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Chapter 1. Introduction

The DOCA SHA library provides a flexible and unified API to leverage the SHA offload engine
present in the NVIDIA® BlueField®-2 DPU. For more information on SHA (secure hash
standard algorithm), please review the FIPS 180-4 specifications.

SHA is commonly used in cryptography to generate a given hash value for a supplied input
buffer. Depending on the SHA algorithm used, the message length may vary: Any length
less than 2^64 bits for SHA-1, SHA-224, and SHA-256, or less than 2^128 bits for SHA-384,
SHA-512, SHA-512/224, and SHA-512/256. The resulting output from a SHA operation is called
a message digest. The message digests range in length from 160 to 512 bits depending on
the selected SHA algorithm. As expected from any cryptography algorithm, any change to a
message will, with a very high probability, result in a different message digest and verification
failure.

SHA is typically used with other cryptographic algorithms, such as digital signature algorithms
and keyed-hash message authentication codes, or in the generation of random numbers.

The DOCA SHA library supports three SHA algorithms, SHA-1, SHA-256, and SHA-512, and
aims to comply with the OpenSSL SHA implementation standard. It supports both one-shot
and stateful SHA calculations.

‣ One-shot means that the input message is composed of a single segment of data and,
therefore, the SHA operation is completed in a single step (i.e., one single SHA engine
enqueue and dequeue operation)

‣ Stateful means that the input message is composed of many segments of data and,
therefore, its SHA calculation needs more than one SHA enqueue and dequeue operation
to finish. During any stateful operation, other SHA operations can also be executed.
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Chapter 2. Prerequisites

DOCA SHA applications can run either on the host machine or directly on the crypto-enabled
DPU target. As the DOCA SHA leverages the SHA engine, users must make sure it is enabled.
$ sudo mlxfwmanager

In the output, make sure that "Crypto Enabled" appears in the command output in the
"Description" line.
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Chapter 3. Architecture

The following diagram shows how the DOCA SHA library receives a message and outputs a
message digest.

From an application level, the DOCA SHA library can be seen as a black box. DOCA SHA
outputs a response regardless of the nature of the input message.
 

 

‣ In a one-shot SHA situation, the single output is the correct message digest

‣ In a stateful SHA situation, multiple outputs are expected corresponding to multiple inputs
but only the last output is the correct message digest
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Chapter 4. API

In the following sections, additional details about the library API are provided. For the library
API reference, refer to the NVIDIA DOCA Libraries API Reference Manual.

4.1.  doca_sha_job_type
The enum defines six job types in the DOCA SHA library.
enum doca_sha_job_type {
    DOCA_SHA_JOB_SHA1 = DOCA_ACTION_SHA_FIRST + 1,
    DOCA_SHA_JOB_SHA256,
    DOCA_SHA_JOB_SHA512,
    DOCA_SHA_JOB_SHA1_PARTIAL,
    DOCA_SHA_JOB_SHA256_PARTIAL,
    DOCA_SHA_JOB_SHA512_PARTIAL,
};
DOCA_SHA_JOB_SHA1; DOCA_SHA_JOB_SHA256; DOCA_SHA_JOB_SHA512

Used to specify a one-shot SHA calculation.
DOCA_SHA_JOB_SHA1_PARTIAL; DOCA_SHA_JOB_SHA256_PARTIAL;
DOCA_SHA_JOB_SHA512_PARTIAL

Used to specify a stateful SHA calculation.

4.2.  DOCA SHA Output Length Macro
These macros define the smallest SHA response buffer length corresponding to different job
types.
#define DOCA_SHA1_BYTE_COUNT       20
#define DOCA_SHA256_BYTE_COUNT     32
#define DOCA_SHA512_BYTE_COUNT     64 
DOCA_SHA1_BYTE_COUNT

Number of message digest bytes for SHA1_PARTIAL and SHA1_PARTIAL.
DOCA_SHA256_BYTE_COUNT

Number of message digest bytes for SHA256_PARTIAL and SHA256_PARTIAL.
DOCA_SHA512_BYTE_COUNT

Number of message digest bytes for SHA512_PARTIAL and SHA512_PARTIAL.

http://docs.nvidia.com/doca/sdk/pdf/doca-libraries-api.pdf
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4.3.  doca_sha_job_flags
The enum defines flags used for doca_sha_job construction.
enum doca_sha_job_flags {
    DOCA_SHA_JOB_FLAGS_NONE = 0,
    DOCA_SHA_JOB_FLAGS_SHA_PARTIAL_FINAL
};
DOCA_SHA_JOB_FLAGS_NONE

The default flag suitable for all SHA jobs.
DOCA_SHA_JOB_FLAGS_SHA_PARTIAL_FINAL

Signifies that the current input is the final segment of a whole stateful job.

