
MLNX-15-060467 _v2.0.2 | May 2023

NVIDIA DOCA East-West Overlay
Encryption

Application

NVIDIA DOCA East-West Overlay Encryption MLNX-15-060467 _v2.0.2 | ii

Table of Contents

Chapter 1. Introduction..1

Chapter 2. System Design..2

Chapter 3. Application Architecture...3

Chapter 4. DOCA Libraries..4

Chapter 5. Configuration Flow.. 5
5.1. Enabling IPsec Full Offload..5

5.2. Configuring OVS IPsec...6

5.2.1. Authentication Methods...8

5.2.1.1. Pre-shared Key..8

5.2.1.2. Self-signed Certificate...9

5.2.1.3. CA-signed Certificate.. 10

5.3. Ensuring IPsec is Configured... 11

5.4. Configuring OVS IPsec Using strongSwan Manually..12

5.5. swanctl.conf Files.. 13

Chapter 6. Running Application...16
6.1. Running strongSwan Example...16

6.1.1. Script Parameters... 16

6.1.2. Using JSON Parameters File.. 19

6.1.3. Passing Parameters on Command Line...19

6.1.3.1. Passing Parameters for Pre-shared Key Authentication Method.......................19

6.1.3.2. Passing Parameters for Self-signed Certificates Authentication Method..... 20

6.1.3.3. Passing Parameters for CA Certificates Authentication Method....................... 20

6.2. Building strongSwan.. 21

6.3. Reverting IPsec Configuration... 21

Chapter 7. References... 22

NVIDIA DOCA East-West Overlay Encryption MLNX-15-060467 _v2.0.2 | 1

Chapter 1. Introduction

IPsec is used to set up encrypted connections between different devices. It helps keep
data sent over public networks secure. IPsec is often used to set up VPNs, and it works
by encrypting IP packets as well as authenticating the packets' originator.

IPsec contains the following main modules:

‣ Key exchange – a key is a string of random bytes that can be used for encryption
and decryption of messages. IPsec sets up keys with a key exchange between the
connected devices, so that each device can decrypt the other device's messages.

‣ Authentication – IPsec provides authentication for each packet which ensures that
they come from a trusted source.

‣ Encryption – IPsec encrypts the payloads within each packet and possibly, based on
the transport mode, the packet's IP header.

‣ Decryption – at the other end of the communication, packets are decrypted by the
IPsec supported node.

IPsec supports two types of headers:

‣ Authentication header (AH) – AH protocol ensures that packets are from a trusted
source. AH does not provide any encryption.

‣ Encapsulating security protocol (ESP) – ESP encrypts the payload for each packet as
well as the IP header depending on the transport mode. ESP adds its own header and
a trailer to each data packet.

IPsec support two types of transport mode:

‣ IPsec tunnel mode – used between two network nodes, each acting as tunnel
initiator/terminator on a public network. In this mode, the original IP header and
payload are both encrypted. Since the IP header is encrypted, an IP tunnel is added
for network forwarding. At each end of the tunnel, the routers decrypt the IP headers
to route the packets to their destinations.

‣ Transport mode – the payload of each packet is encrypted, but the original IP header
is not. Intermediary network nodes are therefore able to view the destination of each
packet and route the packet, unless a separate tunneling protocol is used.

strongSwan is an open-source IPsec-based VPN solution. For more information, please
refer to strongSwan documentation.

https://wiki.strongswan.org/projects/strongswan/wiki/IntroductiontostrongSwan

NVIDIA DOCA East-West Overlay Encryption MLNX-15-060467 _v2.0.2 | 2

Chapter 2. System Design

IPsec full offload offloads both IPsec crypto (encrypt/decrypt) and IPsec encapsulation
to the hardware. IPsec full offload is configured on the Arm via the uplink netdev.

The deployment model allows the IPsec offload to be transparent to the host with the
benefits of securing legacy workloads (no dependency on host SW stack) and to zero
CPU utilization on host.

IPsec full offload configuration works with and is transparent to OVS offload. This means
all packets from OVS offload are encrypted by IPsec rules.

The following figure illustrates the interaction between IPsec full offload and OVS VXLAN
offload.

Note: OVS offload and IPsec IPv6 do not work together.

NVIDIA DOCA East-West Overlay Encryption MLNX-15-060467 _v2.0.2 | 3

Chapter 3. Application Architecture

 1. Configure strongSwan IPsec offload using swanctl.conf configuration file.
 2. Traffic is sent from the host through BlueField.
 3. Using OVS, the packets are encapsulated on ingress using tunnel protocols (VXLAN

for example) to match IPsec configuration by strongSwan.
 4. Set by strongSwan configuration file, traffic will be encrypted using the hardware

offload.
 5. Egress flow is decryption first, decapsulation of the tunnel header and forward to the

relevant physical function.

NVIDIA DOCA East-West Overlay Encryption MLNX-15-060467 _v2.0.2 | 4

Chapter 4. DOCA Libraries

N/A

NVIDIA DOCA East-West Overlay Encryption MLNX-15-060467 _v2.0.2 | 5

Chapter 5. Configuration Flow

The following section provides information on manually configuring IPsec full offload in
general and on using OVS IPsec with strongSwan specifically.

Note: There is a script, east_west_overlay_encryption.sh, which is elaborated on in
section Running Application which performs the steps in this section automatically.

If you are working directly with the ip xfrm tool, use /opt/mellanox/iproute2/sbin/ip
to benefit from IPsec full offload support.

There are two parts in the configuration flow:

 1. Enabling IPsec full offload mode.
 2. Configuring the IPsec OVS bridge using one of three modes of authentication.

Note: An alternative for step two is configuring swanctl.conf files (configuration files for
strongSwan) manually and using strongSwan directly instead of using IPsec OVS (which
automatically generates swanctl.conf files) as explained in Configuring OVS IPsec Using
strongSwan Manually

5.1. Enabling IPsec Full Offload
This section explicitly enables IPsec full offload on the Arm cores before setting up
offload-aware IPSec tunnels.

