
MLNX-15-060576 _v2.0.2 | May 2023

NVIDIA DOCA IPsec Security Gateway

Application Guide

NVIDIA DOCA IPsec Security Gateway MLNX-15-060576 _v2.0.2 | ii

Table of Contents

Chapter 1. Introduction..1

Chapter 2. System Design..3

Chapter 3. Application Architecture...5
3.1. Static Configuration..5

3.2. Dynamic Configuration..6

3.3. DOCA Flow Modes...6

3.3.1. VNF Mode..6

3.3.1.1. Encryption... 7

3.3.1.2. Decryption...7

3.3.2. Switch Mode.. 8

Chapter 4. DOCA Libraries...10

Chapter 5. Configuration Flow... 11

Chapter 6. Running the Application...13
6.1. Static Configuration IPsec Rules.. 15

6.2. Dynamic Configuration IPsec Rules.. 17

Chapter 7. Arg Parser DOCA Flags...19

Chapter 8. Keying Daemon Integration (StrongSwan)...21
8.1. End-to-end Architecture..21

8.2. Running the Solution...26

8.3. Building strongSwan.. 27

Chapter 9. References... 28

NVIDIA DOCA IPsec Security Gateway MLNX-15-060576 _v2.0.2 | 1

Chapter 1. Introduction

Note: DOCA IPsec Security Gateway is supported at alpha level.

DOCA IPsec Security Gateway leverages the DPU's hardware capability for secure
network communication. The application demonstrates how to insert rules related to
IPsec encryption and decryption based on the DOCA Flow and IPsec libraries.

The application demonstrates how to insert rules to create an IPsec tunnel.

Note: An example for configuring the Internet key exchange (IKE) can be found under
Keying Daemon Integration (StrongSwan) but is not considered part of the application.

The application can be configured to receive IPsec rules in one of the following ways:

‣ Static configuration – (default) receives a fixed list of rules for IPsec encryption and
decryption

Note: When creating the security association (SA) object, the application gets the key,
salt, and other SA attributes from the JSON input file.

‣ Dynamic configuration – receives IPsec encryption and decryption rules during
runtime through through a Unix domain socket (UDS) which is enabled when
providing a socket path to the application

Note: You may find an example of integrating a rules generator with the application
under strongSwan project (DOCA plugin).

The application supports the following IPsec modes: Tunnel, transport, UDP transport.

https://github.com/Mellanox/strongswan/blob/BF-5.9.6/src/libcharon/plugins/doca/doca_plugin_ipsec.c

Introduction

NVIDIA DOCA IPsec Security Gateway MLNX-15-060576 _v2.0.2 | 2

Note: DOCA IPsec supports only ESP header type.

NVIDIA DOCA IPsec Security Gateway MLNX-15-060576 _v2.0.2 | 3

Chapter 2. System Design

DOCA IPsec Security Gateway is designed to run with 2 ports, secured and unsecured:

‣ Secured port – BlueField receives IPsec encrypted packets and, after decryption, they
are sent through the unsecured port

‣ Unsecured port – BlueField receives regular (plain text) packets and, after encryption,
they are sent through the secured port

Example packet path for hardware offloading:

Example packet path for partial software processing (handling encap/decap in software):

Using the application with SF:

System Design

NVIDIA DOCA IPsec Security Gateway MLNX-15-060576 _v2.0.2 | 4

NVIDIA DOCA IPsec Security Gateway MLNX-15-060576 _v2.0.2 | 5

Chapter 3. Application Architecture

3.1. Static Configuration

 1. Create IPsec library context.
 2. Open two DOCA devices, one for the secured port and another for the unsecured

port.
 3. Initialize the DOCA work queue.
 4. With the open DOCA devices, the application probes DPDK ports and initializes DOCA

Flow and DOCA Flow ports accordingly.
 5. On the created ports, build DOCA Flow pipes.
 6. In a loop according to the JSON rules:

 a). Create DOCA IPsec SA for the new rule.
 b). Insert encrypt or decrypt rule to DOCA Flow pipes.

Application Architecture

NVIDIA DOCA IPsec Security Gateway MLNX-15-060576 _v2.0.2 | 6

3.2. Dynamic Configuration

 1. Create IPsec library context.
 2. Open two DOCA devices, one for the secured port and another for the unsecured

port.
 3. Initialize the DOCA work queue.
 4. With the open DOCA devices, the application probes DPDK ports and initializes DOCA

Flow and DOCA Flow ports accordingly.
 5. On the created ports, build DOCA Flow pipes.
 6. Create UDS socket and listen for incoming data.
 7. While waiting for new IPsec policies to be received in a loop, if a new IPsec policy is

received:

 a). Parse the policy whether it is an encryption or decryption rule.
 b). Create DOCA IPsec SA for the new rule.
 c). Insert encrypt or decrypt rule to DOCA Flow pipes.

