NVIDIA.

NVIDIA DOCA RXPBench Performance
Comparison Tool

User Guide

MLNX-15-060475 _v1.4 November 2022

Table of Contents

(0] a1 o1 (=T ol IR [oY {fo Yo 1V [ox 4o RSSO PPPPPPPPRPPPP 1
T T DOCUMENT SCOPE. ittt 1
1.2, DOCUMENT GLOSSAIMY. . it 1
T3 IO S e 2

Chapter 2. RXPBench Overview and Installation............ccciiiiiiiiiiiiiiiiiiiieeeeeeeeeee 4
2.7 HOSE INSTALLAtION. ..t 5

2.0] PrEIEOUISITES. . it 5
2.2. DPU INSTallation. ... 6
2.3. DOCA @Nd DPDK ..o 6

Chapter 3. Example Application UsSage......ccuuuiiiiiiie et 7
3.1, Configuring RXPBENCH ... 7
3.2, RegULar EXPreSSIONS. . o 8
3.3 RUNTIME SEatiStiCS. o it 9
3.4, ENd-0f-RUN STatISTICS. oot 10

3.4.1. Configuration Statistics BLOCK. ..o 10
3.4.2. RUN OVErVIEW BLOCK .. .ot 12
3.4.3. DPDK RegEX Stats BLOCK. ...ttt 13
3.4.4. Hyperscan Stats BLOCK.o 14

Chapter 4. General Configuration OptionS........cooiiiiiiiiiie e 15
4.1. Configuration File (-C, -=config=file).........coiiii e, 15
4.2 DPDK EAL (2D i 15
4.3 VEIDOSE (V). e, 16
bl COTES [C)iiiii oo 16

Chapter 5. Algorithm, Ingress, and Rules Options. ... 18
5.1. Algorithm/Device Select [--Regex-dev, =d). ... 18
5.2. Input Mode (--input-mode, =M. .o e 18

5.2.1. --input-mode dpdk_port, -m dpdk_port. ... 19
5.2.2. --input-mode pcap_file, -m pcap_file ... 19
5.2.3. --input-mode text_file, -m text_file. ... 19
5.2.4. --input-mode job_format, -m job_format........cccoiiiiii 20
5.2.5. --input-mode remote_mmap, -M remote_MMapP......coccciiiiiiiiii e 20
0.2.5.7. dOCa_IemMOtE MMM AP P iiie ittt 21

5.3. Compiled Rules File (--rUles, =)o i, 21
5.4. Uncompiled Rules File (--raw_rules, =R, 21
5.5. App-Layer Filtering (--run-app-layer, Al 22

NVIDIA DOCA RXPBench Performance Comparison Tool MLNX-15-060475 _v1.4 | ii

Chapter 6. DPDK Port Operations........ooo it e e e e 23

6.1. Primary Port (--dpdk-primary-port, =T 23
6.2. Secondary Port (--dpdk-secondary-port, =2)........ccccooiiiiioioe e 23
Chapter 7. RegEx Compilation Operations.........ccccuviiiiiiiiiiiiie e 24
7.1. Force Compilation (--force-compile, =FJ. ... 24
7.2. Single-line Mode (--comp-single-ling, =S)........oooiiiiioe e 24
7.3. Caseless Matching (--comp-caseless, =il.......ooooioiiii e 24
7.4. Anchoring Multi-line Mode (--comp-multi-line, =U)........cocoooiiiii 25
7.5. Free Spacing Mode (--comp-free-Space, =X)......cocooiiiiiiiiioeceeceeeeee e, 25
Chapter 8. RUNTIME OPtIONS....ciiiiiiiiiiiiiiiieiiiee ettt eseeeeseeeeeeees 26
8.1. Runtime Seconds (--FUN-tiME-SECS, =S) . i i oo, 26
8.2. lterations (--rUn-NUM-ItEratioNS, N i e 27
8.3. Packet [--run-packets, =Pl 27
8.4. Total Bytes (--run-bytes, =D ..o 28
Chapter 9. Search-specific OPtioNS. i 29
9.1. Buffer Length (--buf-length, =l ... 29
9.2. Buffer Threshold [--buf-thres, =t) ... 30
9.3. Buffer Overlapping (--buf-0verlap, =0J.. ..o, 30
9.4. Batching (--buf-group, =gl oo 31
9.5. Layer 5 to 7 Payloads Only (--run-app-layer, =-Al..........ooiiiiiiioeeeeeeee 32
9.6. Sliding Window [--sliding=WindOow, =W]...........ccooiiiiiioi e 33
Chapter 10. BlueField RXP-specific Operations.........oooiiiiiiiiiiiiie e, 34
10.1. Latency Mode (--latency-mode, =8)o 34
Chapter 11. Hyperscan-specific OperationsS.............uuiiiiiiiiiiiiiiiiiiiiiieiieeeeeeeeeeeeeeeeeeeeeeeeeeeee 35
11.1. HS Single Match (--hs-singlematch, =HJ ..., 35
11.2. HS Left Most Match (--hs- Leftmost, =L oo 35
Chapter 12. Running RXPBench on BlueField........ccccooiiiiiiiiii e 36
Chapter 13. BlueField-2 Performance OVervieW.......c..uueiiiiiieiiiiieieee e 39

NVIDIA DOCA RXPBench Performance Comparison Tool MLNX-15-060475 _v1.4 | iii

List of Tables

Table 1. Terms and DefinitioNS ..o 1

TADLE 2. ACTONYIMNS oottt 2

NVIDIA DOCA RXPBench Performance Comparison Tool MLNX-15-060475 _v1.4 | iv

Chapter 1. Introduction

RXPBench is a tool that allows for the performance comparison between the NVIDIA® RXP®
hardware RegEx acceleration engine found in the NVIDIA® BlueField® DPU and the Intel®
Hyperscan software library. It provides a comprehensive set of options and can facilitate
ingress of data from live network ports or previously recorded PCAP files.

It is designed to provide a real-world comparison of these technologies, and present results
customers could expect to receive after implementing either technology in their products.

1.1. Document Scope

This document provides the following information for RXPBench:
» Example use case
» Breakdown of analysis and runtime statistics

» Options and configuration settings available

1.2. Document Glossary

The terms listed in the following table are used in this document.

Table 1. Terms and Definitions

Term Definition

Job A unit of data for the RXP to scan. A job can be
a packet, packet header, packet payload, packet
header and payload, or a block of user-defined
data.

Job Directory A directory with custom files that contain data
to test that matches returned are as expected
(validation)

RegEx A common abbreviation for regular expression.

Regular expression Aregular expression is a concise and flexible

means for matching strings of text, such as
particular characters, words, or patterns of

NVIDIA DOCA RXPBench Performance Comparison Tool MLNX-15-060475 _v1.4 |

1

Introduction

Term

Definition

characters. A common abbreviation for this is
"Regex”.

ROF file

The compiled Regex rules as object code,
produced by the RXP compiler, and programmed
into the RXP engine.

Ruleset

A'list of regular expressions and strings that can
be compiled into object code by the RXP Compiler
and executed on the RXP.

RXP

High-speed, hardware-accelerated regular
expression engine

RXPC

The external compiler application that translates
regular expressions into compiled object code
(ROF file)

The acronyms listed in the following table are used in this document.

