
MLNX-15-060588 _v2.0.2 | May 2023

NVIDIA DOCA GPU Packet Processing
Application Guide

Application Guide

NVIDIA DOCA GPU Packet Processing Application Guide MLNX-15-060588 _v2.0.2 | ii

Table of Contents

Chapter 1. Introdution..1

Chapter 2. System Design..2

Chapter 3. Application Architecture...4
3.1. ICMP Network Traffic...4

3.2. UDP Network Traffic.. 6

3.3. TCP Network Traffic and HTTP Echo Server..7

3.3.1. Step 1: TCP Connection Establishment... 7

3.3.2. Step 2: TCP Data Processing..7

3.3.3. Step 3: HTTP Echo Server..8

3.3.4. Step 4: TCP Connection Closure... 8

Chapter 4. DOCA Libraries...11

Chapter 5. Configuration Flow... 12

Chapter 6. Running the Application...14

Chapter 7. Arg Parser DOCA Flags...16

NVIDIA DOCA GPU Packet Processing Application Guide MLNX-15-060588 _v2.0.2 | 1

Chapter 1. Introdution

Note: This application is currently supported at beta level.

Real-time GPU processing of network packets is a technique useful to several different
application domains, including signal processing, network security, information
gathering, and input reconstruction. The goal of these applications is to realize an inline
packet processing pipeline to receive packets in GPU memory (without staging copies
through CPU memory), process them in parallel with one or more CUDA kernels, and then
run inference, evaluate, or send the result of the calculation over the network.

The type of data processing heavily depends on the use case. The goal of this application
is to provide a basic layout to reuse in the most common use cases of being able to
receive, differentiate and manage the following types of network traffic in multiple
queues: UDP, TCP and ICMP.

This application is an enhancement of the use cases presented in the NVIDIA Blog post
about DOCA GPUNetIO.

https://developer.nvidia.com/blog/inline-gpu-packet-processing-with-nvidia-doca-gpunetio/
https://developer.nvidia.com/blog/inline-gpu-packet-processing-with-nvidia-doca-gpunetio/

NVIDIA DOCA GPU Packet Processing Application Guide MLNX-15-060588 _v2.0.2 | 2

Chapter 2. System Design

This is a receive-and-process DOCA application, so a packet generator sending packets
is required to test the application.

To launch the application, the PCIe address of the GPU and NIC are needed.

Before running the application, ensure that configurations explained in NVIDIA DOCA
GPUNetIO Programming Guide and NVIDIA DOCA Flow Programming Guide are
respected. For example, make sure to configure huge pages of 1GB (DOCA Flow and
DPDK requirement):
$ sudo vim /etc/default/grub

Add hugepages size and number along with other options you have in the CMDLINE
GRUB_CMDLINE_LINUX_DEFAULT="default_hugepagesz=1G hugepagesz=1G hugepages=4"
$ sudo update-grub
$ sudo reboot

After rebooting, check huge pages info
$ grep -i huge /proc/meminfo
AnonHugePages: 0 kB
ShmemHugePages: 0 kB
HugePages_Total: 16
HugePages_Free: 15
HugePages_Rsvd: 0
HugePages_Surp: 0
Hugepagesize: 1048576 kB
Hugetlb: 16777216 kB

List of items to check before running the application:

http://docs.nvidia.com/doca/sdk/pdf/gpunetio-programming-guide.pdf
http://docs.nvidia.com/doca/sdk/pdf/gpunetio-programming-guide.pdf
http://docs.nvidia.com/doca/sdk/pdf/flow-programming-guide.pdf

System Design

NVIDIA DOCA GPU Packet Processing Application Guide MLNX-15-060588 _v2.0.2 | 3

‣ CUDA Toolkit is installed at 12.1 version or newer

‣ doca-gpu and doca-gpu_dev packages are installed

‣ gdrcopy installed in /opt/mellanox/gdrcopy:

‣ export LD_LIBRARY_PATH=${LD_LIBRARY_PATH}:/opt/mellanox/gdrcopy/src

‣ gdrdrv kernel module is active and running on the system

‣ nvidia-peermem kernel module is active and running on the system

‣ DOCA and DPDK library path are preset in the LD_LIBRARY_PATH environment
variable:

