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Chapter 1. Introduction

Single root IO virtualization (SR-IOV) is a technology that allows a physical PCIe device to
present itself multiple times through the PCIe bus. This technology enables multiple virtual
instances of the device with separate resources. NVIDIA adapters are able to expose virtual
instances or functions (VFs) for each port individually. These virtual functions can then be
provisioned separately.

Each VF can be seen as an additional device connected to the physical interface or function
(PF). It shares the same resources with the PF, and its number of ports equals those of the PF.

SR-IOV is commonly used in conjunction with an SR-IOV-enabled hypervisor to provide virtual
machines direct hardware access to network resources, thereby increasing its performance.

There are several benefits to running applications on the host. For example, one may want
to utilize a strong and high-resource host machine, or to start DOCA integration on the host
before offloading it to the BlueField DPU.

The configuration in this document allows the entire application to run on the host's memory,
while utilizing the HW accelerators on BlueField (e.g., using RegEx the accelerator on
BlueField via a daemon running on it).

When VFs are enabled on the host, VF representors are visible on the Arm side which
can be bridged to corresponding PF representors (e.g., the uplink representor and the
host representor). This allows the application to only scan traffic forwarded to the VFs as
configured by the user and to behave as a simple "bump-on-the-wire". DOCA installed on
the host allows access to the hardware capabilities of the BlueField DPU without comprising
features such as the stateful table (SFT) which uses HW offload and additional HW steering
elements embedded inside the eSwitch.
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Chapter 2. Prerequisites

Running applications on the host and using the RegEx accelerator on the BlueField requires
enabling the RegEx engine.

To run all the reference applications over the host, you must install the host DOCA package.
Refer to DOCA Installation Guide for more information on host installation.

VFs must be configured as trusted for the hardware jump action to work as intended. The
following steps configure "trusted" mode for VFs:

 1. Delete all existing VFs/SFs.

 a). To delete all VFs on a PF run the following on the host:
$ echo 0 > /sys/class/net/<physical_function>/device/sriov_numvfs

For example:
$ echo 0 > /sys/class/net/ens1f0/device/sriov_numvfs

 b). Refer to Scalable Function Setup Guide for instructions on deleting SFs.
 2. Stop the main driver on the host:

/etc/init.d/openibd stop

 3. Before creating the VFs, set them to "trusted" mode on the device by running the following
commands on the Arm side.

 a). Setting VFs on port 0:
$ mlxreg -d /dev/mst/mt41686_pciconf0 --reg_id 0xc007 --reg_len 0x40 --indexes
 "0x0.0:32=0x80000000" --yes --set "0x4.0:32=0x1"

 b). Setting VFs on port 1:
$ mlxreg -d /dev/mst/mt41686_pciconf0.1 --reg_id 0xc007 --reg_len 0x40 --
indexes "0x0.0:32=0x80000000" --yes --set "0x4.0:32=0x1"

Note: These commands set trusted mode for all created VFs/SFs after their execution on
Arm.

Note: Setting trusted mode should be performed once per reboot.

 4. Restart the main driver on the host by running the following command:
/etc/init.d/openibd restart

http://docs.nvidia.com/doca/sdk/pdf/installation-guide.pdf
http://docs.nvidia.com/doca/sdk/pdf/scalable-functions.pdf
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Chapter 3. VF Creation

 1. Enable SR-IOV:
host $ mlxconfig -y -d /dev/mst/mt41686_pciconf0 s SRIOV_EN=1

 2. Set number of VFs:
$ echo X > /sys/class/net/<physical_function>/device/sriov_numvfs

For example:
$ echo 2 > /sys/class/net/ens1f0/device/sriov_numvfs

Or (this requires reboot):
$ mlxconfig -y -d /dev/mst/mt41686_pciconf0 s NUM_OF_VFS=X

After enabling VF, the representor appears on the DPU. The function itself is seen at the
x86 side.

 3. To verify that the VFs have been created. Run:
$ lspci | grep Mellanox
05:00.0 Ethernet controller: Mellanox Technologies Device a2d6
05:00.1 Ethernet controller: Mellanox Technologies Device a2d6
05:00.2 DMA controller: Mellanox Technologies Device c2d3
05:00.3 Ethernet controller: Mellanox Technologies MT28850
05:00.4 Ethernet controller: Mellanox Technologies MT28850

Note: 2 new virtual Ethernet devices are created in this example.
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Chapter 4. Running DOCA Application
on Host

The following steps are required only if the application utilizes the RegEx engine:

 1. Stop the driver on the host. Run:
host$ sudo /etc/init.d/openibd stop

 2. On the Arm, start the driver. Run:
dpu$ sudo /etc/init.d/openibd start

 3. On the Arm, enable RegEx (only if the application requires it). Run:
dpu$ echo 1 > /sys/class/net/p0/smart_nic/pf/regex_en

 4. On the Arm, add 200 huge pages. Run:
dpu$ current_huge='cat /sys/kernel/mm/hugepages/hugepages-2048kB/nr_huge pages'
dpu$ echo $((200 + current_huge)) > /sys/kernel/mm/hugepages/hugepages-2048kB/
nr_hugepages

 5. On the Arm, start mlx RegEx. Run:
dpu$ systemctl start mlx-regex

Note: If it has not been set before, the previous value of huge pages should be 2048 or
higher (depending on the number of cores).

 6. Verify that the service is running. Run:
dpu$ systemctl status mlx-regex

 7. The host can now run RegEx. Run:
host$ sudo /etc/init.d/openibd start

Note: Running DPDK over the host requires configuring huge pages.

Note: By default, a DPDK application initializes all the cores of the device. This is usually
unnecessary and may even cause unforeseeable issues. It is recommended to limit the number
of cores, especially when using an AMD-based system, to 16 cores using the -c flag when
running DPDK.

The following is a CLI example for running a reference application over the host using VF:
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./opt/mellanox/doca/example/**/bin/*executable* -a "pci address VF0" -a "pci address
 VF1" -c 0xff -- "application flags"

Note: The executable will fail if a correct LD_LIBRARY_PATH is not set. To set
LD_LIBRARY_PATH, execute the following:

‣ For Ubuntu:
export LD_LIBRARY_PATH=/opt/mellanox/dpdk/lib/aarch64-linux-gnu/

‣ For CentOS:
export LD_LIBRARY_PATH=/opt/mellanox/dpdk/lib64
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Chapter 5. Topology Example

The following is a topology example for running the application over the host.
 

 

Configure the OVS on BlueField as follows:
Bridge ovsbr1
    Port ovsbr1
        Interface ovsbr1
            type: internal
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    Port pf0hpf
        Interface pf0hpf
    Port pf0vf1
        Interface pf0vf1
Bridge vf_br
    Port p0
        Interface p0
    Port vf_br
        Interface vf_br
            type: internal
    Port pf0vf0
        Interface pf0vf0 

When enabling a new VF over the host, VF representors are created on the Arm side. The
first OVS bridge connects the uplink connection (p0) to the new VF representor (pf0vf0), and
the second bridge connects the second VF representor (pf0vf1) to the host representors
(pf0phf). On the host, the 2 PCIe addresses of the newly created function must be initialized
when running the applications.

When traffic is received (e.g., from the uplink), the following occurs:

 1. Traffic is received over p0.
 2. Traffic is forwarded to pf0vf0.
 3. Application "listens" to pf0vf0 and pf0vf1 and can, therefore, acquire the traffic from

pf0vf0, inspect it, and forward to pf0vf1.
 4. Traffic is forwarded from pf0vf1 to pf0hpf.
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