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Chapter 1. Introduction

DOCA Telemetry Service (DTS) runs inside of its own Kubernetes pod on BlueField collecting
data from built-in providers and from external telemetry applications. The following 3
providers are available (disabled by default):

‣ sysfs

‣ ethtool

‣ tc (traffic controll)

Additional telemetry applications, such as the DOCA Telemetry Client Reference App, should
run in their own pods on the same BlueField.

DTS stores collected data into binary files under the /opt/mellanox/doca/services/
telemetry/data directory. Data write is disabled by default due to BlueField storage
restrictions.

DTS can export the data via Prometheus Endpoint (pull) or Fluent Bit (push). The Prometheus
endpoint is bound to port 9100 and can be enabled using the dts_config.ini config file.

DTS allows exporting NetFlow packets when data is collected from the DOCA Telemetry
NetFlow API client application. NetFlow exporter is enabled from dts_config.ini by setting
NetFlow collector IP/address and port.
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Chapter 2. Service Deployment

For more information about the deployment of DOCA containers on top of the BlueField DPU,
refer to NVIDIA DOCA Container Deployment Guide.

2.1.  DOCA Service on NGC
DTS is available on NGC, NVIDIA's container catalog. Service-specific configuration steps and
deployment instructions can be found under the service's container page.

2.2.  Standalone Deployment – BlueField
OS

In addition to being available through NGC, DTS is also available in an offline standalone
form as part of the BlueField OS image at /opt/mellanox/doca/services/telemetry/
doca_telemetry_service_${version}_arm64.tar.gz.

Note: It is highly recommended to deploy the service through NGC rather than using the
standalone deployment. The standalone deployment is aimed to only be used in offline
environments in which NGC is not accessible.

If offline deployment is required, follow these instructions:
# Pre-Requisites (explained in the DOCA Container Deployment Guide)
systemctl start kubelet
systemctl start containerd
mkdir -p /opt/mellanox/doca/services/telemetry/config
mkdir -p /opt/mellanox/doca/services/telemetry/data
mkdir -p /opt/mellanox/doca/services/telemetry/ipc_sockets
# Unpacking the built-in container
cd /opt/mellanox/doca/services/telemetry && \
    gunzip -k doca_telemetry_service_1.2_arm64.tar.gz && \
    ctr --namespace k8s.io image import doca_telemetry_1.2_arm64.tar && \
    rm -rf doca_telemetry_service_1.2_arm64.tar

The .yaml file for the standalone deployment is also placed under the service's directory, and
is named doca_telemetry_standalone.yaml:
/opt/mellanox/doca/services/telemetry/doca_telemetry_standalone.yaml

http://docs.nvidia.com/doca/sdk/pdf/container-deployment.pdf
https://catalog.ngc.nvidia.com/orgs/nvidia/teams/doca/containers/doca_telemetry
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Once extracted, the deployment of the DOCA service container is similar to other DOCA
containers and requires copying the service's .yaml file to Kubelet's input directory:
cp /opt/mellanox/doca/services/telemetry/doca_telemetry_standalone.yaml /etc/
kubelet.d

Note: Before the DTS can be deployed, some preliminary configuration steps must be
completed. A detailed overview of the service's configuration steps can be found in the next
sections.

Note: When using IPC transport to collect data from a DOCA-Telemetry-API-based application
(or telemetry client), the application should run from the same pod. This means the .yaml
has to support a configuration where two containers are running in a single pod and
hostIPC=false.
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Chapter 3. Configuration

The configuration of DTS is placed under /opt/mellanox/doca/services/telemetry/
config by DTS during initialization. The user can interact with the dts_config.ini file
and fluent_bit_configs folder. dts_config.ini contains the main configuration for the
service and must be used to enable/disable providers, exporters, data writing. More details are
provided in the corresponding sections. For every update in this file, DST must be restarted.
Interaction with fluent_bit_configs folder is described in section Fluent Bit.

3.1.  Init Scripts
The InitContainers section of the .yaml file has 2 scripts for config initialization:

‣ /usr/bin/telemetry-init.sh – generates the default configuration files if, and only if,
the /opt/mellanox/doca/services/telemetry/config folder is empty.