Table 2. Acronyms

Acronym Definition

HS Intel® Hyperscan Software Library

PCRE Perl Compatible Regular Expressions

RE Regular Expression

ROF RXP Object Format (currently at version 2)
RXP Regular eXpression Processor

RXPC Regular eXpression Processor Compiler

1.3.

lcons

The following icons are used within this document:

PORT

>

- the configuration option is related to a physical DPDK port

NVIDIA DOCA RXPBench Performance Comparison Tool

MLNX-15-060475 v1.4 | 2

Introduction

PCAP

- the configuration option is related to a PCAP format file

TEXT

- the configuration option is related to a standard text file

JOB

- the configuration option is related to a job format directory

- this setting is only available when using DOCA (see --regex-dev option)

NVIDIA DOCA RXPBench Performance Comparison Tool MLNX-15-060475 _v1.4 | 3

Chapter 2. RXPBench Overview and

Installation

Whilst the primary focus of this tool is to provide accurate real-world performance
comparisons between the Intel® Hyperscan software library (HS) and the BlueField-2 RXP
hardware acceleration engine has additional functionality. This functionality includes:

>

>

>

>

>

Execution on both Intel host and the BlueField-2 DPU Arm cores

Multicore support

Ingress of traffic from live DPDK network ports, or PCAP files

Can actas a "bump in the wire”

Ability to accept RXP, Hyperscan, and generic rules files

Asynchronous operations, similar to end-user applications

Comprehensive configuration through a configuration file or command line options

A high-performance reference application for DPDK RegEx operations

RXPBench utilizes either the high-speed DOCA [(doca_regex] framework, or DPDK
(dpdk_regex] to provide hardware accelerated regular expression offloading using the RXP
engine. Software-based RegEx evaluation is provided through the standard Hyperscan library.

The following is an overview of the RXPBench architecture:

NVIDIA DOCA RXPBench Performance Comparison Tool MLNX-15-060475 _v1.4 | 4

RXPBench Overview and Installation

RXPBench
&——> RegEx Jobs

—
DPDK Core DPDK Core
1 Thread N Thread

Input data

BlueField-2

Accelerators Accelerators
RXPBench

Connect Arm Cores Connect
X-6 (A72) X-6

This diagram shows the relationship between RXPBench and the underlying BlueField-2
hardware when the application is being run on the x86 host (left side) or on the BlueField-2
Arm cores [right].

At the core of the application is a packet processing engine designed to acquire packets
from a network or file source. These packets are then processed through DPDK threads
and offloaded to the RXP hardware accelerator using the high performance DOCA or DPDK
libraries for pattern matching (or via the Hyperscan library).

2.1. Host Installation

RXPBench is installed as part of the standard DOCA installation process via the doca-tools
package.

Follow the instructions in the NVIDIA DOCA Installation Guide for Linux for instructions on how
to install DOCA if you have not done so yet.

2.1.1. Prerequisites

Prior to execution of the RXPBench, an installation of Hyperscan must be present on the host.
Hyperscan can be obtained from your Linux distributions package manager (APT, dpkg, yum,
etc.) or alternatively compiled from the source. Depending on your installation the following
version of Hyperscan is required:

Linux Hyperscan

Distribution Version Installation Command

Ubuntu 18.04 4 apt install libhyperscané

Ubuntu 20.04 5 apt install libhyperscanb

Cent0S 7.x - Hyperscan is provided through 3" party vendors. The following

command will install Hyperscan 5.3.0 on Cent0S 7:

NVIDIA DOCA RXPBench Performance Comparison Tool MLNX-15-060475 _v1.4 | 5

http://docs.nvidia.com/doca/sdk/pdf/installation-guide-for-linux.pdf

RXPBench Overview and Installation

Linux Hyperscan
Distribution Version Installation Command

yum install epel-release sudo yum install
http://repo.openfusion.net/centos7-x86 64/
hyperscan-5.3.0-1.0f.el7.x86 64.rpm

Cent0S 8.x - Hyperscan is provided through 3 party vendors. The following
command will install Hyperscan 5.3.0 on CentOS 8:

yum install epel-release

sudo yum install https://download-
ib01.fedoraproject.org/pub/epel/8/Everything/

x86_ 64/Packages/h/hyperscan-5.3.0-5.e18.x86 64.rpm

2.2. DPU Installation

The RXPBench utility is provided as part of the DOCA framework and is therefore installed by
default with the BFB.

2.3. DOCA and DPDK

RXPBench provides support for both the DOCA framework and the DPDK.

While most functionalities are supported in both frameworks, DOCA provides
additional features to further enhance RegEx pattern matching. The icon

is used to indicate a DOCA only feature.

For information on selecting between DOCA and DPDK, refer to the --Regex-dev option.

NVIDIA DOCA RXPBench Performance Comparison Tool MLNX-15-060475 _v1.4 | 6

Chapter 3. Example Application Usage

This section details an example use case of the RXPBench application, providing in depth
explanations of the processes and statistics produced.

This example will focus on the execution of RXPBench using a simple text file containing the
works of William Shakespeare [shakespeare.txt], using rules in Hyperscan format (henry.hs]
whilst executing on the BlueField-2 RXP engine.

3.1. Configuring RXPBench

RXPBench supports the configuration of options through a “"configuration” file, or through
the command line. In practice if a configure file is used, the command line options are still
available and will override any options already present in the configuration file.

By default, RXPBench will always search for a “rxpbench.conf”, this allows common set-up
commands to be removed from the command line. Commonly the DPDK EAL (-D) options are
placed in this file as they rarely change after being initially set.

For a full list of options, see section General Configuration Options.

In this example we are providing all the options on the command-line; there is no
configuration file.

The command-Lline required to execute our example (simple text file containing the works of

William Shakespeare (shakespeare.txt), using rules in Hyperscan format (henry.hs) whilst

executing on the BlueField-2 RXP engine] is as follows:

./rxpbench -D "-1 0,1,2,3 -n 1 -a 5e:00.0,class=regex —-file-prefix=rxpbench -a
5€:00.01" --input-mode text file -f ../Shakespeare.txt -d rxp -R ../henry.hs -1
2048 -n 10000 -c 1

The "-D" option provides the DPDK EAL options, contained within a set of quotation marks (").

These options are passed directly to DPDK during the initialization of the application and are in

general specific to your host. ”

The first RXPBench option is the "--input-mode” which states that RXPBench will pull data
from a "text_file", the "-f" option then specifies the location and name of the text file to be
searched.

The "-d" option states the mode in which RXPBench will operate, available options are “rxp” or
"hs™ and in this instance we are requesting that the BlueField-2 hardware accelerator is used.

The "-R" option provides the tool with a set of uncompiled rules, in this case they are
presented in Hyperscan format. RXPBench supports the use of rules formats that are different

NVIDIA DOCA RXPBench Performance Comparison Tool MLNX-15-060475 _v1.4 | 7

Example Application Usage

from the selected device/algorithm. For example, the RXP can accept Hyperscan rules and the
Hyperscan library can received RXP formatted rules. The conversion process within RXPBench
Is automatic.

The "-1" option supplies the size of the data block sent to the device/algorithm. In this instance
a buffer of 2KB is received and pattern matched from the text file.

The number of iterations is controlled by the "-n" option; due to the high performance of the
BlueField-2 RXP engine the input file must be iterated 10,000 times to provide enough input
data to ensure are run-time of a few seconds.

The final option is the core count (-c), this defines how many CPU cores the tool can use. In
this instance we are using a single core.

RXPBench accept regular expressions in two different formats:

Uncompiled - The regular expressions are presented in a text file which follows with the
RXP rules file format, or the Hyperscan file format.

Compiled - In the case for the RXP, rules are externally compiled using the RXP Compiler
(rxpc) and presented to RXPBench as a ROF file.

