NVIDIA

NVIDIA DOCA DPACC Compiler

User Guide

MLNX-15-060563 _v2.2.0 October 2023

LI I 10 T=1 =TT /5O TP T PR 1

1.2. OFfloading WOIK 0N DPA.....o e 1
1.3. Writing DPA APPIICATIONS. ...ttt 2
LG I I =Y g T U =T T T YU o] o Yo o OO 2
1.3.2. ReSIrictions 0N DPA COUE. ...ttt snsesns 2
1.3.3. DPA RPC FUNCHIONS. ..ttt sssssse sttt snsnanen 3
1.3.4. DPA GIOBAl FUNCTIONS......oiieseccesece sttt ns et nssnsnses 3
1.3.5. Characteristics of Annotated FUNCLIONS.......ccovcicccese e 3
1.3.6. Handling User-defined Data TYPES....cccrirrirerereenesenesissssessesesesessssessessssessssssssssssssssesnes 3
1.3.7. Characteristics of ANNOTated TYPES.....cccerccesee et 3
1.3.8. DPA INEIINSICS. ittt a bt e e s s s ettt st s e e 4
2.1, SUPPOITEA VEISIONS......ouicecteece ettt e s bbbttt 5
3.1. DPACC INputs and OULPULS........cciiiis st 6
31T DPA Program... bbb s 7
O I N] o = o PP PP 7
G NG T I 1= N N o =Y Y20 OO E TP T TP 8
Tz B N O O I = | =T o8 o Y5O 9
3.3. MOAES OF OPEIATION ...ttt ettt bbb n st nas 10
3.3.1. Compile-and-liNk MOAE.........ccsesccerece s s 10
3.3.2. COMPIIE=0NIY MOGE......iiiesee et 11
3.3.3. Library Generation MOAE........ sttt 11
4.1, Mandatory ArQUMENTS. ...ttt a s bbb bbb s st 12
4.2. CommoNly USed ArQUMENTS. ..ottt 13
4.3. LTO USAQE GUIAEINES. ...ttt 14
0 T O o L= T T =P 14
4.3.2. COMPATIDIITY....cvciieicteecc et bbbttt 14
T e T 0 0] 0] 1= 14
o I = U o [T g I IR o = == OO 15
4.4.2. Linking With DPA DeViCe LiDrary..... e sssssssees 15
4.4.3. Enabling Link-time Optimizations........coerceseeseiesesee s ssesesssssenns 15
4.4.4. INCIUAING HEAETS.......oetee ettt e et 15

NVIDIA DOCA DPACC Compiler MLNX-15-060563 _v2.2.0 | ii

4.5. DPA COMPIIET USGQE..... ittt 15

4.5.1. Compiler Driver Command Line OPptioNS........cccvenensinereineeseesssessssesisee s ssssseseens 16
4.5.2. Linker Command LiNe OPLioNS.... ettt sss st 16
4.5.3. dpacc-extract Command Line OPLioNS.......cccceieeceneseee s 16
4.5.4. Objdump Command LiNe OPLiONS.......cririeireeneieeseisesisess st sesssssssssssessenes 16
4.5.5. Archiver Command LiNe OPLiONS.....ocrirereseee st ssssssssensses 17
4.5.6. NM Tool Command Lin@ OPLiONS......ccvrririnerireineeissieessssessssessssese s sssssesssssssssssessssssseens 17
4.5.7. Common Compiler OPLiONS.....c ettt 17
4.5.8. Common LiNKEr OPLiONS.....c.ciceccesece sttt sae st sse s 17
4.5.9. DebUGGING OPLIONS. ...ttt 17
4.5.10. MIiSCEIAaN@OUS NOTES........oceirireciesece ettt ettt s e sneas 18

NVIDIA DOCA DPACC Compiler MLNX-15-060563 _v2.2.0 | iii

NVIDIA DOCA DPACC Compiler MLNX-15-060563 _v2.2.0 | iv

Chapter 1. Introduction

DPACC is a high-level compiler for the DPA processor which compiles code targeted for
the data-path accelerator (DPA) processor into a device executable and generates a DPA
program.