‣ export LD_LIBRARY_PATH=${LD_LIBRARY_PATH}:/opt/mellanox/dpdk/lib/
x86_64-linux-gnu:/opt/mellanox/doca/lib/x86_64-linux-gnu

‣ Network card is correctly configured and has a direct PCIe connection with the GPU

If the application is running in a multi-GPU environment, either choose the GPU to
use by setting the CUDA_VISIBLE_DEVICES environment variable, or add this simple
piece of code in the gpu_packet_processing.c file in the main function right after the
doca_argp_start function:
int cuda_id;
cudaDeviceGetByPCIBusId(&cuda_id, app_cfg.gpu_pcie_addr);
cudaFree(0);
cudaSetDevice(cuda_id);

NVIDIA DOCA GPU Packet Processing Application Guide MLNX-15-060588 _v2.0.2 | 4

Chapter 3. Application Architecture

The application manages different types of traffic differently, dedicating up to 4 receive
queues to each one using DOCA Flow with RSS mode to assign each packet to the right
queue.

The more queues the application uses, the higher is the degree of parallelism in how
receive data is processed and how long it takes.

Tip: It is highly recommended to use more than one receive queue for 100Gb/s or higher
network traffic throughput.

3.1. ICMP Network Traffic
If the network interface used for the application has an IP address, it is possible to ping
that interface. ICMP packets are received by a dedicated CUDA kernel (file gpu_kernels/
receive_icmp.cu) which:

 1. Receives packets using the DOCA GPUNetIO CUDA warp-level function
doca_gpu_dev_eth_rxq_receive_warp.

 2. Checks if the packet is an ICMP echo request.
 3. Forwards the same packet, modifying some header info (e.g., swapping MAC and IP

addresses, changing ICMP packet type).
 4. Pushes the modified packet into the send queue using the DOCA GPUNetIO thread-

level function doca_gpu_dev_eth_txq_send_enqueue_strong.
 5. Sends the packet using the DOCA GPUNetIO thread-level functions

doca_gpu_dev_eth_txq_commit_strong and doca_gpu_dev_eth_txq_push.

Note: This is not a compute intensive use case so a single CUDA warp with only one receive
queue and one send queue is enough to keep up with a decent latency.

By default, the OS CPU ping TTL is set to 64. Therefore, to be sure the GPU is actually
replying to ICMP ping requests, TTL is set to 128 in this application.

Application Architecture

NVIDIA DOCA GPU Packet Processing Application Guide MLNX-15-060588 _v2.0.2 | 5

Motivations for this use case:

‣ Provide an easy tool to check connectivity between packet the generator machine
and the DOCA application machine

‣ Have a sense of network latency between the two machines using a well-known tool
like ping

‣ Show an easy way to receive and forward modified packets

‣ Provide a warp-level implementation of a CUDA kernel receiving and forwarding
traffic

