
MLNX-15-060488 _v1.4 | September 2022

NVIDIA DOCA Flow

Programming Guide

NVIDIA DOCA Flow MLNX-15-060488 _v1.4 | ii

Table of Contents

Chapter 1. Introduction.. 1

Chapter 2. Prerequisites.. 3

Chapter 3. Architecture.. 4

Chapter 4. API...5
4.1. doca_flow_cfg..5

4.2. doca_flow_port_cfg... 6

4.3. doca_flow_pipe_cfg... 6

4.4. doca_flow_meta.. 7

4.5. doca_flow_match.. 8

4.6. doca_flow_actions... 10

4.7. doca_flow_action_desc... 11

4.8. doca_flow_monitor.. 11

4.9. doca_flow_fwd... 12

4.10. doca_flow_query..13

4.11. doca_flow_aged_query..13

4.12. doca_flow_init..14

4.13. doca_flow_port_start...14

4.14. doca_flow_port_priv_data... 14

4.15. doca_flow_port_pair..14

4.16. doca_flow_pipe_create..15

4.17. doca_flow_pipe_add_entry..15

4.18. doca_flow_pipe_control_add_entry.. 16

4.19. doca_flow_pipe_lpm_add_entry... 17

4.20. doca_flow_entries_process.. 17

4.21. doca_flow_entries_process.. 18

4.22. doca_flow_query..18

4.23. doca_flow_aging_handle...19

Chapter 5. Shared Counter Resource..20
5.1. On doca_flow_init()..20

5.2. On doca_flow_shared_resource_cfg()..20

5.3. On doca_flow_shared_resource_bind()..20

5.4. On doca_flow_pipe_add_entry() or Pipe Configuration (struct doca_flow_pipe_cfg)........... 21

5.5. Querying Bulk of Shared Counter IDs... 21

5.6. On doca_flow_pipe_destroy() or doca_flow_port_destroy().. 22

NVIDIA DOCA Flow MLNX-15-060488 _v1.4 | iii

Chapter 6. Flow Life Cycle... 23
6.1. Initialization Flow.. 23

6.1.1. Pipe Mode... 23

6.2. Start Point... 25

6.3. Create Pipe and Pipe Entry..26

6.3.1. Setting Pipe Match... 26

6.3.1.1. Implicit Match.. 27

6.3.1.2. Explicit Match...28

6.3.2. Setting Pipe Actions... 28

6.3.2.1. Auto-modification...28

6.3.2.2. Explicit Modification Type..29

6.3.2.3. Copy Field...29

6.3.2.4. Multiple Actions List..29

6.3.2.5. Summary of Action Types... 30

6.3.2.6. Summary of Fields.. 30

6.3.3. Setting Pipe Monitoring... 31

6.3.4. Setting Pipe Forwarding.. 31

6.3.5. Basic Pipe Create...32

6.3.6. Pipe Entry (doca_flow_pipe_add_entry).. 33

6.3.6.1. Pipe Entry Counting...34

6.3.6.2. Pipe Entry Aged Query.. 34

6.3.7. Pipe Entry With Multiple Actions...34

6.3.8. Miss Pipe and Control Pipe... 34

6.3.9. doca_flow_pipe_lpm... 36

6.3.10. Hardware Steering Mode... 36

6.4. Teardown... 37

6.4.1. Pipe Entry Teardown.. 37

6.4.2. Pipe Teardown.. 37

6.4.3. Port Teardown.. 37

6.4.4. Flow Teardown... 37

Chapter 7. Packet Processing..38

Chapter 8. DOCA Flow gRPC..40
8.1. Proto-Buff.. 42

8.1.1. Response Message...43

8.1.2. DocaFlowCfg... 43

8.1.3. DocaFlowPortCfg.. 43

8.1.4. DocaFlowPipeCfg..43

8.1.5. DocaFlowMatch.. 43

NVIDIA DOCA Flow MLNX-15-060488 _v1.4 | iv

8.1.6. DocaFlowActions.. 43

8.1.7. DocaFlowMonitor..43

8.1.8. DocaFlowQueryStats...44

8.1.9. DocaFlowHandleAgingRes... 44

8.1.10. DocaFlowInit... 44

8.1.11. DocaFlowPortStart... 44

8.1.12. DocaFlowPortPair...44

8.1.13. DocaFlowCreatePipe.. 44

8.1.14. DocaFlowPipeAddEntry.. 45

8.1.15. DocaFlowControlPipeAddEntry.. 45

8.1.16. DocaFlowLpmPipeAddEntry...45

8.1.17. DocaFlowEntriesProcess... 46

8.1.18. DocaFlowEntyGetStatus... 46

8.1.19. DocaFlowQuery... 47

8.1.20. DocaFlowHandleAging..47

8.2. DOCA Flow gRPC Client API.. 47

8.2.1. doca_flow_grpc_response..48

8.2.2. doca_flow_grpc_pipe_cfg... 48

8.2.3. doca_flow_grpc_fwd... 49

8.2.4. doca_flow_grpc_client_create... 49

8.3. DOCA Flow gRPC Usage.. 49

NVIDIA DOCA Flow MLNX-15-060488 _v1.4 | 1

Chapter 1. Introduction

DOCA Flow is the most fundamental API for building generic packet processing pipes in
hardware.

The library provides an API for building a set of pipes, where each pipe consists of match
criteria, monitoring, and a set of actions. Pipes can be chained so that after a pipe-defined
action is executed, the packet may proceed to another pipe.

Using DOCA Flow API, it is easy to develop HW-accelerated applications that have a match on
up to two layers of packets (tunneled).

‣ MAC/VLAN/ETHERTYPE

‣ IPv4/IPv6

‣ TCP/UDP/ICMP

‣ GRE/VXLAN/GTP-U

‣ Metadata

The execution pipe may include packet modification actions:

‣ Modify MAC address

‣ Modify IP address

‣ Modify L4 (ports, TCP sequences, and acknowledgments)

‣ Strip tunnel

‣ Add tunnel

‣ Set metadata

The execution pipe may also have monitoring actions:

‣ Count

‣ Policers

The pipe also has a forwarding target which may be any of the following:

‣ Software (RSS to subset of queues)

‣ Port

‣ Another pipe

Introduction

NVIDIA DOCA Flow MLNX-15-060488 _v1.4 | 2

‣ Drop packets

This document is intended for software developers writing network function applications that
focus on packet processing (e.g., gateways). The document assumes familiarity with network
stack and DPDK.

NVIDIA DOCA Flow MLNX-15-060488 _v1.4 | 3

Chapter 2. Prerequisites

A DOCA Flow-based application can run either on the host machine or on the NVIDIA®

BlueField® DPU target. Since it is based on DPDK, Flow-based programs require an
allocation of huge pages:
sudo echo 1024 > /sys/kernel/mm/hugepages/hugepages-2048kB/nr_hugepages
sudo mkdir /mnt/huge
sudo mount -t hugetlbfs nodev /mnt/huge

NVIDIA DOCA Flow MLNX-15-060488 _v1.4 | 4

Chapter 3. Architecture

The following diagram shows how the DOCA Flow library defines a pipe template, receives a
packet for processing, creates the a pipe entry, and offloads the flow rule in NIC HW.

‣ MON: Monitor, can be count or meter

‣ User-defined set of matches parser and actions

‣ DOCA Flow pipes can be created or destroyed dynamically

‣ Packet processing is fully accelerated by hardware with a specific entry in a flow pipe

‣ Packets that do not match any of the pipe entries in hardware can be sent to Arm cores for
exception handling and then reinjected back to hardware

NVIDIA DOCA Flow MLNX-15-060488 _v1.4 | 5

Chapter 4. API

Refer to NVIDIA DOCA Libraries API Reference Manual, for more detailed information on
DOCA Flow API.

Note: The pkg-config (*.pc file) for the DOCA Flow library is named doca-flow.

The following sections provide additional details about the library API.

4.1. doca_flow_cfg
This structure is required input for the DOCA Flow global initialization function, doca_flow_init.
struct doca_flow_cfg {
 uint16_t queues;
 struct doca_flow_resources resource;
 const char *mode_args;
 bool aging;
 uint32_t nr_shared_resources[DOCA_FLOW_SHARED_RESOURCE_MAX];
 unit32_t queue_depth;
 doca_flow_entry_process_cb cb;
};
queues

The number of hardware acceleration control queues. It is expected that the same core
always uses the same queue_id. In cases where multiple cores access the API using the
same queue_id, it is up to the application to use locks between different cores/threads.

resource
Resource quota. This field includes the flow resource quota defined in the following structs:

‣ uint32_t nb_counters – number of counters to configure

‣ uint32_b nb_meters – number of traffic meters to configure

mode_args
Mandatory, set the DOCA Flow architecture mode.

aging
Aging is handled by DOCA Flow while it is set to true. Default is false. See Setting Pipe
Monitoring for information on the aging algorithm.

nr_shared_resources
Total shared resource per type. See section Shared Counter Resource for more
information.

http://docs.nvidia.com/doca/sdk/pdf/doca-libraries-api.pdf

API

NVIDIA DOCA Flow MLNX-15-060488 _v1.4 | 6

‣ Index DOCA_FLOW_SHARED_RESOURCE_METER - number of meters that can be shared
among flows.

‣ Index DOCA_FLOW_SHARED_RESOURCE_COUNT - number of counters that can be shared
among flows.

queue_depth
Number of flow rule operations a queue can hold. This value is preconfigured at port start
(queue_size). Default is 128. Configuring 0 sets default value.

cb
Callback function for entry create/destroy

4.2. doca_flow_port_cfg
This struct is required input for the DOCA Flow port initialization function,
doca_flow_port_start.
struct doca_flow_port_cfg {
 uint16_t port_id;
 enum doca_flow_port_type type;
 const char *devargs;
 uint16_t priv_data_size;
};
port_id

Port ID for the given type of port. For example, the following is a DPDK port ID for type
DOCA_FLOW_PORT_DPDK_BY_ID.

type
Determined by the data plane in use.

‣ DOCA_FLOW_PORT_DPDK_BY_ID for DPDK dataplane.

devargs
String containing the exact configuration needed according to the type.

Note: For usage information of the type and devargs fields, refer to Start Port.

priv_data_size
Per port, if this field is not set to zero, it means users want to define private data where
application-specific information can be stored. See doca_flow_port_priv_data for more
information.

