NVIDIA

NVIDIA DOCA IPsec Security Gateway

Application Guide

MLNX-15-060576 _v2.2.0 October 2023

Table of Contents

Chapter 1. INTrOAUCTION ...t 1
(O g =T o =T YAy =T T I L= T | o 3
Chapter 3. Application ArChitECTUrE. ... 5
T I - 1 o [6] o o T 11 [0 o 1SRRI 5
3.2. DYNaMIC CONTIGUIATION ...ttt 6
3.3. DOCA FIOW IMOAES......oiirieirieeiseieisiieissises s ssssssssssss st sssssssssssssesssessssasssssssessssessssessnssssnsans 6
170 T I VN Y o Yo [PPSR 6

1C 70C TR I I =1 o Tod Y/ o 1 T o O 7

G 70 T 2 19 =T o Y] 0 Lo o TS 7

3.3.2. SWITCN MO ...ttt ses 8
Chapter 4. DOCA LiBrari@S..... ettt se s sesnas 10
Chapter 5. Configuration FIOW........ceccce e 11
Chapter 6. Running the AppliCatioN......cccceceee s 13
6.1. Static Configuration IPSEC RUIES..........c.creerercsee sttt 15
6.2. Dynamic Configuration IPSEC RUIES..........oirrcrerce et 17
Chapter 7. Arg Parser DOCA FIagsS. ...t ssesssssssssssssssesssnes 19
Chapter 8. Keying Daemon Integration (StrongSwan)..........ccceeeceeeceeecceeeeeeee e 21
8.1. ENA-10-6NA ArChITECTUI ...t 21
8.2. RUNNING the SOIUTION.....ciiiieerrris ettt 26
8.3. BUIIAING STrONGSWAN.....ciciccesee ettt s s naes 27
Chapter 9. RETEIENCES. ...ttt b s bbb 28

NVIDIA DOCA IPsec Security Gateway MLNX-15-060576 _v2.2.0 | ii

Chapter 1. Introduction

Note: DOCA IPsec Security Gateway is supported at alpha level.

DOCA IPsec Security Gateway leverages the DPU's hardware capability for secure
network communication. The application demonstrates how to insert rules related to
IPsec encryption and decryption based on the DOCA Flow and IPsec libraries.

The application demonstrates how to insert rules to create an IPsec tunnel.

S Note: An example for configuring the Internet key exchange (IKE) can be found under
Keying Daemon Integration (StrongSwan) but is not considered part of the application.

The application can be configured to receive IPsec rules in one of the following ways:

» Static configuration - (default) receives a fixed list of rules for IPsec encryption and
decryption
Note: When creating the security association (SA) object, the application gets the key,
salt, and other SA attributes from the JSON input file.

» Dynamic configuration - receives IPsec encryption and decryption rules during
runtime through through a Unix domain socket (UDS) which is enabled when
providing a socket path to the application

Note: You may find an example of integrating a rules generator with the application
under strongSwan project (DOCA plugin).

The application supports the following IPsec modes: Tunnel, transport, UDP transport.

NVIDIA DOCA IPsec Security Gateway MLNX-15-060576 _v2.2.0 | 1

https://github.com/Mellanox/strongswan/blob/BF-5.9.6/src/libcharon/plugins/doca/doca_plugin_ipsec.c

Introduction

Original packet
Transport mode
ESP Header L4 Header Data ESP Trailer ESP Auth
[o
Encrypted
Authenticated
UDP transport mode
_ UDP ESP L4 Header Data ESP Trailer ESP Auth
- |
\\ Encrypted
Authenticated
Tunnel mode
New IP ESP Data ESP Trailer ESP Auth

! M H“*r

Encrypted

—

-

Authenticated

Note: DOCA IPsec supports only ESP header type.

NVIDIA DOCA IPsec Security Gateway

MLNX-15-060576 _v2.20 | 2

Chapter 2. System Design

DOCA IPsec Security Gateway is designed to run with 2 ports, secured and unsecured:

» Secured port - BlueField receives IPsec encrypted packets and, after decryption, they
are sent through the unsecured port

» Unsecured port - BlueField receives regular (plain text) packets and, after encryption,
they are sent through the secured port

Example packet path for hardware offloading:

BlueField

Arm

Security
Gateway app

Traffic from
network

Example packet path for partial software processing (handling encap/decap in software):

Using the application with SF:

NVIDIA DOCA IPsec Security Gateway MLNX-15-060576 _v2.2.0 | 3

System Design

BlueField ofOhpf ‘—l

OVS-BR

l—» SF 4—T
Security Gateway

Traffic from
network

NVIDIA DOCA IPsec Security Gateway MLNX-15-060576 _v2.2.0 | 4

Chapter 3. Application Architecture

3.1. Static Configuration

IPsec

Initialize
DOCA core
objects

Create DOCA Open 2 DOCA
IPsec context devices

IPsec

Insert encrypt - Probe DPDK
_ Initialize

and decrypt Submit SA DOCA Flow ports from

rules with create job the opened

orts :
created SA’s P devices

1. Create IPsec library context.

2. Open two DOCA devices, one for the secured port and another for the unsecured
port.

3. Initialize the DOCA work queue.

4. With the open DOCA devices, the application probes DPDK ports and initializes DOCA
Flow and DOCA Flow ports accordingly.