If uncompiled rule files are used, RXPBench can cross compile the rules regardless of the file
format or device selected, i.e. A Hyperscan format rules file will be converted for use by the
RXP engine, whilst an RXP format rules file will be converted for use by the Hyperscan engine.

RXPBench presents information during its start-up that indicates the progress of compilation
of uncompiled rules, as well as the success of programming those compiled rules to the
device:

e e ol e ke okl e e e ke e e ok ke e R ke e e e e & LS L
WARNING: Compiling e fil ith defau
: : e ais

compile regular

NVIDIA DOCA RXPBench Performance Comparison Tool MLNX-15-060475 _v1.4 | 8

Example Application Usage

If any errors or warnings are detected during the compilation process, RXPBench provides
detailed information on the problematic regular expression. For example:

I b R T T O T N R b T T T T

ALERT: Compiling rule file with default params.
Better performance may be achieved by compiling separately with tailored inputs.

B Rt R T T T T T T T T T T T T o g

Error:

:subset_id:1
irule_ 2

terror_code:12
:Rule exceeded maximum PTPB threshold of ©.8801. To include this rule, increase the threshold greater than ©.00434783 and try again.
fo.*e. *tjfi

<< ERROR: Regex rules compilation error. ==
EAL: Error - exiting with code: 1
Cause: Regex dev rule compilation error

During the execution of RXPBench a series of run-time statistics are presented by the utility.
This provides detailed information on the current process:

For each core in use by the tool, the following statistic are presented:

Received Bytes — These are bytes received from the input source

Regex Bytes — These are the bytes transmitted to the Regex engine; this value can be less
than the received byte count if certain confirmation options are used (such as payload
thresholds or if “app layer” payloads are only being scanned]

NVIDIA DOCA RXPBench Performance Comparison Tool MLNX-15-060475 _v1.4 | 9

>

>

Example Application Usage

Recv Bufs - The total buffers received from the input source; in this case due to the -l
2048" option each buffer contains 2048 bytes.

Regex Bugfs - The number of buffers transmitted to the Regex device.

Matches - The total number of Regex matches seen in the input data.

In addition to each core statistic, a running total output is provided, including aggregated
values for the above fields and a duration field it also provides:

>

Regex Perf (total) - The performance total in Gigabits per second (Gb/s] for the entire
duration of the run.

Regex Perf (split) - The performance total in Gigabits per second (Gb/s] for the past update
period.

3.4. End-of-Run Statistics

When the execution is completed, or aborted using Ctrl + C, several statistics blocks are
output to the console. This allows users to verify and understand the execution of the
performance test.

3.4.1. Configuration Statistics Block

This section of statistics provides an overview of the RXPBench configuration, most of this
information is simply the mirroring of configuration files.

NVIDIA DOCA RXPBench Performance Comparison Tool MLNX-15-060475 _v1.4 | 10

Example Application Usage

SETTINGS -

MODE : DPDK Regex

DEV: PCAP File

FILE: ../defcon_1@ek.pcap
INPUT: ../waf_rules_bf2.rof2

- DPDK LIVE CONFIG -

DPDK PRIMARY PORT: - DPDK SECOND PORT: -
APP LAYER MODE: False

- RUN/SEARCH PARAMS -

INPUT DURATION: BUFFER LEMNGTH:
INPUT PACKETS: BUFFER THRESHOLD:
INPUT BYTES: BUFFER OVERLAP:
INPUT ITERATIONS: elalele] GROUP/BATCH SIZE:

- PRELOADED DATA INFO -

DATA LENGTH: 58170495

APP LAYER MODE: True

VALID PACKETS: 56710 VLAN/QNQ:
INVALID LENGTH: 0 IPV4:
UNSUPPORTED PROT: ST IPVG:

NO PAYLOAD: 37518 TCP:
THRESHOLD DROP: 0 UDP:

- REGEX DEVICE CONFIG -

RXP MAX MATCHES: 254 HS MODE: -
RXP MAX PREFIXES: N/A HS SINGLE MATCH: -
RXP MAX LATENCY: N/A HS LEFTMOST MATCH: -
- PERFORMANCE CONFIG -

MUMBER OF CORES:

The “Preloaded Data Info” section details any preloading of data, when using PCAP or text
files, that has occurred during the initialization of the application:

Data Length - When the input is file based (PCAP or Text) this is the total data that is
preloaded/cached to reduce I/0 operations

NVIDIA DOCA RXPBench Performance Comparison Tool MLNX-15-060475 _v1.4 | 11

Example Application Usage

App Layer Mode - Whether the application is effectively scanning the application layer
(TCP/UDP frames) and ignore the headers (Ethernet, MAC, etc.) prior to the application
layer.

Valid Packets - If app layer mode is enabled, these are packets that contain a valid payload

Invalid Length - This value is incremented if a PCAP packet is found to be unexpectedly
truncated

Unsupported Prot - If app layer mode is enabled, the packet did not contain one of the
required protocols (VLAN/IPv4/IPv6/TCP or UDP)

This section provides an overview of the RXPBench execution; it provides the core statistics
which allow you to gauge the performance of the algorithm using the supplied rules and input
data.

- RAW DATA PROCESSING -

TOTAL PKTS: 59411914
TOTAL BYTES 60942897892
VALID PKTS: i
UNSUPPORTED:

NO PAYLODAD:

UNDER THRES:

PACKET PROCESSING RATE (Mpps):
PACKET PROCESSING PERF (Gb/s):

- REGEX PROCESSING -

TOTAL REGEX BUFFERS: 59411914
TOTAL REGEX BYTES: 60942897892
TOTAL REGEX BATCHES: 928213
VALID REGEX RESPOMNSES: 59411914
REGEX RESPONSES WITH MATCHES: 33626582
TOTAL REGEX MATCHES: 182318553

AVERAGE REGEX BUFFER LENGTH: 1025.77
MATCH TO BYTE RATIO: 334.27

REGEX BUFFER RATE (Mbps):
REGEX PERFORMANCE (Gb/s):

TOTAL DURATION (secs):

While most of these fields are self-explanatory some fields require further definition:

NVIDIA DOCA RXPBench Performance Comparison Tool MLNX-15-060475 _v1.4 | 12

Example Application Usage

Packet Processing Rate (Mpps) - This is the rate which, in million packets per second,
RXPBench has been able to acquire packets from the input source (Physical port or
precached PCAP/text file). For the physical ports this rate may be different that the RegEx
PPR value as not all packets (depending on configuration) may be sent to the Regex device.