Note: There is a script, east_west_overlay_encryption.sh, which is elaborated on in
section Running Application which performs the steps in this section automatically.

Explicitly enable IPsec full offload on the Arm cores:

 1. Disable mlx-regex. Run:
systemctl stop mlx-regex

 2. Set IPSEC_FULL_OFFLOAD="yes" in /etc/mellanox/mlnx-bf.conf.

Note: If IPSEC_FULL_OFFLOAD does not appear in /etc/mellanox/mlnx-bf.conf
then you are probably using an old version of the BlueField image. Check the way

Configuration Flow

NVIDIA DOCA East-West Overlay Encryption MLNX-15-060467 _v2.0.2 | 6

of enabling IPsec full offload in a previous DOCA versions in the NVIDIA DOCA
Documentation Archives.

 3. Restart IB driver (rebooting also works). Run:
/etc/init.d/openibd restart

 4. Re-enable mlx-regex. Run:
systemctl restart mlx-regex

Note: To check if IPsec full offload is indeed enabled, verify that /sys/class/net/*/
compat/devlink/ipsec_mode is full. If not (i.e., none), then something is wrong. Retry
this procedure and try rebooting instead of restarting the IB driver.

Note: To revert IPsec full offload mode, redo the procedure from step 1, only
difference is to set IPSEC_FULL_OFFLOAD="no" in /etc/mellanox/mlnx-bf.conf.

5.2. Configuring OVS IPsec
Note: Before proceeding with this section, make sure to follow the procedure in Enabling
IPsec Full Offload for both DPUs.

This section configures OVS IPsec VXLAN tunnel which automatically generates the
swanctl.conf files and runs strongSwan (the IPsec daemon). The following figure
illustrates an example with two BlueField DPUs, Left and Right, operating with a secured
VXLAN channel.

Two BlueField DPUs are required to build an OVS IPsec tunnel between the two hosts,
Right and Left.

http://docs.nvidia.com/doca/sdk/pdf/documentation-archives.pdf
http://docs.nvidia.com/doca/sdk/pdf/documentation-archives.pdf

Configuration Flow

NVIDIA DOCA East-West Overlay Encryption MLNX-15-060467 _v2.0.2 | 7

The OVS IPsec tunnel configures an unaware IPsec connection between the two hosts'
InfiniBand devices. For the sake of this example, the host's InfiniBand network device is
HOST_PF, and the DPU's host representor is PF_REP and the DPU's physical function PF.

This example sets up the following variables on both Arms:
host_ip1=1.1.1.1
host_ip2=1.1.1.2
HOST_PF=ens7np0
ip1=192.168.50.1
ip2=192.168.50.2
PF=p0
PF_REP=pf0hpf

Note: The name of the HOST_PF could be different in your machine. You may verify this by
running the following on the host:
ibdev2netdev
mlx5_0 port 1 ==> ens7np0 (Down)
mlx5_1 port 1 ==> ens8np1 (Down)
This example uses the first InfiniBand's (mlx5_0) network device which is ens7np0.

 1. Configure IP addresses for the HOST_PFs of both hosts (x86):

 a). On host_1:
ifconfig $HOST_PF $host_ip1/24 up

 b). On host_2:
ifconfig $HOST_PF $host_ip2/24 up

Note: Step 1 is the only command that is performed on the host, the rest of the
commands are performed on the Arm (DPU) side.

 2. Configure IP addresses for the PFs of both Arms:

 a). On Arm_1:
ifconfig $PF $ip1/24 up

 b). On Arm_2:
ifconfig $PF $ip2/24 up

 3. Enable TC offloading for the PF. Run the following on both Arm_1 and Arm_2:
ethtool -K $PF hw-tc-offload on

 4. Disable host PF as the port owner from Arm. Run the following on both Arm_1 and
Arm_2:
mlxprivhost -d /dev/mst/mt${pciconf} --disable_port_owner r

Note: To get ${pciconf}, run the following on the Arm:
ls --color=never /dev/mst/ | grep --color=never '^m.*f0$' | cut -c 3-

For example:
mlxprivhost -d /dev/mst/mt41686_pciconf0 --disable_port_owner r

 5. Start Open vSwitch. If your operating system is Ubuntu, run the following on both
Arm_1 and Arm_2:
service openvswitch-switch start

If your operating system is CentOS, run the following on both Arm_1 and Arm_2:
service openvswitch restart

Configuration Flow

NVIDIA DOCA East-West Overlay Encryption MLNX-15-060467 _v2.0.2 | 8

 6. Start OVS IPsec service. Run the following on both Arm_1 and Arm_2:
systemctl start openvswitch-ipsec.service

 7. Set up OVS bridges in both DPUs. Run the following on both Arm_1 and Arm_2:
ovs-vsctl add-br vxlan-br
ovs-vsctl add-port ovs-br $PF_REP
ovs-vsctl set Open_vSwitch . other_config:hw-offload=true

Note: Configuring other_config:hw-offload=true sets IPsec full offload. Setting it
to false sets software IPsec. Make sure that IPsec devlink's mode is set back to none
for software IPsec. This is done by reverting the configurations in Enabling IPsec Full
Offload.

Note: The MTU of the tunnel interface (PF) should be at least 50 bytes larger than the
MTU of the endpoints of the tunnels above (PF_REP) to account for the size of the
VXLAN tunnel header. For example, if the MTU of PF_REP is 1500 then the MTU of PF
should at least be 1550. To configure the MTU of the PF:
ifconfig $PF mtu $PF_MTU up

 8. Set up IPsec tunnel on the OVS bridge.

Three authentication methods are possible. Select your preferred method and follow
the steps relevant to it. Note that the last two authentication methods require you to
create certificates (self-signed or certificate authority certificates).

