NVIDIA

NVIDIA DOCA GPUNetlO
Programming Guide

Programming Guide

MLNX-15-060587 _v2.0.2 June 2023

Table of Contents

Chapter T. INTrOAUCTION. ...t 1
Chapter 2. Prer@QUISITES......o ettt n e 3
2. 1. HardWare TOPOIOGY ..ot essssessssessssesessssssssssesssssssssssessssesssssssessssessssesnssessssssssssssesns 3
2.1.1. Option 1: Network Card in Ethernet Mode...........cnccceece e 4
2.1.2. Option 2: DPU Converged Card...... e ssssssssessssssssessssssesssssesessssssesns 5

2.2. GPU CoNTIGUIatiON...ciirc bbb 6
Chapter 3. ArChITECTUIE ...t 8
CRAPEEE 4. APttt ettt s s st s bbbt e bt e s e s ae e s 10
v o ToYor= T | o LU 0'a 1T 0 L 7] o100 p PP 11
VB2 o [oTo¥= T | LU I oX =T) (= TSP 11
4.3, dOCA_GPU_MEM_AHOC. ...ttt 12
4.4, doCa_gpuU_SEMAPNOre_CrEall.... et 12
4.5. doca_gpu_semaphore_set_mMemMory_tYPe. . e 14
4.6. doca_gpu_semaphore_Set_iTeMS_NUM.......cceese et sssessnsesaes 14
4.7. doca_gpu_semaphore_set_CUSTOM_INFO.....cccrrecesce s 14
4.8. doca_gpu_semaphore_get_statusS..... e 15
4.9. doca_gpu_semaphore_get_custom_info_addr......ccerennecnsisereseeesee s 15
4.10. dOCa_gPU_dEV_Bth _IXQ_MBCEIVE ettt sas st sesnsen 15
4.11. doca_gpu_deVv_eth_tXO_SENA_*.... et 17
4.12. doca_gpu_deVv_eth_tXO_Wail_ " 18
4.13. doca_gpu_dev_eth_tXq_CoOmMMIT_* ... 18
4.14. doca_gpu_deVv_eth_TXG_PUSH. ...ttt 19
Chapter 5. BUilding BIOCKS........orrceeer et 20
5.1, Initialize GPU @nd NIC.......oeecceee sttt bbb naee 20
5.2. Ethernet RECEIVE QUEBUE. ...ttt st 20
5.3. Ethernet SENA QUEUE.......c ettt sttt 21
ST 1T 0 =T o] o ORI 21
5.5. Data Path 0N GPU....... ettt sttt bbbt 22
5.5.7. RECEIVE AN PrOCESS.....cctiiictetiesccte sttt sttt s s aetnas 22
5.5.2. ProducCe @nd SEN...... ettt bbbttt b naen 25
Chapter 6. GPUNEIO SamPIes......... s 26
B.1. MUlti-GPU ENVIFONMENT ... 26
B.2. SYNCNIONIZING CIOCKS ...ttt 26
B.3. RUNNING the SAmMIPIE....cii bbb 28

NVIDIA DOCA GPUNetlO Programming Guide MLNX-15-060587 _v2.0.2 | ii

Chapter 1. Introduction

Real-time GPU processing of network packets is a technique useful for application
domains involving signal processing, network security, information gathering, input
reconstruction, and more. These applications involve the CPU in the critical path (CPU-
centric approach) to coordinate the network card (NIC) for receiving packets in the GPU
memory (GPUDirect RDMA) and notifying a packet-processing CUDA kernel waiting

on the GPU for a new set of packets. In lower-power platforms, the CPU can easily
become the bottleneck, masking GPU value. The aim is to maximize the zero-packet-loss
throughput at the the lowest latency possible.

A CPU-centric approach may not be scalable when increasing the number of clients
connected to the application as the time between two receive operations on the same
gueue (client) would increase with the number of queues. The new DOCA GPUNetlO
library allows developers to orchestrate these kinds of applications while optimizing
performance, combining GPUDirect RDMA for data-path acceleration, GDRCopy library
to give the CPU direct access to GPU memory, and GPUDirect Async kernel-initiated
communications to allow a CUDA kernel to directly control the NIC.

CPU-centric approach:

Unblock
GPU processing
(3)

CPU process

CUDA
Receive Processing
Packets

(1

Process Packets

)

(Facet)
Packet

@ (T g Aot (B Packet = == == =— =— =— 4 GPU memory
DMA transfer

over PCle

@)

GPU-centric approach:

NVIDIA DOCA GPUNetlO Programming Guide MLNX-15-060587 _v2.0.2 | 1

Introduction

Receive
Packets

(1)

Process Packets

@)

Send
Packets

() U - (Packet) = — — — — — =g GPU memory

DMA transfer

over PCle

@

DOCA GPUNEetlIO enables GPU-centric solutions that remove the CPU from the critical
path by providing the following features:

» GPUDirect Async Kernel-Initiated Network (GDAKIN) communications —a CUDA
kernel can invoke GPUNetlO device functions to receive or send, directly interacting
with the NIC

» CPU intervention is not needed in the application critical path

» GPUDirect RDMA - receive packets directly into a contiguous GPU memory area

» Semaphores - provide a standardized |/O communication protocol between the
receiving entity and the CUDA kernel real-time packet processing

» Smart memory allocation - allocate aligned GPU memory buffers exposing them to
direct CPU access
» Combination of CUDA and DPDK gpudev library (which requires the GDRCopy
library) already embedded in the DPDK released with DOCA
» Ethernet protocol management on GPU

Morpheus and Aerial 5G SDK are examples of NVIDIA applications actively using DOCA
GPUNetIO.

For a deep dive into the technology and motivations, please refer to the NVIDIA Blog post
Inline GPU Packet Processing with NVIDIA DOCA GPUNetlO.

NVIDIA DOCA GPUNetlO Programming Guide MLNX-15-060587 _v2.0.2 | 2

https://docs.nvidia.com/cuda/gpudirect-rdma/index.html
https://github.com/DPDK/dpdk/blob/main/lib/gpudev/rte_gpudev.h
https://github.com/NVIDIA/gdrcopy
https://developer.nvidia.com/morpheus-cybersecurity
https://developer.nvidia.com/aerial-sdk
https://developer.nvidia.com/blog/inline-gpu-packet-processing-with-nvidia-doca-gpunetio/

Chapter 2. Prerequisites

DOCA GPUNEetIO requires a properly configured environment. The following subsections
describe the required setup.

S| Note: Currently, DOCA GPUNEetlO is included only in DOCA for Host package for Ubuntu
20.04 and Ubuntu 22.04 with CUDA 12.1 or newer.

To install all DOCA GPUNetlO components, run:
apt install -y doca-gpu doca-gpu-dev

Ensure IOMMU is disabled. It can be explicitly disabled through the grub command line
as follows:

sudo vim /etc/default/grub

Add iommu=off to the CMDLINE along with other options
GRUB_CMDLINE LINUX DEFAULT="iommu=off"

sudo update-grub

sudo reboot

Uy Uy F= FH=

WARNING: DOCA GPUNetlIO has been tested on bare-metal and in docker but never in a
virtualized environment. Using KVM is discouraged for now.

2.1. Hardware Topology

Internal hardware topology of the system should be GPUDirect-RDMA-friendly to
maximize the internal throughput between the GPU and the NIC.

Assuming the application is running on the host's CPU cores, there must be a dedicated
PCle connection between the GPU and the NIC which can be implemented in two ways:

» Connecting an additional PCle switch to a PCle slot in the host system bus

» Connecting a DPU converged card exposing the GPU and NIC to the host

NVIDIA DOCA GPUNetlO Programming Guide MLNX-15-060587 _v2.0.2 | 3

https://docs.nvidia.com/cuda/gpudirect-rdma/index.html
https://developer.nvidia.com/blog/benchmarking-gpudirect-rdma-on-modern-server-platforms/

Prerequisites

Host
57
| .
tion 1
o Option
t E)nnectx \
’ B 'U
@
[}
o
S
Q
3
CPU o~
X0 % GPU
DOCA ? CPU
GPUNetlO ARM DPU Option 2
Application ct)
‘ / ConnectX

You may check the topology of your system using 1spci -tvvv Or nvidia-smi topo -m.

