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Chapter 1. Introduction

DOCA Flow Inspector service allows monitoring real-time data and extraction of telemetry
components which can be utilized by various services for security, big data, and other
purposes.

DOCA Flow Inspector service is linked to the DOCA Telemetry Service (DTS). DOCA Flow
Inspector receives mirrored packets from the user and then parses and forwards the data to
the DTS which gathers predefined statistics forwarded by various providers/sources. DPCA
Flow Inspector uses the DOCA Telemetry API to initiate a communication channel to the DTS
while the DPDK infrastructure allows acquiring packets at a user-space layer.

DOCA Flow Inspector runs inside of its own Kubernetes pod on BlueField and is intended
to receive mirrored packets for analysis. The packets received are parsed and sent, in a
predefined struct, to a telemetry collector which manages the rest of the telemetry aspects.
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1.1.  Service Flow
DOCA Flow Inspector receives a configuration file in a JSON format which indicates which of
the mirrored packets should be filtered out based on the L4 network header.

DOCA Flow Inspector runs on top of DPDK to acquire L4. The packets are then filtered based
on the ports configured in the JSON input file. The non-filtered packets are then parsed
according to a predefined struct and forwarded to the telemetry collector using IPC.
 

 

 1. A JSON file is used as input to configure the allowed ports.
 2. Connection to the telemetry collector is initialized and a configuration struct is defined for

both small and large packets.
 3. Traffic is mirrored to the relevant SF.
 4. Ingress traffic is received through the configured SF.
 5. Non-L4 traffic is dropped in using hardware rules, while the allowed ports are filtered

using a software layer in the Arm cores.
 6. Packets are parsed to the desired struct.
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 7. The telemetry information is forwarded to the telemetry agent using IPC.
 8. Mirrored packets are freed.

The information collected by DOCA Flow Inspector has two different structures that are
differentiated by the payload's size (can be viewed when using the DTS to write the date
locally).

The predefined struct is organized as follows:

 1. Timestamp
 2. Host IP
 3. Data Length
 4. Data (Payload)
 5. Source MAC
 6. Destination MAC
 7. L4 Protocol
 8. Source IP
 9. Destination IP
 10.Source Port
 11.Destination Port
 12.TCP Flags
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Chapter 2. Requirements

DOCA Flow Inspector service must be used with DTS of the same DOCA version.

Before deploying the flow inspector container, ensure that the following prerequisites are
satisfied:

 1. Create the needed files and directories.

Folders should be created automatically. Make sure the .json file resides inside the
folder:
$ touch /opt/mellanox/doca/services/flow_inspector/bin/flow_inspector_cfg.json

Validate that DTS's configuration folders exist. They should be created automatically when
deploying DTS using the .yaml file.
$ sudo mkdir -p /opt/mellanox/doca/services/telemetry/config
$ sudo mkdir -p /opt/mellanox/doca/services/telemetry/ipc_sockets
$ sudo mkdir -p /opt/mellanox/doca/services/telemetry/data

 2. Allocate hugepages.

Allocated huge pages for a DPDK-based application. This requires root privileges.
$ sudo echo 2048 > /sys/kernel/mm/hugepages/hugepages-2048kB/nr_hugepages

Or alternatively:
$ sudo echo '2048' | sudo tee -a /sys/kernel/mm/hugepages/hugepages-2048kB/
nr_hugepages
$ sudo mkdir /mnt/huge
$ sudo mount -t hugetlbfs nodev /mnt/huge

Deploy a scalable function according to Scalable Function Setup Guide and mirror packets
accordingly using the Open vSwitch command.

For example:

 a). Mirror packets from p0 to sf0:
$ ovs-vsctl add-br ovsbr1
$ ovs-vsctl add-port ovsbr1 p0
$ ovs-vsctl add-port ovsbr1 en3f0pf0sf0
$ ovs-vsctl -- --id=@p1 get port en3f0pf0sf0 \
            -- --id=@p2 get port p0 \
            -- --id=@m create mirror name=m0 select-dst-port=@p2 select-src-
port=@p2 output-port=@p1 \
            -- set bridge ovsbr1 mirrors=@m

 b). Mirror packets from pf0hpf to sf0:
$ ovs-vsctl add-br ovsbr1
$ ovs-vsctl add-port ovsbr1 pf0hpf
$ ovs-vsctl add-port ovsbr1 en3f0pf0sf0
$ ovs-vsctl -- --id=@p1 get port en3f0pf0sf0 \
            -- --id=@p2 get port pf0hpf \

http://docs.nvidia.com/doca/sdk/pdf/scalable-functions.pdf


Requirements

NVIDIA DOCA Flow Inspector Service MLNX-15-060530 _v1.4   |   5

            -- --id=@m create mirror name=m0 select-dst-port=@p2 select-src-
port=@p2 output-port=@p1 \
            -- set bridge ovsbr1 mirrors=@m

The output of last command should be in the following format:
exp: 0d248ca8-66af-427c-b600-af1e286056e1

Note: The designated SF must be created as a trusted function. Additional details can
be found in the Scalable Function Setup Guide.

http://docs.nvidia.com/doca/sdk/pdf/scalable-functions.pdf
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Chapter 3. Service Deployment

For information about the deployment of DOCA containers on top of the BlueField DPU, refer
to NVIDIA DOCA Container Deployment Guide.

