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Chapter 1. Introduction

A firewall application is a network security application that leverages the DPU's hardware
capability to monitor incoming and outgoing network traffic and allow or block packets based
on a set of preconfigured rules.

The firewall application is based on DOCA Flow gRPC, used for remote programming of the
DPU's hardware.

The firewall can operate in two modes:

‣ Static mode – the firmware application gets 5-tuple traffic from the user with a JSON file
for packets to be dropped. The packets that do not match any of the 5-tuple are forwarded
by a hairpin pipe.

‣ Interactive mode – the user can add rules from the command line in real time to execute
different firewall rules
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Chapter 2. System Design

The firewall application is designed to run on the host and to use DOCA Flow gRPC client to
send instructions to a server that runs on the BlueField DPU instance. The DPU intercepts
ingress traffic from the wire and either drops it or forwards it to the egress port using a
hairpin. The decision is made using traffic classification.
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Chapter 3. Application Architecture

The firewall runs on top of DOCA Flow gRPC to classify packets.
 

 

3.1.  Static Mode
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 1. The firewall application builds 3 pipes for each port (two drop pipes and a hairpin pipe).
 2. The drop pipes match only 5-tuple traffic with specific source and destination IPs and

source and destination ports. One of the drop pipes matches TCP traffic and the other
matches UDP. The hairpin pipe matches every packet (no misses). The drop pipes serve
as root pipes and the hairpin pipe serves as a forwarding miss component to the drop
pipe. Therefore, every received packet is checked first against the drop pipes. If there
is a match, then it is dropped, otherwise, it is forwarded to the hairpin pipe and is then
matched.

3.2.  Interactive Mode
Running in interactive mode initializes 2 ports, and the user then configures the pipes and
entries.

‣ When adding a pipe or an entry, one must run commands to create the relevant structs
beforehand

‣ Optional parameters must be specified by the user in the command line. Otherwise, NULL
is used.

‣ After a pipe or an entry is created successfully, the relevant ID is printed for future use

Available commands:

‣ create pipe port_id=[port_id][,<optional_parameters>]

‣ Available optional parameters: name=<pipe-name>, root_enable=[1|0],
monitor=[1|0], match_mask=[1|0], fwd=[1|0], fwd_miss=[1|0],type=[basic|
control]

‣ add entry
pipe_id=<pipe_id>,pipe_queue=<pipe_queue>[,<optional_parameters>]

‣ Available optional parameters: monitor=[1|0], fwd=[1|0]
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‣ add control_pipe entry
priority=[priority],pipe_id=<pipe_id>,pipe_queue=<pipe_queue>[,<optional_parameters>]

‣ Available optional parameters: match_mask=[1|0], fwd=[1|0]

‣ destroy pipe port_id=[port_id],pipe_id=<pipe_id>

‣ rm entry pipe_queue=<pipe_queue>,entry_id=[entry_id]

‣ port pipes flush port_id=[port_id]

‣ port pipes dump port_id=[port_id],file=[file_name]

‣ query entry_id=[entry_id]

‣ create [struct] [field=value,…]

‣ Struct options: pipe_match, entry_match, match_mask, actions, monitor, fwd,
fwd_miss

‣ Match struct fields:

Fields Field Options
flags

out_src_mac

out_dst_mac

out_eth_type

out_vlan_id

out_src_ip_type ipv4, ipv6

out_src_ip_addr

out_dst_ip_type ipv4, ipv6

out_dst_ip_addr

out_l4_type tcp, udp, gre

out_tcp_flags FIN, SYN, RST, PSH, ACK, URG, ECE, CWR

out_src_port

out_dst_port

tun_type

vxlan-tun_id

gre_key

gtp_teid

in_src_mac

in_dst_mac

in_eth_type

in_vlan_id

in_src_ip_type ipv4, ipv6

in_src_ip_addr

in_dst_ip_type ipv4, ipv6
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Fields Field Options
in_dst_ip_addr

in_l4_type tcp, udp

in_tcp_flags FIN, SYN, RST, PSH, ACK, URG, ECE, CWR

in_src_port

in_dst_port

‣ Actions struct fields:

Fields Field Options
decap true, false

mod_src_mac

mod_dst_mac

mod_src_ip_type ipv4, ipv6

mod_src_ip_addr

mod_dst_ip_type ipv4, ipv6

mod_dst_ip_addr

mod_src_port

mod_dst_port

dec_ttl true, false

has_encap true, false

encap_src_mac

encap_dst_mac

encap_src_ip_type ipv4, ipv6

encap_src_ip_addr

encap_dst_ip_type ipv4, ipv6

encap_dst_ip_addr

encap_tup_type vxlan, gtpu, gre

encap_vxlan-tun_id

encap_gre_key

encap_gtp_teid

‣ FWD struct fields:

Fields Field Options
type rss, port, pipe, drop

rss_flags

rss_queues

num_of_queues

rss_mark

port_id

next_pipe_id
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‣ Monitor struct fields:

