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Chapter 1. Introduction

DOCA App Shield API offers a solution for strong intrusion detection capabilities using the DPU
services to collect data from the host's memory. This solution provides intrusion detection and
forensics investigation in a way that is:

‣ Robust against attacks on a host machine

‣ Able to detect a wide range of attacks (including zero-day attacks)

‣ Least disruptive to the execution of host application (where current detection solutions
hinder the performance of host applications)

The App Shield detects attacks on critical services in a system. In many systems these
services are responsible for assuring the integrity/privacy of the execution of other
applications (e.g., a scrubbing service responsible for erasing the private data of users).

The following figure describes the relation between the DPU and the host memory where
attacks may occur. The green squares are the assets that must resume operation unhindered.
DOCA App Shield is responsible for acquiring information about processes to allow attack
detection. To that end, DOCA App Shield exposes an API to the user allowing them to detect
malicious activities (e.g., malicious processes, DLL files) by monitoring changes in critical
memory parts directly from the Arm using DMA without involving the host OS or CPU.
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Chapter 2. Prerequisites

To enable DOCA App Shield on the DPU, perform the following:

 1. Enable NVMe emulation on the firmware.
 2. Create huge pages (100 pages are recommended).
 3. Disable mlnx_snap service.

Run a config command on the host/VM. Refer to doca_apsh_config for information on creating
config files specific to the host/VM.

Run the following command to configure the DOCA:
# On the bluefield system, configure PF base address register and NVME emulation
dpu> mlxconfig -d /dev/mst/mt41686_pciconf0 s PF_BAR2_SIZE=2 PF_BAR2_ENABLE=1
 NVME_EMULATION_ENABLE=1
#Do Cold boot (from host)
host> ipmitool power cycle
 
## repeat after every reboot
# Allocate additional 2MB huge-pages for App Shield 
dpu> nr_huge=$(cat /sys/devices/system/node/node0/hugepages/hugepages-2048kB/
nr_hugepages)
     nr_huge=$((100+$nr_huge))
     sudo echo $nr_huge > /sys/devices/system/node/node0/hugepages/hugepages-2048kB/
nr_hugepages
# Disable the mlnx-snap service
dpu> systemctl stop mlnx_snap



NVIDIA DOCA App Shield MLNX-15-060508 _v1.4   |   3

Chapter 3. Architecture

The following block diagram illustrates the App Shield application flow.
 

 

‣ App Shield App – user application implementing the specific use case

‣ Telemetry Agent – collect telemetry metrics

‣ Processes to check – the host process to track
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Chapter 4. Dependencies

The library requires firmware version 24.32.1010 or higher.
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Chapter 5. API

For the library API reference, refer to the DOCA APSH API documentation in the NVIDIA DOCA
Libraries API Reference Manual.

Note: The pkg-config (*.pc file) for the App Shield library is named doca-apsh.

The following sections provide additional details about the library API.

5.1.  doca_apsh_dma_dev_set
To attach a DOCA DMA device to App Shield, calling this function is mandatory and must be
done before calling doca_apsh_start.
doca_apsh_dma_dev_set(doca_apsh_ctx, doca_dev)

Where:

‣ doca_apsh_ctx [in] – App Shield opaque context struct

‣ doca_dev [in] – struct for DOCA device with DMA capabilities

5.2.  doca_apsh_regex_dev_set
Calling this function is not mandatory to attach a RegEx DOCA device to App Shield. If the user
wants to call the function, it must be done before calling doca_apsh_start.
doca_apsh_regex_dev_set(doca_apsh_ctx, doca_dev)

Where:

‣ doca_apsh_ctx [in] – App Shield opaque context struct

‣ doca_dev [in] – struct for DOCA device with RegEx capabilities

http://docs.nvidia.com/doca/sdk/pdf/doca-libraries-api.pdf
http://docs.nvidia.com/doca/sdk/pdf/doca-libraries-api.pdf
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5.3.  Capabilities Per System
For each initialized system, App Shield retrieves an array of the requested object according to
the getter's name:

Function Name
Functions
Information Functions Signature Return Type

Get modules Returns an array with
information about
the system modules
(drivers) loaded into the
kernel of the OS.

doca_error_t
 doca_apsh_modules_get(struct
 doca_apsh_system
 *system, struct
 doca_apsh_module
 ***modules, int
 *modules_size);

