
MLNX-15-060491 _v1.4 | November 2022

NVIDIA BlueField DPU Scalable
Function

User Guide

NVIDIA BlueField DPU Scalable Function MLNX-15-060491 _v1.4 | ii

Table of Contents

Chapter 1. Introduction.. 1

Chapter 2. Prerequisites.. 3

Chapter 3. SF Configuration...4
3.1. Configuration Using mlxdevm Tool..4

NVIDIA BlueField DPU Scalable Function MLNX-15-060491 _v1.4 | 1

Chapter 1. Introduction

Scalable functions (SFs), or sub-functions, are very similar to virtual functions (VFs) which
are part of a Single Root I/O Virtualization (SR-IOV) solution. I/O virtualization is one of the
key features used in data centers today. It improves the performance of enterprise servers by
giving virtual machines direct access to hardware I/O devices. The SR-IOV specification allows
one PCI Express (PCIe) device to present itself to the host as multiple distinct "virtual" devices.
This is done with a new PCIe capability structure added to a traditional PCIe function (i.e., a
physical function or PF).

The PF provides control over the creation and allocation of new VFs. VFs share the device's
underlying hardware and PCIe. A key feature of the SR-IOV specification is that VFs are very
lightweight so that many of them can be implemented in a single device.

To utilize the capabilities of VF in the BlueField, SFs are used. SFs allow support for a larger
number of functions than VFs, and more importantly, they allow running multiple services
concurrently on the DPU.

An SF is a lightweight function which has a parent PCIe function on which it is deployed. The
SF, therefore, has access to the capabilities and resources of its parent PCIe function and has
its own function capabilities and its own resources. This means that an SF would also have its
own dedicated queues (i.e., txq, rxq).

SFs co-exist with PCIe SR-IOV virtual functions (on the host) but also do not require enabling
PCIe SR-IOV.

SFs support E-Switch representation offload like existing PF and VF representors. An SF
shares PCIe-level resources with other SFs and/or with its parent PCIe function.

Introduction

NVIDIA BlueField DPU Scalable Function MLNX-15-060491 _v1.4 | 2

NVIDIA BlueField DPU Scalable Function MLNX-15-060491 _v1.4 | 3

Chapter 2. Prerequisites

Please refer to the NVIDIA DOCA Installation Guide for Linux for details on how to install
BlueField related software.

‣ Make sure your firmware version is 20.30.1004 or higher

‣ To enable SF support on the device, change the PCIe address for each port:
$ mlxconfig -d 0000:03:00.0 s PF_BAR2_ENABLE=0 PER_PF_NUM_SF=1 PF_TOTAL_SF=236
 PF_SF_BAR_SIZE=10

PF_BAR2_ENABLE: if this config is set, then all PFs and ECPFs have the same
 number of SFs. This should be off (deprecated).
If set. PF_TOTAL_SF and PF_SF_BAR_SIZE won’t work.
PER_PF_NUM_SF: If this config is set, each PF and ECPF configure/control its own
 number of SFs.
THE ABOVE TWO CONFIGS AFFECS BOTH BF AND HOST, TREAT WITH CARE!
Also, only one of them can be set. It is INVALID to set them both

PF_TOTAL_SF: maximum number of SFs we wish to configure for the given PF/ECPF.
PF_SF_BAR_SIZE: size of each SF at the BAR2. The size is in powers of 2 in KB.
For example: PF_SF_BAR_SIZE=10 means each SF is taking 1MB of the BAR.
 PF_TOTAL_SF=14 means this PCI function can create up to 14 SFs.
 In total: FW will allocate 14MB of BAR2.
A cold reboot is needed for the effect to take place.

http://docs.nvidia.com/doca/sdk/pdf/installation-guide-for-linux.pdf

NVIDIA BlueField DPU Scalable Function MLNX-15-060491 _v1.4 | 4

Chapter 3. SF Configuration

To use a subfunction, a 3-step setup sequence must be followed first:

 1. Create.
 2. Configure.
 3. Deploy.

These steps can be performed using mlxdevm tool.

3.1. Configuration Using mlxdevm Tool
 1. Create the SF.

SFs are managed using the mlxdevm tool supplied with iproute2 package. The tool is found
at /opt/mellanox/iproute2/sbin/mlxdevm.

An SF is created using the mlxdevm tool. The SF is created by adding a port of "pcisf"
flavor.