3.3. DOCA Flow Modes
The application can run in two modes, vnf and switch. For more information about the
modes, please refer to section "Pipe Mode" in the NVIDIA DOCA Flow Programming
Guide.

3.3.1. VNF Mode

http://docs.nvidia.com/doca/sdk/pdf/flow-programming-guide.pdf
http://docs.nvidia.com/doca/sdk/pdf/flow-programming-guide.pdf

Application Architecture

NVIDIA DOCA IPsec Security Gateway MLNX-15-060576 _v2.0.2 | 7

3.3.1.1. Encryption

 1. The application builds 8 pipes for encryption. Control pipe as root with four entries
that match L3 and L4 types and forward the traffic to the relevant pipes.

 a). IPv6 pipes – match the source IP address and forward the traffic to a pipe that
matches 5-tuple excluding the source IP.

 b). In the 5-tuple match pipes set action of "set meta data", the metadata would be
the rule's index in the JSON file.

 c). The matched packet is forwarded to the second port.
 2. In the secured egress domain, there is an encryption pipe that has a shared IPsec

encrypt action. According to the metadata match, the packet is encrypted with the
encap destination IP and SPI as defined in the user's rules.

3.3.1.2. Decryption

Application Architecture

NVIDIA DOCA IPsec Security Gateway MLNX-15-060576 _v2.0.2 | 8

 1. The application builds 4 pipes for decryption. Control pipe as root with two entries
that match L3 type and forward the traffic to the relevant decrypt pipe.

 2. The decrypt pipe matches the destination IP and SPI according to the rule files and
has a shared IPsec action for decryption.

 3. After decryption, the matched packets are forwarded to the syndrome pipe and,
if the syndrome is non-zero, the packets are dropped. Otherwise, the packets are
forwarded to the second port.

3.3.2. Switch Mode

Application Architecture

NVIDIA DOCA IPsec Security Gateway MLNX-15-060576 _v2.0.2 | 9

In switch mode, a root pipe matches the first 2 most significant bits (MSBs) to decide
what the next pipe is:

‣ Metadata is 0 – packet arrives and continues to pipe that matches on the port's
meta. Based on the port, the packet passes through almost the same path as VNF
mode and the metadata is set in the 2 MSBs. Afterwards, the packet moves to pipes
that send the packets to the root pipe.

‣ First bit is 1 – packet finishes the decrypt path and must be sent to the unsecure
port.

‣ Second bit is 1 – packet almost finishes the encrypt path and must be sent to the
encrypt pipe on the secure egress domain and to the secure port from there.

NVIDIA DOCA IPsec Security Gateway MLNX-15-060576 _v2.0.2 | 10

Chapter 4. DOCA Libraries

This application leverages the following DOCA libraries:

‣ DOCA Flow library

‣ DOCA IPsec library

http://docs.nvidia.com/doca/sdk/pdf/flow-programming-guide.pdf
http://docs.nvidia.com/doca/sdk/pdf/ipsec-programming-guide.pdf

NVIDIA DOCA IPsec Security Gateway MLNX-15-060576 _v2.0.2 | 11

Chapter 5. Configuration Flow

 1. Parse application argument.

 a). Initialize the arg parser resources and register DOCA general parameters.
doca_argp_init();

 b). Register application parameters.
register_ipsec_security_gw_params();

 c). Parse application flags.
doca_argp_start();

 i. Parse app parameters.
 2. DPDK initialization.

rte_eal_init();

Call rte_eal_init() to initialize EAL resources with the provided EAL flags for not
probing the ports.

 3. Parse config file.
ipsec_security_gw_parse_config();

 4. Initialize devices and ports.
ipsec_security_gw_init_devices();

 a). Open DOCA devices with input PCIe addresses.
 b). Probe DPDK port from each opened device.

 5. Initialize and start DPDK ports.
dpdk_queues_and_ports_init();

 a). Initialize DPDK ports, including mempool allocation.
 b). Initialize hairpin queues if needed.
 c). Binds hairpin queues of each port to its peer port.

 6. Initialize objects for DOCA IPsec library.
ipsec_security_gw_ipsec_ctx_create();

 a). Create IPsec library context.
 b). Create DOCA Work queue.

 7. Initialize DOCA Flow.
ipsec_security_gw_init_doca_flow();

 a). Initialize DOCA Flow library.
 b). Find the indices of the DPDK-probed ports and start DOCA Flow ports with them.

