
MLNX-15-060544 _v1.4 | September 2022

NVIDIA DOCA DMA

Programming Guide

NVIDIA DOCA DMA MLNX-15-060544 _v1.4 | ii

Table of Contents

Chapter 1. Introduction.. 1

Chapter 2. Prerequisites.. 2

Chapter 3. Architecture.. 3

Chapter 4. API...4

Chapter 5. Local Memory Programming Guide...5
5.1. Initialization Process...5

5.1.1. DOCA Device Open... 5

5.1.2. Creating DOCA Core Objects...5

5.1.3. Initializing DOCA Core Objects.. 5

5.1.3.1. Memory Map Initialization... 6

5.1.3.2. Buffer Inventory... 6

5.1.3.3. DMA Context Initialization... 6

5.1.4. Populating Memory Map..6

5.1.5. Constructing DOCA Buffers...6

5.2. DMA Execution.. 6

5.2.1. Constructing and Executing DOCA DMA Operation..6

5.2.2. Waiting for Completion.. 7

5.2.3. Clean Up... 7

Chapter 6. Remote Memory Programming Guide...8
6.1. Sender..8

6.2. Receiver... 8

NVIDIA DOCA DMA MLNX-15-060544 _v1.4 | 1

Chapter 1. Introduction

DOCA DMA provides an API to copy data between DOCA buffers using hardware acceleration,
supporting both local and remote memory regions.

The library provides an API for executing DMA operations on DOCA buffers, where these
buffers reside in either local memory (i.e., within the same host) or remote memory (i.e., on
another host).

Using DOCA DMA, complex memory copy operations can be easily executed in an optimized,
hardware-accelerated manner.

This document is intended for software developers wishing to accelerate their application’s
memory I/O operations and access memory that is not local to the host.

NVIDIA DOCA DMA MLNX-15-060544 _v1.4 | 2

Chapter 2. Prerequisites

DOCA DMA-based applications can run either on the host machine or on the NVIDIA®

BlueField® DPU target.

NVIDIA DOCA DMA MLNX-15-060544 _v1.4 | 3

Chapter 3. Architecture

DOCA DMA relies heavily on the underlying DOCA core architecture for its operation, utilizing
the existing memory map and buffer objects.

After initialization, a DMA operation is requested by submitting a DMA job on the relevant
work queue. The DMA library then executes that operation asynchronously before posting a
completion event on the work queue.

NVIDIA DOCA DMA MLNX-15-060544 _v1.4 | 4

Chapter 4. API

This chapter details the specific structures and operations related to the DOCA DMA library
for general initialization, setup, and clean-up. Please see later sections on local and remote
memory DMA operations.

The API for DOCA DMA consists of the main DMA job structure that is passed to the work
queue to instruct the DMA library on source, destination, and operation length.

As per most memory copy operations, the source and destination buffers should not overlap
while the num_bytes_to_copy field defines the number of bytes to copy from the start of the
source buffer to the destination buffer.
struct doca_dma_job_memcpy {
 struct doca_job base; /**< Common job data */
 struct doca_buf *dst_buff; /**< Destination data buffer */
 struct doca_buf const *src_buff; /**< Source data buffer */
 uint64_t num_bytes_to_copy; /**< Number of bytes to copy */
};

As with other libraries, the DMA job contains the standard doca_job base field that should be
set as follows:
/* Construct DMA job */
doca_job.type = DOCA_DMA_JOB_MEMCPY;
doca_job.flags = DOCA_JOB_FLAGS_NONE;
doca_job.ctx = doca_dma_as_ctx(doca_dma_inst);

The DMA job-specific fields should be set based on the required source and destination
buffers. They must provide the number of bytes you wish to copy.
dma_job.base = doca_job;
dma_job.dst_buff = dst_doca_buf;
dma_job.src_buff = src_doca_buf;
dma_job.num_bytes_to_copy = data_to_copy_len;

As with all WorkQ operations, the application must periodically poll the work queue
(via doca_workq_progress_retrieve API call). When the retrieve call returns with a
DOCA_SUCCESS value (to indicate the work queues event is valid), you can then test that
received event for success:
event.result.u64 == DOCA_SUCCESS

NVIDIA DOCA DMA MLNX-15-060544 _v1.4 | 5

Chapter 5. Local Memory
Programming Guide

These sections discuss the usage of the DOCA DMA library in real-world situations. Most of
this section utilizes code which is available through the DOCA DMA sample projects located
under /samples/doca_dma/.

When memory is local to your DOCA application (i.e., you can directly access the memory
space of both source and destination buffers) this is referred to as a local DMA operation.

The following step-by-step guide goes through the various stages required to initialize,
execute, and clean-up a local memory DMA operation.

5.1. Initialization Process
The DMA API uses the DOCA core library to create the required objects (memory map,
inventory, buffers, etc.) for the DMA operations. This section runs through this process in a
logical order. If you already have some of these operations in your DOCA application, you may
skip or modify them as needed.

