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Chapter 1. VirtIO-net Emulated Devices

VirtIO emulated devices enables users to create VirtIO-net emulated PCIe devices in the
system where the NVIDIA® BlueField®-2 DPU is connected. This is done by the virtio-net-
controller software module present in the DPU. Virtio-net emulated devices allow users to hot
plug up to 16 virtio-net PCIe PF Ethernet NIC devices or 504 virtio-net PCI VF Ethernet NIC
devices in the host system where the DPU is plugged in.

Note: Currently, only virtio specifications v1.0 and above are supported.

DPU software also enables users to create virtio block PCIe PF and SR-IOV PCIe VF devices.
This is covered in the NVIDIA BlueField SNAP and virtio-blk SNAP Documentation.

1.1.  VirtIO-net Controller
Virtio-net-controller is a systemd service running on the DPU, with a user interface frontend
to communicate with the background service. An SF representor is created for each virtio-net
device created on the host. Virtio-net controller only uses an SF number ≥1000.

Note: It is important to note that since the controller provides hardware resources and
ACKs the request from the host's VirtIO driver, in order to reboot the DPU and host OS, it is
necessary to reboot the host OS first, and only then reboot the DPU.

Note: SF representor name is determined by udev rules. The default name is in the format of
<prefix><pf_num><sf_num>. For example: en3f0pf0sf1001.

1.1.1.  SystemD Service
Controller systemd service is enabled by default and runs automatically if
VIRTIO_NET_EMULATION_ENABLE is true from mlxconfig.

 1. To check controller service status, run:
systemctl status virtio-net-controller.service

 2. To reload the service, make sure to unload virtio-net/virtio-pcie drivers on host. Then run:
systemctl restart virtio-net-controller.service

 3. To monitor log output of the controller service, run:
journalctl -u virtio-net-controller
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The controller service has an optional configuration file which allows users to customize
several parameters. The configuration file should be defined on the DPU at the following path
/opt/mellanox/mlnx_virtnet/virtnet.conf.

This file will be read every time the controller starts. Dynamic change of virtnet.conf is not
supported. It is defined as a JSON format configuration file. The currently supported options
are:

‣ ib_dev_p0 – RDMA device (e.g., mlx5_0) used to create SF on port 0. This port is the EMU
manager when is_lag is 0. Default value is mlx5_0.

‣ ib_dev_p1 – RDMA device (e.g., mlx5_1) used to create SF on port 1. Default value is
mlx5_1.

‣ ib_dev_lag – RDMA LAG device (e.g., mlx5_bond_0) used to create SF on LAG. Default
value is mlx5_bond_0. This port is EMU manager when is_lag is 1. ib_dev_lag and
ib_dev_p0/ib_dev_p1 cannot be configured simultaneously.

‣ ib_dev_for_static_pf – the RDMA device (e.g, mlx5_0) which the static VirtIO PF is
created on

‣ is_lag - whether or not LAG is used. Note that if LAG is used, make sure to use the
correct IB dev for static PF.

‣ pf_mac – base MAC address for static PFs. MACs are automatically assigned with the
following pattern: pf_mac→pf_0, pf_mac+1→pf_1, etc.

Note: Note that the controller does not validate the MAC address (other than its length).
The user must ensure MAC is valid and unique.

‣ recovery – specifies whether recovery is enabled. If unspecified, recovery is enabled by
default. To disable it, set recovery to 0.

‣ sf_pool_percent – determines the initial SF pool size as the percentage of PF_TOTAL_SF
of mlxconfig. Valid range: [0, 100]. For instance, if the value is 5, it means an SF pool with
5% of PF_TOTAL_SF is created. 0 means no SF pool is reserved beforehand (default).

Note: PF_TOTAL_SF is shared by all applications. User must ensure the percent request is
guaranteed or else the controller will not be able to reserve the requested SFs resulting in
failure.

‣ sf_pool_force_destroy – specifies whether to destroy the SF pool. When set to 1, the
controller destroys the SF pool when stopped/restarted (and the SF pool is recreated if
sf_pool_percent is not 0 when starting), otherwise it does not. Default value is 0.

For example, the definition below has all static PFs using mlx5_0 (port 0) as the data path
device in a non-lag configuration.
{
  "ib_dev_p0": "mlx5_0",
  "ib_dev_p1": "mlx5_1",
  "ib_dev_for_static_pf": "mlx5_0",
  "is_lag": 0,
  "pf_mac": "00:11:22:33:44:55",
  "recovery": 1,
  "sf_pool_percent": 0,
  "sf_pool_force_destroy": 0
}
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The following is an example for LAG configuration:
{
  "ib_dev_lag": "mlx5_bond_0",
  "ib_dev_for_static_pf": "mlx5_bond_0",
  "is_lag": 1,
  "pf_mac": "00:11:22:33:44:55",
  "recovery": 1,
  "sf_pool_percent": 0,
  "sf_pool_force_destroy": 0
}

1.1.2.  User Frontend
To communicate with the service, a user frontend program, virtnet, is installed on the DPU.
Run the following command to check its usage:
# virtnet -h
usage: virtnet [-h] [-v] {hotplug,unplug,list,query,modify,log} ...
 