Note: NVIDIA® ConnectX® firmware must be 22.36.1010 or later.

DOCA GPUNEetlO allows a CUDA kernel to control the network card when dealing with
Ethernet protocol. For this reason, the ConnectX NIC on your system must be set in

Ethernet mode.
Start MST

mst start
mst status -v

MST PCI module is not loaded
MST PCI configuration module loaded
PCI devices:

NVIDIA DOCA GPUNetlO Programming Guide MLNX-15-060587 _v2.0.2 | 4

Prerequisites

DEVICE TYPE MST PCI RDMA NET
NUMA

ConnectX6DX (rev:0) /dev/mst/mt4125 pciconf0.1 b5:00.1 mlx5 1 net-

ens6fl 0

ConnectX6DX (rev:0) /dev/mst/mt4125 pciconf0 b5:00.0 mlx5 0 net-

ens6f0 0

Configure Ethernet mode

mlxconfig -d /dev/mst/mt4125 pciconf0 s KEEP ETH LINK UP Pl=1 KEEP ETH LINK UP P2=1
KEEP IB LINK UP P1=0 KEEP IB LINK UP P2=0

mlxconfig -d /dev/mst/mt4125 pciconf(0 --yes set ACCURATE TX SCHEDULER=1

REAL TIME CLOCK ENABLE=1

Cold reboot
ipmitool power cycle

2.1.2. Option 2: DPU Converged Card

Note: DPU firmware must be 24.35.2000 or newer.

To expose and use the GPU and the NIC on the DPU converged card from an application
running on the host, configure the DPU to operate in NIC mode:

Enable MST
sudo mst start
sudo mst status

MST devices:

/dev/mst/mt41686 pciconfl - PCI configuration cycles access.

domain:bus:dev.fn=0000:b8:00.0 addr.reg=88
data.reg=92 cr bar.gw offset=-1

Chip revision is: 01

Expose the GPU on the DPU converged card to host. For BF2 offset is 4, for BF3
offset is 8
sudo mlxconfig -d /dev/mst/mt41686 pciconfl --yes s PCI_DOWNSTREAM PORT OWNER[4]=0x0

Set the BlueField-2 port to Ethernet mode (not InfiniBand)
sudo mlxconfig -d /dev/mst/mt41686 pciconfO --yes set LINK TYPE P1=2 LINK TYPE P2=2

Set the BlueField-2 to operate in DPU (Embedded CPU) mode

sudo mlxconfig -d /dev/mst/mt41686 pciconf0l --yes set INTERNAL CPU MODEL=1
INTERNAL CPU PAGE SUPPLIER=EXT HOST PF INTERNAL CPU ESWITCH MANAGER=EXT HOST PF
INTERNAL_CPU_IB_VPORTO=EXT_HOST_PF INTERNAL CPU OFFLOAD ENGINE=DISABLED

Accurate scheduling related settings
sudo mlxconfig -d /dev/mst/mt41686 pciconf0 --yes set ACCURATE TX SCHEDULER=1
REAL TIME CLOCK ENABLE=1

Cold reboot
sudo ipmitool power cycle

Verify that the DPU firmware changes have been applied

sudo mlxconfig -d /dev/mst/mt41686 pciconf0 g LINK TYPE P1 LINK TYPE P2
INTERNAL CPU MODEL INTERNAL CPU PAGE SUPPLIER INTERNAL CPU ESWITCH MANAGER
INTERNAL CPU IB VPORTO INTERNAL CPU OFFLOAD ENGINE ACCURATE TX SCHEDULER
REAL TIME CLOCK ENABLE

LINK TYPE P1 ETH (2)
LINK TYPE P2 ETH (2)
INTERNAL CPU MODEL EMBEDDED CPU (1)
INTERNAL CPU PAGE SUPPLIER EXT HOST PF (1)
INTERNAL CPU ESWITCH MANAGER EXT HOST PF (1)
INTERNAL CPU IB VPORTO EXT HOST PF (1)

NVIDIA DOCA GPUNetlO Programming Guide MLNX-15-060587 _v2.0.2 | 5

Prerequisites

INTERNAL CPU_OFFLOAD_ ENGINE DISABLED (1)
ACCURATE_TX_SCHEDULER True (1)
REAL TIME CLOCK ENABLE True (1)

On the host, CUDA Toolkit 12.1 or newer must be installed. It is also recommended to
enable persistence mode to decrease initial application latency nvidia-smi -pm 1.

To allow the NIC to send and receive packets using GPU memory, it is required to launch
the NVIDIA kernel module nvidia-peermem (Using modprobe nvidia-peermem).

To allow the CPU to directly access the GPU memory without the need for CUDA API,
DPDK and DOCA require the GDRCopy kernel module to be installed on the system:

Run nvidia-peermem kernel module
sudo modprobe nvidia-peermem

Install GDRCopy

sudo apt install -y check kmod

git clone https://github.com/NVIDIA/gdrcopy.git /opt/mellanox/gdrcopy
cd /opt/mellanox/gdrcopy

make

Run gdrdrv kernel module

./insmod. sh

Double check nvidia-peermem and gdrdrv module are running

$ lsmod | egrep gdrdrv

gdrdrv 24576 0

nvidia 55726080 4 nvidia uvm,nvidia peermem,gdrdrv,nvidia modeset

Export library path
export LD LIBRARY PATH=${LD LIBRARY PATH}:/opt/mellanox/gdrcopy/src

Ensure CUDA library path is in the env var

export PATH="/usr/local/cuda-12/bin:${PATH}"

export LD LIBRARY PATH="/usr/local/cuda-12/1ib:/usr/local/cuda-12/1ib64:

${LD_LIBRARY_PATH}"

export CPATH="S$ (echo /usr/local/cuda-12/targets/{x86 64,sbsa}-linux/include | sed
's/ /:/"'):$S{CPATH}"

A good practice in GPU network applications is to spread (through RSS) incoming traffic

among different receive queues to enhance the degree of parallelism in processing

incoming packets. Therefore, it is important to double check that the BAR1 mapping is

large enough to hold multiple receive queues.

To verify the BAR1 mapping space of a GPU you can use nvidia-smi:
$ nvidia-smi -gq

NVSMI LOG
Timestamp : Wed Apr 19 09:35:39 2023
Driver Version : 530.30.02
CUDA Version : 12.1
Attached GPUs : 1
GPU 00000000:CA:00.0
Product Name : NVIDIA A100 80GB PCIe
Product Brand : NVIDIA
Product Architecture : Ampere
Display Mode : Enabled
Display Active : Disabled

NVIDIA DOCA GPUNetlO Programming Guide MLNX-15-060587 _v2.0.2 | 6

https://github.com/NVIDIA/gdrcopy

Prerequisites

Persistence Mode : Enabled

BAR1 Memory Usage

Total : 131072 MiB
Used : 1 MiB
Free : 131071 MiB

NVIDIA DOCA GPUNetlO Programming Guide MLNX-15-060587 _v2.0.2 | 7

Chapter 3. Architecture

A GPU packet processing network application can be split into two fundamental phases:

» Setup on the CPU (devices configuration, memory allocation, launch of CUDA kernels,
etc.)

» Main data path where GPU and NIC interact to exercise their functions

DOCA GPUNEetlO provides different building blocks, some of them in combination with
the DOCA Ethernet library, to create a full pipeline running entirely on the GPU.