Packet Processing Perf (Gb/s) - The actual data-rate of the input source in Gigabits per
second

Total Regex Buffers - This is the number of complete buffers that were sent to the RegEx
device for processing

Total Regex Bytes — The total bytes contained within all buffers transmitted to the RegEx
device for processing

Total Regex Batches - RegEx buffers are gathered together into batches (based on the "-g"
flag) and submitted to the RegEx device in a single operation

If the selected RegEx device is "rxp” or "regex_dpdk" the following block of statistics is
provided. It presents more internal statistics from the DPDK RegEx device (BlueField-2 RXP):

DPDK REGEX STATS

INVALID RESPONSES:
- TIMEOUT:

- MAX MATCHES:

- MAX PREFIXES:

- RESOURCE LIMIT:

TX BUSY - AVE PER CORE (secs): 27.8311

MAX LATENCY (usecs): 3339.7540
MIN LATENCY (usecs): 11.7465
AVERAGE LATENCY (usecs): 519.3994

The following are the definitions of each of these counters:

Invalid Responses - These are responses from operations that have not completed
successfully

Timeout - When processing a block of input data a hardware triggered timeout occurred
and the search was aborted

Max Matches - The maximum number of configured matches was exceeded, and the job
was aborted

Max Prefixes - The maximum prefixes per scan was exceeded, and the job was aborted
Resource Limit - A generic/internal resourcing limit was reached; the job was aborted

Latency Figures - These provides max/min and average latency of jobs from transmitted to
the DPDK RegEx device

NVIDIA DOCA RXPBench Performance Comparison Tool MLNX-15-060475 _v1.4 | 13

Example Application Usage

It is important to note that in normal mode [i.e., not in latency mode) RXPBench ensures
that the hardware is supplied with data that is designed to maximize throughput. As stated
previously, latency figures in this mode are not calculated accurately. To view the correct
hardware latency, make sure the --latency-mode option is provided. The following
screenshot shows the RegEx stats with latency mode enabled:

INVALID RESPONSES:
TIMEOQUT:
MAX MATCHES:
MAX PREFIXES:
RESOURCE LIMIT:

TH BUSY - AVE PER CORE (secs):
R¥ IDLE - AVE PER CORE (secs):

PER PACKET LATENCY - BATCH SIZE:
- MAX LATENCY (usecs):

- MIN LATENCY (usecs):

- AVERAGE LATENCY (usecs):

If the selected Regex device is “hs” (or "Hyperscan”] then an additional block of statistics is
provided detailing the latency of requests to and response from the Hyperscan Library:

HYPERSCAN STATS

MAX LATENCY (usecs): 471.2939

MIM LATENCY (usecs): 0.0168
AVERAGE LATENCY (usecs):

NVIDIA DOCA RXPBench Performance Comparison Tool MLNX-15-060475 _v1.4 | 14

Chapter 4. General Configuration
Options

Configuration options to control the operation of RXPBench can be provided either through
a pre-defined configuration file or through the command line. If both a configuration file is
supplied and a set of command line options then the command line options will supersede,
effectively overriding, the options present in the configuration file.

4.1. Configuration File (-C, --config-file)

The configuration file option allows you to supply a text file that contains one or more options
that would normally be present on the command line.

-C configuration.file

--config-file configuration.file

The file should contain each configuration option stripped of the leading dashes on a new line.
A colon (:) should be placed between the option and the value. You may use either the short (-]
or long (--]) option name. For example:

input-mode : dpdk port
m : inputfile.pcap
run-time-secs : 10

If the "-C" or "--config-file” option is used without any supplied parameter, RXPBench will
attempt to open the default file “rxpbench.conf”.

S Note: Providing any additional command line options after the -C or --config-file will
override any present within the configuration file.

4.2. DPDK EAL (-D)

RXPBench utilizes the DPDK framework to provide core memory management, packet ingress
and Regular expression offloading. As common with DPDK applications there are several EAL
options that can be used to ensure DPDK is optimally configured for the host environment.

EAL options should be enclosed in quotations ("..”) and are passed directly to DPDK without
any processing by RXPBench.

NVIDIA DOCA RXPBench Performance Comparison Tool MLNX-15-060475 _v1.4 | 15

General Configuration Options

Please ensure if you are created a custom set of EAL commands that the “class=regex”
parameter is included to ensure the Regex devices is available for use. You should use the
“class=eth:regex” if you wish to use packet acquisition from physical ports and Regex.

S| Note: The CPU cores selected for use through the EAL options will be the same cores used by
the whole RXPBench application.

Note: Care should be taken when selecting EAL options. Misconfiguration may affect the
utilities ability to obtain maximum performance on the target hardware. A full list of EAL
options is provided by DPDK.

4.3. Verbose (-V]

This option provides additional verbose output on any matching patterns found by the Regex
algorithm. The supplied integer value dictates the amount of information provided:

-v 1

-V 2

-V 3

All verbose levels will write out to a CSV files named
“rxpbench matches main core XX.csv', where XXis the main logical core ID returned
by DPDK, and "rxpbench matches core XxX.csv' for additional cores in a multicore
environment.

Each entry in the CSV file provides match information including queue ID, rule ID, start offset
and length. If the verbose level is set to 3 then the match string is also returned.

S Note: -v 2 and -v 3 will cause the writing of large amounts of data if a substantial number
of matches are reported and it may result in characters that break the CSV format (such as
commas, new lines, etc.) being placed in the output file. In extreme cases this may result in a
performance reduction.

4.4, Cores (-c)

The "Cores” option allows for the configuration of the total number of cores available to
RXPBench.

-c 4

The use of the CPU cores is dependent on the application’s Regular Expression algorithm and
whether packets are being received from an ingress port or PCAP capture file.

If the BlueField-2 RXP hardware accelerator is used each core will be given a unique DPDK
Regex queue to operate on; if the accelerator is Hyperscan then each core will be used to
execute the Hyperscan software library.

NVIDIA DOCA RXPBench Performance Comparison Tool MLNX-15-060475 _v1.4 | 16

https://doc.dpdk.org/guides/linux_gsg/linux_eal_parameters.html
https://doc.dpdk.org/guides/linux_gsg/linux_eal_parameters.html

General Configuration Options

In addition, if packets are being received from a physical port, the value will be used to allocate
X number of DPDK Tx and Rx queues on the port.

Note: The value supplied here must be < the number of cores provided in the -D (EAL) options.
If an invalid value is supplied a warning will be produced and the EAL (-D) core count will be
used.

NVIDIA DOCA RXPBench Performance Comparison Tool MLNX-15-060475 _v1.4 | 17

Chapter 5. Algorithm, Ingress, and
Rules Options

This group of options provides the ability to select the Algorithm (BF2 RXP or Hyperscan),
where input data should be received from (physical ports, text files, or PCAP files] and Regular
Expression rules information.

5.1. Algorithm/Device Select (--Regex-
dev, -d]

This option allows you to select the underlying framework to use (DOCA/DPDK) and whether
acceleration should be provided by the BlueField RXP hardware accelerator or the Hyperscan
software library.

Each option is provided with a short (i.e. doca) or long (i.e. doca regex] version:
--Regex-dev regex dpdk

--Regex-dev rxp

--Regex-dev hyperscan

--Regex-dev hs

5.2. Input Mode (--input-mode, -m])

RXPBench can receive data from various input sources. This option allows you to provide
which method you require:

--input-mode dpdk port --dpdp-primary-port X --dpdk-secondary-port Y
--input-mode pcap file

-—input-mode text file

-—input-mode job format

NVIDIA DOCA RXPBench Performance Comparison Tool MLNX-15-060475 _v1.4 | 18

Algorithm, Ingress, and Rules Options

5.2.1. --input-mode dpdk_port, -m dpdk_port

PORT

The DPDK port option enables RXPBench to receive live traffic from a port, specified in the
--dpdk-primary-port. If the secondary port option exists (--dpdk-second-port] then any
packets received, after pattern matching has occurred, are transmitted onto the second port.

See section DPDK Port Operations for more information.

5.2.2. --input-mode pcap_file, -m pcap_file

PCAP

This option allows you to supply an external PCAP file. This allows for reproducible results
using a known input file. The entire payload recorded in each frame within the pcap file is
made available to RXPBench.

5.2.3. --Input-mode text_file, -m text_file

TEXT

NVIDIA DOCA RXPBench Performance Comparison Tool MLNX-15-060475 _v1.4 | 19

Algorithm, Ingress, and Rules Options

If processing of a standard text file is required, this option allows you to select any file. The
entire text file contents are made available to the RXPBench application with no parsing or
changes made.

