
MLNX-15-060531 _v2.2.0 | October 2023

NVIDIA DOCA Firefly Service

Guide

NVIDIA DOCA Firefly Service MLNX-15-060531 _v2.2.0 | ii

Table of Contents

Chapter 1. Introduction..1

Chapter 2. Requirements.. 3
2.1. Firmware Version..3

2.2. BlueField BSP Version.. 3

2.3. Embedded Mode.. 3

2.3.1. Configuring Firmware Settings on DPU for Embedded Mode..3

2.3.2. Ensuring OVS Hardware Offload...4

2.3.3. Helper Scripts..4

2.3.3.1. prepare_for_embedded_mode.sh..4

2.3.3.2. set_new_sf.sh...5

2.3.4. Setting Up Network Interfaces for Embedded Mode.. 5

2.4. Separated Mode... 6

2.4.1. Configuring Firmware Settings on DPU for Separated Mode...6

2.4.2. Setting Up Network Interfaces for Separated Mode... 7

2.5. Host-based Deployment... 7

Chapter 3. Service Deployment..8
3.1. DPU Deployment..8

3.2. Host Deployment... 8

Chapter 4. Configuration...9
4.1. Built-in Config File...9

4.2. Custom Config File..9

4.3. Overriding Specific Config File Parameters... 10

4.4. Ensuring and Debugging Correctness of Config Files.. 10

Chapter 5. Description...13
5.1. Providers..13

5.2. Profiles..13

5.3. Outputs..14

5.3.1. Container Output.. 14

5.3.2. Firefly Output..15

5.3.3. ptp4l Output..15

5.3.4. phc2sys Output..16

5.4. Tx Timestamping Support on Embedded Mode.. 16

5.4.1. Troubleshooting Tx Timestamp Issues...17

5.5. PHC2SYS... 18

5.6. PTP Monitoring.. 18

NVIDIA DOCA Firefly Service MLNX-15-060531 _v2.2.0 | iii

5.6.1. Time Representations..19

5.6.2. Monitor Server..20

5.6.3. Monitor Client... 22

5.7. VLAN Tagging..22

5.7.1. Separated Mode...22

5.7.2. Embedded Mode..23

5.8. Multiple Interfaces..23

Chapter 6. Troubleshooting... 24

Chapter 7. PTP Profile Default Config Files... 26
7.1. Media Profile..26

7.2. Default Profile...26

NVIDIA DOCA Firefly Service MLNX-15-060531 _v2.2.0 | iv

NVIDIA DOCA Firefly Service MLNX-15-060531 _v2.2.0 | 1

Chapter 1. Introduction

DOCA Firefly Service provides precision time protocol (PTP) based time syncing services
to the BlueField DPU.

PTP is a protocol used to synchronize clocks in a network. When used in conjunction with
hardware support, PTP is capable of sub-microsecond accuracy, which is far better than
is what is normally obtainable with network time protocol (NTP). PTP support is divided
between the kernel and user space. The ptp4l program implements the PTP boundary
clock and ordinary clock. With hardware time stamping, it is used to synchronize the PTP
hardware clock to the master clock.

Introduction

NVIDIA DOCA Firefly Service MLNX-15-060531 _v2.2.0 | 2

NVIDIA DOCA Firefly Service MLNX-15-060531 _v2.2.0 | 3

Chapter 2. Requirements

Some of the features provided by Firefly require specific hardware BlueField DPU
capabilities:

‣ PPS – requires special BlueField DPUs with PPS capabilities

‣ SyncE – requires special BlueField DPUs with SyncE capabilities

‣ PTP – supported by all BlueField DPUs

Note that failure to run PPS or SyncE due to missing hardware support is noted in the
container output, but the container will continue to run the timing services it can provide
on the provided hardware, such as PTP.

2.1. Firmware Version
Your firmware version must be 24.33.1048 or higher.

2.2. BlueField BSP Version
The supported BlueField image versions are 3.9.0 and higher.

2.3. Embedded Mode

2.3.1. Configuring Firmware Settings on DPU for
Embedded Mode

 1. Set the DPU to embedded mode (default mode):
sudo mlxconfig -y -d 03:00.0 s INTERNAL_CPU_MODEL=1

 2. Enable the real time clock (RTC):
sudo mlxconfig -d 03:00.0 set REAL_TIME_CLOCK_ENABLE=1

 3. Power cycle the DPU to apply the configuration.
 4. You may check the DPU mode using the following command:

sudo mlxconfig -d 03:00.0 q | grep INTERNAL_CPU_MODEL

Requirements

NVIDIA DOCA Firefly Service MLNX-15-060531 _v2.2.0 | 4

Example output
 INTERNAL_CPU_MODEL EMBEDDED_CPU(1)

2.3.2. Ensuring OVS Hardware Offload
DOCA Firefly requires that hardware offload is activated in Open vSwitch (OVS). This is
enabled by default as part of the BFB image installed on the DPU.

To verify the hardware offload configuration in OVS:
sudo ovs-vsctl get Open_vSwitch . other_config | grep hw-offload
Example output
 {hw-offload="true"}

If inactive:

 1. Activate hardware offloading by running:
sudo ovs-vsctl set Open_vSwitch . other_config:hw-offload=true;

 2. Restart the OVS service:
sudo /etc/init.d/openvswitch-switch restart

 3. Power cycle the DPU to apply the configuration.

2.3.3. Helper Scripts
Firefly's deployment contains a script to help with the configuration steps required for
the network interface in embedded mode:

‣ scripts/doca_firefly/<firefly-version>/prepare_for_embedded_mode.sh

‣ scripts/doca_firefly/<firefly-version>/set_new_sf.sh

The latest DOCA Firefly version is 1.2.0.

Both scripts are included as part of DOCA's container resource which can be downloaded
according to the instructions in the NVIDIA DOCA Container Deployment Guide. For
more information about the structure of the DOCA container resource, refer to section
"Structure of NGC Resource" in the guide.

Note: Due to technical limitations of the NGC resource, both scripts are provided without
execute (+x) permissions. This could be resolved by running the following command:
chmod +x scripts/doca_firefly/<firefly-version>/*.sh

2.3.3.1. prepare_for_embedded_mode.sh
This script automates all the steps mentioned in section Setting Up Network Interfaces
for Embedded Mode and configures a freshly installed BFB image to the settings
required by DOCA Firefly.