4.3. doca_flow_pipe_cfg
This is a pipe configuration that contains the user-defined template for the packet process.
struct doca_flow_pipe_cfg {
 const char *name;
 enum doca_flow_pipe_type type;
 struct doca_flow_port *port;
 bool is_root;
 struct doca_flow_match *match;
 struct doca_flow_match *match_mask;
 struct doca_flow_actions *actions;

API

NVIDIA DOCA Flow MLNX-15-060488 _v1.4 | 7

 struct doca_flow_action_descs *action_descs;
 struct doca_flow_monitor *monitor;
};
name

Name for the pipeline
type

Type of pipe (enum doca_flow_pipe_type). This field includes the following pipe types:

‣ DOCA_FLOW_PIPE_BASIC – flow pipe

‣ DOCA_FLOW_PIPE_CONTROL – control pipe

‣ DOCA_FLOW_PIPE_LPM – LPM pipe

is_root
Determines whether or not the pipeline is root. If true, then the pipe is a root pipe executed
on packet arrival.

nb_flows
Maximum number of flow rules. Default is 8k if not set.

nb_actions
Maximum number of DOCA Flow action array. Default is 1 if not set.

struct doca_flow_pipe_cfg {
 struct doca_flow_pipe_attr attr;
 struct doca_flow_port *port;
 struct doca_flow_match *match;
 struct doca_flow_match *match_mask;
 struct doca_flow_actions **actions;
 struct doca_flow_action_descs **action_descs;
 struct doca_flow_monitor *monitor;
};
attr

Attributes for the pipeline.
port

Port for the pipeline.
match

Matcher for the pipeline.
match_mask

Match mask for the pipeline and only for DOCA_FLOW_PIPE_BASIC.
actions

Actions array for the pipeline and only for DOCA_FLOW_PIPE_BASIC.
action_descs

Action descriptions array and only for DOCA_FLOW_PIPE_BASIC.
monitor

Monitor for the pipeline and only for DOCA_FLOW_PIPE_BASIC.

4.4. doca_flow_meta
This is a maximum 20-byte scratch area which exists throughout the pipeline.

The user can set a value to metadata, copy from a packet field, then match in later pipes. Mask
is supported in both match and modification actions.

The user can modify the metadata in different ways based on its description type:

API

NVIDIA DOCA Flow MLNX-15-060488 _v1.4 | 8

AUTO
Set metadata value from action of a specific entry. Pipe action is used as mask.

CONSTANT
Set metadata value from pipe action. Masked by description mask.

SET
Set metadata value from action of a specific entry. Masked by description as mask.

Note: In a real application, it is encouraged to create a union of doca_flow_meta defining the
application's scratch fields to use as metadata.

struct doca_flow_meta {
 uint32_t pkt_meta;
 uint32_t u32[];
}
pkt_meta

Metadata can be received along with packet.
u32[]

Scratch area.

Note: If encap action is used, pkt_meta should not be defined by the user as it is defined
internally in DOCA to reference the encapsulated tunnel ID.

4.5. doca_flow_match
This structure is a match configuration that contains the user-defined fields that should be
matched on the pipe.
struct doca_flow_match {
 uint32_t flags;
 struct doca_flow_meta meta;
 uint8_t out_src_mac[DOCA_ETHER_ADDR_LEN];
 uint8_t out_dst_mac[DOCA_ETHER_ADDR_LEN];
 doca_be16_t out_eth_type;
 doca_be16_t out_vlan_tci;
 struct doca_flow_ip_addr out_src_ip;
 struct doca_flow_ip_addr out_dst_ip;
 uint8_t out_l4_type;
 uint8_t out_tcp_flags;
 doca_be16_t out_src_port;
 doca_be16_t out_dst_port;
 struct doca_flow_tun tun;
 uint8_t in_src_mac[DOCA_ETHER_ADDR_LEN];
 uint8_t in_dst_mac[DOCA_ETHER_ADDR_LEN];
 doca_be16_t in_eth_type;
 doca_be16_t in_vlan_tci;
 struct doca_flow_ip_addr in_src_ip;
 struct doca_flow_ip_addr in_dst_ip;
 uint8_t in_l4_type;
 uint8_t in_tcp_flags;
 doca_be16_t in_src_port;
 doca_be16_t in_dst_port;
};
flags

Match items which are no value needed.

API

NVIDIA DOCA Flow MLNX-15-060488 _v1.4 | 9

meta
Programmable meta data.

out_src_mac
Outer source MAC address.

out_dst_mac
Outer destination MAC address.

out_eth_type
Outer Ethernet layer type.

out_vlan_tci
Outer VLAN TCI field.

out_src_ip
Outer source IP address.

out_dst_ip
Outer destination IP address.

out_l4_type
Outer layer 4 protocol type.

out_tcp_flags
Outer TCP flags.

out_src_port
Outer layer 4 source port.

out_dst_port
Outer layer 4 destination port.

tun
Tunnel info.

in_src_mac
Inner source MAC address if tunnel is used.

in_dst_mac
Inner destination MAC address if tunnel is used.

in_eth_type
Inner Ethernet layer type if tunnel is used.

in_vlan_tci
Inner VLAN TCI field if tunnel is used.

in_src_ip
Inner source IP address if tunnel is used.

in_dst_ip
Inner destination IP address if tunnel is used.

in_l4_type
Inner layer 4 protocol type if tunnel is used.

in_tcp_flags
Inner TCP flags if tunnel is used.

in_src_port
Inner layer 4 source port if tunnel is used.

in_dst_port
Inner layer 4 destination port if tunnel is used.

API

NVIDIA DOCA Flow MLNX-15-060488 _v1.4 | 10

4.6. doca_flow_actions
This structure is a flow actions configuration.
struct doca_flow_actions {
 uint8_t action_idx;
 uint32_t flags;
 bool decap;
 struct doca_flow_meta meta;
 uint8_t mod_src_mac[DOCA_ETHER_ADDR_LEN];
 uint8_t mod_dst_mac[DOCA_ETHER_ADDR_LEN];
 doca_be16_t modi_vlan_id;
 struct doca_flow_ip_addr mod_src_ip;
 struct doca_flow_ip_addr mod_dst_ip;
 uint8_t ttl;
 doca_be16_t mod_src_port;
 doca_be16_t mod_dst_port;
 bool has_encap;
 struct doca_flow_encap_action encap;
};
action_idx

Index according to place provided on creation.
flags

Action flags.
decap

Decap while it is set to true.
meta

Mask value if description type is AUTO, specific value if description type is CONSTANT.
mod_src_mac

Modify source MAC address.
mod_dst_mac

Modify destination MAC address.
mod_vlan_id

Modify VLAN ID.
mod_src_ip

Modify source IP address.
mod_dst_ip

Modify destination IP address.
ttl

TTL value to add if the field description type is ADD.
mod_src_port

Modify layer 4 source port.
mod_dst_port

Modify layer 4 destination port.
has_encap

Encap while it is set to true.
encap

Encap data information.

API

NVIDIA DOCA Flow MLNX-15-060488 _v1.4 | 11

4.7. doca_flow_action_desc
This structure is an action description.
struct doca_flow_action_desc {
 enum doca_flow_action_type type;
 union {
 union {
 uint32_t u32;
 uint64_t u64;
 uint8_t u8[16];
 } mask;
 struct {
 unit16_t doca_flow_action_field src;
 unit16_t doca_flow_action_field dst;
 unit16_t width;
 } copy;
 };
};
type

Action type.
mask

Mask of modification action type CONSTANT and SET. Big-endian for network fields, host-
endian for meta field.

copy
Field copy source and destination description.

The type field includes the following forwarding modification types:

‣ DOCA_FLOW_ACTION_AUTO – modification type derived from pipe action

‣ DOCA_FLOW_ACTION_CONSTANT – modify action field with the constant value from pipe

‣ DOCA_FLOW_ACTION_SET – modify action field with the value of pipe entry

‣ DOCA_FLOW_ACTION_ADD – add field value. Supports ipv4_ttl, ipv6_hop, tcp_seq, and
tcp_ack.

‣ DOCA_FLOW_ACTION_COPY – copy field.

Refer to Setting Pipe Actions for more information.

4.8. doca_flow_monitor
This structure is a monitor configuration.
struct doca_flow_monitor {
 uint8_t flags;
 struct {
 unit32_t cir;
 unit32_t cbs;
 };
 uint32_t aging;

 uint32_t user_data;
};

API

NVIDIA DOCA Flow MLNX-15-060488 _v1.4 | 12

flags
Indicate actions to be included.

cir
Committed information rate in bytes per second. Defines maximum bandwidth.

cbs
Committed burst size in bytes. Defines maximum local burst size.

aging
Aging time in seconds.

user_data
Aging user data input.

The flags field includes the following monitor types:

‣ DOCA_FLOW_ACTION_METER – set monitor with meter action

‣ DOCA_FLOW_ACTION_COUNT – set monitor with counter action

‣ DOCA_FLOW_ACTION_AGING – set monitor with aging action

T(c) is the number of available tokens. For each packet where b equals the number of bytes,
if t(c)-b≥0 the packet can continue, and tokens are consumed so that t(c)=t(c)-b. If t(c)-
b<0, the packet is dropped.

T(c) tokens are increased according to time, configured CIR, configured CBS, and packet
arrival. When a packet is received, prior to anything else, the t(c) tokens are filled. The
number of tokens is a relative value that relies on the total time passed since the last update,
but it is limited by the CBS value.

CIR is the maximum bandwidth at which packets continue being confirmed. Packets
surpassing this bandwidth are dropped. CBS is the maximum bytes allowed to exceed the CIR
to be still CIR confirmed. Confirmed packets are handled based on the fwd parameter.

The number of <cir,cbs> pair different combinations is limited to 128.

4.9. doca_flow_fwd
This structure is a forward configuration which directs where the packet goes next.
struct doca_flow_fwd {
 enum doca_flow_fwd_type type;
 union {
 struct {
 unit32_t rss_flags;
 unit32_t *rss_queues;
 int num_of_queues;
 uint32_t rss_mark;
 };
 struct {
 unit16_t port_id;
 };
 struct {
 struct doca_flow_pipe *next_pipe;
 };
 };
};
type

Indicates the forwarding type.

API

NVIDIA DOCA Flow MLNX-15-060488 _v1.4 | 13

rss_flags
RSS offload types.

rss_queues
RSS queues array.

num_of_queues
Number of queues.

rss_mask
Mark ID of each queue.

port_id
Destination port ID.

next_pipe
Next pipe pointer.

The type field includes the forwarding action types defined in the following enum:

‣ DOCA_FLOW_FWD_RSS – forwards packets to RSS

‣ DOCA_FLOW_FWD_PORT – forwards packets to port

‣ DOCA_FLOW_FWD_PIPE – forwards packets to another pipe

‣ DOCA_FLOW_FWD_DROP – drops packets

The rss_flags field includes the RSS fields defined in the following enum:

‣ DOCA_FLOW_RSS_IP – RSS by IP header

‣ DOCA_FLOW_RSS_UDP – RSS by UDP header

‣ DOCA_FLOW_RSS_TCP – RSS by TCP header

4.10. doca_flow_query
This struct is a flow query result.
struct doca_flow_query {
 uint64_t total_bytes;
 uint64_t total_pkts;
};
total_bytes

Total bytes hit this flow.
total_pkts

Total packets hit this flow.

4.11. doca_flow_aged_query
This structure is an aged flow callback context.
struct doca_flow_aged_query {
 uint64_t user_data;
};
user_data

The user input context. Otherwise, the doca_flow_pipe_entry pointer be returned.

