx-only Set rx only "rx-only":
 false

o hw-offload Set HW offload "hw-offload":
 false

hq hairping Set forwarding to
hairpin queue

"hairpinq":
 false

Program Flags

a age-thread Start thread do
aging

"age-thread":
 false

http://docs.nvidia.com/doca/sdk/pdf/arg-parser.pdf
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Chapter 7. Running Application on
Host

Refer to section "Running DOCA Application on Host" in NVIDIA DOCA Virtual Functions User
Guide.

http://docs.nvidia.com/doca/sdk/pdf/virtual-functions.pdf
http://docs.nvidia.com/doca/sdk/pdf/virtual-functions.pdf
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Chapter 8. References

‣ /opt/mellanox/doca/examples/simple_fwd_vnf/src/simple_fwd_vnf.c
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