5.2.4. --input-mode job_format, -m job_format

JOB

This option is used to provide a specific “job format” directory to RXPBench. This directory
contains files, provided by NVIDIA or through your NVIDIA Networking Support representative,
that include data and results to validate that matches returned by the algorithms are
expected.

This allows RXPBench to validate that all aspects of the hardware, libraries, and software are
operating correctly. In normal operation, this mode is not used, but information on this mode
Is provided for your reference.

5.2.9. --Input-mode remote_mmap, -m
remote_mmap

RMMAP

RXPBench supports the ability to scan remote memory through the remote mmap input mode.
For clarity, remote means that while RXPBench runs directly within the DPU, the data being
scanned by the RegEx engine resides entirely in memory on the host.

To facilitate this operation, a companion application, doca remote memory app, IS executed
on the host. This companion application allows you to load an input file into memory (to be
scanned). It then provides an output file (the export definition). This file, mmap_export.def,
should be transferred to the DPU. This file is then used as the input file parameter, -£, for
RXPBench when using remote mmap input mode.

NVIDIA DOCA RXPBench Performance Comparison Tool MLNX-15-060475 _v1.4 | 20

Algorithm, Ingress, and Rules Options

5.2.5.1. doca_remote_memory_app

RMMAP

This application is provided (with the installation of RXPBench) to export an area of host
memory filled with a specific input file. The following parameters allow you to control the
application’s execution.

Parameter Description

-a. --pcie addr ADDR This is the PCle address of the RegEx acceleration
on the DPU

-i. --input_file PATH Path to the file whose contents are loaded into
memory (maximum 2GB)

-e. --export file PATH Path to mmap export file used to remotely access
to memory

In normal operation, doca remote memory app allocates memory and populates this

with the input file as provided by the -i or -—input file parameter. It then generates a
mmap_export.def file at the location provided by the -e/--export_file flag and then sleeps
waiting on a CTRL+C or kill signal to exit.

This application must continue to execute until RXPBench has completed scanning. Otherwise,
the memory (and therefore data to be scanned) is released and made unavailable.

5.3. Compiled Rules File (--rules, -r]

The RXP hardware accelerator can accept regular expressions that have been externally
compiled using the RXPC (RXP Compiler] into a ROFF file. This option allows you to specify this
ROF?2 file.

5.4. Uncompiled Rules File (--raw_rules,
-R)

RXPBench can accept an input file containing raw regular expressions. The uncompiled rules
file can be in either of these formats:

> RXP rules file

NVIDIA DOCA RXPBench Performance Comparison Tool MLNX-15-060475 _v1.4 | 21

Algorithm, Ingress, and Rules Options

» Hyperscan rules file

The tool can accept either format of rules file, regardless of which algorithm (BlueField-2 RXP,
or Intel Hyperscan] is used. In the case where a rules file is not in the expected format for the
algorithm, a conversion process is employed to ensure they operate correctly.

S Note: In this configuration, the BlueField-2 RXP compiler is configured with its default
optimizations; enhanced performance can be obtained through the adjustment of these
parameters. For more information see the NVIDIA RXP Compiler, and provide any compiled
rules through the —-rules/-r option.

5.5. App-Layer Filtering (--run-app-layer,
-A

This option will cause RXPBench to extract the upper-layer data from the received packets and
submit them for regular expression testing. Upper-layer data includes data found in TCP and
UDP streams found in IPv4 and IPvé6 packets (including any such data contained within VLAN
tagged packets).

NVIDIA DOCA RXPBench Performance Comparison Tool MLNX-15-060475 _v1.4 | 22

http://docs.nvidia.com/doca/sdk/pdf/rxp-compiler.pdf

Chapter 6. DPDK Port Operations

PORT

When input data is received from a physical network port, the options in the subsequent
sections can be used to configure the ports.

6.1. Primary Port (--dpdk-primary-port,
-1)

This is the port where packets will be received from. The supplied ID is used directly to access
the requested DPDK port.

6.2. Secondary Port (--dpdk-secondary-
port, -2
RXPBench can be used as a "bump” in the wire, where received packets are pattern matched

before transmission through a secondary port. This option provides the port ID, as used by
DPDK, for the onwards transmission of scanned packets.

NVIDIA DOCA RXPBench Performance Comparison Tool MLNX-15-060475 _v1.4 | 23

Chapter 7. RegEx Compilation
Operations

This section provides information on options that affect the compilation of regular expressions.

7.1. Force Compilation (--force-compile, -
F)

RXPBench can accept both uncompiled and compiled rules. As part of the initialization
process, any uncompiled regular expression rules must be compiled into object code that can
be executed on the BlueField RXP hardware accelerator or Intel™ Hyperscan software library.

While the BlueField RXP supports a wide range of RegEx constructs, both itself and Hyperscan
cannot provide for all constructs due to complexity and performance impacts.

When a supplied set of regular expressions is compiled, either algorithm may abort the
compilation due to the inclusion of one or more unsupported rule constructs. This option
prevents the compilers from aborting, and forces RXPBench to continue with the rules that
successfully compiled.

7.2. Single-line Mode (--comp-single-
line, -S)

This option activates single-line mode so any new line characters will not match.

7.3. Caseless Matching (--comp-caseless,
-i]

This option activates caseless matching which causes all rules to be seen as case insensitive.

NVIDIA DOCA RXPBench Performance Comparison Tool MLNX-15-060475 _v1.4 | 24

RegEx Compilation Operations

7.4. Anchoring Multi-line Mode (--comp-
multi-line, -u)

This option controls how anchors are handled in regular expressions. If enabled, anchoring is
applied per line.

7.5. Free Spacing Mode (--comp-free-
space, -X]

This option activates free spacing mode. Effectively, the white spaces in rules are ignored.

NVIDIA DOCA RXPBench Performance Comparison Tool MLNX-15-060475 _v1.4 | 25

Chapter 8. Runtime Options

This groups of options allows for the specific duration of any execution to be controlled
through various metrics.

8.1. Runtime Seconds (--run-time-secs, -
s)

PORT

PCAP

TEXT

NVIDIA DOCA RXPBench Performance Comparison Tool MLNX-15-060475 _v1.4 | 26

Runtime Options

This option sets the time in seconds that a test ought to be run for. If a file is used as input and
no --run-num-iterations/-n are set then the file is looped over until the time period is met.

8.2. lterations (--run-num-iterations, -n)

PCAP

If input data is being received from either a PCAP File or text file, this option is used to limit
the execute to a complete number of iterations of the input file.

For example, if an iteration count of 4 was given on a PCAP file contains 1,000 packets. The
total number of packets processed would be 4,000. If the input file was a standard text file
containing 5,000 bytes of information, an iteration count of 4 would mean 20,000 bytes would
be read by RXPBench.

S| Note: If iterations are used along with a runtime-seconds option, the test will finish with
whatever limit comes first.

8.3. Packet (--run-packets, -p]

PORT

JOB

This option sets the total number of packets that are read from the selected input mode.
After this number of packets is read from a file or received from a network port, rxpbench will
complete.

NVIDIA DOCA RXPBench Performance Comparison Tool MLNX-15-060475 _v1.4 | 27

Runtime Options

8.4. Total Bytes (--run-bytes, -b]

PORT

Regardless of the input mode this is the total number of bytes received that is required to
mark the execution as complete.

For live traffic this is the total number of bytes received from the physical port. For both the
PCAP input file and text file this is the total bytes to read from the input files.

NVIDIA DOCA RXPBench Performance Comparison Tool MLNX-15-060475 _v1.4 | 28

Chapter 9. Search-specific Options

These options allow for finer control of data to be transmitted to the RegEx device for pattern
matching.