Note: After the IPsec tunnel is set up using one of the three methods of
authentication, strongSwan configuration is done automatically and the swanctl.conf
files are generated and strongSwan runs automatically.

5.2.1. Authentication Methods
The following subsections detail the possible authentication methods for setting up the
IPsec tunnel on the OVS bridge.

5.2.1.1. Pre-shared Key
This method configures OVS IPsec using a pre-shared key. You must select a pre-shared
key, for example:
psk=swordfish

 1. On Arm_1, run:
ovs-vsctl add-port vxlan-br tun -- \
 set interface tun type=vxlan \
 options:local_ip=$ip1 \
 options:remote_ip=$ip2 \
 options:key=100 \
 options:dst_port=4789 \
 options:psk=$psk

 2. On Arm_2, run:
ovs-vsctl add-port vxlan-br tun -- \
 set interface tun type=vxlan \
 options:local_ip=$ip2 \
 options:remote_ip=$ip1 \
 options:key=100 \

Configuration Flow

NVIDIA DOCA East-West Overlay Encryption MLNX-15-060467 _v2.0.2 | 9

 options:dst_port=4789\
 options:psk=$psk

5.2.1.2. Self-signed Certificate
This method configures OVS IPsec using self-signed certificates. You must generate self-
signed certificates and keys. This example demonstrates how to generate self-signed
certificates using ovs-pki but you may generate them in any other way while skipping
step 1.

 1. Generate self-signed certificates using ovs-pki:

 a). On Arm_1, run:
ovs-pki req -u host_1
ovs-pki self-sign host_1

After running this code you should have host_1-cert.pem and host_1-
privkey.pem.

 b). On Arm_2, run:
ovs-pki req -u host_2
ovs-pki self-sign host_2

After running this code you should have host_2-cert.pem and host_2-
privkey.pem.

 2. Configure the certificates and private keys:

 a). Copy the certificate of Arm_1 to Arm_2, and the certificate of Arm_2 to Arm_1.
 b). On each machine, move both host_1-privkey.pem and host_2-cert.pem to /etc/

swanctl/x509/ if on Ubuntu, or /etc/strongswan/swanctl/x509/ if on CentOS.
 c). On each machine, move the local private key (host_1-privkey.pem on Arm_1 and

host_2-privkey.pem on Arm_2) to /etc/swanctl/private if on Ubuntu, or /etc/
strongswan/swanctl/private if on CentOS.

 3. Set up OVS other_config on both sides.

 a). On Arm_1:
ovs-vsctl set Open_vSwitch . other_config:certificate=/etc/swanctl/x509/
host_1-cert.pem \
 other_config:private_key=/etc/swanctl/private/host_1-privkey.pem

 b). On Arm_2:
ovs-vsctl set Open_vSwitch . other_config:certificate=/etc/swanctl/x509/
host_2-cert.pem \
 other_config:private_key=/etc/swanctl/private/host_2-privkey.pem

 4. Set up the VXLAN tunnel:

 a). On Arm_1:
ovs-vsctl add-port vxlan-br vxlanp0 -- set interface vxlanp0 type=vxlan
 options:local_ip=$ip1 \
 options:remote_ip=$ip2 options:key=100 options:dst_port=4789 \
 options:remote_cert=/etc/swanctl/x509/host_2-cert.pem
service openvswitch-switch restart

 b). On Arm_2:
ovs-vsctl add-port vxlan-br vxlanp0 -- set interface vxlanp0 type=vxlan
 options:local_ip=$ip2 \
 options:remote_ip=$ip1 options:key=100 options:dst_port=4789 \
 options:remote_cert=/etc/swanctl/x509/host_1-cert.pem

Configuration Flow

NVIDIA DOCA East-West Overlay Encryption MLNX-15-060467 _v2.0.2 | 10

service openvswitch-switch restart

Note: In steps 3 and 4, if you are in CentOS you must change the path of the
certificates to /etc/strongswan/swanctl/x509/ and the path of the private keys to /
etc/strongswan/swanctl/private.

5.2.1.3. CA-signed Certificate
This method configures OVS IPsec using self-signed certificates. You must generate self-
signed certificates and keys. This example demonstrates how to generate self-signed
certificates using ovs-pki but you may generate them in any other way while skipping
step 1.

 1. Generate CA-signed certificates using ovs-pki. For this method, all the certificates
and the requests must be in the same directory during the certificate generating and
signing. This example refers to this directory as certsworkspace.

 a). On Arm_1, run:
ovs-pki init --force
cp /var/lib/openvswitch/pki/controllerca/cacert.pem <path_to>/certsworkspace
cd <path_to>/certsworkspace
ovs-pki req -u host_1
ovs-pki sign host1 switch

After running this code, you should have host_1-cert.pem, host_1-privkey.pem,
and cacert.pm in the certsworkspace folder.

 b). On Arm_2, run:
ovs-pki init --force
cp /var/lib/openvswitch/pki/controllerca/cacert.pem <path_to>/certsworkspace
cd <path_to>/certsworkspace
ovs-pki req -u host_2
ovs-pki sign host_2 switch

After running this code, you should have host_2-cert.pem, host_2-privkey.pem,
and cacert.pm in the certsworkspace folder.

 2. Configure the certificates and private keys:

 a). Copy the certificate of Arm_1 to Arm_2 and the certificate of Arm_2 to Arm_1.
 b). On each machine, move both host_1-privkey.pem and host_2-cert.pem to /etc/

swanctl/x509/ if on Ubuntu, or /etc/strongswan/swanctl/x509/ if on CentOS.
 c). On each machine, move the local private key (host_1-privkey.pem if on Arm_1

and host_2-privkey.pem if on Arm_2) to /etc/swanctl/private if on Ubuntu, or /
etc/strongswan/swanctl/private if on CentOS.

 d). On each machine, copy cacert.pem to the x509ca directory under /etc/swanctl/
x509ca/ if on Ubuntu, or /etc/strongswan/swanctl/x509ca/ if on CentOS.

