NVIDIA.

NVIDIA DOCA Firefly Service

Guide

MLNX-15-060531 _v1.4 November 2022

Table of Contents

Chapter 1. INTrOQUCTION ..o i et e e e e e e e e 1
Chapter 2. ReqUITEMENTS. .. et e e e e e e e e e eeaaaeaeans 3
2.7 FITMNWATE VBISION .o ittt 3
2.2. BlueField BSP VerSion. ... i 3
2.3, EmMbBbedded MOde. i 3
2.3.1. Configuring Firmware Settings on DPU for Embedded Mode..........cccoooiiiiiiiii 3
2.3.2. HE PO SOIIPES i 4

2.3, 2.0 st NMEW ST SN 4
2.3.2.2. prepare_for_embedded_mode.Sh........cooiiiiiiii 4

2.3.3. Setting Up Network Interfaces for Embedded Mode...........cocooiiiiiiiiii 5

2.4, 5€Parated MOGE. ... i 6
2.4.1. Configuring Firmware Settings on DPU for Separated Mode..........c.coooiiiiiiiiiin, 6
2.4.2. Setting Up Network Interfaces for Separated Mode...........cccoooiiiiiiiiiii 6
Chapter 3. Service DeploymMent.ot a e e 7
Chapter 4. ConfigUIratiON.......o ittt e e eeeeeeeees 8
4.7, Default Config File. e 8
4.2, CUstom Config File. i 8
4.3. Overriding Specific Config File Parameters. ... 8
4.4, PTP Monitoring Configuration.......o i 9
Chapter 5. DesCriplion. ... 10
0T PIOVIA OIS e 10
0.2, PO Il S 10
0.3, DU PULS e 10
0.3.1. Container OQULPUL..o.eiii e 10
0.3.2. PEPAL OULPUL ..ot 11

0.4, PTP MONITOTING ettt 12
Chapter 6. TroubleShOotiNg. ..o s 13
Chapter 7. PTP Profile Default Config Files.......cooiiiiiii e, 14
7.0 Media Profile. e 14
7.2, Default Profile. ... 14

NVIDIA DOCA Firefly Service MLNX-15-060531 _v1.4 | i

Chapter 1. Introduction

DOCA Firefly Service provides precision time protocol (PTP) based time syncing services to the
BlueField DPU.

PTP is a protocol used to synchronize clocks in a network. When used in conjunction with
hardware support, PTP is capable of sub-microsecond accuracy, which is far better than is
what is normally obtainable with network time protocol (NTP). PTP support is divided between
the kernel and user space. The ptp4l program implements the PTP boundary clock and
ordinary clock. With hardware time stamping, it is used to synchronize the PTP hardware
clock to the master clock.

NVIDIA DOCA Firefly Service MLNX-15-060531 _v1.4 | 1

Introduction

Host (x86)

BlueField

DOCA Firefly
-he
i Service

OVS-
Uplink

Traffic from
network

NVIDIA DOCA Firefly Service MLNX-15-060531 _v1.4 | 2

Chapter 2. Requirements

Some of the features provided by Firefly require specific hardware BlueField DPU capabilities:
» PPS -requires special BlueField DPUs with PPS capabilities

» Synck - requires special BlueField DPUs with SyncE capabilities

» PTP - supported by all BlueField DPUs

Note that failure to run PPS or SyncE due to missing hardware support is noted in the
container output, but the container will continue to run the timing services it can provide on
the provided hardware, such as PTP.

2.1. Firmware Version

Your firmware version must be 24.33.1048 or higher.

2.2. BlueField BSP Version

The supported BlueField image versions are 3.9.0 and higher.