API

NVIDIA DOCA Flow MLNX-15-060488 _v1.4 | 14

4.12. doca_flow_init
This function is the global initialization function for DOCA Flow.
int doca_flow_init(const struct doca_flow_cfg *cfg, struct doca_flow_error *error);
cfg [in]

A pointer to flow config structure.
error [out]

A pointer to flow error output.
Returns

0 on success, a negative errno value otherwise and error is set.

Note: Must be invoked first before any other function in this API. This is a one-time call used
for DOCA Flow initialization and global configurations.

4.13. doca_flow_port_start
This function starts a port with its given configuration. It creates one port in the DOCA Flow
layer, allocates all resources used by this port, and creates the default offload flow rules to
redirect packets into software queues.
struct doca_flow_port *doca_flow_port_start(const struct doca_flow_port_cfg *cfg,
 struct doca_flow_error *error);
cfg [in]

A pointer to flow port config structure.
error [out]

A pointer to flow error output.
Returns

Port handler on success, NULL otherwise an error is set.

4.14. doca_flow_port_priv_data
This function get the pointer of user private data. User can manage the specific data in DOCA
port, the size of the private data is given on port configuration.
uint8_t *doca_flow_port_priv_data(struct doca_flow_port *port);
port [in]

A pointer to the DOCA Flow port structure.
Returns

Private data head pointer.

4.15. doca_flow_port_pair
This function pairs two DOCA ports. If two ports are not representor ports, after performing a
physical hairpin bind, this API notifies DOCA that these two ports are hairpin peers. If FWD to

API

NVIDIA DOCA Flow MLNX-15-060488 _v1.4 | 15

the hairpin port, DOCA builds a hairpin queue action. If one of the two ports is a representor,
DOCA creates a miss flow with a port action to redirect the traffic from one port to the other.
Those two paired ports have no order, and a port cannot be paired with itself.
int *doca_flow_port_pair(struct doca_flow_port *port,
 struct doca_flow_port *pair_port);
port [in]

A pointer to DOCA Flow port structure.
pair_port [in]

A pointer to another DOCA Flow port structure.
Returns

0 on success, negative value on failure.

4.16. doca_flow_pipe_create
This function creates a new pipeline to match and offload specific packets. The pipeline
configuration is defined in the doca_flow_pipe_cfg. The API creates a new pipe but does not
start the hardware offload.

When cfg type is DOCA_FLOW_PIPE_CONTROL, the function creates a special type of pipe that
can have dynamic matches and forwards with priority. The number of entries is limited to <64.
struct doca_flow_pipe *
doca_flow_pipe_create(const struct doca_flow_pipe_cfg *cfg,
 const struct doca_flow_fwd *fwd,
 const struct doca_flow_fwd *fwd_miss,
 struct doca_flow_error *error);
cfg [in]

A pointer to flow pipe config structure.
fwd [in]

A pointer to flow forward config structure.
fwd_miss [in]

A pointer to flow forward miss config structure. NULL for no fwd_miss. When creating a
pipe, if there is a miss and fwd_miss is configured, then packet steering should jump to it.

error [out]
A pointer to flow error output.

Returns
Pipe handler on success, NULL otherwise and error is set.

4.17. doca_flow_pipe_add_entry
This function add a new entry to a pipe. When a packet matches a single pipe, it starts
hardware offload. The pipe defines which fields to match. This API does the actual hardware
offload, with the information from the fields of the input packets.
struct doca_flow_pipe_entry *
doca_flow_pipe_add_entry(uint16_t pipe_queue,
 struct doca_flow_pipe *pipe,
 const struct doca_flow_match *match,
 const struct doca_flow_actions *actions,
 const struct doca_flow_monitor *monitor,
 const struct doca_flow_fwd *fwd,

API

NVIDIA DOCA Flow MLNX-15-060488 _v1.4 | 16

 unit32_t flags,
 void *usr_ctx,
 struct doca_flow_error *error);
pipe_queue [in]

Queue identifier.
pipe [in]

A pointer to flow pipe.
match [in]

A pointer to flow match. Indicates specific packet match information.
actions [in]

A pointer to modify actions. Indicates specific modify information.
monitor [in]

A pointer to monitor profiling or aging.
fwd [in]

A pointer to flow forward actions.
flags [in]

Can be set as DOCA_FLOW_WAIT_FOR_BATCH or DOCA_FLOW_NO_WAIT.
DOCA_FLOW_WAIT_FOR_BATCH means that this entry waits to be pushed to hardware.
DOCA_FLOW_NO_WAIT means that this entry is pushed to hardware immediately.

usr_cnt [in]
A pointer to user context.

error [out]
A pointer to flow error output.

Returns
Pipe entry handler on success, NULL otherwise and error is set.

4.18. doca_flow_pipe_control_add_entry
This function adds a new entry to a control pipe. When a packet matches a single pipe, it starts
hardware offload. The pipe defines which fields to match. This API does the actual hardware
offload with the information from the fields of the input packets.
struct doca_flow_pipe_entry *
doca_flow_pipe_control_add_entry(uint16_t pipe_queue,
 struct doca_flow_pipe *pipe,
 const struct doca_flow_match *match,
 const struct doca_flow_match *match_mask,
 const struct doca_flow_fwd *fwd,
 struct doca_flow_error *error);
pipe_queue [in]

Queue identifier.
priority [in]

Priority value.
pipe [in]

A pointer to flow pipe.
match [in]

A pointer to flow match. Indicates specific packet match information.
match_mask [in]

A pointer to flow match mask information.
fwd [in]

A pointer to flow FWD actions.

API

NVIDIA DOCA Flow MLNX-15-060488 _v1.4 | 17

error [out]
A pointer to flow error output.

Returns
Pipe entry handler on success, NULL otherwise and error is set.

4.19. doca_flow_pipe_lpm_add_entry
This function adds a new entry to an LPM pipe. This API does the actual hardware offload all
entries when flags is set to DOCA_FLOW_NO_WAIT.
struct doca_flow_pipe_entry *
doca_flow_pipe_lpm_add_entry(uint16_t pipe_queue,
 uint8_t priority,
 struct doca_flow_pipe *pipe,
 const struct doca_flow_match *match,
 const struct doca_flow_match *match_mask,
 const struct doca_flow_fwd *fwd,
 unit32_t flags,
 void *usr_ctx,
 struct doca_flow_error *error);
pipe_queue [in]

Queue identifier.
priority [in]

Priority value.
pipe [in]

A pointer to flow pipe.
match [in]

A pointer to flow match. Indicates specific packet match information.
match_mask [in]

A pointer to flow match mask information.
fwd [in]

A pointer to flow FWD actions.
fwd [in]

Can be set as DOCA_FLOW_WAIT_FOR_BATCH or DOCA_FLOW_NO_WAIT.
DOCA_FLOW_WAIT_FOR_BATCH means that lpm collects this flow entry. DOCA_FLOW_NO_WAIT
means that lpm adds this entry, builds the lpm software tree, and pushes all entries to
hardware immediately.

usr_cnt [in]
A pointer to user context.

error [out]
A pointer to flow error output.

Returns
Pipe entry handler on success, NULL otherwise and error is set.

4.20. doca_flow_entries_process
This function processes entries in the queue. The application must invoke this function to
complete flow rule offloading and to receive the flow rule's operation status.
int
doca_flow_entries_process(struct doca_flow_port *port,

API

NVIDIA DOCA Flow MLNX-15-060488 _v1.4 | 18

 uint16_t pipe_queue,
 uint64_t timeout,
 uint32_t max_processed_entries);
port [in]

A pointer to the flow port structure.
pipe_queue [in]

Queue identifier.
timeout [in]

Timeout value.
max_processed_entries [in]

A pointer to the flow pipe.
Returns

>0 – the number of entries processed
0 – no entries are processed
<0 – failure

4.21. doca_flow_entries_process
This function get the status of pipe entry.
enum doca_flow_entry_status
doca_flow_entry_get_status(struct doca_flow_entry *entry);
entry [in]

A pointer to the flow pipe entry to query.
Returns

Entry's status, defined in the following enum:

‣ DOCA_FLOW_ENTRY_STATUS_IN_PROCESS – the operation is in progress

‣ DOCA_FLOW_ENTRY_STATUS_SUCCESS – the operation completed successfully

‣ DOCA_FLOW_ENTRY_STATUS_ERROR – the operation failed

4.22. doca_flow_query
This function queries the packet statistics about a specific pipe entry.
int doca_flow_query(struct doca_flow_pipe_entry *entry, struct doca_flow_query
 *query_stats);
entry [in]

A pointer to the flow pipe entry to query.
query_stats [out]

A pointer to the data retrieved by the query.
Returns

0 on success, a negative errno value otherwise and error is set.

API

NVIDIA DOCA Flow MLNX-15-060488 _v1.4 | 19

4.23. doca_flow_aging_handle
This function handles the aging of all the pipes of a given port. It goes over all flows and
releases aged flows from being tracked. The entries array is filled with aged flows. Since the
number of flows can be very large, it can take a significant amount of time to go over all flows,
so this function is limited by a time quota. This means it might return without handling all
flows which requires the user to call it again.
int doca_flow_aging_handle(struct doca_flow_port *port,
 uint16_t queue,
 uint64_t quota,
 struct doca_flow_aged_query *entries,
 int len);
queue [in]

Queue identifier.
quota [in]

Max time quota in microseconds for this function to handle aging.
entries [in]

User input entry array for the aged flows.
len [in]

User input length of entries array.
Returns

>0 – the number of aged flows filled in entries array.
0 – no aged entries in current call.
-1 – full cycle is done.

NVIDIA DOCA Flow MLNX-15-060488 _v1.4 | 20

Chapter 5. Shared Counter Resource

A shared counter can be used in multiple pipe entries. The following are the steps involved in
configuring and using shared counters.

5.1. On doca_flow_init()
Specify the total number of shared counters to be used, nb_shared_counters.

This call implicitly defines the shared counters IDs in the range of 0-nb_shared_counters-1.
struct doca_flow_cfg cfg = {
 .queues = queues,
 ...
 .nr_shared_resources = {0, nb_shared_counters},
}
doca_flow_init(&cfg, &error);

5.2. On doca_flow_shared_resource_cfg()
This call can be skipped for shared counters.

5.3. On
doca_flow_shared_resource_bind()

This call binds a bulk of shared counters IDs to a specific pipe or port.
int
doca_flow_shared_resources_bind(enum doca_flow_shared_resource_type type, uint32_t
 *res_array,
 uint32_t res_array_len, void *bindable_obj,
 struct doca_flow_error *error);

res_array [in]
Array of shared counters IDs to be bound.

res_array_len [in]
Array length.

bindable_obj
Pointer to either a pipe or port.

Shared Counter Resource

NVIDIA DOCA Flow MLNX-15-060488 _v1.4 | 21

This call allocates the counter's objects. A counter ID specified in this array can only be used
later by the corresponding bindable object (pipe or port).