Assuming the network interface to ping has the IP address 192.168.1.1, this is the
expected output:
$ ping 192.168.1.1
PING 192.168.1.1 (192.168.1.1) 56(84) bytes of data.
64 bytes from 192.168.1.1: icmp_seq=1 ttl=64 time=0.324 ms
64 bytes from 192.168.1.1: icmp_seq=2 ttl=64 time=0.332 ms
64 bytes from 192.168.1.1: icmp_seq=3 ttl=64 time=0.299 ms
64 bytes from 192.168.1.1: icmp_seq=4 ttl=64 time=0.309 ms
64 bytes from 192.168.1.1: icmp_seq=5 ttl=64 time=0.323 ms
64 bytes from 192.168.1.1: icmp_seq=6 ttl=64 time=0.300 ms
64 bytes from 192.168.1.1: icmp_seq=7 ttl=64 time=0.274 ms
64 bytes from 192.168.1.1: icmp_seq=8 ttl=64 time=0.314 ms
64 bytes from 192.168.1.1: icmp_seq=9 ttl=64 time=0.327 ms
64 bytes from 192.168.1.1: icmp_seq=10 ttl=64 time=0.384 ms
At this point, the DOCA application has been started on the 192.168.1.1 interface
TTL becomes 128 as it's the GPU replying to ICMP requests now instead of the OS
64 bytes from 192.168.1.1: icmp_seq=11 ttl=128 time=0.346 ms
64 bytes from 192.168.1.1: icmp_seq=12 ttl=128 time=0.274 ms
64 bytes from 192.168.1.1: icmp_seq=13 ttl=128 time=0.294 ms
64 bytes from 192.168.1.1: icmp_seq=14 ttl=128 time=0.240 ms
64 bytes from 192.168.1.1: icmp_seq=15 ttl=128 time=0.273 ms
64 bytes from 192.168.1.1: icmp_seq=16 ttl=128 time=0.238 ms
64 bytes from 192.168.1.1: icmp_seq=17 ttl=128 time=0.252 ms
64 bytes from 192.168.1.1: icmp_seq=18 ttl=128 time=0.232 ms
64 bytes from 192.168.1.1: icmp_seq=19 ttl=128 time=0.278 ms
64 bytes from 192.168.1.1: icmp_seq=20 ttl=128 time=0.276 ms
64 bytes from 192.168.1.1: icmp_seq=21 ttl=128 time=0.294 ms
......

Application Architecture

NVIDIA DOCA GPU Packet Processing Application Guide MLNX-15-060588 _v2.0.2 | 6

3.2. UDP Network Traffic
This is the most generic use case of receive-and-analyze packet headers. Designed to
keep-up with 100Gb/s of incoming network traffic, the CUDA kernel responsible for
the UDP traffic dedicates one CUDA block of 512 CUDA threads (file gpu_kernels/
receive_udp.cu) to a different Ethernet UDP receive queue.

The data path loop is:

 1. Receive packets using the DOCA GPUNetIO CUDA block-level function
doca_gpu_dev_eth_rxq_receive_block.

 2. Each CUDA thread works on a subset of received packets.
 3. DOCA buffer containing the packet is retrieved.
 4. Packet payload is analyzed to differentiate between DNS packets from other UDP

generic packets.
 5. Packet payload is wiped-out to ensure that old stale packets are not analyzed again.
 6. Each CUDA block reports to the CPU thread statistics about types of received

packets through a DOCA GPUNetIO semaphore.
 7. CPU thread polls on semaphores to retrieve and print the statistics to the console.

Application Architecture

NVIDIA DOCA GPU Packet Processing Application Guide MLNX-15-060588 _v2.0.2 | 7

The motivation for this use case is mostly to provide an application template to:

‣ Receive and analyze packet headers to differentiate across different UDP protocols

‣ Report statistics to the CPU through the DOCA GPUNetIO semaphore

Several well-known packet generators can be used to test this mode like T-Rex or DPDK
testpmd.

3.3. TCP Network Traffic and HTTP
Echo Server

By default, the TCP flow management is the same as UDP: Receive TCP packets and
analyze their headers to report to the CPU statistics about the types of received
packets.

This is good for passive traffic analyzers or sniffers but sometimes a packet processing
application needs to receive packets directly from TCP peers which implies the
establishment of a TCP-reliable connection through the 3-way handshake method.
Therefore, it is possible to enable TCP "server" mode through the -s command-line
flag which enables an "HTTP echo server" mode where the CPU and GPU cooperate to
establish a TCP connection and process TCP data packets.

Specifically, in this case there are two different sets of receive queues:

‣ CPU DPDK receive queues which receive TCP "control" packets (e.g. SYN, FIN or RST)

‣ DOCA GPUNetIO receive queues to receive TCP "data" packets

This distinction is possible thanks to DOCA Flow capabilities.

The application's flow requires CPU and GPU collaboration as described in the following
subsections.

3.3.1. Step 1: TCP Connection Establishment
A CPU thread through DPDK queues receives a TCP SYN packet from a remote TCP
peer. The CPU thread establishes a TCP reliable connection (replies with a TCP SYN-
ACK packet) with the peer and uses DOCA Flow to create a new steering rule to redirect
TCP data packets to one of the DOCA GPUNetIO receive queues. The new steering rule
excludes control packets (e.g., SYN, FIN or RST).