2.3. Embedded Mode

2.3.1. Configuring Firmware Settings on DPU for
Embedded Mode

1. Set the DPU to embedded mode (default mode]):
sudo mlxconfig -y -d 03:00.0 s INTERNAL CPU MODEL=1

2. Enable the real time clock (RTC):
sudo mlxconfig -d 03:00.0 set REAL TIME CLOCK ENABLE=1

3. Power cycle the DPU to apply the configuration.

4. You may check the DPU mode using the following command:

sudo mlxconfig -d 03:00.0 g | grep INTERNAL CPU MODEL
Example output
INTERNAL CPU MODEL EMBEDDED HOST (1)

NVIDIA DOCA Firefly Service MLNX-15-060531 v1.4 | 3

Requirements

2.3.2. Helper Scripts

Firefly’s deployment contains a script to help with the configuration steps required for the
network interface in embedded mode:

> scripts/doca firefly/set new sf.sh

> scripts/doca firefly/prepare for embedded mode.sh

Both scripts are included as part of DOCA's container resource which can be downloaded
according to the instructions in the NVIDIA DOCA Container Deployment Guide.

2.3.2.1. set new sf.sh

Creates a new trusted SF and marks it as “trusted”.
Script arguments:

» PCle address

» SF number (checks if already exists)

» MAC address [if absent, a random address is generated)

Examples:

» Create SF with number "4" over port 0 of the DPU:
./set_new _sf.sh 0000:03:00.0 4

» Create SF with number "5" over port 0 of the DPU and a specific MAC address:
./set new sf.sh 0000:03:00.0 5 aa:bb:cc:dd:ee:ff

» Create SF with number “4" over port 1 of the DPU:
./set_new sf.sh 0000:03:00.1 4

The first two examples should work out of the box for a BlueField-2 device and create SF4 and
SFb respectively.

2.3.2.2. prepare_for_embedded_mode.sh

This script automates all the steps mentioned in section Setting Up Network Interfaces for
Embedded Mode and configures a freshly installed BFB image to the settings required by
DOCA Firefly.

Notes:

» The script deletes all previous OVS settings and creates a single OVS bridge that matches
the definitions below

» The script should only be run once when connecting to the DPU for the first time or after a
power cycle

» The only manual step required after using this script is configuring the IP address for the
created network interface [step 5 in section Setting Up Network Interfaces for Embedded
Mode]

Script arguments:

NVIDIA DOCA Firefly Service MLNX-15-060531 v1.4 | 4

http://docs.nvidia.com/doca/sdk/pdf/container-deployment.pdf

Requirements

» SF number (checks if already exists)

Examples:

» Prepare OVS settings using an SF indexed 4:
./prepare for embedded mode.sh 4

2.3.3. Setting Up Network Interfaces for Embedded
Mode

1. Create a trusted SF to be used by the service according to the Scalable Function Setup
Guide.

Note: The following instructions assume that the SF has been created using index 4.

2. Create the required OVS setting as is shown in the architecture diagram:

$ sudo ovs-vsctl add-br uplink
$ sudo ovs-vsctl add-port uplink pO
$ sudo ovs-vsctl add-port uplink en3fOpfOsf4d

S Note: If traffic from the host is required as well, make sure to add the following port to the
OVS bridge:
$ sudo ovs-vsctl add-port uplink pfOhpf

3. Verify the OVS settings:

sudo ovs-vsctl show
Bridge uplink
Port uplink
Interface uplink
type: internal

Port en3f0pf0sf4
Interface en3f0pfl0sf4

Port p0
Interface p0

4. Enable TX timestamping on the SF interface (not the representor):

tx port timestamp offloading
sudo ethtool --set-priv-flags enp3s0f0s4 tx port ts on

5. Enable the interface and set an IP address for it:

configure ip for the interface:
sudo ifconfig enp3s0£f0s4 <ip addr> up

6. Configure OVS to support TX timestamping over this SF:

$ sudo ovs-vsctl set Bridge uplink mcast snooping enable=true

$ sudo ovs-vsctl set Port en3fOpfOsf4 other config:mcast-snooping-flood=true

$ sudo ovs-vsctl set Port en3f0pfOsfd4 other config:mcast-snooping-flood-

reports=true

$ sudo tc filter add dev en3f0pfOsf4 protocol ipv4 parent ffff: prio 1000 flower
ip proto udp dst port 319 skip sw action mirred egress redirect dev pO0