4.4.  doca_sha_job
This is the DOCA SHA job definition, suitable for one-shot SHA job types, DOCA_
JOB_SHA1/256/512.
struct doca_sha_job {
    struct doca_job base;
    struct doca_buf *req_buf;
    struct doca_buf *resp_buf;
    uint64_t flags;
};
base

An opaque doca_job structure.
req_buf

The doca_buf containing the input message.
resp_buf

The doca_buf used for the output message digest.
flags

the doca_sha_job_flags.

4.5.  doca_sha_partial_session
An opaque structure used in a stateful SHA job.
struct doca_sha_partial_session;

4.6.  doca_sha_partial_job
This is the DOCA SHA job definition, suitable for stateful SHA job types,
DOCA_JOB_SHA1/256/512_PARTIAL.
struct doca_sha_partial_job {
    struct doca_sha_job sha_job;
    struct doca_sha_partial_session *session;
};
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sha_job
Contain the fields for the input message, output message digest, and flags.

session
Contain the state information for a stateful SHA calculation.

4.7.  doca_sha
An opaque structure for DOCA SHA API.
struct doca_sha;

4.8.  doca_sha_create
Before performing any SHA operation, it is essential to create a doca_sha object.
doca_error_t doca_sha_create(struct doca_sha **ctx);
ctx [in/out]

doca_sha object to be created.
Returns

DOCA_SUCCESS on success, error code otherwise.

4.9.  doca_sha_destroy
Used to destroy a doca_sha object after a SHA operation is done:
doca_error_t doca_sha_destroy(struct doca_sha *ctx);
ctx [in]

doca_sha object to be destroyed; it is created by doca_sha_create().
Returns

DOCA_SUCCESS on success, error code otherwise.

4.10.  doca_sha_job_get_supported
Check whether a device can perform doca_sha jobs.
doca_error_t doca_sha_destroy(struct doca_sha *ctx);
devinfo [in]

A pointer to the doca_devinfo object.
job_type [in]

doca_sha job type enum.
Returns

DOCA_SUCCESS on success, error code otherwise.
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4.11.  doca_sha_get_max_list_buf_num_elem
Get the maximum linked list doca_buf count for the source buffer in a doca_sha job.
doca_error_t doca_sha_get_max_list_buf_num_elem(const struct doca_devinfo *devinfo,
 uint32_t *max_list_num_elem);
devinfo [in]

A pointer to the doca_devinfo object.
max_list_num_elem [out]

Maximum linked list doca_buf count.
Returns

DOCA_SUCCESS on success, error code otherwise.

4.12.  doca_sha_get_max_src_buffer_size
Get the maximum buffer byte count for the source buffer in a doca_sha job.
doca_error_t doca_sha_get_max_src_buffer_size(const struct doca_devinfo *devinfo,
 uint64_t *max_buffer_size);
devinfo [in]

A pointer to the doca_devinfo object.
max_buffer_size [out]

Maximum buffer byte count.
Returns

DOCA_SUCCESS on success, error code otherwise.

4.13.  doca_sha_get_min_dst_buffer_size
Get the minimum buffer byte count for the destination buffer in a doca_sha job.
doca_error_t doca_sha_get_max_src_buffer_size(const struct doca_devinfo *devinfo,
 uint64_t *max_buffer_size);
devinfo [in]

A pointer to the doca_devinfo object.
job_type [in]

doca_sha job type enum.
min_buffer_size [out]

Minimum buffer byte count.
Returns

DOCA_SUCCESS on success, error code otherwise.

4.14.  doca_sha_get_hardware_supported
Check a doca_sha engine is hardware-based or openssl-sha-fallback-based.
doca_error_t doca_sha_get_hardware_supported(const struct doca_devinfo *devinfo);
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devinfo [in]
A pointer to the doca_devinfo object.

Returns
DOCA_SUCCESS on success, error code otherwise.

