NVIDIA.

NVIDIA DOCA RegEXx

Programming Guide

MLNX-15-060489 _v1.4 September 2022

Table of Contents

(0] a1 o1 (=T ol IR [oY {fo Yo 1V [ox 4o RSSO PPPPPPPPRPPPP 1
Chapter 2. Prerequisites. ... 2
Chapter 3. ArchiteCtUre. ..o 3
3.1 RULE ComMIPILAtION e 3
3.2, RegEX ImMplementations. ..o e 3
3.3, Huge Job EMULEtioN. ..o 3

O T o X (=T o S 4
4.7, dOCA_reQEX_JOD _FEQUEST. . oottt 4
4.2, dOCA_TEGEX_JOD _TESPONSE ..ottt 4
4.3, d0CA_TEGEX_MNATCN ..o 5
4.4, Instance Construction/Destruction APl .. . 5
G471, dOCA_TEGEX _CrBATE. ..ot 5
4.4.2. OCA_TEGEX_AESIIOY .. .iiii ittt 6

4.5. RegEx Device Management. o e 6
4.5.7. doca_regex_dev_add. ... 6
4.5.2. 0CA_TEGEX IOV M.ttt 6

4.6. DOCA REGEX SO UP ...ttt 6
4.6.1. dOCA_TEGEX _NMUM _GPS STttt 7
4.6.2. doca_regex_property_matches_memory_pool_size_Set........cccoociiiiiiiiiiiiiiiie 7

4.7, ConfigUration OPtiONS. ..o i 7
4.7.1. doca_regex_property_huge_job_emulation_overlap_set...........cccoiiiiiiiiiiiiii, 7

4.8. Programming REGEX. ... 8
4.8.1. doca_regex_property_hardware_binary_rules_set.........cccooiiiiiiiiiiiii 8

4.9. Executing Jobs and Receiving MatChes. ..., 8
4.9.7. dOCA_TEGEX_ENMGUEUE ...ttt 8
4.9.2. d0CA_TEGEX _AEQUEUE. ...couiiiii et 9

NVIDIA DOCA RegEx MLNX-15-060489 _v1.4 | ii

Chapter 1. Introduction

DOCA RegEx is a library that provides RegEx pattern matching to DOCA applications. It
provides access to the regular expression processor (RXP), a high-performance, hardware-
accelerated RegEx engine available on the NVIDIA® BlueField® DPUs, and can utilize
software-based engines when required.

Using DOCA RegEx, developers can easily execute complex regular expression operations in
an optimized, hardware-accelerated way.

This document is intended for software developers wishing to accelerate their regular
expressions operations.

NVIDIA DOCA RegEx MLNX-15-060489 v1.4 | 1

Chapter 2. Prerequisites

DOCA RegEx-based applications can run either on the host machine or on the DPU target.

The RegEx engine is enabled by default on the DPU. However, to enable RegEx offloading on
the host, run:

host> sudo /etc/init.d/openibd stop

host> sudo echo 1024 > /sys/kernel/mm/hugepages/hugepages-2048kB/nr hugepages
dpu> echo 1 > /sys/bus/pci/devices/0000\:03\:00.0/regex/pf/regex en

dpu> cat /sys/kernel/mm/hugepages/hugepages-2048kB/nr hugepages 400

Make sure to allocate 200 additional hugepages

dpu> sudo echo 600 > /sys/kernel/mm/hugepages/hugepages-2048kB/nr hugepages
dpu> systemctl restart mlx-regex

Verify the service is properly running

dpu> systemctl status mlx-regex

host> sudo /etc/init.d/openibd start

NVIDIA DOCA RegEx MLNX-15-060489 _v1.4

2

Chapter 3. Architecture

DOCA RegEx provides a flexible API for programming regular expression databases,
enqueuing jobs and dequeuing results. The APl operates asynchronously allowing many
pattern matching operations to be executed in parallel.

3.1. Rule Compilation

Regular expressions are provided as "compiled” rule files to the library, and must therefore be
externally compiled by a "compiler” prior to loading by the library. For hardware acceleration,
the external compiler is termed " rxpc” (RXP compiler] and generates RXP object format (ROF)
binary files that represent the compiled regular expressions.

3.2. RegEx Implementations

The library itself is designed to support multiple RegEx engine implementations. Currently,
only hardware devices are supported. Software devices will be introduced in in a later release.

3.3. Huge Job Emulation

The library includes a facility to accept job lengths that are greater than the maximum

size supported by an engine. The library fragments incoming jobs into smaller fragments
and processes them sequentially looking for potential matches. The "huge job emulation”
mechanism takes data from the end of the previous fragment and appends it to the

start of the next fragment (the "size" of the overlap) to find additional matches. See the

doca regex property huge job emulation overlap set APl call for more information.