During the setup phase on the CPU, applications must:

1. Prepare all the objects on the CPU.
2. Export a GPU handler for them.

3. Launch a CUDA kernel passing the object's GPU handler to work with the object
during the data path.

For this reason, DOCA GPUNetlO is composed of two libraries:

» libdoca gpunetio with functions invoked by CPU to prepare the GPU and allocate
memory and objects

» libdoca gpunetio device with functions invoked by GPU within CUDA kernels
during the data path

S Important: The pkgconfig file for the DOCA GPUNetlO shared library is doca-gpu.pc.
However, there is no pkgconfig file for the DOCA GPUNetlO CUDA device's static library
/opt/mellanox/doca/lib/x86 64-linux-gnu/libdoca gpunetio device.a, SO it must
be explicitly linked to the CUDA application if DOCA GPUNetlO CUDA device functions are
required.

The following diagram presents the typical flow:

NVIDIA DOCA GPUNetlO Programming Guide MLNX-15-060587 _v2.0.2 | 8

Architecture

CPU: application setup

[Init network |
| device]
[MitGPU |
| device]
[Create | GPU: application receive critical path
| queues |
| [Receive |
| packets]
Create flows Create buf PaCKe't
array |_processing |
[Share |
| result]
[Launch CUDA |
| kernels] GPU: application send critical path
Check GPU work [~ Data |
— - processing
Wait GPU B Packets 7
completion creation
Cleanup Send packets

Refer to NVIDIA DOCA GPU Packet Processing Application Guide the for an example of
using DOCA GPUNetlO to send and receive Ethernet packets.

NVIDIA DOCA GPUNetlO Programming Guide MLNX-15-060587 _v2.0.2 | 9

http://docs.nvidia.com/doca/sdk/pdf/gpu-packet-processing.pdf

Chapter 4. API

This section details the specific structures and operations related to the main DOCA
GPUNetIO API on CPU and GPU. GPUNetlO headers are:

» doca gpunetio.h-CPU functions

» doca gpunetio dev buf.cuh- GPU functions to manage a DOCA buffer array

» doca gpunetio dev eth rxg.cuh-GPU functions to manage a DOCA Ethernet
receive queue

» doca gpunetio dev eth txqg.cuh-GPU functions to manage a DOCA Ethernet send
queue

» doca gpunetio dev sem.cuh - GPU functions to manage a DOCA GPUNetlO
semaphore

This section lists the main functions of DOCA GPUNetlO. To better understand their
usage, refer to Building Blocks which includes several code examples.

receive, please refer to the NVIDIA DOCA Ethernet Programming Guide.

Tip: To better understand structures, objects, and functions related to Ethernet send and

refer to the NVIDIA DOCA Core Programming Guide.

. Tip: To better understand DOCA core objects like doca mmap Or doca _buf array, please

All DOCA Core and Ethernet object used with GPUNetIO have a GPU export function to
obtain a GPU handler for that object. The following are a few examples:

» doca buf array is exported as doca_gpu buf arr:

struct doca mmap *mmap;
struct doca buf arr *buf arr cpu;
struct doca gpu buf arr *buf arr gpu;

doca mmap create (NULL, & (mmap)) ;

/* Populate and start mmap */

doca buf arr create(mmap, &buf arr cpu);

/* Populate and start buf arr attributes. Set datapath on GPU */

/* Export the buf array CPU handler to a buf array GPU handler */
doca buf arr get gpu handle (buf arr cpu, &(buf arr gpu)):;

/* To use the GPU handler, pass it as parameter of the CUDA kernel */
cuda kernel<<<...>>>(buf arr gpu, ...);

> doca_eth rxg is exported as doca_gpu_eth rxq:

struct doca mmap *mmap;
struct doca eth rxq *eth rxq cpu;

NVIDIA DOCA GPUNetlO Programming Guide MLNX-15-060587 _v2.0.2 | 10

http://docs.nvidia.com/doca/sdk/pdf/ethernet-programming-guide.pdf
http://docs.nvidia.com/doca/sdk/pdf/doca-core-programming-guide.pdf

API

struct doca gpu eth rxqg *eth rxq gpu;

doca eth rxqg create(ð rxq cpu);

/* Populate and start Ethernet receive queue attributes. Set datapath on GPU */
/* Export the Ethernet receive queue CPU handler to a Ethernet receive queue GPU
handler */

doca eth rxqg get gpu handle(eth rxq cpu, &(eth rxqg gpu)):;

/* To use the GPU handler, pass it as parameter of the CUDA kernel */
cuda_kernel<<<...>>>(eth rxq gpu, ...);

4.1. doca_gpu_mem_type

This enum lists all the possible memory types that can be allocated with GPUNetIO.

enum doca gpu mem type {
DOCA GPU_MEM GPU
DOCA_GPU MEM GPU CPU
DOCA_GPU MEM CPU
DOCA GPU MEM CPU GPU

}i

w NP O
~ N 0~ 0~

<where-memory-resides> <who-has-access>.

Note: With regards to the syntax, the text string after the poca cru MEM prefix signifies

DOCA_GPU_MEM GPU

Memory resides on the GPU and is accessible from the GPU only.
DOCA_GPU_MEM GPU_CPU

Memory resides on the GPU and is accessible also by the CPU.
DOCA_GPU_MEM CPU

Memory resides on the CPU and is accessible from the CPU only.
DOCA_GPU_MEM CPU_GPU

Memory resides on the CPU and is accessible also by the GPU.

Typical usage of the poca Gpu MEM GPU CcPU memory type is to send a notification from
the CPU to the GPU (e.g., a CUDA kernel periodically checking to see if the exit condition
set by the CPU is met).

4.2. doca_gpu_create

This is the first function a GPUNetlO application must invoke to create an handler on a
GPU device. The function initializes a pointer to a structure in memory with type struct
doca_gpu *.
doca error t doca gpu create(const char *gpu bus id, struct doca gpu **gpu dev);
gpu_bus_id
<PCIe-bus>:<device>.<function> of the GPU device you want to use in your
application.
gpu_dev [out]
GPUNetIO handler to that GPU device.

To get the PCle address, users can use the commands 1spci Or nvidia-smi.

NVIDIA DOCA GPUNetlO Programming Guide MLNX-15-060587 _v2.0.2 | 11

API

4.3. doca_gpu_mem_alloc

This CPU function allocates different flavors of memory.

doca error t doca gpu mem alloc(struct doca gpu *gpu dev, size t size, size t
alignment, enum doca gpu mem type mtype, void **memptr gpu, void **memptr cpu)

gpu_dev
GPUNetlO device handler.
size
Size, in bytes, of the memory area to allocate.
alignment
Memory address alignment to use. If O, default one will be used.
mtype
Type of memory to allocate.
memptr gpu [out]
GPU pointer to use to modify that memory from the GPU if memory is allocated on or
is visible by the GPU.
memptr cpu [out]
CPU pointer to use to modify that memory from the CPU if memory is allocated on or
is visible by the CPU. Can be NULL if memory is GPU-only.

WARNING: Make sure to use the right pointer on the right device! If an application tries to
access the memory using the memptr gpu address from the CPU, a segmentation fault will
result.

4.4. doca_gpu_semaphore_create

Creates a new instance of a DOCA GPUNetlO semaphore. A semaphore is composed by a
list of items each having, by default, a status flag, number of packets, and the index of a
doca_gpu buf inadoca gpu buf arr

For example, a GPUNetlO semaphore can be used in applications where a

CUDA kernel is responsible for receiving packets in a doca gpu buf arr array
associated with an Ethernet receive queue object, doca gpu eth rxq (see
doca_gpu_dev_eth_rxg_receive_*), and dispatching packet info to a second CUDA kernel
which processes them.