The DPA program is a host library with interfaces encapsulating the device executable.
This DPA program is linked with the host application to generate a host executable. The
host executable can invoke the DPA code through FlexIO runtime API.

DPACC uses DPA compiler (dpa-clang) to compile code targeted for DPA. dpa-clang is
part of the DPA toolchain package which is an LLVM-based cross-compiling bare-metal
toolchain. It provides Clang compiler, LLD linker targeting DPA architecture, and other
utilities.

Term Definition

Device DPA as present on the BlueField DPU

Host CPU that launches the device code to run on
the DPA

Device function Any C function that runs on the DPA device

DPA global function Device function that is the point of entry when
offloading any work on DPA

Host compiler Compiler used to compile the code targeting
the host CPU

Device compiler Compiler used to compile code targeting the
DPA

DPA program Host library that encapsulates the DPA device

executable (.e1f) and host stubs which are
used to access the device executable

NVIDIA DOCA DPACC Compiler MLNX-15-060563 _v2.2.0 | 1

Introduction

— Input
FlexIO libraries
----- » Internal dependency
|
H

— = Output

§

-— DPACC —--— > DPA Program
Host
application

code

Host Compiler kKRR kRl —_

Load Device
Executable on DPA

Device
Executable
Invoke kernels to run
on DPA

FlexIO runtime

DPA Hardware

To invoke a DPA function from host, the following things are required:

» DPA device code - C programs, targeted to run on the DPA. DPA device code may
contain one or more entry functions.

» Host application code - the corresponding host application. Please refer to NVIDIA
DOCA DPA Subsystem Programming Guide for more details

» Runtime - FlexlO or DOCA DPA library provides the runtime

The generated DPA program, when linked with A host application, results in a host
executable which also contains the device executable. The host application is in charge
of loading the device executable on the device.

1.3. Writing DPA Applications

DPA device code is a C code with some restrictions and special definitions.
FlexIO or DOCA-DPA APIs provide interfaces to DPA.

1.3.1. Language Support

The DPA is programmed using a subset of the C11 language standard. The compiler
documents any constructs that are not available. Language constructs, where available,
retain their standard definitions.

1.3.2. Restrictions on DPA Code

» Use of C thread local storage is not allowed for any variables

» Identifiers with dpacc prefix are reserved by the compiler. Use of such identifiers
may result in an error or undefined behavior.

» DPA processor does not have native floating-point support; use of floating point
operations is disabled

NVIDIA DOCA DPACC Compiler MLNX-15-060563 _v2.2.0 | 2

https://confluence.nvidia.com/display/NMAR/NVIDIA+DOCA+DPA+Subsystem+Programming+Guide
https://confluence.nvidia.com/display/NMAR/NVIDIA+DOCA+DPA+Subsystem+Programming+Guide

Introduction

1.3.3. DPA RPC Functions

A remote procedure call function is a synchronous call that triggers work in DPA
and waits for its completion. These functions return a type uint64 t value. They are
annotated witha dpa rpc__ attribute.

1.3.4. DPA Global Functions

A DPA global function is an event handler device function referenced from the host code.
These functions do not return anything. They are annotated witha dpa global
attribute.

For more information, refer to the NVIDIA DOCA DPA Subsystem Programming Guide.

1.3.5. Characteristics of Annotated Functions

» Global functions must have void return type and RPC functions must have uint64 t
return type

» Annotated functions cannot accept C pointers and arrays as arguments (e.g., void
my global (int *ptr, int arr[]))
» Annotated functions cannot accept a variable number of arguments

» Inline specifier is not allowed on snnotated functions

1.3.6. Handling User-defined Data Types

User-defined data types, when used as global function arguments, require special
handling. They must be annotated witha dpa global attribute.

If the user-defined data type is typedef'd, the typedef statement must be annotated
witha dpa global attribute along the data type itself.

1.3.7. Characteristics of Annotated Types

» They must have a copy of the definition in all translation units where they are used as
global function arguments

» They cannot have pointers, variable length arrays, and flexible arrays as members
» Fixed-size arrays as C structure members are supported

» These characteristics apply recursively to any user-defined/typedef'd types that are
members of an annotated type

DPACC processes all annotated functions along with annotated types and generates
host and device interfaces to facilitate the function launch.