 3. Set up OVS other_config on both sides.

 a). On Arm_1:
ovs-vsctl set Open_vSwitch . \
 other_config:certificate=/etc/strongswan/swanctl/x509/host_1.pem \
 other_config:private_key=/etc/strongswan/swanctl/private/host_1-
privkey.pem \
 other_config:ca_cert=/etc/strongswan/swanctl/x509ca/cacert.pem

Configuration Flow

NVIDIA DOCA East-West Overlay Encryption MLNX-15-060467 _v2.0.2 | 11

 b). On Arm_2:
ovs-vsctl set Open_vSwitch . \
 other_config:certificate=/etc/strongswan/swanctl/x509/host_2.pem \
 other_config:private_key=/etc/strongswan/swanctl/private/host_2-
privkey.pem \
 other_config:ca_cert=/etc/strongswan/swanctl/x509ca/cacert.pem

 4. Set up the tunnel:

 a). On Arm_1:
ovs-vsctl add-port vxlan-br vxlanp0 -- set interface vxlanp0 type=vxlan
 options:local_ip=$ip1 \
options:remote_ip=$ip2 options:key=100 options:dst_port=4789 \
 options:remote_name=host_2
service openvswitch-switch restart

 b). On Arm_2:
ovs-vsctl add-port vxlan-br vxlanp0 -- set interface vxlanp0 type=vxlan
 options:local_ip=$ip2 \
options:remote_ip=$ip1 options:key=100 options:dst_port=4789 \
 options:remote_name=host_1
service openvswitch-switch restart

Note: In steps 3 and 4, if you are in CenOS you must change the path of the
certificates to /etc/strongswan/swanctl/x509/, the path of the CA certificate
to /etc/strongswan/swanctl/x509ca/, and the path of the private keys to /etc/
strongswan/swanctl/private/.

5.3. Ensuring IPsec is Configured
Using /opt/mellanox/iproute2/sbin/ip xfrm state show, you should be able to see
4 IPsec states for the IPsec connection you configured with the keyword in mode full
meaning which means that you are in IPsec full HW offload mode.

For example, after configuring IPsec using pre-shared key method, you would get the
following on Arm_1:
 # /opt/mellanox/iproute2/sbin/ip xfrm state show
src 192.168.50.1 dst 192.168.50.2
 proto esp spi 0xcc8bf8ad reqid 1 mode transport
 replay-window 0 flag esn
 aead rfc4106(gcm(aes))
 0x9f45cc4577e70c4e077bcc0c1473a782143e7ad199f58566519639d03b593b8996383f11 128
 anti-replay esn context:
 seq-hi 0x0, seq 0x0, oseq-hi 0x0, oseq 0x0
 replay_window 1, bitmap-length 1
 00000000
 crypto offload parameters: dev p0 dir out mode full
 sel src 192.168.50.1/32 dst 192.168.50.2/32 proto udp sport 4789
src 192.168.50.2 dst 192.168.50.1
 proto esp spi 0xce8bf4b6 reqid 1 mode transport
 replay-window 0 flag esn
 aead rfc4106(gcm(aes))
 0xf2d0e335d9a64ef6e385a630a32b0e43bb52f581290cd34bbb8f7592d54f11657ed0258e 128
 anti-replay esn context:
 seq-hi 0x0, seq 0x0, oseq-hi 0x0, oseq 0x0
 replay_window 32, bitmap-length 1
 00000000
 crypto offload parameters: dev p0 dir in mode full
 sel src 192.168.50.2/32 dst 192.168.50.1/32 proto udp dport 4789
src 192.168.50.1 dst 192.168.50.2

Configuration Flow

NVIDIA DOCA East-West Overlay Encryption MLNX-15-060467 _v2.0.2 | 12

 proto esp spi 0xcb600a84 reqid 2 mode transport
 replay-window 0 flag esn
 aead rfc4106(gcm(aes))
 0x7fb26035299bcc9b973abea5d581acfbcf87cbf0bd053b745c4d95c62311f934010973f6 128
 anti-replay esn context:
 seq-hi 0x0, seq 0x0, oseq-hi 0x0, oseq 0x0
 replay_window 1, bitmap-length 1
 00000000
 crypto offload parameters: dev p0 dir out mode full
 sel src 192.168.50.1/32 dst 192.168.50.2/32 proto udp dport 4789
src 192.168.50.2 dst 192.168.50.1
 proto esp spi 0xc137d5a0 reqid 2 mode transport
 replay-window 0 flag esn
 aead rfc4106(gcm(aes))
 0x28e3d12ad4e24aa9d9de9459de8ef8bb4379e8e12faac0054c5b629b6aa50fdeda8e4574 128
 anti-replay esn context:
 seq-hi 0x0, seq 0x0, oseq-hi 0x0, oseq 0x0
 replay_window 32, bitmap-length 1
 00000000
 crypto offload parameters: dev p0 dir in mode full
 sel src 192.168.50.2/32 dst 192.168.50.1/32 proto udp sport 4789

After insuring that the IPsec connection is configured, you can send encrypted traffic
between host_1 and host_2 using the HOST_PFs IP addresses.

5.4. Configuring OVS IPsec Using
strongSwan Manually

This section configures an OVS VXLAN tunnel which then uses swanctl.conf files and
runs strongSwan (the IPsec daemon) manually.

Note: Before proceeding with this section, make sure to follow the procedure in Enabling
IPsec Full Offload for both DPUs.