Another way to use a GPUNetlO semaphore is to exchange data across different entities
like two CUDA kernels or a CUDA kernel and a CPU thread. The reason for this scenario
may be that the CUDA kernel needs to provide the outcome of the packet processing

to the CPU which would in turn compile a statistics report. Therefore, it is possible to
associate a custom application-defined structure to each item in the semaphore. This
way, the semaphore can be used as a message passing object.

Both situations are illustrated under Receive and Process.

NVIDIA DOCA GPUNetlO Programming Guide MLNX-15-060587 _v2.0.2 | 12

https://confluence.nvidia.com/pages/viewpage.action?pageId=1757350858#NVIDIADOCAGPUNetIOProgrammingGuide-doca_gpu_dev_eth_rxq_receive_*

API

Semphore Optional application-defined

Status N B Custom field N

Item O | | Number of packet: — B Custom field -
DOCA buffer index_ B N

Status N B Custom field o

Item 1 Number of packe’; e B Custom field -
DOCA buffer index_ B N

Status N B Custom field N

Item 2 | | Number of packe’; e B Custom field -
DOCA buffer index_ B o

Entities communicating through a semaphore must adopt a poll/update mechanism
according to the following logic:

Update:

1. Populate the next item of the semaphore (packets' info and/or custom
application-defined info).

2. Set status flag to READY.

Poll:

1. Wait for the next item to have a status flag equal to READY.
2. Read and process info.

NVIDIA DOCA GPUNetlO Programming Guide MLNX-15-060587 _v2.0.2 | 13

API

3. Set status flag to ponE.
doca_error t doca gpu semaphore create(struct doca gpu *gpu dev, struct
doca gpu semaphore **semaphore)
gpu_dev
GPUNetlO handler.
semaphore [out]

GPUNetIO semaphore handler associated to the GPU device.

4.5. doca_gpu_semaphore_set_memory_type

This function defines the type of memory for the semaphore allocation.

doca_error t doca gpu semaphore set memory type (struct doca gpu semaphore
*semaphore, enum doca gpu mem type mtype)

semaphore
GPUNetIO semaphore handler.
mtype
Type of memory to allocate the custom info structure.

» If the application must share packet info only across CUDA kernels, then
DOCA GPU MEM GPU is the suggested memory type.

» If the application must share info from a CUDA kernel to a CPU (e.g., to report
some or output of the pipeline computation) then poca Gpu MEM CPU GPU is the
suggested memory type.

4.6. doca_gpu_semaphore_set_items_num

This function defines the number of items in a semaphore.
doca error t doca gpu semaphore set items num(struct doca gpu semaphore *semaphore,
uint32 t num items)
semaphore
GPUNetIO semaphore handler.
num_items
Number of items to allocate.

4.7. doca_gpu_semaphore_set_custom_info

This function associates an application-specific structure to semaphore items as
explained under doca_gpu_semaphore_create.

doca error t doca gpu semaphore set custom info(struct doca gpu semaphore
*semaphore, uint32 t nbytes, enum doca gpu mem type mtype)

semaphore
GPUNetlO semaphore handler.
nbytes
Size of the custom info structure to associate.

NVIDIA DOCA GPUNetlO Programming Guide MLNX-15-060587 _v2.0.2 | 14

API

mtype
Type of memory to allocate the custom info structure.

» If the application must share packet info only across CUDA kernels, then
DOCA GPU MEM GPU is the suggested memory type.

» If the application must share info from a CUDA kernel to a CPU (e.g., to report
statistics or output of the pipeline computation) then poca GPU MEM CPU GPU is
the suggested memory type.

4.8. doca_gpu_semaphore_get_status

From the CPU, query the status of a semaphore item. If the semaphore is allocated with
DOCA GPU MEM GPU, this function results in a segmentation fault.
doca_error t doca gpu semaphore get status(struct doca gpu semaphore *semaphore cpu,
uint32 _t idx, enum doca _gpu_semaphore status *status)
semaphore cpu
GPUNetIO semaphore CPU handler.
idx
Semaphore item index.
status [out]
Output semaphore status.

4.9. doca_gpu_semaphore_get_custom_info_a:

From the CPU, retrieve the address of the custom info structure associated
to a semaphore item. If the semaphore or the custom info is allocated with
DOCA_GPU_MEM GPU this function results in a segmentation fault.
doca error t doca gpu semaphore get custom info addr (struct doca gpu semaphore
*semaphore cpu, uint32 t idx, void **custom info)
semaphore cpu
GPUNetIO semaphore CPU handler.
idx
Semaphore item index.
custom_info [out]
Output semaphore custom info address.

*

4.10. doca_gpu_dev_eth_rxqg_receive_

To acquire packets in a CUDA kernel, DOCA GPUNEetlO offers different flavors of the
receive function for different scopes: per CUDA block, per CUDA warp, and per CUDA
thread.

device doca error t doca gpu dev eth rxq receive block(struct doca gpu eth rxqg
" *eth _rxq, uint32 _t max rx pkts, uint64 t timeout ns, uint32 t *num rx pkts,
uint64 t *doca gpu buf _idx)

dev1ce doca_error t doca gpu dev eth rxq receive warp(struct doca gpu eth rxq
“*eth rxg, uint32 t max rx pkts, uint64 t timeout ns, uint32 t *num rx pkts,

uint64 t *doca gpu | buf _1dx)

NVIDIA DOCA GPUNetlO Programming Guide MLNX-15-060587 _v2.0.2 | 15

API

__device doca error t doca gpu dev _eth rxg receive thread(struct doca gpu eth rxq
*eth rxq, uint32 t max rx pkts, uint64 t timeout ns, uint32 t *num rx pkts,
uint64 t *doca gpu buf idx)

eth_rxq .

Ethernet receive queue GPU handler.
max_rx pkts

Maximum number of packets allowed.
timeout ns

Nanoseconds to wait for packets before returning.
num_rx_pkts [out]

Effective number of received packets.

doca_gpu_buf_idx [out]

DOCA buffer index of the first packet received in this function.

CUDA threads in the same scope (thread, warp, or block) must invoke the function on the
same receive queue. The output parameters num rx pkts and doca gpu buf idx must
be visible by all threads in the scope (e.g., CUDA shared memory for warp and block).

Each packet received by this function goes to the doca gpu buf arr internally created
and associated with the Ethernet queues (see Building Blocks).

The function exits when timeout ns is reached or when the maximum number of
packets is received.

S Note: For CUDA block scope, the block invoking the receive function must have at least 32
CUDA threads (i.e., one warp).

The output parameters indicate how many packets have been actually received
(num rx pkts) and the index of the first received packet in the doca gpu buf array
internally associated with the Ethernet receive queue. Packets are stored
consecutively in the doca gpu buf arr so if the function returns num rx pkts=Nand
doca gpu buf idx=¥, this means that all the doca gpu buf in the doca gpu buf arr
within therange [x, .. ,x + (N-1)] have been filled with packets.

DOCA GPU buffer array

NVIDIA DOCA GPUNetlO Programming Guide MLNX-15-060587 _v2.0.2 | 16

API

The DOCA buffer array is treated in a circular fashion so that once the last DOCA buffer
is filled by a packet, the queue circles back to the first DOCA buffer. There is no need for
the application to lock or free doca gpu buf arr buffers.

Note: It is the application's responsibility to consume packets before they are overwritten
when circling back, properly dimensioning the DOCA buffer array size and scaling across
multiple receive queues.

4.11. doca_gpu_dev_eth_txqg_send_*

To send packets from a CUDA kernel, DOCA GPUNetlO offers a strong and weak
modes for enqueuing a packet in the Ethernet txq. For both modes, the scope is the
single CUDA thread, each populating and enqueuing a different doca _gpu buf from a
doca gpu buf arr.

Strong mode:

S Tip: It is generally recommended to use strong mode as weak mode is more complex and
is reserved for expert users.