Notes:

‣ The script deletes all previous OVS settings and creates a single OVS bridge that
matches the definitions below

‣ The script should only be run once when connecting to the DPU for the first time or
after a power cycle

http://docs.nvidia.com/doca/sdk/pdf/container-deployment.pdf

Requirements

NVIDIA DOCA Firefly Service MLNX-15-060531 _v2.2.0 | 5

‣ The only manual step required after using this script is configuring the IP address for
the created network interface (step 5 in section Setting Up Network Interfaces for
Embedded Mode)

Script arguments:

‣ SF number (checks if already exists)

Examples:

‣ Prepare OVS settings using an SF indexed 4:
chmod +x ./*.sh
./prepare_for_embedded_mode.sh 4

The script makes use of set_new_sf.sh as a helper script.

2.3.3.2. set_new_sf.sh
Creates a new trusted SF and marks it as "trusted".

Script arguments:

‣ PCIe address

‣ SF number (checks if already exists)

‣ MAC address (if absent, a random address is generated)

Examples:

‣ Create SF with number "4" over port 0 of the DPU:
./set_new_sf.sh 0000:03:00.0 4

‣ Create SF with number "5" over port 0 of the DPU and a specific MAC address:
./set_new_sf.sh 0000:03:00.0 5 aa:bb:cc:dd:ee:ff

‣ Create SF with number "4" over port 1 of the DPU:
./set_new_sf.sh 0000:03:00.1 4

The first two examples should work out of the box for a BlueField-2 device and create
SF4 and SF5 respectively.

2.3.4. Setting Up Network Interfaces for
Embedded Mode

 1. Create a trusted SF to be used by the service according to the Scalable Function
Setup Guide.

Note: The following instructions assume that the SF has been created using index 4.

 2. Create the required OVS setting as is shown in the architecture diagram:
$ sudo ovs-vsctl add-br uplink
$ sudo ovs-vsctl add-port uplink p0
$ sudo ovs-vsctl add-port uplink en3f0pf0sf4
This port is needed to ensure we have traffic host<->network as well
$ sudo ovs-vsctl add-port uplink pf0hpf

http://docs.nvidia.com/doca/sdk/pdf/scalable-functions.pdf
http://docs.nvidia.com/doca/sdk/pdf/scalable-functions.pdf

Requirements

NVIDIA DOCA Firefly Service MLNX-15-060531 _v2.2.0 | 6

 3. Verify the OVS settings:
sudo ovs-vsctl show
 Bridge uplink
 Port pf0hpf
 Interface pf0hpf
 Port en3f0pf0sf4
 Interface en3f0pf0sf4
 Port p0
 Interface p0
 Port uplink
 Interface uplink
 type: internal

 4. Enable TX timestamping on the SF interface (not the representor):
tx port timestamp offloading
sudo ethtool --set-priv-flags enp3s0f0s4 tx_port_ts on

 5. Enable the interface and set an IP address for it:
configure ip for the interface:
sudo ifconfig enp3s0f0s4 <ip-addr> up

 6. Configure OVS to support TX timestamping over this SF and multicast traffic in
general:
Multicast-related definitions
$ sudo ovs-vsctl set Bridge uplink mcast_snooping_enable=true
$ sudo ovs-vsctl set Bridge uplink other_config:mcast-snooping-disable-flood-
unregistered=true
$ sudo ovs-vsctl set Port p0 other_config:mcast-snooping-flood=true
$ sudo ovs-vsctl set Port p0 other_config:mcast-snooping-flood-reports=true
PTP-related definitions
$ sudo ovs-ofctl add-flow uplink
 in_port=en3f0pf0sf4,udp,tp_src=319,actions=output:p0
$ sudo ovs-ofctl add-flow uplink
 in_port=p0,udp,tp_src=319,actions=output:en3f0pf0sf4
$ sudo ovs-ofctl add-flow uplink
 in_port=en3f0pf0sf4,udp,tp_src=320,actions=output:p0
$ sudo ovs-ofctl add-flow uplink
 in_port=p0,udp,tp_src=320,actions=output:en3f0pf0sf4

Note: If your OVS bridge uses a name other than uplink, make sure that the used
name is reflected in the ovs-vsctl set Bridge command:
$ sudo ovs-vsctl set Bridge <bridge-name> mcast_snooping_enable=true

2.4. Separated Mode

2.4.1. Configuring Firmware Settings on DPU for
Separated Mode

 1. Set the DPU mode to "Separated":
sudo mlxconfig -y -d 03:00.0 s INTERNAL_CPU_MODEL=0

 2. Enable RTC:
sudo mlxconfig -d 03:00.0 set REAL_TIME_CLOCK_ENABLE=1

 3. Power cycle the DPU to apply the configuration.
 4. You may check the DPU mode using the following command:

sudo mlxconfig -d 03:00.0 q | grep INTERNAL_CPU_MODEL

Requirements

NVIDIA DOCA Firefly Service MLNX-15-060531 _v2.2.0 | 7

Example output
 INTERNAL_CPU_MODEL SEPARATED_HOST(0)

2.4.2. Setting Up Network Interfaces for
Separated Mode

 1. Make sure that that p0 is not connected to an OVS bridge:
sudo ovs-vsctl show

 2. Enable TX timestamping on the p0 interface:
TX port timestamp offloading (assuming PTP interface is p0)
sudo ethtool --set-priv-flags p0 tx_port_ts on

 3. Enable the interface and set an IP address for it:
Configure IP for the interface
sudo ifconfig p0 <ip-addr> up

2.5. Host-based Deployment
Host-based deployment requires the same configuration described under Separated
Mode.

NVIDIA DOCA Firefly Service MLNX-15-060531 _v2.2.0 | 8

Chapter 3. Service Deployment

3.1. DPU Deployment
For information about the deployment of DOCA containers on top of the BlueField DPU,
refer to NVIDIA DOCA Container Deployment Guide.

Service-specific configuration steps and deployment instructions can be found under
the service's container page.

Note: DOCA Firefly can also be deployed on DPUs not connected to the Internet. For
instructions, refer to the relevant section in the NVIDIA DOCA Container Deployment
Guide.

3.2. Host Deployment
DOCA Firefly has a version adapted for host-based deployments. For more information
about the deployment of DOCA containers on top of a host, refer to the NVIDIA DOCA
Container Deployment Guide.