 1. Build a VXLAN tunnel over OVS and connect the PF representor to the same OVS
bridge.

 a). On Arm_1:
ovs-vsctl add-br vxlan-br
ovs-vsctl add-port vxlan-br PF_REP
ovs-vsctl add-port vxlan-br vxlan11 -- set interface vxlan11 type=vxlan
 options:local_ip=$ip1 \
 options:remote_ip=$ip2 options:key=100 options:dst_port=4789 \
ovs-vsctl set Open_vSwitch . other_config:hw-offload=true

 b). On Arm_2:
ovs-vsctl add-br vxlan-br
ovs-vsctl add-port vxlan-br PF_REP
ovs-vsctl add-port vxlan-br vxlan11 -- set interface vxlan11 type=vxlan
 options:local_ip=$ip2 \
 options:remote_ip=$ip1 options:key=100 options:dst_port=4789 \
ovs-vsctl set Open_vSwitch . other_config:hw-offload=true

 2. If your operating system is Ubuntu, run on both Arm_1 and Arm_2:
service openvswitch-switch start

If your operating system is CentOS, run:
service openvswitch restart

Configuration Flow

NVIDIA DOCA East-West Overlay Encryption MLNX-15-060467 _v2.0.2 | 13

 3. Enable TC offloading for the PF. Run on both Arm_1 and Arm_2:
ethtool -K $PF hw-tc-offload on

 4. Disable host PF as the port owner from Arm. Run on both Arm_1 and Arm_2:
mlxprivhost -d /dev/mst/mt${pciconf} --disable_port_owner r

Note: To get ${pciconf}, run the following on the DPU:
ls --color=never /dev/mst/ | grep --color=never '^m.*f0$' | cut -c 3-

For example:
mlxprivhost -d /dev/mst/mt41686_pciconf0 --disable_port_owner r

 5. Configure theswanctl.conf files for each machine. See section swanctl.conf Files.

Note: Each machine should have exactly one .swanctl.conf file in /etc/swanctl/
conf.d/.

 6. Load the swanctl.conf files and initialize strongSwan. Run:

 a). On the Arm_2, run:
systemctl restart strongswan-starter.service
swanctl --load-all

 b). On the Arm_1, run:
systemctl restart strongswan-starter.service
swanctl --load-all
swanctl -i --child bf

Now the IPsec connection should be established.

5.5. swanctl.conf Files
strongSwan configures IPSec HW full offload using a new value added to its
configuration file swanctl.conf. The file should be placed under sysconfdir which by
default can be found at /etc/swanctl/swanctl.conf.

The terms Left (BFL) and Right (BFR), in reference to the illustration under Application
Architecture, are used to identify the two nodes (or machines) that communicate.

Note: Either side (BFL or BFR) can fulfill either role (initiator or receiver).

In this example, 192.168.50.1 is used for the left PF uplink and 192.168.50.2 for the right
PF uplink.
connections {
 BFL-BFR {
 local_addrs = 192.168.50.1
 remote_addrs = 192.168.50.2

 local {
 auth = psk
 id = host1
 }
 remote {
 auth = psk
 id = host2
 }

Configuration Flow

NVIDIA DOCA East-West Overlay Encryption MLNX-15-060467 _v2.0.2 | 14

 children {
 bf {
 local_ts = 192.168.50.1/24 [udp/4789]
 remote_ts = 192.168.50.2/24 [udp/4789]
 esp_proposals = aes128gcm128-x25519
 mode = transport
 policies_fwd_out = yes
 hw_offload = full
 }
 }
 version = 2
 mobike = no
 reauth_time = 0
 proposals = aes128-sha256-x25519
 }
}

secrets {
 ike-BF {
 id-host1 = host1
 id-host2 = host2
 secret = 0sv+NkxY9LLZvwj4qCC2o/gGrWDF2d21jL
 }
 }

The BFB installation will place two example swanctl.conf files for BFL and BFR
(BFL.swanctl.conf and BFR.swanctl.conf respectively) in the strongSwan conf.d
directory. Each node should have only one swanctl.conf file in its strongSwan conf.d
directory.

Note that:

‣ "hw_offload = full" is responsible for configuring IPSec HW full offload

‣ Full offload support has been added to the existing hw_offload field and preserves
backward compatibility.

For your reference:

Value Description

no Do not configure HW offload, fail if not
supported

yes Configure crypto HW offload if supported by
the kernel, fail if not supported (Existing)

auto Configure crypto HW offload if supported by
the kernel, do not fail (Existing)

full Configure full HW offload if supported by the
kernel, fail if not supported (New)

‣ Whenever the value of hw_offload is changed, strongSwan configuration must be
reloaded.

‣ Switching to crypto HW offload requires setting up devlink/ipsec_mode to none
beforehand.

‣ Switching to full HW offload requires setting up devlink/ipsec_mode to full
beforehand.

‣ [udp/4789] is crucial for instructing strongSwan to IPSec only VXLAN
communication.

Configuration Flow

NVIDIA DOCA East-West Overlay Encryption MLNX-15-060467 _v2.0.2 | 15

‣ Full HW offload can only be done on what is streamed over VXLAN.

Mind the following limitations:

Fields Limitation

reauth_time Ignored if set

rekey_time Do not use. Ignored if set.

rekey_bytes Do not use. Not supported and will fail if it is
set.

rekey_packets Use for rekeying

NVIDIA DOCA East-West Overlay Encryption MLNX-15-060467 _v2.0.2 | 16

Chapter 6. Running Application

Refer to the following documents:

‣ NVIDIA DOCA Installation Guide for Linux for details on how to install BlueField-
related software.

‣ NVIDIA DOCA Troubleshooting Guide for any issue you may encounter with the
installation, compilation, or execution of DOCA applications.

6.1. Running strongSwan Example
Notes:

‣ IPsec daemons are started by systemd strongswan-starter.service

‣ Use systemctl [start | stop | restart] to control IPsec daemons through
strongswan-starter.service. For example, to restart, run:
systemctl restart strongswan-starter.service

This command effectively does the same thing as ipsec restart.