‣ /usr/bin/enable-forward-to-morpheus.sh – configures the destination host and
port for Fluent Bit forwarding. The scripts requires that both the host and port are
present, and only in this case it would start. The script overwrites the /opt/mellanox/
doca/services/telemetry/config/fluent_bit_configs folder and configures the
forward.exp file. It inputs 3 arguments: host, port, and data_set. The data_set
argument must be set to all_data which signifies no data filtering.

Note: Not setting data_set argument filters out all data from the exporter.

3.2.  Enabling Fluent Bit Forwarding
If enabling Fluent Bit forwarding is desired, add the destination host and port to the command
line found in the initContainers section of the .yaml file:
command: ["/bin/bash/", "-c", /usr/bin/telemetry-init.sh && /usr/bin/enable-forward-
to-morpheus.sh 127.0.0.1 24224 all_data"]

Note: The host and port shown above are just an example and all_data must be set as a 3rd
argument to allow data streaming. See section Fluent Bit to learn about manual configuration.
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3.3.  Generating Configuration
The configuration folder /opt/mellanox/doca/services/telemetry/config starts empty
by default. Once the service starts, the initial scripts run as a part of the initial container and
create configuration as described in section Enabling Fluent Bit Forwarding.

3.4.  Resetting Configuration
Resetting the configuration can be done by deleting the content found in the configuration
folder and restarting the service to generate the default configuration.

3.5.  Disabling Providers
Disabling a provider can be done using the dts_config.ini configuration file. Uncomment
the disable-provider=$provider-name line to disable data collection for this provider. For
example, uncommenting the following line disables the ethtool provider:
#disable-provider=ethtool

Note: More information about telemetry providers can be found under the Providers section.

3.6.  Enabling Data Write
Uncomment the following line in dts_config.ini:
#output=/data

Note: Any changes in dts_config.ini file necessitate restarting the pod for the new settings
to apply.
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Chapter 4. Providers

DTS supports on-board data collection from sysf, ethtool, and tc providers.

4.1.  Sysfs Counters List
‣ ib_port counters:

mlx5_0:1:VL15_dropped
mlx5_0:1:excessive_buffer_overrun_errors
mlx5_0:1:link_downed
mlx5_0:1:link_error_recovery
mlx5_0:1:local_link_integrity_errors
mlx5_0:1:multicast_rcv_packets
mlx5_0:1:multicast_xmit_packets
mlx5_0:1:port_rcv_constraint_errors
mlx5_0:1:port_rcv_data
mlx5_0:1:port_rcv_errors
mlx5_0:1:port_rcv_packets
mlx5_0:1:port_rcv_remote_physical_errors
mlx5_0:1:port_rcv_switch_relay_errors
mlx5_0:1:port_xmit_constraint_errors
mlx5_0:1:port_xmit_data
mlx5_0:1:port_xmit_discards
mlx5_0:1:port_xmit_packets
mlx5_0:1:port_xmit_wait
mlx5_0:1:symbol_error
mlx5_0:1:unicast_rcv_packets
mlx5_0:1:unicast_xmit_packets

‣ ib_hw counters:
mlx5_0:1:hw_duplicate_request
mlx5_0:1:hw_implied_nak_seq_err
mlx5_0:1:hw_lifespan
mlx5_0:1:hw_local_ack_timeout_err
mlx5_0:1:hw_out_of_buffer
mlx5_0:1:hw_out_of_sequence
mlx5_0:1:hw_packet_seq_err   
mlx5_0:1:hw_req_cqe_error
mlx5_0:1:hw_req_cqe_flush_error
mlx5_0:1:hw_req_remote_access_errors   
mlx5_0:1:hw_req_remote_invalid_request   
mlx5_0:1:hw_resp_cqe_error
mlx5_0:1:hw_resp_cqe_flush_error
mlx5_0:1:hw_resp_local_length_error
mlx5_0:1:hw_resp_remote_access_errors
mlx5_0:1:hw_rnr_nak_retry_err   
mlx5_0:1:hw_rx_atomic_requests   
mlx5_0:1:hw_rx_dct_connect
mlx5_0:1:hw_rx_icrc_encapsulated
mlx5_0:1:hw_rx_read_requests   
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mlx5_0:1:hw_rx_write_requests