5. On the created ports, build DOCA Flow pipes.
6. In aloop according to the JSON rules:

a). Create DOCA IPsec SA for the new rule.
b). Insert encrypt or decrypt rule to DOCA Flow pipes.

NVIDIA DOCA IPsec Security Gateway MLNX-15-060576 _v2.20 | 5

Application Architecture

3.2. Dynamic Configuration

IPsec

Probe DPDK Initialize DOCA
ports from the Flow ports and
opened devices create pipes

Create DOCA Open 2 DOCA Initialize DOCA

IPsec context devices core objects

IPsec

e £l : Parse the new Create UDS
or decrypt Submit SA Is new IPsec :
socket and listen

rule with create job d:cncry;pt;irc policy received? for incoming data
created SA e lnetia :

1. Create IPsec library context.

2. Open two DOCA devices, one for the secured port and another for the unsecured
port.

3. Initialize the DOCA work queue.

4. With the open DOCA devices, the application probes DPDK ports and initializes DOCA
Flow and DOCA Flow ports accordingly.

5. On the created ports, build DOCA Flow pipes.
6. Create UDS socket and listen for incoming data.
7. While waiting for new IPsec policies to be received in a loop, if a new IPsec policy is
received:
a). Parse the policy whether it is an encryption or decryption rule.
b). Create DOCA IPsec SA for the new rule.
c). Insert encrypt or decrypt rule to DOCA Flow pipes.

3.3. DOCA Flow Modes

The application can run in two modes, vnf and switch. For more information about the
modes, please refer to section "Pipe Mode" in the NVIDIA DOCA Flow Programming
Guide.

3.3.1. VNF Mode

NVIDIA DOCA IPsec Security Gateway MLNX-15-060576 _v2.20 | 6

http://docs.nvidia.com/doca/sdk/pdf/flow-programming-guide.pdf
http://docs.nvidia.com/doca/sdk/pdf/flow-programming-guide.pdf

Application Architecture

3.3.1.1. Encryption

~
TCP IPv4 pipe
-m tuple
t meta
Drop
A packet
/ //
/ //
TCP IPva UDP IPv4 pipe /s
/ le If no match
/ s s
/ P ction: set meta /
/'/u DP IPua /
/
Unsecured / - >- Attempt /. 1f match——» <M = i .
port . o to match yes.
[N control pipe
\ Tep IPv6 TCP source
N\ - IPv6 pipe
N - match: source
\ .-
UDP IPVE e i Send
N
N packets to

application

UDP IPv6 pipe UDP IPvb pipe
- match: source - m ple
IPv6 - ac et meta Send
packets to
second port

Application

-encap

Encryption
Secured port

F 3
w
i)
]
o
-
=]
=
=
o
c
I
c

- optional: encap

1. The application builds 8 pipes for encryption. Control pipe as root with four entries
that match L3 and L4 types and forward the traffic to the relevant pipes.

a). IPv6 pipes - match the source IP address and forward the traffic to a pipe that
matches 5-tuple excluding the source IP.

b). In the 5-tuple match pipes set action of "set meta data", the metadata would be
the rule's index in the JSON file.

c). The matched packet is forwarded to the second port.

2. In the secured egress domain, there is an encryption pipe that has a shared IPsec
encrypt action. According to the metadata match, the packet is encrypted with the
encap destination IP and SPI as defined in the user's rules.

3.3.1.2. Decryption

NVIDIA DOCA IPsec Security Gateway MLNX-15-060576 _v2.2.0 | 7

ecrypt IPvd pipe

Secured port

L

control pipe

Decrypt IPvE pipe
- match: dst IP, SPI
- action: decrypt

-optionak decap

Unsecured port

F 3

Attemptto
match

Syndrome pipe [

- match: syndrome

Application Architecture

SW decap Vs

no Send
packets to
application

Send
packets to
second port

Application
-decap

1. The application builds 4 pipes for decryption. Control pipe as root with two entries
that match L3 type and forward the traffic to the relevant decrypt pipe.

2. The decrypt pipe matches the destination IP and SPI according to the rule files and

has a shared IPsec action for decryption.

3. After decryption, the matched packets are forwarded to the syndrome pipe and,
if the syndrome is non-zero, the packets are dropped. Otherwise, the packets are

forwarded to the second port.

3.3.2. Switch Mode

NVIDIA DOCA IPsec Security Gateway

MLNX-15-060576 _v2.20 | 8

Application Architecture

Application
~decap

Forward
y orwa

Port match

pipe N TCP IPva p
PRl 1::ch: port meta [

p /
/ unsecure port /
/ ; N TeP P4
First bitis one—| _-OrWard to N\ /
unsecure port /S
N\ /uopipwa
\ — \ ’
N \ /
Second bitis ane '
N R~
N\ A\ TCPIPVE
\ <
i \

Forward to \
secure port [

packetsto
hairpin queue
Send

no
packets to
application
1f syndrome = 05} miss—) SW decap ng

Send

4’“"“‘“"“’@
Bl
no

packets to
application

Forward

packetsto
hairpin queue

Application
-encap

In switch mode, a root pipe matches the first 2 most significant bits (MSBs) to decide

what the next pipe is:

» Metadata is O - packet arrives and continues to pipe that matches on the port's
meta. Based on the port, the packet passes through almost the same path as VNF
mode and the metadata is set in the 2 MSBs. Afterwards, the packet moves to pipes

that send the packets to the root pipe.