Note: Do not use the ipsec script (located under /usr/sbin/ipsec) to restart/stop/
start the IPsec connection.

This subsection explains how to configure and set an IPsec connection using the script.
To configure the IPsec connection, you need two DPUs, referred to as the initiator and
receiver machines. There are no differences between the two machines except that the
initiator is the one that initiates the connection between the two (and should run the
script after the receiver).

The script is located under /opt/mellanox/doca/applications/
east_west_overlay_encryption/bin/east_west_overlay_encryption.sh.

6.1.1. Script Parameters
Parameter Description Valid Values Use When Notes

side The side of the
connection
(receiver or
initiator).

‣ r|receiver

‣ i|intitiator

Always This parameter
must be always
passed on the
command line

http://docs.nvidia.com/doca/sdk/pdf/installation-guide-for-linux.pdf
http://docs.nvidia.com/doca/sdk/pdf/troubleshooting.pdf

Running Application

NVIDIA DOCA East-West Overlay Encryption MLNX-15-060467 _v2.0.2 | 17

Parameter Description Valid Values Use When Notes
and cannot be
passed in the
JSON parameter
file.

j|json The JSON
parameters file
full path.

JSON file path,
written according
to the template
demonstrated
in the following
file: /opt/
mellanox/doca/
applications/
east_west_overlay_encryption/
bin/
east_west_overlay_encryption_params.json.

To pass the
parameters as a
JSON file.

When running
the script with
JSON file, you
cannot pass on
the command line
other parameters
than the side
and the JSON file.

initiator_ip_addrThe IP address
of the initiator
machine's port
interface for the
IPsec connection.

A valid IP address,
ranging from
1.1.1.1 to
255.255.255.255.

Always In the JSON file it
is set by default
to 192.168.50.1

receiver_ip_addr The IP address
of the receiver
machine's port
interface for the
IPsec connection.

A valid IP address,
ranging from
1.1.1.1 to
255.255.255.255.

Always In the JSON file it
is set by default
to 192.168.50.2

port_num The number of
the port interface
(p0/p1) for the
IPsec connection.

0 or 1. Always In the JSON file it
is set by default
to 0

auth_method the
authentication
method of IPsec.
can be psk (pre-
shared key),
ssc (self-signed
certificate) or
ca (CA-signed
certificate). Set
by default to psk.

Can be psk (pre-
shared key),
ssc (self-signed
certificate) or
ca (CA-signed
certificate).

Always In the JSON file it
is set by default
to psk.

preshared_key The pre-shared
key.

A sequence
of characters
(string).

The auth_method
parameter is set
to psk

In the JSON file it
is set by default
to swordfish.
Both the initiator
and receiver
must configure
the same
preshared_key.

initiator_cert_pathThe initiator's
certificate.

Any valid self-
signed or CA-
signed certificate.

The auth_method
parameter is set
to ssc or ca

Both the initiator
and receiver
must configure

Running Application

NVIDIA DOCA East-West Overlay Encryption MLNX-15-060467 _v2.0.2 | 18

Parameter Description Valid Values Use When Notes
Must provide
full path of
certificate.

the same
initiator_cert_path.

receiver_cert_pathThe receiver's
certificate.

Any valid self-
signed or CA-
signed certificate.
Must provide
full path of
certificate.

The auth_method
parameter is set
to ssc or ca

Both the initiator
and receiver
must configure
the same
receiver_cert_path.

initiator_key_paththe initiator's
private-key.

Any valid private
key that is
generated with
the certificate.
Must provide full
path of private
key.

The side
parameter is set
to initiator and
the auth_method
is set to ssc or ca

N/A

receiver_key_paththe receiver's
private-key.

Any valid private
key that is
generated with
the certificate.
Must provide full
path of private
key.

The side
parameter is set
to receiver and
the auth_method
is set to ssc or ca

N/A

initiator_cacert_pathThe initiator's CA
certificate.

Any valid CA
certificate. Must
provide full path
of certificate.

The side and
auth_method
parameters
are set to
initiator and ca
respectively

N/A

receiver_cacert_pathThe receiver's CA
certificate.

Any valid CA
certificate. Must
provide full path
of certificate.

The side and
auth_method
parameters
are set to
receiver and ca
respectively

N/A

initiator_cn The common
name (CN) of
the initiator's
certificate.

Must be the
same as the CN
described in
the initiator's
certificate.

The side and
auth_method
parameters
are set to
receiver and ca
respectively

N/A

receiver_cn The CN of
the receiver's
certificate.

Must be the
same as the CN
described in
the receiver's
certificate.

The side and
auth_method
parameters
are set to
initiator and ca
respectively

N/A

Running Application

NVIDIA DOCA East-West Overlay Encryption MLNX-15-060467 _v2.0.2 | 19

6.1.2. Using JSON Parameters File
In this method, you must configure the parameters file and the then run the script:

 1. Configure the JSON parameters file located under /opt/mellanox/
doca/applications/east_west_overlay_encryption/bin/
east_west_overlay_encryption_params.json or create a JSON file according to the
template of east_west_overlay_encryption_params.json for the script according
to the explanation under Script Parameters.

 2. Run the script on the receiver's DPU with the JSON file:
/opt/mellanox/doca/applications/east_west_overlay_encryption/bin/
east_west_overlay_encryption.sh --side=r --json=/opt/mellanox/doca/applications/
east_west_overlay_encryption/bin/east_west_overlay_encryption_params.json

 3. Run the script on the initiator's DPU:
/opt/mellanox/doca/applications/east_west_overlay_encryption/bin/
east_west_overlay_encryption.sh --side=i --json=/opt/mellanox/doca/applications/
east_west_overlay_encryption/bin/east_west_overlay_encryption_params.json

You may now send encrypted data over the PF interface (192.168.50.[1|2]) configured
for VXLAN.

