
MLNX-15-060530 _v2.0.2 | May 2023

NVIDIA DOCA Flow Inspector Service

Guide

NVIDIA DOCA Flow Inspector Service MLNX-15-060530 _v2.0.2 | ii

Table of Contents

Chapter 1. Introduction..1
1.1. Service Flow..2

Chapter 2. Requirements.. 4

Chapter 3. Service Deployment..6

Chapter 4. Configuration...7
4.1. JSON Input... 7

4.2. Yaml File... 9

4.3. Verifying Output...9

Chapter 5. Troubleshooting... 11

NVIDIA DOCA Flow Inspector Service MLNX-15-060530 _v2.0.2 | 1

Chapter 1. Introduction

DOCA Flow Inspector service allows monitoring real-time data and extraction of
telemetry components which can be utilized by various services for security, big data,
and other purposes.

DOCA Flow Inspector service is linked to DOCA Telemetry Service (DTS). DOCA Flow
Inspector receives mirrored packets from the user and parses and forwards the data
to the DTS which gathers predefined statistics forwarded by various providers/sources.
DOCA Flow Inspector uses the DOCA Telemetry API to communicate with the DTS while
the DPDK infrastructure allows acquiring packets at a user-space layer.

DOCA Flow Inspector runs inside of its own Kubernetes pod on BlueField and is intended
to receive mirrored packets for analysis. The packets received are parsed and sent, in
a predefined struct, to a telemetry collector which manages the rest of the telemetry
aspects.

Introduction

NVIDIA DOCA Flow Inspector Service MLNX-15-060530 _v2.0.2 | 2

1.1. Service Flow
DOCA Flow Inspector receives a configuration file in a JSON format indicating which of
the mirrored packets should be filtered out based on the L4 network header.

The configuration file can include several "export units". Each one is comprised of a
"filter" and an "export". Each packet that matches one filter (based on the protocol and
ports in the L4 header) is then parsed to the corresponding requested struct defined in
the export. That information only is sent for inspection. A packet that does not match
any filter is dropped. See JSON format and example in the Configuration section.

In addition, the service watches for changes in the JSON configuration file in runtime
and for any change that reconfigures the service.

The DOCA Flow Inspector runs on top of DPDK to acquire L4. The packets are then
filtered and HW-marked with their export unit index. The packets are then parsed
according to their export unit and export struct, and then forwarded to the telemetry
collector using IPC.

Introduction

NVIDIA DOCA Flow Inspector Service MLNX-15-060530 _v2.0.2 | 3

Configuration phase:

 1. A JSON file is used as input to configure the export units (i.e., filters and
corresponding export structs).

 2. The filters are translated to HW rules on the SF (scalable function port) using the
DOCA Flow library.

 3. The connection to the telemetry collector is initialized and all export structures are
registered to DTS.

Inspection phase:

 1. Traffic is mirrored to the relevant SF.
 2. Ingress traffic is received through the configured SF.
 3. Non-L4 traffic and packets that do not match any filter are dropped using hardware

rules.
 4. Packets matching a filter are marked with the export unit index they match and are

passed to the software layer in the Arm cores.
 5. Packets are parsed to the desired struct by the index of export unit.
 6. The telemetry information is forwarded to the telemetry agent using IPC.
 7. Mirrored packets are freed.
 8. If the JSON file is changed, run the configuration phase with the updated file.

NVIDIA DOCA Flow Inspector Service MLNX-15-060530 _v2.0.2 | 4

Chapter 2. Requirements

DOCA Flow Inspector service must be used with DTS of the same DOCA version.

Before deploying the flow inspector container, ensure that the following prerequisites
are satisfied:

 1. Create the needed files and directories.

Folders should be created automatically. Make sure the .json file resides inside the
folder:
$ touch /opt/mellanox/doca/services/flow_inspector/bin/flow_inspector_cfg.json

Validate that DTS's configuration folders exist. They should be created automatically
when DTS is deployed.
$ sudo mkdir -p /opt/mellanox/doca/services/telemetry/config
$ sudo mkdir -p /opt/mellanox/doca/services/telemetry/ipc_sockets
$ sudo mkdir -p /opt/mellanox/doca/services/telemetry/data

 2. Allocate hugepages.

Allocated huge pages as needed by DPDK. This requires root privileges.
$ sudo echo 2048 > /sys/kernel/mm/hugepages/hugepages-2048kB/nr_hugepages

Or alternatively:
$ sudo echo '2048' | sudo tee -a /sys/kernel/mm/hugepages/hugepages-2048kB/
nr_hugepages
$ sudo mkdir /mnt/huge
$ sudo mount -t hugetlbfs nodev /mnt/huge

Deploy a scalable function according to Scalable Function Setup Guide and mirror
packets accordingly using the Open vSwitch command.