Configuration Flow

NVIDIA DOCA IPsec Security Gateway MLNX-15-060576 _v2.0.2 | 12

 8. Insert rules.

 a). Insert encryption rules.
ipsec_security_gw_insert_encrypt_rules();

 b). Insert decryption rules.
ipsec_security_gw_insert_decrypt_rules();

 9. Wait for traffic.
ipsec_security_gw_wait_for_traffic();

 a). Wait in a loop until the user terminates the program.
 10.IPsec security gateway cleanup:

 a). DOCA Flow cleanup; destroy initialized ports.
doca_flow_cleanup();

 b). SA destruction.
ipsec_security_gw_destroy_sas();

 c). IPsec objects destruction.
ipsec_security_gw_ipsec_ctx_destroy();

 d). Destroy DPDK ports and queues.
dpdk_queues_and_ports_fini();

 e). DPDK finish.
dpdk_fini();

Calls rte_eal_destroy() to destroy initialized EAL resources.
 f). Arg parser destroy.

doca_argp_destroy();

NVIDIA DOCA IPsec Security Gateway MLNX-15-060576 _v2.0.2 | 13

Chapter 6. Running the Application

 1. Refer to the following documents:

‣ NVIDIA DOCA Installation Guide for Linux for details on how to install BlueField-
related software.

‣ NVIDIA DOCA Troubleshooting Guide for any issue you may encounter with the
installation, compilation, or execution of DOCA applications.

‣ NVIDIA DOCA Applications Overview for additional compilation instructions and
development tips for the DOCA applications.

 2. DOCA IPsec Security Gateway binary is located under /opt/mellanox/doca/
applications/ipsec_security_gw/bin/doca_ipsec_security_gw. To build all the
applications together, run:
cd /opt/mellanox/doca/applications/
meson build
ninja -C build

 3. To build only the IPsec security gateway application:

 a). Edit the following flags in /opt/mellanox/doca/applications/
meson_option.txt:

‣ Set enable_all_applications to false

‣ Set enable_ipsec_security_gw to true

 b). Run the commands in step 2.

Note: doca_ipsec_security_gw will be created under ./build/
ipsec_security_gw/src/.

Application usage:
Usage: doca_ipsec_security_gw [DOCA Flags] [Program Flags]

DOCA Flags:
 -h, --help Print a help synopsis
 -v, --version Print program version information
 -l, --log-level Set the log level for the program
 <CRITICAL=20, ERROR=30, WARNING=40, INFO=50, DEBUG=60>

Program Flags:
 -s, --secured Secured port pci-address
 -u, --unsecured Unsecured port pci-address
 -c, --config Path to the JSON file with application
 configuration
 -m, --mode IPsec mode - {tunnel/transport/udp_transport}

http://docs.nvidia.com/doca/sdk/pdf/installation-guide-for-linux.pdf
http://docs.nvidia.com/doca/sdk/pdf/troubleshooting.pdf
http://docs.nvidia.com/doca/sdk/pdf/applications-overview.pdf

Running the Application

NVIDIA DOCA IPsec Security Gateway MLNX-15-060576 _v2.0.2 | 14

 -i, --ipc IPC socket file path
 -sn, --secured-name Secured port interface name
 -un, --unsecured-name Unsecured port interface name

Note: For additional information on the application, use -h:
/opt/mellanox/doca/applications/<application name>/bin/doca_<application
 name> -- -h

 4. Running the application on BlueField:

‣ Pre-run setup:

‣ The IPsec security gateway application is based on DPDK libraries. Therefore,
the user is required to allocate huge pages:
echo 2048 > /sys/kernel/mm/hugepages/hugepages-2048kB/nr_hugepages

‣ VNF mode – the IPsec security gateway example requires disabling some of
the hardware tables:
/opt/mellanox/iproute2/sbin/devlink dev eswitch set pci/0000:03:00.0 mode
 legacy
/opt/mellanox/iproute2/sbin/devlink dev eswitch set pci/0000:03:00.1 mode
 legacy

echo none > /sys/class/net/p0/compat/devlink/encap
echo none > /sys/class/net/p1/compat/devlink/encap

/opt/mellanox/iproute2/sbin/devlink dev eswitch set pci/0000:03:00.0 mode
 switchdev
/opt/mellanox/iproute2/sbin/devlink dev eswitch set pci/0000:03:00.1 mode
 switchdev

To restore the old configuration:
/opt/mellanox/iproute2/sbin/devlink dev eswitch set pci/0000:03:00.0 mode
 legacy
/opt/mellanox/iproute2/sbin/devlink dev eswitch set pci/0000:03:00.1 mode
 legacy

echo basic > /sys/class/net/p0/compat/devlink/encap
echo basic > /sys/class/net/p1/compat/devlink/encap

/opt/mellanox/iproute2/sbin/devlink dev eswitch set pci/0000:03:00.0 mode
 switchdev
/opt/mellanox/iproute2/sbin/devlink dev eswitch set pci/0000:03:00.1 mode
 switchdev

‣ Switch mode – the IPsec security gateway application requires configuring the
ports to run in switch mode:
sudo mlxconfig -d /dev/mst/mt41686(mt41692)_pciconf0 s
 LAG_RESOURCE_ALLOCATION=1
power cycle the host to apply this setting

