
MLNX-15-060589 _v2.0.2 | May 2023

NVIDIA DOCA DPA All-to-all
Application Guide

Application Guide

NVIDIA DOCA DPA All-to-all Application Guide MLNX-15-060589 _v2.0.2 | ii

Table of Contents

Chapter 1. Introdution..1

Chapter 2. System Design..2

Chapter 3. Application Architecture...3

Chapter 4. DOCA Libraries..4

Chapter 5. Configuration Flow.. 5

Chapter 6. Dependencies..8

Chapter 7. Running the Application... 9

Chapter 8. Arg Parser DOCA Flags...11

Chapter 9. References... 13

NVIDIA DOCA DPA All-to-all Application Guide MLNX-15-060589 _v2.0.2 | 1

Chapter 1. Introdution

This example shows how the MPI all-to-all collective can be accelerated on the DPA. In an
MPI collective, all processes in the same job call the collective routine.

Given a communicator of n ranks, the example performs a collective operation in which
all the processes send and receive the same amount of data from all the processes
(hence all-to-all).

This document describes how to run the all-to-all example using DOCA DPA.

NVIDIA DOCA DPA All-to-all Application Guide MLNX-15-060589 _v2.0.2 | 2

Chapter 2. System Design

All-to-all is a message passing interface (MPI) method. MPI is a standardized and
portable message-passing standard designed to function on parallel computing
architectures. An MPI program is one where several processes run in parallel.

Each process in the diagram divides its local sendbuf into n blocks (4 in this example),
each containing sendcount (4 in this example) elements. Process i sends the k-th block
of its local sendbuf to process k which places the data in the i-th block of its local
recvbuf.

Implementing the all-to-all method using DOCA DPA offloads the copying of the
elements from the srcbuf to the recvbufs to the DPA, and leaves the CPU free to
perform other computations.

NVIDIA DOCA DPA All-to-all Application Guide MLNX-15-060589 _v2.0.2 | 3

Chapter 3. Application Architecture

The following diagram describes the differences between the host-based all-to-all and
DPA all-to-all.

‣ In DPA all-to-all, DPA threads perform the all-to-all and the CPU is free to do other
computations

‣ In host-based all-to-all, the CPU must still perform the all-to-all at some point and is
not completely free for other computations

NVIDIA DOCA DPA All-to-all Application Guide MLNX-15-060589 _v2.0.2 | 4

Chapter 4. DOCA Libraries

This application leverages the following DOCA driver:

‣ DPA library

http://docs.nvidia.com/doca/sdk/pdf/dpa-subsystem-programming-guide.pdf

NVIDIA DOCA DPA All-to-all Application Guide MLNX-15-060589 _v2.0.2 | 5

Chapter 5. Configuration Flow

This section lists the application's configuration flow which includes different FlexIO
functions and wrappers.

 1. Initialize MPI.
MPI_Init(&argc, &argv);

 2. Parse application argument.

 a). Initialize arg parser resources and register DOCA general parameters.
doca_argp_init();

 b). Register the application's parameters.
register_all_to_all_params();

 c). Parse the arguments.
doca_argp_start();

 i. The msgsize parameter is the size of the sendbuf and recvbuf (in bytes). It
must be in multiples of an integer and at least the number of processes times
an integer size.

 ii. The devices_param parameter is the names of the InfiniBand devices to use
(must support DPA). It can include up to two devices names.

 d). Only let the first process (of rank 0) parse the parameters to then broadcast
them to the rest of the processes.

 3. Check and prepare the needed resources for the all_to_all call:

‣ Check the number of processes (maximum is 16).

‣ Check the msgsize. It must be in multiples of integer size and at least the number
of processes times integer size.

‣ Allocate the sendbuf and recvbuf according to msgsize.

 4. Prepare the resources required to perform the all-to-all method using DOCA DPA:

 a). Initialize DOCA DPA context:

 i. Open DOCA DPA device (DOCA device that supports DPA).
open_dpa_device();

 ii. Create DOCA DPA context using the opened device.
doca_dpa_create();