‣ Array of struct
doca_apsh_module

‣ int: Size of the
returned array

‣ doca_error status

Get processes Returns an array with
information about each
process running on the
system.

doca_error_t
 doca_apsh_processes_get(struct
 doca_apsh_system
 *system, struct
 doca_apsh_procces
 ***processes, int
 *processes_size);

‣ Array of struct
doca_apsh_procces

‣ int: Size of the
returned array

‣ doca_error status

Get library For a specified process,
this function returns an
array with information
about each library
loaded into this
process.

doca_error_t
 doca_apsh_libs_get(struct
 doca_apsh_process
 *process, struct
 doca_apsh_lib
 ***libs, int
 *libs_size);

‣ Array of struct
doca_apsh_lib

‣ int: Size of the
returned array

‣ doca_error status

Get threads For a specified process,
this function returns an
array with information
about each thread
running within this
process.

doca_error_t
 doca_apsh_threads_get(struct
 doca_apsh_process
 *process, struct
 doca_apsh_thread
 ***threads, int
 *threads_size);

‣ Array of struct
doca_apsh_thread

‣ int: Size of the
returned array

‣ doca_error status

Get virtual memory
areas/virtual address
description

For a specified process,
this function returns an
array with information
about each virtual
memory area within this
process.

doca_error_t
 doca_apsh_vads_get(struct
 doca_apsh_process
 *process, struct
 doca_apsh_vad
 ***vads, int
 *vads_size);

‣ Array of struct
doca_apsh_vma

‣ int: Size of the
returned array

‣ doca_error status

Get privileges For a specified process,
this function returns an
array with information
about each possible
privilege for this

doca_error_t
 doca_apsh_privileges_get(struct
 doca_apsh_process
 *process, struct
 doca_apsh_privilege
 ***privileges, int
 *privileges_size);

‣ Array of struct
doca_apsh_privilege

‣ int: Size of the
returned array

‣ doca_error status
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Function Name
Functions
Information Functions Signature Return Type
process, as described
here.

Note: Available
on a Windows
host only.

Get environment
variables

For a specified process,
this function returns an
array with information
about each environment
variable within this
process.

Note: Available
on a Windows
host only.

doca_error_t
 doca_apsh_envars_get(struct
 doca_apsh_process
 *process, struct
 doca_apsh_envar
 ***envars, int
 *envars_size);

‣ Array of struct
doca_apsh_envar

‣ int: Size of the
returned array

‣ doca_error status

Get handles For a specified process,
this function returns an
array with information
about each handle this
process holds.

Note: Available
on a Windows
host only.

doca_error_t
 doca_apsh_handles_get(struct
 doca_apsh_process
 *process, struct
 doca_apsh_handle
 ***handles, int
 *handles_size);

‣ Array of struct
doca_apsh_handle

‣ int: Size of the
returned array

‣ doca_error status

Get LDR modules For a specified process,
this function returns an
array with information
about each loaded
module within this
process.

Note: Available
on a Windows
host only.

doca_error_t
 doca_apsh_ldrmodules_get(struct
 doca_apsh_process
 *process, struct
 doca_apsh_ldrmodule
 ***ldrmodules, int
 *ldrmodules_size);

‣ Array of struct
doca_apsh_ldrmodule

‣ int: Size of the
returned array

‣ doca_error status

Process attestation For a specified process,
this function attests the
memory pages of the
process according to
a precomputed golden

doca_error_t
 doca_apsh_attestation_get(struct
 doca_apsh_process
 *process, const char
 *exec_hash_map_path, struct
 doca_apsh_attestation
 ***attestation, int

‣ Array of struct
doca_apsh_attestation

‣ int: Size of the
returned array

‣ doca_error status

https://docs.microsoft.com/en-us/windows/win32/secauthz/privilege-constants
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Function Name
Functions
Information Functions Signature Return Type
hash file given as an
input.

Note: Single-
threaded
processes are
supported at
beta level.