/opt/mellanox/iproute2/sbin/devlink dev eswitch set pci/0000:03:00.0 mode
 legacy
/opt/mellanox/iproute2/sbin/devlink dev eswitch set pci/0000:03:00.1 mode
 legacy

sudo devlink dev param set pci/0000:03:00.0 name esw_pet_insert value
 false cmode runtime
sudo devlink dev param set pci/0000:03:00.1 name esw_pet_insert value
 false cmode runtime

/opt/mellanox/iproute2/sbin/devlink dev eswitch set pci/0000:03:00.0 mode
 switchdev

Running the Application

NVIDIA DOCA IPsec Security Gateway MLNX-15-060576 _v2.0.2 | 15

/opt/mellanox/iproute2/sbin/devlink dev eswitch set pci/0000:03:00.1 mode
 switchdev

sudo devlink dev param set pci/0000:03:00.0 name esw_multiport value true
 cmode runtime
sudo devlink dev param set pci/0000:03:00.1 name esw_multiport value true
 cmode runtime

To restore the old configuration:
sudo devlink dev param set pci/0000:03:00.0 name esw_multiport value false
 cmode runtime
sudo devlink dev param set pci/0000:03:00.1 name esw_multiport value false
 cmode runtime

‣ Example for running the application in static configuration:
cd /opt/mellanox/doca/applications/ipsec_security_gw/bin
./doca_ipsec_security_gw -s 03:00.0 -u 03:00.1 -c ./
ipsec_security_gw_config.json -m transport

‣ Example for running the application in dynamic configuration:
cd /opt/mellanox/doca/applications/ipsec_security_gw/bin
./doca_ipsec_security_gw -s 03:00.0 -u 03:00.1 -c ./
ipsec_security_gw_config.json -m transport -i /tmp/rules_socket

 5. Running the application on the host, CLI example:
cd /opt/mellanox/doca/applications/ipsec_security_gw/bin
./doca_ipsec_security_gw -s 08:00.0 -u 08:00.1 -c ./ipsec_security_gw_config.json
 -m transport

Note: Refer to section "Running DOCA Application on Host" in NVIDIA DOCA Virtual
Functions User Guide.

 6. To run doca_ipsec_security_gw using a JSON file:
doca_ipsec_security_gw --json [json_file]

For example:
cd /opt/mellanox/doca/applications/ipsec_security_gw/bin
./doca_ipsec_security_gw –-json ./ipsec_security_gw_params.json

6.1. Static Configuration IPsec Rules
IPsec rules and other configuration can be added with a JSON config file that is passed
using the --config parameter.

Section Field Type Description Example

switch bool True for running
DOCA Flow in
switch mode.

Default is false
(VNF mode).

"switch": trueconfig

esp_header_offloadstring Decap and encap
offloading: both,
encap, decap, or
none. Default is
both (offloading

"esp_header_offload":
"none"

http://docs.nvidia.com/doca/sdk/pdf/virtual-functions.pdf
http://docs.nvidia.com/doca/sdk/pdf/virtual-functions.pdf

Running the Application

NVIDIA DOCA IPsec Security Gateway MLNX-15-060576 _v2.0.2 | 16

Section Field Type Description Example
both encap and
decap).

sw_sn_inc_enable bool Increments
sequence
number of ESP
in software if
set to true.
Default is false.
Available only if
esp_header_offload
is decap or none.

"sw_sn_inc_enable":
true

sw_antireplay_enablebool Enables
anti-replay
mechanism
in software if
set to true.
Default is false.
Available only if
esp_header_offload
is encap or none.

Note:
Window
size is 64.
Not ESN.
Supports
non-zero
sn_initial.

"sw_antireplay_enable":
true

sn_initial uint Initial sequence
number for
ESP header.
Used also when
sw_antireplay_enable
is true. Default is
0.

"sn_initial": 0

ip-version int Source and
destination IP
version. 4 / 6.

Optional. Default
is 4.

"ip-version": 6

src-ip string Source IP to
match

"src-ip":
"1.2.3.4"

dst-ip string Destination IP to
match

"dst-ip":
"101:101:101:101:101:101:101:101"

encrypt_rules

protocol string L4 protocol: TCP
or UDP

"protocol"

Running the Application

NVIDIA DOCA IPsec Security Gateway MLNX-15-060576 _v2.0.2 | 17

Section Field Type Description Example
src-port int Source port to

match

dst-port int Destination port
to match

"dst-port": 55

encap-ip-
version

int Encap IP version:
4 or 6. Optional;
default is 4.

"ip-version": 4

encap-dst-ip string Encap destination
IP. Mandatory for
tunnel mode only.

"encap-dst-ip":
"1.1.1.1"

spi int SPI integer to set
in the ESP header

"spi": 5

key string Key for creating
the SA (in hex
format)

"key":
"112233445566778899aabbccdd"

key_type int Key size: 128 or
256. Optional;
default is 256.