$ sudo tc filter add dev pO protocol ipv4 parent ffff: prio 1000 flower ip proto
udp dst port 319 skip sw action mirred egress redirect dev en3f0pfOsf4

$ sudo tc filter add dev en3f0pfOsf4d protocol ipv4 parent ffff: prio 1000 flower
ip proto udp dst port 320 skip sw action mirred egress redirect dev pO0

NVIDIA DOCA Firefly Service MLNX-15-060531 v1.4 | 5

http://docs.nvidia.com/doca/sdk/pdf/scalable-functions.pdf
http://docs.nvidia.com/doca/sdk/pdf/scalable-functions.pdf

Requirements

$ sudo tc filter add dev p0 protocol ipv4 parent ffff: prio 1000 flower ip proto
udp dst port 320 skip sw action mirred egress redirect dev en3fOpfOsf4

Note: If your OVS bridge uses a name other than up1ink, make sure that the used name is
reflected in the ovs-vsctl set Bridge command:
$ sudo ovs-vsctl set Bridge <bridge-name> mcast snooping enable=true

2.4. Separated Mode

2.4.1. Configuring Firmware Settings on DPU for
Separated Mode

1. Set the DPU mode to "Separated”:
sudo mlxconfig -y -d 03:00.0 s INTERNAL CPU MODEL=0

2. Enable RTC:
sudo mlxconfig -d 03:00.0 set REAL TIME CLOCK ENABLE=1
3. Power cycle the DPU to apply the configuration.

4. You may check the DPU mode using the following command:

sudo mlxconfig -d 03:00.0 g | grep INTERNAL CPU MODEL
Example output
INTERNAL CPU MODEL SEPARATED HOST (0)

2.4.2. Setting Up Network Interfaces for Separated
Mode

1. Make sure that that po is not connected to an OVS bridge:
sudo ovs-vsctl show

2. Enable TX timestamping on the p0 interface:

tx port timestamp offloading (assuming PTP interface is p0)
sudo ethtool --set-priv-flags p0 tx port ts on

3. Enable the interface and set an IP address for it:

configure ip for the interface
sudo ifconfig pO0 <ip-addr> up

NVIDIA DOCA Firefly Service MLNX-15-060531 v1.4 | 6

Chapter 3. Service Deployment

For more information about the deployment of DOCA containers on top of the BlueField DPU,
refer to NVIDIA DOCA Container Deployment Guide.

DOCA Firefly service is available on NGC, NVIDIA's container catalog. Service-specific
configuration steps and deployment instructions can be found under the service's container

page.

NVIDIA DOCA Firefly Service MLNX-15-060531 _v1.4 | 7

http://docs.nvidia.com/doca/sdk/pdf/container-deployment.pdf
https://catalog.ngc.nvidia.com/orgs/nvidia/teams/doca/containers/doca_firefly
https://catalog.ngc.nvidia.com/orgs/nvidia/teams/doca/containers/doca_firefly

Chapter 4. Configuration

The PTP program, 1inuxptp, has a configuration file that enables us to customize various
PTP-related settings.

4.1. Default Config File

Each profile has its own base PTP configuration file. For example, the Media profile PTP
configuration file is ptp4l-media.conf.

The default configuration files can be found in section PTP Profile Default Config Files.

4.2. Custom Config File

Instead of using a profile's base config file, users can create a file of their own.

To set a custom config file, users should locate their config file in the directory /etc/firefly
and set the config file name in DOCA Firefly's YAML file.

For example, to set a custom linuxptp config file, the user can set the parameter
PTP CONFIG FILE in the YAML file:

- name: PTP CONFIG FILE
value: my custom ptp.conf

In this example, my custom ptp.conf should be placed at /etc/firefly/
my custom ptp.conf.

4.3. Overriding Specific Config File
Parameters

Instead of replacing the entire config file, users may opt to override specific
parameters. This can be done using the following variable syntax in the YAML file:
CONF_<TYPE> <SECTION> <PARAMETER NAME>.