The following is the docker command for deploying DOCA Firefly on the host:
sudo docker run --privileged --net=host -v /var/log/doca/firefly:/var/log/firefly -
e PTP_INTERFACE='eth2' -it nvcr.io/nvidia/doca/doca_firefly:1.2.0-doca2.2.0-host /
entrypoint.sh

Where:

‣ Additional YAML configs may be passed as environment variables as additional -e
key-value pairs as done with PTP_INTERFACE above

‣ The exact container tag should be the desired tag as chosen on DOCA Firefly's NGC
page

http://docs.nvidia.com/doca/sdk/pdf/container-deployment.pdf
https://catalog.ngc.nvidia.com/orgs/nvidia/teams/doca/containers/doca_firefly
http://docs.nvidia.com/doca/sdk/pdf/container-deployment.pdf
http://docs.nvidia.com/doca/sdk/pdf/container-deployment.pdf
http://docs.nvidia.com/doca/sdk/pdf/container-deployment.pdf
http://docs.nvidia.com/doca/sdk/pdf/container-deployment.pdf
https://catalog.ngc.nvidia.com/orgs/nvidia/teams/doca/containers/doca_firefly
https://catalog.ngc.nvidia.com/orgs/nvidia/teams/doca/containers/doca_firefly

NVIDIA DOCA Firefly Service MLNX-15-060531 _v2.2.0 | 9

Chapter 4. Configuration

Both PTP programs included as part of the linuxptp package, ptp4l and phc2sys, have
configuration files that allow customizing various PTP-related settings.

4.1. Built-in Config File
Each profile has its own base PTP configuration file for ptp4l. For example, the Media
profile PTP configuration file is ptp4l-media.conf.

The built-in PTP configuration files can be found under PTP Profile Default Config
Files. For ease-of-use, those files are provided as part of DOCA's container resource
as downloaded from NGC and are placed under Firefly's configs directory (scripts/
doca_firefly/<firefly-version>/configs).

Note: When using a built-in configuration file, Firefly uses the files as stored within the
container itself in the /etc/linuxptp directory. The configuration files included in the
NGC resource are only provided for ease of access. Modifying them does not impact the
configuration used in practice by the container. Instead, updates to the configuration
should be done as described in the following sections.

4.2. Custom Config File
Instead of using a profile's base config file, users can create a file of their own, for either
ptp4l or phc2sys.

To set a custom config file, users should locate their config file in the directory /etc/
firefly and set the config file name in DOCA Firefly's YAML file.

For example, to set a custom linuxptp config file, the user can set the parameter
PTP_CONFIG_FILE in the YAML file:
- name: PTP_CONFIG_FILE
 value: my_custom_ptp.conf

In this example, my_custom_ptp.conf should be placed at /etc/firefly/
my_custom_ptp.conf.

Configuration

NVIDIA DOCA Firefly Service MLNX-15-060531 _v2.2.0 | 10

4.3. Overriding Specific Config File
Parameters

Instead of replacing the entire config file, users may opt to override specific
parameters. This can be done using the following variable syntax in the YAML file:
CONF_<TYPE>_<SECTION>_<PARAMETER_NAME>.

‣ TYPE – either PTP or phc2sys

‣ SECTION – the section in the config file that the parameter should be placed in

Note: If the specified section does not already exist in the config file, a new section is
created unless it refers to a PTP network interface that has not been included in the
PTP_INTERFACE YAML field.

‣ PARAMETER_NAME – the config parameter name as should be placed in the config file

Note: If the parameter name already exists in the config file, then the value is changed
according to the value provided in the .yaml file. If the parameter name does not
already exist in the config file, then it is added.

For example, the following variable in the YAML file definition changes the value of the
parameter priority1 under section global in the PTP config file to 64.
- name: CONF_PTP_global_priority1
 value: "64"

Note: Configuring unicast_master_table through the YAML file is not supported due to
the structure of the table (i.e., multiple entries sharing the same key).

4.4. Ensuring and Debugging
Correctness of Config Files

The previous sections describe 2 layers for the configuration file definitions:

‣ Basic configuration file – either a built-in config file or a custom config file

‣ Adding/overriding values to/from the YAML file

In practice, there are slightly more layers in place, and the precedence is as follows
(presented in increasing order):

‣ Default configuration values of the PTP program (ptp4l for instance) – holds values of
all available configuration options

‣ Your chosen configuration file – contains a subset of options

‣ Definitions from the YAML file – narrower subset

Configuration

NVIDIA DOCA Firefly Service MLNX-15-060531 _v2.2.0 | 11

‣ Firefly mandatory values

When combining the supplied configuration file with the definitions from the YAML
file, Firefly goes over those definitions and checks them against a predefined set of
configuration options:

‣ Warning only – warns if a certain value leads to known issues in a supported
deployment scenario

‣ Override – container-internal definitions that should not be set by the user and will be
overridden by Firefly

Suitable log messages are provided in either case:
Example for a warning
2023-01-31 11:55:13 - Firefly - Config - INFO - Missing explicit
 definition "fault_reset_interval", verifying default value instead: "4"
2023-01-31 11:55:13 - Firefly - Config - WARNING - Value "4" for
 definition "fault_reset_interval" will be invalid in Embedded Mode, expected a
 value lesser or equal to "1"
2023-01-31 11:55:13 - Firefly - Config - WARNING - Continuing with invalid value
Example for an override
2023-01-31 11:21:00 - Firefly - Config - WARNING - Invalid value "/var/run/
ptp4l2" for definition "uds_address", expected "/var/run/ptp4l"
2023-01-31 11:21:00 - Firefly - Config - INFO - Setting definition "uds_address"
 value to the following: "/var/run/ptp4l"

At the end of this process, an updated configuration file is generated by Firefly to be
used later by the various time providers (as mentioned below). To avoid accidental
modification of a user-supplied configuration file or permission issues, the finalized file is
generated within the container under the /tmp directory.

For instance, if using a custom configuration file named my_custom_ptp.conf under the
/etc/firefly directory on the DPU, the updated file will reside within the container at
the following path: /tmp/my_custom_ptp.conf.

For troubleshooting possible issues with the configuration file, users can perform one of
the following operations:

‣ Connect to the container directly as is explained in the "debugging finalized
configuration file" bullet under Troubleshooting.