‣ ib_mr_cache counters:

Note: n ranges from 0 to 24.

mlx5_0:mr_cache:size_{n}:cur
mlx5_0:mr_cache:size_{n}:limit
mlx5_0:mr_cache:size_{n}:miss
mlx5_0:mr_cache:size_{n}:size

4.2.  Ethtool Counters
Ethtool counters is the generated list of counters which corresponds to Ethtool utility.
Counters are generated on a per-device basis.

4.3.  Traffic Control Info
The following TC objects are supported and reported regarding the ingress filters:

‣ Filters

‣ flower

‣ Actions

‣ mirred

‣ tunnel_key

The info is provided as one of the following events:

‣ Basic filter event

‣ flower/ipv4 filter event

‣ flower/ipv6 filter event

‣ Basic action event

‣ mirred action event

‣ tunnel_key/ipv4 action event

‣ tunnel_key/ipv6 action event

General notes:

‣ Actions always belong to a filter, so action events share the filter event's ID via the
event_id data member

‣ Basic filter event only contains textual kind (so users can see which real life objects'
support they are lacking)

‣ Basic action event only contains textual kind and some basic common statistics if available

https://linux.die.net/man/8/ethtool
https://www.man7.org/linux/man-pages/man8/tc-flower.8.html
https://man7.org/linux/man-pages/man8/tc-mirred.8.html
https://www.man7.org/linux/man-pages/man8/tc-tunnel_key.8.html
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Chapter 5. Data Outputs

DTS can send the collected data to the following outputs:

‣ Data writer (saves binary data to disk)

‣ Fluent Bit (push-model streaming)

‣ Prometheus endpoint (keeps the most recent data to be pulled).

5.1.  Data Writer
The data writer is disabled by default to save space on BlueField. Steps for activating data
write during debug can be found under section Enabling Data Write.

The schema folder contains JSON-formatted metadata files which allow reading the
binary files containing the actual data. The binary files are written according to the naming
convention shown in the following example (apt install tree):
tree /opt/mellanox/doca/services/telemetry/data/
/opt/mellanox/doca/services/telemetry/data/
├── {year}
│   └── {mmdd}
│        └── {hash}
│             ├── {source_id}
│             │   └── {source_tag}{timestamp}.bin
│             └── {another_source_id}
│                  └── {another_source_tag}{timestamp}.bin
└── schema
    └── schema_{MD5_digest}.json

New binary files appears when the service starts or when binary file age/size restriction is
reached. If no schema or no data folders are present, refer to the Troubleshooting section.

Note: source_id is usually set to the machine hostname. source_tag is a line describing the
collected counters, and it is often set as the provider's name or name of user-counters.

Reading the binary data can be done from within the DTS container using the following
command:
crictl exec -it <Container ID> /opt/mellanox/collectx/bin/clx_read -s /data/schema /
data/path/to/datafile.bin

Note: The path to the data file must be an absolute path.
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Example output:
{
    "timestamp": 1634815738799728,
    "event_number": 0,
    "iter_num": 0,
    "string_number": 0,
    "example_string": "example_str_1"
}
{
    "timestamp": 1634815738799768,
    "event_number": 1,
    "iter_num": 0,
    "string_number": 1,
    "example_string": "example_str_2"
}
…

5.2.  Prometheus
The Prometheus endpoint keeps the most recent data to be pulled by the Prometheus server
and is enabled by default.

To check that data is available, run the following command on BlueField:
curl -s http://0.0.0.0:9100/metrics

The command dumps every counter in the following format:
counter_name {list of meta fields} counter_value timestamp

Note: The default port for Prometheus can be changed in dts_config.ini.