NVIDIA DOCA RegEx MLNX-15-060489 v1.4 | 3

Chapter 4. API

This section details the specific structures and AP| operations related to the DOCA RegEx
library.

Note: The pkg-config (*.pc file) for the RegEx library is named doca-regex.

4.1. doca_regex_job_request

This structure contains information on the job to be submitted to DOCA RegEx.

struct doca regex job request {
uint64 t id;
uintl6 t rule group ids[4];
struct doca buf const *buffer;
i

Where:

» id - a user-defined field used to correlate the matches with the enqueued job

» rule group ids —an array of IDs which can be used to select which group of rules are
used to process this job. Set each value to a non-zero value to enable group selection, or to
0 to ignore it.

» buffer - a pointer to a buffer containing the data to be scanned

4.2. doca_regex_job_response

When a job response is dequeued, this structure is populated with any match information.
struct doca regex job response {

uint64 t id;

uint64 t status flags;

uint32 t detected matches;

uint32 t num matches;

struct doca regex match *matches;

struct doca regex mempool *matches mempool;

) 9
Where:

» id - the id value as supplied by the user during enqueue. See doca_regex_job_request for
more information.

NVIDIA DOCA RegEx MLNX-15-060489 v1.4 | 4

API

» status flags - a bit-masked field for zero or more status flags. See
doca regex_ status_flag for more information.

» detected matches - the total number of detected matches

» num matches - the total number of matches returned in this response (may be fewer than
detected_matches]

» matches - a linked list of match structures [num matches in length)

» matches mempool - this doca regex-owned pointer to the mempool of matches is
provided to release the results after any required processing.

Note: matches mempool contains all matches present, these must be released back to the
mempool after you have finished processing them. See doca regex mempool obj put in
the NVIDIA DOCA Libraries APl Reference Manual for more information.

4.3. doca_regex_match

When a job response is dequeued, this structure is populated with any match information.

struct doca regex match {
struct doca regex match *next;
uint32 t match start;
uint32 t rule id;

uint32 t length;

i

Where:

» next - as matches are linked together using a linked list, this is the pointer to the next
match in the linked list

» match start - the index relative to the start of the job of this match
» rule id-the D of the rule that generated this match

» length - the length of the matched value

4.4, Instance Construction/Destruction
AP

This section details API calls related to the creation and destruction of DOCA RegEx instances.

4.4.1. doca_regex_create
Creates a DOCA RegEx instance.

struct doca regex *doca regex create(void);

This function returns doca_regex object on success. NULL otherwise.

NVIDIA DOCA RegEx MLNX-15-060489 v1.4 | 5

http://docs.nvidia.com/doca/sdk/pdf/doca-libraries-api.pdf

API

4.4.2. doca_regex_destroy

Destroys a previously created DOCA RegEx instance.
void doca regex destroy(struct doca regex *regex);

Where:

» regex [in] - a pointer to a previously created DOCA RegEx instance

4.5. Regkx Device Management

DOCA RegEx uses doca_dev devices to facilitate hardware accelerated RegEx
implementations that perform pattern matching. Currently, DOCA RegEx supports the use of
hardware devices.

RegEx devices are separate user-managed objects that must be created and registered with
DOCA RegEx as either hardware or software devices.

4.9.1. doca_regex_dev_add

This function is used to add or attach a new RegEx device.
int doca regex dev add(struct doca regex *regex, struct doca dev *dev);

Where:
» regex [in] - instance pointer of the RegEx instance

» dev [in] - instance pointer to the DOCA device

The function returns 0 on success and a negative status code on failure.

4.5.2. doca_regex_dev_rm

This function is used to remove or detach a previously added/attached RegEx device.
int doca regex dev rm(struct doca regex *regex, struct doca dev *dev);

Where:
» regex [in] - Instance pointer of the RegEx instance

» dev [in] - instance pointer to the DOCA device

The function returns 0 on success and a negative status code on failure.

4.6. DOCA RegEx Setup

This section details the API calls required to setup DOCA RegEx with memory to store received
matches, adjust the number of queue pairs, etc.

NVIDIA DOCA RegEx MLNX-15-060489 v1.4 | 6

API

4.6.1. doca_regex_num_qgps_set

Specifies the number of queue pairs to use for this DOCA RegEx instance. This function should
only be called when the instance is not running.
int doca regex num gps_ set (struct doca regex *regex, uintl6 t num gps);

Where:
» regex [in] - the DOCA RegEx instance

» num gps [in] -the number of queue pairs to assign to the instance. Default is 0.

The function returns 0 on success and a negative status code on failure.