» First bitis 1 - packet finishes the decrypt path and must be sent to the unsecure

port.

» Second bit is 1 - packet almost finishes the encrypt path and must be sent to the
encrypt pipe on the secure egress domain and to the secure port from there.

NVIDIA DOCA IPsec Security Gateway

MLNX-15-060576 _v2.20 | 9

Chapter 4. DOCA Libraries

This application leverages the following DOCA libraries:

» DOCA Flow library
» DOCA IPsec library

NVIDIA DOCA IPsec Security Gateway MLNX-15-060576 _v2.2.0 | 10

http://docs.nvidia.com/doca/sdk/pdf/flow-programming-guide.pdf
http://docs.nvidia.com/doca/sdk/pdf/ipsec-programming-guide.pdf

Chapter 5. Configuration Flow

1. Parse application argument.
a). Initialize the arg parser resources and register DOCA general parameters.
doca argp init();

b). Register application parameters.
register ipsec security gw params () ;

c). Parse application flags.
doca argp start();
i. Parse app parameters.
2. DPDK initialization.
rte eal init();
Call rte _eal init () toinitialize EAL resources with the provided EAL flags for not
probing the ports.

3. Parse config file.
ipsec_security gw parse config();

4. Initialize devices and ports.
ipsec security gw init devices();
a). Open DOCA devices with input PCle addresses.
b). Probe DPDK port from each opened device.
5. Initialize and start DPDK ports.
dpdk queues and ports_init();
a). Initialize DPDK ports, including mempool allocation.
b). Initialize hairpin queues if needed.
c). Binds hairpin queues of each port to its peer port.
6. Initialize objects for DOCA IPsec library.
ipsec security gw ipsec ctx create();
a). Create IPsec library context.
b). Create DOCA Work queue.
7. Initialize DOCA Flow.
ipsec_security gw init doca flow();
a). Initialize DOCA Flow library.
b). Find the indices of the DPDK-probed ports and start DOCA Flow ports with them.

NVIDIA DOCA IPsec Security Gateway MLNX-15-060576 _v2.2.0 | 11

Configuration Flow

8. Insert rules.

a). Insert encryption rules.
ipsec security gw insert encrypt rules();

b). Insert decryption rules.
ipsec_security gw insert decrypt rules();

9. Wait for traffic.

ipsec security gw wait for traffic();

a). Wait in a loop until the user terminates the program.
10.IPsec security gateway cleanup:

a). DOCA Flow cleanup; destroy initialized ports.

doca flow cleanup();

b). SA destruction.

ipsec_security gw destroy sas();

c). IPsec objects destruction.
ipsec_security gw ipsec ctx destroy();

d). Destroy DPDK ports and queues.
dpdk queues and ports fini();

e). DPDK finish.
dpdk_fini () ;

Calls rte _eal destroy () to destroy initialized EAL resources.

f). Arg parser destroy.
doca argp destroy();

NVIDIA DOCA IPsec Security Gateway MLNX-15-060576 _v2.2.0 | 12

Chapter 6. Running the Application

1. Refer to the following documents:

» NVIDIA DOCA Installation Guide for Linux for details on how to install BlueField-
related software.

» NVIDIA DOCA Troubleshooting Guide for any issue you may encounter with the
installation, compilation, or execution of DOCA applications.

» NVIDIA DOCA Applications Overview for additional compilation instructions and
development tips for the DOCA applications.

2. DOCA IPsec Security Gateway binary is located under /opt/mellanox/doca/
applications/ipsec security gw/bin/doca ipsec security gw. To build all the
applications together, run:

cd /opt/mellanox/doca/applications/
meson build
ninja -C build

3. To build only the IPsec security gateway application:

a). Edit the following flags in /opt/mellanox/doca/applications/
meson_ option.txt:

> Set enable all applications to false
» Setenable ipsec security gwto true

b). Run the commands in step 2.

Note: doca ipsec security gw will be created under . /build/
ipsec_security gw/src/.