To create an SF port representor, run:
/opt/mellanox/iproute2/sbin/mlxdevm port add pci/<pci_address> flavour pcisf
 pfnum <corresponding pfnum> sfnum <sfnum>

Note: Each SF must have a unique number (<sfnum>).

For example:
/opt/mellanox/iproute2/sbin/mlxdevm port add pci/0000:03:00.0 flavour pcisf pfnum
 0 sfnum 4

Output example:
pci/0000:30:00.0/229409: type eth netdev eth0 flavour pcisf controller 0 pfnum 0
 sfnum 4

SF Configuration

NVIDIA BlueField DPU Scalable Function MLNX-15-060491 _v1.4 | 5

 function:
 hw_addr 00:00:00:00:00:00 state inactive opstate detached roce true max_uc_macs
 128 trust off

The highlighted number (229409) is required to complete the following two steps (i.e.,
configuration and deployment).

pci/0000:03:00.0/229409 is called the SF index.

pci/<pci_address>/<sf_index> can be replaced with <representor_name>. For
example:
pci/0000:03:00.0/229409 = en3f0pf0sf4

To see information about the created SF such as its MAC address, trust mode, or state
(active/inactive), run the following command:
/opt/mellanox/iproute2/sbin/mlxdevm port show

Output example:
pci/0000:30:00.0/229409: type eth netdev en3f0pf0sf4 eth0 flavour pcisf
 controller 0 pfnum 0 sfnum 4
 function:
 hw_addr 00:00:00:00:00:00 state inactive opstate detached roce true
 max_uc_macs 128 trust off

 2. Configure the SF.

A subfunction representor (SF port representor) is created but it is not deployed yet. Users
should configure the hardware address (e.g., MAC address), set trust mode to on, and
activate the SF before deploying it.

The following 3 steps can be executed as separate commands (at any order) or combined
as one:

‣ To configure the hardware address, run:
/opt/mellanox/iproute2/sbin/mlxdevm port function set pci/<pci_address>/
<sf_index> hw_addr <MAC address>

‣ To set the trust mode to on, run:
/opt/mellanox/iproute2/sbin/mlxdevm port function set pci/<pci_address>/
<sf_index> trust on

‣ To activate the created SF, run:
/opt/mellanox/iproute2/sbin/mlxdevm port function set pci/<pci_address>/
<sf_index> state active

Alternatively, to configure the MAC address, set trust mode on, and set the state as active,
run:
/opt/mellanox/iproute2/sbin/mlxdevm port function set pci/<pci_address>/
<sf_index> hw_addr <MAC address> trust on state active
For example:
/opt/mellanox/iproute2/sbin/mlxdevm port function set pci/0000:03:00.0/229409
 hw_addr 00:00:00:00:04:0 trust on state active

Note: The SF capabilities above must be set before deploying the SF.

 3. Deploy the SF.

To unbind the SF from the default config driver and bind the actual SF driver, run:
echo mlx5_core.sf.<next_serial> > /sys/bus/auxiliary/drivers/mlx5_core.sf_cfg/
unbind
echo mlx5_core.sf.<next_serial> > /sys/bus/auxiliary/drivers/mlx5_core.sf/bind

SF Configuration

NVIDIA BlueField DPU Scalable Function MLNX-15-060491 _v1.4 | 6

For example:
echo mlx5_core.sf.4 > /sys/bus/auxiliary/drivers/mlx5_core.sf_cfg/unbind
echo mlx5_core.sf.4 > /sys/bus/auxiliary/drivers/mlx5_core.sf/bind

Note: <next_serial> is a number produced by the firmware when creating the SF (this is
the gvmi number of the SF). To obtain it, refer to the useful commands provided below.

Useful commands:

‣ To see the available sub-functions, run:
$ devlink dev show

For example, if you run the command before creating, configuring, and deploying the
SF (using the steps detailed earlier), the output would appear as follows:
pci/0000:03:00.0
pci/0000:03:00.1
auxiliary/mlx5_core.sf.2
auxiliary/mlx5_core.sf.3

After creating, configuring, and deploying the SF, the output would be:
pci/0000:03:00.0
pci/0000:03:00.1
auxiliary/mlx5_core.sf.2
auxiliary/mlx5_core.sf.3
auxiliary/mlx5_core.sf.4

Note that the <next_serial> number is 4 for the created SF.