5.1.1. DOCA Device Open
The first requirement is to open a DOCA device, normally your BlueField controller. You should
iterate all DOCA devices (via doca_devinfo_list_create) and select one using some criteria
(PCIe address, etc.). After this, the device should be opened using doca_dev_open.

5.1.2. Creating DOCA Core Objects
DOCA DMA requires several DOCA objects to be created. This includes the memory map
(doca_mmap_create), buffer inventory (doca_buf_inventory_create), work queue
(doca_workq_create). DOCA DMA also requires the actual DOCA DMA context to be created
(doca_dma_create).

5.1.3. Initializing DOCA Core Objects
In this phase of initialization, the core objects are ready to be set up and started.

Local Memory Programming Guide

NVIDIA DOCA DMA MLNX-15-060544 _v1.4 | 6

5.1.3.1. Memory Map Initialization
Prior to starting the mmap (doca_mmap_start), make sure that you set the maximum chunks
correctly (via doca_mmap_property_set). After starting mmap, add the DOCA device to the
mmap (doca_mmap_dev_add).

5.1.3.2. Buffer Inventory
This can be started using the doca_buf_inventory_start call.

5.1.3.3. DMA Context Initialization
Finally, the context created previously can have the device added (doca_ctx_dev_add), started
(doca_ctx_start), and work queue added (doca_ctx_workq_add).

5.1.4. Populating Memory Map
Register the memory regions you require for DMA operations with the memory map using the
doca_mmap_populate call. These regions may be one large region, or many smaller regions
depending on your use case.

5.1.5. Constructing DOCA Buffers
Prior to building and submitting a DOCA DMA operation, you must construct two DOCA buffers
for the source and destination addresses (the addresses used must exist within the memory
region registered with the memory map). The doca_buf_inventory_buf_by_addr returns a
doca_buffer when provided with a memory address.

These are the buffers supplied to the DMA operation and both must contain at
least num_bytes_to_copy. If they are bigger, then any bytes beyond the range [0,
num_bytes_to_copy) remain unmodified.

5.2. DMA Execution
The DMA operation is asynchronous in nature. Therefore, you must enqueue the operation and
then, later, poll for completion.

5.2.1. Constructing and Executing DOCA DMA
Operation

To begin the DMA operation, you must enqueue a DMA job on the previously created work
queue object. This involves creating the DMA job (struct doca_dma_job_memcpy) that is a
composite of specific DMA fields.

Within the DMA job structure, the type field should be set to DOCA_DMA_JOB_MEMCPY with the
context field pointing to your DMA context.

Local Memory Programming Guide

NVIDIA DOCA DMA MLNX-15-060544 _v1.4 | 7

The DMA specific elements of the job point to your DOCA buffers for source and destination,
with a length field providing the number of bytes to be copied.

Finally, the doca_workq_submit API call is used to submit the DMA operation to the
hardware.

5.2.2. Waiting for Completion
To detect when the DMA operation has completed, you should periodically poll the work queue
(via doca_workq_progress_retrieve).

When the API call indicates that a valid event has been received, you should then detect the
success of the DMA operation through the event.result.u64 field equal to DOCA_SUCCESS.
It should be noted that other work queue operations (i.e., non-DMA operations) present their
events differently. Refer to their respective guides for more information.

To clean up the doca_buffers, you should deference them using the doca_buf_refcount_rm
call. This call should be made on all buffers when you have finished with them (regardless of
whether the operation is successful or not).

5.2.3. Clean Up
The main cleanup process is to remove the worker queue from the context
(doca_ctx_workq_rm), stop the context itself (doca_ctx_stop), remove the device
from the context (doca_ctx_dev_rm), and remove the device from the memory map
(doca_mmap_dev_rm).

The final destruction of the objects can now occur. This can occur in any order, but destruction
must occur on the work queue (doca_workq_destroy), dma context (doca_dma_destroy), buf
inventory (doca_buf_inventory_destroy), mmap (doca_mmap_destroy), and device closure
(doca_dev_close).

NVIDIA DOCA DMA MLNX-15-060544 _v1.4 | 8

Chapter 6. Remote Memory
Programming Guide

These sections discuss the creation of a remote memory DMA operation. This operation allows
memory from a remote host, accessible by DOCA DMA, to be used as a source or destination.

There are two sample applications that show you how this operation may work in scanning
a remote memories location for a particular piece of data. They are located at /samples/
doca_dma as dma_remote_copy_receiver and dma_remote_copy_sender.

6.1. Sender
The sender holds the source memory is copied to the remote receiver. The method of how the
source memory address is transmitted to the remote receiver is for the developer to decide.
In the sample application, a socket is connected from a "host" sender to a "remote" BlueField
DPU. The address passed via this method.

The sender application should open the device, as per a normal local memory operation, but
initialize only a memory map (doca_mmap_create, doca_mmap_start, doca_mmap_dev_add).

It should then populate the mmap with the source buffer (doca_mmap_populate) and call a
special mmap function (doca_mmap_export). This function generates a JSON structure that
can be transmitted to the remote device. The information in the JSON structure refers to the
exported "remote" memory (from the perspective of the receiver).