4.15.  doca_sha_as_ctx
Convert a doca_sha object into a doca object.
struct doca_ctx *doca_sha_as_ctx(struct doca_sha *ctx);
ctx [in]

A pointer to the doca_sha object.
doca_ctx [out]

A pointer to the doca object
Returns

A pointer to the doca object on success, NULL otherwise

4.16.  doca_sha_partial_session_create
Before doing any stateful SHA calculation, it is necessary to create a
doca_sha_partial_session object to keep the state information:
doca_error_t doca_sha_partial_session_create(
        struct doca_sha *ctx,
        struct doca_workq *workq,
        struct doca_sha_partial_session **session);
ctx [in]

A pointer to the doca_sha object.
workq [in]

A pointer to the doca_workq object.
session [in/out]

A pointer to the doca_sha_partial_session object to be created.
Returns

DOCA_SUCCESS on success, error code otherwise.

4.17.  doca_sha_partial_session_destroy
Free stateful SHA session resource:
doca_error_t doca_sha_partial_session_destroy(
    struct doca_sha *ctx,
    struct doca_workq *workq,
    struct doca_sha_partial_session *session);
ctx [in]

A pointer to the doca_sha object.
workq [in]

A pointer to the doca_workq object.
session [in]

A pointer to the doca_sha_partial_session object to be freed.
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Returns
DOCA_SUCCESS on success, error code otherwise.

4.18.  doca_sha_partial_session_copy
Copy the stateful SHA session resource:
doca_error_t doca_sha_partial_session_copy( 
        struct doca_sha *ctx, 
        struct doca_workq *workq, 
        struct doca_sha_partial_session *from, 
        struct doca_sha_partial_session *to); 
ctx [in]

A pointer to the doca_sha object.
workq [in]

A pointer to the doca_workq object.
from [in]

A pointer to the source doca_sha_partial_session object to be copied.
to [out]

A pointer to the destination doca_sha_partial_session object.
session [in]

A pointer to the doca_sha_partial_session object to be freed.
Returns

DOCA_SUCCESS on success, error code otherwise.
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Chapter 5. Capabilities and Limitations

Supported SHA algorithms:

‣ SHA1

‣ SHA256

‣ SHA512

Output message digest length:

‣ 20B for SHA1

‣ 32B for SHA256

‣ 64B for SHA512

Maximum single job size:

‣ For one-shot SHA calculation, the input message size must be ≤ 231

‣ For stateful SHA calculation, the accumulated input message size must be ≤ 231

Stateful SHA job length requirement:

‣ For SHA1/256_PARTIAL, only the last segment allows its byte_count != multiple-of-64

‣ For SHA512_PARTIAL, only the last segment allows its byte_count != multiple-of-128
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Chapter 6. Troubleshooting

6.1.  Performing One-shot SHA
Calculation

 1. Construct a doca_sha_job:
struct doca_sha_job job = {
 .base.type = DOCA_SHA_JOB_SHA1,
  .req_buf   = user_req_buf,
 .resp_buf  = user_resp_buf,
 .flags     = DOCA_SHA_JOB_FLAGS_NONE
};

 2. Submit the job until DOCA_SUCCESS is received:
In synchronous mode, we can use:
ret = doca_workq_submit(workq, &job.base);
if (ret != DOCA_SUCCESS)
 error_exit;

In asynchronous mode, doca_workq_submit() may return DOCA_ERROR_NO_MEMORY. In
that case, you must first call doca_workq_progress_retrieve() to receive a response
so that the job resource can be freed, then retry calling doca_workq_submit().

Possible doca_workq_submit() return codes:

‣ DOCA_SUCCESS

‣ DOCA_ERROR_INVALID_VALUE

‣ DOCA_ERROR_NO_MEMORY

‣ DOCA_ERROR_BAD_STATE

If doca_workq_submit() returns DOCA_ERROR_INVALID_VALUE, it means the job
construction has a problem. If it returns DOCA_ERROR_BAD_STATE, it indicates a fatal
internal error and the whole engine must be reinitialized.