The following example binds counters IDs 2, 4, and 7 to a pipe. The pipe IDs must be within the
range 0-nb_shared_coutners-1.
uint32_t shared_counters_ids = {2, 4, 7};
struct doca_flow_pipe *pipe = ...

doca_flow_shared_resources_bind(
 DOCA_FLOW_SHARED_RESOURCE_COUNT,
 shared_counters_ids, 3, pipe, &error);

5.4. On doca_flow_pipe_add_entry()
or Pipe Configuration (struct
doca_flow_pipe_cfg)

The shared counter ID is included in the monitor parameter. It must be bound to the pipe
object in advance.
struct doca_flow_monitor {
 ...
 uint32_t shared_counter_id;
 /**< shared counter id */
 ...
}

Packets matching the pipe entry are counted on the shared_counter_id. In pipe
configuration, the shared_counter_id can be changeable (all FFs) and then the pipe entry
holds the specific shared counter ID.

5.5. Querying Bulk of Shared Counter IDs
Use this API:
int
 doca_flow_shared_resources_query(enum doca_flow_shared_resource_type type,

 uint32_t *res_array,
 struct doca_flow_shared_resource_result *query_results_array,
 uint32_t array_len,
 struct doca_flow_error *error);

res_array [in]
Array of shared counters IDs to be queried.

res_array_len [in]
Array length.

query_results_array [out]
Query results array. Must be allocated prior to calling this API.

The type parameter is DOCA_FLOW_SHARED_RESOURCE_COUNT.

Shared Counter Resource

NVIDIA DOCA Flow MLNX-15-060488 _v1.4 | 22

5.6. On doca_flow_pipe_destroy() or
doca_flow_port_destroy()

All bound resource IDs of this pipe or port are destroyed.

NVIDIA DOCA Flow MLNX-15-060488 _v1.4 | 23

Chapter 6. Flow Life Cycle

6.1. Initialization Flow
Before using any DOCA Flow function, it is mandatory to call DOCA Flow initialization,
doca_flow_init(), which initializes all resources used by DOCA Flow.

6.1.1. Pipe Mode
This mode (mode_args) defines the basic traffic in DOCA. It creates some miss rules when the
DOCA port initialized. Currently, DOCA supports 3 types:

‣ vnf

The packet arrives from one side of the application, is processed, and sent from the other
side. The miss packet by default goes to the RSS of all queues.

The following diagram shows the basic traffic flow in vnf mode. Packet1 firstly misses to
host RSS queues. The app captures this packet and decides how to process it and then
creates a pipe entry. Packet2 will hit this pipe entry and do the action, for example, for
VXLAN, will do decap, modify, and encap, then is sent out from P1.

Flow Life Cycle

NVIDIA DOCA Flow MLNX-15-060488 _v1.4 | 24

‣ switch

Used for internal switching, only representor ports are allowed, for example, uplink
representors and SF/VF representors. Packet is forwarded from one port to another. If a
packet arrives from an uplink and does not hit the rules defined by the user's pipe. Then
the packet is received on all RSS queues of the representor of the uplink.

The following diagram shows the basic flow of traffic in switch mode. Packet1 firstly
misses to host RSS queues. The app captures this packet and decides which representor
goes, and then sets the rule. Packets hit this rule and go to representor0.

‣ remote-vnf

Remote mode is a BlueField mode only, with two physical ports (uplinks). Users must use
doca_flow_port_pair to pair one physical port and one of its representors. A packet
from this uplink, if it does not hit any rules from the users, is firstly received on this
representor. Users must also use doca_flow_port_pair to pair two physical uplinks. If a
packet is received from one uplink and hits the rule whose FWD action is to another uplink,
then the packets are sent out from it.

The following diagram shows the basic traffic flow in remote-vnf mode. Packet1, from
BlueField uplink P0, firstly misses to host VF0. The app captures this packet and decides
whether to drop it or forward it to another uplink (P1). Then, using gRPC to set rules on P0,
packet2 hits the rule, then is either dropped or is sent out from P1.

Flow Life Cycle

NVIDIA DOCA Flow MLNX-15-060488 _v1.4 | 25

6.2. Start Point
DOCA Flow API serves as an abstraction layer API for network acceleration. The packet
processing in-network function is described from ingress to egress and, therefore, a pipe
must be attached to the origin port. Once a packet arrives to the ingress port, it starts the
hardware execution as defined by the DOCA API.

doca_flow_port is an opaque object since the DOCA Flow API is not bound to a specific
packet delivery API, such as DPDK. The first step is to start the DOCA Flow port by calling
doca_flow_port_start(). The purpose of this step is to attach user application ports to the
DOCA Flow ports.

When DPDK is used, the following configuration must be provided:
enum doca_flow_port_type type = DOCA_FLOW_PORT_DPDK_BY_ID;
const char *devargs = "1";

The devargs parameter points to a string that has the numeric value of the DPDK port_id in
decimal format. The port must be configured and started before calling this API. Mapping the
DPDK port to the DOCA port is required to synchronize application ports with hardware ports.

Flow Life Cycle

NVIDIA DOCA Flow MLNX-15-060488 _v1.4 | 26

6.3. Create Pipe and Pipe Entry
Pipe is a template that defines packet processing without adding any specific HW rule. A pipe
consists of a template that includes the following elements:

‣ Match

‣ Monitor

‣ Actions

‣ Forward

The following diagram illustrates a pipe structure.

The creation phase allows the HW to efficiently build the execution pipe. After the pipe is
created, specific entries can be added. Only a subset of the pipe can be used (e.g. skipping the
monitor completely, just using the counter, etc).

6.3.1. Setting Pipe Match
Match is a mandatory field when creating a pipe. Using the following struct, users must define
the fields that should be matched on the pipe.

For each doca_flow_match field, users choose whether the field is:

‣ Ignored (wild card) – the value of the field is ignored.

‣ Constant – all entries in the pipe must have the same value for this field. Users should not
put a value for each entry.

‣ Changeable – per entry, the user must provide the value to match.

Note: L4 type, L3 type, and tunnel type cannot be changeable.

Flow Life Cycle

NVIDIA DOCA Flow MLNX-15-060488 _v1.4 | 27

The match field type can be defined either implicitly or explicitly using the
doca_flow_pipe_cfg.match_mask pointer. match_mask==NULL is implicit. Otherwise, it is
explicit.

6.3.1.1. Implicit Match

Match Type Pipe Value
Pipe Mask,
match_mask Entry Value

Wildcard (match any) 0 Null pointer N/A

Constant Pipe value Null pointer N/A

Variable (per entry) Full mask (0xff...) Null pointer Per-entry value

To match implicitly, the following should be taken into account.

‣ Ignored fields:

‣ Field is zeroed

‣ Pipeline has no comparison on the field

‣ Constant fields

These are fields that have a constant value. For example, as shown in the following, the
tunnel type is VXLAN.
match.tun.type = DOCA_FLOW_TUN_VXLAN;

These fields only need to be configured once, not once per new pipeline entry.

‣ Changeable fields

These are fields that may change per entry. For example, the following shows an inner 5-
tuple which are set with a full mask.
match.in_dst_ip.ipv4_addr = 0xffffffff;

If this is the constant value required by user, then they should set zero on the field when
adding a new entry.

‣ Example

The following is an example of a match on the VXLAN tunnel, where for each entry there is
a specific IPv4 destination address, and an inner 5-tuple.
static void build_underlay_overlay_match(struct doca_flow_match *match)
{
 //outer
 match->out_dst_ip.ipv4_addr = 0xffffffff;
 match->out_l4_type = DOCA_PROTO_UDP;
 match->out_dst_port = DOCA_VXLAN_DEFAULT_PORT;
 match->tun.type = DOCA_FLOW_TUN_VXLAN;
 match->tun.vxlan_tun_id = 0xffffffff;
 //inner
 match->in_dst_ip.ipv4_addr = 0xffffffff;
 match->in_dst_ip.type = DOCA_FLOW_IP4_ADDR;
 match->in_src_ip.ipv4_addr = 0xffffffff;
 match->in_src_ip.type = DOCA_FLOW_IP4_ADDR;
 match->in_l4_type = DOCA_PROTO_TCP;
 match->in_src_port = 0xffff;
 match->in_dst_port = 0xffff;
}

Flow Life Cycle

NVIDIA DOCA Flow MLNX-15-060488 _v1.4 | 28

6.3.1.2. Explicit Match

Match Type Pipe Value
Pipe Mask,
match_mask Entry Value

Wildcard (match any) 0 0 N/A

Constant Pipe value Full mask (0xff…) N/A

Variable (per entry) 0 Mask Per-entry value

Users may provide a mask on a match. In this case, there are two doca_flow_match items:
The first contains constant values and the second contains masks.

‣ Ignored fields

‣ Field is zeroed

‣ Pipeline has no comparison on the field

match_mask.in_dst_ip.ipv4_addr = 0;

‣ Constant fields

These are fields that have a constant value. For example, as shown in the following, the
tunnel type is VXLAN and the mask should be full.
match.tun.type = DOCA_FLOW_TUN_VXLAN;
 match_mask.tun.type = 0xffffffff;

Once a field is defined as constant, the field's value cannot be changed per entry. Users
must set constant fields to zero when adding entries so as to avoid ambiguity.

‣ Changeable fields

These are fields that may change per entry (e.g. inner 5-tuple). Their value should be zero
and the mask should be full.
match.in_dst_ip.ipv4_addr = 0;
 match_mask.in_dst_ip.ipv4_addr = 0xffffffff;

Note that for IPs, the prefix mask can be used as well.

6.3.2. Setting Pipe Actions

6.3.2.1. Auto-modification
Similarly to setting pipe match, actions also have a template definition.

Similarly to doca_flow_match in the creation phase, only the subset of actions that should be
executed per packet are defined. This is done in a similar way to match, namely by classifying
a field of doca_flow_match to one of the following:

‣ Ignored field – field is zeroed, modify is not used

‣ Constant fields – when a field must be modified per packet, but the value is the same for
all packets, a one-time value on action definitions can be used

Flow Life Cycle

NVIDIA DOCA Flow MLNX-15-060488 _v1.4 | 29

‣ Changeable fields – fields that may have more than one possible value, and the exact
values are set by the user per entry
match_mask.in_dst_ip.ipv4_addr = 0xffffffff;

Metadata is considered as per-packet changeable fields, pipe action is used as a mask.

‣ Boolean fields – Boolean values, encap and decap are considered as constant values. It
is not allowed to generate actions with encap=true and to then have an entry without an
encap value.