3.3.2. Step 2: TCP Data Processing
The CUDA kernel responsible for TCP processing receives TCP data packets and
performs TCP packet header analysis. If it receives an HTTP GET request, it stores the
relevant packet's info in the next item of a DOCA GPUNetIO semaphore, setting it to
READY.

Application Architecture

NVIDIA DOCA GPU Packet Processing Application Guide MLNX-15-060588 _v2.0.2 | 8

3.3.3. Step 3: HTTP Echo Server
A second CUDA kernel responsible for HTTP processing polls the DOCA GPUNetIO
semaphore. Once it detects the update of the next item to READY, it reads the HTTP GET
packet info and crafts an HTTP response packet with an HTML page.

If the request is about index.html or contacts.html, the CUDA kernel replies with the
appropriate HTML page using a 200 OK code. For all other requests, the it returns a "Page
not found" and 404 Error code.

HTTP response packets are sent by this second HTTP CUDA kernel using DOCA
GPUNetIO.

Note: Care must be taken to maintain TCP sequence/ack numbers in the packet headers.

3.3.4. Step 4: TCP Connection Closure
If the CPU receives a TCP FIN packet through the DPDK queues, it closes the connection
with the remote TCP peer and removes the DOCA Flow rule from the DOCA GPUNetIO
queues so the CUDA kernel cannot receive anymore packets from that TCP peer.

Application Architecture

NVIDIA DOCA GPU Packet Processing Application Guide MLNX-15-060588 _v2.0.2 | 9

Motivations for this use case:

‣ Receiving and analyzing packet headers to differentiate across different TCP
protocols

‣ Processing TCP packets on GPU in passive mode (sniffing) and active mode (reliable
connection)

‣ Having a DOCA-DPDK application able to establish a TCP reliable connection without
using any OS socket and bypassing kernel routines

‣ Having CUDA-kernel-to-CUDA-kernel communication through a DOCA GPUNetIO
semaphore

‣ Showing how to create and send a packet from scratch with DOCA GPUNetIO

Application Architecture

NVIDIA DOCA GPU Packet Processing Application Guide MLNX-15-060588 _v2.0.2 | 10

Assuming the network interface used to run the application has the IP address
192.168.1.1 , it is possible to test this HTTP echo server mode using simple tools like
curl or wget.

Example with curl:
$ curl http://192.168.1.1/index.html -ivvv

* Trying 192.168.1.1:80...
* Connected to 192.168.1.1 (192.168.1.1) port 80 (#0)
> GET /index.html HTTP/1.1
> Host: 192.168.1.1
> User-Agent: curl/7.81.0
> Accept: */*
>
* Mark bundle as not supporting multiuse
< HTTP/1.1 200 OK
HTTP/1.1 200 OK
< Date: Sun, 30 Apr 2023 20:30:40 GMT
Date: Sun, 30 Apr 2023 20:30:40 GMT
< Content-Type: text/html; charset=UTF-8
Content-Type: text/html; charset=UTF-8
< Content-Length: 158
Content-Length: 158
< Last-Modified: Sun, 30 Apr 2023 22:38:34 GMT
Last-Modified: Sun, 30 Apr 2023 22:38:34 GMT
< Server: GPUNetIO
Server: GPUNetIO
< Accept-Ranges: bytes
Accept-Ranges: bytes
< Connection: keep-alive
Connection: keep-alive
< Keep-Alive: timeout=5
Keep-Alive: timeout=5

<
<html>
 <head>
 <title>GPUNetIO index page</title>
 </head>
 <body>
 <p>Hello World, the GPUNetIO server Index page!</p>
 </body>
</html>

* Connection #0 to host 192.168.1.1 left intact

NVIDIA DOCA GPU Packet Processing Application Guide MLNX-15-060588 _v2.0.2 | 11

Chapter 4. DOCA Libraries

This application leverages the following DOCA libraries:

‣ DOCA GPUNetIO

‣ DOCA Ethernet

‣ DOCA Flow

http://docs.nvidia.com/doca/sdk/pdf/gpunetio-programming-guide.pdf
http://docs.nvidia.com/doca/sdk/pdf/ethernet-programming-guide.pdf
http://docs.nvidia.com/doca/sdk/pdf/flow-programming-guide.pdf

NVIDIA DOCA GPU Packet Processing Application Guide MLNX-15-060588 _v2.0.2 | 12

Chapter 5. Configuration Flow

The following explains the application's flow, highlighting main code blocks and
functions:

 1. Parse application argument.
doca_argp_init();
register_application_params();
doca_argp_start();

 2. Initialize network device as DOCA device, initialize DPDK, and get device DPDK port
ID.
init_doca_device();

Calls rte_eal_init() with empty flags to initialize EAL resources.
 3. Initialize a GPU device, creating a DOCA GPUNetIO handle for it.

doca_gpu_create();

 4. Initialize DOCA Flow, starting the DPDK port.
init_doca_flow();

Flags to initialize DOCA Flow are VNF, HW steering, and isolated mode (to prevent the
default RSS flows from interfering with the GPUNetIO queues).

 5. Create RX and TX queue related objects (i.e., Ethernet handlers, GPUNetIO handlers,
flow rules, semaphores) to manage UDP, TCP and ICMP flows.
create_udp_queues();
create_tcp_queues();
create_icmp_queues();
/* Depending on TCP mode (HTTP server or not) properly connect different DOCA
 Flow pipes */
create_root_pipe();

 6. Allocate generic exit flag. All CUDA kernels periodically poll on this flag. If the CPU set
it to 1, CUDA kernels exit from their main loop and return.
doca_gpu_mem_alloc(gpu_dev, sizeof(uint32_t), alignment, DOCA_GPU_MEM_GPU_CPU,
 (void **)&gpu_exit_condition, (void **)&cpu_exit_condition);

 7. Launch CUDA kernels, each on a different stream.
kernel_receive_udp(rx_udp_stream, gpu_exit_condition, &udp_queues);
kernel_receive_tcp(rx_tcp_stream, gpu_exit_condition, &tcp_queues,
 app_cfg.http_server);
kernel_receive_icmp(rx_icmp_stream, gpu_exit_condition, &icmp_queues);
if (app_cfg.http_server)
 kernel_http_server(tx_http_server, gpu_exit_condition, &tcp_queues,
 &http_queues);

 8. Launch the CPU thread responsible to poll on DOCA GPUNetIO semaphores and print
UDP and TCP stats on the console.
rte_eal_remote_launch((void *)stats_core, NULL, current_lcore);

Configuration Flow

NVIDIA DOCA GPU Packet Processing Application Guide MLNX-15-060588 _v2.0.2 | 13

 9. Launch CPU thread responsible for managing TCP 3-way handshake connections.
if (app_cfg.http_server) {
 ...
 rte_eal_remote_launch(tcp_cpu_rss_func, &tcp_queues, current_lcore);
}

 10.Wait for the user to send a signal to quit the application. When this happens, the
signal handler function sets the force_quit flag to true which causes the main
thread to move forward and set the exit condition to 1.
while (DOCA_GPUNETIO_VOLATILE(force_quit) == false);
DOCA_GPUNETIO_VOLATILE(*cpu_exit_condition) = 1;

 11.Wait for CUDA kernels to exit and finalize all DOCA Flow and GPUNetIO resources.
cudaStreamSynchronize(rx_udp_stream);
cudaStreamSynchronize(rx_tcp_stream);
cudaStreamSynchronize(rx_icmp_stream);
if (app_cfg.http_server)
 cudaStreamSynchronize(tx_http_server);
destroy_flow_queue();
doca_gpu_destroy();

NVIDIA DOCA GPU Packet Processing Application Guide MLNX-15-060588 _v2.0.2 | 14

Chapter 6. Running the Application

 1. Refer to the following documents:

‣ NVIDIA DOCA Installation Guide for Linux for details on how to install BlueField-
related software.

‣ NVIDIA DOCA Troubleshooting Guide for any issue you may encounter with the
installation, compilation, or execution of DOCA applications.