» TYPE - currently only PTP is supported

NVIDIA DOCA Firefly Service MLNX-15-060531 v1.4 | 8

Configuration

» SECTION - the section in the config file that the parameter should be placed in

. Note: If the specified section does not already exist in the config file, a new section is
created.

» PARAMETER NAME - the config parameter name as should be placed in the config file

Note: If the parameter name already exists in the config file, then the value is changed
according to the value provided in the .yaml file. If the parameter name does not already
exist in the config file, then it is added.

For example, the following variable in the YAML file definition changes the value of the
parameter priorityl under section global in the PTP config file to 64.

- name: CONF PTP global priorityl
value: "64"

4.4. PTP Monitoring Configuration

DOCA Firefly contains an alpha feature for monitoring the PTP state during Firefly's execution.
This feature could be activated using the following YAML lines:

- name: PTP MONITOR
value: "active"

NVIDIA DOCA Firefly Service MLNX-15-060531 v1.4 | 9

Chapter 5. Description

H.1. Providers

DOCA Firefly Service uses the following third-party providers to provide time syncing services:
» Linuxptp - PTP service, provided by the PTP4L program
» Testptp - PPS settings service

H.2. Profiles

DOCA Firefly Service includes profiles which represent common use cases for the Firefly
service that provide a different default configuration per profile:

Profiles Media Default

Purpose Media productions Any user requiring PTP
Content PTP PTP

PTP profile SMPTE 2059-2 PTP default profile
PPS in Enabled Enabled

PPS out Enabled Enabled

PTP client/server* Client only Both

S Note: Client only is only relevant to a single PTP interface. If more than one PTP interface is
provided in the YAML file, both modes are enabled.

5.3. QOutputs

5.3.1. Container Output

The output of the DOCA Firefly Service container can be viewed using the following command:
crictl logs <CONTAINER-ID>

NVIDIA DOCA Firefly Service MLNX-15-060531 _v1.4 | 10

Description

Where CONTANIER-ID can be retrieved using the following command:
sudo crictl ps

For example, in the following output, the container ID is 8£368b98d025b.
$ sudo crictl ps

CONTAINER IMAGE CREATED STATE NAME
ATTEMPT POD ID POD

8£368b98d025b 289809f312b4c 2 seconds ago Running

doca-firefly 0 5af59511b4be4d doca-firefly-some-

computer—-name

The output of the container depends on the services supported by the hardware and enabled
via configuration and the profile selected. However, note that any of the configurations runs
PTP, so when DOCA FireFly is running successfully expect to see the line Running ptp4l.

The following is an example of the expected container output when running the default profile
on a DPU that supports PPS:

set pin function okay

PPS in set

set pin function okay

PPS out set

name mlx5 pps0 index O func 1 chan 0
name mlx5 ppsl index 1 func 2 chan 0
periodic output request okay
Running ptp4l

The following is an example of the expected container output when running the default profile
on a DPU that does not support PPS:

PPS capability not found, seems that card doesn't support
capabilities:
100000000 maximum frequency adjustment (ppb)
0 programmable alarms
external time stamp channels
programmable periodic signals
pulse per second
programmable pins
0 cross timestamping
Running ptp4l

5.3.2. Ptp4l Output

The ptp4l output can be found in the file /var/log/doca/firefly/ptp4l.log.

O O OO

Example output:

ptp41[95877.202]: selected /dev/ptp2 as PTP clock

ptp41[95877.203]: port 1 (enp3s0£f0s0): INITIALIZING to LISTENING on INIT COMPLETE

ptp41[95877.204]: port 0 (/var/run/ptp4l): INITIALIZING to LISTENING on
INIT COMPLETE

ptp41[95877.204]: port 0 (/var/run/ptpdlro): INITIALIZING to LISTENING on
INIT COMPLETE

ptp41[95884.191]: port 1 (enp3s0£f0s0): LISTENING to MASTER on

ANNOUNCE RECEIPT TIMEOUT EXPIRES

ptp41[95884.191]: selected local clock 021898.fffe.daee36 as best master

ptp4l1[95884.191]: port 1 (enp3s0£f0s0): assuming the grand master role

PPS capability not found, seems that card doesn't support

NVIDIA DOCA Firefly Service MLNX-15-060531 _v1.4 | 11

Description

50.4. PTP Monitoring

Note: Supported at alpha level only.