NVIDIA DOCA DPACC Compiler MLNX-15-060563 _v2.2.0 | 3

http://docs.nvidia.com/doca/sdk/pdf/dpa-subsystem-programming-guide.pdf

Introduction

1.3.8. DPA Intrinsics

DPA features such as fences and processor-specific instructions are exposed via
intrinsics by the DPA compiler. All intrinsics defined in the header file dpaintrin.h are
guarded by the DPA INTRIN VERSION USED macro. The current DPA INTRIN VERSION iS
1.3.

Example:

#define DPA INTRIN VERSION USED (DPA INTRIN VERSION (1, 3))
#include <dpaintrin.h>

__dpa_thread writeback window () ; // Fence for write barrier

For more information, please refer to NVIDIA DOCA DPA Subsystem Programming Guide.

NVIDIA DOCA DPACC Compiler MLNX-15-060563 _v2.20 | 4

http://docs.nvidia.com/doca/sdk/pdf/dpa-subsystem-programming-guide.pdf

Chapter 2. Prerequisites

Package Instructions

Host compiler Compiler specified through hostcc option.
Both gcc and clang are supported.

S| Note: Minimum supported version for
clang as hostccis clang 3.8.0.

Device compiler The default device compiler is the "DPA
compiler”. Installing the DPACC package also
installs the DPA compiler binaries dpa-clang,
dpa-ar, dpa-nm and dpa-objdump.

S| Note: dpa-clang is the only supported
device compiler.

FlexlO SDK and C library Available as part of the DOCA software
package. DPA toolchain does not provide C
library and corresponding headers. Users are
expected to use the C library for DPA from the
Flex!O SDK.

2.1. Supported Versions

» DPACC version 1.5.0
» See NVIDIA DOCA DPA Subsystem Programming Guide for other component versions

NVIDIA DOCA DPACC Compiler MLNX-15-060563 _v2.20 | 5

http://docs.nvidia.com/doca/sdk/pdf/dpa-subsystem-programming-guide.pdf

Chapter 3. Description

DPACC can produce DPA programs in a single command by accepting all source files as
input. DPACC also offers the flexibility of producing DPA object files or libraries from

input files.

DPA object files contain both host stub objects (DPACC-generated interfaces) and device
objects. These DPA object files can later be given to DPACC as input to produce the DPA

library.

Phase Option Name
Compile input device --compile or -c
code files to DPA

object files

Compile and link the No specific option
input device code

files/DPA object files,

and produce a DPA

program

Compile and build
DPA library from input
device code files/DPA
object files

--gen-libs Or —-gen-1ibs

DPACC can accept the following file types as input:

File Extension File Type

.c C source file
.dpa.o DPA object file

.a DPA object archive

NVIDIA DOCA DPACC Compiler

Default Output File
Name

.dpa.o appended
to the name of each
input source file

No default name,
output file name must
be specified

No default name,
output library name
must be specified

Description
DPA device code

Object file generated by
DPACC, containing both host
and device objects

An archive of DPA object files.
User can generate this archive
from DPACC-generated DPA
objects.

MLNX-15-060563 _v2.20 | 6

Description

Based on the mode of operations, DPACC can generate the following output files:

Output File Type Input Files
DPA object file C source files
DPA program C source files, DPA object files, and/or DPA

object archives

DPA library (DPA host library and DPA device C source files, DPA object files, and/or DPA
library) object archives

The following provides the commands to generate different kinds of supported output
file types for each input file type:

Input Output DPACC Command
C source file DPA program dpacc -hostcc=gcc in.c -o
libprog.a
DPA object dpacc -hostcc=gcc in.c -c
DPA library dpacc -hostcc=gcc in.c -o
lib<name> -gen-1libs
DPA object DPA program dpacc -hostcc=gcc in.dpa.o
-o libprog.a
DPA library dpacc -hostcc=gcc in.dpa.o
-0 lib<name> -gen-1libs
DPA object archive DPA program dpacc -hostcc=gcc in.a -o
libprog.a
DPA library dpacc -hostcc=gcc in.a -o

lib<name> -gen-libs

DPACC produces a DPA program in compile-and-link mode. A DPA program is a host
library which contains:

DPACC-generated host stubs which facilitate invoking a DPA global function from the
host application
Device executable, generated by DPACC by compiling input DPA device code

DPA program library must be linked with the host application that contains appropriate
runtime APIs to load the device executable onto DPA memory.