 3. To retrieve a job response until DOCA_SUCCESS is received:
while ((ret = doca_workq_progress_retrieve(workq, &event,
 DOCA_WORKQ_RETRIEVE_FLAGS_NONE)) == DOCA_ERROR_AGAIN);
if (ret != DOCA_SUCCESS)
 error_exit;

Possible doca_workq_progress_retrieve() return codes:
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‣ DOCA_SUCCESS

‣ DOCA_ERROR_INVALID_VALUE

‣ DOCA_ERROR_NO_MEMORY

‣ DOCA_ERROR_BAD_STATE

If doca_workq_progress_retrieve() returns DOCA_ERROR_INVALID_VALUE it means
invalid input is received. If it returns DOCA_ERROR_IO_FAILED, it signifies fatal internal
error and the whole engine needs reinitialized.

6.2.  Performing Stateful SHA Calculation
This section describes the steps to finish a stateful SHA1 calculation, assuming the whole job
is composed of three or more segments.

 1. Obtain a doca_sha_partial_session:
doca_sha_partial_session *session;
doca_sha_partial_session_create(ctx, workq, &session);

 2. Construct a doca_sha_partial_job for the first segment:
struct doca_sha_partial_job job = {
 .sha_job.base.type = DOCA_SHA_JOB_SHA1_PARTIAL,
  .sha_job.req_buf   = user_req_buf_of_1st_segment,
 .sha_job.resp_buf  = user_resp_buf,
 .sha_job.flags     = DOCA_SHA_JOB_FLAGS_NONE,
 .session           = session,
};

 3. Submit the job for the first segment:
ret = doca_workq_submit(workq, &job.base);
if (ret != DOCA_SUCCESS)
 error_exit;

 4. Wait until first segment processing is done:
while ((ret = doca_workq_progress_retrieve(workq, &event,
 DOCA_WORKQ_RETRIEVE_FLAGS_NONE)) == DOCA_ERROR_AGAIN);
if (ret != DOCA_SUCCESS)
 error_exit;

The purpose of this call is to make sure the first segment processing is finished before
continuing to send the next segment, as it is necessary to sequentially process all
segments for a correct message digest generation. The user_resp_buf at this moment
contains garbage values.

 5. For the second segment, repeat the previous three steps:
struct doca_sha_partial_job job = {
 .sha_job.base.type = DOCA_SHA_JOB_SHA1_PARTIAL,
  .sha_job.req_buf   = user_req_buf_of_2nd_segment,
 .sha_job.resp_buf  = user_resp_buf,
 .sha_job.flags     = DOCA_SHA_JOB_FLAGS_NONE,
 .session           = session,
};

ret = doca_workq_submit(workq, &job.base);
if (ret != DOCA_SUCCESS)
 error_exit;
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while ((ret = doca_workq_progress_retrieve(workq, &event,
 DOCA_WORKQ_RETRIEVE_FLAGS_NONE)) == DOCA_ERROR_AGAIN);
if (ret != DOCA_SUCCESS)
 error_exit;

The purpose of this call is still to make sure the second segment processing is finished.
The user user_resp_buf at this moment still contains garbage values.

 6. All subsequent segments repeat the same process.
 7. For the last segment, repeat the same process while setting the special flag for the last

segment:
struct doca_sha_partial_job job = {
 .sha_job.base.type = DOCA_SHA_JOB_SHA1_PARTIAL,
  .sha_job.req_buf   = user_req_buf_of_the_last_segment,
 .sha_job.resp_buf  = user_resp_buf,
 .sha_job.flags     = DOCA_SHA_JOB_FLAGS_SHA_PARTIAL_LAST,
 .session           = session,
};

ret = doca_workq_submit(workq, &job.base);
if (ret != DOCA_SUCCESS)
 error_exit;

while ((ret = doca_workq_progress_retrieve(workq, &event,
 DOCA_WORKQ_RETRIEVE_FLAGS_NONE)) == DOCA_ERROR_AGAIN);
if (ret != DOCA_SUCCESS)
 error_exit;

After the DOCA_SUCCESS event of the last segment is received the processing of the whole
job is done now. You can get the expected SHA message digest from the user_resp_buf
now.

 8. Release the session object:
doca_sha_partial_session_destroy(ctx, workq, session);

Notes:

‣ Before submitting the first segment, call doca_sha_partial_session_create() to
obtain a "session" object.

‣ During the whole process, make sure to use the same doca_sha_partial_session
object used for all segments of the entire job.

‣ If a session object is released before the whole stateful SHA is finished, or if different
objects are used for a stateful SHA, the job submission may fail due to job validity check
failure. Even the job submission succeeds, a wrong SHA message digest is expected.