For example:

 a). Mirror packets from p0 to sf0:
$ ovs-vsctl add-br ovsbr1
$ ovs-vsctl add-port ovsbr1 p0
$ ovs-vsctl add-port ovsbr1 en3f0pf0sf0
$ ovs-vsctl -- --id=@p1 get port en3f0pf0sf0 \
 -- --id=@p2 get port p0 \
 -- --id=@m create mirror name=m0 select-dst-port=@p2 select-src-
port=@p2 output-port=@p1 \
 -- set bridge ovsbr1 mirrors=@m

 b). Mirror packets from pf0hpf to sf0:
$ ovs-vsctl add-br ovsbr1
$ ovs-vsctl add-port ovsbr1 pf0hpf
$ ovs-vsctl add-port ovsbr1 en3f0pf0sf0
$ ovs-vsctl -- --id=@p1 get port en3f0pf0sf0 \
 -- --id=@p2 get port pf0hpf \

http://docs.nvidia.com/doca/sdk/pdf/scalable-functions.pdf

Requirements

NVIDIA DOCA Flow Inspector Service MLNX-15-060530 _v2.0.2 | 5

 -- --id=@m create mirror name=m0 select-dst-port=@p2 select-src-
port=@p2 output-port=@p1 \
 -- set bridge ovsbr1 mirrors=@m

The output of last command should be in the following format:
exp: 0d248ca8-66af-427c-b600-af1e286056e1

Note: The designated SF must be created as a trusted function. Additional details
can be found in the Scalable Function Setup Guide.

http://docs.nvidia.com/doca/sdk/pdf/scalable-functions.pdf

NVIDIA DOCA Flow Inspector Service MLNX-15-060530 _v2.0.2 | 6

Chapter 3. Service Deployment

For information about the deployment of DOCA containers on top of the BlueField DPU,
refer to NVIDIA DOCA Container Deployment Guide.

DTS is available on NGC, NVIDIA's container catalog. Service-specific configuration steps
and deployment instructions can be found under the service's container page.

http://docs.nvidia.com/doca/sdk/pdf/container-deployment.pdf
https://catalog.ngc.nvidia.com/orgs/nvidia/teams/doca/containers/doca_flow_inspector

NVIDIA DOCA Flow Inspector Service MLNX-15-060530 _v2.0.2 | 7

Chapter 4. Configuration

4.1. JSON Input
The flow inspector configuration file should be placed under /opt/mellanox/doca/
services/flow_inspector/bin/<json_file_name>.json and be built in the following
format:
[
 {
 # Export Unit:
 "filter":
 {
 "protocols": [<L4 protocols separated by comma>], # What L4 protocols
 are allowed
 "ports": # What L4 port ranges
 are allowed [src,dst]
 [
 [<source port>, <destination port>],
 <... more pairs of source, dest ports>
]
 },
 "export":
 {
 "fields": [<fields to be part of export struct, separated by comma>] #
 the Telemetry event will contain these fields.
 }
 },

 <... More Export Units>
]

Allowed protocols:

‣ TCP

‣ UDP

Allowed ports:

‣ All ports in the range 0-65535 as a string

‣ Or "*" to indicate "any port"

Allowed fields in export struct:
timestamp

Timestamp indicating when it was received by the service.

Configuration

NVIDIA DOCA Flow Inspector Service MLNX-15-060530 _v2.0.2 | 8

host_ip
The IP of the host running the service

src_mac
Source MAC address

dst_mac
Destination MAC address

src_ip
Source IP

dst_ip
Destination IP

protocol
L4 protocol

src_port
Source port

dst_port
Destination port

flags
Additional flags (relevant to TCP only)

data_len
Data payload length

data_short
Short version of data (payload sliced to first 64 bytes)

data_medium
Medium version of data (payload sliced to first 1500 bytes)

data_long
Long version of data (payload sliced to first 9*1024 bytes)

JSON example:
[
 /* Export Unit 0 */
 {
 "filter":
 {
 "protocols": ["udp"], # What L4 protocols are allowed
 "ports": # What L4 port ranges are allowed
 [src,dst]
 [
 ["*","433"], # In this case, “*” stands for all
 source ports and dst port 433
 ["20480","28341"] # src port 20480, dst port 28341
]
 },
 "export":
 {
 "fields": ["timestamp", "src_mac", "dst_mac", "protocol", "data_len",
 "data_long"]
 }
 },