DPACC produces DPA object files in compile-only mode. A DPA object is an object file for
the host machine. In a DPA object, the device object generated by compiling the input
device code file is placed inside a specific section of the generated host stubs object.
This process is repeated for each input file.

NVIDIA DOCA DPACC Compiler MLNX-15-060563 _v2.2.0 | 7

Description

DPA Program DPA Object

Device Executable Device Object

Host Library Host Object

3.1.3. DPA Library

A DPA library is a collection of two individual libraries:

» DPA device library — contains device objects generated from input files

» DPA host library — contains host interface objects corresponding to the device
objects in DPA device library

The DPA device library is consumed by DPACC during DPA-program generation and the
DPA host library can optionally be linked with other host code and be distributed as the
host library. Both libraries are generated as static archives.

NVIDIA DOCA DPACC Compiler MLNX-15-060563 _v2.20 | 8

Description

DPA Library

Device
Object(s)

DPA Host library DPA Device library

3.2. DPACC Trajectory

The following diagram illustrates DPACC compile-and-link mode trajectory.

NVIDIA DOCA DPACC Compiler MLNX-15-060563 _v2.20 | 9

Description

1 .
! ' 771 Inputfile D DPAGC Compiler Driver

;. .. C] Device/DPA Toolchain I:l Host Component

|) : :) I
-] e [Device] I;;ylc; : D Host Toolchain |:| Device/DPA Component
[- :

! Preprocessed P, — : A G B Aincludes B

source (i)

(.dpa.device.c) .

EEMbEd a:sa"ay]

Y

Host Stub
ittt e e e

.stub.inc
Host Compiler

« Repeat for each device code file

.
Device DPA
Object

Extract Host
Object
stub.inc

*.dpa.host.o

A
] .meta.o
Host linker l‘ Host il

A
| Host Object |

Device
Executable

Library

3.3. Modes of Operation

3.3.1. Compile-and-link Mode

This is a one-step mode that accepts C source files or DPA object files and produces the
DPA program. Specifying the output library name is mandatory in this mode.

Example commands:

$ dpacc inl.c in2.c -o myLibl.a -hostcc=gcc # Takes C sources to produce
myLibl.a library

$ dpacc in3.dpa.o in4d.dpa.o -o myLib2.a -hostcc=gcc # Takes DPA object files to
produce myLib2.a library

$ dpacc inl.c in3.dpa.o -o myLib3.a -hostcc=gcc # Takes C source and DPA object
to produce myLib3.a library

NVIDIA DOCA DPACC Compiler MLNX-15-060563 _v2.2.0 | 10

Description

3.3.2. Compile-only Mode

This mode accepts C source code and produces .dpa .o object files. These files can be
given to DPACC to produce the DPA program. The mode is invoked by the --compile or -
c option.

The user can explicitly provide the output object file name using the --output-file or -
o option.

Example commands:

$ dpacc -c inputl.c -hostcc=gcc # Produces inputl.dpa.o

$ dpacc -c input3.c inputé4.c -hostcc=gcc # Produces input3.dpa.o and
inputéd.dpa.o

$ dpacc -c input2.c -o myObj.dpa.o -hostcc=gcc # Produces myObj.dpa.o

3.3.3. Library Generation Mode

This mode accepts C source files or DPA object files and produces the DPA program.
Specifying the output DPA library name is mandatory in this mode.