‣ The session resource is limited, it is the user's responsibility to properly call
doca_sha_partial_session_destroy() to make sure all allocated session objects are
released.

‣ For the last segment, the DOCA_SHA_JOB_FLAGS_SHA_PARTIAL_FINAL flag must be set.

‣ If DOCA_SHA_JOB_FLAGS_SHA_PARTIAL_FINAL is not properly set, the engine assumes an
intermediate partial SHA calculation and returns an invalid SHA message digest. As only
the user knows when the last segment arrives, it is their responsibility to properly set this
flag.

‣ Make sure the SHA_PARTIAL segment length requirements are In this example, the first
and second segments' byte count must be a multiple of 64. Otherwise, the job submission
may fail due to job validity check failure.
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6.3.  Using Session Copy
This section describes the steps for utilizing session_copy() to reduce the stateful SHA
calculation overhead.

The example assumes there are two whole jobs, job_0 and job_1, where job_0 is composed
of several segments, {header_segment, job_0's other segments}, and job_1 is
composed of {header_segment, job_1' other segments}.

 1. Obtain two doca_sha_partial_session:
doca_sha_partial_session *session_0;
doca_sha_partial_session_create(ctx, workq, &session_0);
doca_sha_partial_session *session_1;
doca_sha_partial_session_create(ctx, workq, &session_1);

 2. Construct a doca_sha_partial_job for the header_segment:
struct doca_sha_partial_job job = {
 .sha_job.base.type = DOCA_SHA_JOB_SHA1_PARTIAL,
  .sha_job.req_buf   = user_req_buf_of_header_segment,
 .sha_job.resp_buf  = user_resp_buf,
 .sha_job.flags     = DOCA_SHA_JOB_FLAGS_NONE,
 .session           = session_0,
};

 3. Submit the header_segment of job_0:
ret = doca_workq_submit(workq, &job.base);
if (ret != DOCA_SUCCESS)
 error_exit;

 4. Wait until the processing of header_segment is done:
while ((ret = doca_workq_progress_retrieve(workq, &event,
 DOCA_WORKQ_RETRIEVE_FLAGS_NONE)) == DOCA_ERROR_AGAIN);
if (ret != DOCA_SUCCESS)
 error_exit;

 5. Perform the session copy so that job_1 does not need to calculate its header_segment:
doca_sha_partial_session_copy(ctx, workq, session_0, session_1);

 6. Continue to calculate job_0 and job_1's other segments until final segment using normal
partial_sha calculation process:
struct doca_sha_partial_job job = {
 .sha_job.base.type = DOCA_SHA_JOB_SHA1_PARTIAL,
  .sha_job.req_buf   = user_req_buf_of_job_0_other_segment,
 .sha_job.resp_buf  = user_resp_buf,
 .sha_job.flags     = DOCA_SHA_JOB_FLAGS_NONE,
 .session           = session_0,
};

ret = doca_workq_submit(workq, &job.base);
if (ret != DOCA_SUCCESS)
 error_exit;

while ((ret = doca_workq_progress_retrieve(workq, &event,
 DOCA_WORKQ_RETRIEVE_FLAGS_NONE)) == DOCA_ERROR_AGAIN);
if (ret != DOCA_SUCCESS)
 error_exit;

struct doca_sha_partial_job job = {
 .sha_job.base.type = DOCA_SHA_JOB_SHA1_PARTIAL,
  .sha_job.req_buf   = user_req_buf_of_job_1_other_segment,
 .sha_job.resp_buf  = user_resp_buf,
 .sha_job.flags     = DOCA_SHA_JOB_FLAGS_NONE,
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 .session           = session_1,
};

ret = doca_workq_submit(workq, &job.base);
if (ret != DOCA_SUCCESS)
 error_exit;

while ((ret = doca_workq_progress_retrieve(workq, &event,
 DOCA_WORKQ_RETRIEVE_FLAGS_NONE)) == DOCA_ERROR_AGAIN);
if (ret != DOCA_SUCCESS)
 error_exit;

 7. Release the session object:
doca_sha_partial_session_destroy(ctx, workq, session_0);
doca_sha_partial_session_destroy(ctx, workq, session_1);

6.4.  Quick Start
Please refer to the NVIDIA DOCA SHA Sample Guide for instructions on how to test the DOCA
SHA library.

http://docs.nvidia.com/doca/sdk/pdf/sha-samples.pdf
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