__device doca error t doca gpu dev eth txg send enqueue strong(struct
doca gpu eth txg *eth txqg, const struct doca gpu buf *buf ptr, const uint32 t
nbytes)

eth txq

Ethernet send queue GPU handler.
buf ptr

DOCA buffer from a DOCA GPU buffer array to be sent.
nbytes

Number of bytes to be sent in the packet.

Weak mode:

Note: In weak mode, the developer must specify a queue descriptor number for where to
enqueue the packet ensuring that no descriptor in the queue is left empty wrapping at a
16-bit mask.

__device doca error t doca gpu dev eth txg send enqueue weak(const struct
doca gpu eth txq *eth txqg, const struct doca gpu buf *buf ptr, const uint32 t
nbytes, const uint32 t ndescr)

eth_txq
Ethernet send queue GPU handler.
buf ptr
DOCA buffer from a DOCA GPU buffer array to be sent.
nbytes
Number of bytes to be sent in the packet.
ndescr

Position in the queue to place the packet. Range: O-OxFFFF.

NVIDIA DOCA GPUNetlO Programming Guide MLNX-15-060587 _v2.0.2 | 17

API

4.12. doca_gpu_dev_eth_txg_wait_*

To enable Accurate Send Scheduling, the "wait on time" barrier (based on timestamp)
must be set in the send queue before enqueuing more packets. Similarly to
doca_gpu_dev_eth_txg_send_* doca gpu dev eth txg wait * also has a strong and
weak mode.

Strong mode:

S Tip: It is generally recommended to use strong mode as weak mode is more complex and
is reserved for expert users.

__device doca error t doca gpu dev eth txg wait time enqueue strong(struct
doca gpu eth txg *eth txqg, const uint64 t wait on time value)
eth_txq

Ethernet send queue GPU handler.
wait_on_ time value
Timestamp to specify when packets must be sent after this barrier.

Weak mode:

Note: In weak mode, the developer must specify a queue descriptor number for where to
enqueue the packet ensuring that no descriptor in the queue is left empty wrapping at a
16-bit mask.

__device doca error t doca gpu dev eth txg wait time enqueue weak (struct
doca gpu eth txg *eth txqg, const uint64 t wait on time value, const uint32 t
ndescr)

eth txq

Ethernet send queue GPU handler.
wait on_time value

Timestamp to specify when packets must be sent after this barrier.
ndescr

Position in the queue to place the packet. Range: O-OxFFFF.

Please refer to GPUNetlO Samples to understand how to enable and use Accurate Send
Scheduling.

4.13. doca_gpu_dev_eth_txg_commit_*

After enqueuing all the packets to be sent and time barriers, a commit function must
be invoked on the txq queue. The right commit function must be used according to the
type of enqueue mode (i.e., strong or weak) used in doca_gpu_dev_eth_txg_send_* and
doca_gpu_dev_eth_txqg wait_*.

Strong mode:

_device doca error t doca gpu dev eth txq commit strong(struct doca gpu eth txg
*eth txq)

NVIDIA DOCA GPUNetlO Programming Guide MLNX-15-060587 _v2.0.2 | 18

API

eth_txq
Ethernet send queue GPU handler.
Weak mode:
__device doca error t doca gpu dev eth txg commit weak (struct doca gpu eth txqg
*eth txq, const uint32 t descr num)
eth txq

Ethernet send queue GPU handler.
descr_num
Number of queue items enqueued thus far.

Only one CUDA thread in the scope (CUDA block or CUDA warp) can invoke this function
on the send queue after a number of enqueue operations. Typical flow is as follows:
1. All threads in the scope enqueue packets in the send queue.
2. Synchronization point.
3. Only one thread in the scope performs the send queue commit.

After committing, the items in the send queue must be actually pushed to the network
card.

__device doca error t doca gpu dev eth txg push(struct doca gpu eth txqg *eth txq)
eth_txq
Ethernet send queue GPU handler.

Only one CUDA thread in the scope (CUDA block or CUDA warp) can invoke this function
on the send queue after a number of enqueue or commit operations. Typical flow is as
follows:

1. All threads in the scope enqueue packets in the send queue.

2. Synchronization point.

3. Only one thread in the scope does the send queue commit.

4. Only one thread in the scope does the send queue push.

Section "Produce and Send" provides an example where the scope is a block (e.g., each
CUDA block operates on a different Ethernet send queue).

NVIDIA DOCA GPUNetlO Programming Guide MLNX-15-060587 _v2.0.2 | 19

Chapter 5. Building Blocks

This sections explains general concepts behind the fundamental building blocks to use
when creating a DOCA GPUNetlO application.

5.1. Initialize GPU and NIC

When DOCA GPUNetlO is used in combination with the NIC to send or receive Ethernet
traffic, the following must be performed to properly set up the application and devices:

uintl6 t dpdk port id;
struct doca dev *ddev;
struct doca gpu *gdev;
char *eal param[3] = {"", "-a", "00:00.0"};

/* Initialize DPDK with empty device. DOCA device will hot-plug the network card
later. */

rte eal init (3, eal param);

/* Create DOCA device on a specific network card */

doca_dpdk port probe (&ddev) ;

get dpdk port id doca dev(&ddev, &dpdk port id);

/* Create GPUNetIO handler on a specific GPU */

doca gpu create (gpu pcie address, &gdev);

The application would may have to enable different items depending on the task at han

5.2. Ethernet Receive Queue

d.

If the DOCA application must receive Ethernet packets, receive queues must be created.

The receive queue works in a circular way: At creation time, each receive queue is

associated with a DOCA buffer array allocated on the GPU by the application. Each DOCA

buffer of the buffer array has a maximum fixed size.

/* Start DPDK device */

rte eth dev start (dpdk port id);

/* Initialise DOCA Flow */

struct doca flow port cfg port cfg;
port cfg.port id = port id;

doca flow init (port cfg);

doca flow port start();

struct doca eth rxg *eth rxq cpu;
struct doca gpu eth rxg *eth rxq gpu;
struct doca mmap *mmap;

void *gpu buffer;

NVIDIA DOCA GPUNetlO Programming Guide MLNX-15-060587 _v2.0.2 |

20

Building Blocks

/* Create DOCA Ethernet receive queues */
doca_eth rxqg create(ð rxqg cpu);

/* Set Ethernet receive queue properties */

/% o0oo ¥/f

/* Create DOCA mmap in GPU memory to be used for the DOCA buffer array associated to
this Ethernet queue */

doca mmap create (&mmap) ;

doca gpu mem alloc(gdev, buffer size, alignment, DOCA GPU MEM GPU, (void
**) &gpu buffer, NULL);

doca mmap start (mmap) ;

doca eth rxqg set pkt buffer(eth rxq cpu, mmap, 0, buffer size);

/* Start the Ethernet queue object */

/* Export GPU handle for the receive queue */

doca_eth rxq get gpu handle(eth rxg cpu, ð rxqg gpu);

It is mandatory to associate DOCA Flow pipe(s) to the receive queues. Otherwise, the
application cannot receive any packet.

5.3. Ethernet Send Queue

If the DOCA application must send Ethernet packets, send queues must be created in
combination with doca gpu buf arr to prepare and send packets from GPU memory.

struct doca eth txg *eth txqg cpu;
struct doca gpu eth txqg *eth txqg gpu;

/* Create DOCA Ethernet send queues */

doca_eth txqg create(ð txg cpu);

/* Set properties to send queues */

/* Export GPU handle for the send queue */

doca eth rxg get gpu handle(eth txqg cpu, ð txqg gpu);

/* Create DOCA mmap to define memory layout and type for the DOCA buf array */
struct doca mmap *mmap;

doca mmap create (&émmap) ;

/* Set DOCA mmap properties */

/* Create DOCA buf arr and export it to GPU */
struct doca buf arr *buf arr;

struct doca gpu buf arr *buf arr gpu;

doca buf arr create(mmap, &buf arr);

/* Set DOCA buf array properties */

/* Export GPU handle for the buf arr */
doca buf arr get gpu handle(buf arr, &buf arr gpu);

5.4. Semaphore

If the DOCA application must dispatch some packets' info across CUDA kernels or from
the CUDA kernel and some CPU thread, a semaphore must be created.

