
MLNX-15-060537 _v1.4 | September 2022

NVIDIA DOCA Firewall

Application Guide

NVIDIA DOCA Firewall MLNX-15-060537 _v1.4 | ii

Table of Contents

Chapter 1. Introduction.. 1

Chapter 2. System Design..2

Chapter 3. Application Architecture...4
3.1. Static Mode..4

3.2. Interactive Mode..5

Chapter 4. DOCA Libraries...9

Chapter 5. Configuration Flow... 10

Chapter 6. Running Application... 11

Chapter 7. Arg Parser DOCA Flags... 13

Chapter 8. References..14

NVIDIA DOCA Firewall MLNX-15-060537 _v1.4 | 1

Chapter 1. Introduction

A firewall application is a network security application that leverages the DPU's hardware
capability to monitor incoming and outgoing network traffic and allow or block packets based
on a set of preconfigured rules.

The firewall application is based on DOCA Flow gRPC, used for remote programming of the
DPU's hardware.

The firewall can operate in two modes:

‣ Static mode – the firmware application gets 5-tuple traffic from the user with a JSON file
for packets to be dropped. The packets that do not match any of the 5-tuple are forwarded
by a hairpin pipe.

‣ Interactive mode – the user can add rules from the command line in real time to execute
different firewall rules

NVIDIA DOCA Firewall MLNX-15-060537 _v1.4 | 2

Chapter 2. System Design

The firewall application is designed to run on the host and to use DOCA Flow gRPC client to
send instructions to a server that runs on the BlueField DPU instance. The DPU intercepts
ingress traffic from the wire and either drops it or forwards it to the egress port using a
hairpin. The decision is made using traffic classification.

System Design

NVIDIA DOCA Firewall MLNX-15-060537 _v1.4 | 3

NVIDIA DOCA Firewall MLNX-15-060537 _v1.4 | 4

Chapter 3. Application Architecture

The firewall runs on top of DOCA Flow gRPC to classify packets.

3.1. Static Mode

Application Architecture

NVIDIA DOCA Firewall MLNX-15-060537 _v1.4 | 5

 1. The firewall application builds 3 pipes for each port (two drop pipes and a hairpin pipe).
 2. The drop pipes match only 5-tuple traffic with specific source and destination IPs and

source and destination ports. One of the drop pipes matches TCP traffic and the other
matches UDP. The hairpin pipe matches every packet (no misses). The drop pipes serve
as root pipes and the hairpin pipe serves as a forwarding miss component to the drop
pipe. Therefore, every received packet is checked first against the drop pipes. If there
is a match, then it is dropped, otherwise, it is forwarded to the hairpin pipe and is then
matched.

3.2. Interactive Mode
Running in interactive mode initializes 2 ports, and the user then configures the pipes and
entries.

‣ When adding a pipe or an entry, one must run commands to create the relevant structs
beforehand

‣ Optional parameters must be specified by the user in the command line. Otherwise, NULL
is used.

‣ After a pipe or an entry is created successfully, the relevant ID is printed for future use

Available commands:

‣ create pipe port_id=[port_id][,<optional_parameters>]

‣ Available optional parameters: name=<pipe-name>, root_enable=[1|0],
monitor=[1|0], match_mask=[1|0], fwd=[1|0], fwd_miss=[1|0],type=[basic|
control]

‣ add entry
pipe_id=<pipe_id>,pipe_queue=<pipe_queue>[,<optional_parameters>]

‣ Available optional parameters: monitor=[1|0], fwd=[1|0]

Application Architecture

NVIDIA DOCA Firewall MLNX-15-060537 _v1.4 | 6

‣ add control_pipe entry
priority=[priority],pipe_id=<pipe_id>,pipe_queue=<pipe_queue>[,<optional_parameters>]

‣ Available optional parameters: match_mask=[1|0], fwd=[1|0]

‣ destroy pipe port_id=[port_id],pipe_id=<pipe_id>

‣ rm entry pipe_queue=<pipe_queue>,entry_id=[entry_id]

‣ port pipes flush port_id=[port_id]

‣ port pipes dump port_id=[port_id],file=[file_name]

‣ query entry_id=[entry_id]