‣ Map the container's /tmp directory to the DPU using the built-in support in the YAML
file:

‣ Before the change:
 # Uncomment when debugging the finalized configuration files used - Part
 #1
 #- name: debug-firefly-volume
 # hostPath:
 # path: /tmp/firefly
 # type: DirectoryOrCreate
 containers:
 ...
 volumeMounts:
 - name: logs-firefly-volume
 mountPath: /var/log/firefly
 - name: conf-firefly-volume
 mountPath: /etc/firefly
 # Uncomment when debugging the finalized configuration files used - Part
 #2
 #- name: debug-firefly-volume
 # mountPath: /tmp

Configuration

NVIDIA DOCA Firefly Service MLNX-15-060531 _v2.2.0 | 12

‣ After the change:
 # Uncomment when debugging the finalized configuration files used - Part
 #1
 - name: debug-firefly-volume
 hostPath:
 path: /tmp/firefly
 type: DirectoryOrCreate
 containers:
 ...
 volumeMounts:
 - name: logs-firefly-volume
 mountPath: /var/log/firefly
 - name: conf-firefly-volume
 mountPath: /etc/firefly
 # Uncomment when debugging the finalized configuration files used - Part
 #2
 - name: debug-firefly-volume
 mountPath: /tmp

Note: The finalized configuration file keeps the sections and config options in the same
order as they appear in the original file, yet the file is stripped from spare new lines or
comment lines. This should be taken into considerations when directly accessing it during
a debugging session.

NVIDIA DOCA Firefly Service MLNX-15-060531 _v2.2.0 | 13

Chapter 5. Description

5.1. Providers
DOCA Firefly Service uses the following third-party providers to provide time syncing
services:

‣ Linuxptp

‣ PTP – PTP service, provided by the PTP4L program

‣ PHC2SYS – OS time calibration, provided by the PHC2SYS program

‣ Testptp

‣ PPS – PPS settings service

Each of the providers can be enabled, disabled or set to use the setting defined by the
configuration profile:

‣ YAML setting – <provider-name>_STATE

‣ Supported values – enable, disable, defined_by_profile

Note: For the default profile settings per provider, refer to the table under Profiles.

The following is an example YAML setting for specifically disabling the phc2sys provider:
- name: PHC2SYS_STATE
 value: "disable"

5.2. Profiles
DOCA Firefly Service includes profiles which represent common use cases for the Firefly
service that provide a different default configuration per profile:

Profiles Media Default

Purpose Media productions Any user that requires PTP

Content PTP PTP

PTP Enabled Enabled

Description

NVIDIA DOCA Firefly Service MLNX-15-060531 _v2.2.0 | 14

Profiles Media Default
PTP profile SMPTE 2059-2 PTP default profile

PTP Client/Server(a) Client-only Both

PHC2SYS Enabled Enabled

PPS (in/out) Enabled Enabled

Note: (a) Client-only is only relevant to a single PTP interface. If more than one PTP
interface is provided in the YAML file, both modes are enabled.

5.3. Outputs

5.3.1. Container Output
While running, the full output of the DOCA Firefly Service container can be viewed using
the following command:
sudo crictl logs <CONTAINER-ID>

Where CONTANIER-ID can be retrieved using the following command:
sudo crictl ps

For example, in the following output, the container ID is 8f368b98d025b.
$ sudo crictl ps
CONTAINER IMAGE CREATED STATE NAME
 ATTEMPT POD ID POD
8f368b98d025b 289809f312b4c 2 seconds ago Running
 doca-firefly 0 5af59511b4be4 doca-firefly-some-
computer-name

The output of the container depends on the services supported by the hardware
and enabled via configuration and the profile selected. However, note that any of the
configurations runs PTP, so when DOCA FireFly is running successfully expect to see the
line Running ptp4l.

The following is an example of the expected container output when running the default
profile on a DPU that supports PPS:
2023-07-10 11:44:17 - Firefly - Init - INFO - Starting DOCA Firefly - Version
 1.2.0
2023-07-10 11:44:17 - Firefly - Init - INFO - Selected features:
2023-07-10 11:44:17 - Firefly - Init - INFO - [+] PTP - Enabled - ptp4l
 will be used
2023-07-10 11:44:17 - Firefly - Init - INFO - [+] PHC2SYS - Enabled - phc2sys
 will be used
2023-07-10 11:44:17 - Firefly - Init - INFO - [+] PPS - Enabled - testptp
 will be used (if supported by hardware)
2023-07-10 11:44:17 - Firefly - Init - INFO - Going to analyze the
 configuration files
2023-07-10 11:44:17 - Firefly - Init - INFO - Requested the following PTP
 interface: p0
2023-07-10 11:44:17 - Firefly
2023-07-10 11:44:17 - Firefly - Init - INFO - Starting PPS configuration
2023-07-10 11:44:17 - Firefly - Init - INFO - [+] PPS is supported by hardware
2023-07-10 11:44:17 - Firefly - Init - INFO - set pin function okay
2023-07-10 11:44:17 - Firefly - Init - INFO - [+] PPS in - Activated
2023-07-10 11:44:17 - Firefly - Init - INFO - set pin function okay

Description

NVIDIA DOCA Firefly Service MLNX-15-060531 _v2.2.0 | 15

2023-07-10 11:44:17 - Firefly - Init - INFO - [+] PPS out - Activated
2023-07-10 11:44:17 - Firefly - Init - INFO - name mlx5_pps0 index 0 func 1
 chan 0
2023-07-10 11:44:17 - Firefly - Init - INFO - name mlx5_pps1 index 1 func 2
 chan 0
2023-07-10 11:44:17 - Firefly - Init - INFO - periodic output request okay
2023-07-10 11:44:17 - Firefly
2023-07-10 11:44:17 - Firefly - Init - INFO - Running ptp4l
2023-07-10 11:44:17 - Firefly - Init - INFO - Running Firefly PTP Monitor
2023-07-10 11:44:17 - Firefly - Init - INFO - Running phc2sys