"key_type": 128

ip-version int Destination IP
version: 4 or 6.
Optional; default
is 4.

"ip-version": 6

dst-ip string Destination IP to
match

"dst-ip":
"1122:3344:5566:7788:99aa:bbcc:ddee:ff00"

inner-ip-
version

int Inner IP version.
Mandatory for
tunnel mode only.
Optional; default
is 4.

"inner-ip-
version": 4

spi int SPI to match in
the ESP header

"spi": 5

key string Key for creating
the SA (in hex
format)

"key":
"112233445566778899aabbccdd"

decrypt_rules

key_type int Key size: 128 or
256. Optional;
default is 256.

"key_type": 128

6.2. Dynamic Configuration IPsec Rules
The application listens on the UDS socket for receiving a predefined structure for the
IPsec policy defined in the policy.h file.

Running the Application

NVIDIA DOCA IPsec Security Gateway MLNX-15-060576 _v2.0.2 | 18

The client program or keying daemon should connect to the socket with the same
socket file path provided to the application by the --ipc/-i flags, and send the policy
structure as packed to the application through the same socket.

Note: In the dynamic configuration, the application uses the config section from the
JSON config file and ignores the encrypt_rules and decrypt_rules sections.

The IPsec policy structure:
struct ipsec_security_gw_ipsec_policy {
 /* Protocols attributes */
 uint16_t src_port; /* Policy inner source port */
 uint16_t dst_port; /* Policy inner destination port */
 uint8_t l3_protocol; /* Policy L3 proto {POLICY_L3_TYPE_IPV4,
 POLICY_L3_TYPE_IPV6} */
 uint8_t l4_protocol; /* Policy L4 proto {POLICY_L4_TYPE_UDP,
 POLICY_L4_TYPE_TCP} */
 uint8_t outer_l3_protocol; /* Policy outer L3 type
 {POLICY_L3_TYPE_IPV4, POLICY_L3_TYPE_IPV6} */

 /* Policy attributes */
 uint8_t policy_direction; /* Policy direction {POLICY_DIR_IN,
 POLICY_DIR_OUT} */
 uint8_t policy_mode; /* Policy IPSEC mode
 {POLICY_MODE_TRANSPORT, POLICY_MODE_TUNNEL} */

 /* Security Association attributes */
 uint8_t esn; /* Is ESN enabled? */
 uint8_t icv_length; /* ICV length in bytes {8, 12, 16} */
 uint8_t key_type; /* AES key type {POLICY_KEY_TYPE_128,
 POLICY_KEY_TYPE_256} */
 uint32_t spi; /* Security Parameter Index */
 uint32_t salt; /* Cryptographic salt */
 uint8_t enc_key_data[MAX_KEY_LEN]; /* Encryption key (binary) */

 /* Policy inner and outer addresses */
 char src_ip_addr[MAX_IP_ADDR_LEN + 1]; /* Policy inner IP source address
 in string format */
 char dst_ip_addr[MAX_IP_ADDR_LEN + 1]; /* Policy inner IP destination
 address in string format */
 char outer_src_ip[MAX_IP_ADDR_LEN + 1]; /* Policy outer IP source address
 in string format */
 char outer_dst_ip[MAX_IP_ADDR_LEN + 1]; /* Policy outer IP destination
 address in string format */
};

Note: The policy type, whether it is encrypted or decrypted, is classified according to the
policy_direction attribute:

‣ POLICY_DIR_IN – decryption policy

‣ POLICY_DIR_OUT – encryption policy

NVIDIA DOCA IPsec Security Gateway MLNX-15-060576 _v2.0.2 | 19

Chapter 7. Arg Parser DOCA Flags

Refer to NVIDIA DOCA Arg Parser Programming Guide for more information.

Flag Type Short Flag
Long Flag/
JSON Key Description JSON Content

l log-level Sets the log
level for the
application:

‣ CRITICAL=20

‣ ERROR=30

‣ WARNING=40

‣ INFO=50

‣ DEBUG=60

"log-level":
 60

v version Print program
version
information

N/A

General flags

h help Print a help
synopsis

N/A

c config Path to JSON
file with
configurations

"config":
 security_gateway_config.json

u unsecured PCIe address for
the unsecured
port

"unsecured": "03:00.1"

s secured PCIe address for
the secured port

"secured": "03:00.0"

Program flags

m mode IPsec mode.
Possible
values: tunnel,

"mode": "tunnel"

http://docs.nvidia.com/doca/sdk/pdf/arg-parser-programming-guide.pdf

Arg Parser DOCA Flags

NVIDIA DOCA IPsec Security Gateway MLNX-15-060576 _v2.0.2 | 20

Flag Type Short Flag
Long Flag/
JSON Key Description JSON Content

transport,
udp_transport.

