
MLNX-15-060563 _v1.5.1 | November 2022

NVIDIA DOCA DPACC Compiler

User Guide

NVIDIA DOCA DPACC Compiler MLNX-15-060563 _v1.5.1 | ii

Table of Contents

Chapter 1. Introduction.. 1
1.1. Glossary... 1

1.2. Offloading Work on DPA...2

1.3. Writing DPA Applications..2

1.3.1. Restrictions on DPA Code... 2

1.3.2. DPA RPC Functions... 2

1.3.3. DPA Kernels... 3

1.3.4. Characteristics of DPA Kernels...3

1.3.5. Handling User-defined Data Types... 3

1.3.6. Characteristics of Annotated Types.. 3

Chapter 2. Prerequisites.. 4
2.1. Supported Platforms...4

Chapter 3. Description..5
3.1. DPACC Inputs and Outputs.. 5

3.1.1. DPA Program..6

3.1.2. DPA Object..6

3.2. Modes of Operation...6

3.2.1. Compile-and-link Mode... 7

3.2.2. Compile-only Mode.. 7

Chapter 4. Execution.. 9
4.1. Mandatory Arguments.. 9

4.2. Commonly Used Arguments.. 9

4.3. Incorrect Usage...10

4.4. Examples... 10

4.4.1. Link with Device Libraries... 10

4.4.2. Include Headers... 11

4.5. DPA Compiler Usage.. 11

4.5.1. Compiler Driver Command Line Options..11

4.5.2. Linker Command Line Options..11

4.5.3. Objdump Command Line Options... 11

4.5.4. Archiver Command Line Options.. 12

4.5.5. NM Tool Command Line Options.. 12

4.5.6. Common Compiler Options... 12

4.5.7. Common Linker Options.. 12

4.5.8. Debugging Options... 12

NVIDIA DOCA DPACC Compiler MLNX-15-060563 _v1.5.1 | iii

4.5.9. Miscellaneous Notes.. 12

NVIDIA DOCA DPACC Compiler MLNX-15-060563 _v1.5.1 | iv

NVIDIA DOCA DPACC Compiler MLNX-15-060563 _v1.5.1 | 1

Chapter 1. Introduction

DPACC is a high-level compiler for the DPA processor. It compiles code targeted for the DPA
processor into an executable and generates a DPA program.

The DPA program is a host library with interfaces encapsulating the DPA executable. This DPA
program is linked with the host application to generate a host executable. The host executable
can invoke the DPA code through FlexIO runtime API.

Producing a DPA program involves steps such as input file preprocessing, validation, interface
generation, compilation and linking. DPACC hides these intricate details and provides a one-
step solution to enable a seamless programming experience.

DPACC uses dpa-clang to compile code targeted for DPA. dpa-clang is part of the DPA
toolchain package which is an LLVM-based cross-compiling bare-metal toolchain. It provides
Clang compiler, LLD linker targeting DPA architecture, and other utility tools.

1.1. Glossary
Term Definition
Device DPA simulator/hardware

Host CPU that launches the device code to run on the
DPA

Device function Any C function that runs on the DPA device

Kernel Device function that is the point of entry from the
host when offloading any work on DPA

Host compiler Compiler used to compile the code targeting the
host CPU

Host stubs Interfaces (functions and data structures) used
for argument marshalling and loading of the DPA
executable

Device compiler Compiler used to compile code targeting the DPA

DPA program Host library that encapsulates the DPA device
executable (ELF) and host stubs which are used to
access the DPA executable with

Introduction

NVIDIA DOCA DPACC Compiler MLNX-15-060563 _v1.5.1 | 2

1.2. Offloading Work on DPA

To offload tasks on the DPA, the following things are required:

‣ DPA device code – C programs, targeted to run on the DPA. DPA device code may contain
one or more kernel entry functions.

‣ Host application code – the host application is responsible for initializing the device using
appropriate FlexIO runtime calls and invoking kernels in the DPA executable. Kernel
registration and interface with FlexIO runtime is managed by DPACC.

‣ Runtime – FlexIO runtime libraries and headers supplied to DPACC through the
appropriate options

The generated DPA program, when linked with host application, results in an executable
containing both the host and DPA executables. Running this executable loads the DPA
executable to the device memory.

1.3. Writing DPA Applications
DPA can be programmed using the FlexIO API.

DPA device code is a C code with some restrictions and special definitions.