Example commands:

$ dpacc inl.c in2.c -o libdummyl -hostcc=gcc -gen-1libs # Takes C
sources to produce libdummyl host.a and libdummy device.a archives

$ dpacc in3.dpa.o in4d.dpa.o -o libdummy2 -hostcc=gcc -gen-1libs # Takes DPA
object files to produce libdummy2 host.a and libdummy2 device.a archives

$ dpacc inl.c in3.dpa.o -o outdir/libdummy3 -hostcc=gcc -gen-1libs # Takes C source
and DPA object to produce outdir/libdummy3 host.a and outdir/libdummy3 device.a
archives

NVIDIA DOCA DPACC Compiler MLNX-15-060563 _v2.2.0 | 11

Chapter 4. Execution

To execute DOCA DPACC Compiler:

Usage: dpacc <list-of-input-files> -hostcc=<path> [other options]

Helper Flags:

-h, --help Print help information about DPACC

-V, --version Print DPACC version information

-v, --verbose List the compilation commands generated by
this invocation while also executing every command in verbose mode

-dryrun, --dryrun Only list the compilation commands generated
by DPACC, without executing them

-keep, --keep Keep all intermediate files that are generated
during internal compilation steps in the current directory

-keep-dir, --keep-dir Keep all intermediate files that are generated

during internal compilation steps in the given directory

-optf, --options-file <file>,... Include command line options from the

specified file

4.1. Mandatory Arguments

Flag DPACC Mode

List of one or more input files All

-hostcc, --hostcc <path> All
-0, -—output-file <file> Compile-and-link/library
generation

NVIDIA DOCA DPACC Compiler

Description

List of C source files or DPA
object file names. Specifying
at least one input file is
mandatory. A file with an
unknown extension is treated
as a DPA object file.

Specify the host compiler. This
is typically the native compiler
present on the host system.

S| Note: The host
application must be
linked with the DPA
program using the
same compiler or
a link-compatible
compiler.

Specify name and location of
the output file.

MLNX-15-060563 _v2.2.0 | 12

4.2.

Execution

Commonly Used Arguments

Tip: Use --help option for a list of all supported options.

Flag

-app-name, -—app-name <name>

-flto,--flto

-devicecc-options, -—devicecc-options
<options>,...

—-devicelink-options, ——devicelink-options
<options>, ..

-device-1libs, --device-1libs '-L<path> -

1<name>"',...

-I, -—common-include-path <path>, ...

-devicecc, ——devicecc <path>

-0, ——output-file <file>

NVIDIA DOCA DPACC Compiler

Description

Specify DPA application name for the DPA
program. This option is required if multiple
DPA programs are part of a host application
because each DPA application must have a
unique name. Default name is dpa a out.

Enable link-time optimization (LTO) for device
code. Specify this option during compilation
along with an optimization level in devicecc-
options.

Specify the list of options to pass to the device
compiler.

Specify the list of options to pass during
device linking stage.

Specify the list of device libraries including
their names (in -1) and their paths (in -1).
FlexlO libraries are linked by default.

Specify include search paths common to host
and device code compilation. FlexIO headers
paths are included by DPACC by default.

Specify the device compiler. By default, DPACC
invokes dpa-clang.

WARNING: This option is deprecated
and will be removed in the upcoming
release.

Specify name and location of the output file.

» Compile-only mode - name of the output
DPA object file. If not specified, .dpa.ois
generated for each .c file.

» Compiler-and-link mode - name of the
output DPA program. This is a mandatory
option in compiler-and-link mode.

» Library generation mode — name of
the output library. This is a mandatory
option for this mode. Output files
<name> device.a and <name> host.a are
generated.

MLNX-15-060563 _v2.2.0 | 13

Execution

Flag Description

-hostcc-options, ~—hostcc-options Specify the list of options to pass to the host
<options>, ... compiler.

-gen-1libs, --gen-1ibs Generate a DPA library from input files

S Important: The devicecc-options option allows passing any option to the device
compiler. However, passing options that prevent compilation of the input file may lead to
unexpected behavior (e.g., -devicecc-options="-version" makes the device compiler
print the version and not process input files).

S Important: Incompatible options that affect DPA global function argument sizes during
DPACC invocation and host application compilation may lead to undefined behavior during
execution (e.g., passing -hostcc-options="-fshort-enums" to DPACC and missing this
option when building the host application).

4.3. LTO Usage Guidelines

4.3.1. Restrictions

» Only the default linker script is supported with LTO

» Using options -frP1c/-fpic/-shared/-mcmodel=1large through -devicecc-options is
not supported when LTO is enabled

» Fat objects containing both LLVM bitcode and ELF representation are not supported

» Thin LTO is not supported

4.3.2. Compatibility

During compilation, LLVM generates the object as bitcode IR (intermediate
representation) when LTO is enabled instead of ELF representation. The bitcode IR
generated by the DPA compiler is only guaranteed to be compatible within the same
version of DPACC. All objects involved in link-time optimization (enabled with -f1to)
must be built with the same version of DPACC.