The following is an example of the expected container output when running the default
profile on a DPU that does not support PPS:
2023-07-10 11:44:17 - Firefly - Init - INFO - Starting DOCA Firefly - Version
 1.2.0
2023-07-10 11:44:17 - Firefly - Init - INFO - Selected features:
2023-07-10 11:44:17 - Firefly - Init - INFO - [+] PTP - Enabled - ptp4l
 will be used
2023-07-10 11:44:17 - Firefly - Init - INFO - [+] PHC2SYS - Enabled - phc2sys
 will be used
2023-07-10 11:44:17 - Firefly - Init - INFO - [+] PPS - Enabled - testptp
 will be used (if supported by hardware)
2023-07-10 11:44:17 - Firefly - Init - INFO - Going to analyze the
 configuration files
2023-07-10 11:44:17 - Firefly - Init - INFO - Requested the following PTP
 interface: p0
2023-07-10 11:44:17 - Firefly
2023-07-10 11:44:17 - Firefly - Init - INFO - Starting PPS configuration
2023-07-10 11:44:17 - Firefly - Init - INFO - [-] PPS capability is missing,
 seems that the card doesn't support PPS
2023-07-10 11:44:17 - Firefly - Init - INFO - capabilities:
2023-07-10 11:44:17 - Firefly - Init - INFO - 100000000 maximum frequency
 adjustment (ppb)
2023-07-10 11:44:17 - Firefly - Init - INFO - 0 programmable alarms
2023-07-10 11:44:17 - Firefly - Init - INFO - 0 external time stamp channels
2023-07-10 11:44:17 - Firefly - Init - INFO - 0 programmable periodic signals
2023-07-10 11:44:17 - Firefly - Init - INFO - 0 pulse per second
2023-07-10 11:44:17 - Firefly - Init - INFO - 0 programmable pins
2023-07-10 11:44:17 - Firefly - Init - INFO - 0 cross timestamping
2023-07-10 11:44:17 - Firefly
2023-07-10 11:44:17 - Firefly - Init - INFO - Running ptp4l
2023-07-10 11:44:17 - Firefly - Init - INFO - Running Firefly PTP Monitor
2023-07-10 11:44:17 - Firefly - Init - INFO - Running phc2sys

5.3.2. Firefly Output
On top of the container's log, Firefly defines an additional, non-volatile log that can be
found in /var/log/doca/firefly/firefly.log.

This file contains the same output described under Container Output, and is useful for
debugging deployment errors should the container stop its execution.

Note: To avoid disk space issues, the /var/log/doca/firefly/firefly.log file only
contains the log from Firefly's initialization, and not the logs of the rest of the modules
(ptp4l, phc2sys, etc.) or that of the PTP monitor. The latter is still included in the container
log and can be inspected using the command sudo crictl logs <CONTAINER-ID>.

5.3.3. ptp4l Output
The ptp4l output can be found in the file /var/log/doca/firefly/ptp4l.log.

Description

NVIDIA DOCA Firefly Service MLNX-15-060531 _v2.2.0 | 16

Example output:
ptp4l[192710.691]: rms 1 max 1 freq -114506 +/- 0 delay -15 +/- 0
ptp4l[192712.692]: rms 6 max 9 freq -114501 +/- 3 delay -15 +/- 0
ptp4l[192714.692]: rms 7 max 9 freq -114511 +/- 3 delay -13 +/- 0
ptp4l[192716.692]: rms 5 max 7 freq -114502 +/- 1 delay -13 +/- 0
ptp4l[192718.693]: rms 4 max 6 freq -114509 +/- 2 delay -13 +/- 0
ptp4l[192720.693]: rms 3 max 3 freq -114506 +/- 2 delay -13 +/- 0
ptp4l[192722.694]: rms 4 max 6 freq -114510 +/- 3 delay -12 +/- 0
ptp4l[192724.694]: rms 5 max 7 freq -114510 +/- 5 delay -12 +/- 1
ptp4l[192726.695]: rms 4 max 5 freq -114508 +/- 3 delay -11 +/- 0
ptp4l[192728.695]: rms 6 max 9 freq -114504 +/- 4 delay -11 +/- 0

5.3.4. phc2sys Output
The phc2sys output can be found in the file /var/log/doca/firefly/phc2sys.log.

Example output:
phc2sys[1873325.928]: reconfiguring after port state change
phc2sys[1873325.928]: selecting CLOCK_REALTIME for synchronization
phc2sys[1873325.928]: selecting enp3s0f0s4 as the master clock
phc2sys[1873325.928]: CLOCK_REALTIME phc offset 1378 s2 freq -165051 delay
 255
phc2sys[1873326.928]: CLOCK_REALTIME phc offset 1378 s2 freq -163673 delay
 240
phc2sys[1873327.928]: port 62b785.fffe.0c9369-1 changed state
phc2sys[1873327.929]: CLOCK_REALTIME phc offset 14 s2 freq -164624 delay
 255
phc2sys[1873328.936]: CLOCK_REALTIME phc offset 89 s2 freq -164545 delay
 240

5.4. Tx Timestamping Support on
Embedded Mode

When the DPU is operating in Embedded Mode, additional OVS configuration is needed
as mentioned in step 6 under Setting Up Network Interfaces for Embedded Mode. This
configuration is associated with the following categories:

‣ Proper support for incoming/outgoing multicast traffic

‣ Enabling Tx timestamping

Firefly only gets the packet timestamping for outgoing PTP messages (Tx timestamping)
when they are offloaded to the hardware. As such, when working with OVS, you must
ensure this traffic flow is properly recognized and offloaded. If the offloading does not
take place, Firefly gets stuck in a fault loop while waiting to receive the Tx timestamp
events:
ptp4l[2912.797]: timed out while polling for tx timestamp
ptp4l[2912.797]: increasing tx_timestamp_timeout may correct this issue, but it is
 likely caused by a driver bug
ptp4l[2912.797]: port 1 (enp3s0f0s4): send sync failed
ptp4l[2923.528]: timed out while polling for tx timestamp
ptp4l[2923.528]: increasing tx_timestamp_timeout may correct this issue, but it is
 likely caused by a driver bug
ptp4l[2923.528]: port 1 (enp3s0f0s4): send sync failed

The solution to this issue contains several layers:

Description

NVIDIA DOCA Firefly Service MLNX-15-060531 _v2.2.0 | 17

‣ Activation of hardware offloading in OVS

‣ OpenFlow rules that ensure OVS properly recognizes the traffic and offloads it to the
hardware

‣ Modification to the fault_reset_interval configuration value to ensure timely
recovery from the fault induced by the first packet being always treated by software
(until the rule is offloaded to hardware)

As such, Firefly requires that the fault_reset_interval value is 1 or less. Proper
warnings are raised if an improper value is detected. The value is updated accordingly in
the built-in profiles.