1.3.1. Restrictions on DPA Code
Use of thread local storage is not allowed for any variables.

1.3.2. DPA RPC Functions
A remote procedure call function is a synchronous call that triggers work in DPA and waits
for its completion. It is annotated with a __dpa_rpc__ attribute. For more information, please
refer to NVIDIA DOCA FlexIO SDK Programming Guide.

http://docs.nvidia.com/doca/sdk/pdf/flexio-sdk-programming-guide.pdf

Introduction

NVIDIA DOCA DPACC Compiler MLNX-15-060563 _v1.5.1 | 3

1.3.3. DPA Kernels
A kernel function is a device function meant to be called from the host code. Kernels are
annotated with a __dpa_global__ attribute.

1.3.4. Characteristics of DPA Kernels
‣ Kernels cannot explicitly return a value. They must have void return type.

‣ Kernels cannot accept pointers and arrays as arguments

‣ Kernels cannot accept a variable number of arguments

‣ Inline specifier is not allowed on kernel functions

1.3.5. Handling User-defined Data Types
User-defined data types, when used as kernel arguments, require special handling. They must
be annotated with a __dpa_global__ attribute.

If the user-defined data type is typedef'd, the typedef statement must be annotated with a
__dpa_global__ attribute along the data type itself.

1.3.6. Characteristics of Annotated Types
‣ They must have a copy of the definition in all translation units where they are used as

kernel arguments

‣ They cannot have pointers, variable length arrays, and flexible arrays as members

‣ Fixed-size arrays as C structure members are supported

‣ These characteristics apply recursively to any user-defined/typedef'd types that are
members of an annotated type

DPACC processes all kernels and annotated data structures and generates host and device
interfaces to facilitate the kernel launch.

NVIDIA DOCA DPACC Compiler MLNX-15-060563 _v1.5.1 | 4

Chapter 2. Prerequisites

Package Instructions
Host compiler Compiler specified through hostcc option. Both

gcc and clang are supported.

Device compiler Compiler which supports DPA target specified
through devicecc option. The preferred device
compiler is "DPA compiler". Installing DPACC
package also installs DPA compiler binaries: dpa-
clang, dpa-ar, dpa-nm and dpa-objdump.

FlexIO SDK and C library Available as part of the DOCA software package.
DPA toolchain does not provide C library and
corresponding headers. Users are expected to
use the C library for DPA from the FlexIO SDK.

2.1. Supported Platforms
Architecture Operating Systems
x86_64 Ubuntu 20.04

Ubuntu 22.04

CentOS 8.2

RHEL 8.2

arm64 Ubuntu 20.04

Ubuntu 22.04

NVIDIA DOCA DPACC Compiler MLNX-15-060563 _v1.5.1 | 5

Chapter 3. Description

3.1. DPACC Inputs and Outputs
DPACC can produce DPA programs in a single command by accepting all source files as input.

Additionally, DPACC offers the flexibility of producing DPA object files from individual source
files.

DPA object files contain both host stub objects and device objects. These DPA object files can
later be given to DPACC as input to produce the DPA library.

Phase Option Name
Default Output File
Name

Compile input device
code files to DPA object
files

--compile or -c .dpa.o appended to
the name of each input
source file

Compile and link the
input device code files/
DPA object files, and
produce a DPA program

No specific option No default name, output
file name must be
specified

DPACC can accept following two file types as input:

File Extension File Type Description
.c C source file DPA device code

.dpa.o DPA object file Object file generated by DPACC,
containing both host and device
objects

Based on the mode of operations, DPACC can generate the two following output files:

Output File Type Input Files
DPA program C source files and/or DPA object files

DPA object file C source files

Description

NVIDIA DOCA DPACC Compiler MLNX-15-060563 _v1.5.1 | 6

3.1.1. DPA Program
DPACC produces a DPA program in compile-and-link mode. A DPA program is a library built
for the host machine. This library contains a single object file which comprises of the host
stubs which facilitate invoking a kernel from the host application.

Additionally, the device executable which is built from the input device code files to DPACC
is embedded into a specific section inside this library. On linking this library with the host
application and running the resulting executable, the FlexIO runtime along with the host stubs
will load this executable onto the DPA memory.

3.1.2. DPA Object
DPACC produces DPA object files in compile-only mode. A DPA object is an object file for
the host machine. In a DPA object, the device object generated by compiling the input device
code file is placed inside a specific section of the generated host stubs object. This process is
repeated for each input file.

3.2. Modes of Operation

Description

NVIDIA DOCA DPACC Compiler MLNX-15-060563 _v1.5.1 | 7

3.2.1. Compile-and-link Mode
This is a one-step mode that accepts C source files or DPA object files and produces the DPA
program. Specifying the output library name is mandatory in this mode.