4.4. Examples

This section provides some common use cases of DPACC and showcases the dpacc
command.

NVIDIA DOCA DPACC Compiler MLNX-15-060563 _v2.2.0 | 14

Execution

4.4.1. Building Libraries

This example shows how to build DPA libraries using DPACC. Libraries for DPA typically
contain two archives, one for the host and one for the device.
dpacc input.c -hostcc=gcc -o lib<name> -gen-1libs -hostcc-options="-fPIC"

This command generates the output files 1ib<name> host.a and lib<name> device.a.

The host stub archive can be linked with other host code to generate a shared/static
host library.

» Generating a static host library:

ar x lib<name> host.a # Extract objects to generate *.o
ar cr lib<name>.a <*src.host.o> *.o # Generate final static archive with all
objects

» Generating a shared host library:

gcc -shared -o lib<name>.so <*src.host.o> -Wl,-whole-archive -l<name> host -Wl, -
no-whole-archive # Link the generated archive to build a shared library

4.4.2. Linking with DPA Device Library

The DPA device library generated by DPACC using -gen-1ibs as part of a DPA library can
be consumed by DPACC using the -device-1ibs option.

dpacc input.c -hostcc=gcc -o libInput.a -device-libs="-L <path-to-library> -
1<libName>"

4.4.3. Enabling Link-time Optimizations

Link-time optimizations can be enabled using -f1to along with an optimization level
specified for device compilation.

dpacc inputl.c -hostcc=gcc -c -flto -devicecc-options="-02"
dpacc input2.c -hostcc=gcc -c -flto -devicecc-options="-02"
dpacc inputl.dpa.o input2.dpa.o -hostcc=gcc -o libInput.a

4.4.4. Including Headers

This example includes headers for device compilation using devicecc-options and host
compilation using hostcc-options. You may also specify headers for any compilation on
both the host and device side using the -1 option.

dpacc input.c -hostcc=gcc -o libInput.a -I <common-headers-path> -devicecc-
options="-I <device-headers-path>" -hostcc-options="-I <host-headers-path>"

4.5. DPA Compiler Usage

dpa-clang is a compiler driver for accessing the Clang/LLVM compiler, assembler, and
linker which accepts C code files or object files and generates an output according to
different usage modes.

Note: Invoking the compiler, assembler, or linker directly may lead to unexpected errors.

NVIDIA DOCA DPACC Compiler MLNX-15-060563 _v2.2.0 | 15

Execution

Refer to the following resources for detailed user guide and command line references:

» Clang Compiler User’s Manual

» Clang command line argument reference

» Target-dependent compilation options

45.1. Compiler Driver Command Line Options

dpa-clang <list-of-input-files> [other-options]

45.2. Linker Command Line Options

LLD is the default linker provided in the DPA toolchain. Linker-related options are passed
to through the compiler driver.

dpa-clang -Wl,<linker-option>

For more information, please refer to the LLD command line reference.

45.3. dpacc-extract Command Line Options

dpacc-extract is a tool for extracting a device executable out of a DPA program or a
host executable containing DPA program(s).

To execute dpacc-extract:

Usage: dpacc-extract <input-file> -o=<output-file> [other options]
Helper Flags:

-0, --output-file Specify name of the output file

-app-name, -—--app-name <name> Specify name of the DPA application to extract
-h, --help Print help information about dpacc-extract

-V, --version Print dpacc-extract version information

-optf, --options-file <file>,... Include command line options from the

specified file

Mandatory arguments:

Flag Description

Input file DPA program or host executable containing
DPA program. Specifying one input file is
mandatory.

-0, -—output-file <file> Specify name and location of the output device
executable.

-app-name, -—app-name <name> Specify name of the DPA application to extract.

Mandatory if input file has multiple DPA apps.

45.4. Objdump Command Line Options

The dpa-objdump utility prints the contents of object files and final linked images
named on the command line.

For more information, please refer to the Objdump command line reference.