5.3.  Fluent Bit
Fluent Bit allows streaming to multiple destinations. Destinations are configured in .exp files
that are documented in-place and can be found under:
/opt/mellanox/doca/services/telemetry/config/fluent_bit_configs

Fluent Bit allows exporting data via "Forward" protocol which connects to the Fluent Bit/
FluentD instance on customer side.

Export can be enabled manually:

 1. Uncomment the line with fluent_bit_configs= in dts_config.ini.
 2. Set enable=1 in required .exp files for the desired plugins.
 3. Additional configurations can be set according to instructions in the .exp file if needed.
 4. Restart the DTS.
 5. Set up receiving instance of Fluent Bit/FluentD if needed.
 6. See the data on the receiving side.

Export file destinations are set by configuring .exp files or creating new ones. It is
recommended to start by going over documented example files. Documented examples exist
for the following plugins:
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‣ forward

‣ file

‣ influxdb

‣ stdout

Note: All .exp files are disabled by default if not configured by initContainer entry point
through .yaml file.

Note: To forward the data to several destinations, create several forward_{num}.exp files.
Each of these files must have their own destination host and port.

5.3.1.  Export File Configuration Details
Each export destination has the following fields:

‣ name – configuration name

‣ plugin_name – Fluent Bit plugin name

‣ enable – 1 or 0 values to enable/disable this destination

‣ host – the host for Fluent Bit plugin

‣ port – port for Fluent Bit plugin

‣ msgpack_data_layout – the msgpacked data format. Default is flb_std. The other
option is custom. See section Msgpack Data Layout for details.

‣ plugin_key=val – key-value pairs of Fluent Bit plugin parameter (optional)

‣ counterset/fieldset – file paths (optional). See details in section Cset/Fset Filtering.

‣ source_tag=source_tag1,source_tag2 – comma separated list of data page source
tags for filtering. The rest tags will be filtered out during export.

Note: Use # to comment a configuration line.

5.3.2.  Msgpack Data Layout
Data layout can be configured using .exp files by setting msgpack_data_layout=layout.
There are two available layouts: Standard and Custom.

The standard flb_std data layout is an array of 2 fields:

‣ timestamp double value

‣ a plain dictionary (key-value pairs)

The standard layout is appropriate for all Fluent Bit plugins. For example:
[timestamp_val, {"timestamp"->ts_val, type=>"counters/
events", "source"=>"source_val", "key_1"=>val_1, "key_2"=>val_2,...}]
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The custom data layout is a dictionary of meta-fields and counter fields. Values are placed
into a separate plain dictionary. Custom data format can be dumped with stdout_raw output
plugin of Fluent-Bit installed, or can be forwarded with forward output plugin.

Counters example:
{"timestamp"=>timestamp_val, "type"=>"counters", "source"=>"source_val", "values"=>
 {"key_1"=>val_1, "key_2"=>val_2,...}}

Events example
{"timestamp"=>timestamp_val, "type"=>"events", "type_name"=>"type_name_val", "source"=>"
 source_val", "values"=>{"key_1"=>val_1, "key_2"=>val_2,...}}

5.3.3.  Cset/Fset Filtering
Each export file can optionally use one cset and one fset file to filter UFM telemetry counters
and events data.

‣ Cset file contains tokens per line to filter data with "type"="counters".

‣ Fset contains several blocks started with the header line [event_type_name] and tokens
under that header. An Fset file is used to filter data with "type"="events".

If several tokens must be matched simultaneously, use <tok1>+<tok2>+<tok3>. Exclusive
tokens are available as well. For example, the line <tok1>+<tok2>-<tok3>-<tok4> filters
names that match both tok1 and tok2 and do not match tok3 or tok4.

Note: For more details see documentation in the files ufm_enterprise.cset and ufm_
enterprise.fset inside the UFM Telemetry docker folder /config/fluent_bit_configs.