6.2. Receiver
For reception, the standard initiation described for the local memory process should be
followed.

Prior to constructing the source DOCA buffer (via doca_buf_inventory_buf_by_addr),
you should call the special mmap function that retrieves the remote mmap
(doca_mmap_create_from_export).

The source DOCA buffer can then be created using this remote memory map.

All other aspects of the application (executing, waiting on results, and cleanup) should be the
same as the process described for local memory operations.

Notice

This document is provided for information purposes only and shall not be regarded as a warranty of a certain functionality, condition, or quality of a product. NVIDIA
Corporation nor any of its direct or indirect subsidiaries and affiliates (collectively: “NVIDIA”) make no representations or warranties, expressed or implied, as to the
accuracy or completeness of the information contained in this document and assume no responsibility for any errors contained herein. NVIDIA shall have no liability
for the consequences or use of such information or for any infringement of patents or other rights of third parties that may result from its use. This document is not
a commitment to develop, release, or deliver any Material (defined below), code, or functionality.

NVIDIA reserves the right to make corrections, modifications, enhancements, improvements, and any other changes to this document, at any time without notice.

Customer should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the time of order acknowledgement, unless otherwise agreed
in an individual sales agreement signed by authorized representatives of NVIDIA and customer (“Terms of Sale”). NVIDIA hereby expressly objects to applying any
customer general terms and conditions with regards to the purchase of the NVIDIA product referenced in this document. No contractual obligations are formed
either directly or indirectly by this document.

NVIDIA products are not designed, authorized, or warranted to be suitable for use in medical, military, aircraft, space, or life support equipment, nor in applications
where failure or malfunction of the NVIDIA product can reasonably be expected to result in personal injury, death, or property or environmental damage. NVIDIA
accepts no liability for inclusion and/or use of NVIDIA products in such equipment or applications and therefore such inclusion and/or use is at customer’s own risk.

NVIDIA makes no representation or warranty that products based on this document will be suitable for any specified use. Testing of all parameters of each product
is not necessarily performed by NVIDIA. It is customer’s sole responsibility to evaluate and determine the applicability of any information contained in this document,
ensure the product is suitable and fit for the application planned by customer, and perform the necessary testing for the application in order to avoid a default of
the application or the product. Weaknesses in customer’s product designs may affect the quality and reliability of the NVIDIA product and may result in additional
or different conditions and/or requirements beyond those contained in this document. NVIDIA accepts no liability related to any default, damage, costs, or problem
which may be based on or attributable to: (i) the use of the NVIDIA product in any manner that is contrary to this document or (ii) customer product designs.

No license, either expressed or implied, is granted under any NVIDIA patent right, copyright, or other NVIDIA intellectual property right under this document.
Information published by NVIDIA regarding third-party products or services does not constitute a license from NVIDIA to use such products or services or a warranty
or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property rights of the third party,
or a license from NVIDIA under the patents or other intellectual property rights of NVIDIA.

Reproduction of information in this document is permissible only if approved in advance by NVIDIA in writing, reproduced without alteration and in full compliance
with all applicable export laws and regulations, and accompanied by all associated conditions, limitations, and notices.

THIS DOCUMENT AND ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS
(TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR
OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND
FITNESS FOR A PARTICULAR PURPOSE. TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL NVIDIA BE LIABLE FOR ANY DAMAGES, INCLUDING
WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF
THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF NVIDIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
Notwithstanding any damages that customer might incur for any reason whatsoever, NVIDIA’s aggregate and cumulative liability towards customer for the products
described herein shall be limited in accordance with the Terms of Sale for the product.

Trademarks

NVIDIA, the NVIDIA logo, and Mellanox are trademarks and/or registered trademarks of Mellanox Technologies Ltd. and/or NVIDIA Corporation in the U.S. and in
other countries. The registered trademark Linux® is used pursuant to a sublicense from the Linux Foundation, the exclusive licensee of Linus Torvalds, owner of the
mark on a world¬wide basis. Other company and product names may be trademarks of the respective companies with which they are associated.

Copyright
© 2022 NVIDIA Corporation & affiliates. All rights reserved.

NVIDIA Corporation | 2788 San Tomas Expressway, Santa Clara, CA 95051
http://www.nvidia.com

http://www.nvidia.com

	Table of Contents
	Introduction
	Prerequisites
	Architecture
	API
	Local Memory Programming Guide
	5.1. Initialization Process
	5.1.1. DOCA Device Open
	5.1.2. Creating DOCA Core Objects
	5.1.3. Initializing DOCA Core Objects
	5.1.3.1. Memory Map Initialization
	5.1.3.2. Buffer Inventory
	5.1.3.3. DMA Context Initialization

	5.1.4. Populating Memory Map
	5.1.5. Constructing DOCA Buffers

	5.2. DMA Execution
	5.2.1. Constructing and Executing DOCA DMA Operation
	5.2.2. Waiting for Completion
	5.2.3. Clean Up

	Remote Memory Programming Guide
	6.1. Sender
	6.2. Receiver