‣ create [struct] [field=value,…]

‣ Struct options: pipe_match, entry_match, match_mask, actions, monitor, fwd,
fwd_miss

‣ Match struct fields:

Fields Field Options
flags

out_src_mac

out_dst_mac

out_eth_type

out_vlan_id

out_src_ip_type ipv4, ipv6

out_src_ip_addr

out_dst_ip_type ipv4, ipv6

out_dst_ip_addr

out_l4_type tcp, udp, gre

out_tcp_flags FIN, SYN, RST, PSH, ACK, URG, ECE, CWR

out_src_port

out_dst_port

tun_type

vxlan-tun_id

gre_key

gtp_teid

in_src_mac

in_dst_mac

in_eth_type

in_vlan_id

in_src_ip_type ipv4, ipv6

in_src_ip_addr

in_dst_ip_type ipv4, ipv6

Application Architecture

NVIDIA DOCA Firewall MLNX-15-060537 _v1.4 | 7

Fields Field Options
in_dst_ip_addr

in_l4_type tcp, udp

in_tcp_flags FIN, SYN, RST, PSH, ACK, URG, ECE, CWR

in_src_port

in_dst_port

‣ Actions struct fields:

Fields Field Options
decap true, false

mod_src_mac

mod_dst_mac

mod_src_ip_type ipv4, ipv6

mod_src_ip_addr

mod_dst_ip_type ipv4, ipv6

mod_dst_ip_addr

mod_src_port

mod_dst_port

dec_ttl true, false

has_encap true, false

encap_src_mac

encap_dst_mac

encap_src_ip_type ipv4, ipv6

encap_src_ip_addr

encap_dst_ip_type ipv4, ipv6

encap_dst_ip_addr

encap_tup_type vxlan, gtpu, gre

encap_vxlan-tun_id

encap_gre_key

encap_gtp_teid

‣ FWD struct fields:

Fields Field Options
type rss, port, pipe, drop

rss_flags

rss_queues

num_of_queues

rss_mark

port_id

next_pipe_id

Application Architecture

NVIDIA DOCA Firewall MLNX-15-060537 _v1.4 | 8

‣ Monitor struct fields:

‣ flags

‣ id

‣ cir

‣ cbs

‣ aging

The following is an example for creating a pipe and adding an entry:
create pipe_match
 out_l4_type=udp,out_src_ip_type=ipv4,out_src_ip_addr=0xffffffff,out_dst_ip_type=ipv4,out_dst_ip_addr=0xffffffff
create fwd type=drop
create fwd_miss type=pipe,next_pipe_id=1
create pipe port_id=0,name=drop,root_enable=1,fwd=1,fwd_miss=1
create pipe succeed with pipe id: 2
create entry_match
 out_src_ip_type=ipv4,out_src_ip_addr=10.1.20.208,out_dst_ip_type=ipv4,out_dst_ip_addr=10.1.3.216
add entry pipe_id=2,pipe_queue=0
add entry succeed with entry id: 0

NVIDIA DOCA Firewall MLNX-15-060537 _v1.4 | 9

Chapter 4. DOCA Libraries

This application leverages the DOCA Flow library.

http://docs.nvidia.com/doca/sdk/pdf/flow-programming-guide.pdf

NVIDIA DOCA Firewall MLNX-15-060537 _v1.4 | 10

Chapter 5. Configuration Flow

 1. Parse application argument.
doca_argp_init();

 a). Initialize the arg parser resources.
 b). Register DOCA general flags.

register_firewall_params();

 c). Register firewall application params.
doca_argp_start();

 d). Parse application flags.
 2. Firewall initialization.

firewall_ports_init();

 a). Create a new gRPC channel and initialize a stub.
 b). Initialize DOCA Flow and DOCA Flow ports.

 3. Configure firewall rules.
url_filter_init();

‣ When opearting in static mode:

 a). Initialize drop packets array from the input JSON file.
init_drop_packets();

 b). Create hairpin pipe for both ports. This pipe includes one entry that matches every
type of packet (no misses) which is then forwarded to the egress port through a
hairpin.
firewall_pipes_init();

 c). Creates TCP and UDP drop pipes that serve as root pipes for both ports. The built
pipes have a 5-tuple match and entries from the processed JSON file that are
dropped. In addition, the hairpin pipe serves as forwarding if the drop entries do not
match.