Application usage:
Usage: doca ipsec security gw [DOCA Flags] [Program Flags]

DOCA Flags:
-h, --help Print a help synopsis
-v, —--version Print program version information
-1, --log-level Set the log level for the program

<CRITICAL=20, ERROR=30, WARNING=40, INFO=50, DEBUG=60>

Program Flags:

-s, —-secured Secured port pci-address

-u, —--unsecured Unsecured port pci-address

-c, --config Path to the JSON file with application
configuration

-m, -—--mode IPsec mode - {tunnel/transport/udp transport}

NVIDIA DOCA IPsec Security Gateway MLNX-15-060576 _v2.2.0 | 13

http://docs.nvidia.com/doca/sdk/pdf/installation-guide-for-linux.pdf
http://docs.nvidia.com/doca/sdk/pdf/troubleshooting.pdf
http://docs.nvidia.com/doca/sdk/pdf/applications-overview.pdf

Running the Application

=i, ==ipe IPC socket file path
-sn, --secured-name Secured port interface name
-un, --unsecured-name Unsecured port interface name

Note: For additional information on the application, use -h:

/opt/mellanox/doca/applications/<application name>/bin/doca <application
name> -- -h

4. Running the application on BlueField:
» Pre-run setup:

» The IPsec security gateway application is based on DPDK libraries. Therefore,
the user is required to allocate huge pages:
echo 2048 > /sys/kernel/mm/hugepages/hugepages-2048kB/nr hugepages

» VNF mode - the IPsec security gateway example requires disabling some of
the hardware tables:

/opt/mellanox/iproute2/sbin/devlink dev eswitch set pci/0000:03:00.0 mode
legacy
/opt/mellanox/iproute2/sbin/devlink dev eswitch set pci/0000:03:00.1 mode
legacy

echo none > /sys/class/net/p0/compat/devlink/encap
echo none > /sys/class/net/pl/compat/devlink/encap

/opt/mellanox/iproute2/sbin/devlink dev eswitch set pci/0000:03:00.0 mode
switchdev
/opt/mellanox/iproute2/sbin/devlink dev eswitch set pci/0000:03:00.1 mode
switchdev

To restore the old configuration:

/opt/mellanox/iproute2/sbin/devlink dev eswitch set pci/0000:03:00.0 mode
legacy
/opt/mellanox/iproute2/sbin/devlink dev eswitch set pci/0000:03:00.1 mode
legacy

echo basic > /sys/class/net/p0/compat/devlink/encap
echo basic > /sys/class/net/pl/compat/devlink/encap

/opt/mellanox/iproute2/sbin/devlink dev eswitch set pci/0000:03:00.0 mode
switchdev
/opt/mellanox/iproute2/sbin/devlink dev eswitch set pci/0000:03:00.1 mode
switchdev

» Switch mode - the IPsec security gateway application requires configuring the
ports to run in switch mode:

sudo mlxconfig -d /dev/mst/mt41686 (mt41692) pciconfl s
LAG_RE SOURCE_ALLOCAT ION=1
power cycle the host to apply this setting

/opt/mellanox/iproute2/sbin/devlink dev eswitch set pci/0000:03:00.0 mode
legacy
/opt/mellanox/iproute2/sbin/devlink dev eswitch set pci/0000:03:00.1 mode
legacy

sudo devlink dev param set pci/0000:03:00.0 name esw_pet insert value
false cmode runtime
sudo devlink dev param set pci/0000:03:00.1 name esw_pet insert value
false cmode runtime

/opt/mellanox/iproute2/sbin/devlink dev eswitch set pci/0000:03:00.0 mode
switchdev

NVIDIA DOCA IPsec Security Gateway MLNX-15-060576 _v2.2.0 | 14

Running the Application

/opt/mellanox/iproute2/sbin/devlink dev eswitch set pci/0000:03:00.1 mode

switchdev

sudo devlink dev param set pci/0000:03:
cmode runtime
sudo devlink dev param set pci/0000:03:
cmode runtime

To restore the old configuration:

sudo devlink dev param set pci/0000:03:
cmode runtime

sudo devlink dev param set pci/0000:03:
cmode runtime

00

00

00

00

.0 name esw multiport value true

.1 name esw multiport value true

.0 name esw multiport value false

.1 name esw multiport value false

» Example for running the application in static configuration:

cd /opt/mellanox/doca/applications/ipsec_security gw/bin
./doca_ipsec_security gw -s 03:00.0 -u 03:00.1 -c ./

ipsec_security gw config.json -m transport

» Example for running the application in dynamic configuration:

cd /opt/mellanox/doca/applications/ipsec_security gw/bin
./doca_ipsec_security gw -s 03:00.0 -u 03:00.1 -c ./
ipsec security gw config.json -m transport -i /tmp/rules socket

5. Running the application on the host, CLI example:

cd /opt/mellanox/doca/applications/ipsec security gw/bin
./doca ipsec security gw -s 08:00.0 -u 08:00.1 -c ./ipsec security gw config.Jjson

-m transport

Note: Refer to section "Running DOCA Application on Host" in NVIDIA DOCA Virtual

Functions User Guide.

6. Torun doca ipsec security gw usinga JSON file:

doca ipsec security gw --json [Jjson file]

For example:

cd /opt/mellanox/doca/applications/ipsec security gw/bin
./doca ipsec security gw —-Jjson ./ipsec security gw params.Jjson

6.1. Static Configuration IPsec Rules

IPsec rules and other configuration can be added with a JSON config file that is passed

using the --config parameter.

Section Field Type

config switch bool

esp_header offloastring

NVIDIA DOCA IPsec Security Gateway

Description

True for running
DOCA Flow in
switch mode.

Default is false
(VNF mode).