‣ NVIDIA DOCA Applications Overview for additional compilation instructions and
development tips of DOCA applications.

 2. The gpu_packet_processing binary is located under /opt/mellanox/doca/
applications/gpu_packet_processing/bin/doca_gpu_packet_processing. To build
all the applications together, run:
cd /opt/mellanox/doca/applications/
meson build
ninja -C build

 3. To build only this application:

 a). Edit the following flags in /opt/mellanox/doca/applications/
meson_options.txt:

‣ Set enable_all_applications to false

‣ Set enable_gpu_support to true

‣ Set enable_gpu_packet_processing to true

 b). Run the commands in step 2.

Note: doca_gpu_packet_processing is created under ./build/
gpu_packet_processing/src/.

Application usage:
Usage: doca_gpu_packet_processing [DOCA Flags] [Program Flags]

DOCA Flags:
 -h, --help Print a help synopsis
 -v, --version Print program version information
 -l, --log-level Set the log level for the program
 <CRITICAL=20, ERROR=30, WARNING=40, INFO=50, DEBUG=60>

Program Flags:
 -g, --gpu <GPU PCIe address> GPU PCIe address to be used by the app
 -n, --nic <NIC PCIe address> DOCA device PCIe address used by the app
 -q, --queue <GPU receive queues> DOCA GPUNetIO receive queue per flow

http://docs.nvidia.com/doca/sdk/pdf/installation-guide-for-linux.pdf
http://docs.nvidia.com/doca/sdk/pdf/troubleshooting.pdf
http://docs.nvidia.com/doca/sdk/pdf/applications-overview.pdf

Running the Application

NVIDIA DOCA GPU Packet Processing Application Guide MLNX-15-060588 _v2.0.2 | 15

 -s, --httpserver <Enable GPU HTTP server> Enable GPU HTTP server mode

 4. To run the application on the host, assuming a GPU PCIe address ca:00.0 and NIC
PCIe address 17:00.0 with 2 GPUNetIO receive queues:
doca_gpu_packet_processing -n 17:00.0 -g ca:00.0 -q 2

Note: Refer to section "Running DOCA Application on Host" in the NVIDIA DOCA
Virtual Functions User Guide.

http://docs.nvidia.com/doca/sdk/pdf/virtual-functions.pdf
http://docs.nvidia.com/doca/sdk/pdf/virtual-functions.pdf

NVIDIA DOCA GPU Packet Processing Application Guide MLNX-15-060588 _v2.0.2 | 16

Chapter 7. Arg Parser DOCA Flags

Refer to NVIDIA DOCA Arg Parser Programming Guide for more information.

Flag Type Short Flag Long Flag/JSON Key Description

a devices Adds a PCIe device
into the list of devices
to probe.

DPDK flags

l core-list List of cores to run on.

l log-level Sets the log level for
the application:

‣ CRITICAL=20

‣ ERROR=30

‣ WARNING=40

‣ INFO=50

‣ DEBUG=60

v version Prints program version
information.

General flags

h help Prints a help synopsis.

g gpu GPU PCIe address in
<bus>:<device>.<function>
format. This can be
obtained using the
nvidia-smi or lspci
commands.

n nic Network card port
PCIe address in
<bus>:<device>.<function>
format. This can be
obtained using the
lspci command.

q queue Number of receive
queues to use in the
example. Default is 1,
maximum allowed is 4.

Program flags

s httpserver Enable the TCP HTTP
server mode. With

http://docs.nvidia.com/doca/sdk/pdf/arg-parser-programming-guide.pdf

Arg Parser DOCA Flags

NVIDIA DOCA GPU Packet Processing Application Guide MLNX-15-060588 _v2.0.2 | 17

Flag Type Short Flag Long Flag/JSON Key Description
this flag, TCP packets
are not received by
GPUNetIO as regular
sniffer as it requires a
TCP 3-way handshake
to establish a reliable
connection first.