4.6.2. doca_regex_property_matches_memory_pool_size_ se

This function allocates memory pools for the required number of matches. The

num _mem pool elements value provides the total number of matches in the pool. It should be
noted that these are shared across all jobs on the thread. For example, if you wanted 1000 jobs
in flight with each job capable of returning 15 matches, a value of 15k should be provided.

doca error t doca regex property matches memory pool size set(struct doca regex
*regex, uintl6 t num mem pool elements);

Where:

» regex [in] -the DOCA RegEx instance

» num mem pool elements [in] - the total number of matches the application expects to
see In a dequeue result

This function returns boca succkess, or the relevant DOCA error code.

4.7. Configuration Options

DOCA RegEx has several options that alter its mode of operation and control certain features.
This section details those API calls and their related impact.

4.7.1. doca_regex_property_huge_job_emulation_overlap_s

This APl call enables the Huge Job Emulation functionality of the DOCA RegEx instance,
allowing it to find matches in data that exceeds the maximum job length of a particular RegEx
device. For example, the BlueField RXP hardware device has a maximum job size of 16KB.

This function is provided with a size parameter that indicates the size of overlap to use

in the Huge Job Emulation algorithm. This algorithm breaks up the incoming job data
into fragments. Therefore, the overlap size causes data from the previous fragment to be
prepended to the start of the next fragment.

As this overlap impacts performance (job data may get searched multiple times) the overlap
size should be kept to a minimum value that still guarantees that matches are found.

doca error t doca regex property huge job emulation overlap set (struct doca regex
*regex, uintlé t nb overlap bytes);

NVIDIA DOCA RegEx MLNX-15-060489 v1.4 | 7

API

Where:

» regex [in] -the DOCA RegEx instance

» nb overlap bytes [in] - the number of bytes for the overlap functionality to use

This function returns boca succkess or the relevant DOCA error code.

4.8. Programming RegEx

As part of initialization, the RegEx devices must be programmed with compiled regular
expressions. This compilation process takes place offline and generates a compiled file that
can be given to a selected device.

4.8.1. doca_regex_property_hardware_binary_rules_set

This function programs the registered hardware RegEx device using rules that are already
loaded into memory as pointers to arrays of bytes.
int doca regex property hardware binary rules set(struct doca regex *regex,

uint8 t const *rules buffer,
uint32 t rules buffer len) ;
Where:
» regex [in] -the DOCA RegEx instance

» rules buffer [in] - a pointer to a buffer of pre-compiled binary rules data suitable for
use by the selected hardware device

» rules buffer len [in] - the size, in bytes, of the hardware-specific pre-compiled
binary rules data

The function returns 0 on success of writing at least one rule to a device and a negative status
code on failure.

4.9. Executing Jobs and Recelving
Matches

The DOCA RegEx API provides an asynchronous method for enqueuing job data and dequeuing
detected matches.

4.9.1. doca_regex_engueue

This function enqueues a job to the DOCA RegEx instance.

int doca regex enqueue (struct doca regex *regex, uintlé t gid,
struct doca regex job request const *job,
bool allow aggregation);

Where:

NVIDIA DOCA RegEx MLNX-15-060489 v1.4 | 8

API

» regex [in] -the DOCA RegEx instance
» gid [in] -the ID of the queue in which to enqueue the job
» Job [in] - a DOCA RegEx job to be enqueued. The caller retains ownership of the data.

» allow aggregation [in] - when set, the RegEx device may choose to not begin
processing this job immediately to maximise overall efficiency and throughput. When not
set, the RegEx engine must begin processing immediately, potentially reducing latency.

This allows an application to favor either throughput or latency. If in doubt, it is
recommended to favor throughput.

The function returns:
» 0 - device busy, wait until one or more results are dequeued before enqueuing more jobs
» 1 -jobenqueued successfully

» Negative POSIX status code upon failure

4.9.2. doca_regex_dequeue

This function dequeues any matches from a previously enqueued job.

int doca regex dequeue (struct doca regex *regex, uintlé t gid,
struct doca regex job response *responses,
uint8 t max results);

Where:

» regex [in] -the DOCA RegEx instance

» gid [in] -the ID of the queue in which to dequeue the results data
> responses [out] —response structures

» max results [in] - maximum number of results to return. The responses array must
have capacity for at least this many elements.

The function returns 0 or a positive integer representing the number of results dequeued, or a
negative status code on failure.

S Note: After completing the processing of any RegEx matches, you must return each one
of them to the mempool. These matches are present in the matches mempool field off the
doca_regex_job response wWhen dequeuing a result. See doca_regex _mempool obj put in
the NVIDIA DOCA Libraries AP| Reference Manual for more information.

NVIDIA DOCA RegEx MLNX-15-060489 v1.4 | 9

http://docs.nvidia.com/doca/sdk/pdf/doca-libraries-api.pdf

Notice

This document is provided for information purposes only and shall not be regarded as a warranty of a certain functionality, condition, or quality of a product. NVIDIA
Corporation nor any of its direct or indirect subsidiaries and affiliates (collectively: "NVIDIA") make no representations or warranties, expressed or implied, as to the
accuracy or completeness of the information contained in this document and assume no responsibility for any errors contained herein. NVIDIA shall have no liability
for the consequences or use of such information or for any infringement of patents or other rights of third parties that may result from its use. This document is not
a commitment to develop, release, or deliver any Material (defined below), code, or functionality.