Decap and encap
offloading: both,
encap, decap, Or
none. Default is
both (offloading

Example

"switch": true

"esp header offlpad":

MLNX-15-060576 _v2.2.0 | 15

"none"

http://docs.nvidia.com/doca/sdk/pdf/virtual-functions.pdf
http://docs.nvidia.com/doca/sdk/pdf/virtual-functions.pdf

Running the Application

Section Field Type Description Example
both encap and
decap).
sw_sn_inc_enable bool Increments "sw_sn_inc_enable":
sequence true

number of ESP

in software if

set to true.

Default is false.
Available only if
esp_header offload
iS decap Or none.

sw_antireplay enaboel Enables "sw_antireplay enable":
anti-replay cenis
mechanism
in software if
set to true.

Default is false.
Available only if
esp_header offload
iS encap Of none.

Note:

S Window
size is 64.
Not ESN.
Supports
non-zero
sn_initial.

sn_initial uint Initial sequence
number for
ESP header.
Used also when
sw_antireplay enable
is true. Default is
0.

encrypt rules ip-version int Source and

destination IP
version. 4 / 6.

Optional. Default

is 4.
src-ip string Source IP to "src-

match ip": "1.2.3.4"
dst-ip string Destination IPto "dst-

match ip": "101:101:101:101:101:101:
protocol string L4 protocol: TCP "protocol”

or UDP

NVIDIA DOCA IPsec Security Gateway MLNX-15-060576 _v2.2.0 | 16

Section Field Type
src-port int
dst-port int
encap-ip- int
version
encap-dst-ip string
spi int
key string
key type int

decrypt_rules ip-version int
dst-ip string
inner-ip- int
version
spi int
key string
key type int

Running the Application

Description

Source port to
match

Destination port
to match

Encap IP version:
4 or 6. Optional;
default is 4.

Encap destination
IP. Mandatory for
tunnel mode only.

SPIlinteger to set
in the ESP header

Key for creating
the SA (in hex
format)

Key size: 128 or
256. Optional,
default is 256.

Destination IP
version: 4 or 6.
Optional; default
is 4.

Destination IP to
match

Inner IP version.
Mandatory for
tunnel mode only.
Optional; default
is 4.

SPI to match in
the ESP header

Key for creating
the SA (in hex
format)

Key size: 128 or
256. Optional,
default is 256.

Example

"encap-dst-
ip": "1.1.1.1"

"key": "11223344556677889%aabk

"dst-
ip": "1122:3344:5566:7788:99%ac¢

"key": "112233445566778899%aabk

6.2. Dynamic Configuration IPsec Rules

The application listens on the UDS socket for receiving a predefined structure for the

IPsec policy defined in the policy.h file.

NVIDIA DOCA IPsec Security Gateway

MLNX-15-060576 _v2.2.0 | 17

Running the Application

The client program or keying daemon should connect to the socket with the same
socket file path provided to the application by the --ipc/-i flags, and send the policy
structure as packed to the application through the same socket.

S Note: In the dynamic configuration, the application uses the config section from the
JSON config file and ignores the encrypt rules and decrypt rules sections.

The IPsec policy structure:

struct ipsec security gw ipsec policy {
/* Protocols attributes */

uintl6é t src port; /* Policy inner source port */

uintl6é t dst port; /* Policy inner destination port */

uint8 t 13 protocol; /* Policy L3 proto {POLICY L3 TYPE IPV4,
POLICY L3 TYPE IPV6} */

uint8 t 14 protocol; /* Policy L4 proto {POLICY L4 TYPE UDP,
POLICY L4 TYPE TCP} */

uint8 t outer 13 protocol; /* Policy outer L3 type

{POLICY L3 TYPE IPV4, POLICY L3 TYPE IPV6} */

/* Policy attributes */

uint8 t policy direction; /* Policy direction {POLICY DIR IN,
POLICY DIR OUT} */
uint8 t policy mode; /* Policy IPSEC mode

{POLICY MODE TRANSPORT, POLICY MODE TUNNEL} */

/* Security Association attributes */

uint8 t esn; /* Is ESN enabled? */

uint8 t icv_length; /* ICV length in bytes {8, 12, 16} */

uint8 t key type; /* AES key type {POLICY KEY TYPE 128,
POLICY KEY TYPE 256} */

uint32 t spi; /* Security Parameter Index */

uint32 t salt; /* Cryptographic salt */

uint8 t enc key data[MAX KEY LEN]; /* Encryption key (binary) */

/* Policy inner and outer addresses */

char src ip addr[MAX IP ADDR LEN + 1]; /* Policy inner IP source address
in string format */

char dst ip addr[MAX IP ADDR LEN + 1]; /* Policy inner IP destination
address in string format */

char outer src_ ip[MAX IP_ADDR LEN + 1]; /* Policy outer IP source address
in string format */

char outer dst ip[MAX IP ADDR LEN + 1]; /* Policy outer IP destination

address in string format */

b

Note: The policy type, whether it is encrypted or decrypted, is classified according to the
policy direction attribute:

» POLICY DIR IN-decryption policy

» POLICY DIR OUT -encryption policy

NVIDIA DOCA IPsec Security Gateway MLNX-15-060576 _v2.2.0 | 18

Chapter 7. Arg Parser DOCA Flags

Refer to NVIDIA DOCA Arg Parser Programming Guide for more information.