Nvidia virtio-net-controller command line interface v1.0.9
 
positional arguments:
  {hotplug,unplug,list,query,modify,log}
                        ** Use -h for sub-command usage
    hotplug             hotplug virtnet device
    unplug              unplug virtnet device
    list                list all virtnet devices
    query               query all or individual virtnet device(s)
    modify              modify virtnet device
    log                 set log level
 
optional arguments:
  -h, --help            show this help message and exit
  -v, --version         show program's version number and exit

Note that each positional argument has its own help menu as well. For example:
# virtnet log -h
usage: virtnet log [-h] -l {info,err,debug}
optional arguments:
  -h, --help            show this help message and exit
  -l {info,err,debug}, --level {info,err,debug}
                        log level: info/err/debug

To operate a particular device, either the VUID or device index can be used to locate the device.
Both attributes can be fetched from command "virtnet list". For example, to modify the MAC of
a specific VF, you may run either of the following commands:
# virtnet modify -p 0 –v 0 device -m 0C:C4:7A:FF:22:98 

Or:
# virtnet modify -u <VUID-string> device -m 0C:C4:7A:FF:22:98 

1.1.3.  Controller Recovery
It is possible to recover the control and data planes if communications are interrupted so the
original traffic can resume.

Recovery depends on the JSON files stored in /opt/mellanox/mlnx_virtnet/recovery
where there is a file that corresponds to each device (either PF or VF). The following is an
example of the data stored in these files:
{
  "port_ib_dev": "mlx5_0",
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  "pf_id": 0,
  "function_type": "pf",
  "bdf_raw": 26624,
  "device_type": "hotplug",
  "mac": "0c:c4:7a:ff:22:93",
  "pf_num": 0,
  "sf_num": 2000,
  "mq": 1
}

These files should not be modified under normal circumstances. However, if necessary,
advanced users may tune settings to meet their requirements. Users are responsible for the
validity of the recovery files and should only perform this when the controller is not running.

Note: Controller recovery is enabled by default and does not need user configuration or
intervention unless a system reset is needed or BlueField configuration is changed (i.e. any of
the mlxconfig options PCI_SWITCH_EMULATION_NUM_PORT, VIRTIO_NET_EMULATION_NUM_VF,
or VIRTIO_NET_EMULATION_NUM_PF). To this end, the files under /opt/mellanox/
mlnx_virtnet/recovery must be deleted.

1.1.4.  Controller Live Update
Live update minimizes network interface down time by performing online upgrade of the virtio-
net controller without necessitating a full restart.

To perform a live update, you must install a newer version of the controller either using the
rpm or deb package (depending on the OS distro used). Run:

‣ For Ubuntu/Debian:
dpkg --force-all -i virtio-net-controller-x.y.z-1.mlnx.aarch64.deb

‣ For CentOS/RedHat:
rpm -Uvh virtio-net-controller-x.y.z-1.mlnx.aarch64.rpm --force

It is recommended to use the following command to verify the versions of the controller
currently running and the one just installed:
virtnet version

If the versions that are correct, issue the following command to start the live update process:
virtnet update --start
virtnet update -s

Note: If an error appears regarding the "update" command not being supported, this implies
that the controller version you are trying to install is too old. Reinstalling the proper version
will resolve this issue.

During the update process, the following command may be used to check the update status:
virtnet update status
virtnet update -t

During the update, all existing virtnet commands (e.g., list, query, modify) are still
supported. VF creation/deletion works as well.
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When the update process completes successfully, the command virtnet update status
will reflect the status accordingly.

Note: If a device is actively migrating, the existing virtnet commands will appear as
"migrating" for that specific device so that user can retry later.