9.1. Buffer Length (--buf-length, -]

PCAP

When the RXPBench is reading from input files (whether PCAP, or text files] it has all the
information readily available (unlike live traffic which must be received). This allows the
application to read a variable amount of input data per iteration.

This option controls the amount of data that is read from the input file and passed to the
RegEx algorithm.

Note: With PCAP capture files this option may result in data be transmitted from part of packet,
or alternatively multiple packets, if the buffer length supplied is less than or greater than the
PCAP’s frame length.

NVIDIA DOCA RXPBench Performance Comparison Tool MLNX-15-060475 _v1.4 | 29

Search-specific Options

9.2. Buffer Threshold (--buf-thres, -t]

PORT

When live traffic is being received from a physical port, this option specifies the received
packets minimum size before it will be processed.

For example, setting this value to 256 bytes means that if a packet arrives that is less than 256
bytes in length it will not be processed by RXPBench.

Packets that are dropped by this threshold are recorded in the statistics under "UNDER

9.3. Buffer Overlapping (--buf-overlap, -o]

|
PCAP I -

When the input is being read from files (either PCAP, or text files] this option allows a certain
number of bytes to be overlapped from the previous frame.

NVIDIA DOCA RXPBench Performance Comparison Tool MLNX-15-060475 _v1.4 | 30

Search-specific Options

9.4. Batching (--buf-group, -g]

PORT

Most high-performance applications obtain additional performance by batching together
multiple operations into a single process.

DPDK Regex provides the capability of enqueuing multiple buffers to the BlueField-2 RXP
Hardware accelerator. This option allows you to specify how many payloads should be grouped
together before enqueuing on the hardware.

If receiving packets from a physical port this also determines the batch size to read (and write)
to the network ports.

If this option is not supplied, RXPBench defaults to grouping (batching) together 64 packets at
a time.

NVIDIA DOCA RXPBench Performance Comparison Tool MLNX-15-060475 _v1.4 | 31

Search-specific Options

9.5. Layer 5to 7 Payloads Only (--run-
app-layer, --A)

PORT

PCAP

This option will process each received payload packet and identify any layer 5 to layer 7
information present in them. It will then send only this layer 5 to layer 7 data to the RegEx
algorithm.

For example, if a 500-byte packet is received that contains 60 bytes of layer 1 to layer 4 data,
then the first 60 bytes are ignored and the 440 bytes of layer 5 to layer 7 data is sent to the
RegEx algorithm.

For PCAP-based input files, any -1 (or —-buf-1length) option will be overwritten and lengths
will be assigned on a per-packet basis. Similarly, for live traffic received from a physical port,
each packet is processed independently with data from their layer 5 through 7 being sent to
the RegEx algorithm. It may be appropriate to use the threshold option (--buf-thres, -t] to
remove small payloads.

S| Note: Using this option in live mode may increase the average job size due to the skipping of
certain “no payload” frames (such as TCP ACKs) that would otherwise be included.

NVIDIA DOCA RXPBench Performance Comparison Tool MLNX-15-060475 _v1.4 | 32

Search-specific Options

9.6. Sliding Window (--sliding-window, -
w)

PORT

PCAP

The BlueField RegEx engine accepts jobs up to a maximum length of 16KB. Afterwards it
rejects the job as invalid. This DOCA-only feature provides user the ability to supply huge jobs
(up-to 2GBJ in length.

To enable this option, provide the --sliding-window or —w option with an optional positive
integer argument that defines the size of the window to use. This window size can be in the
range of 0 to 16383 (default is 32).

Internally, the DOCA framework fragments the job into smaller buffers that can be accepted
by the hardware and then reassembles the results of the fragmented searches into a single
result (the framework takes care of pruning any duplicate results).

The window is effectively the number of bytes appended to the start of a job, which belong to
the end of the previous job fragment. This "window" effectively moves forward through data
looking for matches within it.

A match that is up to sliding-window-size bytes long is guaranteed to be found. Any match
longer than the window size may be missed if it happens to appear across the boundary of two
fragments. Therefore, correct selection of the sliding window size is paramount.

Please note this mode has a performance impact as some job data may need to be scanned
twice. Therefore, it is recommended that you use the smallest possible window size necessary
for your case.

NVIDIA DOCA RXPBench Performance Comparison Tool MLNX-15-060475 _v1.4 | 33

Chapter 10. BlueField RXP-specific
Operations

These options provide control over features available in the DPU’s RXP hardware accelerator.

10.1. Latency Mode (--latency-mode, -8]

RXPBench provides a latency figure as part of the "RXP Stats” section. This latency figure can
be calculated in two different ways depending on your requirements.

By default, when RXPBench executes, it keeps the RXP hardware queue filled with as much
data as possible. This provides the maximum performance but does not provide a true
representation of the hardware latency in the calculated statistics.

To see the actual latency of the RXP hardware, you must enable latency mode. Once enabled,
this mode batches together packets (either 64 packets, or a user-supplied value using the --
buf-group/ —g batching options) and then waits on the results of that batch before calculating
the latency.

Using this method, the latency returned and displayed shows a truer representation of
the hardware latency offered by the RXP offload engine which can be compared to that of
Hyperscan.

NVIDIA DOCA RXPBench Performance Comparison Tool MLNX-15-060475 _v1.4 | 34

Chapter 11. Hyperscan-specific
Operations

Several options that are specific to the Hyperscan software library exist. These allow you to
modify the behavior of the Regular Expression pattern matching engine.

Note: Hyperscan does not support both flags being enabled at the same time.

11.1. HS Single Match (--hs-singlematch,
H)

The Hyperscan algorithm provides an option called "HS_FLAG_SINGLEMATCH". Please see
the Hyperscan documentation for more information.

11.2. HS Left Most Match (--hs- leftmost, -
L]

The Hyperscan algorithm provides an option called "HS_FLAG_SOM_LEFTMOST", please see
the Hyperscan documentation for more information.

NVIDIA DOCA RXPBench Performance Comparison Tool MLNX-15-060475 _v1.4 | 35

Chapter 12. Running RXPBench on

BlueField

RXPBench utilizes the DPDK framework to provide packet operations and hardware-
accelerated regular expression (RegEx] offloading ([dpdk_regex].

RXPBench can run in the following input modes: Port, PCAP, or text file.

>

In port mode, live traffic is received from a DPDK port to receive live traffic from a port
specified in the -—-dpdk-primary-port configuration option. If the secondary port option
exists (--dpdk-second-port], then any packet received, after pattern matching has
occurred, is transmitted onto the second port.

In PCAP mode, traffic is supplied via an external PCAP file. This allows for reproducible
results using a known input file. The entire payload recorded in each frame within the
PCAP file is made available to RXPBench.

Text file mode allows the user to select any file when processing of a standard text file is
required. The entire text file contents are made available to the RXPBench application with
no parsing or changes made.

To run RXPBench on BlueField, follow these steps:

1.

Refer to the NVIDIA DOCA Installation Guide for Linux for details on how to install
BlueField related software.

Note: The RXPBench tool is supplied in both binary and source package formats as
described earlier in this document.