‣ To see the sfnum of each sub-function, run:
cat /sys/bus/auxiliary/devices/mlx5_core.sf.<next_serial>/sfnum

For example:
cat /sys/bus/auxiliary/devices/mlx5_core.sf.4/sfnum

Example output:
cat /sys/bus/auxiliary/devices/mlx5_core.sf.4/sfnum
4

‣ To remove an SF, you must first make its state inactive and only then remove the SF
representor.

To make the SF's state inactive, run:
/opt/mellanox/iproute2/sbin/mlxdevm port function set pci/<pci_address>/
<sf_index> state inactive

To delete the SF port representor, run:
/opt/mellanox/iproute2/sbin/mlxdevm port del pci/<pci_address>/<sf_index>

For example:
/opt/mellanox/iproute2/sbin/mlxdevm port function set pci/0000:03:00.0/229409
 state inactive
/opt/mellanox/iproute2/sbin/mlxdevm port del pci/0000:03:00.0/229409

 4. Use the SF.

SF Configuration

NVIDIA BlueField DPU Scalable Function MLNX-15-060491 _v1.4 | 7

Running the application on the DPU requires OVS configuration. By creating SFs, an
SF representor for the OVS is also created and named en3f0pf*sf*. Therefore, each
representor needs to be connected to the correct OVS bridge.

Note: Two SFs related to the same PCIe are necessary for the configuration in the
illustration.

SF Configuration

NVIDIA BlueField DPU Scalable Function MLNX-15-060491 _v1.4 | 8

The following example configures 2 SFs and adds their representors to the OVS.

 a). Create, configure, and deploy the SFs. Run:
/opt/mellanox/iproute2/sbin/mlxdevm port add pci/0000:03:00.0 flavour pcisf
 pfnum 0 sfnum 4
/opt/mellanox/iproute2/sbin/mlxdevm port add pci/0000:03:00.0 flavour pcisf
 pfnum 0 sfnum 5

Using the command mlxdevm port show, you can see the SF indices of the created
SFs.
/opt/mellanox/iproute2/sbin/mlxdevm port show

Output example:
pci/0000:30:00.0/229409: type eth netdev en3f0pf0sf4 flavour pcisf controller
 0 pfnum 0 sfnum 4
 function:
 hw_addr 00:00:00:00:00:00 state inactive opstate detached roce true
 max_uc_macs 128 trust off
pci/0000:30:00.0/229410: type eth netdev en3f0pf0sf5 flavour pcisf controller
 0 pfnum 0 sfnum 5
 function:
 hw_addr 00:00:00:00:00:00 state inactive opstate detached roce true
 max_uc_macs 128 trust off

 b). Configure the MAC address, set trust mode on, and activate the created SFs:
/opt/mellanox/iproute2/sbin/mlxdevm port function set pci/0000:03:00.0/229409
 hw_addr 02:25:f2:8d:a2:4c trust on state active
/opt/mellanox/iproute2/sbin/mlxdevm port function set pci/0000:03:00.0/229410
 hw_addr 02:25:f2:8d:a2:5c trust on state active

Using ifconfig, you may see that there are 2 added network interfaces: en3f0pf0sf4
and en3f0pf0sf5 for the two respective SF port representors.

 c). Delete existing OVS bridges (optional).

For example, run the following command to delete an OVS bridge called "ovsbr1":
ovs-vsctl del-br ovsbr1

 d). Create two bridges sf_bridge1 and sf_bridge2 and configure them as follows:
ovs-vsctl add-br sf_bridge1
ovs-vsctl add-br sf_bridge2
ovs-vsctl add-port sf_bridge1 p0
ovs-vsctl add-port sf_bridge2 pf0hpf

The OVS bridges after adding the SF representors:
Bridge sf_bridge1
 Port p0
 Interface p0
 Port sf_bridge1
 Interface sf_bridge1
 type: internal
 Port en3f0pf0sf4
 Interface en3f0pf0sf4
Bridge sf_bridge2
 Port sf_bridge2
 Interface sf_bridge2
 type: internal
 Port en3f0pf0sf5
 Interface en3f0pf0sf5
 Port pf0hpf
 Interface pf0hpf

SF Configuration

NVIDIA BlueField DPU Scalable Function MLNX-15-060491 _v1.4 | 9

ovs_version: "2.14.1"

Note: The interface might be down by default. Remember to ifconfing the interface to
"up" status.

Note: When deleting the SF port representor, you must also de-attach it from the bridge it
is connected to using the command ovs-vsctl port-del en3f0pf0sf*. Otherwise, the
port representor will still be connected to the bridge but would not be recognizable.