For example:
static void
create_decap_inner_modify_actions(struct doca_flow_actions *actions)
{
 actions->decap = true;
 actions->mod_dst_ip.ipv4_addr = 0xffffffff;
}

6.3.2.2. Explicit Modification Type
It is possible to force constant modification or per-entry modification with action description
type (CONSTANT or SET) and mask. For example:
static void
create_constant_modify_actions(struct doca_flow_actions *actions，
 struct doca_flow_action_descs *descs)
{
 actions->mod_src_port = 0x1234;
 descs->src_port.type = DOCA_FLOW_ACTION_CONSTANT;
 descs->outer.src_port.mask.u64 = 0xffff;
}

6.3.2.3. Copy Field
Action description can be used to copy between packet field and metadata. For example:
static void
create_copy_packet_to_meta_actions(struct doca_flow_match *match，
 struct doca_flow_action_descs *descs)
{
 descs->src_ip.type = DOCA_FLOW_ACTION_COPY;
 descs->src_ip.copy.dst = &match->meta.u32[1];
}

6.3.2.4. Multiple Actions List
Creating a pipe is possible using a list of multiple actions. For example:
static void
create_multi_actions_for_pipe_cfg()
{
 struct doca_flow_actions *actions_arr[2];
 struct doca_flow_actions actions_0 = {0}, actions_1 = {0};
 struct doca_flow_pipe_cfg pipe_cfg = {0};

 /* input configurations for actions_0 and actions_1 */

 actions_arr[0] = &actions_0;
 actions_arr[1] = &actions_1;
 pipe_cfg.attr.nb_actions = 2;
 pipe_cfg.actions = actions_arr;
}

Flow Life Cycle

NVIDIA DOCA Flow MLNX-15-060488 _v1.4 | 30

6.3.2.5. Summary of Action Types
Pipe Creation Entry Creation
action_desc

doca_flow_action_type Configuration

Pipe Actions Entry Actions

0 – field ignored, no
modification

N/A

val != 0 – apply this val
to all entries

N/A

val = 0xfff – changeable
field

Define val per entry

DOCA_FLOW_ACTION_AUTO

Derived from pipe
actions.

No specific config

Specific for Metadata
- the meta field in the
actions is used as a
mask.

Define val per entry

DOCA_FLOW_ACTION_CONSTANT

Pipe action is constant.

Define the mask Define val to apply for
all entries

N/A

DOCA_FLOW_ACTION_SET

Set value from entry
action.

Define the mask N/A Define val per entry

DOCA_FLOW_ACTION_ADD

Add field value.

Define the val to apply
for all entries

N/A N/A

DOCA_FLOW_ACTION_COPY

Copy field to another
field.

Define the source and
destination fields.

‣ Meta field →
header field

‣ Header field →
meta field

‣ Meta field → meta
field

N/A N/A

6.3.2.6. Summary of Fields
Field Match Modification Add Copy
meta.pkt_meta x x x

meta.u32 x x x

Packet outer fields x (field list) x (field list) TTL Between meta[1]

Packet tunnel x To meta

Packet inner fields x (field list) To meta[1]

[1] Copy from meta to IP is not supported.

Flow Life Cycle

NVIDIA DOCA Flow MLNX-15-060488 _v1.4 | 31

6.3.3. Setting Pipe Monitoring
If a meter policer should be used, then it is possible to have the same configuration for
all policers on the pipe or to have a specific configuration per entry. The meter policer is
determined by the FWD action. If an entry has NULL FWD action, the policer FWD action is
taken from the pipe.

The monitor also includes the aging configuration, if the aging time is set, this entry ages out
if timeout passes without any matching on the entry. User data is used to map user usage.
If the user_data field is set, when the entry ages out, query API returns this user_data. If
user_data is not configured by the application, the aged pipe entry handle is returned.

For example:
static void build_entry_monitor(struct doca_flow_monitor *monitor, void *user_ctx)
{
 monitor->flags |= DOCA_FLOW_MONITOR_AGING;
 monitor->aging = 10;
 monitor->user_data = (uint64_t)user_ctx;
}

Refer to Pipe Entry Aged Query for more information.

6.3.4. Setting Pipe Forwarding
The FWD (forwarding) action is the last action in a pipe, and it directs where the packet goes
next. Users may configure one of the following destinations:

‣ Send to software (representor)

‣ Send to wire

‣ Jump to next pipe

‣ Drop packets

The FORWARDING action may be set for pipe create, but it can also be unique per entry.

A pipe can be defined with constant forwarding (e.g., always send packets on a specific port).
In this case, all entries will have the exact same forwarding. If forwarding is not defined when
a pipe is created, users must define forwarding per entry. In this instance, pipes may have
different forwarding actions.

When a pipe includes meter monitor <cir, cbs>, it must have fwd defined as well as the
policer.

The following is an RSS forwarding example:
fwd->type = DOCA_FLOW_FWD_RSS;
fwd->rss_queues = queues;
fwd->rss_flags = DOCA_FLOW_RSS_IP | DOCA_FLOW_RSS_UDP;
fwd->num_of_queues = 4;
fwd->rss_mark = 0x1234;

Queues point to the uint16_t array that contains the queue numbers. When a port is started,
the number of queues is defined, starting from zero up to the number of queues minus 1. RSS
queue numbers may contain any subset of those predefined queue numbers. For a specific

Flow Life Cycle

NVIDIA DOCA Flow MLNX-15-060488 _v1.4 | 32

match, a packet may be directed to a single queue by having RSS forwarding with a single
queue.

Changeable RSS forwarding is supported. When creating the pipe, the num_of_queues must
be set to 0xff, then different forwarding RSS information can be set when adding each entry.
fwd->num_of_queues = 0xffffffff;

MARK is an optional parameter that may be communicated to the software. If MARK is set
and the packet arrives to the software, the value can be examined using the software API.
When DPDK is used, MARK is placed on the struct rte_mbuf. (See "Action: MARK" section in
official DPDK documentation.) When using the Kernel, the MARK value is placed on the struct
sk_buff MARK field.

The port_id is given in struct doca_flow_port_cfg.

The packet is directed to the port. In many instances the complete pipe is executed in the HW,
including the forwarding of the packet back to the wire. The packet never arrives to the SW.

Example code for forwarding to port:
struct doca_flow_fwd *fwd = malloc(sizeof(struct doca_flow_fwd));
memset(fwd, 0, sizeof(struct doca_flow_fwd));
fwd->type = DOCA_FLOW_FWD_PORT;
fwd->port_id = port_cfg->port_id;

The type of forwarding is DOCA_FLOW_FWD_PORT and the only data required is the port_id as
defined in DOCA_FLOW_PORT.

Changeable port forwarding is also supported. When creating the pipe, the port_id must be
set to 0xff, then different forwarding port_id values can be set when adding each entry.

6.3.5. Basic Pipe Create
Once all parameters are defined, the user should call doca_flow_pipe_create to create a
pipe.

The return value of the function is a handle to the pipe. This handle should be given when
adding entries to pipe. If a failure occurs, the function returns NULL, and the error reason and
message are put in the error argument if provided by the user.

Refer to the NVIDIA DOCA Libraries API Reference Manual to see which fields are optional and
may be skipped. It is typically recommended to set optional fields to 0 when not in use. See
Miss Pipe and Control Pipe for more information.

Once a pipe is created, a new entry can be added to it. These entries are bound to a pipe, so
when a pipe is destroyed, all the entries in the pipe are removed. Please refer to section Pipe
Entry for more information.

There is no priority between pipes or entries. The way that priority can be implemented is to
match the highest priority first, and if a miss occurs, to jump to the next PIPE. There can be
more than one PIPE on a root as long the pipes are not overlapping. If entries overlap, the
priority is set according to the order of entries added. So, if two root pipes have overlapping
matching and PIPE1 has higher priority than PIPE2, users should add an entry to PIPE1 after
all entries are added to PIPE2.

https://doc.dpdk.org/guides/prog_guide/rte_flow.html
http://docs.nvidia.com/doca/sdk/pdf/doca-libraries-api.pdf

Flow Life Cycle

NVIDIA DOCA Flow MLNX-15-060488 _v1.4 | 33

6.3.6. Pipe Entry (doca_flow_pipe_add_entry)
An entry is a specific instance inside of a pipe. When defining a pipe, users define match
criteria (subset of fields to be matched), the type of actions to be done on matched packets,
monitor, and, optionally, the FWD action.

When a user calls doca_flow_pipe_add_entry() to add an entry, they should define the
values that are not constant among all entries in the pipe. And if FWD is not defined then that
is also mandatory.

DOCA Flow is designed to support concurrency in an efficient way. Since the expected rate is
going to be in millions of new entries per second, it is mandatory to use a similar architecture
as the data path. Having a unique queue ID per core saves the DOCA engine from having to
lock the data structure and enables the usage of multiple queues when interacting with HW.

Each core is expected to use its own dedicated pipe_queue number when calling
doca_flow_pipe_entry. Using the same pipe_queue from different cores causes a race
condition and has unexpected results.

Upon success, a handle is returned. If a failure occurs, a NULL value is returned, and an error
message is filled. The application can keep this handle and call remove on the entry using its
handle.
int doca_flow_pipe_rm_entry(uint16_t pipe_queue, void *usr_ctx, struct
 doca_flow_pipe_entry *entry);

Flow Life Cycle

NVIDIA DOCA Flow MLNX-15-060488 _v1.4 | 34

6.3.6.1. Pipe Entry Counting
By default, no counter is added. If defined in monitor, a unique counter is added per entry.

Note: Having a counter per entry affects performance and should be avoided if it is not required
by the application.

When a counter is present, it is possible to query the flow and get the counter's data by calling
doca_flow_query.

The retrieved statistics are stored in struct doca_flow_query.

6.3.6.2. Pipe Entry Aged Query
When a user calls doca_flow_aged_query(), this query is used to get the aged-out entries by
the time quota in microseconds. The entry handle or the user_data input is returned by this
API.

Since the number of flows can be very large, the query of aged flows is limited by a quota in
microseconds. This means that it may return without all flows and requires the user to call it
again. When the query has gone over all flows, a full cycle is done.

The struct doca_flow_aged_query contains the element user_data which contains the
aged-out flow contexts.

6.3.7. Pipe Entry With Multiple Actions
Users can define multiple actions per pipe. This gives the user the option to define
different actions per entry in the same pipe by providing the action_idx in struct
doca_flow_actions.

For example, to create two flows with the same match but with different actions, users can
provide two actions upon pipe creation, Action_0 and Action_1, which have indices 0 and
1 respectively in the actions array in the pipe configuration. Action_0 has modify_mac, and
Action_1 has modify_ip.

Users can also add two kinds of entries to the pipe, the first one with Action_0 and the
second with Action_1. This is done by assigning 0 in the action_idx field in struct
doca_flow_actions when creating the first entry and 1 when creating the second one.

6.3.8. Miss Pipe and Control Pipe

Note: Only one root pipe is allowed. If more than one is needed, create a control pipe as root
and forward the packets to relevant non-root pipes.

To set priority between pipes, users must use miss-pipes. Miss pipes allow to look up entries
associated with pipe X, and if there are no matches, to jump to pipe X+1 and perform a lookup
on entries associated with pipe X+1.