NVIDIA reserves the right to make corrections, modifications, enhancements, improvements, and any other changes to this document, at any time without notice.
Customer should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the time of order acknowledgement, unless otherwise agreed
in an individual sales agreement signed by authorized representatives of NVIDIA and customer ("Terms of Sale”). NVIDIA hereby expressly objects to applying any
customer general terms and conditions with regards to the purchase of the NVIDIA product referenced in this document. No contractual obligations are formed
either directly or indirectly by this document.

NVIDIA products are not designed, authorized, or warranted to be suitable for use in medical, military, aircraft, space, or life support equipment, nor in applications
where failure or malfunction of the NVIDIA product can reasonably be expected to result in personal injury, death, or property or environmental damage. NVIDIA
accepts no liability for inclusion and/or use of NVIDIA products in such equipment or applications and therefore such inclusion and/or use is at customer’s own risk.

NVIDIA makes no representation or warranty that products based on this document will be suitable for any specified use. Testing of all parameters of each product
is not necessarily performed by NVIDIA. It is customer’s sole responsibility to evaluate and determine the applicability of any information contained in this document,
ensure the product is suitable and fit for the application planned by customer, and perform the necessary testing for the application in order to avoid a default of
the application or the product. Weaknesses in customer’s product designs may affect the quality and reliability of the NVIDIA product and may result in additional
or different conditions and/or requirements beyond those contained in this document. NVIDIA accepts no liability related to any default, damage, costs, or problem
which may be based on or attributable to: (i) the use of the NVIDIA product in any manner that is contrary to this document or (i) customer product designs.

No license, either expressed or implied, is granted under any NVIDIA patent right, copyright, or other NVIDIA intellectual property right under this document.
Information published by NVIDIA regarding third-party products or services does not constitute a license from NVIDIA to use such products or services or a warranty
or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property rights of the third party,
or a license from NVIDIA under the patents or other intellectual property rights of NVIDIA.

Reproduction of information in this document is permissible only if approved in advance by NVIDIA in writing, reproduced without alteration and in full compliance
with all applicable export laws and regulations, and accompanied by all associated conditions, limitations, and notices.

THIS DOCUMENT AND ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS
(TOGETHER AND SEPARATELY, "MATERIALS") ARE BEING PROVIDED “AS IS.” NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR
OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND
FITNESS FOR A PARTICULAR PURPOSE. TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL NVIDIA BE LIABLE FOR ANY DAMAGES, INCLUDING
WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF
THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF NVIDIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
Notwithstanding any damages that customer might incur for any reason whatsoever, NVIDIA's aggregate and cumulative liability towards customer for the products
described herein shall be limited in accordance with the Terms of Sale for the product.

Trademarks

NVIDIA, the NVIDIA logo, and Mellanox are trademarks and/or registered trademarks of Mellanox Technologies Ltd. and/or NVIDIA Corporation in the U.S. and in
other countries. The registered trademark Linux® is used pursuant to a sublicense from the Linux Foundation, the exclusive licensee of Linus Torvalds, owner of the
mark on a world-wide basis. Other company and product names may be trademarks of the respective companies with which they are associated.

Copyright
© 2022 NVIDIA Corporation & affiliates. All rights reserved.

NVIDIA Corporation | 2788 San Tomas Expressway, Santa Clara, CA 95051 @2
http://www.nvidia.com
NVIDIA.

http://www.nvidia.com

	Table of Contents
	Introduction
	Prerequisites
	Architecture
	3.1. Rule Compilation
	3.2. RegEx Implementations
	3.3. Huge Job Emulation

	API
	4.1. doca_regex_job_request
	4.2. doca_regex_job_response
	4.3. doca_regex_match
	4.4. Instance Construction/Destruction API
	4.4.1. doca_regex_create
	4.4.2. doca_regex_destroy

	4.5. RegEx Device Management
	4.5.1. doca_regex_dev_add
	4.5.2. doca_regex_dev_rm

	4.6. DOCA RegEx Setup
	4.6.1. doca_regex_num_qps_set
	4.6.2. doca_regex_property_matches_memory_pool_size_set

	4.7. Configuration Options
	4.7.1. doca_regex_property_huge_job_emulation_overlap_set

	4.8. Programming RegEx
	4.8.1. doca_regex_property_hardware_binary_rules_set

	4.9. Executing Jobs and Receiving Matches
	4.9.1. doca_regex_enqueue
	4.9.2. doca_regex_dequeue