1.2.  VirtIO-net PF Devices
This section covers managing virtio-net PCIe PF devices using virtio-net-controller.
 

 

1.2.1.  VirtIO-net PF Device Configuration
 1. Run the following command on the DPU:

mlxconfig -d /dev/mst/mt41686_pciconf0 s INTERNAL_CPU_MODEL=1 

 2. Add the following kernel boot parameters to the Linux boot arguments:
intel_iommu=on iommu=pt pci=realloc 

 3. Cold reboot the host system.
 4. Apply the following configuration on the DPU:

$ mst start

$ mlxconfig -d /dev/mst/mt41686_pciconf0 s PF_BAR2_ENABLE=0 PER_PF_NUM_SF=1
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$ mlxconfig -d /dev/mst/mt41686_pciconf0 s \
PCI_SWITCH_EMULATION_ENABLE=1 \
PCI_SWITCH_EMULATION_NUM_PORT=16 \
VIRTIO_NET_EMULATION_ENABLE=1 \
VIRTIO_NET_EMULATION_NUM_VF=0 \
VIRTIO_NET_EMULATION_NUM_PF=0 \
VIRTIO_NET_EMULATION_NUM_MSIX=10 \
VIRTIO_NET_EMULATION_VENDOR_ID=0x1af4 \
VIRTIO_NET_EMULATION_DEVICE_ID=0x1041 \
VIRTIO_NET_EMULATION_CLASS_CODE=0x028000 \
ECPF_ESWITCH_MANAGER=1 \
ECPF_PAGE_SUPPLIER=1 \
SRIOV_EN=0 \
PF_SF_BAR_SIZE=10 \
PF_TOTAL_SF=64

$ mlxconfig -d /dev/mst/mt41686_pciconf0.1 s \
PF_SF_BAR_SIZE=10 \
PF_TOTAL_SF=64 

 5. Cold reboot the host system a second time.

1.2.2.  Creating Hotplug VirtIO-net PF Device
VirtIO emulated network PCIe devices are created and destroyed using virtio-net-controller
application console. When this application is terminated, all created virtio-net emulated
devices are hot unplugged.

 1. Create a hotplug virtio-net device. Run:
virtnet hotplug -i mlx5_0 -f 0x0 -m 0C:C4:7A:FF:22:93 -t 1500 -n 3 -s 1024 

Note: The maximum number of virtio-net queues is bound by the minimum of the following
numbers:

‣ VIRTIO_NET_EMULATION_NUM_MSIX from the command mlxconfig -d <mst_dev> q

‣ max_virtq from the command virtnet list

This creates one hotplug virtio-net device with MAC address 0C:C4:7A:FF:22:93, MTU 1500,
and 3 VirtIO queues with a depth of 1024 entries. This device is uniquely identified by its
index. This index is used to query and update device attributes. If the device is created
successfully, an output appears similar to the following:
{
  "bdf": "85:00.0",
  "vuid": "VNETS1D0F0",
  "id": 3,
  "sf_rep_net_device": "en3f0pf0sf2000",
  "mac": "0C:C4:7A:FF:22:93"
}

 2. Add the representor port of the device to the OVS bridge and bring it up. Run:
ip link set dev en3f0pf0sf1001 up
ovs-vsctl add-port <bridge> en3f0pf0sf1001

Once steps 1-3 are completed, virtio-net device should be available in the host system.
 3. To query all the device configurations of virtio-net device that you created, run:

virtnet query –p 1 

 4. To list all the virtio-net devices, run:
virtnet list
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 5. To modify device attributes, for example, changing its MAC address, run:
virtnet modify -p 0 device -m 0C:C4:7A:FF:22:98 

 6. Once usage is complete, to hot-unplug a VirtIO net device, run:
virtnet unplug -p 1 

1.3.  VirtIO-net SR-IOV VF Devices
This section covers managing virtio-net PCIe SR-IOV VF devices using virtio-net-controller.
 

 

1.3.1.  Virtio-net SR-IOV VF Device Configuration

Note: Virtio-net SR-IOV VF is only supported with statically configured PF, hot-plugged PF is
not currently supported.

 1. On the DPU, make sure virtio-net-controller service is enabled so that it starts
automatically. Run:
systemctl status virtio-net-controller.service

 2. On the x86 host, enable SR-IOV. Please refer to MLNX_OFED documentation under
Features Overview and Configuration > Virtualization > Single Root IO Virtualization (SR-

https://docs.mellanox.com/category/mlnxofedib


VirtIO-net Emulated Devices

NVIDIA DOCA Emulated Devices MLNX-15-060468 _v1.3   |   8

IOV) > Setting Up SR-IOV for instructions on how to do that. Make sure the parameters
intel_iommu=on iommu=pt pci=realloc exist in grub.conf file.