6.1.3. Passing Parameters on Command Line
In this method, you do not need to configure the parameters file and can run the script
with the appropriate parameters.

6.1.3.1. Passing Parameters for Pre-shared Key
Authentication Method

 1. Run the script on the receiver's DPU:
/opt/mellanox/doca/applications/east_west_overlay_encryption/bin/
east_west_overlay_encryption.sh --side=r --initiator_ip_addr=INITIATOR_IP_ADDRESS
 --receiver_ip_addr=RECEIVER_IP_ADDRESS --port_num=PORT_NUM \
--auth_method=psk --preshared_key=PRESHARED_KEY

 2. Run the script on the initiator's DPU:
/opt/mellanox/doca/applications/east_west_overlay_encryption/bin/
east_west_overlay_encryption.sh --side=i --initiator_ip_addr=INITIATOR_IP_ADDRESS
 --receiver_ip_addr=RECEIVER_IP_ADDRESS --port_num=PORT_NUM \
--auth_method=psk --preshared_key=PRESHARED_KEY

Note: If you configure the parameters file and pass the parameters on the command line,
then the parameters that are passed on the command line override those that are in the
parameters file.

Running Application

NVIDIA DOCA East-West Overlay Encryption MLNX-15-060467 _v2.0.2 | 20

6.1.3.2. Passing Parameters for Self-signed Certificates
Authentication Method

 1. Run the script on the receiver's DPU:
/opt/mellanox/doca/applications/east_west_overlay_encryption/bin/
east_west_overlay_encryption.sh --side=r --initiator_ip_addr=INITIATOR_IP_ADDRESS
 --receiver_ip_addr=RECEIVER_IP_ADDRESS --port_num=PORT_NUM \
--auth_method=ssc --initiator_cert_path=INITIATOR_CERT_PATH --
receiver_cert_path=RECEIVER_CERT_PATH --receiver_key_path=RECEIVER_KEY_PATH

 2. Run the script on the initiator's DPU:
/opt/mellanox/doca/applications/east_west_overlay_encryption/bin/
east_west_overlay_encryption.sh --side=i --initiator_ip_addr=INITIATOR_IP_ADDRESS
 --receiver_ip_addr=RECEIVER_IP_ADDRESS --port_num=PORT_NUM \
--auth_method=ssc --initiator_cert_path=INITIATOR_CERT_PATH --
receiver_cert_path=RECEIVER_CERT_PATH --initiator_key_path=INITIATOR_KEY_PATH

Note: If you configure the parameters file and pass the parameters on the command line,
then the parameters that are passed on the command line override those that are in the
parameters file.

6.1.3.3. Passing Parameters for CA Certificates
Authentication Method

 1. Run the script on the receiver's DPU:
/opt/mellanox/doca/applications/east_west_overlay_encryption/bin/
east_west_overlay_encryption.sh --side=r --initiator_ip_addr=INITIATOR_IP_ADDRESS
 --receiver_ip_addr=RECEIVER_IP_ADDRESS --port_num=PORT_NUM \
--auth_method=ca --initiator_cert_path=INITIATOR_CERT_PATH --
receiver_cert_path=RECEIVER_CERT_PATH --receiver_key_path=RECEIVER_KEY_PATH --
receiver_cacert_path=RECEIVER_CACERT_PATH --initiator_cn=INITIATOR_CN

 2. Run the script on the initiator's DPU:
/opt/mellanox/doca/applications/east_west_overlay_encryption/bin/
east_west_overlay_encryption.sh --side=i --initiator_ip_addr=INITIATOR_IP_ADDRESS
 --receiver_ip_addr=RECEIVER_IP_ADDRESS --port_num=PORT_NUM \
--auth_method=ssc --initiator_cert_path=INITIATOR_CERT_PATH --
receiver_cert_path=RECEIVER_CERT_PATH --initiator_key_path=INITIATOR_KEY_PATH --
initiator_cacert_path=INITIATOR_CACERT_PATH --receiver_cn=RECEIVER_CN

Note: If you configure the parameters file and pass the parameters on the command line,
then the parameters that are passed on the command line override those that are in the
parameters file.

For help and usage, run the script with --help/-h flag:
/opt/mellanox/doca/applications/east_west_overlay_encryption/bin/
east_west_overlay_encryption.sh -h

Running Application

NVIDIA DOCA East-West Overlay Encryption MLNX-15-060467 _v2.0.2 | 21

6.2. Building strongSwan
Note: Perform the following only if you want to build your own BFB and would like to
rebuild strongSwan.

 1. strongSwan IPsec full version can be found here (tag: 5.9.6bf).
 2. Install dependencies mentioned here. libgmp-dev is missing from that list, so make

sure to install that as well.
 3. Git clone https://github.com/Mellanox/strongswan.git.
 4. Git checkout BF-5.9.6.
 5. Run autogen.sh within the strongSwan repo.
 6. Run the following:

configure --enable-openssl --disable-random --prefix=/usr/local --sysconfdir=/etc
 --enable-systemd
make
make install

Notes:

‣ --enable-systemd enables the systemd service for strongSwan present
inside the GitHub repo (see step 3) at init/systemd-starter/strongswan-
starter.service.in. This service file is meant for Ubuntu, Debian and Yocto
distributions. For CentOS, the contents of the above file must be replaced by the
one present in systemd-conf/strongswan-starter.service.in.centos (inside
the GitHub repo) before running the configure script above.

‣ When building strongSwan on your own, the openssl.cnf.mlnx file, required for
PK and RNG HW offload via OpenSSL plugin, is not installed. It must be copied
over manually from GitHub repo inside the openssl-conf directory. See section
"Running Strongswan Example" for important notes.

‣ The openssl.cnf.mlnx file references PKA engine shared objects. libpka (version
1.3 or later) and openssl (version 1.1.1) must be installed for this to work.