A semaphore is a list of items, allocated either on the GPU or CPU (depending on
the use case) visible by both the GPU and CPU. This object can be used to discipline
communication across items in the GPU pipeline between CUDA kernels or a CUDA
kernel and a CPU thread.

NVIDIA DOCA GPUNetlO Programming Guide MLNX-15-060587 _v2.0.2 | 21

Building Blocks

By default, each semaphore item can hold info about its status (FREE, READY, HOLD,
DONE, ERROR), the number of received packets, and an index of a doca gpu buf ina
doca _gpu buf arr.

If the semaphore must be used to exchange data with the CPU, a preferred memory
layout would be poca_cpu MEM cpu_GpU. Whereas, if the semaphore is only needed
across CUDA kernels, boca Gpu MEM GPU is the best memory layout to use.

As an optional feature, if the application must pass more application-specific info
through the semaphore items, it is possible to attach a custom structure to each item of
the semaphore.

Define SEMAPHORE ITEMS 1024

/* Application defined custom structure to pass info through semaphore items */
struct custom info {

int a;

uinted4 t b;

}i

/* Semaphore to share info from the GPU to the CPU */
struct doca gpu semaphore *sem to cpu;
struct doca gpu semaphore gpu *sem to cpu gpu;

doca_gpu_semaphore create (gdev, &sem to cpu);

doca gpu semaphore set memory type(sem to cpu, DOCA GPU MEM CPU GPU) ;

doca gpu semaphore set items num(sem to cpu, SEMAPHORE ITEMS) ;

/* This is optional */

doca gpu semaphore set custom info(sem to cpu, sizeof (struct custom info),
DOCA_GPU MEM CPU GPU) ;

doca gpu semaphore start(sem to cpu);

doca_gpu_semaphore get gpu handle(sem to cpu, &sem to cpu gpu);

/* Semaphore to share info across GPU CUDA kernels with no CPU involvment */
struct doca gpu semaphore *sem to gpu;
struct doca gpu semaphore gpu *sem to gpu gpu;

doca gpu_ semaphore create(gdev, &sem to gpu);

doca gpu semaphore set memory type (sem to gpu, DOCA GPU MEM GPU) ;

doca gpu semaphore set items num(sem to gpu, SEMAPHORE ITEMS) ;

/* This is optional */

doca gpu semaphore set custom info(sem to gpu, sizeof (struct custom info),
DOCA GPU MEM GPU) ;

doca_gpu_ semaphore start (sem to gpu);

doca_gpu_semaphore get gpu handle(sem to gpu, &sem to gpu gpu);

At this point, the application has created and initialized all the objects required by the
GPU to exercise the data path to send or receive packets with GPUNetlO. The following
subsections provide examples for doing that.

In this example, the application must receive packets from different queues with a
receiver CUDA kernel and dispatch packet info to a second CUDA kernel responsible for
packet processing.

NVIDIA DOCA GPUNetlO Programming Guide MLNX-15-060587 _v2.0.2 | 22

Building Blocks

The CPU launches the CUDA kernels and waits on the semaphore for output:

#define CUDA THREADS 512

#define CUDA BLOCKS 1

int semaphore index = 0;

enum doca gpu semaphore status status;
struct custom info *gpu info;

/* On the CPU */

cuda kernel receive dispatch<<<CUDA THREADS, CUDA BLOCKS, ...,
stream 0>>>(eth rxg gpu, sem to gpu gpu)

cuda_kernel process<<<CUDA THREADS, CUDA BLOCKS, ..., stream 1>>>(eth rxq gpu,
sem to cpu gpu, sem to gpu gpu)

while(/* condition */) {
doca gpu semaphore get status(sem to cpu, semaphore index, &status);
if (status == DOCA GPU SEMAPHORE STATUS READY) {
doca gpu semaphore get custom info addr (sem to cpu, semaphore index, (void
**) & (gpu_info)) ;
report info(gpu_info);
doca gpu semaphore set status(sem to cpu, semaphore index,
DOCA GPU SEMAPHORE STATUS FREE);
semaphore index = (semaphore index+1l) % SEMAPHORE ITEMS;
}
}

On the GPU, the two CUDA kernels are running on different streams:

cuda_kernel receive dispatch(eth rxqg gpu, sem to gpu gpu) {
__shared uint32 t rx pkt num;

_ shared uint64 t rx buf idx;

int semaphore index = 0;

doca gpu dev _eth rxq receive block(eth rxqg gpu, MAX NUM RECEIVE PACKETS,
TIMEOUT RECEIVE NS, &rx pkt num, &rx buf idx);

if (threadIdx.x == 0 && rx pkt num > 0) {

doca gpu dev_sem set packet info(sem to gpu gpu, semaphore index,
DOCA_GPU SEMAPHORE STATUS READY, rx pkt num, rx buf idx);

semaphore index = (semaphore index+1l) % SEMAPHORE ITEMS;

}
}

cuda kernel process(eth rxg gpu, sem to cpu gpu, sem to gpu gpu) {
__shared uint32 t rx pkt num;

__shared uint64 t rx buf idx;

int semaphore index = 0;

int thread buf idx = 0;

struct doca gpu buf *buf ptr;

uintptr t buf addr;

struct custom info *gpu info;

while (/* exit condition */) {

if (threadIdx.x == 0) {
do {
result = doca gpu dev sem get packet info status(sem to gpu gpu,
semaphore index, DOCA GPU SEMAPHORE STATUS READY, &rx pkt num, &rx buf idx);
} while(result != DOCA ERROR NOT FOUND /* && other exit condition */);
1
~_syncthreads () ;

thread buf idx = threadIdx.x;
while (thread buf idx < rx pkt num) {
/* Get DOCA GPU buffer from the GPU buffer in the receive queue */
doca gpu dev _eth rxg get buf(eth rxg gpu, rx buf idx + thread buf idx, &buf ptr);
/* Get DOCA GPU buffer memory address */
doca gpu dev buf get addr (buf ptr, &buf addr);
/*

* Atomic here is has the entire CUDA block accesses the same semaphore to CPU.

NVIDIA DOCA GPUNetlO Programming Guide MLNX-15-060587 _v2.0.2 | 23

Building Blocks

* Smarter implementation can be done at warp level, with multiple semaphores,
etc.. to avoid this atomic
*/
int semaphore index tmp = atomicAdd block (&semaphore index, 1);
semaphore index tmp = semaphore index tmp % SEMAPHORE ITEMS;
doca gpu dev_sem get custom info addr(sem to cpu gpu, semaphore index tmp, (void
**) &gpu_info) ;
populate custom info(buf addr, gpu info);
doca gpu dev_sem set status(sem to cpu gpu, semaphore index tmp,
DOCA GPU SEMAPHORE STATUS READY) ;
1
}
1

This code can be represented with the following diagram when multiple queues and/or
semaphores are used:

CUDA kernel
Receiver

———————————

1
:
Ethernet receive queue 0 Receive '
| |

1
1 | Dispatch :
| 1
))

CUDA kernel
Processing

Poll
semaphore
Packet
processing

Semaphore

Produce CcPU CPU Thread

ftem 1 Dispatch

Semaphore
GPU

1
Ethernet receive queue1 ‘ Receive]

Poll
semaphore

Report stats

ik

Please note that receiving and dispatching packets to another CUDA kernel is not
required. A simpler scenario can have a single CUDA kernel receiving and processing
packets:

CUDA kernel
Receiver
I"CUDA Biock 0)
! ! Semaphore
CPU

CPU Thread

I
Ethernet receive queue 0
p ol

__________ Izl semaphores
""""" 3 —
I]
I] —_
Ethernet receive queue1 '
I
! Report stats
1
4 S—
1
J

- _ _ __

Semaphore
CPU

NVIDIA DOCA GPUNetlO Programming Guide MLNX-15-060587 _v2.0.2 | 24

Building Blocks

The drawback of this approach is that the time between two receives depends on the
time taken by the CUDA kernel to process received packets.