‣ flags

‣ id

‣ cir

‣ cbs

‣ aging

The following is an example for creating a pipe and adding an entry:
create pipe_match
 out_l4_type=udp,out_src_ip_type=ipv4,out_src_ip_addr=0xffffffff,out_dst_ip_type=ipv4,out_dst_ip_addr=0xffffffff
create fwd type=drop
create fwd_miss type=pipe,next_pipe_id=1
create pipe port_id=0,name=drop,root_enable=1,fwd=1,fwd_miss=1
create pipe succeed with pipe id: 2
create entry_match
 out_src_ip_type=ipv4,out_src_ip_addr=10.1.20.208,out_dst_ip_type=ipv4,out_dst_ip_addr=10.1.3.216
add entry pipe_id=2,pipe_queue=0
add entry succeed with entry id: 0
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Chapter 4. DOCA Libraries

This application leverages the DOCA Flow library.

http://docs.nvidia.com/doca/sdk/pdf/flow-programming-guide.pdf
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Chapter 5. Configuration Flow

 1. Parse application argument.
doca_argp_init();

 a). Initialize the arg parser resources.
 b). Register DOCA general flags.

register_firewall_params();

 c). Register firewall application params.
doca_argp_start();

 d). Parse application flags.
 2. Firewall initialization.

firewall_ports_init();

 a). Create a new gRPC channel and initialize a stub.
 b). Initialize DOCA Flow and DOCA Flow ports.

 3. Configure firewall rules.
url_filter_init();

‣ When opearting in static mode:

 a). Initialize drop packets array from the input JSON file.
init_drop_packets();

 b). Create hairpin pipe for both ports. This pipe includes one entry that matches every
type of packet (no misses) which is then forwarded to the egress port through a
hairpin.
firewall_pipes_init();

 c). Creates TCP and UDP drop pipes that serve as root pipes for both ports. The built
pipes have a 5-tuple match and entries from the processed JSON file that are
dropped. In addition, the hairpin pipe serves as forwarding if the drop entries do not
match.

‣ When opearting in interactive mode:

 a). Initialize the firewall's interactive command line.
interactive_cmdline();

 b). Free allocated resources.
interactive_mode_cleanup();
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Chapter 6. Running Application

 1. Refer to the following documents:

‣ NVIDIA DOCA Installation Guide for details on how to install BlueField-related
software.

‣ NVIDIA DOCA Troubleshooting Guide for any issue you may encounter with the
installation, compilation, or execution of DOCA applications.

 2. The firewall example binary is located under /opt/mellanox/doca/applications/
url_filter/bin/doca_url_filter.

Note: Before building the application, make sure that gRPC support is enabled. Set the
enable_grpc_support flag in /opt/mellanox/doca/applications/meson_option.txt
to true.

To build all the applications together, run:
cd /opt/mellanox/doca/applications/
meson build 
ninja -C build

 3. To build the firewall application only:

 a). Edit the following flags in /opt/mellanox/doca/applications/meson_option.txt:

‣ Set enable_all_applications to false

‣ Set enable_firewall to true

 b). Run the commands in step 2.

Application usage:
Usage: doca_firewall [DOCA Flags] [Program Flags]
DOCA Flags:
 -h, --help                         Print a help synopsis
 -v, --version                      Print program version information
 -l, --log-level                    Set the log level for the app <CRITICAL=0,
 DEBUG=4>
 --grpc-address ip_address[:port]   Set the IP address for the grpc server
 
Program Flags:    
 -m, --mode                         Set running mode {static, interactive}
 -r, --firewall-rules <path>        Path to the JSON file with 5-tuple rules when
 running with static mode

Note: For additional information on the app use -h:
/opt/mellanox/doca/applications/firewall/bin/doca_firewall -h

http://docs.nvidia.com/doca/sdk/pdf/installation-guide.pdf
http://docs.nvidia.com/doca/sdk/pdf/troubleshooting.pdf
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 4. Running the application on the host:

‣ For instructions on running the DOCA Flow gRPC server on the BlueField, refer to
NVIDIA DOCA gRPC Infrastructure User Guide.

‣ CLI example for running the app in interactive mode:
/opt/mellanox/doca/applications/firewall/bin/doca_firewall --grpc-address
 192.168.101.2 -l 3 -m interactive

‣ CLI example for running the app in static mode:
/opt/mellanox/doca/applications/firewall/bin/doca_firewall --grpc-address
 192.168.101.2 -l 3 -m static -d firewall_rules.json

 5. To run doca_firewall using a JSON file:
doca_firewall --json [json_file]

For example:
cd /opt/mellanox/doca/applications/firewall/bin
./doca_firewall --json firewall_params.json

http://docs.nvidia.com/doca/sdk/pdf/grpc-infrastructure.pdf
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Chapter 7. Arg Parser DOCA Flags

Refer to NVIDIA DOCA Arg Parser User Guide for more information.

Flag Type Short Flag
Long Flag/JSON
Key Description JSON Content

l log-level Set the log level
for the application:

‣ CRITICAL=0

‣ ERROR=1

‣ WARNING=2

‣ INFO=3

‣ DEBUG=4

"log-level": 4 

v version Print program
version
information

N/A

h help Print a help
synopsis

N/A

General Flags

- grpc-address Set the IP address
for the gRPC
server

"grpc-
address": "0.0.0.0"

m mode Set running
mode {static or
interactive}

Note:
mode is a
mandatory
flag.

"mode": "interactive"Program Flags

r firewall-rules Path to JSON
rules file

"firewall-
rules": "firewall_rules.json"

http://docs.nvidia.com/doca/sdk/pdf/arg-parser.pdf
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Chapter 8. References

‣ /opt/mellanox/doca/applications/firewall/src/firewall.c
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