 3. It is recommended to add pci=assign-busses to the boot command line when creating
more than 127 VFs. Without this option, the following errors might appear from host and
the virtio driver will not probe these devices.
pci 0000:84:00.0: [1af4:1041] type 7f class 0xffffff
pci 0000:84:00.0: unknown header type 7f, ignoring device

 4. Run the following command on the DPU:
mst start && mlxconfig -d /dev/mst/mt41686_pciconf0 s INTERNAL_CPU_MODEL=1 

 5. Cold reboot the host system.
 6. Apply the following configuration on the DPU in three steps to support up to 125 VFs per

PF (500 VFs in total).

 a). mst start && mlxconfig -d /dev/mst/mt41686_pciconf0 s PF_BAR2_ENABLE=0
 PER_PF_NUM_SF=1 

 b). mlxconfig -d /dev/mst/mt41686_pciconf0 s \
PCI_SWITCH_EMULATION_ENABLE=1 \
PCI_SWITCH_EMULATION_NUM_PORT=16 \
VIRTIO_NET_EMULATION_ENABLE=1 \
VIRTIO_NET_EMULATION_NUM_VF=126 \
VIRTIO_NET_EMULATION_NUM_PF=4 \
VIRTIO_NET_EMULATION_NUM_MSIX=4 \
VIRTIO_NET_EMULATION_VENDOR_ID=0x1af4 \
VIRTIO_NET_EMULATION_DEVICE_ID=0x1041 \
VIRTIO_NET_EMULATION_CLASS_CODE=0x028000 \
ECPF_ESWITCH_MANAGER=1 \
ECPF_PAGE_SUPPLIER=1 \
SRIOV_EN=1 \
PF_SF_BAR_SIZE=8 \
PF_TOTAL_SF=508 \
NUM_OF_VFS=0 

 c). mlxconfig -d /dev/mst/mt41686_pciconf0.1 s PF_TOTAL_SF=1 PF_SF_BAR_SIZE=8 

 7. Cold reboot the host system.

1.3.2.  Creating Virtio-net SR-IOV VF Devices
The virtio-net-controller application console must be kept alive to maintain the functionality of
the static PF and its VFs.

 1. On the host, make sure the static virtio network device presents. Run:
# lspci | grep -i virtio
85:00.3 Network controller: Red Hat, Inc. Virtio network device

 2. On the host, make sure virtio_pci and virtio_net are loaded. Run:
# lsmod | grep virtio

The net device should be created:
# ethtool -i p7p3
driver: virtio_net
version: 1.0.0
firmware-version:
expansion-rom-version:
bus-info: 0000:85:00.3
supports-statistics: no
supports-test: no
supports-eeprom-access: no
supports-register-dump: no
supports-priv-flags: no
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 3. To create SR-IOV VF devices on the x86 host, run:
# echo 2 > /sys/bus/pci/drivers/virtio-pci/0000\:85\:00.3/sriov_numvfs

Note: When the number of VFs created is high, SR-IOV enablement may take several
minutes.

2 VFs should be created from the x86 host:
# lspci | grep -i virt
85:00.3 Network controller: Red Hat, Inc. Virtio network device
85:04.5 Network controller: Red Hat, Inc. Virtio network device
85:04.6 Network controller: Red Hat, Inc. Virtio network device

 4. From the DPU virtio-net controller, run the following command to get VF information.
# virnet list
{
    "vf_id": 0,
    "parent_pf_id": 0,
    "function_type": "VF",
    "vuid": "VNETS0D0F2VF1",
    "bdf": "83:00.6",
    "sf_num": 3000,
    "sf_parent_device": "mlx5_0",
    "sf_rep_net_device": "en3f0pf0sf3000",
    "sf_rep_net_ifindex": 19,
    "sf_rdma_device": "mlx5_7",
    "sf_vhca_id": "0x192",
    "msix_config_vector": "0x0",
    "num_msix": 10,
    "max_queues": 4,
    "max_queues_size": 256,
    "net_mac": "5A:94:07:04:F6:1C",
    "net_mtu": 1500
},

You may use the pci-bdf to match the PF/VF on the x86 host to the information showing on
DPU.

To query all the device configurations of the virtio-net device of that VF, run:
$ virtnet query -p 0 -v 0 

Add the corresponding SF representor to the OVS bridge and bring it up. Run:
# ovs-vsctl add-port <bridge> en3f0pf0sf1004
# ip link set dev en3f0pf0sf1004 up

Now the VF should be functional.

Note: When port MTU (p0/p1 of the DPU) is changed after the controller is started, you
must restart controller service. It is not recommended to use jumbo MTUs because that
may lead to performance degradation.

 5. To destroy SR-IOV VF devices on the host, run:
# echo 0 > /sys/bus/pci/drivers/virtio-pci/0000\:85\:00.3/sriov_numvfs

Note: When the command returns from the host OS, it does not necessarily mean the
controller finished its operations. Look at controller log from the DPU and make sure you
see a log like below before removing VirtIO kernel modules or recreate VFs.
# virtio-net-controller[3544]: [INFO] 
 virtnet.c:617:virtnet_device_vfs_unload: PF(0): Unload (4) VFs finished
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Once VFs are destroyed, created SFs from the DPU side are not destroyed but are saved
into the SF pool to be reused later.
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