The type of pipeline that must be built heavily depends on the specific use case.

In this example, the GPU produces some data, stores it into packets and then sends
them over the network. The CPU launches the CUDA kernels and continues doing other
work:

#define CUDA THREADS 512

#define CUDA BLOCKS 1

int semaphore index = 0;

enum doca gpu semaphore status status;
struct custom info *gpu info;

/* On the CPU */
cuda_kernel produce send<<<CUDA THREADS, CUDA BLOCKS, ..., stream 0>>>(eth txqg gpu,
buf arr gpu)

/* do other stuff */

On the GPU, the CUDA kernel fills the packets with meaningful data and sends them.
In the following example, the scope is CUDA block so each block uses a different DOCA
Ethernet send queue:

cuda kernel produce send(eth txg gpu, buf arr gpu) {
uint64 t doca gpu buf idx = threadIdx.x;
struct doca gpu buf *buf;
uintptr t buf addr;
uint32 t packet len;

while (/* exit condition */) {
/* Each CUDA thread retrieves doca gpu buf from doca gpu buf arr */
doca gpu dev buf get buf (buf arr gpu, doca gpu buf idx, &buf);
/* Get memory address of the packet in the doca gpu buf */
doca _gpu dev buf get addr (buf, &buf addr);
/* Application produces data and crafts the packet in the doca gpu buf */
populate packet (buf addr, &packet len);
/* Enqueue packet in the send queue */
doca gpu dev _eth txg send enqueue strong(eth txqg gpu, buf, packet len);
/* Synchronization point */
__synchthreads () ;

/* Only one CUDA thread in the block must commit and push the send queue */
if (threadIdx.x == 0) {
doca gpu dev _eth txg commit strong(eth txqg gpu);
doca _gpu dev _eth txqg push(eth txqg gpu);
}
/* Synchronization point */
~_synchthreads () ;

/* Assume all threads in the block pushed a packet in the send queue */
doca gpu buf idx += CUDA THREADS;

NVIDIA DOCA GPUNetlO Programming Guide MLNX-15-060587 _v2.0.2 | 25

Chapter 6. GPUNetlO Samples

The sample shows how to enable Accurate Send Scheduling (or wait-on-time) in the
context of a GPUNetlO application. Accurate Send Scheduling is the ability of an NVIDIA
NIC to send packets in the future according to some application-provided timestamps.

This means that the application can prepare packets and associate to them a timestamp
to instruct the NIC on when packets should be sent in the future.

Note: This feature is supported on ConnectX-6 Dx and later.

The DOCA GPUNetlO sample provides a simple application to send packets with
Accurate Send Scheduling from the GPU.

6.1. Multi-GPU Environment

If the sample is running in a multi-GPU environment, either choose the GPU to use by
setting the cuba vIsSIBLE DEVICES environment variable or add this simple piece of
code in the gpunetio send wait time main.c file in the main function right after the
doca argp start function.

int cuda id;

cudaDeviceGetByPCIBusId(&cuda id, sample cfg.gpu pcie addr);

cudaFree (0) ;
cudaSetDevice (cuda id);

6.2. Synchronizing Clocks

Before starting the sample, it is important to properly synchronize the CPU clock with
the NIC clock. This way, timestamps provided by the system clock are synchronized with
the time in the NIC.

For this purpose, at least the phc2sys service must be used. To install it on an Ubuntu
system:
sudo apt install linuxptp

To start the phc2sys service properly, a config file must be created in /1ib/systemd/
system/phc2sys.service:

[Unit]
Description=Synchronize system clock or PTP hardware clock (PHC)
Documentation=man:phc2sys

NVIDIA DOCA GPUNetlO Programming Guide MLNX-15-060587 _v2.0.2 | 26

GPUNetIO Samples

[Service]

Restart=always

RestartSec=5s

Type=simple

ExecStart=/bin/sh -c "taskset -c 23 /usr/sbin/phc2sys -s /dev/ptp$ (ethtool -T ens6f0
| grep PTP | awk '{print $4}') -c CLOCK REALTIME -n 24 -0 0 -R 256 -u 256"

[Install]
WantedBy=multi-user.target

Now phc2sys service can be started:

sudo
sudo
sudo
sudo

systemctl
systemctl
systemctl
systemctl

stop systemd-timesyncd
disable systemd-timesyncd
daemon-reload

start phc2sys.service

To check phc2sys status:
$ sudo systemctl status phc2sys.service

® phc2sys.service - Synchronize system clock or PTP hardware clock (PHC)
Loaded: loaded (/lib/systemd/system/phc2sys.service; disabled; vendor preset:
enabled)
Active: active (running) since Mon 2023-04-03 10:59:13 UTC; 2 days ago
Docs: man:phc2sys
Main PID: 337824 (sh)
Tasks: 2 (limit: 303788)
Memory: 560.0K
CPU: 52min 8.199s
CGroup: /system.slice/phc2sys.service

F—337824 /bin/sh -c "taskset -c 126 /usr/sbin/phc2sys -s /dev/ptp\

$ (ethtool -T enp23s0flnpl | grep PTP | awk '{print \$4}') -c CLOCK REALTIME -n 24 -0

0 -R >
L-337829 /usr/sbin/phc2sys -s /dev/ptp3 -c CLOCK REALTIME -n 24 -O 0 -R

256 -u 256

Apr 05 16:35:52 doca-vr-045 phc2sys[337829]: [457395.040] CLOCK REALTIME rms 8
max 18 freq +110532 +/- 27 delay 770 +/- 3

Apr 05 16:35:53 doca-vr-045 phc2sys[337829]: [457396.071] CLOCK REALTIME rms 8
max 20 freqg +110513 +/- 30 delay 769 +/- 3

Apr 05 16:35:54 doca-vr-045 phc2sys[337829]: [457397.102] CLOCK REALTIME rms 8
max 18 freq +110527 +/- 30 delay 769 +/- 3

Apr 05 16:35:55 doca-vr-045 phc2sys[337829]: [457398.130] CLOCK REALTIME rms

max 18 freq +110517 +/- 31 delay 769 +/- 3

Apr 05 16:35:56 doca-vr-045 phc2sys[337829]: [457399.159] CLOCK REALTIME rms

max 19 freq +110523 +/- 32 delay 770 +/- 3

Apr 05 16:35:57 doca-vr-045 phc2sys[337829]: [457400.191] CLOCK REALTIME rms

max 20 freqg +110528 +/- 33 delay 770 +/- 3

Apr 05 16:35:58 doca-vr-045 phc2sys[337829]: [457401.221] CLOCK REALTIME rms

max 19 freq +110512 +/- 38 delay 770 +/- 3

Apr 05 16:35:59 doca-vr-045 phc2sys[337829]: [457402.253] CLOCK REALTIME rms

max 20 freq +110538 +/- 47 delay 770 +/- 4

Apr 05 16:36:00 doca-vr-045 phc2sys[337829]: [457403.281] CLOCK REALTIME rms 8
max 21 freq +110517 +/- 38 delay 769 +/- 3

Apr 05 16:36:01 doca-vr-045 phc2sys([337829]: [457404.311] CLOCK REALTIME rms 8
max 17 freq +110526 +/- 26 delay 769 +/- 3

At this point, the system and NIC clocks are synchronized so timestamps provided by the
CPU are correctly interpreted by the NIC.