The following are details from /config/fluent_bit_configs/ufm_enterprise.cset:
# put tokens on separate lines
# Tokens are the actual name 'fragments' to be matched
# port$ # match names ending with token "port"
# ^port # match names starting with token "port"
# ^port$ # include name that is exact token "port
# port+xmit # match names that contain both tokens "port" and "xmit"
# port-support # match names that contain the token "port" and do not match the "-"
 token "support"
#
# Tip: To disable counter export put a single token line that fits nothing
# List of available counters:
#
# node_guid
# port_guid
# port_num
# lid
# link_down_counter
# link_error_recovery_counter
# symbol_error_counter
# port_rcv_remote_physical_errors
# port_rcv_errors
# port_xmit_discard
# port_rcv_switch_relay_errors
# excessive_buffer_errors

The following are details from /config/fluent_bit_configs/ufm_enterprise.fset:
# Put your events here
# Usage:
#
# [type_name_1]
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# tokens
# [type_name_2]
# tokens
# [type_name_3]
# tokens
# ...
# Tokens are the actual name 'fragments' to be matched
# port$ # match names ending with token "port"
# ^port # match names starting with token "port"
# ^port$ # include name that is exact token "port
# port+xmit # match names that contain both tokens "port" and "xmit"
# port-support # match names that contain the token "port" and do not match the "-"
 token "support"

# The next example will export the whole "switch_fan" events and events "CableInfo"
 filtered with token "port" :
# [switch_fan]
#
# [CableInfo]
# port

# To know which event type names are available use one of these options:
# 1. Check export and find field "type_name"=>"switch_temperature"
# OR
# 2. Open log file "/tmp/ibd/ibdiagnet2_port_counters.log" and find event types are
 printed to log:
# ...
# [info] type [CableInfo] is type of interest
# [info] type [switch_temperature] is type of interest
# [info] type [switch_fan] is type of interest
# [info] type [switch_general] is type of interest
# ...
# Corner cases:
# 1. Empty fset file will export all events.
# 2. Tokens written above/without [event_type] will be ignored.
# 3. If cannot open fset file, warning will be printed, all event types will be
 exported.

5.4.  NetFlow Exporter
NetFlow exporter must be used when data is collected as NetFlow packets from the telemetry
client applications. In this case, DOCA Telemetry NetFlow API sends NetFlow data packages
to DTS via IPC. DTS uses NetFlow exporter to send data to the NetFlow collector (3rd party
service).

To enable NetFlow exporter, set netflow-collector-ip and netflow-collector-port in
dts_config.ini. netflow-collector-ip could be set either to IP or an address.

For additional information, refer to the dts_config.ini file.



NVIDIA DOCA Telemetry Service MLNX-15-060509 _v1.2   |   13

Chapter 6. Troubleshooting

On top of the troubleshooting section found in the NVIDIA DOCA Container Deployment Guide,
here are additional troubleshooting tips for DTS:

‣ If no pod is created, make sure the folders are created as follows:
$ sudo mkdir -p /opt/mellanox/doca/services/telemetry/config
$ sudo mkdir -p /opt/mellanox/doca/services/telemetry/ipc_sockets
$ sudo mkdir –p /opt/mellanox/doca/services/telemetry/data

‣ If the pod's STATE fails to be marked as "Ready", refer to the log /var/log/syslog.

‣ Check if the service is configured to write data to the disk, as this may cause the system to
run out of disk space.

‣ If /opt/mellanox/doca/services/telemetry/data folder contains no schema or
data folder, refer to the clx.log file:
crictl exec -it <Container ID> cat /var/log/clx.log

If the error Failed to allocate data page od size 16384… appears in the log, it
signifies that the buffer size is not big enough to fit the data.
[2021-07-22 12:42:26.675] [error][data_page] Failed to allocate data page of size
 16384 which is less then header size 720 + block size 30112
[2021-07-22 12:42:26.675] [error] Data page allocation failed

Increase the buffer size by modifying the buffer size line in the file:
# vi /opt/mellanox/doca/services/telemetry/config/dts_config.ini

Refresh the .yaml file and check the data using the tree command as shown earlier.

‣ If a PIC bus error occurs, configure the following files inside the container:
crictl exec -it <Container ID> /bin/bash
# Add to /config/clx.env the following line:
"
export UCX_TLS=tcp
"

http://docs.nvidia.com/doca/sdk/pdf/container-deployment.pdf
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