Configuration Flow

NVIDIA DOCA DPA All-to-all Application Guide MLNX-15-060589 _v2.0.2 | 6

 b). Create the required events for the all-to-all: One completion event for the kernel
launch (wait location CPU and update location DPA) and kernel events (wait
location remote and update location DPA) as the number of processes.
create_dpa_a2a_events() {
 doca_dpa_event_create(doca_dpa, DOCA_DPA_EVENT_ACCESS_DPA,
 DOCA_DPA_EVENT_ACCESS_CPU, DOCA_DPA_EVENT_WAIT_DEFAULT, &comp_event, 0);
 for (i = 0; i < resources->num_ranks; i++)
 doca_dpa_event_create(doca_dpa, DOCA_DPA_EVENT_ACCESS_REMOTE,
 DOCA_DPA_EVENT_ACCESS_DPA, DOCA_DPA_EVENT_WAIT_DEFAULT, &(kernel_events[i]),
 0);
}

 c). Create DOCA DPA worker (for the endpoints).
doca_dpa_worker_create();

 d). Prepare DOCA DPA endpoints:

 i. Create DOCA DPA endpoints as the number of processes/ranks.
for (i = 0; i < resources->num_ranks; i++)
 doca_dpa_ep_create();

 ii. Connect the local process' endpoints to the other processes' endpoints.
connect_dpa_a2a_endpoints();

 iii. Export the endpoints to DOCA DPA device endpoints (so they can be used by
the DPA) and copy them to DPA heap memory.
for (int i = 0; i < resources->num_ranks; i++) {
 result = doca_dpa_ep_dev_export();
 doca_dpa_mem_alloc();
 doca_dpa_h2d_memcpy();
}

 e). Prepare the memory required to perform the all-to-all method using DOCA DPA.
This includes creating memory handlers for the sendbuf and recvbuf, getting the
other processes' recvbufs handlers, and copying these memory handlers and their
remote keys and the events' handlers to the DPA heap memory.
prepare_dpa_a2a_memory();

 5. Launch the alltoall_kernel using DOCA DPA kernel launch with all the required
parameters:

 a). Every MPI rank launches a kernel of up to MAX_NUM_THREADS. This example defines
MAX_NUM_THREADS as 16.

 b). Launch alltoall_kernel using kernel_launch.
doca_dpa_kernel_launch();

 c). Using the doca_dpa_dev_put_signal_nb() function, copy the relevant sendbuf
to the correct recvbuf (according to the process' rank) for every OS process.
Remember that multithreading is also used inside of the DPA threads.
for (i = thread_rank; i < num_ranks; i += num_threads)
 doca_dpa_dev_put_signal_nb();

 d). Wait until the alltoall_kernel has finished.
doca_dpa_event_wait_until();

Note: Add an MPI barrier after waiting for the event to make sure that all of the
processes have finished executing the alltoall_kernel.
MPI_Barrier();

Configuration Flow

NVIDIA DOCA DPA All-to-all Application Guide MLNX-15-060589 _v2.0.2 | 7

After the alltoall_kernel is finished, the recvbuf of all the processes now
contain the expected output of the all-to-all method.

 6. Destroy the a2a_resources:

 a). Free all the DOCA DPA memories.
doca_dpa_mem_free();

 b). Unregister all the DOCA DPA host memories.
doca_dpa_mem_unregister();

 c). Destroy all the DOCA DPA endpoints.
doca_dpa_ep_destroy();

 d). Destroy the DOCA DPA worker.
doca_dpa_worker_destroy();

 e). Destroy all the DOCA DPA events.
doca_dpa_event_destroy();

 f). Destroy the DOCA DPA context.
doca_dpa_destroy();

 g). Close the DOCA device.
doca_dev_close();

NVIDIA DOCA DPA All-to-all Application Guide MLNX-15-060589 _v2.0.2 | 8

Chapter 6. Dependencies

‣ BlueField-3 or later

‣ Ubuntu 18.04/20.04/22.04 on the host (x86)

‣ Open MPI version 4.1.5rc2 or greater (included in DOCA installation)

NVIDIA DOCA DPA All-to-all Application Guide MLNX-15-060589 _v2.0.2 | 9

Chapter 7. Running the Application

 1. Refer to the following documents:

‣ NVIDIA DOCA Installation Guide for Linux for details on how to install BlueField-
related software.

‣ NVIDIA DOCA Troubleshooting Guide for any issue you may encounter with the
installation, compilation, or execution of DOCA applications.

‣ NVIDIA DOCA Applications Overview for additional compilation instructions and
development tips of DOCA applications.

 2. The doca_dpa_all_to_all binary is located under /opt/mellanox/doca/
applications/dpa_all_to_all/bin/doca_dpa_all_to_all. To build all the
applications together, run:
cd /opt/mellanox/doca/applications/
meson build
ninja -C build

 3. To build only the dpa_all_to_all application:

 a). Edit the following flags in /opt/mellanox/doca/applications/
meson_options.txt:

‣ Set enable_all_applications to false

‣ Set enable_dpa_all_to_all to true

 b). Run the commands in step 2.