Long Flag/
Flag Type Short Flag JSON Key Description JSON Content
General flags 1 log-level Sets the log "log-level":
level for the o0
application:
CRITICAL=20
ERROR=30
WARNING=40
INFO=50
DEBUG=60
v version Print program N/A
version
information
h help Print a help N/A
synopsis
Program flags c config Path to JSON "config":
file with security gateway config.json
configurations
u unsecured PCle address for | "unsecured": "03:00.1"
the unsecured
port
s secured PCle address for | "secured": "03:00.0"
the secured port
m mode IPsec mode. "mode": "tunnel"

Possible
values: tunnel,

NVIDIA DOCA IPsec Security Gateway MLNX-15-060576 _v2.2.0 | 19

http://docs.nvidia.com/doca/sdk/pdf/arg-parser-programming-guide.pdf

Arg Parser DOCA Flags

Long Flag/
Flag Type Short Flag JSON Key Description JSON Content

transport,
udp_ transport.

un unsecured-name | Interface name "unsecured-
of the unsecured M@me": "Pl
port

sn secured-name Interface name of | "secured-
the secured port mame”: "p0

i ipc IPC socket file "ipc": "/tmp/

path for receiving Tules_socket

IPsec rules during
runtime

NVIDIA DOCA IPsec Security Gateway MLNX-15-060576 _v2.2.0 | 20

Chapter 8. Keying Daemon
Integration (StrongSwan)

strongSwan is a keying daemon that uses the Internet Key Exchange Version 2 (IKEv2)
protocol to establish SAs between two peers. strongSwan includes a DOCA plugin that
is part of the strongSwan package in BFB. The plugin is loaded only if the DOCA IPsec
Security Gateway is triggered. The plugin connects to UDS socket and sends IPsec
policies to the application after the key exchange completes.

For more information about the key daemon, please refer to strongSwan documentation.

The following diagram presents an architecture where two BlueField DPUs are connected
to each other with DOCA IPsec Security Gateway running on each.

NVIDIA DOCA IPsec Security Gateway MLNX-15-060576 _v2.2.0 | 21

https://wiki.strongswan.org/projects/strongswan/wiki/IntroductiontostrongSwan

BlueField

StrongSwan

B

Pl
192.168.50.2

Pl
192.168.50.1

StrongSwa

=

BlueField

NVIDIA DOCA IPsec Security Gateway

Keying Daemon Integration (StrongSwan)

|Psec Security
Gateway

IPsec Security
Gateway

Host x86

MLNX-15-060576 _v2.2.0 | 22

Keying Daemon Integration (StrongSwan)

swanctl is a command line tool that is used for strongSwan IPsec configuration:

Run DOCA IPsec Security Gateway on both sides in dynamic configuration.
Start strongSwan service.
Configure strongSwan IPsec using the swanct1.conf configuration file on both sides.

Start key exchange between the two peers. At the end of the flow, the result arrives
to the DOCA plugin, populates the policy-defined structure, and sends it to the
socket.

5. DOCA IPsec Security Gateway on both sides reads new policies from the socket,
performs the parsing, creates a DOCA SA object, and adds flow decrypt/encrypt
entry.

W=

This architecture uses P1 uplink on both BlueField DPUs to run the strongSwan key
daemon. To configure the uplink:

1. Configure an IP addresses for the PFs of both DPUs:

a). On BF1:
ip addr add 192.168.50.1/24 dev pl

b). On BF2:
ip addr add 192.168.50.2/24 dev pl

S Note: It is possible to configure multiple IP addresses to uplinks to run key
exchanges with different policy attributes.

2. Verify the connection between two BlueField DPUs.
BF1> ping 192.168.50.2

Note: Make sure that the uplink is not in OVS bridges.

3. Configure the swanctl.conf files for each machine. They should be located under /
etc/swanctl/conf.d/. Examples for adding swanctl.conf file:

Transport mode:

swanctl.conf example for BF1:

connections {
BF1-BF2 {
local addrs
remote addrs
rekey time = 0

192.168.50.1
192.168.50.2

local {
auth = psk
id = hostl

}

remote {
auth = psk
id = host2

}

children {
bf {
local ts = 192.168.50.1/32 [udp/60]
remote ts = 192.168.50.2/32 [udp/90]
esp proposals = aesl28gcml28-x25519-esn
mode = transport

NVIDIA DOCA IPsec Security Gateway MLNX-15-060576 _v2.2.0 | 23

Keying Daemon Integration (StrongSwan)

policies fwd out = yes
life time = 0
}
}
version = 2
mobike = no
reauth time = 0
proposals = aesl28-sha256-x25519