 *
 attestation_size);

Attestation refresh Refreshes a single
attestation handler of
a process with a new
snapshot.

doca_error_t
 doca_apsh_attst_refresh(struct
 doca_apsh_attestation
 ***attestation, int
 *
 attestation_size);

‣ Array of struct
doca_apsh_attestation

‣ int: Size of the
returned array

‣ doca_error status

The following attribute getters return a specific attribute of an object, obtained from the array
returned from the getter functions listed above, depending on the requested attribute:
doca_apsh_process_info_get(struct doca_apsh_proccess *process, enum
 doca_apsh_process_attr attr);
doca_apsh_module_info_get(struct doca_apsh_module *module, enum
 doca_apsh_module_attr attr);
doca_apsh_lib_info_get(struct doca_apsh_lib *lib, enum doca_apsh_lib_attr attr);
doca_apsh_thread_info_get(struct doca_apsh_thread *thread, enum doca_apsh_lib_attr
 attr);
doca_apsh_vad_info_get(struct doca_apsh_vad *vad, enum doca_apsh_vad_attr attr);
doca_apsh_privilege_info_get(struct doca_apsh_privilege *privilege, enum
 doca_apsh_privilege_attr attr);
doca_apsh_envar_info_get(struct doca_apsh_envar *envar, enum doca_apsh_envar_attr
 attr);
doca_apsh_handle_info_get(struct doca_apsh_handle *handle, enum
 doca_apsh_handle_attr attr);
doca_apsh_ldrmodule_info_get(struct doca_apsh_ldrmodule *ldrmodule, enum
 doca_apsh_ldrmodule_attr attr);
doca_apsh_attst_info_get(struct doca_apsh_attestation *attestation, enum
 doca_apsh_attestation_attr attr);

The return type of that attribute getters, based on the attribute, can be found in
doca_apsh_attr.h.

Usage example:
const uint pid = doca_apsh_process_info_get(processes[i], DOCA_APSH_PROCESS_PID);
const char *proc_name = doca_apsh_process_info_get(processes[i],
 DOCA_APSH_PROCESS_COMM);
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Chapter 6. App Shield Initialization and
Teardown

There are different structures in App Shield that must be used for a BlueField client to be able
to introspect into a system running on the host side, whether it is a bare-metal machine or a
virtual machine.

6.1.  Init App Shield
The App Shield context structure is used to init the devices on the DPU required to start
monitoring App Shield systems.

To use doca_apsh_ctx, call:
struct doca_apsh_ctx *doca_apsh_create(void);

For doca_app_shield_ctx to work, an RDMA device must be set using the following function:
doca_error_t doca_apsh_dma_dev_set(struct doca_apsh_ctx *ctx, struct doca_dev
 *dma_dev);

For example:
doca_error_t ret = doca_apsh_dma_dev_set(ctx, dma_dev);

For doca_app_shield_ctx to use doca_regex, a RegEx device must be set using the
following function:
doca_error_t doca_apsh_regex_dev_set(struct doca_apsh_ctx *ctx, struct doca_dev
 *regex_dev);

For example:
doca_error_t ret = doca_apsh_regex_dev_set(ctx, regex_dev);

After the above devices are set, the following function should be invoke:
doca_error_t doca_apsh_start(struct doca_apsh_ctx *ctx);

This establishes a connection to the devices.

When App Shield lib is no longer needed, a destruction must be called to release all the
allocated resources:
void doca_apsh_destroy(struct doca_apsh_ctx *ctx);
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6.2.  Init System to Monitor
The system structure represents a system on the host that should be monitored. To instantiate
an App Shield system, the following function must be called:
struct doca_apsh_system *doca_apsh_system_create(struct doca_apsh_ctx *ctx);

A single doca_apsh_ctx instance may be associated with many App Shield systems.

The App Shield system has the following attributes:

‣ Layer – specifies the system type. Types: Bare metal, virtual machine, or a container (for
future use).

‣ System DOCA device – the reoresentor device obtained from the DPU. The device should
be connected to the host/VM and functions as a representor VF/PF. To query/obtain the
DOCA device, refer to the NVIDIA DOCA Libraries API Reference Manual.

‣ System/symbol map – includes information about the OS that App Shield needs to
introspect (e.g., Window 10 Build 18363/Linux Ubuntu 20.04) and the size and fields of the
OS structures such as process struct, which helps App Shield with the memory forensic
techniques it uses to access and analyze these structures in the host's memory. This can
be obtained by running the doca_apsh_config.py tool on the host.