The following figure illustrates the HW table structure:

Flow Life Cycle

NVIDIA DOCA Flow MLNX-15-060488 _v1.4 | 35

The first lookup is performed on the table with priority 0. If no hits are found, then it jumps to
the next table and performs another lookup.

The way to implement a miss pipe in DOCA Flow is to use a miss pipe in FWD. In struct
doca_flow_fwd, the field next_pipe signifies that when creating a pipe, if a fwd_miss
is configured then if a packet does not match the specific pipe, steering should jump to
next_pipe in fwd_miss.

next_pipe is defined as doca_flow_pipe and created by doca_flow_pipe_create.
To separate miss_pipe and a general one, is_root is introduced in struct
doca_flow_pipe_cfg. If is_root is true, it means the pipe is a root pipe executed on packet
arrival. Otherwise, the pipe is next_pipe.

When fwd_miss is not null, the packet that does not match the criteria is handled by
next_pipe which is defined in fwd_miss.

In internal implementations of doca_flow_pipe_create, if fwd_miss is not null and the
forwarding action type of miss_pipe is DOCA_FLOW_FWD_PIPE, a flow with the lowest priority
is created that always jumps to the group for the next_pipe of the fwd_miss. Then the flow
of next_pipe can handle the packets, or drop the packets if the forwarding action type of
miss_pipe is DOCA_FLOW_FWD_DROP.

For example, VXLAN packets are forwarded as RSS and hairpin for other packets.
The miss_pipe is for the other packets (non-VXLAN packets) and the match is for
general Ethernet packets. The fwd_miss is defined by miss_pipe and the type is
DOCA_FLOW_FWD_PIPE. For the VXLAN pipe, it is created by doca_flow_create() and
fwd_miss is introduced.

Since, in the example, the jump flow is for general Ethernet packets, it is possible that some
VXLAN packets match it and cause conflicts. For example, VXLAN flow entry for ipA is created.
A VXLAN packet with ipB comes in, no flow entry is added for ipB, so it hits miss_pipe and is
hairpinned.

Flow Life Cycle

NVIDIA DOCA Flow MLNX-15-060488 _v1.4 | 36

A control pipe is introduced to handle the conflict. When a user calls
doca_flow_create_control_pipe(), the new control pipe is created without any
configuration except for the port. Then the user can add different matches with different
forwarding and priorities when there are conflicts.

The user can add a control entry by calling doca_flow_control_pipe_add_entry().

priority must be defined as higher than the lowest priority (3) and lower than the highest
one (0).

The other parameters represent the same meaning of the parameters in
doca_flow_pipe_create. In the example above, a control entry for VXLAN is created. The
VLXAN packets with ipB hit the control entry.

6.3.9. doca_flow_pipe_lpm
doca_flow_pipe_lpm uses longest prefix match (LPM) matching. LPM matching is limited to
a single field of the doca_flow_match (e.g., the outer destination IP). Each entry is consisted
of a value and a mask (e.g., 10.0.0.0/8, 10.10.0.0/16, etc). The LPM match is defined as the
entry that has the maximum matching bits. For example, using the two entries 10.7.0.0/16
and 10.0.0.0/8, the IP 10.1.9.2 matches on 10.0.0.0/8 and IP 10.7.9.2 matches on 10.7.0.0/16
because 16 bits match.

The monitor, actions, and FWD of the DOCA Flow LPM pipe works the same as the basic DOCA
Flow pipe.

doca_flow_pipe_lpm insertion max latency can be measured in milliseconds in some
cases and, therefore, it is better to insert it from the control path. To get the best insertion
performance, entries should be added in large batches.

Note: An LPM pipe cannot be a root pipe. You must create a pipe as root and forward the
packets to the LPM pipe.

6.3.10. Hardware Steering Mode
Users can enable hardware steering mode by setting devarg dv_flow_en to 2.

The following is an example of running DOCA with hardware steering mode:
.... –a 03:00.0, dv_flow_en=2 –a 03:00.1, dv_flow_en=2....

The following is an example of running DOCA with software steering mode:
.... –a 03:00.0 –a 03:00.1

The dv_flow_en=2 means that hardware steering mode is enabled.

In the struct doca_flow_cfg, the member mode_args represents DOCA applications. If it
is defined with hws (e.g., "vnf,hws", "switch,hws", "remote_vnf,hws") then hardware
steering mode is enabled.

To create an entry by calling doca_flow_pipe_add_entry, the parameter flags can be set
as DOCA_FLOW_WAIT_FOR_BATCH or DOCA_FLOW_NO_WAIT. DOCA_FLOW_WAIT_FOR_BATCH
means that this flow entry waits to be pushed to hardware. Batch flows then can be
pushed only at once. This reduces the push times and enhances the insertion rate.
DOCA_FLOW_NO_WAIT means that the flow entry is pushed to hardware immediately.

Flow Life Cycle

NVIDIA DOCA Flow MLNX-15-060488 _v1.4 | 37

The parameter usr_ctx is handled in the callback defined in struct doca_flow_cfg.

doca_flow_entries_process processes all the flows in this queue. After the flow is handled
and the status is returned, the callback is executed with the status and usr_ctx.

If the user does not define the callback in doca_flow_cfg, the user can get the status using
doca_flow_entry_get_status to check if the flow has completed offloading or not.

6.4. Teardown

6.4.1. Pipe Entry Teardown
When an entry is terminated by the user application or ages-out, the user should call the
entry destroy function, doca_flow_pipe_rm_entry(). This frees the pipe entry and cancels
hardware offload.

6.4.2. Pipe Teardown
Whena pipe is terminated by the user application, the user should call the pipe destroy
function, doca_flow_destroy_pipe(). This destroys the pipe and the pipe entries that match
it.

When all pipes of a port are terminated by the user application, the user should call the pipe
flush function, doca_flow_port_pipe_flush(). This destroys all pipes and all pipe entries
belonging to this port.

6.4.3. Port Teardown
When the port is not used anymore, the user should call the port destroy function,
doca_flow_destroy_port(). This destroys the DOCA port and frees all resources of the port.

6.4.4. Flow Teardown
When the DOCA Flow is not used anymore, the user should call the flow destroy function,
doca_flow_destroy(). This releases all the resources used by DOCA Flow.

NVIDIA DOCA Flow MLNX-15-060488 _v1.4 | 38

Chapter 7. Packet Processing

In situations where there is a port without a pipe defined, or with a pipe defined but without any
entry, the default behavior is that all packets arrive to a port in the software.

Once entries are added to the pipe, if a packet has no match then it continues to the port in the
software. If it is matched, then the rules defined in the pipe are executed.

Packet Processing

NVIDIA DOCA Flow MLNX-15-060488 _v1.4 | 39

If the packet is forwarded in RSS, the packet is forwarded to software according to the RSS
definition. If the packet is forwarded to a port, the packet is redirected back to the wire. If the
packet is forwarded to the next pipe, then the software attempts to match it with the next pipe.

Note that the number of pipes impacts performance. The longer the number of matches and
actions that the packet goes through, the longer it takes the HW to process it. When there is a
very large number of entries, the HW needs to access the main memory to retrieve the entry
context which increases latency.

NVIDIA DOCA Flow MLNX-15-060488 _v1.4 | 40

Chapter 8. DOCA Flow gRPC

This chapter describes gRPC support for DOCA Flow. The DOCA Flow gRPC-based API allows
users on the host to leverage the HW offload capabilities of the BlueField DPU using gRPCs
from the host itself.

DOCA Flow gRPC server implementation is based on gRPC's async API to maximize the
performance offered to the gRPC client on the host. In addition, the gRPC support in the
DOCA Flow library provides a client interface which gives the user the ability to send/receive
messages to/from the client application in C.

This section is divided into the following parts:

‣ proto-buff – this section details the messages defined in the proto-buff

‣ Client interface – this section details the API for communicating with the server

‣ Usage – this section explains how to use the client interface to develop your own client
application based on DOCA Flow gRPC support

Refer to NVIDIA DOCA gRPC Infrastructure User Guide for more information about DOCA
gRPC support.

The following figure illustrates the DOCA Flow gRPC server-client communication when
running in VNF mode.

http://docs.nvidia.com/doca/sdk/pdf/grpc-infrastructure.pdf

DOCA Flow gRPC

NVIDIA DOCA Flow MLNX-15-060488 _v1.4 | 41

DOCA Flow gRPC

NVIDIA DOCA Flow MLNX-15-060488 _v1.4 | 42

8.1. Proto-Buff
As with every gRPC proto-buff, DOCA Flow gRPC proto-buff defines the services it introduces,
and the messages used for the communication between the client and the server. Each proto-
buff DOCA Flow method:

‣ Represents exactly one function in DOCA Flow API

‣ Has its request message, depending on the type of the service

‣ Has the same response message (DocaFlowResponse)

In addition, DOCA Flow gRPC proto-buff defines several of messages that are used for defining
request messages, the response message, or other messages.

Each message defined in the proto-buff represents either a struct or an enum defined by
DOCA Flow API. The following figure illustrates how DOCA Flow gRPC server represents the
DOCA Flow API.

The proto-buff path for DOCA Flow gRPC is /opt/mellanox/doca/infrastructure/
doca_grpc/doca_flow/doca_flow.proto.

DOCA Flow gRPC

NVIDIA DOCA Flow MLNX-15-060488 _v1.4 | 43

8.1.1. Response Message
All services have the same response message. DocaFlowResponse contains all types of
results that the services may return to the client.
/** General DOCA Flow response message */
message DocaFlowResponse{
 bool success = 1; /* True in case of success */
 DocaFlowError error = 2; /* Otherwise, this field contains the error information
 */
 /* in case of success, one or more of the following may be used */
 uint32 port_id = 3;
 uint64 pipe_id = 4;
 uint64 entry_id = 5;
 string port_pipes_dump = 6;
 DocaFlowQueryRes query_stats = 7;
 bytes priv_data = 8;
 DocaFlowHandleAgingRes handle_aging_res = 9;
 uint64 nb_entries_processed = 10;
 DocaFlowEntryStatus status = 11;
}

8.1.2. DocaFlowCfg
The DocaFlowCfg message represents the doca_flow_cfg struct.

8.1.3. DocaFlowPortCfg
The DocaFlowPortCfg message represents the doca_flow_port_cfg struct.

8.1.4. DocaFlowPipeCfg
The DocaFlowPipeCfg message represents the doca_flow_pipe_cfg struct.

8.1.5. DocaFlowMatch
The DocaFlowMatch message represents the doca_flow_match struct.

The DocaFlowMatch message contains fields of types DocaFlowIPAddress and DocaFlowTun.
These types are messages which are also defined in the doca_flow.proto file and represents
doca_flow_ip_address and doca_flow_tun respectively.

8.1.6. DocaFlowActions
The DocaFlowActions message represents the doca_flow_actions struct.

Like the DocaFlowMatch message, the DocaFlowActions message also contains fields of
type DocaFlowIPAddress to represent modify actions on a source or destination IP addresses.