}

secrets {
ike-BF {
id-hostl
id-host2
secret =

}

= hostl
= host2
0sv+NkxY9LLZvwj4qCC20/gGrWDF2d21jL

» swanctl.conf example for BF2:

connections {
BF2-BF1 {

local addrs
remote addrs =
=0

rekey time

local {
auth =
id =
}
remote
auth =
id =
}

children
bf {

local ts =
remote ts =
esp proposals =

192.168.50.2
192.168.50.1

psk
host2

psk
hostl

{

192.168.50.2/32 [udp/90]
192.168.50.1/32 [udp/60]
aesl28gcml28-x25519-esn

mode = transport

life time =
}
1

version
mobike =

0

2
no

reauth time = 0

proposals

}

secrets {
ike-BF {
id-hostl
id-host2
secret =

}

» Tunnel mode:

connections {
BF1-BF2 {
local addrs

remote addrs

rekey time = 0

local {
auth =

NVIDIA DOCA IPsec Security Gateway

psk

= aesl28-sha256-x25519

= hostl
= host2
0sv+NkxY9LLZvw]j4qCC20/gGrWDF2d21jL

192.168.50.2
192.168.50.1

MLNX-15-060576 _v2.2.0 | 24

id = host2
}
remote {
auth = psk
id = hostl
}

children {
bf {

Keying Daemon Integration (StrongSwan)

local ts = 2001:db8:85a3::8a2e:370:7334/128 [udp/3030]
remote ts = 2001:db8:85a3::8a2e:370:7335/128 [udp/55]
esp_proposals = aesl28gcml28-x25519-esn

life time = 0
}
}
version = 2
mobike = no

proposals = aesl28-sha256-x25519

}

secrets {

ike-BF {
id-hostl = hostl
id-host2 = host2

secret = 0sv+NkxY9LLZvwj4qCC20/gGrWDF2d21jL

}

S Note: 1ocal tsand remote ts must have a netmask of /32 for IPv4 addresses
and /128 for IPv6 addresses.

set to O and connection.child.life time must be setto O.

Note: SA rekey is not supported in DOCA plugin. connection.rekey time must be

DOCA IPsec only supports ESP headers, AES-GCM encryption algorithm, and key sizes
128 or 256. Therefore, when setting ESP proposals in the swanctl.conf, please adhere

to the values provided in the following table:

Algorithm Type Including

ESP Proposal ICV Length

aes128gcm8 ENCR_AES_GCM_ICVS8
aes128gcm64 ENCR_AES_GCM_ICV8
aes128gcm12 ENCR_AES_GCM_ICV12
aes128gcm96 ENCR_AES_GCM_ICV12
aes128gcml16 ENCR_AES_GCM_ICV16
aes128gcm128 ENCR_AES_GCM_ICV16
aes128gcm ENCR_AES_GCM_ICV16
aes256gcm8 ENCR_AES_GCM_ICV8
aes256gcm64 ENCR_AES_GCM_ICV8
aes256gcm12 ENCR_AES_GCM_ICV12
aes256gcm96 ENCR_AES_GCM_ICV12
aes256gcm16 ENCR_AES_GCM_ICV16

NVIDIA DOCA IPsec Security Gateway

Key Size
128
128
128
128
128
128
128
256
256
256
256
256

MLNX-15-060576 _v2.2.0 | 25

Keying Daemon Integration (StrongSwan)

Algorithm Type Including

ESP Proposal ICV Length Key Size
aes256gcm128 ENCR_AES_GCM_ICV16 256
aes256gcm ENCR_AES_GCM_ICV16 256

8.2. Running the Solution

Run the following commands on both BlueField peers.

1. Run DOCA IPsec Security Gateway in dynamic configuration, assuming the socket
location is /tmp/rules socket.

doca_ipsec_security gw -s 03:00.0 -un <sf net dev> -c ./
ipsec_security gw config.json -m transport -i /tmp/rules socket

Note: DOCA IPsec Security Gateway application should be run first.

2. Edit the /etc/strongswan.d/charon/doca.conf file and add the UDS socket
path. If the socket path is not set, the plugin uses the default path /tmp/
strongswan_ doca_socket.
doca {

Whether to load the plugin
load = yes

Path to DOCA socket

socket path = /tmp/rules socket
}

Note: You must provide the application with this path as well.

3. Restart the strongSwan server:
systemctl restart strongswan-starter.service

Note: If the application has been run with log level debug, you can see that the
connection has been done successfully and the application is waiting for new IPsec
policies.

4. Verify that the swanctl.conf file exists in /etc/swanctl/conf.d/. directory.

Note: It is recommended to remove any unused conf files under /etc/swanctl/
conf.d/.

5. Load IPsec configuration:

swanctl --load-all
6. Start IKE protocol on either the initiator or the target side:
swanctl -i --child <child name>

In the example above, the child's name is bf.

NVIDIA DOCA IPsec Security Gateway MLNX-15-060576 _v2.2.0 | 26

Keying Daemon Integration (StrongSwan)

8.3. Building strongSwan

To perform some changes in the DOCA plugin in strongSwan zone:

1. Verify that the dependencies listed here are installed in your environment. 1ibgmp-
dev is missing from that list so make sure to install that as well.