PTP monitoring periodically queries for various PTP-related information and prints it to the
container’s log.

The following is a sample output of this tool:

gmIdentity: d26434.fffe.8£8345
master offset: -8

gmPresent: true

ptp_stable: Recovered

UtcOffset: 37

timeTraceable: 0

frequencyTraceable: 0

grandmasterPriorityl: 128

gmClockClass: 248

gmClockAccuracy: Oxfe
grandmasterPriority2: 127
gmOffsetScaledlLogVariance: Oxffff

ptp time: Tue Oct 18 08:45:23 2022
system time: Tue Oct 18 08:45:23 2022
error count: 1

last err time: Tue Oct 18 08:41:24 2022

Among others, this monitoring provides the following information:
» Details about the Grandmaster the DPU is syncing to
» Current PTP timestamp

» Health information such as connection errors during execution and whether they have
been recovered from

PTP monitoring is disabled by default and can be activated by uncommenting the relevant lines
as shown in the configuration section above.

Once activated, the information can viewed from the container using the following command:
sudo crictl logs --tail=18 <CONTAINER-ID>

It is recommended to use the following watch command to actively monitor the PTP state:
sudo watch -n 1 crictl logs --tail=18 <CONTAINER-ID>

NVIDIA DOCA Firefly Service MLNX-15-060531 _v1.4 | 12

Chapter 6. Troubleshooting

For general troubleshooting purposes, refer to NVIDIA DOCA Troubleshooting Guide.

For container-related troubleshooting, refer to the "Troubleshooting” section in the NVIDIA
DOCA Container Deployment Guide.

The following are additional troubleshooting tips for DOCA Firefly Service:

>

If no pod is created, verify that your YAML is written correctly (see NVIDIA DOCA
Troubleshooting Guide) and check the output of the following command:

sudo journalctl -u kubelet

If the pod's STATE fails to be marked as Ready (check using circtl pods), check if the
container has run and exited:

1. Check the container’s state:
sudo crictl ps -a
2. If the container did exit, use the container’s ID to check the log output by running:
sudo crictl logs <CONTAINER-ID>
If the error custom config file not found appears in the container log, check the
custom file name written in the YAML file and make sure that you properly placed the file
with that name under the /etc/firefly/ directory.

If the error profile <name> not supported. Aborting appears in the container log,
verify that the profile you selected in the YAML file matches one of the optional profiles as

listed in the profiles table.

If the message PPS capability not found, seems that card doesn't support
appears in the container log, then the DPU hardware does not support PPS. However, PTP
can still run on this HW and you should see the line "Running ptp41” in the container log
which indicatest that PTP is running successfully.

NVIDIA DOCA Firefly Service MLNX-15-060531 _v1.4 | 13

http://docs.nvidia.com/doca/sdk/pdf/troubleshooting.pdf
http://docs.nvidia.com/doca/sdk/pdf/container-deployment.pdf
http://docs.nvidia.com/doca/sdk/pdf/container-deployment.pdf
http://docs.nvidia.com/doca/sdk/pdf/troubleshooting.pdf
http://docs.nvidia.com/doca/sdk/pdf/troubleshooting.pdf

Chapter 7. PTP Profile Default Config
Files

7.1. Media Profile

[global]

domainNumber 127
priorityl 128
priority2 127
use syslog 1
logging level 6
tx timestamp timeout 30
hybrid eZe 1
dscp_event 46
dscp_general 46
logAnnouncelInterval =2
announceReceiptTimeout 3
logSyncInterval =3
logMinDelayRegInterval =3
delay mechanism E2E
network transport UDPv 4
boundary clock jbod 1

7.2. Default Profile

This config file is based on linuxptp config file default.cfglglobal]
#
Default Data Set

