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Chapter 1. Introduction

DPACC is a high-level compiler for the DPA processor. It compiles code targeted for the DPA
processor into an executable and generates a DPA program.

The DPA program is a host library with interfaces encapsulating the DPA executable. This DPA
program is linked with the host application to generate a host executable. The host executable
can invoke the DPA code through FlexIO runtime API.

Producing a DPA program involves steps such as input file preprocessing, validation, interface
generation, compilation and linking. DPACC hides these intricate details and provides a one-
step solution to enable a seamless programming experience.

DPACC uses dpa-clang to compile code targeted for DPA. dpa-clang is part of the DPA
toolchain package which is an LLVM-based cross-compiling bare-metal toolchain. It provides
Clang compiler, LLD linker targeting DPA architecture, and other utility tools.

1.1.  Glossary
Term Definition
Device DPA simulator/hardware

Host CPU that launches the device code to run on the
DPA

Device function Any C function that runs on the DPA device

Kernel Device function that is the point of entry from the
host when offloading any work on DPA

Host compiler Compiler used to compile the code targeting the
host CPU

Host stubs Interfaces (functions and data structures) used
for argument marshalling and loading of the DPA
executable

Device compiler Compiler used to compile code targeting the DPA

DPA program Host library that encapsulates the DPA device
executable (ELF) and host stubs which are used to
access the DPA executable with
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1.2.  Offloading Work on DPA
 

 

To offload tasks on the DPA, the following things are required:

‣ DPA device code – C programs, targeted to run on the DPA. DPA device code may contain
one or more kernel entry functions.

‣ Host application code – the host application is responsible for initializing the device using
appropriate FlexIO runtime calls and invoking kernels in the DPA executable. Kernel
registration and interface with FlexIO runtime is managed by DPACC.

‣ Runtime – FlexIO runtime libraries and headers supplied to DPACC through the
appropriate options

The generated DPA program, when linked with host application, results in an executable
containing both the host and DPA executables. Running this executable loads the DPA
executable to the device memory.

1.3.  Writing DPA Applications
DPA can be programmed using the FlexIO API.

DPA device code is a C code with some restrictions and special definitions.

1.3.1.  Restrictions on DPA Code
Use of thread local storage is not allowed for any variables.

1.3.2.  DPA RPC Functions
A remote procedure call function is a synchronous call that triggers work in DPA and waits
for its completion. It is annotated with a __dpa_rpc__ attribute. For more information, please
refer to NVIDIA DOCA FlexIO SDK Programming Guide.

http://docs.nvidia.com/doca/sdk/pdf/flexio-sdk-programming-guide.pdf


Introduction

NVIDIA DOCA DPACC Compiler MLNX-15-060563 _v1.5.1   |   3

1.3.3.  DPA Kernels
A kernel function is a device function meant to be called from the host code. Kernels are
annotated with a __dpa_global__ attribute.

1.3.4.  Characteristics of DPA Kernels
‣ Kernels cannot explicitly return a value. They must have void return type.

‣ Kernels cannot accept pointers and arrays as arguments

‣ Kernels cannot accept a variable number of arguments

‣ Inline specifier is not allowed on kernel functions

1.3.5.  Handling User-defined Data Types
User-defined data types, when used as kernel arguments, require special handling. They must
be annotated with a __dpa_global__ attribute.

If the user-defined data type is typedef'd, the typedef statement must be annotated with a
__dpa_global__ attribute along the data type itself.

1.3.6.  Characteristics of Annotated Types
‣ They must have a copy of the definition in all translation units where they are used as

kernel arguments

‣ They cannot have pointers, variable length arrays, and flexible arrays as members

‣ Fixed-size arrays as C structure members are supported

‣ These characteristics apply recursively to any user-defined/typedef'd types that are
members of an annotated type

DPACC processes all kernels and annotated data structures and generates host and device
interfaces to facilitate the kernel launch.
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Chapter 2. Prerequisites

Package Instructions
Host compiler Compiler specified through hostcc option. Both

gcc and clang are supported.

Device compiler Compiler which supports DPA target specified
through devicecc option. The preferred device
compiler is "DPA compiler". Installing DPACC
package also installs DPA compiler binaries: dpa-
clang, dpa-ar, dpa-nm and dpa-objdump.

FlexIO SDK and C library Available as part of the DOCA software package.
DPA toolchain does not provide C library and
corresponding headers. Users are expected to
use the C library for DPA from the FlexIO SDK.

2.1.  Supported Platforms
Architecture Operating Systems
x86_64 Ubuntu 20.04

Ubuntu 22.04

CentOS 8.2

RHEL 8.2

arm64 Ubuntu 20.04

Ubuntu 22.04
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Chapter 3. Description

3.1.  DPACC Inputs and Outputs
DPACC can produce DPA programs in a single command by accepting all source files as input.

Additionally, DPACC offers the flexibility of producing DPA object files from individual source
files.