8.1.7. DocaFlowMonitor
The DocaFlowMonitor message represents the doca_flow_monitor struct.

DOCA Flow gRPC

NVIDIA DOCA Flow MLNX-15-060488 _v1.4 | 44

8.1.8. DocaFlowQueryStats
The DocaFlowQueryStats message represents the doca_flow_query struct.

8.1.9. DocaFlowHandleAgingRes
The DocaFlowHandleAgingRes message contains all the parameters needed to save the result
of an aging handler.

8.1.10. DocaFlowInit
DOCA Flow initialization gRPC:
rpc DocaFlowInit(DocaFlowCfg) returns (DocaFlowResponse);

If successful, the success field in the response message is set to true. Otherwise, the error
field is populated with the error information.

8.1.11. DocaFlowPortStart
The service for starting the DOCA flow ports:
rpc DocaFlowPortStart(DocaFlowPortCfg) returns (DocaFlowResponse);

If successful, the success field in the DocaFlowResponse is set to true. Otherwise, the error
field is populated with the error information.

8.1.12. DocaFlowPortPair
The DocaFlowPortPairRequest message contains all the necessary information for port
pairing:
message DocaFlowPortPairRequest {
 uint32 port_id = 1; /* port identefier of doca flow port. */
 uint32 pair_port_id = 2; /* port identefier to the pair port. */
}

Once all the parameters are defined, a "port pair" service can be called. The service for DOCA
Flow port pair is as follows:
rpc DocaFlowPortPair(DocaFlowPortPairRequest) returns (DocaFlowResponse);

If successful, the success field in the DocaFlowResponse is set to true. Otherwise, the error
field is populated with the error information.

8.1.13. DocaFlowCreatePipe
The DocaFlowCreatePipeRequest message contains all the necessary information for pipe
creation as the DOCA Flow API suggests:
message DocaFlowCreatePipeRequest {
 DocaFlowPipeCfg cfg = 1; /* the pipe configurations */
 DocaFlowFwd fwd = 2; /* the pipe's FORWARDING component */
 DocaFlowFwd fwd_miss = 3; /* The FORWARDING miss component */
}

DOCA Flow gRPC

NVIDIA DOCA Flow MLNX-15-060488 _v1.4 | 45

Once all the parameters are defined, a "create pipe" service can be called:
rpc DocaFlowCreatePipe (DocaFlowCreatePipeRequest) returns (DocaFlowResponse);

If successful, the success field in DocaFlowResponse is set to true and the pipe_id field is
populated with the ID of the added entry. This ID should be given when adding entries to the
pipe. Otherwise, the error field is filled accordingly.

8.1.14. DocaFlowPipeAddEntry
The DocaFlowPipeAddEntryRequest message contains all the necessary information for
adding an entry to the pipe:
message DocaFlowPipeAddEntryRequest{
 uint32 pipe_queue = 2; /* the pipe queue */
 uint64 pipe_id = 3; /* the pipe ID to add the entry to */
 DocaFlowMatch match = 4; /* matcher for the entry */
 DocaFlowActions actions = 5; /* actions for the entry */
 DocaFlowMonitor monitor = 6; /* monitor for the entry */
 DocaFlowFwd fwd = 7; /* The entry's FORWARDING component */
 uint32 flags = 1; /* whether the flow entry is pushed to HW
 immediately or not */
}

Once all the parameters are defined, an "add entry to pipe" service can be called:
rpc DocaFlowPipeAddEntry(DocaFlowPipeAddEntryRequest) returns (DocaFlowResponse);

If successful, the success field in DocaFlowResponse is set to true, and the entry_id field
is populated with the ID of the added entry. This ID should be given when adding entries to the
pipe. Otherwise, the error field is filled accordingly.

8.1.15. DocaFlowControlPipeAddEntry
The DocaFlowControlPipeAddEntryRequest message contains the required arguments for
adding entries to the control pipe:
message DocaFlowControlPipeAddEntryRequest{
 uint32 priority = 2; /* he priority of the added entry to the
 filter pipe */
 uint32 pipe_queue = 3; /* the pipe queue */
 uint64 pipe_id = 4; /* the pipe ID to add the entry to */
 DocaFlowMatch match = 5; /* matcher for the entry */
 DocaFlowMatch match_mask = 6; /* matcher mask for the entry */
 DocaFlowFwd fwd = 7; /* The entry’s FORWARDING component */
}

Once all the parameters are defined, an "add entry to pipe" service can be called:
rpc DocaFlowControlPipeAddEntry(DocaFlowControlPipeAddEntryRequest) returns
 (DocaFlowResponse);

If successful, the success field in DocaFlowResponse is set to true, and the entry_id field
is populated with the ID of the added entry. This ID should be given when adding entries to the
pipe. Otherwise, the error field is filled accordingly.

8.1.16. DocaFlowLpmPipeAddEntry
The DocaFlowLpmPipeAddEntryRequest message contains the required arguments for
adding entries to the LPM pipe:
message DocaFlowLpmPipeAddEntryRequest{
 uint32 pipe_queue = 1; /* the pipe queue */

DOCA Flow gRPC

NVIDIA DOCA Flow MLNX-15-060488 _v1.4 | 46

 uint64 pipe_id = 2; /* the pipe ID to add the entry to */
 DocaFlowMatch match = 3; /* matcher for the entry */
 DocaFlowMatch match_mask = 4; /* matcher mask for the entry */
 DocaFlowActions actions = 5; /* actions for the entry */
 DocaFlowMonitor monitor = 6; /* monitor for the entry */
 DocaFlowFwd fwd = 7; /* The entry’s FORWARDING component */
 uint32 flag = 8; /* whether the flow entry will be pushed
 to HW immediately or not */
}

Once all the parameters are defined, an "add entry to LPM pipe" service can be called:
rpc DocaFlowLpmPipeAddEntry(DocaFlowLpmPipeAddEntryRequest) returns
 (DocaFlowResponse);

If successful, the success field in DocaFlowResponse is set to true, and the entry_id field
is populated with the ID of the added entry. This ID should be given when adding entries to the
pipe. Otherwise, the error field is filled accordingly.

8.1.17. DocaFlowEntriesProcess
The DocaFlowEntriesProcessRequest contains the required arguments for processing the
entries in the queue.
message DocaFlowEntriesProcessRequest{
 uint32 port_id = 1; /* the port ID of the entries to process. */
 uint32 pipe_queue = 2; /* the pipe queue of the entries to process.
 */
 /* max time in micro seconds for the actual API to process entries. */
 uint64 timeout = 3;
 /* An upper bound for the required number of entries to process. */
 uint32 max_processed_entries = 4;
}

Once all the parameters are defined, the "entries process" service can be called:
rpc DocaFlowEntriesProcess(DocaFlowEntriesProcessRequest) returns
 (DocaFlowResponse);

If successful, the success field in DocaFlowResponse is set to true, and the
nb_entries_processed field is populated with the ID of the number of processed entries.

8.1.18. DocaFlowEntyGetStatus
The DocaFlowEntryGetStatusRequest contains the required arguments for fetching the
status of a given entry.
message DocaFlowEntryGetStatusRequest{
 /* the entry identifier of the requested entry’s status. */
 uint64 entry_id = 1;
}

Once all the parameters are defined, the "entry get status" service can be called:
rpc DocaFlowEntriesProcess(DocaFlowEntriesProcessRequest) returns
 (DocaFlowResponse);

If successful, the success field in DocaFlowResponse is set to true, and the
status field is populated with the status of the requested entry. This field's type is
DocaFlowEntryStatus, which is an enum defined in the proto-buff, and represents the enum
doca_flow_entry_status, defined in the DOCA Flow header.

DOCA Flow gRPC

NVIDIA DOCA Flow MLNX-15-060488 _v1.4 | 47

8.1.19. DocaFlowQuery
DocaFlowQueryRequest contains the required arguments for querying a given entry.
message DocaFlowQueryRequest{
 uint64 entry_id = 3; /* the entry id. */
}

Once all the parameters are defined, the "query" service can be called:
rpc DocaFlowQuery(DocaFlowQueryRequest) returns (DocaFlowResponse);

If successful, the success field in DocaFlowResponse is set to true, and the query_stats
field is populated with the query result of the requested entry. This field's type is
DocaFlowQueryStats, which is an enum defined in the proto-buff, and represents the
doca_flow_query struct.

8.1.20. DocaFlowHandleAging
DocaFlowHandleAgingRequest contains the required arguments for handling aging by DOCA
Flow.
message DocaFlowHandleAgingRequest{
 uint32 port_id = 1; /* the port id handle aging to. */
 uint32 queue = 2; /* the queue identifier */
 uint64 quota = 3; /* the max time quota in micro seconds for
 this function to handle aging. */
 uint64 user_data = 4; /* the user input context, otherwise the
 doca_flow_pipe_entry pointer */
 uint32 len = 5; /* the user input length of entries array. */
}

Once all the parameters are defined, the "handle aging" service can be called:
rpc DocaFlowHandleAging(DocaFlowHandleAgingRequest) returns (DocaFlowResponse);

If successful, the success field in DocaFlowResponse is set to true and the
handle_aging_res field is populated with the aging handler result. This field's type is
DocaFlowHandleAgingRes.

8.2. DOCA Flow gRPC Client API
This section describes the recommended way for C developers to utilize gRPC support for
DOCA Flow API. Refer to the DOCA Flow gRPC API in NVIDIA DOCA Libraries API Reference
Manual for the library API reference.

The following sections provide additional details about the library API.

The DOCA installation includes libdoca_flow_grpc which is a library that provides a C API
wrapper to the C++ gRPC, while mimicking the regular DOCA Flow API, for ease of use, and
allowing smooth transition to the Arm.

This library API is exposed in doca_flow_grpc_client.h and is essentially the same as
doca_flow.h, with the notation differences detailed in the following subsections. In general,
the client interface API usage is almost identical to the regular API (i.e., DOCA Flow API). The
arguments of each function in DOCA Flow API, are almost identical to the arguments of each

http://docs.nvidia.com/doca/sdk/pdf/doca-libraries-api.pdf
http://docs.nvidia.com/doca/sdk/pdf/doca-libraries-api.pdf

DOCA Flow gRPC

NVIDIA DOCA Flow MLNX-15-060488 _v1.4 | 48

function defined in the client API, except that each pointer is replaced with an ID representing
the pointer.

For example, when creating a pipe or adding an entry, the original API returns a pointer to the
created pipe or the added entry. However, when adding an entry or creating a pipe using the
client interface, an ID representing the added entry or the created pipe is returned to the client
application instead of the pointer.

8.2.1. doca_flow_grpc_response
doca_flow_grpc_response is a general response struct that holds information regarding the
function result. Each API returns this struct. If an error occurs, the error field is populated
with the error's information, and the success field is set to false. Otherwise, the success
field is set to true and one of the other fields may hold a return value depending on the called
function.