2. Before executing RXPBench, an installation of Hyperscan must be present on the host.

Hyperscan can be obtained from the Linux distribution package manager (apt, dpkg, yum,
etc.) or alternatively compiled from the source. Depending on the Linux distribution on the
host, the following Hyperscan versions are required:

Host Linux Distribution Hyperscan Version Installation Command

Ubuntu 18.04 4 apt install
libhyperscan4

Ubuntu 20.04 5 apt install
libhyperscanb

Ubuntu 22.04

Debian 10.8

NVIDIA DOCA RXPBench Performance Comparison Tool MLNX-15-060475 _v1.4 | 36

http://docs.nvidia.com/doca/sdk/pdf/installation-guide-for-linux.pdf

Running RXPBench on BlueField

Host Linux Distribution Hyperscan Version Installation Command

Cent0S 7.x) Hyperscan is provided through
3rd party vendors. The
following command will install
Hyperscan 5.3.0 on Cent0S 7:
yvum install epel-release

sudo yum install http://
repo.openfusion.net/
centos7-x86_ 64/
hyperscan-5.3.0-1.0f.el7.x86 64.rpm

Cent0S 8.x 5 Hyperscan is provided through
3rd party vendors. The
following command installs
Hyperscan 5.3.0 on CentOS 8:

yum install epel-release

sudo yum install
https://download-

ib01. fedoraproject.org/
pub/epel/8/Everything/
x86_64/Packages/h/
hyperscan-5.3.0-5.e18.x86_ 64.rpm

3. Build the RXPBench tool from the source code. RXPBench source code packages are
found in the following locations:

» Ubuntu 18.04 - /usr/share/doca-host-repo-ubuntul804-1.5.0/repo/pool/
» Ubuntu 20.04 - /usr/share/doca-host-repo-ubuntu2004-1.5.0/repo/pool/main
» Ubuntu 22.04 - /usr/share/doca-host-repo-ubuntu2204-1.5.0/repo/pool/

» CentOS 7.x- /usr/share/doca-host-repo-rhel76-1.5.0/repo/Packages/

The source code is unpacked using the following commands for example.

» For Ubuntu/Debian:
dpkg-source -x rxpbench 21.06.0.dsc

» For CentOS:

rpmbuild --recompile rxpbench-21.06-1.el7.src.rpm

4. To re-build the RXPBench tool. Run:

cd <source extract directory>/rxpbench-21.06.0
make

The RXPBench executable will be located in the build subdirectory.

The build process depends on the PKG CONFIG PATH environment variable to locate the
DPDK libraries. If the variable was accidently corrupted, and the build fails, please run the
following command.

» For Ubuntu/Debian:
export PKG CONFIG PATH=$PKG CONFIG PATH:/opt/mellanox/dpdk/1ib64/pkgconfig

» For CentOS:

export PKG CONFIG PATH=/opt/mellanox/dpdk/1lib64/pkgconfig:/usr/local/lib64/
pkgconfig:/usr/1lib64/pkgconfig/

5. RXPBench requires the following configurations to enable RegEx.

a). On the host side, stop the driver. Run:

NVIDIA DOCA RXPBench Performance Comparison Tool MLNX-15-060475 _v1.4 | 37

Running RXPBench on BlueField

host$ sudo /etc/init.d/openibd stop

b). Log onto the BlueField-2 and enable host access to the RegEx engine by running the
following command:
dpu$ echo 1 > /sys/bus/pci/devices/0000\:03\:00.0/regex/pf/regex en

c). Verify that the service is running. Run:

dpu$ systemctl status mlx-regex

d). On the host, start the driver and add hugepages. Run:

host$ sudo /etc/init.d/openibd start
host$ sudo echo 1024 > /sys/kernel/mm/hugepages/hugepages-2048kB/nr hugepages

6. Torun the application:

cd build
./rxpbench [dpdk flags] -- [additional application flags]

For example:
./rxpbench -D "-1 0,1,2,3 -n 1 -a 5e:00.0,class=regex —-file-prefix=rxpbench -a

5¢:00.01" --input-mode text file -f ../Shakespeare.txt -d rxp -R ../rules.hs -1
2048 -n 10000 -c 1

» This command runs in the text file input mode (--input-mode).

» Theinput file is Shakeseare.txt (-£].

» This command uses the RXP device for pattern matching (-dJ.

» The RXP device is programmed with the rules specified in rules.hs (-R].

» This command sends 2048 bytes of data to be searched in each job (-1].

» This command reads and processes the input text file 10,000 times (-n).

» This command uses 1 CPU core during the run (-cJ.

Information on the complete set of configuration settings and options may be found in
other sections of this document.

As RXPBench executes, statistics will be updated on screen periodically. On exit, summary
information will be displayed on screen.

NVIDIA DOCA RXPBench Performance Comparison Tool MLNX-15-060475 _v1.4 | 38

Chapter 13. BlueField-2 Performance
Overview

To demonstrate the expected performance of the NVIDIA® BlueField®-2 DPU using
RXPBench, 3 different datasets are used:

» An open-source text file containing the works of William Shakespeare
» A PCAP of captured HTTP/port 80 traffic (closed source],

» A PCAP taken from the National CyberWatch Mid-Atlantic Collegiate Cyber Defense
Competition (MACCDC)

o different RegEx rulesets are selected:
» The [7-filter application recognition rules
» The well-known open-source snort_pcres, snort_literals, and teakettle_2500

» A selection of Web Application Firewall RegEx rules taken from the OWASP core-ruleset

All rules are compiled using the RXP Compiler with default options and the addition of some
HTTP keywords as a graylist option.

The table below shows the number of rules compiled for each ruleset. Uncompiled rules
either contain unsupported PCRE syntax or are considered as "bad” or potential DoS rules by
the compiler.

Ruleset Rules Compiled/Total Rules
[7-filter 126/142

snort_pcres 769/847

snort_literals 2381/3116

teakettle 2500 2500/2500

owasp-waf 117/123

The rules are run against the different datasets in job lengths of 2KB on a single core of both
an x86 host and Arm on the BlueField-2 DPU (model MBF2H516A-EEEQT).

The following command line is an example of the RXPBench parameters used in the tests:

rxpbench -D "-15,6 -n 1 -a 03:00.0,class=regex" --input-mode text file -f
Shakespeare.txt -d rxp -r snort pcre.rof2.binary -c 1 -s 10 -1 2048

NVIDIA DOCA RXPBench Performance Comparison Tool MLNX-15-060475 _v1.4 | 39

https://www.netresec.com/?page=MACCDC
http://l7-filter.sourceforge.net/protocols
https://github.com/coreruleset/coreruleset
https://docs.nvidia.com/doca/sdk/rxp-compiler/index.html

BlueField-2 Performance Overview

The table below presents the performance results achieved for the different datasets on both
Arm and the x86 host. All results are in Gb/s.

Shakespeare Port80 MACCDC
x86/Arm x86 Arm x86 Arm x86 Arm
[7-filter 50.95 50.97 50.95 50.85 50.93 50.76
snort_pcres | 27.26 27.68 5.67 5.67 6.20 6.23
snort_literals| 50.95 50.98 26.70 19.96 14.26 8.80
teakettle_250015.77 15.77 50.94 50.92 50.93 50.75
owasp-waf | 3.96 3.97 28.08 28.51 50.59 50.63

The results show that 50Gb/s pattern matching throughput can be achieved when applying
complex regular expression rulesets to various datasets. Some of the ruleset/dataset
combinations show performance below the maximum RXP bandwidth. This is down to a
combination of complex rules that require a lot of processing and data that contains a lot of
matches or partial matches.

For example, the Owasp-waf rules are known to contain a lot of common English language
words which are followed by a "dot star”. This means that, when applied to English language
data, a lot of extra processing is required to validate full matches. Our tests show that
software algorithms are impacted by similar scenarios and, while the RXP throughput is well
below line rate, it still offers a significant performance boost over software.