Note: doca_dpa_all_to_all is created under ./build/dpa_all_to_all/src/
host/.

Application usage:
Usage: doca_dpa_all_to_all [DOCA Flags] [Program Flags]
DOCA Flags:
 -h, --help Print a help synopsis
 -v, --version Print program version information
 -l, --log-level Set the log level for the program
 <CRITICAL=20, ERROR=30, WARNING=40, INFO=50, DEBUG=60>

Program Flags:
 -m, --msgsize <Message size> The message size - the size of the sendbuf
 and recvbuf (in bytes). Must be in multiplies of integer size. Default is size
 of one integer times the number of processes.
 -d, --devices <IB device names> IB devices names that supports DPA,
 separated by comma without spaces (max of two devices). If not provided then a
 random IB device will be chosen.

http://docs.nvidia.com/doca/sdk/pdf/installation-guide-for-linux.pdf
http://docs.nvidia.com/doca/sdk/pdf/troubleshooting.pdf
http://docs.nvidia.com/doca/sdk/pdf/applications-overview.pdf

Running the Application

NVIDIA DOCA DPA All-to-all Application Guide MLNX-15-060589 _v2.0.2 | 10

 4. Pre-run setup:

‣ Make sure that MPI is installed in your setup (openmpi is provided as part of the
doca-tools metapackage). Do not forget to update your LD_LIBRARY_PATH and
PATH environment variable to include MPI. For example, if MPI is installed under /
usr/mpi/gcc/openmpi-4.1.5rc2/ then run:
export PATH=/usr/mpi/gcc/openmpi-4.1.5rc2/bin:$PATH
export LD_LIBRARY_PATH=/usr/mpi/gcc/openmpi-4.1.5rc2/lib:$LD_LIBRARY_PATH

 5. CLI example for running the application. Remember, this is an MPI program, so use
mpirun to run the application (with the -np flag to specify the number of processes
to run). The same command works for running the application on the host (x86) and
the BlueField (Arm cores).

‣ The following runs the DPA all-to-all application with 8 processes using the
default message size (the number of processes, which is 8, times the size of 1
integer) with a random InfiniBand device:
mpirun -np 8 /opt/mellanox/doca/applications/dpa_all_to_all/bin/
doca_dpa_all_to_all

‣ The following runs DPA all-to-all application with 8 processes, with 128 bytes as
the message size and with mlx5_0 and mlx5_1 as the IB devices:
mpirun-np 8 /opt/mellanox/doca/applications/dpa_all_to_all/bin/
doca_dpa_all_to_all -m 128 -d "mlx5_0,mlx5_1"

Note: The application supports running with a maximum of 16 processes. If you try
to run with more processes, then an error is printed and the application exits.

 6. To run doca_all_to_all_dpa using a JSON file:
doca_dpa_all_to_all --json [json_file]

For example:
cd /opt/mellanox/doca/applications/dpa_all_to_all/bin
./doca_dpa_all_to_all --json ./dpa_all_to_all_params.json

NVIDIA DOCA DPA All-to-all Application Guide MLNX-15-060589 _v2.0.2 | 11

Chapter 8. Arg Parser DOCA Flags

Refer to NVIDIA DOCA Arg Parser Programming Guide for more information.

Flag Type Short Flag
Long Flag/
JSON Key Description JSON Content

l log-level Sets the log
level for the
application:

‣ CRITICAL=20

‣ ERROR=30

‣ WARNING=40

‣ INFO=50

‣ DEBUG=60

"log-level":
 60

v version Prints program
version
information

N/A

General flags

h help Prints a help
synopsis

N/A

Program flags m msgsize The message
size. The size
of the sendbuf
and recvbuf (in
bytes). Must be
in multiples of
an integer. The
default is size of
1 integer times
the number of
processes.

"msgsize": -1

Note:
The value
-1 is a
placeholder
to use
the
default
size,
which
is only
known at
run time
(because
it
depends
on the
number

http://docs.nvidia.com/doca/sdk/pdf/arg-parser-programming-guide.pdf

Arg Parser DOCA Flags

NVIDIA DOCA DPA All-to-all Application Guide MLNX-15-060589 _v2.0.2 | 12

Flag Type Short Flag
Long Flag/
JSON Key Description JSON Content

of
processes).

d device InfiniBand
devices names
that support DPA,
separated by
comma without
spaces (max of
two devices).
If NOT_SET
then a random
InfiniBand device
is chosen.