#

twoStepFlag 1
clientOnly 0
socket priority 0
priorityl 128
priority?2 128
domainNumber 0

#utc offset 37
clockClass 248
clockAccuracy OxFE
offsetScaledLogVariance OxXFFFF
free running 0

freqg est interval 1
dscp_event 0

dscp _general 0
dataset comparison ieeelb588

G.8275.defaultDS.localPriority 128

NVIDIA DOCA Firefly Service MLNX-15-060531 _v1.4 | 14

maxStepsRemoved

#

Port Data Set

#

logAnnouncelInterval
logSyncInterval
operLogSyncInterval
logMinDelayRegInterval

logMinPdelayReglInterval

25

1
0
0
0
0

operLogPdelayRegInterval 0

announceReceiptTimeout
syncReceiptTimeout
delay response timeout
delayAsymmetry

fault reset interval

neighborPropDelayThresh 20000000

serverOnly

3
0
0
0
4

0

5

G.8275.portDS.localPriority
auto

ptp

asCapable

BMCA

inhibit announce
inhibit delay req
ignore source id

Run time options
#

assume_ two step
logging level

path trace enabled
follow up_ info
hybrid e2e

inhibiE_multicast_servic

net sync monitor
tc_spanning tree

tx timestamp timeout
unicast listen
unicast master table
unicast req duration
use syslog

verbose

summary interval
kernel leap
check fup sync

clock class threshold
Servo Options

#

pi proportional const
pi integral const

pi proportional scale

pi_proportional:exponent
pi proportional norm max

pi integral scale

pi integral exponent
pi_integral norm max
step threshold
first step threshold
max frequency

clock servo
sanity freq limit
ntpshm segment
msg_interval request

servo_num offset values

servo offset threshold
write phase mode

Transport options

#

transportSpecific

ptp dst mac

NVIDIA DOCA Firefly Service

0
0
0#

NORFR OO WOORROOD OO O o O

4

(@]

0.
0.

0
0
0.
0
0

w s O

8#

[eoNe}

.0

00002

128

-0.3
0.7

900000000

pi

200000000

0
0
10
0
0#

0x0

01:1B:19:00:00:00

PTP Profile Default Config Files

MLNX-15-060531 _v1.4 | 15

PTP Profile Default Config Files

p2p_dst mac 01:80:C2:00:00:0E
udp_ ttl 1

udp6_ scope 0x0E
uds_address /var/run/ptpdl
uds_ro_address /var/run/ptpélro#
Default interface options

#

clock type ocC

network transport UDPv4

delay mechanism E2E

time stamping hardware
tsproc _mode filter

delay filter moving median
delay filter length 10
egressLatency 0
ingressLatency 0

For multipule interfaces

boundary clock jbod 1#

Clock description

#

productDescription H
revisionData -
manufacturerIdentity 00:00:00
userDescription 8

timeSource 0xA0

NVIDIA DOCA Firefly Service MLNX-15-060531 _v1.4 | 16

Notice

This document is provided for information purposes only and shall not be regarded as a warranty of a certain functionality, condition, or quality of a product. NVIDIA
Corporation nor any of its direct or indirect subsidiaries and affiliates (collectively: "NVIDIA") make no representations or warranties, expressed or implied, as to the
accuracy or completeness of the information contained in this document and assume no responsibility for any errors contained herein. NVIDIA shall have no liability
for the consequences or use of such information or for any infringement of patents or other rights of third parties that may result from its use. This document is not
a commitment to develop, release, or deliver any Material (defined below), code, or functionality.

NVIDIA reserves the right to make corrections, modifications, enhancements, improvements, and any other changes to this document, at any time without notice.
Customer should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the time of order acknowledgement, unless otherwise agreed
in an individual sales agreement signed by authorized representatives of NVIDIA and customer ("Terms of Sale”). NVIDIA hereby expressly objects to applying any
customer general terms and conditions with regards to the purchase of the NVIDIA product referenced in this document. No contractual obligations are formed
either directly or indirectly by this document.