 /* Export Unit 1 */
 {
 "filter":
 {
 "protocols": ["tcp"],
 "ports":
 [
 ["5","422"]

Configuration

NVIDIA DOCA Flow Inspector Service MLNX-15-060530 _v2.0.2 | 9

]
 },
 "export":
 {
 "fields": ["timestamp", "host_ip", "src_ip", "dst_ip", "data_len",
 "data_short"]
 }
 }
]

Note: If a packet contains L4 ports which are not specified in the file, it is filtered out.

Note: The JSON file can be changed during runtime. The new configuration is applied in
less than 60 seconds. This time period can be changed using the -t flag (see section Yaml
File).

4.2. Yaml File
The .yaml file downloaded from NGC can be easily edited according to your needs.
env:
 # Set according to the local setup
 - name: SF_NUM_1
 value: "2"
 # Additional EAL flags, if needed
 - name: EAL_FLAGS
 value: ""
 # Service-Specific command line arguments
 - name: SERVICE_ARGS
 value: "--policy /flow_inspector/flow_inspector_cfg.json -l 60"

‣ The SF_NUM_1 value can be changed according to the SF used in the OVS
configuration and can be found using the command in Scalable Function Setup
Guide.

‣ The EAL_FLAGS value must be changed according to the DPDK flags required when
running the container.

‣ The SERVICE_ARGS are the runtime arguments received by the service:

‣ -l, --log-level <value> – sets the log level (CRITICAL=20, ERROR=30,
WARNING=40, INFO=50, DEBUG=60)

‣ -p, --policy <json_path> – sets the JSON path inside the container

‣ -t, --time <seconds> – time period to check for changes in JSON config file
(default is 60 seconds)

4.3. Verifying Output
Enabling write to data in the DTS allows debugging the validity of DOCA Flow Inspector.

http://docs.nvidia.com/doca/sdk/pdf/scalable-functions.pdf
http://docs.nvidia.com/doca/sdk/pdf/scalable-functions.pdf

Configuration

NVIDIA DOCA Flow Inspector Service MLNX-15-060530 _v2.0.2 | 10

Uncomment the following line in /opt/mellanox/doca/services/telemetry/config/
dts_config.ini:
#output=/data

Note: Any changes in dts_config.ini necessitate restarting the pod for the new settings
to apply.

The schema folder contains JSON-formatted metadata files which allow reading the
binary files containing the actual data. The binary files are written according to the
naming convention shown in the following example:

Note: Requires installing the tree runtime utility (apt install tree).

$ tree /opt/mellanox/doca/services/telemetry/data/
/opt/mellanox/doca/services/telemetry/data/
├── {year}
│ └── {mmdd}
│ └── {hash}
│ ├── {source_id}
│ │ └── {source_tag}{timestamp}.bin
│ └── {another_source_id}
│ └── {another_source_tag}{timestamp}.bin
└── schema
 └── schema_{MD5_digest}.json

New binary files appear when:

‣ The service starts

‣ When the binary file's max age/size restriction is reached

‣ When JSON file is changed and new schemas of telemetry are created

‣ An hour passes

If no schema or no data folders are present, refer to the Troubleshooting section in the
NVIDIA DOCA Telemetry Service Guide.

Note: source_id is usually set to the machine hostname. source_tag is a line describing
the collected counters, and it is often set as the provider's name or name of user-
counters.

Reading the binary data can be done from within the DTS container using the following
command:
crictl exec -it <Container ID> /opt/mellanox/collectx/bin/clx_read -s /data/schema /
data/path/to/datafile.bin

The data written locally should be shown in the following format assuming a packet
matching Export Unit 1 from the example has arrived:
{
 "timestamp": 1656427771076130,
 "host_ip": "10.237.69.238",
 "src_ip": "11.7.62.4",
 "dst_ip": "11.7.62.5",
 "data_len": 1152,
 "data_short": "Hello World"
}

http://docs.nvidia.com/doca/sdk/pdf/doca-telemetry-service.pdf

NVIDIA DOCA Flow Inspector Service MLNX-15-060530 _v2.0.2 | 11

Chapter 5. Troubleshooting

Refer to the Troubleshootings section in NVIDIA DOCA Container Deployment Guide and
NVIDIA DOCA Telemetry Service Guide.