Example commands:
$ dpacc in1.c in2.c -o myLib1.a -hostcc=gcc # Takes C sources to produce
 myLib1.a library
$ dpacc in3.dpa.o in4.dpa.o -o myLib2.a -hostcc=gcc # Takes DPA object files to
 produce myLib2.a library
$ dpacc in1.c in3.dpa.o -o myLib3.a -hostcc=gcc # Takes C source and DPA object
 to produce myLib3.a library

3.2.2. Compile-only Mode
This mode accepts C source code and produces .dpa.o object files. These files can be given to
DPACC to produce the DPA program. The mode is invoked by the --compile or -c option.

Description

NVIDIA DOCA DPACC Compiler MLNX-15-060563 _v1.5.1 | 8

The user can explicitly provide the output object file name using the --output-file or -o
option.

Example commands:
$ dpacc -c input1.c -hostcc=gcc # Produces input1.dpa.o
$ dpacc -c input3.c input4.c -hostcc=gcc # Produces input3.dpa.o and
 input4.dpa.o
$ dpacc -c input2.c -o myObj.dpa.o -hostcc=gcc # Produces myObj.dpa.o

NVIDIA DOCA DPACC Compiler MLNX-15-060563 _v1.5.1 | 9

Chapter 4. Execution

To execute DOCA DPACC Compiler:
Usage: dpacc <list-of-input-files> -hostcc=<path> [other options]
Helper Flags:
 -h, --help Print help information about DPACC
 -V, --version Print DPACC version information
 -v, --verbose List the compilation commands generated by
 this invocation while also executing every command in verbose mode
 -dryrun, --dryrun Only list the compilation commands generated
 by DPACC, without executing them
 -keep, --keep Keep all intermediate files that are generated
 during internal compilation steps in the current directory
 -keep-dir, --keep-dir Keep all intermediate files that are generated
 during internal compilation steps in the given directory
 -optf, --options-file <file>,... Include command line options from the
 specified file

4.1. Mandatory Arguments
Flag DPACC Mode Description
List of one or more input files All List of C source files or DPA

object file names. Specifying at
least one input file is mandatory.
A file with an unknown extension
is treated as a DPA object file.

-hostcc, --hostcc <path> All Specify the host compiler. This
is typically the native compiler
present on the host system.

-o, --output-file <file> Compile-and-link Specify name and location of the
output archive (DPA program)

4.2. Commonly Used Arguments
Flag Description
-devicecc-options, --devicecc-options
<options>,...

Specify the list of options to pass to the device
compiler

-devicelink-options, --devicelink-options
<options>,...

Specify the list of options to pass during device
linking stage. Typically, these include FlexIO
libraries and DPA linker scripts.

Execution

NVIDIA DOCA DPACC Compiler MLNX-15-060563 _v1.5.1 | 10

Flag Description
-I, --common-include-path <path>,... Specify include search paths common to host

and device code compilation. Typically, these are
FlexIO headers.

-devicecc, --devicecc <path> Specify the device compiler. By default, DPACC
invokes dpa-clang.

-o, --output-file <file> Specify name and location of the output file.

‣ Compile-only mode: Name of the output
DPA object file. If not specified, .dpa.o is
generated for each .c file.

‣ Compiler-and-link mode: Name of the
output archive. This is a mandatory option in
compiler-and-link mode

-hostcc-options, --hostcc-options
<options>,...

Specify the list of options to pass to the host
compiler

4.3. Incorrect Usage
‣ The devicecc-options option allows passing any option to the device compiler. However,

passing options that prevent compilation of the input file may lead to unexpected behavior.

For example: -devicecc-options="-version" makes the device compiler print the
version and not process input files.

‣ Incompatible options which affect the kernel argument sizes during DPACC invocation and
host application compilation may lead to undefined behavior during execution

For example: Passing -hostcc-options="-fshort-enums" to DPACC and missing this
option when building the host application

4.4. Examples
This section provides some common use cases of DPACC and showcases the dpacc
command.

4.4.1. Link with Device Libraries
This example specifies the names and paths of the libraries using devicelink-options:
dpacc input.c -hostcc=gcc -o libInput.a -devicelink-options="-L <path-to-library> -
l<libName>"

Execution

NVIDIA DOCA DPACC Compiler MLNX-15-060563 _v1.5.1 | 11

4.4.2. Include Headers
This example includes headers for device compilation using devicecc-options and host
compilation using hostcc-options. You can also specify headers for any compilation on both
the host and device side using the -I option.
dpacc input.c -hostcc=gcc -o libInput.a -I <common-headers-path> -devicecc-
options="-I <device-headers-path>" -hostcc-options="-I <host-headers-path>"

4.5. DPA Compiler Usage
dpa-clang is a compiler driver for accessing the Clang/LLVM compiler, assembler, and linker.
The user is expected to invoke these tools only using the dpa-clang compiler driver.

dpa-clang is also a compiler frontend for C language.