DPA object files contain both host stub objects and device objects. These DPA object files can
later be given to DPACC as input to produce the DPA library.

Phase Option Name
Default Output File
Name

Compile input device
code files to DPA object
files

--compile or -c .dpa.o appended to
the name of each input
source file

Compile and link the
input device code files/
DPA object files, and
produce a DPA program

No specific option No default name, output
file name must be
specified

DPACC can accept following two file types as input:

File Extension File Type Description
.c C source file DPA device code

.dpa.o DPA object file Object file generated by DPACC,
containing both host and device
objects

Based on the mode of operations, DPACC can generate the two following output files:

Output File Type Input Files
DPA program C source files and/or DPA object files

DPA object file C source files
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3.1.1.  DPA Program
DPACC produces a DPA program in compile-and-link mode. A DPA program is a library built
for the host machine. This library contains a single object file which comprises of the host
stubs which facilitate invoking a kernel from the host application.

Additionally, the device executable which is built from the input device code files to DPACC
is embedded into a specific section inside this library. On linking this library with the host
application and running the resulting executable, the FlexIO runtime along with the host stubs
will load this executable onto the DPA memory.
 

 

3.1.2.  DPA Object
DPACC produces DPA object files in compile-only mode. A DPA object is an object file for
the host machine. In a DPA object, the device object generated by compiling the input device
code file is placed inside a specific section of the generated host stubs object. This process is
repeated for each input file.

3.2.  Modes of Operation
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3.2.1.  Compile-and-link Mode
This is a one-step mode that accepts C source files or DPA object files and produces the DPA
program. Specifying the output library name is mandatory in this mode.

Example commands:
$ dpacc in1.c in2.c -o myLib1.a -hostcc=gcc         # Takes C sources to produce
 myLib1.a library
$ dpacc in3.dpa.o in4.dpa.o -o myLib2.a -hostcc=gcc # Takes DPA object files to
 produce myLib2.a library
$ dpacc in1.c in3.dpa.o -o myLib3.a -hostcc=gcc     # Takes C source and DPA object
 to produce myLib3.a library

3.2.2.  Compile-only Mode
This mode accepts C source code and produces .dpa.o object files. These files can be given to
DPACC to produce the DPA program. The mode is invoked by the --compile or -c option.
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The user can explicitly provide the output object file name using the --output-file or -o
option.

Example commands:
$ dpacc -c input1.c -hostcc=gcc                 # Produces input1.dpa.o
$ dpacc -c input3.c input4.c -hostcc=gcc        # Produces input3.dpa.o and
 input4.dpa.o
$ dpacc -c input2.c -o myObj.dpa.o -hostcc=gcc  # Produces myObj.dpa.o
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Chapter 4. Execution

To execute DOCA DPACC Compiler:
Usage: dpacc <list-of-input-files> -hostcc=<path> [other options]
Helper Flags:
  -h, --help                          Print help information about DPACC
  -V, --version                       Print DPACC version information
  -v, --verbose                       List the compilation commands generated by
 this invocation while also executing every command in verbose mode
  -dryrun, --dryrun                   Only list the compilation commands generated
 by DPACC, without executing them
  -keep, --keep                       Keep all intermediate files that are generated
 during internal compilation steps in the current directory
  -keep-dir, --keep-dir               Keep all intermediate files that are generated
 during internal compilation steps in the given directory
  -optf, --options-file <file>,...    Include command line options from the
 specified file

4.1.  Mandatory Arguments
Flag DPACC Mode Description
List of one or more input files All List of C source files or DPA

object file names. Specifying at
least one input file is mandatory.
A file with an unknown extension
is treated as a DPA object file.

-hostcc, --hostcc <path> All Specify the host compiler. This
is typically the native compiler
present on the host system.

-o, --output-file <file> Compile-and-link Specify name and location of the
output archive (DPA program)

4.2.  Commonly Used Arguments
Flag Description
-devicecc-options, --devicecc-options
<options>,...

Specify the list of options to pass to the device
compiler

-devicelink-options, --devicelink-options
<options>,...

Specify the list of options to pass during device
linking stage. Typically, these include FlexIO
libraries and DPA linker scripts.
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Flag Description
-I, --common-include-path <path>,... Specify include search paths common to host

and device code compilation. Typically, these are
FlexIO headers.

-devicecc, --devicecc <path> Specify the device compiler. By default, DPACC
invokes dpa-clang.

-o, --output-file <file> Specify name and location of the output file.

‣ Compile-only mode: Name of the output
DPA object file. If not specified, .dpa.o is
generated for each .c file.

‣ Compiler-and-link mode: Name of the
output archive. This is a mandatory option in
compiler-and-link mode

-hostcc-options, --hostcc-options
<options>,...