Additional notes:

‣ Make sure hugepages are allocated (step 2 under Requirements)

‣ Validate the JSON file and port config

‣ When running both containers, you must first run DOCA Telemetry Service, wait a
few seconds, and then run DOCA Flow Inspector.

http://docs.nvidia.com/doca/sdk/pdf/container-deployment.pdf
http://docs.nvidia.com/doca/sdk/pdf/doca-telemetry-service.pdf

Notice

This document is provided for information purposes only and shall not be regarded as a warranty of a certain functionality, condition, or quality of a product.
NVIDIA Corporation nor any of its direct or indirect subsidiaries and affiliates (collectively: “NVIDIA”) make no representations or warranties, expressed or
implied, as to the accuracy or completeness of the information contained in this document and assume no responsibility for any errors contained herein.
NVIDIA shall have no liability for the consequences or use of such information or for any infringement of patents or other rights of third parties that may
result from its use. This document is not a commitment to develop, release, or deliver any Material (defined below), code, or functionality.

NVIDIA reserves the right to make corrections, modifications, enhancements, improvements, and any other changes to this document, at any time without
notice.

Customer should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the time of order acknowledgement, unless otherwise
agreed in an individual sales agreement signed by authorized representatives of NVIDIA and customer (“Terms of Sale”). NVIDIA hereby expressly objects
to applying any customer general terms and conditions with regards to the purchase of the NVIDIA product referenced in this document. No contractual
obligations are formed either directly or indirectly by this document.

NVIDIA products are not designed, authorized, or warranted to be suitable for use in medical, military, aircraft, space, or life support equipment, nor in
applications where failure or malfunction of the NVIDIA product can reasonably be expected to result in personal injury, death, or property or environmental
damage. NVIDIA accepts no liability for inclusion and/or use of NVIDIA products in such equipment or applications and therefore such inclusion and/or use
is at customer’s own risk.

NVIDIA makes no representation or warranty that products based on this document will be suitable for any specified use. Testing of all parameters of each
product is not necessarily performed by NVIDIA. It is customer’s sole responsibility to evaluate and determine the applicability of any information contained
in this document, ensure the product is suitable and fit for the application planned by customer, and perform the necessary testing for the application in
order to avoid a default of the application or the product. Weaknesses in customer’s product designs may affect the quality and reliability of the NVIDIA
product and may result in additional or different conditions and/or requirements beyond those contained in this document. NVIDIA accepts no liability
related to any default, damage, costs, or problem which may be based on or attributable to: (i) the use of the NVIDIA product in any manner that is contrary
to this document or (ii) customer product designs.

No license, either expressed or implied, is granted under any NVIDIA patent right, copyright, or other NVIDIA intellectual property right under this document.
Information published by NVIDIA regarding third-party products or services does not constitute a license from NVIDIA to use such products or services or
a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property rights
of the third party, or a license from NVIDIA under the patents or other intellectual property rights of NVIDIA.

Reproduction of information in this document is permissible only if approved in advance by NVIDIA in writing, reproduced without alteration and in full
compliance with all applicable export laws and regulations, and accompanied by all associated conditions, limitations, and notices.

THIS DOCUMENT AND ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS
(TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR
OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND
FITNESS FOR A PARTICULAR PURPOSE. TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL NVIDIA BE LIABLE FOR ANY DAMAGES, INCLUDING
WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF
THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF NVIDIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
Notwithstanding any damages that customer might incur for any reason whatsoever, NVIDIA’s aggregate and cumulative liability towards customer for the
products described herein shall be limited in accordance with the Terms of Sale for the product.

Trademarks

NVIDIA, the NVIDIA logo, and Mellanox are trademarks and/or registered trademarks of Mellanox Technologies Ltd. and/or NVIDIA Corporation in the
U.S. and in other countries. The registered trademark Linux® is used pursuant to a sublicense from the Linux Foundation, the exclusive licensee of Linus
Torvalds, owner of the mark on a world¬wide basis. Other company and product names may be trademarks of the respective companies with which they
are associated.

Copyright

© 2023 NVIDIA Corporation & affiliates. All rights reserved.

NVIDIA Corporation | 2788 San Tomas Expressway, Santa Clara, CA 95051
http://www.nvidia.com

http://www.nvidia.com

	Table of Contents
	Introduction
	1.1. Service Flow

	Requirements
	Service Deployment
	Configuration
	4.1. JSON Input
	4.2. Yaml File
	4.3. Verifying Output

	Troubleshooting