For example, when calling doca_flow_grpc_create_pipe() the pipe_id field is populated
with the ID of the created pipe in case of success.
struct doca_flow_grpc_response {
 bool success;
 struct doca_flow_error error;
 uint64_t pipe_id;
 uint64_t entry_id;
 uint32_t aging_res;
 uint64_t nb_entries_processed;
 enum doca_flow_entry_status entry_status;
 };
success

In case of success, the value should be true.
error

In case of error, this struct should contain the error information.
pipe_id

Pipe ID of the created pipe.
entry_id

Entry ID of the created entry.
aging_res

Return value from handle aging.
nb_entries_processed

Return value from entries process.
entry_status

Return value from entry get status.

8.2.2. doca_flow_grpc_pipe_cfg
doca_flow_grpc_pipe_cfg is a pipeline configuration wrapper.
struct doca_flow_grpc_pipe_cfg {
 struct doca_flow_pipe_cfg cfg;
 uint16_t port_id;
};
cfg

Pipe configuration containing the user-defined template for the packet process.

DOCA Flow gRPC

NVIDIA DOCA Flow MLNX-15-060488 _v1.4 | 49

port_id
Port ID for the pipeline.

8.2.3. doca_flow_grpc_fwd
doca_flow_grpc_fwd is a forwarding configuration wrapper.
struct doca_flow_grpc_fwd {
 struct doca_flow_fwd fwd;
 uint64_t next_pipe_id;
};
fwd

Forward configuration which directs where the packet goes next.
next_pipe_id

When using DOCA_FLOW_FWD_PIPE, this field contains the next pipe's ID.

8.2.4. doca_flow_grpc_client_create
This function initializes a channel to DOCA Flow gRPC server.

This must be invoked first before any other function in this API. This is a one-time call.
void doca_flow_grpc_client_create(char *grpc_address);
grpc_address [in]

String representing the server IP.

8.3. DOCA Flow gRPC Usage
A DOCA flow gRPC based server is implemented using the async API of gRPC. This is because
the async API gives the server the ability to expose DOCA flow's concurrency support.
Therefore, it is very important to use the client interface API for communicating with the DOCA
Flow gRPC server because it hides all gRPC-related details from the users, which eases the
use of the server, and exposes to the client applications the efficiency of DOCA Flow, in terms
of flow insertion rates.

The following phases demonstrate a basic flow of client applications:

‣ Init Phase – client interface and environment initializations

‣ Flow life cycle – this phase is the same phase described in chapter Flow Life Cycle

It is important to emphasize that the number of threads for adding entries should be the
same as the number of queues used when starting the server and initializing the environment
(DPDK) and DOCA Flow API. This is to prevent bottlenecks on the server side.

If a client application starts the server on BlueField with N cores (through EAL arguments),
this means that environment and DOCA Flow initialization should be done with N queues. As
a result, the server launches N lcores, each one responsible for exactly one queue that is
accessed only by it. Therefore, the client application should launch N threads as well, each
being responsible for adding entries to a specific queue which is accessed by it only as well.

The following illustration demonstrates the relation between thread "j" on the client side and
lcore "j" on the server side:

DOCA Flow gRPC

NVIDIA DOCA Flow MLNX-15-060488 _v1.4 | 50

Notice

This document is provided for information purposes only and shall not be regarded as a warranty of a certain functionality, condition, or quality of a product. NVIDIA
Corporation nor any of its direct or indirect subsidiaries and affiliates (collectively: “NVIDIA”) make no representations or warranties, expressed or implied, as to the
accuracy or completeness of the information contained in this document and assume no responsibility for any errors contained herein. NVIDIA shall have no liability
for the consequences or use of such information or for any infringement of patents or other rights of third parties that may result from its use. This document is not
a commitment to develop, release, or deliver any Material (defined below), code, or functionality.

NVIDIA reserves the right to make corrections, modifications, enhancements, improvements, and any other changes to this document, at any time without notice.

Customer should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the time of order acknowledgement, unless otherwise agreed
in an individual sales agreement signed by authorized representatives of NVIDIA and customer (“Terms of Sale”). NVIDIA hereby expressly objects to applying any
customer general terms and conditions with regards to the purchase of the NVIDIA product referenced in this document. No contractual obligations are formed
either directly or indirectly by this document.

NVIDIA products are not designed, authorized, or warranted to be suitable for use in medical, military, aircraft, space, or life support equipment, nor in applications
where failure or malfunction of the NVIDIA product can reasonably be expected to result in personal injury, death, or property or environmental damage. NVIDIA
accepts no liability for inclusion and/or use of NVIDIA products in such equipment or applications and therefore such inclusion and/or use is at customer’s own risk.

NVIDIA makes no representation or warranty that products based on this document will be suitable for any specified use. Testing of all parameters of each product
is not necessarily performed by NVIDIA. It is customer’s sole responsibility to evaluate and determine the applicability of any information contained in this document,
ensure the product is suitable and fit for the application planned by customer, and perform the necessary testing for the application in order to avoid a default of
the application or the product. Weaknesses in customer’s product designs may affect the quality and reliability of the NVIDIA product and may result in additional
or different conditions and/or requirements beyond those contained in this document. NVIDIA accepts no liability related to any default, damage, costs, or problem
which may be based on or attributable to: (i) the use of the NVIDIA product in any manner that is contrary to this document or (ii) customer product designs.

No license, either expressed or implied, is granted under any NVIDIA patent right, copyright, or other NVIDIA intellectual property right under this document.
Information published by NVIDIA regarding third-party products or services does not constitute a license from NVIDIA to use such products or services or a warranty
or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property rights of the third party,
or a license from NVIDIA under the patents or other intellectual property rights of NVIDIA.

Reproduction of information in this document is permissible only if approved in advance by NVIDIA in writing, reproduced without alteration and in full compliance
with all applicable export laws and regulations, and accompanied by all associated conditions, limitations, and notices.

THIS DOCUMENT AND ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS
(TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR
OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND
FITNESS FOR A PARTICULAR PURPOSE. TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL NVIDIA BE LIABLE FOR ANY DAMAGES, INCLUDING
WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF
THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF NVIDIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
Notwithstanding any damages that customer might incur for any reason whatsoever, NVIDIA’s aggregate and cumulative liability towards customer for the products
described herein shall be limited in accordance with the Terms of Sale for the product.

Trademarks

NVIDIA, the NVIDIA logo, and Mellanox are trademarks and/or registered trademarks of Mellanox Technologies Ltd. and/or NVIDIA Corporation in the U.S. and in
other countries. The registered trademark Linux® is used pursuant to a sublicense from the Linux Foundation, the exclusive licensee of Linus Torvalds, owner of the
mark on a world¬wide basis. Other company and product names may be trademarks of the respective companies with which they are associated.

Copyright
© 2022 NVIDIA Corporation & affiliates. All rights reserved.

NVIDIA Corporation | 2788 San Tomas Expressway, Santa Clara, CA 95051
http://www.nvidia.com

http://www.nvidia.com

	Table of Contents
	Introduction
	Prerequisites
	Architecture
	API
	4.1. doca_flow_cfg
	4.2. doca_flow_port_cfg
	4.3. doca_flow_pipe_cfg
	4.4. doca_flow_meta
	4.5. doca_flow_match
	4.6. doca_flow_actions
	4.7. doca_flow_action_desc
	4.8. doca_flow_monitor
	4.9. doca_flow_fwd
	4.10. doca_flow_query
	4.11. doca_flow_aged_query
	4.12. doca_flow_init
	4.13. doca_flow_port_start
	4.14. doca_flow_port_priv_data
	4.15. doca_flow_port_pair
	4.16. doca_flow_pipe_create
	4.17. doca_flow_pipe_add_entry
	4.18. doca_flow_pipe_control_add_entry
	4.19. doca_flow_pipe_lpm_add_entry
	4.20. doca_flow_entries_process
	4.21. doca_flow_entries_process
	4.22. doca_flow_query
	4.23. doca_flow_aging_handle

	Shared Counter Resource
	5.1. On doca_flow_init()
	5.2. On doca_flow_shared_resource_cfg()
	5.3. On doca_flow_shared_resource_bind()
	5.4. On doca_flow_pipe_add_entry() or Pipe Configuration (struct doca_flow_pipe_cfg)
	5.5. Querying Bulk of Shared Counter IDs
	5.6. On doca_flow_pipe_destroy() or doca_flow_port_destroy()

	Flow Life Cycle
	6.1. Initialization Flow
	6.1.1. Pipe Mode

	6.2. Start Point
	6.3. Create Pipe and Pipe Entry
	6.3.1. Setting Pipe Match
	6.3.1.1. Implicit Match
	6.3.1.2. Explicit Match

	6.3.2. Setting Pipe Actions
	6.3.2.1. Auto-modification
	6.3.2.2. Explicit Modification Type
	6.3.2.3. Copy Field
	6.3.2.4. Multiple Actions List
	6.3.2.5. Summary of Action Types
	6.3.2.6. Summary of Fields

	6.3.3. Setting Pipe Monitoring
	6.3.4. Setting Pipe Forwarding
	6.3.5. Basic Pipe Create
	6.3.6. Pipe Entry (doca_flow_pipe_add_entry)
	6.3.6.1. Pipe Entry Counting
	6.3.6.2. Pipe Entry Aged Query

	6.3.7. Pipe Entry With Multiple Actions
	6.3.8. Miss Pipe and Control Pipe
	6.3.9. doca_flow_pipe_lpm
	6.3.10. Hardware Steering Mode

	6.4. Teardown
	6.4.1. Pipe Entry Teardown
	6.4.2. Pipe Teardown
	6.4.3. Port Teardown
	6.4.4. Flow Teardown

	Packet Processing
	DOCA Flow gRPC
	8.1. Proto-Buff
	8.1.1. Response Message
	8.1.2. DocaFlowCfg
	8.1.3. DocaFlowPortCfg
	8.1.4. DocaFlowPipeCfg
	8.1.5. DocaFlowMatch
	8.1.6. DocaFlowActions
	8.1.7. DocaFlowMonitor
	8.1.8. DocaFlowQueryStats
	8.1.9. DocaFlowHandleAgingRes
	8.1.10. DocaFlowInit
	8.1.11. DocaFlowPortStart
	8.1.12. DocaFlowPortPair
	8.1.13. DocaFlowCreatePipe
	8.1.14. DocaFlowPipeAddEntry
	8.1.15. DocaFlowControlPipeAddEntry
	8.1.16. DocaFlowLpmPipeAddEntry
	8.1.17. DocaFlowEntriesProcess
	8.1.18. DocaFlowEntyGetStatus
	8.1.19. DocaFlowQuery
	8.1.20. DocaFlowHandleAging

	8.2. DOCA Flow gRPC Client API
	8.2.1. doca_flow_grpc_response
	8.2.2. doca_flow_grpc_pipe_cfg
	8.2.3. doca_flow_grpc_fwd
	8.2.4. doca_flow_grpc_client_create

	8.3. DOCA Flow gRPC Usage