un unsecured-name Interface name
of the unsecured
port

"unsecured-
name": "p1"

sn secured-name Interface name of
the secured port

"secured-
name": "p0"

i ipc IPC socket file
path for receiving
IPsec rules during
runtime

"ipc": "/tmp/
rules_socket"

NVIDIA DOCA IPsec Security Gateway MLNX-15-060576 _v2.0.2 | 21

Chapter 8. Keying Daemon
Integration (StrongSwan)

strongSwan is a keying daemon that uses the Internet Key Exchange Version 2 (IKEv2)
protocol to establish SAs between two peers. strongSwan includes a DOCA plugin that
is part of the strongSwan package in BFB. The plugin is loaded only if the DOCA IPsec
Security Gateway is triggered. The plugin connects to UDS socket and sends IPsec
policies to the application after the key exchange completes.

For more information about the key daemon, please refer to strongSwan documentation.

8.1. End-to-end Architecture
The following diagram presents an architecture where two BlueField DPUs are connected
to each other with DOCA IPsec Security Gateway running on each.

https://wiki.strongswan.org/projects/strongswan/wiki/IntroductiontostrongSwan

Keying Daemon Integration (StrongSwan)

NVIDIA DOCA IPsec Security Gateway MLNX-15-060576 _v2.0.2 | 22

Keying Daemon Integration (StrongSwan)

NVIDIA DOCA IPsec Security Gateway MLNX-15-060576 _v2.0.2 | 23

swanctl is a command line tool that is used for strongSwan IPsec configuration:

 1. Run DOCA IPsec Security Gateway on both sides in dynamic configuration.
 2. Start strongSwan service.
 3. Configure strongSwan IPsec using the swanctl.conf configuration file on both sides.
 4. Start key exchange between the two peers. At the end of the flow, the result arrives

to the DOCA plugin, populates the policy-defined structure, and sends it to the
socket.

 5. DOCA IPsec Security Gateway on both sides reads new policies from the socket,
performs the parsing, creates a DOCA SA object, and adds flow decrypt/encrypt
entry.

This architecture uses P1 uplink on both BlueField DPUs to run the strongSwan key
daemon. To configure the uplink:

 1. Configure an IP addresses for the PFs of both DPUs:

 a). On BF1:
ip addr add 192.168.50.1/24 dev p1

 b). On BF2:
ip addr add 192.168.50.2/24 dev p1

Note: It is possible to configure multiple IP addresses to uplinks to run key
exchanges with different policy attributes.

 2. Verify the connection between two BlueField DPUs.
BF1> ping 192.168.50.2

Note: Make sure that the uplink is not in OVS bridges.

 3. Configure the swanctl.conf files for each machine. They should be located under /
etc/swanctl/conf.d/. Examples for adding swanctl.conf file:

‣ Transport mode:

‣ swanctl.conf example for BF1:
connections {
 BF1-BF2 {
 local_addrs = 192.168.50.1
 remote_addrs = 192.168.50.2
 rekey_time = 0

 local {
 auth = psk
 id = host1
 }
 remote {
 auth = psk
 id = host2
 }

 children {
 bf {
 local_ts = 192.168.50.1/32 [udp/60]
 remote_ts = 192.168.50.2/32 [udp/90]
 esp_proposals = aes128gcm128-x25519-esn
 mode = transport

Keying Daemon Integration (StrongSwan)

NVIDIA DOCA IPsec Security Gateway MLNX-15-060576 _v2.0.2 | 24

 policies_fwd_out = yes
 life_time = 0
 }
 }
 version = 2
 mobike = no
 reauth_time = 0
 proposals = aes128-sha256-x25519
 }
}

secrets {
 ike-BF {
 id-host1 = host1
 id-host2 = host2
 secret = 0sv+NkxY9LLZvwj4qCC2o/gGrWDF2d21jL
 }
}

‣ swanctl.conf example for BF2:
connections {
 BF2-BF1 {
 local_addrs = 192.168.50.2
 remote_addrs = 192.168.50.1
 rekey_time = 0

 local {
 auth = psk
 id = host2
 }
 remote {
 auth = psk
 id = host1
 }

 children {
 bf {
 local_ts = 192.168.50.2/32 [udp/90]
 remote_ts = 192.168.50.1/32 [udp/60]
 esp_proposals = aes128gcm128-x25519-esn
 mode = transport
 life_time = 0
 }
 }
 version = 2
 mobike = no
 reauth_time = 0
 proposals = aes128-sha256-x25519
 }
}

secrets {
 ike-BF {
 id-host1 = host1
 id-host2 = host2
 secret = 0sv+NkxY9LLZvwj4qCC2o/gGrWDF2d21jL
 }
}

‣ Tunnel mode:
connections {
 BF1-BF2 {
 local_addrs = 192.168.50.2
 remote_addrs = 192.168.50.1
 rekey_time = 0

 local {
 auth = psk

Keying Daemon Integration (StrongSwan)