Notice

This document is provided for information purposes only and shall not be regarded as a warranty of a certain functionality, condition, or quality of a product.
NVIDIA Corporation nor any of its direct or indirect subsidiaries and affiliates (collectively: “NVIDIA”) make no representations or warranties, expressed or
implied, as to the accuracy or completeness of the information contained in this document and assume no responsibility for any errors contained herein.
NVIDIA shall have no liability for the consequences or use of such information or for any infringement of patents or other rights of third parties that may
result from its use. This document is not a commitment to develop, release, or deliver any Material (defined below), code, or functionality.

NVIDIA reserves the right to make corrections, modifications, enhancements, improvements, and any other changes to this document, at any time without
notice.

Customer should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the time of order acknowledgement, unless otherwise
agreed in an individual sales agreement signed by authorized representatives of NVIDIA and customer (“Terms of Sale”). NVIDIA hereby expressly objects
to applying any customer general terms and conditions with regards to the purchase of the NVIDIA product referenced in this document. No contractual
obligations are formed either directly or indirectly by this document.

NVIDIA products are not designed, authorized, or warranted to be suitable for use in medical, military, aircraft, space, or life support equipment, nor in
applications where failure or malfunction of the NVIDIA product can reasonably be expected to result in personal injury, death, or property or environmental
damage. NVIDIA accepts no liability for inclusion and/or use of NVIDIA products in such equipment or applications and therefore such inclusion and/or use
is at customer’s own risk.

NVIDIA makes no representation or warranty that products based on this document will be suitable for any specified use. Testing of all parameters of each
product is not necessarily performed by NVIDIA. It is customer’s sole responsibility to evaluate and determine the applicability of any information contained
in this document, ensure the product is suitable and fit for the application planned by customer, and perform the necessary testing for the application in
order to avoid a default of the application or the product. Weaknesses in customer’s product designs may affect the quality and reliability of the NVIDIA
product and may result in additional or different conditions and/or requirements beyond those contained in this document. NVIDIA accepts no liability
related to any default, damage, costs, or problem which may be based on or attributable to: (i) the use of the NVIDIA product in any manner that is contrary
to this document or (ii) customer product designs.

No license, either expressed or implied, is granted under any NVIDIA patent right, copyright, or other NVIDIA intellectual property right under this document.
Information published by NVIDIA regarding third-party products or services does not constitute a license from NVIDIA to use such products or services or
a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property rights
of the third party, or a license from NVIDIA under the patents or other intellectual property rights of NVIDIA.

Reproduction of information in this document is permissible only if approved in advance by NVIDIA in writing, reproduced without alteration and in full
compliance with all applicable export laws and regulations, and accompanied by all associated conditions, limitations, and notices.

THIS DOCUMENT AND ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS
(TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR
OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND
FITNESS FOR A PARTICULAR PURPOSE. TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL NVIDIA BE LIABLE FOR ANY DAMAGES, INCLUDING
WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF
THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF NVIDIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
Notwithstanding any damages that customer might incur for any reason whatsoever, NVIDIA’s aggregate and cumulative liability towards customer for the
products described herein shall be limited in accordance with the Terms of Sale for the product.

Trademarks

NVIDIA, the NVIDIA logo, and Mellanox are trademarks and/or registered trademarks of Mellanox Technologies Ltd. and/or NVIDIA Corporation in the
U.S. and in other countries. The registered trademark Linux® is used pursuant to a sublicense from the Linux Foundation, the exclusive licensee of Linus
Torvalds, owner of the mark on a world¬wide basis. Other company and product names may be trademarks of the respective companies with which they
are associated.

Copyright

© 2023 NVIDIA Corporation & affiliates. All rights reserved.

NVIDIA Corporation | 2788 San Tomas Expressway, Santa Clara, CA 95051
http://www.nvidia.com

http://www.nvidia.com

	Table of Contents
	Introdution
	System Design
	Application Architecture
	3.1. ICMP Network Traffic
	3.2. UDP Network Traffic
	3.3. TCP Network Traffic and HTTP Echo Server
	3.3.1. Step 1: TCP Connection Establishment
	3.3.2. Step 2: TCP Data Processing
	3.3.3. Step 3: HTTP Echo Server
	3.3.4. Step 4: TCP Connection Closure

	DOCA Libraries
	Configuration Flow
	Running the Application
	Arg Parser DOCA Flags