Refer to the following resources for detailed user guide and command line references:

‣ Clang user manual

‣ Clang command line reference

‣ Target dependent options

4.5.1. Compiler Driver Command Line Options
DPA compiler provides a Clang compiler binary, dpa-clang. It accepts C code files or object
files and generates an output according to different usage modes.
dpa-clang <list-of-input-files> [other options]

4.5.2. Linker Command Line Options

Note: Link time optimization (LTO) is not supported by DPA toolchain LLD.

LLD is the default linker provided in the DPA toolchain. Linker is invoked through the compiler
driver binary,dpa-clang. Invoking the linker directly may lead to unexpected errors.

Linker related options are passed to through the compiler driver.
dpa-clang <list-of-input-files> [other options]

For more information, please refer to the LLD command line reference.

4.5.3. Objdump Command Line Options
The dpa-objdump utility prints the contents of object files and final linked images named on
the command line.

For more information, please refer to the Objdump command line reference.

https://releases.llvm.org/12.0.1/tools/clang/docs/UsersManual.html
https://releases.llvm.org/12.0.1/tools/clang/docs/ClangCommandLineReference.html
https://releases.llvm.org/12.0.1/tools/clang/docs/ClangCommandLineReference.html#target-dependent-compilation-options
https://manpages.ubuntu.com/manpages/jammy/en/man1/ld.lld-12.1.html
https://releases.llvm.org/12.0.1/docs/CommandGuide/llvm-objdump.html

Execution

NVIDIA DOCA DPACC Compiler MLNX-15-060563 _v1.5.1 | 12

4.5.4. Archiver Command Line Options
dpa-ar is a Unix ar compatible archiver.

For more information, please refer to the Archiver command line reference.

4.5.5. NM Tool Command Line Options
The dpa-nm utility lists the names of symbols from object files, and archives.

For more information, please refer to the NM tool command line reference.

4.5.6. Common Compiler Options
Flag Description
-mcpu=nv-dpa-bf3 Option to choose micro-architecture and ABI for

DPA processor. This is the default option.

-mrelax/-mno-relax Option to enable/disable linker relaxations

-isystem <dir> Option to include Libc header files present in <dir>
in FlexIO SDK as system headers

-I <dir> Option to include header files present in <dir>

4.5.7. Common Linker Options
Flag Description
-L <path-to-library> -l<library-name> Option to link against libraries

Note: Linker options are provided through the compiler driver dpa-clang.

Note: The LLD linker script is honored in addition to the default configuration rather than
replacing the whole configuration like in GNU ld. Hence, additional options may be required to
override some default behaviors.

4.5.8. Debugging Options
Flag Description
-fdebug-macro Option to emit macro debugging information. This

option enables macro-debugging similar to GCC
option -g3.

4.5.9. Miscellaneous Notes
‣ DPA Toolchain provides the ability to invoke GNU linker instead of the default LLD linker

via --fuse-ld=<arg> option in command line reference. However, it is discouraged to do
so and not tested.

https://releases.llvm.org/12.0.1/docs/CommandGuide/llvm-ar.html
https://releases.llvm.org/12.0.1/docs/CommandGuide/llvm-nm.html
https://releases.llvm.org/12.0.1/tools/clang/docs/ClangCommandLineReference.html#cmdoption-clang-fuse-ld

Execution

NVIDIA DOCA DPACC Compiler MLNX-15-060563 _v1.5.1 | 13

‣ Objects produced by LLD are not compatible with those generated by any other linker.

‣ DPA processor does not have native floating-point support and dpa-clang generates
software emulated routines for floating point operations. Note that using floating point
operations will have severe performance impact. Code generation for these routines will
disabled by default in the next release with a command line option to enable it if needed.

Notice

This document is provided for information purposes only and shall not be regarded as a warranty of a certain functionality, condition, or quality of a product. NVIDIA
Corporation nor any of its direct or indirect subsidiaries and affiliates (collectively: “NVIDIA”) make no representations or warranties, expressed or implied, as to the
accuracy or completeness of the information contained in this document and assume no responsibility for any errors contained herein. NVIDIA shall have no liability
for the consequences or use of such information or for any infringement of patents or other rights of third parties that may result from its use. This document is not
a commitment to develop, release, or deliver any Material (defined below), code, or functionality.