NVIDIA DOCA IPsec Security Gateway MLNX-15-060576 _v2.0.2 | 25

 id = host2
 }
 remote {
 auth = psk
 id = host1
 }

 children {
 bf {
 local_ts = 2001:db8:85a3::8a2e:370:7334/128 [udp/3030]
 remote_ts = 2001:db8:85a3::8a2e:370:7335/128 [udp/55]
 esp_proposals = aes128gcm128-x25519-esn
 life_time = 0
 }
 }
 version = 2
 mobike = no
 proposals = aes128-sha256-x25519
 }
}

secrets {
 ike-BF {
 id-host1 = host1
 id-host2 = host2
 secret = 0sv+NkxY9LLZvwj4qCC2o/gGrWDF2d21jL
 }
}

Note: local_ts and remote_ts must have a netmask of /32 for IPv4 addresses
and /128 for IPv6 addresses.

Note: SA rekey is not supported in DOCA plugin. connection.rekey_time must be
set to 0 and connection.child.life_time must be set to 0.

DOCA IPsec only supports ESP headers, AES-GCM encryption algorithm, and key sizes
128 or 256. Therefore, when setting ESP proposals in the swanctl.conf, please adhere
to the values provided in the following table:

ESP Proposal
Algorithm Type Including
ICV Length Key Size

aes128gcm8 ENCR_AES_GCM_ICV8 128

aes128gcm64 ENCR_AES_GCM_ICV8 128

aes128gcm12 ENCR_AES_GCM_ICV12 128

aes128gcm96 ENCR_AES_GCM_ICV12 128

aes128gcm16 ENCR_AES_GCM_ICV16 128

aes128gcm128 ENCR_AES_GCM_ICV16 128

aes128gcm ENCR_AES_GCM_ICV16 128

aes256gcm8 ENCR_AES_GCM_ICV8 256

aes256gcm64 ENCR_AES_GCM_ICV8 256

aes256gcm12 ENCR_AES_GCM_ICV12 256

aes256gcm96 ENCR_AES_GCM_ICV12 256

aes256gcm16 ENCR_AES_GCM_ICV16 256

Keying Daemon Integration (StrongSwan)

NVIDIA DOCA IPsec Security Gateway MLNX-15-060576 _v2.0.2 | 26

ESP Proposal
Algorithm Type Including
ICV Length Key Size

aes256gcm128 ENCR_AES_GCM_ICV16 256

aes256gcm ENCR_AES_GCM_ICV16 256

8.2. Running the Solution
Run the following commands on both BlueField peers.

 1. Run DOCA IPsec Security Gateway in dynamic configuration, assuming the socket
location is /tmp/rules_socket.
doca_ipsec_security_gw -s 03:00.0 -un <sf_net_dev> -c ./
ipsec_security_gw_config.json -m transport -i /tmp/rules_socket

Note: DOCA IPsec Security Gateway application should be run first.

 2. Edit the /etc/strongswan.d/charon/doca.conf file and add the UDS socket
path. If the socket_path is not set, the plugin uses the default path /tmp/
strongswan_doca_socket.
doca {

Whether to load the plugin
load = yes

Path to DOCA socket
socket_path = /tmp/rules_socket
}

Note: You must provide the application with this path as well.

 3. Restart the strongSwan server:
systemctl restart strongswan-starter.service

Note: If the application has been run with log level debug, you can see that the
connection has been done successfully and the application is waiting for new IPsec
policies.

 4. Verify that the swanctl.conf file exists in /etc/swanctl/conf.d/. directory.

Note: It is recommended to remove any unused conf files under /etc/swanctl/
conf.d/.

 5. Load IPsec configuration:
swanctl --load-all

 6. Start IKE protocol on either the initiator or the target side:
swanctl -i --child <child_name>

In the example above, the child's name is bf.

Keying Daemon Integration (StrongSwan)

NVIDIA DOCA IPsec Security Gateway MLNX-15-060576 _v2.0.2 | 27

8.3. Building strongSwan
To perform some changes in the DOCA plugin in strongSwan zone:

 1. Verify that the dependencies listed here are installed in your environment. libgmp-
dev is missing from that list so make sure to install that as well.