6.3. Reverting IPsec Configuration
To destroy IPsec configuration, run the following on both machines:
/opt/mellanox/doca/applications/east_west_overlay_encryption/bin/
east_west_overlay_encryption.sh -d

Note: If you run this command without initializing the connection first (steps 2 and 3
in section Running strongSwan Example) you will receive errors. These errors have no
functional impact and may be safely ignored.

https://github.com/Mellanox/strongswan/tree/BF-5.9.6
https://wiki.strongswan.org/projects/strongswan/repository/entry/HACKING
https://github.com/Mellanox/strongswan.git

NVIDIA DOCA East-West Overlay Encryption MLNX-15-060467 _v2.0.2 | 22

Chapter 7. References

‣ /opt/mellanox/doca/applications/east_west_overlay_encryption/bin/
east_west_overlay_encryption.sh

‣ /opt/mellanox/doca/applications/east_west_overlay_encryption/bin/
east_west_overlay_encryption_params.json

Notice

This document is provided for information purposes only and shall not be regarded as a warranty of a certain functionality, condition, or quality of a product.
NVIDIA Corporation nor any of its direct or indirect subsidiaries and affiliates (collectively: “NVIDIA”) make no representations or warranties, expressed or
implied, as to the accuracy or completeness of the information contained in this document and assume no responsibility for any errors contained herein.
NVIDIA shall have no liability for the consequences or use of such information or for any infringement of patents or other rights of third parties that may
result from its use. This document is not a commitment to develop, release, or deliver any Material (defined below), code, or functionality.

NVIDIA reserves the right to make corrections, modifications, enhancements, improvements, and any other changes to this document, at any time without
notice.

Customer should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the time of order acknowledgement, unless otherwise
agreed in an individual sales agreement signed by authorized representatives of NVIDIA and customer (“Terms of Sale”). NVIDIA hereby expressly objects
to applying any customer general terms and conditions with regards to the purchase of the NVIDIA product referenced in this document. No contractual
obligations are formed either directly or indirectly by this document.

NVIDIA products are not designed, authorized, or warranted to be suitable for use in medical, military, aircraft, space, or life support equipment, nor in
applications where failure or malfunction of the NVIDIA product can reasonably be expected to result in personal injury, death, or property or environmental
damage. NVIDIA accepts no liability for inclusion and/or use of NVIDIA products in such equipment or applications and therefore such inclusion and/or use
is at customer’s own risk.

NVIDIA makes no representation or warranty that products based on this document will be suitable for any specified use. Testing of all parameters of each
product is not necessarily performed by NVIDIA. It is customer’s sole responsibility to evaluate and determine the applicability of any information contained
in this document, ensure the product is suitable and fit for the application planned by customer, and perform the necessary testing for the application in
order to avoid a default of the application or the product. Weaknesses in customer’s product designs may affect the quality and reliability of the NVIDIA
product and may result in additional or different conditions and/or requirements beyond those contained in this document. NVIDIA accepts no liability
related to any default, damage, costs, or problem which may be based on or attributable to: (i) the use of the NVIDIA product in any manner that is contrary
to this document or (ii) customer product designs.

No license, either expressed or implied, is granted under any NVIDIA patent right, copyright, or other NVIDIA intellectual property right under this document.
Information published by NVIDIA regarding third-party products or services does not constitute a license from NVIDIA to use such products or services or
a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property rights
of the third party, or a license from NVIDIA under the patents or other intellectual property rights of NVIDIA.

Reproduction of information in this document is permissible only if approved in advance by NVIDIA in writing, reproduced without alteration and in full
compliance with all applicable export laws and regulations, and accompanied by all associated conditions, limitations, and notices.

THIS DOCUMENT AND ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS
(TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR
OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND
FITNESS FOR A PARTICULAR PURPOSE. TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL NVIDIA BE LIABLE FOR ANY DAMAGES, INCLUDING
WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF
THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF NVIDIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
Notwithstanding any damages that customer might incur for any reason whatsoever, NVIDIA’s aggregate and cumulative liability towards customer for the
products described herein shall be limited in accordance with the Terms of Sale for the product.

Trademarks

NVIDIA, the NVIDIA logo, and Mellanox are trademarks and/or registered trademarks of Mellanox Technologies Ltd. and/or NVIDIA Corporation in the
U.S. and in other countries. The registered trademark Linux® is used pursuant to a sublicense from the Linux Foundation, the exclusive licensee of Linus
Torvalds, owner of the mark on a world¬wide basis. Other company and product names may be trademarks of the respective companies with which they
are associated.

Copyright

© 2023 NVIDIA Corporation & affiliates. All rights reserved.

NVIDIA Corporation | 2788 San Tomas Expressway, Santa Clara, CA 95051
http://www.nvidia.com

http://www.nvidia.com

	Table of Contents
	Introduction
	System Design
	Application Architecture
	DOCA Libraries
	Configuration Flow
	5.1. Enabling IPsec Full Offload
	5.2. Configuring OVS IPsec
	5.2.1. Authentication Methods
	5.2.1.1. Pre-shared Key
	5.2.1.2. Self-signed Certificate
	5.2.1.3. CA-signed Certificate

	5.3. Ensuring IPsec is Configured
	5.4. Configuring OVS IPsec Using strongSwan Manually
	5.5. swanctl.conf Files

	Running Application
	6.1. Running strongSwan Example
	6.1.1. Script Parameters
	6.1.2. Using JSON Parameters File
	6.1.3. Passing Parameters on Command Line
	6.1.3.1. Passing Parameters for Pre-shared Key Authentication Method
	6.1.3.2. Passing Parameters for Self-signed Certificates Authentication Method
	6.1.3.3. Passing Parameters for CA Certificates Authentication Method

	6.2. Building strongSwan
	6.3. Reverting IPsec Configuration

	References