NVIDIA reserves the right to make corrections, modifications, enhancements, improvements, and any other changes to this document, at any time without notice.

Customer should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the time of order acknowledgement, unless otherwise agreed
in an individual sales agreement signed by authorized representatives of NVIDIA and customer (“Terms of Sale”). NVIDIA hereby expressly objects to applying any
customer general terms and conditions with regards to the purchase of the NVIDIA product referenced in this document. No contractual obligations are formed
either directly or indirectly by this document.

NVIDIA products are not designed, authorized, or warranted to be suitable for use in medical, military, aircraft, space, or life support equipment, nor in applications
where failure or malfunction of the NVIDIA product can reasonably be expected to result in personal injury, death, or property or environmental damage. NVIDIA
accepts no liability for inclusion and/or use of NVIDIA products in such equipment or applications and therefore such inclusion and/or use is at customer’s own risk.

NVIDIA makes no representation or warranty that products based on this document will be suitable for any specified use. Testing of all parameters of each product
is not necessarily performed by NVIDIA. It is customer’s sole responsibility to evaluate and determine the applicability of any information contained in this document,
ensure the product is suitable and fit for the application planned by customer, and perform the necessary testing for the application in order to avoid a default of
the application or the product. Weaknesses in customer’s product designs may affect the quality and reliability of the NVIDIA product and may result in additional
or different conditions and/or requirements beyond those contained in this document. NVIDIA accepts no liability related to any default, damage, costs, or problem
which may be based on or attributable to: (i) the use of the NVIDIA product in any manner that is contrary to this document or (ii) customer product designs.

No license, either expressed or implied, is granted under any NVIDIA patent right, copyright, or other NVIDIA intellectual property right under this document.
Information published by NVIDIA regarding third-party products or services does not constitute a license from NVIDIA to use such products or services or a warranty
or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property rights of the third party,
or a license from NVIDIA under the patents or other intellectual property rights of NVIDIA.

Reproduction of information in this document is permissible only if approved in advance by NVIDIA in writing, reproduced without alteration and in full compliance
with all applicable export laws and regulations, and accompanied by all associated conditions, limitations, and notices.

THIS DOCUMENT AND ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS
(TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR
OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND
FITNESS FOR A PARTICULAR PURPOSE. TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL NVIDIA BE LIABLE FOR ANY DAMAGES, INCLUDING
WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF
THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF NVIDIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
Notwithstanding any damages that customer might incur for any reason whatsoever, NVIDIA’s aggregate and cumulative liability towards customer for the products
described herein shall be limited in accordance with the Terms of Sale for the product.

Trademarks

NVIDIA, the NVIDIA logo, and Mellanox are trademarks and/or registered trademarks of Mellanox Technologies Ltd. and/or NVIDIA Corporation in the U.S. and in
other countries. The registered trademark Linux® is used pursuant to a sublicense from the Linux Foundation, the exclusive licensee of Linus Torvalds, owner of the
mark on a world¬wide basis. Other company and product names may be trademarks of the respective companies with which they are associated.

Copyright
© 2022 NVIDIA Corporation & affiliates. All rights reserved.

NVIDIA Corporation | 2788 San Tomas Expressway, Santa Clara, CA 95051
http://www.nvidia.com

http://www.nvidia.com

	Table of Contents
	Introduction
	1.1. Glossary
	1.2. Offloading Work on DPA
	1.3. Writing DPA Applications
	1.3.1. Restrictions on DPA Code
	1.3.2. DPA RPC Functions
	1.3.3. DPA Kernels
	1.3.4. Characteristics of DPA Kernels
	1.3.5. Handling User-defined Data Types
	1.3.6. Characteristics of Annotated Types

	Prerequisites
	2.1. Supported Platforms

	Description
	3.1. DPACC Inputs and Outputs
	3.1.1. DPA Program
	3.1.2. DPA Object

	3.2. Modes of Operation
	3.2.1. Compile-and-link Mode
	3.2.2. Compile-only Mode

	Execution
	4.1. Mandatory Arguments
	4.2. Commonly Used Arguments
	4.3. Incorrect Usage
	4.4. Examples
	4.4.1. Link with Device Libraries
	4.4.2. Include Headers

	4.5. DPA Compiler Usage
	4.5.1. Compiler Driver Command Line Options
	4.5.2. Linker Command Line Options
	4.5.3. Objdump Command Line Options
	4.5.4. Archiver Command Line Options
	4.5.5. NM Tool Command Line Options
	4.5.6. Common Compiler Options
	4.5.7. Common Linker Options
	4.5.8. Debugging Options
	4.5.9. Miscellaneous Notes