‣ When opearting in interactive mode:

 a). Initialize the firewall's interactive command line.
interactive_cmdline();

 b). Free allocated resources.
interactive_mode_cleanup();

NVIDIA DOCA Firewall MLNX-15-060537 _v1.4 | 11

Chapter 6. Running Application

 1. Refer to the following documents:

‣ NVIDIA DOCA Installation Guide for details on how to install BlueField-related
software.

‣ NVIDIA DOCA Troubleshooting Guide for any issue you may encounter with the
installation, compilation, or execution of DOCA applications.

 2. The firewall example binary is located under /opt/mellanox/doca/applications/
url_filter/bin/doca_url_filter.

Note: Before building the application, make sure that gRPC support is enabled. Set the
enable_grpc_support flag in /opt/mellanox/doca/applications/meson_option.txt
to true.

To build all the applications together, run:
cd /opt/mellanox/doca/applications/
meson build
ninja -C build

 3. To build the firewall application only:

 a). Edit the following flags in /opt/mellanox/doca/applications/meson_option.txt:

‣ Set enable_all_applications to false

‣ Set enable_firewall to true

 b). Run the commands in step 2.

Application usage:
Usage: doca_firewall [DOCA Flags] [Program Flags]
DOCA Flags:
 -h, --help Print a help synopsis
 -v, --version Print program version information
 -l, --log-level Set the log level for the app <CRITICAL=0,
 DEBUG=4>
 --grpc-address ip_address[:port] Set the IP address for the grpc server

Program Flags:
 -m, --mode Set running mode {static, interactive}
 -r, --firewall-rules <path> Path to the JSON file with 5-tuple rules when
 running with static mode

Note: For additional information on the app use -h:
/opt/mellanox/doca/applications/firewall/bin/doca_firewall -h

http://docs.nvidia.com/doca/sdk/pdf/installation-guide.pdf
http://docs.nvidia.com/doca/sdk/pdf/troubleshooting.pdf

Running Application

NVIDIA DOCA Firewall MLNX-15-060537 _v1.4 | 12

 4. Running the application on the host:

‣ For instructions on running the DOCA Flow gRPC server on the BlueField, refer to
NVIDIA DOCA gRPC Infrastructure User Guide.

‣ CLI example for running the app in interactive mode:
/opt/mellanox/doca/applications/firewall/bin/doca_firewall --grpc-address
 192.168.101.2 -l 3 -m interactive

‣ CLI example for running the app in static mode:
/opt/mellanox/doca/applications/firewall/bin/doca_firewall --grpc-address
 192.168.101.2 -l 3 -m static -d firewall_rules.json

 5. To run doca_firewall using a JSON file:
doca_firewall --json [json_file]

For example:
cd /opt/mellanox/doca/applications/firewall/bin
./doca_firewall --json firewall_params.json

http://docs.nvidia.com/doca/sdk/pdf/grpc-infrastructure.pdf

NVIDIA DOCA Firewall MLNX-15-060537 _v1.4 | 13

Chapter 7. Arg Parser DOCA Flags

Refer to NVIDIA DOCA Arg Parser User Guide for more information.

Flag Type Short Flag
Long Flag/JSON
Key Description JSON Content

l log-level Set the log level
for the application:

‣ CRITICAL=0

‣ ERROR=1

‣ WARNING=2

‣ INFO=3

‣ DEBUG=4

"log-level": 4

v version Print program
version
information

N/A

h help Print a help
synopsis

N/A

General Flags

- grpc-address Set the IP address
for the gRPC
server

"grpc-
address": "0.0.0.0"

m mode Set running
mode {static or
interactive}

Note:
mode is a
mandatory
flag.