"devices": "NOT_SET"

NVIDIA DOCA DPA All-to-all Application Guide MLNX-15-060589 _v2.0.2 | 13

Chapter 9. References

‣ /opt/mellanox/doca/applications/all_to_all_dpa/src

‣ /opt/mellanox/doca/applications/all_to_all_dpa/bin/
all_to_all_dpa_params.json

Notice

This document is provided for information purposes only and shall not be regarded as a warranty of a certain functionality, condition, or quality of a product.
NVIDIA Corporation nor any of its direct or indirect subsidiaries and affiliates (collectively: “NVIDIA”) make no representations or warranties, expressed or
implied, as to the accuracy or completeness of the information contained in this document and assume no responsibility for any errors contained herein.
NVIDIA shall have no liability for the consequences or use of such information or for any infringement of patents or other rights of third parties that may
result from its use. This document is not a commitment to develop, release, or deliver any Material (defined below), code, or functionality.

NVIDIA reserves the right to make corrections, modifications, enhancements, improvements, and any other changes to this document, at any time without
notice.

Customer should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the time of order acknowledgement, unless otherwise
agreed in an individual sales agreement signed by authorized representatives of NVIDIA and customer (“Terms of Sale”). NVIDIA hereby expressly objects
to applying any customer general terms and conditions with regards to the purchase of the NVIDIA product referenced in this document. No contractual
obligations are formed either directly or indirectly by this document.

NVIDIA products are not designed, authorized, or warranted to be suitable for use in medical, military, aircraft, space, or life support equipment, nor in
applications where failure or malfunction of the NVIDIA product can reasonably be expected to result in personal injury, death, or property or environmental
damage. NVIDIA accepts no liability for inclusion and/or use of NVIDIA products in such equipment or applications and therefore such inclusion and/or use
is at customer’s own risk.

NVIDIA makes no representation or warranty that products based on this document will be suitable for any specified use. Testing of all parameters of each
product is not necessarily performed by NVIDIA. It is customer’s sole responsibility to evaluate and determine the applicability of any information contained
in this document, ensure the product is suitable and fit for the application planned by customer, and perform the necessary testing for the application in
order to avoid a default of the application or the product. Weaknesses in customer’s product designs may affect the quality and reliability of the NVIDIA
product and may result in additional or different conditions and/or requirements beyond those contained in this document. NVIDIA accepts no liability
related to any default, damage, costs, or problem which may be based on or attributable to: (i) the use of the NVIDIA product in any manner that is contrary
to this document or (ii) customer product designs.

No license, either expressed or implied, is granted under any NVIDIA patent right, copyright, or other NVIDIA intellectual property right under this document.
Information published by NVIDIA regarding third-party products or services does not constitute a license from NVIDIA to use such products or services or
a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property rights
of the third party, or a license from NVIDIA under the patents or other intellectual property rights of NVIDIA.

Reproduction of information in this document is permissible only if approved in advance by NVIDIA in writing, reproduced without alteration and in full
compliance with all applicable export laws and regulations, and accompanied by all associated conditions, limitations, and notices.

THIS DOCUMENT AND ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS
(TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR
OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND
FITNESS FOR A PARTICULAR PURPOSE. TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL NVIDIA BE LIABLE FOR ANY DAMAGES, INCLUDING
WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF
THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF NVIDIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
Notwithstanding any damages that customer might incur for any reason whatsoever, NVIDIA’s aggregate and cumulative liability towards customer for the
products described herein shall be limited in accordance with the Terms of Sale for the product.

Trademarks

NVIDIA, the NVIDIA logo, and Mellanox are trademarks and/or registered trademarks of Mellanox Technologies Ltd. and/or NVIDIA Corporation in the
U.S. and in other countries. The registered trademark Linux® is used pursuant to a sublicense from the Linux Foundation, the exclusive licensee of Linus
Torvalds, owner of the mark on a world¬wide basis. Other company and product names may be trademarks of the respective companies with which they
are associated.

Copyright

© 2023 NVIDIA Corporation & affiliates. All rights reserved.

NVIDIA Corporation | 2788 San Tomas Expressway, Santa Clara, CA 95051
http://www.nvidia.com

http://www.nvidia.com

	Table of Contents
	Introdution
	System Design
	Application Architecture
	DOCA Libraries
	Configuration Flow
	Dependencies
	Running the Application
	Arg Parser DOCA Flags
	References