The throughput reported by RXPBench when run on both the x86 host and the Arm is
approximately the same in almost all cases. This highlights the benefit of the offload engine in
that the power of the CPU used for applications has a limited effect on the pattern matching
capabilities.

It is only the snort_Lliterals ruleset that has taken a performance hit. Here, the rules produce
many matches. This means that more effort is required by the CPU to process the results.
Adding a second BlueField-2 Arm core to RXPBench pushes the performance to the same
levels achieved as the x86 host.

NVIDIA DOCA RXPBench Performance Comparison Tool MLNX-15-060475 _v1.4 | 40

Notice

This document is provided for information purposes only and shall not be regarded as a warranty of a certain functionality, condition, or quality of a product. NVIDIA
Corporation nor any of its direct or indirect subsidiaries and affiliates (collectively: "NVIDIA") make no representations or warranties, expressed or implied, as to the
accuracy or completeness of the information contained in this document and assume no responsibility for any errors contained herein. NVIDIA shall have no liability
for the consequences or use of such information or for any infringement of patents or other rights of third parties that may result from its use. This document is not
a commitment to develop, release, or deliver any Material (defined below), code, or functionality.

NVIDIA reserves the right to make corrections, modifications, enhancements, improvements, and any other changes to this document, at any time without notice.
Customer should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the time of order acknowledgement, unless otherwise agreed
in an individual sales agreement signed by authorized representatives of NVIDIA and customer ("Terms of Sale”). NVIDIA hereby expressly objects to applying any
customer general terms and conditions with regards to the purchase of the NVIDIA product referenced in this document. No contractual obligations are formed
either directly or indirectly by this document.

NVIDIA products are not designed, authorized, or warranted to be suitable for use in medical, military, aircraft, space, or life support equipment, nor in applications
where failure or malfunction of the NVIDIA product can reasonably be expected to result in personal injury, death, or property or environmental damage. NVIDIA
accepts no liability for inclusion and/or use of NVIDIA products in such equipment or applications and therefore such inclusion and/or use is at customer’s own risk.

NVIDIA makes no representation or warranty that products based on this document will be suitable for any specified use. Testing of all parameters of each product
is not necessarily performed by NVIDIA. It is customer’s sole responsibility to evaluate and determine the applicability of any information contained in this document,
ensure the product is suitable and fit for the application planned by customer, and perform the necessary testing for the application in order to avoid a default of
the application or the product. Weaknesses in customer’s product designs may affect the quality and reliability of the NVIDIA product and may result in additional
or different conditions and/or requirements beyond those contained in this document. NVIDIA accepts no liability related to any default, damage, costs, or problem
which may be based on or attributable to: (i) the use of the NVIDIA product in any manner that is contrary to this document or (i) customer product designs.

No license, either expressed or implied, is granted under any NVIDIA patent right, copyright, or other NVIDIA intellectual property right under this document.
Information published by NVIDIA regarding third-party products or services does not constitute a license from NVIDIA to use such products or services or a warranty
or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property rights of the third party,
or a license from NVIDIA under the patents or other intellectual property rights of NVIDIA.

Reproduction of information in this document is permissible only if approved in advance by NVIDIA in writing, reproduced without alteration and in full compliance
with all applicable export laws and regulations, and accompanied by all associated conditions, limitations, and notices.

THIS DOCUMENT AND ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS
(TOGETHER AND SEPARATELY, "MATERIALS") ARE BEING PROVIDED “AS IS.” NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR
OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND
FITNESS FOR A PARTICULAR PURPOSE. TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL NVIDIA BE LIABLE FOR ANY DAMAGES, INCLUDING
WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF
THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF NVIDIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
Notwithstanding any damages that customer might incur for any reason whatsoever, NVIDIA's aggregate and cumulative liability towards customer for the products
described herein shall be limited in accordance with the Terms of Sale for the product.

Trademarks

NVIDIA, the NVIDIA logo, and Mellanox are trademarks and/or registered trademarks of Mellanox Technologies Ltd. and/or NVIDIA Corporation in the U.S. and in
other countries. The registered trademark Linux® is used pursuant to a sublicense from the Linux Foundation, the exclusive licensee of Linus Torvalds, owner of the
mark on a world-wide basis. Other company and product names may be trademarks of the respective companies with which they are associated.

Copyright
© 2022 NVIDIA Corporation & affiliates. All rights reserved.

NVIDIA Corporation | 2788 San Tomas Expressway, Santa Clara, CA 95051 @2
http://www.nvidia.com
NVIDIA.

http://www.nvidia.com

	Table of Contents
	List of Tables
	Introduction
	1.1. Document Scope
	1.2. Document Glossary
	1.3. Icons

	RXPBench Overview and Installation
	2.1. Host Installation
	2.1.1. Prerequisites

	2.2. DPU Installation
	2.3. DOCA and DPDK

	Example Application Usage
	3.1. Configuring RXPBench
	3.2. Regular Expressions
	3.3. Runtime Statistics
	3.4. End-of-Run Statistics
	3.4.1. Configuration Statistics Block
	3.4.2. Run Overview Block
	3.4.3. DPDK RegEx Stats Block
	3.4.4. Hyperscan Stats Block

	General Configuration Options
	4.1. Configuration File (-C, --config-file)
	4.2. DPDK EAL (-D)
	4.3. Verbose (-V)
	4.4. Cores (-c)

	Algorithm, Ingress, and Rules Options
	5.1. Algorithm/Device Select (--Regex-dev, -d)
	5.2. Input Mode (--input-mode, -m)
	5.2.1. --input-mode dpdk_port, -m dpdk_port
	5.2.2. --input-mode pcap_file, -m pcap_file
	5.2.3. --input-mode text_file, -m text_file
	5.2.4. --input-mode job_format, -m job_format
	5.2.5. --input-mode remote_mmap, -m remote_mmap
	5.2.5.1. doca_remote_memory_app

	5.3. Compiled Rules File (--rules, -r)
	5.4. Uncompiled Rules File (--raw_rules, -R)
	5.5. App-Layer Filtering (--run-app-layer, -A)

	DPDK Port Operations
	6.1. Primary Port (--dpdk-primary-port, -1)
	6.2. Secondary Port (--dpdk-secondary-port, -2)

	RegEx Compilation Operations
	7.1. Force Compilation (--force-compile, -F)
	7.2. Single-line Mode (--comp-single-line, -S)
	7.3. Caseless Matching (--comp-caseless, -i)
	7.4. Anchoring Multi-line Mode (--comp-multi-line, -u)
	7.5. Free Spacing Mode (--comp-free-space, -x)

	Runtime Options
	8.1. Runtime Seconds (--run-time-secs, -s)
	8.2. Iterations (--run-num-iterations, -n)
	8.3. Packet (--run-packets, -p)
	8.4. Total Bytes (--run-bytes, -b)

	Search-specific Options
	9.1. Buffer Length (--buf-length, -l)
	9.2. Buffer Threshold (--buf-thres, -t)
	9.3. Buffer Overlapping (--buf-overlap, -o)
	9.4. Batching (--buf-group, -g)
	9.5. Layer 5 to 7 Payloads Only (--run-app-layer, --A)
	9.6. Sliding Window (--sliding-window, -w)

	BlueField RXP-specific Operations
	10.1. Latency Mode (--latency-mode, -8)

	Hyperscan-specific Operations
	11.1. HS Single Match (--hs-singlematch, -H)
	11.2. HS Left Most Match (--hs- leftmost, -L)

	Running RXPBench on BlueField
	BlueField-2 Performance Overview