Specify the list of options to pass to the host
compiler

4.3.  Incorrect Usage
‣ The devicecc-options option allows passing any option to the device compiler. However,

passing options that prevent compilation of the input file may lead to unexpected behavior.

For example: -devicecc-options="-version" makes the device compiler print the
version and not process input files.

‣ Incompatible options which affect the kernel argument sizes during DPACC invocation and
host application compilation may lead to undefined behavior during execution

For example: Passing -hostcc-options="-fshort-enums" to DPACC and missing this
option when building the host application

4.4.  Examples
This section provides some common use cases of DPACC and showcases the dpacc
command.

4.4.1.  Link with Device Libraries
This example specifies the names and paths of the libraries using devicelink-options:
dpacc input.c -hostcc=gcc -o libInput.a -devicelink-options="-L <path-to-library> -
l<libName>"
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4.4.2.  Include Headers
This example includes headers for device compilation using devicecc-options and host
compilation using hostcc-options. You can also specify headers for any compilation on both
the host and device side using the -I option.
dpacc input.c -hostcc=gcc -o libInput.a -I <common-headers-path> -devicecc-
options="-I <device-headers-path>" -hostcc-options="-I <host-headers-path>"

4.5.  DPA Compiler Usage
dpa-clang is a compiler driver for accessing the Clang/LLVM compiler, assembler, and linker.
The user is expected to invoke these tools only using the dpa-clang compiler driver.

dpa-clang is also a compiler frontend for C language.

Refer to the following resources for detailed user guide and command line references:

‣ Clang user manual

‣ Clang command line reference

‣ Target dependent options

4.5.1.  Compiler Driver Command Line Options
DPA compiler provides a Clang compiler binary, dpa-clang. It accepts C code files or object
files and generates an output according to different usage modes.
dpa-clang <list-of-input-files> [other options]

4.5.2.  Linker Command Line Options

Note: Link time optimization (LTO) is not supported by DPA toolchain LLD.

LLD is the default linker provided in the DPA toolchain. Linker is invoked through the compiler
driver binary,dpa-clang. Invoking the linker directly may lead to unexpected errors.

Linker related options are passed to through the compiler driver.
dpa-clang <list-of-input-files> [other options]

For more information, please refer to the LLD command line reference.

4.5.3.  Objdump Command Line Options
The dpa-objdump utility prints the contents of object files and final linked images named on
the command line.

For more information, please refer to the Objdump command line reference.

https://releases.llvm.org/12.0.1/tools/clang/docs/UsersManual.html
https://releases.llvm.org/12.0.1/tools/clang/docs/ClangCommandLineReference.html
https://releases.llvm.org/12.0.1/tools/clang/docs/ClangCommandLineReference.html#target-dependent-compilation-options
https://manpages.ubuntu.com/manpages/jammy/en/man1/ld.lld-12.1.html
https://releases.llvm.org/12.0.1/docs/CommandGuide/llvm-objdump.html
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4.5.4.  Archiver Command Line Options
dpa-ar is a Unix ar compatible archiver.

For more information, please refer to the Archiver command line reference.

4.5.5.  NM Tool Command Line Options
The dpa-nm utility lists the names of symbols from object files, and archives.

For more information, please refer to the NM tool command line reference.

4.5.6.  Common Compiler Options
Flag Description
-mcpu=nv-dpa-bf3 Option to choose micro-architecture and ABI for

DPA processor. This is the default option.

-mrelax/-mno-relax Option to enable/disable linker relaxations

-isystem <dir> Option to include Libc header files present in <dir>
in FlexIO SDK as system headers

-I <dir> Option to include header files present in <dir>

4.5.7.  Common Linker Options
Flag Description
-L <path-to-library> -l<library-name> Option to link against libraries

Note: Linker options are provided through the compiler driver dpa-clang.

Note: The LLD linker script is honored in addition to the default configuration rather than
replacing the whole configuration like in GNU ld. Hence, additional options may be required to
override some default behaviors.

4.5.8.  Debugging Options
Flag Description
-fdebug-macro Option to emit macro debugging information. This

option enables macro-debugging similar to GCC
option -g3.

4.5.9.  Miscellaneous Notes
‣ DPA Toolchain provides the ability to invoke GNU linker instead of the default LLD linker

via --fuse-ld=<arg> option in command line reference. However, it is discouraged to do
so and not tested.

https://releases.llvm.org/12.0.1/docs/CommandGuide/llvm-ar.html
https://releases.llvm.org/12.0.1/docs/CommandGuide/llvm-nm.html
https://releases.llvm.org/12.0.1/tools/clang/docs/ClangCommandLineReference.html#cmdoption-clang-fuse-ld
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‣ Objects produced by LLD are not compatible with those generated by any other linker.

‣ DPA processor does not have native floating-point support and dpa-clang generates
software emulated routines for floating point operations. Note that using floating point
operations will have severe performance impact. Code generation for these routines will
disabled by default in the next release with a command line option to enable it if needed.
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