Commonly used dpa-objdump options:

NVIDIA DOCA DPACC Compiler MLNX-15-060563 _v2.2.0 | 16

https://releases.llvm.org/12.0.1/tools/clang/docs/UsersManual.html
https://releases.llvm.org/12.0.1/tools/clang/docs/ClangCommandLineReference.html
https://releases.llvm.org/12.0.1/tools/clang/docs/ClangCommandLineReference.html#target-dependent-compilation-options
https://manpages.debian.org/experimental/lld-15/ld.lld-15.1.en.html
https://releases.llvm.org/15.0.0/docs/CommandGuide/llvm-objdump.html

Execution

Flag Description

--mcpu=nv-dpa-bf3 Option to choose micro-architecture for DPA
processor. nv-dpa-bf3 is the default CPU for
dpa-objdump.

4.5.5. Archiver Command Line Options

dpa-ar is a Unix ar-compatible archiver.

For more information, please refer to the Archiver command line reference.

45.6. NM Tool Command Line Options

The dpa-nm utility lists the names of symbols from object files and archives.

For more information, please refer to the NM tool command line reference.

45.7. Common Compiler Options

Flag Description

-mcpu=nv-dpa-bf3 Option to choose micro-architecture and ABI
for DPA processor. nv-dpa-bf3 is the default
CPU for the compiler.

-mrelax/-mno-relax Option to enable/disable linker relaxations.
-1 <dir> Option to include header files present in <dir>.

4.5.8. Common Linker Options

Flag Description

-Wl,-L <path-to-library> -Wl,-1<library- Option to link against libraries
name>

Note: Linker options are provided through the compiler driver dpa-clang.

Note: The LLD linker script is honored in addition to the default configuration rather than
replacing the whole configuration like in GNU ID. Hence, additional options may be required
to override some default behaviors.

4.5.9. Debugging Options

Flag Description

-fdebug-macro Option to emit macro debugging information.
This option enables macro-debugging similar
to GCC option -g3.

NVIDIA DOCA DPACC Compiler MLNX-15-060563 _v2.2.0 | 17

https://releases.llvm.org/15.0.0/docs/CommandGuide/llvm-ar.html
https://releases.llvm.org/15.0.0/docs/CommandGuide/llvm-nm.html

Execution

4.5.10. Miscellaneous Notes

» Objects produced by LLD are not compatible with those generated by any other
linker.

» The default debugging standard of the DPA compiler is DWARFv5. GDB versions
<10.1 have issues processing some DWARFv5 features. Use the option -devicecc-
options="-gdwarf-4" with DPACC to debug with GDB versions <10.1.

NVIDIA DOCA DPACC Compiler MLNX-15-060563 _v2.2.0 | 18

Notice

This document is provided for information purposes only and shall not be regarded as a warranty of a certain functionality, condition, or quality of a product.
NVIDIA Corporation nor any of its direct or indirect subsidiaries and affiliates (collectively: “NVIDIA”) make no representations or warranties, expressed or
implied, as to the accuracy or completeness of the information contained in this document and assume no responsibility for any errors contained herein.
NVIDIA shall have no liability for the consequences or use of such information or for any infringement of patents or other rights of third parties that may
result from its use. This document is not a commitment to develop, release, or deliver any Material (defined below), code, or functionality.

NVIDIA reserves the right to make corrections, modifications, enhancements, improvements, and any other changes to this document, at any time without
notice.

Customer should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the time of order acknowledgement, unless otherwise
agreed in an individual sales agreement signed by authorized representatives of NVIDIA and customer (“Terms of Sale”). NVIDIA hereby expressly objects
to applying any customer general terms and conditions with regards to the purchase of the NVIDIA product referenced in this document. No contractual
obligations are formed either directly or indirectly by this document.

NVIDIA products are not designed, authorized, or warranted to be suitable for use in medical, military, aircraft, space, or life support equipment, nor in
applications where failure or malfunction of the NVIDIA product can reasonably be expected to result in personal injury, death, or property or environmental
damage. NVIDIA accepts no liability for inclusion and/or use of NVIDIA products in such equipment or applications and therefore such inclusion and/or use
is at customer’s own risk.