2. Git clone https://github.com/Mellanox/strongswan.qit.

3. Git checkout BF-5.9.6 branch.

4. Add your changes in the plugin located under src/libcharon/plugins/doca.

5. Run autogen.sh within the strongSwan repo.

6. Run the following:
./configure --enable-openssl --disable-random --prefix=/usr/local --sysconfdir=/
etc --enable-systemd --enable-doca
make

make install
systemctl daemon-reload
systemctl restart strongswan-starter.service

NVIDIA DOCA IPsec Security Gateway MLNX-15-060576 _v2.2.0 | 27

https://github.com/Mellanox/strongswan/tree/BF-5.9.6
https://github.com/Mellanox/strongswan/blob/BF-5.9.6/HACKING
https://github.com/Mellanox/strongswan.git

Chapter 9. References

> /opt/mellanox/doca/applications/ipsec security gw/src

NVIDIA DOCA IPsec Security Gateway MLNX-15-060576 _v2.2.0 | 28

Notice

This document is provided for information purposes only and shall not be regarded as a warranty of a certain functionality, condition, or quality of a product.
NVIDIA Corporation nor any of its direct or indirect subsidiaries and affiliates (collectively: “NVIDIA”) make no representations or warranties, expressed or
implied, as to the accuracy or completeness of the information contained in this document and assume no responsibility for any errors contained herein.
NVIDIA shall have no liability for the consequences or use of such information or for any infringement of patents or other rights of third parties that may
result from its use. This document is not a commitment to develop, release, or deliver any Material (defined below), code, or functionality.

NVIDIA reserves the right to make corrections, modifications, enhancements, improvements, and any other changes to this document, at any time without
notice.

Customer should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the time of order acknowledgement, unless otherwise
agreed in an individual sales agreement signed by authorized representatives of NVIDIA and customer (“Terms of Sale”). NVIDIA hereby expressly objects
to applying any customer general terms and conditions with regards to the purchase of the NVIDIA product referenced in this document. No contractual
obligations are formed either directly or indirectly by this document.

NVIDIA products are not designed, authorized, or warranted to be suitable for use in medical, military, aircraft, space, or life support equipment, nor in
applications where failure or malfunction of the NVIDIA product can reasonably be expected to result in personal injury, death, or property or environmental
damage. NVIDIA accepts no liability for inclusion and/or use of NVIDIA products in such equipment or applications and therefore such inclusion and/or use
is at customer’s own risk.

NVIDIA makes no representation or warranty that products based on this document will be suitable for any specified use. Testing of all parameters of each
product is not necessarily performed by NVIDIA. It is customer’s sole responsibility to evaluate and determine the applicability of any information contained
in this document, ensure the product is suitable and fit for the application planned by customer, and perform the necessary testing for the application in
order to avoid a default of the application or the product. Weaknesses in customer’s product designs may affect the quality and reliability of the NVIDIA
product and may result in additional or different conditions and/or requirements beyond those contained in this document. NVIDIA accepts no liability
related to any default, damage, costs, or problem which may be based on or attributable to: (i) the use of the NVIDIA product in any manner that is contrary
to this document or (ii) customer product designs.

No license, either expressed or implied, is granted under any NVIDIA patent right, copyright, or other NVIDIA intellectual property right under this document.
Information published by NVIDIA regarding third-party products or services does not constitute a license from NVIDIA to use such products or services or
a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property rights
of the third party, or a license from NVIDIA under the patents or other intellectual property rights of NVIDIA.

Reproduction of information in this document is permissible only if approved in advance by NVIDIA in writing, reproduced without alteration and in full
compliance with all applicable export laws and regulations, and accompanied by all associated conditions, limitations, and notices.

THIS DOCUMENT AND ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS
(TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR
OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND
FITNESS FOR A PARTICULAR PURPOSE. TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL NVIDIA BE LIABLE FOR ANY DAMAGES, INCLUDING
WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF
THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF NVIDIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
Notwithstanding any damages that customer might incur for any reason whatsoever, NVIDIA’s aggregate and cumulative liability towards customer for the
products described herein shall be limited in accordance with the Terms of Sale for the product.

Trademarks

NVIDIA, the NVIDIA logo, and Mellanox are trademarks and/or registered trademarks of Mellanox Technologies Ltd. and/or NVIDIA Corporation in the
U.S. and in other countries. The registered trademark Linux® is used pursuant to a sublicense from the Linux Foundation, the exclusive licensee of Linus
Torvalds, owner of the mark on a world-wide basis. Other company and product names may be trademarks of the respective companies with which they
are associated.

Copyright
© 2023 NVIDIA Corporation & affiliates. All rights reserved.

NVIDIA Corporation | 2788 San Tomas Expressway, Santa Clara, CA 95051 @Dz

http://www.nvidia.com
NVIDIA.

http://www.nvidia.com

	Table of Contents
	Introduction
	System Design
	Application Architecture
	3.1. Static Configuration
	3.2. Dynamic Configuration
	3.3. DOCA Flow Modes
	3.3.1. VNF Mode
	3.3.1.1. Encryption
	3.3.1.2. Decryption

	3.3.2. Switch Mode

	DOCA Libraries
	Configuration Flow
	Running the Application
	6.1. Static Configuration IPsec Rules
	6.2. Dynamic Configuration IPsec Rules

	Arg Parser DOCA Flags
	Keying Daemon Integration (StrongSwan)
	8.1. End-to-end Architecture
	8.2. Running the Solution
	8.3. Building strongSwan

	References