DTS is available on NGC, NVIDIA's container catalog. Service-specific configuration steps and
deployment instructions can be found under the service's container page.

http://docs.nvidia.com/doca/sdk/pdf/container-deployment.pdf
https://catalog.ngc.nvidia.com/orgs/nvidia/teams/doca/containers/doca_flow_inspector
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Chapter 4. Configuration

4.1.  JSON Input
The flow inspector configuration file should be placed under /opt/mellanox/services/
flow_inspector/<json_file_name>.json and be built in the following format:
{
    "protocols": ["tcp", "udp"], #What L4 protocols are allowed
    "ports": #What L4 port ranges are allowed [src,dst]
    [
        ["*","433"], #In this case, “*” stands for all source ports and dst port 433
        ["20480","28341"], 
        ["28341","20480"],
        ["1720","1023"], # src port 1720, dst port 1023
    ]
}

Note: If a packet contains L4 ports which are not specified in the file, it is filtered out.

4.2.  Yaml File
The .yaml file downloaded from NGC can be easily edited according to your needs.
env:
  # Set according to the local setup
  - name: SF_NUM_1
    value: "2"
  # Additional EAL flags, if needed
  - name: EAL_FLAGS
    value: ""
  # Service-Specific command line arguments
  - name: SERVICE_ARGS
    value: "--policy /flow_inspector/flow_inspector_cfg.json -l 4"

‣ The SF_NUM_1 value can be changed according to the SF used in the OVS configuration and
can be found using the command in Scalable Function Setup Guide.

‣ The EAL_FLAGS value must be changed according to the DPDK flags required when
running the container.

‣ The SERVICE_ARGS are the runtime arguments received by the service:

‣ -l, --log-level <value> – sets the log level from 0 to 4

http://docs.nvidia.com/doca/sdk/pdf/scalable-functions.pdf
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‣ -p, --policy <json_path> – sets the JSON path inside the container

4.3.  Verifying Output
Enabling write to data in the DTS allows debugging the validity of DOCA Flow Inspector.

The data written locally should be shown in the following format, which has been parsed by the
flow inspector:
doca_telemetry_long_event {
    doca_telemetry_timestamp_t timestamp;
    char host_ip[MAX_IP_LEN];
    int64_t data_len;
    char data[MAX_DATA_LEN_LONG];
    char src_mac[MAX_MAC_LEN];
    char dest_mac[MAX_MAC_LEN];
    char protocol[PROTOCOL_LEN];
    char src_ip[MAX_IP_LEN];
    char dest_ip[MAX_IP_LEN];
    int src_port;
    int dest_port;
    int flags;
};

Uncomment the following line in dts_config.ini:
#output=/data

Note: Any changes in dts_config.ini necessitate restarting the pod for the new settings to
apply.

The schema folder contains JSON-formatted metadata files which allow reading the
binary files containing the actual data. The binary files are written according to the naming
convention shown in the following example (apt install tree):
$ tree /opt/mellanox/doca/services/telemetry/data/
/opt/mellanox/doca/services/telemetry/data/
├── {year}
│   └── {mmdd}
│        └── {hash}
│             ├── {source_id}
│             │   └── {source_tag}{timestamp}.bin
│             └── {another_source_id}
│                  └── {another_source_tag}{timestamp}.bin
└── schema
    └── schema_{MD5_digest}.json

New binary files appear when the service starts or when binary file's max age/size restriction
is reached. If no schema or no data folders are present, refer to the Troubleshooting section in
the NVIDIA DOCA Telemetry Service Guide.

Note: source_id is usually set to the machine hostname. source_tag is a line describing the
collected counters, and it is often set as the provider's name or name of user-counters.

Reading the binary data can be done from within the DTS container using the following
command:
crictl exec -it <Container ID> /opt/mellanox/collectx/bin/clx_read -s /data/schema /
data/path/to/datafile.bin

http://docs.nvidia.com/doca/sdk/pdf/doca-telemetry-service.pdf
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Chapter 5. Troubleshooting

Refer to the Troubleshootings section in NVIDIA DOCA Container Deployment Guide and
NVIDIA DOCA Telemetry Service Guide.

Additional notes:

‣ Make sure hugepages are allocated (step 2 under Requirements)

‣ Validate the JSON file and port config

http://docs.nvidia.com/doca/sdk/pdf/container-deployment.pdf
http://docs.nvidia.com/doca/sdk/pdf/doca-telemetry-service.pdf
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