When these configurations are in order, Firefly includes a report for a single fault during
boot, but recovers from it and continues as usual:
ptp4l[3715.687]: timed out while polling for tx timestamp
ptp4l[3715.687]: increasing tx_timestamp_timeout may correct this issue, but it is
 likely caused by a driver bug
ptp4l[3715.687]: port 1 (enp3s0f0s4): send delay request failed

5.4.1. Troubleshooting Tx Timestamp Issues
As explained earlier, there are several layers required to ensure Tx timestamping works as
necessary by Firefly. The following is a list of commands to debug the state of each layer:

 1. Inspecting the OpenFlow rules:
$ sudo ovs-ofctl dump-flows uplink
cookie=0x0, duration=4075.576s, table=0, n_packets=2437, n_bytes=209582,
 udp,in_port=en3f0pf0sf4,tp_src=319 actions=output:p0
cookie=0x0, duration=4075.549s, table=0, n_packets=1216, n_bytes=109420,
 udp,in_port=p0,tp_src=319 actions=output:en3f0pf0sf4
cookie=0x0, duration=4075.521s, table=0, n_packets=13, n_bytes=1242,
 udp,in_port=en3f0pf0sf4,tp_src=320 actions=output:p0
cookie=0x0, duration=4074.604s, table=0, n_packets=3034, n_bytes=297376,
 udp,in_port=p0,tp_src=320 actions=output:en3f0pf0sf4
cookie=0x0, duration=4075.856s, table=0, n_packets=184, n_bytes=12901, priority=0
 actions=NORMAL

 2. Inspecting hardware TC rules while DOCA Firefly is deployed (the rules age out after
10 seconds without traffic):
$ sudo tc -s -d filter show dev en3f0pf0sf4 egress
filter ingress protocol ip pref 4 flower chain 0
filter ingress protocol ip pref 4 flower chain 0 handle 0x1
 eth_type ipv4
 ip_proto udp
 src_port 320
 ip_flags nofrag
 in_hw in_hw_count 1
 action order 1: mirred (Egress Redirect to device p0) stolen
 index 3 ref 1 bind 1 installed 7 sec used 7 sec
 Action statistics:
 Sent 0 bytes 0 pkt (dropped 0, overlimits 0 requeues 0)
 backlog 0b 0p requeues 0
 cookie bec8bd6ede4e86341e9045a6edb58ca2
 no_percpu

filter ingress protocol ip pref 4 flower chain 0 handle 0x2
 eth_type ipv4
 ip_proto udp
 src_port 319
 ip_flags nofrag
 in_hw in_hw_count 1

Description

NVIDIA DOCA Firefly Service MLNX-15-060531 _v2.2.0 | 18

 action order 1: mirred (Egress Redirect to device p0) stolen
 index 4 ref 1 bind 1 installed 6 sec used 6 sec
 Action statistics:
 Sent 0 bytes 0 pkt (dropped 0, overlimits 0 requeues 0)
 backlog 0b 0p requeues 0
 cookie c568d97efd400de98608fbbf86ccdf3c
 no_percpu

Note: If no TC rules are present when Firefly is running, this usually indicates that
Hardware Offloading is disabled at OVS level, in which case it should be activated as
explained under Ensuring OVS Hardware Offload.

5.5. PHC2SYS
Firefly uses the phc2sys utility to synchronize the OS's clock to the accurate time
stamps received by ptp4l.

Through the YAML file, one can configure the command-line arguments to be used by
the phc2sys program:
- name: PHC2SYS_ARGS
 value: "-a -r"

Firefly adds the following command-line arguments on top of the user-selected flags:

‣ Use of chosen configuration file (empty configuration file by default, or user-supplied
file if specified in the YAML file)

‣ Redirection of output to a log file using the -m command line option

Important: phc2sys must use the same domainNumber setting used by ptp4l. If the same
domainNumber is not set by the user, Firefly does that automatically.

Important: phc2sys is only able to accurately sync the clock of the hosting environment
(usually the DPU, but may also be the host if deployed there) if other timing services, such
as NTP, are disabled. So, for instance, on Ubuntu 22.04, users must ensure that the NTP
timing service is disabled by running:
systemctl stop systemd-timesyncd

5.6. PTP Monitoring
Note: Monitoring is still in beta phase. There will be updates to the API in the near future.

PTP monitoring periodically queries for various PTP-related information and prints it to
the container's log.

The following is a sample output of this tool:
gmIdentity: E8:1B:D5:FF:FE:64:E5:03 (e81bd5.fffe.64e503)
portIdentity: 62:B7:85:FF:FE:0C:93:69 (62b785.fffe.0c9369-1)
master_offset (max): 8
master_offset (avg): 5

Description

NVIDIA DOCA Firefly Service MLNX-15-060531 _v2.2.0 | 19

gmPresent: true
ptp_stable: Recovered
UtcOffset: 37
timeTraceable: 0
frequencyTraceable: 0
grandmasterPriority1: 128
gmClockClass: 248
gmClockAccuracy: 0xfe
grandmasterPriority2: 127
gmOffsetScaledLogVariance: 0xffff
ptp_time: Tue Dec 27 16:24:58 2022
system_time: Tue Dec 27 16:24:21 2022
error_count: 1
last_err_time: Tue Dec 27 16:22:56 2022

Among others, this monitoring provides the following information:

‣ Details about the Grandmaster the DPU is syncing with

‣ Current PTP timestamp

‣ Health information such as connection errors during execution and whether they
have been recovered from

PTP monitoring is disabled by default and can be activated by replacing the disable
value with the IP address for the monitor server to use:
- name: PTP_MONITOR
 value: "<IP address for the monitoring server>"

Once activated, the information can viewed from the container using the following
command:
sudo crictl logs --tail=20 <CONTAINER-ID>

It is recommended to use the following watch command to actively monitor the PTP
state:
sudo watch -n 1 crictl logs --tail=20 <CONTAINER-ID>

Note: The monitoring feature makes use of the PMC utility and connects to ptp4l's local
read-only UDS server to query the necessary information. This is why the configuration
manager prevents users from modifying the uds_ro_address used by ptp4l within the
container.

5.6.1. Time Representations
Under most deployment scenarios, the PTP time as shown by the monitor is presented
according to the International Atomic Time (TAI) standard, while the system time would
most commonly use the Coordinated Universal Time (UTC). Due to the differences
between these time representation models, even when the phc2sys module is activated,
there would be a small difference between the two monitor values:
...
UtcOffset: 37
...
ptp_time: Tue Dec 27 16:24:58 2022
system_time: Tue Dec 27 16:24:21 2022

This difference (37 seconds in the above example) is intentional and stems from the
amount of leap seconds since epoch. This is indicated by the UtcOffset field that is also
included in the monitor's report.

https://manpages.debian.org/unstable/linuxptp/pmc.8.en.html

Description

NVIDIA DOCA Firefly Service MLNX-15-060531 _v2.2.0 | 20

5.6.2. Monitor Server
On top of printing the monitoring data to the container's standard output available
through the container logs, the monitoring data is also exposed through a gRPC server
that clients can subscribe to. This allows a monitoring client on the host to subscribe
to monitor events from the service running on top of the DPU, thus providing better
visibility.