To run the application, use the following command to initialize the subfunctions during
runtime:
Executable_binary -a auxiliary:mlx5_core.sf.* -a auxiliary:mlx5_core.sf.*

For example:
doca_application_recognition -a 0000:03:00.0,class=regex -a
 auxiliary:mlx5_core.sf.4,sft_en=1 -a auxiliary:mlx5_core.sf.5,sft_en=1 --
 [application_flags]

Notice

This document is provided for information purposes only and shall not be regarded as a warranty of a certain functionality, condition, or quality of a product. NVIDIA
Corporation nor any of its direct or indirect subsidiaries and affiliates (collectively: “NVIDIA”) make no representations or warranties, expressed or implied, as to the
accuracy or completeness of the information contained in this document and assume no responsibility for any errors contained herein. NVIDIA shall have no liability
for the consequences or use of such information or for any infringement of patents or other rights of third parties that may result from its use. This document is not
a commitment to develop, release, or deliver any Material (defined below), code, or functionality.

NVIDIA reserves the right to make corrections, modifications, enhancements, improvements, and any other changes to this document, at any time without notice.

Customer should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the time of order acknowledgement, unless otherwise agreed
in an individual sales agreement signed by authorized representatives of NVIDIA and customer (“Terms of Sale”). NVIDIA hereby expressly objects to applying any
customer general terms and conditions with regards to the purchase of the NVIDIA product referenced in this document. No contractual obligations are formed
either directly or indirectly by this document.

NVIDIA products are not designed, authorized, or warranted to be suitable for use in medical, military, aircraft, space, or life support equipment, nor in applications
where failure or malfunction of the NVIDIA product can reasonably be expected to result in personal injury, death, or property or environmental damage. NVIDIA
accepts no liability for inclusion and/or use of NVIDIA products in such equipment or applications and therefore such inclusion and/or use is at customer’s own risk.

NVIDIA makes no representation or warranty that products based on this document will be suitable for any specified use. Testing of all parameters of each product
is not necessarily performed by NVIDIA. It is customer’s sole responsibility to evaluate and determine the applicability of any information contained in this document,
ensure the product is suitable and fit for the application planned by customer, and perform the necessary testing for the application in order to avoid a default of
the application or the product. Weaknesses in customer’s product designs may affect the quality and reliability of the NVIDIA product and may result in additional
or different conditions and/or requirements beyond those contained in this document. NVIDIA accepts no liability related to any default, damage, costs, or problem
which may be based on or attributable to: (i) the use of the NVIDIA product in any manner that is contrary to this document or (ii) customer product designs.

No license, either expressed or implied, is granted under any NVIDIA patent right, copyright, or other NVIDIA intellectual property right under this document.
Information published by NVIDIA regarding third-party products or services does not constitute a license from NVIDIA to use such products or services or a warranty
or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property rights of the third party,
or a license from NVIDIA under the patents or other intellectual property rights of NVIDIA.

Reproduction of information in this document is permissible only if approved in advance by NVIDIA in writing, reproduced without alteration and in full compliance
with all applicable export laws and regulations, and accompanied by all associated conditions, limitations, and notices.

THIS DOCUMENT AND ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS
(TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR
OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND
FITNESS FOR A PARTICULAR PURPOSE. TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL NVIDIA BE LIABLE FOR ANY DAMAGES, INCLUDING
WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF
THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF NVIDIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
Notwithstanding any damages that customer might incur for any reason whatsoever, NVIDIA’s aggregate and cumulative liability towards customer for the products
described herein shall be limited in accordance with the Terms of Sale for the product.

Trademarks

NVIDIA, the NVIDIA logo, and Mellanox are trademarks and/or registered trademarks of Mellanox Technologies Ltd. and/or NVIDIA Corporation in the U.S. and in
other countries. The registered trademark Linux® is used pursuant to a sublicense from the Linux Foundation, the exclusive licensee of Linus Torvalds, owner of the
mark on a world¬wide basis. Other company and product names may be trademarks of the respective companies with which they are associated.

Copyright
© 2022 NVIDIA Corporation & affiliates. All rights reserved.

NVIDIA Corporation | 2788 San Tomas Expressway, Santa Clara, CA 95051
http://www.nvidia.com

http://www.nvidia.com

	Table of Contents
	Introduction
	Prerequisites
	SF Configuration
	3.1. Configuration Using mlxdevm Tool