NVIDIA makes no representation or warranty that products based on this document will be suitable for any specified use. Testing of all parameters of each
product is not necessarily performed by NVIDIA. It is customer’s sole responsibility to evaluate and determine the applicability of any information contained
in this document, ensure the product is suitable and fit for the application planned by customer, and perform the necessary testing for the application in
order to avoid a default of the application or the product. Weaknesses in customer’s product designs may affect the quality and reliability of the NVIDIA
product and may result in additional or different conditions and/or requirements beyond those contained in this document. NVIDIA accepts no liability
related to any default, damage, costs, or problem which may be based on or attributable to: (i) the use of the NVIDIA product in any manner that is contrary
to this document or (ii) customer product designs.

No license, either expressed or implied, is granted under any NVIDIA patent right, copyright, or other NVIDIA intellectual property right under this document.
Information published by NVIDIA regarding third-party products or services does not constitute a license from NVIDIA to use such products or services or
a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property rights
of the third party, or a license from NVIDIA under the patents or other intellectual property rights of NVIDIA.

Reproduction of information in this document is permissible only if approved in advance by NVIDIA in writing, reproduced without alteration and in full
compliance with all applicable export laws and regulations, and accompanied by all associated conditions, limitations, and notices.

THIS DOCUMENT AND ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS
(TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR
OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND
FITNESS FOR A PARTICULAR PURPOSE. TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL NVIDIA BE LIABLE FOR ANY DAMAGES, INCLUDING
WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF
THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF NVIDIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
Notwithstanding any damages that customer might incur for any reason whatsoever, NVIDIA’s aggregate and cumulative liability towards customer for the
products described herein shall be limited in accordance with the Terms of Sale for the product.

Trademarks

NVIDIA, the NVIDIA logo, and Mellanox are trademarks and/or registered trademarks of Mellanox Technologies Ltd. and/or NVIDIA Corporation in the
U.S. and in other countries. The registered trademark Linux® is used pursuant to a sublicense from the Linux Foundation, the exclusive licensee of Linus
Torvalds, owner of the mark on a world-wide basis. Other company and product names may be trademarks of the respective companies with which they
are associated.

Copyright
© 2023 NVIDIA Corporation & affiliates. All rights reserved.

NVIDIA Corporation | 2788 San Tomas Expressway, Santa Clara, CA 95051 @Dz

http://www.nvidia.com
NVIDIA.

http://www.nvidia.com

	Table of Contents
	Introduction
	1.1. Glossary
	1.2. Offloading Work on DPA
	1.3. Writing DPA Applications
	1.3.1. Language Support
	1.3.2. Restrictions on DPA Code
	1.3.3. DPA RPC Functions
	1.3.4. DPA Global Functions
	1.3.5. Characteristics of Annotated Functions
	1.3.6. Handling User-defined Data Types
	1.3.7. Characteristics of Annotated Types
	1.3.8. DPA Intrinsics

	Prerequisites
	2.1. Supported Versions

	Description
	3.1. DPACC Inputs and Outputs
	3.1.1. DPA Program
	3.1.2. DPA Object
	3.1.3. DPA Library

	3.2. DPACC Trajectory
	3.3. Modes of Operation
	3.3.1. Compile-and-link Mode
	3.3.2. Compile-only Mode
	3.3.3. Library Generation Mode

	Execution
	4.1. Mandatory Arguments
	4.2. Commonly Used Arguments
	4.3. LTO Usage Guidelines
	4.3.1. Restrictions
	4.3.2. Compatibility

	4.4. Examples
	4.4.1. Building Libraries
	4.4.2. Linking with DPA Device Library
	4.4.3. Enabling Link-time Optimizations
	4.4.4. Including Headers

	4.5. DPA Compiler Usage
	4.5.1. Compiler Driver Command Line Options
	4.5.2. Linker Command Line Options
	4.5.3. dpacc-extract Command Line Options
	4.5.4. Objdump Command Line Options
	4.5.5. Archiver Command Line Options
	4.5.6. NM Tool Command Line Options
	4.5.7. Common Compiler Options
	4.5.8. Common Linker Options
	4.5.9. Debugging Options
	4.5.10. Miscellaneous Notes