The following diagram presents the recommended deployment architecture for
connecting the monitoring client (on the host) to the monitor server (on the DPU), based
on the NVIDIA DOCA gRPC Infrastructure User Guide.

http://docs.nvidia.com/doca/sdk/pdf/grpc-infrastructure.pdf

Description

NVIDIA DOCA Firefly Service MLNX-15-060531 _v2.2.0 | 21

Description

NVIDIA DOCA Firefly Service MLNX-15-060531 _v2.2.0 | 22

Based on the above, when activating the monitor feature, the user must provide the IP
address to be used by the monitor server:
- name: PTP_MONITOR
 value: "<IP address for the monitoring server>"

Users can choose to only view the monitoring events through the container logs without
connecting to the monitoring server. In this case it is recommended to configure the
local host IP address (127.0.0.1) in the YAML file to avoid exposing it to an unwanted
network.

5.6.3. Monitor Client
All the required files for the monitor client are available under the service's dedicated
installation directory:

‣ Linux installations – /opt/mellanox/doca/services/firefly

‣ Windows installation – C:\Program Files\Mellanox\DOCA\SDK\firefly

‣ Example command line for executing the compiled monitor client from a Linux host:
$ /opt/mellanox/doca/services/firefly/bin/doca_firefly_monitor_client -g <ip-
address-for-the-monitoring-server>

‣ Example command line for executing the python-based monitor client from a
Windows host:

‣ Installing required pip packages:
$ pip3 install grpcio protobuf click

‣ Running the client:
$ C:\Program Files\Mellanox\DOCA\SDK\firefly\bin
\doca_firefly_monitor_client.py <ip-address-for-the-monitoring-server>

‣ Example command line for executing the python-based monitor client from a Linux
host:
$ export PYTHONPATH=${PYTHONPATH}:/opt/mellanox/grpc/python3/lib
$ /opt/mellanox/doca/services/firefly/bin/doca_firefly_monitor_client.py <ip-
address-for-the-monitoring-server>

Reference source files and the .proto file used for Firefly's monitor are placed under
firefly/src/monitor.

5.7. VLAN Tagging
DOCA Firefly natively supports VLAN tagging enabled network interfaces.

5.7.1. Separated Mode
The name of the VLAN-enabled network interface should be the one passed through the
YAML file in the PTP_INTERFACE field.

Description

NVIDIA DOCA Firefly Service MLNX-15-060531 _v2.2.0 | 23

5.7.2. Embedded Mode
On top of passing on the VLAN-enabled interface through the YAML as listed in the
previous section, the user is also required to configure the network routing within the
DPU to support the VLAN tagging:

 1. The following example configures a VLAN tag of 10 to the enp3s0f0s4 interface:
$ sudo ip link add link enp3s0f0s4 name enp3s0f0s4.10 type vlan id 10
$ sudo ip link set up enp3s0f0s4.10
$ sudo ifconfig enp3s0f0s4.10 192.168.104.1 up

In this example, enp3s0f0s4.10 is the interface to be passed to DOCA Firefly.
 2. Additional commands to route the traffic within the DPU:

$ sudo ovs-ofctl add-flow uplink in_port=en3f0pf0sf4,dl_vlan=10,actions=output:p0
$ sudo ovs-ofctl add-flow uplink
 in_port=p0,dl_vlan=10,actions=output:en3f0pf0sf4

5.8. Multiple Interfaces
DOCA Firefly can support multiple network interfaces through the following YAML file
syntax:
- name: PTP_INTERFACE
 value: "<space (' ') separated list of interface names>"

For example:
- name: PTP_INTERFACE
 value: "p0 p1"

Note: The monitoring feature is not supported when working with multiple interfaces.

Note: Automatic mode (-a) for phc2sys is not supported when working with multiple
interfaces. It is recommended to disable phc2sys in this mode.

NVIDIA DOCA Firefly Service MLNX-15-060531 _v2.2.0 | 24

Chapter 6. Troubleshooting

For general troubleshooting purposes, refer to NVIDIA DOCA Troubleshooting Guide.

For container-related troubleshooting, refer to the "Troubleshooting" section in the
NVIDIA DOCA Container Deployment Guide.

The following are additional troubleshooting tips for DOCA Firefly Service:

‣ If no pod is created, verify that your YAML is written correctly (see NVIDIA DOCA
Troubleshooting Guide) and check the output of the following command:
sudo journalctl -u kubelet

‣ If the pod's STATE fails to be marked as Ready (check using circtl pods), check if
the container has run and exited:

 1. Check the container's state:
sudo crictl ps -a

 2. If the container did exit, use the container's ID to check the log output by running:
sudo crictl logs <container-id>

 3. Should the container fail (i.e., state of Exited) it is recommended to examine
Firefly's main log at /var/log/doca/firefly/firefly.log.

‣ If the error custom config file not found appears in the container log, check the
custom file name written in the YAML file and make sure that you properly placed the
file with that name under the /etc/firefly/ directory.

‣ If the error profile <name> is not supported. Aborting appears in the container
log, verify that the profile you selected in the YAML file matches one of the optional
profiles as listed in the profiles table.

‣ If the message PPS capability is missing, seems that the card doesn't
support PPS appears in the container log, then the DPU hardware does not support
PPS. However, PTP can still run on this hardware and you should see the line Running
ptp4l in the container log which indicates that PTP is running successfully.

‣ To debug the finalized configuration file used by Firefly, you can connect to the
container as follows:

 1. Open a shell session on the running container using the container ID (which can
be queried as mentioned above):
sudo crictl exec -it <container-id> /bin/bash

http://docs.nvidia.com/doca/sdk/pdf/troubleshooting.pdf
http://docs.nvidia.com/doca/sdk/pdf/container-deployment.pdf
http://docs.nvidia.com/doca/sdk/pdf/troubleshooting.pdf
http://docs.nvidia.com/doca/sdk/pdf/troubleshooting.pdf

Troubleshooting

NVIDIA DOCA Firefly Service MLNX-15-060531 _v2.2.0 | 25

 2. Once connected the to container, the finalized configuration file can be found
under the /tmp directory using the same filename as the original configuration
file.

Note: More information regarding the configuration files can be found under Ensuring
and Debugging Correctness of Config Files.