‣ Memory regions – contains the allowed physical memory regions that App Shield can
access. This information is needed since there are memory regions reserved by different
PCIe devices. Some of these regions map device registers which change the device's
state each time the regions (certain physical addresses in these regions) are read. These
changes may confuse the device firmware and may, therefore, cause the system to crash/
freeze. This must be avoided. This can be obtained by running the doca_apsh_config.py
tool on the host.

‣ KPGD file (optional and relevant only for Linux OS) – contains the KPGD physical address
and the virtual address of init_task. This information is required since App Shield
extracts data from the kernel struct in the physical memory. Thus, the kernel page
directory table must translate the virtual addresses of these structs. This can be obtained
by running the doca_apsh_config.py tool on the host with the flag find_kpgd.

Each one of these attributes (except for the KPGD file since it is optional) must be set by
calling its respective function:
doca_error_t doca_apsh_sys_system_layer_set(struct doca_apsh_system *system, enum
 doca_apsh_system_layer layer_type);
doca_error_t doca_apsh_sys_dev_set(struct doca_apsh_system *system, struct
 doca_dev_remote *dev);
doca_error_t doca_apsh_sys_os_symbol_map_set(struct doca_apsh_system
 *system, const char *system_os_symbol_map_path);
doca_error_t doca_apsh_sys_mem_region_set(struct doca_apsh_system
 *system, const char *system_mem_region_path);
doca_error_t doca_apsh_sys_kpgd_file_set(struct doca_apsh_system *system, const char
 *system_kpgd_file_path);

For each system, after all the attributes are set, the following function must be called to start
App Shield system monitoring:
doca_error_t doca_apsh_system_start(struct doca_apsh_system *system);

http://docs.nvidia.com/doca/sdk/pdf/doca-libraries-api.pdf
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Other functions can be called to retrieve information from the system’s memory after the
App Shield system is started. These functions (also called capabilities) are expanded on in
Capabilities Per System.

When the App Shield system is no longer needed, a destruction must be called to deallocate
internal system memory:
void doca_apsh_system_destroy(struct doca_apsh_system *system);

6.3.  doca_apsh_config
doca_apsh_config is used to get the config files necessary for running system analysis. Run
the doca_apsh_config tool once system is up.
/opt/mellanox/doca/tools/doca_apsh_config.py --pid <pid> --os <os> --path
 <dwarf2json-path/pdbparse-to-json.py> --find_kpgd <0/1>

‣ Get the dwarf2json executable (relevant for Linux OS) which can be found here. Note that
the executable must be compiled using Go Programming Language. For instructions, refer
to the dwarf2json library.

‣ Get the pdbparse-to-json.py (relevant for Windows OS) which can be found here.

The tool creates the following files:

‣ Symbol map – this file changes once the system kernel is updated or the kernel module is
installed. The file does not change on system reboot.

‣ Memory regions – this file changes when adding/removing hardware or drivers that affect
the system's memory map (e.g., when adding register addresses). The file does not change
on system reboot.

‣ hash.zip – this file is required for attestation API but is unnecessary for all other APIs.
The zip file contains the required documentation to attest to a single process. The file
changes on lib/executable update.

‣ kpgd_file.conf – this file is optional (relevant for Linux OS) and helps with faster
initialization of the library. The file changes on system reboot.

Flags:

‣ pid – the process ID of the hashed process (only mandatory if the user wants to create
hash.zip)

‣ os – linux/windows

‣ path –

‣ Linux – path to the dwarf2json executable. Default ./dwarf2json.

‣ Windows – path to pdbparse-to-json.py. Default ./pdbparse-to-json.py.

‣ find_kpgd – a flag to enable/disable creating kpgd_file.conf (relevant only to Linux OS).
Default 0.

For example:
/opt/mellanox/doca/tools/doca_apsh_config.py --pid 100 --os linux --path ./
dwarf2json --find_kpgd 1 

https://github.com/volatilityfoundation/dwarf2json
https://raw.githubusercontent.com/volatilityfoundation/volatility3/stable/development/pdbparse-to-json.py
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Chapter 7. Samples

Please refer to NVIDIA DOCA App Shield Sample Guide for more information about the API of
this DOCA library.

http://docs.nvidia.com/doca/sdk/pdf/app-shield-samples.pdf
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