"mode": "interactive"Program Flags

r firewall-rules Path to JSON
rules file

"firewall-
rules": "firewall_rules.json"

http://docs.nvidia.com/doca/sdk/pdf/arg-parser.pdf

NVIDIA DOCA Firewall MLNX-15-060537 _v1.4 | 14

Chapter 8. References

‣ /opt/mellanox/doca/applications/firewall/src/firewall.c

Notice

This document is provided for information purposes only and shall not be regarded as a warranty of a certain functionality, condition, or quality of a product. NVIDIA
Corporation nor any of its direct or indirect subsidiaries and affiliates (collectively: “NVIDIA”) make no representations or warranties, expressed or implied, as to the
accuracy or completeness of the information contained in this document and assume no responsibility for any errors contained herein. NVIDIA shall have no liability
for the consequences or use of such information or for any infringement of patents or other rights of third parties that may result from its use. This document is not
a commitment to develop, release, or deliver any Material (defined below), code, or functionality.

NVIDIA reserves the right to make corrections, modifications, enhancements, improvements, and any other changes to this document, at any time without notice.

Customer should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the time of order acknowledgement, unless otherwise agreed
in an individual sales agreement signed by authorized representatives of NVIDIA and customer (“Terms of Sale”). NVIDIA hereby expressly objects to applying any
customer general terms and conditions with regards to the purchase of the NVIDIA product referenced in this document. No contractual obligations are formed
either directly or indirectly by this document.

NVIDIA products are not designed, authorized, or warranted to be suitable for use in medical, military, aircraft, space, or life support equipment, nor in applications
where failure or malfunction of the NVIDIA product can reasonably be expected to result in personal injury, death, or property or environmental damage. NVIDIA
accepts no liability for inclusion and/or use of NVIDIA products in such equipment or applications and therefore such inclusion and/or use is at customer’s own risk.

NVIDIA makes no representation or warranty that products based on this document will be suitable for any specified use. Testing of all parameters of each product
is not necessarily performed by NVIDIA. It is customer’s sole responsibility to evaluate and determine the applicability of any information contained in this document,
ensure the product is suitable and fit for the application planned by customer, and perform the necessary testing for the application in order to avoid a default of
the application or the product. Weaknesses in customer’s product designs may affect the quality and reliability of the NVIDIA product and may result in additional
or different conditions and/or requirements beyond those contained in this document. NVIDIA accepts no liability related to any default, damage, costs, or problem
which may be based on or attributable to: (i) the use of the NVIDIA product in any manner that is contrary to this document or (ii) customer product designs.

No license, either expressed or implied, is granted under any NVIDIA patent right, copyright, or other NVIDIA intellectual property right under this document.
Information published by NVIDIA regarding third-party products or services does not constitute a license from NVIDIA to use such products or services or a warranty
or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property rights of the third party,
or a license from NVIDIA under the patents or other intellectual property rights of NVIDIA.

Reproduction of information in this document is permissible only if approved in advance by NVIDIA in writing, reproduced without alteration and in full compliance
with all applicable export laws and regulations, and accompanied by all associated conditions, limitations, and notices.

THIS DOCUMENT AND ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS
(TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR
OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND
FITNESS FOR A PARTICULAR PURPOSE. TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL NVIDIA BE LIABLE FOR ANY DAMAGES, INCLUDING
WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF
THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF NVIDIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
Notwithstanding any damages that customer might incur for any reason whatsoever, NVIDIA’s aggregate and cumulative liability towards customer for the products
described herein shall be limited in accordance with the Terms of Sale for the product.

Trademarks

NVIDIA, the NVIDIA logo, and Mellanox are trademarks and/or registered trademarks of Mellanox Technologies Ltd. and/or NVIDIA Corporation in the U.S. and in
other countries. The registered trademark Linux® is used pursuant to a sublicense from the Linux Foundation, the exclusive licensee of Linus Torvalds, owner of the
mark on a world¬wide basis. Other company and product names may be trademarks of the respective companies with which they are associated.

Copyright
© 2022 NVIDIA Corporation & affiliates. All rights reserved.

NVIDIA Corporation | 2788 San Tomas Expressway, Santa Clara, CA 95051
http://www.nvidia.com

http://www.nvidia.com

	Table of Contents
	Introduction
	System Design
	Application Architecture
	3.1. Static Mode
	3.2. Interactive Mode

	DOCA Libraries
	Configuration Flow
	Running Application
	Arg Parser DOCA Flags
	References