NVIDIA DOCA Firefly Service MLNX-15-060531 _v2.2.0 | 26

Chapter 7. PTP Profile Default Config
Files

7.1. Media Profile
#
This config file contains configurations for media & entertainment alongside
DOCA Firefly-specific adjustments.
#

[global]
domainNumber 127
priority1 128
priority2 127
use_syslog 1
logging_level 6
tx_timestamp_timeout 30
hybrid_e2e 1
dscp_event 46
dscp_general 46
logAnnounceInterval -2
announceReceiptTimeout 3
logSyncInterval -3
logMinDelayReqInterval -3
delay_mechanism E2E
network_transport UDPv4
Value lesser or equal to 1 is required for Embedded Mode
fault_reset_interval 1
Required for multiple interfaces support
boundary_clock_jbod 1

7.2. Default Profile
#
This config file extends linuxptp default.cfg config file with DOCA
Firefly-specific adjustments.
#

[global]
Value lesser or equal to 1 is required for Embedded Mode
fault_reset_interval 1
Required for multiple interfaces support
boundary_clock_jbod 1

Notice

This document is provided for information purposes only and shall not be regarded as a warranty of a certain functionality, condition, or quality of a product.
NVIDIA Corporation nor any of its direct or indirect subsidiaries and affiliates (collectively: “NVIDIA”) make no representations or warranties, expressed or
implied, as to the accuracy or completeness of the information contained in this document and assume no responsibility for any errors contained herein.
NVIDIA shall have no liability for the consequences or use of such information or for any infringement of patents or other rights of third parties that may
result from its use. This document is not a commitment to develop, release, or deliver any Material (defined below), code, or functionality.

NVIDIA reserves the right to make corrections, modifications, enhancements, improvements, and any other changes to this document, at any time without
notice.

Customer should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the time of order acknowledgement, unless otherwise
agreed in an individual sales agreement signed by authorized representatives of NVIDIA and customer (“Terms of Sale”). NVIDIA hereby expressly objects
to applying any customer general terms and conditions with regards to the purchase of the NVIDIA product referenced in this document. No contractual
obligations are formed either directly or indirectly by this document.

NVIDIA products are not designed, authorized, or warranted to be suitable for use in medical, military, aircraft, space, or life support equipment, nor in
applications where failure or malfunction of the NVIDIA product can reasonably be expected to result in personal injury, death, or property or environmental
damage. NVIDIA accepts no liability for inclusion and/or use of NVIDIA products in such equipment or applications and therefore such inclusion and/or use
is at customer’s own risk.

NVIDIA makes no representation or warranty that products based on this document will be suitable for any specified use. Testing of all parameters of each
product is not necessarily performed by NVIDIA. It is customer’s sole responsibility to evaluate and determine the applicability of any information contained
in this document, ensure the product is suitable and fit for the application planned by customer, and perform the necessary testing for the application in
order to avoid a default of the application or the product. Weaknesses in customer’s product designs may affect the quality and reliability of the NVIDIA
product and may result in additional or different conditions and/or requirements beyond those contained in this document. NVIDIA accepts no liability
related to any default, damage, costs, or problem which may be based on or attributable to: (i) the use of the NVIDIA product in any manner that is contrary
to this document or (ii) customer product designs.

No license, either expressed or implied, is granted under any NVIDIA patent right, copyright, or other NVIDIA intellectual property right under this document.
Information published by NVIDIA regarding third-party products or services does not constitute a license from NVIDIA to use such products or services or
a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property rights
of the third party, or a license from NVIDIA under the patents or other intellectual property rights of NVIDIA.

Reproduction of information in this document is permissible only if approved in advance by NVIDIA in writing, reproduced without alteration and in full
compliance with all applicable export laws and regulations, and accompanied by all associated conditions, limitations, and notices.

THIS DOCUMENT AND ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS
(TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR
OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND
FITNESS FOR A PARTICULAR PURPOSE. TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL NVIDIA BE LIABLE FOR ANY DAMAGES, INCLUDING
WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF
THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF NVIDIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
Notwithstanding any damages that customer might incur for any reason whatsoever, NVIDIA’s aggregate and cumulative liability towards customer for the
products described herein shall be limited in accordance with the Terms of Sale for the product.

Trademarks

NVIDIA, the NVIDIA logo, and Mellanox are trademarks and/or registered trademarks of Mellanox Technologies Ltd. and/or NVIDIA Corporation in the
U.S. and in other countries. The registered trademark Linux® is used pursuant to a sublicense from the Linux Foundation, the exclusive licensee of Linus
Torvalds, owner of the mark on a world¬wide basis. Other company and product names may be trademarks of the respective companies with which they
are associated.

Copyright

© 2023 NVIDIA Corporation & affiliates. All rights reserved.

NVIDIA Corporation | 2788 San Tomas Expressway, Santa Clara, CA 95051
http://www.nvidia.com

http://www.nvidia.com

	Table of Contents
	Introduction
	Requirements
	2.1. Firmware Version
	2.2. BlueField BSP Version
	2.3. Embedded Mode
	2.3.1. Configuring Firmware Settings on DPU for Embedded Mode
	2.3.2. Ensuring OVS Hardware Offload
	2.3.3. Helper Scripts
	2.3.3.1. prepare_for_embedded_mode.sh
	2.3.3.2. set_new_sf.sh

	2.3.4. Setting Up Network Interfaces for Embedded Mode

	2.4. Separated Mode
	2.4.1. Configuring Firmware Settings on DPU for Separated Mode
	2.4.2. Setting Up Network Interfaces for Separated Mode

	2.5. Host-based Deployment

	Service Deployment
	3.1. DPU Deployment
	3.2. Host Deployment

	Configuration
	4.1. Built-in Config File
	4.2. Custom Config File
	4.3. Overriding Specific Config File Parameters
	4.4. Ensuring and Debugging Correctness of Config Files

	Description
	5.1. Providers
	5.2. Profiles
	5.3. Outputs
	5.3.1. Container Output
	5.3.2. Firefly Output
	5.3.3. ptp4l Output
	5.3.4. phc2sys Output

	5.4. Tx Timestamping Support on Embedded Mode
	5.4.1. Troubleshooting Tx Timestamp Issues

	5.5. PHC2SYS
	5.6. PTP Monitoring
	5.6.1. Time Representations
	5.6.2. Monitor Server
	5.6.3. Monitor Client

	5.7. VLAN Tagging
	5.7.1. Separated Mode
	5.7.2. Embedded Mode

	5.8. Multiple Interfaces

	Troubleshooting
	PTP Profile Default Config Files
	7.1. Media Profile
	7.2. Default Profile