 2. Git clone https://github.com/Mellanox/strongswan.git.
 3. Git checkout BF-5.9.6 branch.
 4. Add your changes in the plugin located under src/libcharon/plugins/doca.
 5. Run autogen.sh within the strongSwan repo.
 6. Run the following:

./configure --enable-openssl --disable-random --prefix=/usr/local --sysconfdir=/
etc --enable-systemd --enable-doca
make
make install
systemctl daemon-reload
systemctl restart strongswan-starter.service

https://github.com/Mellanox/strongswan/tree/BF-5.9.6
https://github.com/Mellanox/strongswan/blob/BF-5.9.6/HACKING
https://github.com/Mellanox/strongswan.git

NVIDIA DOCA IPsec Security Gateway MLNX-15-060576 _v2.0.2 | 28

Chapter 9. References

‣ /opt/mellanox/doca/applications/ipsec_security_gw/src

Notice

This document is provided for information purposes only and shall not be regarded as a warranty of a certain functionality, condition, or quality of a product.
NVIDIA Corporation nor any of its direct or indirect subsidiaries and affiliates (collectively: “NVIDIA”) make no representations or warranties, expressed or
implied, as to the accuracy or completeness of the information contained in this document and assume no responsibility for any errors contained herein.
NVIDIA shall have no liability for the consequences or use of such information or for any infringement of patents or other rights of third parties that may
result from its use. This document is not a commitment to develop, release, or deliver any Material (defined below), code, or functionality.

NVIDIA reserves the right to make corrections, modifications, enhancements, improvements, and any other changes to this document, at any time without
notice.

Customer should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the time of order acknowledgement, unless otherwise
agreed in an individual sales agreement signed by authorized representatives of NVIDIA and customer (“Terms of Sale”). NVIDIA hereby expressly objects
to applying any customer general terms and conditions with regards to the purchase of the NVIDIA product referenced in this document. No contractual
obligations are formed either directly or indirectly by this document.

NVIDIA products are not designed, authorized, or warranted to be suitable for use in medical, military, aircraft, space, or life support equipment, nor in
applications where failure or malfunction of the NVIDIA product can reasonably be expected to result in personal injury, death, or property or environmental
damage. NVIDIA accepts no liability for inclusion and/or use of NVIDIA products in such equipment or applications and therefore such inclusion and/or use
is at customer’s own risk.

NVIDIA makes no representation or warranty that products based on this document will be suitable for any specified use. Testing of all parameters of each
product is not necessarily performed by NVIDIA. It is customer’s sole responsibility to evaluate and determine the applicability of any information contained
in this document, ensure the product is suitable and fit for the application planned by customer, and perform the necessary testing for the application in
order to avoid a default of the application or the product. Weaknesses in customer’s product designs may affect the quality and reliability of the NVIDIA
product and may result in additional or different conditions and/or requirements beyond those contained in this document. NVIDIA accepts no liability
related to any default, damage, costs, or problem which may be based on or attributable to: (i) the use of the NVIDIA product in any manner that is contrary
to this document or (ii) customer product designs.

No license, either expressed or implied, is granted under any NVIDIA patent right, copyright, or other NVIDIA intellectual property right under this document.
Information published by NVIDIA regarding third-party products or services does not constitute a license from NVIDIA to use such products or services or
a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property rights
of the third party, or a license from NVIDIA under the patents or other intellectual property rights of NVIDIA.

Reproduction of information in this document is permissible only if approved in advance by NVIDIA in writing, reproduced without alteration and in full
compliance with all applicable export laws and regulations, and accompanied by all associated conditions, limitations, and notices.

THIS DOCUMENT AND ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS
(TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR
OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND
FITNESS FOR A PARTICULAR PURPOSE. TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL NVIDIA BE LIABLE FOR ANY DAMAGES, INCLUDING
WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF
THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF NVIDIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
Notwithstanding any damages that customer might incur for any reason whatsoever, NVIDIA’s aggregate and cumulative liability towards customer for the
products described herein shall be limited in accordance with the Terms of Sale for the product.

Trademarks

NVIDIA, the NVIDIA logo, and Mellanox are trademarks and/or registered trademarks of Mellanox Technologies Ltd. and/or NVIDIA Corporation in the
U.S. and in other countries. The registered trademark Linux® is used pursuant to a sublicense from the Linux Foundation, the exclusive licensee of Linus
Torvalds, owner of the mark on a world¬wide basis. Other company and product names may be trademarks of the respective companies with which they
are associated.

Copyright

© 2023 NVIDIA Corporation & affiliates. All rights reserved.

NVIDIA Corporation | 2788 San Tomas Expressway, Santa Clara, CA 95051
http://www.nvidia.com

http://www.nvidia.com

	Table of Contents
	Introduction
	System Design
	Application Architecture
	3.1. Static Configuration
	3.2. Dynamic Configuration
	3.3. DOCA Flow Modes
	3.3.1. VNF Mode
	3.3.1.1. Encryption
	3.3.1.2. Decryption

	3.3.2. Switch Mode

	DOCA Libraries
	Configuration Flow
	Running the Application
	6.1. Static Configuration IPsec Rules
	6.2. Dynamic Configuration IPsec Rules

	Arg Parser DOCA Flags
	Keying Daemon Integration (StrongSwan)
	8.1. End-to-end Architecture
	8.2. Running the Solution
	8.3. Building strongSwan

	References