NVIDIA products are not designed, authorized, or warranted to be suitable for use in medical, military, aircraft, space, or life support equipment, nor in applications
where failure or malfunction of the NVIDIA product can reasonably be expected to result in personal injury, death, or property or environmental damage. NVIDIA
accepts no liability for inclusion and/or use of NVIDIA products in such equipment or applications and therefore such inclusion and/or use is at customer’s own risk.

NVIDIA makes no representation or warranty that products based on this document will be suitable for any specified use. Testing of all parameters of each product
is not necessarily performed by NVIDIA. It is customer’s sole responsibility to evaluate and determine the applicability of any information contained in this document,
ensure the product is suitable and fit for the application planned by customer, and perform the necessary testing for the application in order to avoid a default of
the application or the product. Weaknesses in customer’s product designs may affect the quality and reliability of the NVIDIA product and may result in additional
or different conditions and/or requirements beyond those contained in this document. NVIDIA accepts no liability related to any default, damage, costs, or problem
which may be based on or attributable to: (i) the use of the NVIDIA product in any manner that is contrary to this document or (i) customer product designs.

No license, either expressed or implied, is granted under any NVIDIA patent right, copyright, or other NVIDIA intellectual property right under this document.
Information published by NVIDIA regarding third-party products or services does not constitute a license from NVIDIA to use such products or services or a warranty
or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property rights of the third party,
or a license from NVIDIA under the patents or other intellectual property rights of NVIDIA.

Reproduction of information in this document is permissible only if approved in advance by NVIDIA in writing, reproduced without alteration and in full compliance
with all applicable export laws and regulations, and accompanied by all associated conditions, limitations, and notices.

THIS DOCUMENT AND ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS
(TOGETHER AND SEPARATELY, "MATERIALS") ARE BEING PROVIDED “AS IS.” NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR
OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND
FITNESS FOR A PARTICULAR PURPOSE. TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL NVIDIA BE LIABLE FOR ANY DAMAGES, INCLUDING
WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF
THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF NVIDIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
Notwithstanding any damages that customer might incur for any reason whatsoever, NVIDIA's aggregate and cumulative liability towards customer for the products
described herein shall be limited in accordance with the Terms of Sale for the product.

Trademarks

NVIDIA, the NVIDIA logo, and Mellanox are trademarks and/or registered trademarks of Mellanox Technologies Ltd. and/or NVIDIA Corporation in the U.S. and in
other countries. The registered trademark Linux® is used pursuant to a sublicense from the Linux Foundation, the exclusive licensee of Linus Torvalds, owner of the
mark on a world-wide basis. Other company and product names may be trademarks of the respective companies with which they are associated.

Copyright
© 2022 NVIDIA Corporation & affiliates. All rights reserved.

NVIDIA Corporation | 2788 San Tomas Expressway, Santa Clara, CA 95051 @2
http://www.nvidia.com
NVIDIA.

http://www.nvidia.com

	Table of Contents
	Introduction
	Requirements
	2.1. Firmware Version
	2.2. BlueField BSP Version
	2.3. Embedded Mode
	2.3.1. Configuring Firmware Settings on DPU for Embedded Mode
	2.3.2. Helper Scripts
	2.3.2.1. set_new_sf.sh
	2.3.2.2. prepare_for_embedded_mode.sh

	2.3.3. Setting Up Network Interfaces for Embedded Mode

	2.4. Separated Mode
	2.4.1. Configuring Firmware Settings on DPU for Separated Mode
	2.4.2. Setting Up Network Interfaces for Separated Mode

	Service Deployment
	Configuration
	4.1. Default Config File
	4.2. Custom Config File
	4.3. Overriding Specific Config File Parameters
	4.4. PTP Monitoring Configuration

	Description
	5.1. Providers
	5.2. Profiles
	5.3. Outputs
	5.3.1. Container Output
	5.3.2. Ptp4l Output

	5.4. PTP Monitoring

	Troubleshooting
	PTP Profile Default Config Files
	7.1. Media Profile
	7.2. Default Profile