Important: The timestamps you get may not reflect the real time and day. To get that, you
must properly set the ptp4l service with an external grand master on the system. Doing
that is out of the scope of this sample.

NVIDIA DOCA GPUNetlO Programming Guide MLNX-15-060587 _v2.0.2 | 27

GPUNetlO Samples

The sample is shipped with the source files that must be built:

Ensure DOCA and DPDK are in the pkgconfig environment variable

export PKG_CONFIG PATH=S${PKG_CONFIG PATH}:/opt/mellanox/dpdk/lib/x86_ 64-1linux-gnu/
pkgconfig:/opt/mellanox/doca/lib/x86 64-linux-gnu/pkgconfig:/opt/mellanox/flexio/
lib/pkgconfig

cd /opt/mellanox/doca/samples/doca gpunetio/gpunetio send wait time

meson build

ninja -C build

The sample sends 8 bursts of 32 raw Ethernet packets or 1kB to a dummy Ethernet
address, 10:11:12:13:14:15, in a timed way. Program the NIC to send every t
nanoseconds (command line option -t).

Considering a system with GPU PCle address ca:00.0 and NIC PCle address 17:00.0, to

send 32 packets every 5 milliseconds:

/opt/mellanox/doca/samples/doca gpunetio send wait time -n 17:00.0 -g ca:00.0 -t
5000000

To verify that packets are actually sent at the right time, use a packet sniffer on the

other side (e.g., tcpdump):

$ sudo tcpdump -i enp23s0flnpl -A -s 64

17:12:23.480318 IP5 (invalid)
Sent from DOCA GPUNELIO. ..t tittenteeeennnoneennns

17:12:23.480368 IP5 (invalid)

Sent from DOCA GPUNELIO. ...ttt eeereennnnns
end of first burst of 32 packets, bump to +5ms
17:12:23.485321 IP5 (invalid)

Same Ereem DOCA CRUNEEIO: 6 00 0000000006000 0000000000 0

17:12:23.485369 IPS5 (invalid)
Sent from DOCA GPUNELIO. ..o i it iemneeeeeeeannnns
end of second burst of 32 packets, bump to +5ms
17:12:23.490278 IP5 (invalid)
Sent ifrem DOCA GRPUNEEILO: coccocoooccccanocooocoacosaoao

The output should show a jump of approximately 5 milliseconds every 32 packets.
Please note tcpdump may increase latency in sniffing packets and reporting the receive
timestamp, so the difference between bursts of 32 packets reported may be less than
expected, especially with small interval times like 500 microseconds (-t 500000).

NVIDIA DOCA GPUNetlO Programming Guide MLNX-15-060587 _v2.0.2 | 28

Notice

This document is provided for information purposes only and shall not be regarded as a warranty of a certain functionality, condition, or quality of a product.
NVIDIA Corporation nor any of its direct or indirect subsidiaries and affiliates (collectively: “NVIDIA”) make no representations or warranties, expressed or
implied, as to the accuracy or completeness of the information contained in this document and assume no responsibility for any errors contained herein.
NVIDIA shall have no liability for the consequences or use of such information or for any infringement of patents or other rights of third parties that may
result from its use. This document is not a commitment to develop, release, or deliver any Material (defined below), code, or functionality.

NVIDIA reserves the right to make corrections, modifications, enhancements, improvements, and any other changes to this document, at any time without
notice.

Customer should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the time of order acknowledgement, unless otherwise
agreed in an individual sales agreement signed by authorized representatives of NVIDIA and customer (“Terms of Sale”). NVIDIA hereby expressly objects
to applying any customer general terms and conditions with regards to the purchase of the NVIDIA product referenced in this document. No contractual
obligations are formed either directly or indirectly by this document.

NVIDIA products are not designed, authorized, or warranted to be suitable for use in medical, military, aircraft, space, or life support equipment, nor in
applications where failure or malfunction of the NVIDIA product can reasonably be expected to result in personal injury, death, or property or environmental
damage. NVIDIA accepts no liability for inclusion and/or use of NVIDIA products in such equipment or applications and therefore such inclusion and/or use
is at customer’s own risk.

NVIDIA makes no representation or warranty that products based on this document will be suitable for any specified use. Testing of all parameters of each
product is not necessarily performed by NVIDIA. It is customer’s sole responsibility to evaluate and determine the applicability of any information contained
in this document, ensure the product is suitable and fit for the application planned by customer, and perform the necessary testing for the application in
order to avoid a default of the application or the product. Weaknesses in customer’s product designs may affect the quality and reliability of the NVIDIA
product and may result in additional or different conditions and/or requirements beyond those contained in this document. NVIDIA accepts no liability
related to any default, damage, costs, or problem which may be based on or attributable to: (i) the use of the NVIDIA product in any manner that is contrary
to this document or (ii) customer product designs.

No license, either expressed or implied, is granted under any NVIDIA patent right, copyright, or other NVIDIA intellectual property right under this document.
Information published by NVIDIA regarding third-party products or services does not constitute a license from NVIDIA to use such products or services or
a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property rights
of the third party, or a license from NVIDIA under the patents or other intellectual property rights of NVIDIA.

Reproduction of information in this document is permissible only if approved in advance by NVIDIA in writing, reproduced without alteration and in full
compliance with all applicable export laws and regulations, and accompanied by all associated conditions, limitations, and notices.

THIS DOCUMENT AND ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS
(TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR
OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND
FITNESS FOR A PARTICULAR PURPOSE. TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL NVIDIA BE LIABLE FOR ANY DAMAGES, INCLUDING
WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF
THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF NVIDIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
Notwithstanding any damages that customer might incur for any reason whatsoever, NVIDIA’s aggregate and cumulative liability towards customer for the
products described herein shall be limited in accordance with the Terms of Sale for the product.

Trademarks

NVIDIA, the NVIDIA logo, and Mellanox are trademarks and/or registered trademarks of Mellanox Technologies Ltd. and/or NVIDIA Corporation in the
U.S. and in other countries. The registered trademark Linux® is used pursuant to a sublicense from the Linux Foundation, the exclusive licensee of Linus
Torvalds, owner of the mark on a world-wide basis. Other company and product names may be trademarks of the respective companies with which they
are associated.

Copyright
© 2023 NVIDIA Corporation & affiliates. All rights reserved.

NVIDIA Corporation | 2788 San Tomas Expressway, Santa Clara, CA 95051 @Dz

http://www.nvidia.com
NVIDIA.

http://www.nvidia.com

	Table of Contents
	Introduction
	Prerequisites
	2.1. Hardware Topology
	2.1.1. Option 1: Network Card in Ethernet Mode
	2.1.2. Option 2: DPU Converged Card

	2.2. GPU Configuration

	Architecture
	API
	4.1. doca_gpu_mem_type
	4.2. doca_gpu_create
	4.3. doca_gpu_mem_alloc
	4.4. doca_gpu_semaphore_create
	4.5. doca_gpu_semaphore_set_memory_type
	4.6. doca_gpu_semaphore_set_items_num
	4.7. doca_gpu_semaphore_set_custom_info
	4.8. doca_gpu_semaphore_get_status
	4.9. doca_gpu_semaphore_get_custom_info_addr
	4.10. doca_gpu_dev_eth_rxq_receive_*
	4.11. doca_gpu_dev_eth_txq_send_*
	4.12. doca_gpu_dev_eth_txq_wait_*
	4.13. doca_gpu_dev_eth_txq_commit_*
	4.14. doca_gpu_dev_eth_txq_push

	Building Blocks
	5.1. Initialize GPU and NIC
	5.2. Ethernet Receive Queue
	5.3. Ethernet Send Queue
	5.4. Semaphore
	5.5. Data Path on GPU
	5.5.1. Receive and Process
	5.5.2. Produce and Send

	GPUNetIO Samples
	6.1. Multi-GPU Environment
	6.2. Synchronizing Clocks
	6.3. Running the Sample

