
MLNX-15-060489 _v2.2.0 | October 2023

NVIDIA DOCA RegEx

Programming Guide

NVIDIA DOCA RegEx MLNX-15-060489 _v2.2.0 | ii

Table of Contents

Chapter 1. Introduction..1

Chapter 2. Prerequisites.. 2

Chapter 3. Architecture... 3
3.1. Rule Compilation.. 3

3.2. RegEx Implementations.. 3

3.3. Huge Job Emulation... 3

Chapter 4. API.. 5
4.1. Enumerated Types...5

4.1.1. doca_regex_job_types... 5

4.1.2. doca_regex_search_job_flags...5

4.1.3. doca_regex_status_flag...5

4.2. Structures..6

4.2.1. doca_regex_job_search... 6

4.2.2. doca_regex_search_result.. 6

4.2.3. doca-regex.. 7

4.3. Instance Construction/Destruction... 7

4.3.1. doca_regex_create...7

4.3.2. doca_regex_destroy.. 7

4.3.3. doca_regex_as_ctx.. 7

4.4. Device Query API..8

4.4.1. doca_regex_is_supported...8

4.4.2. doca_regex_get_hardware_supported..8

4.4.3. doca_regex_get_maximum_job_size... 8

4.4.4. doca_regex_get_maximum_non_huge_job_size...9

4.4.5. doca_regex_job_get_supported.. 9

4.4.6. doca_regex_search_job_flag_get_highest_priority_match_supported......................9

4.4.7. doca_regex_search_job_flag_get_stop_on_any_match_supported..........................10

4.5. Programming RegEx...10

4.5.1. Reprogramming Guidelines... 10

4.5.2. doca_regex_set_hardware_compiled_rules..11

4.5.3. doca_regex_get_hardware_compiled_rules... 11

4.5.4. doca_regex_set_hardware_uncompiled_rules...12

4.5.5. doca_regex_get_hardware_uncompiled_rules.. 12

4.6. DOCA RegEx Setup.. 13

4.6.1. doca_regex_set_workq_matches_memory_pool_size... 13

NVIDIA DOCA RegEx MLNX-15-060489 _v2.2.0 | iii

4.6.2. doca_regex_get_workq_matches_memory_pool_size...14

4.7. Configuration Options...14

4.7.1. doca_regex_set_huge_job_emulation_overlap_size... 14

4.7.2. doca_regex_get_huge_job_emulation_overlap_size...15

4.7.3. doca_regex_set_in_order_responses_enabled..15

Chapter 5. DOCA RegEx Samples...16
5.1. Sample Prerequisites... 16

5.2. Running the Sample...16

5.3. Samples..17

5.3.1. RegEx Scan...17

NVIDIA DOCA RegEx MLNX-15-060489 _v2.2.0 | iv

NVIDIA DOCA RegEx MLNX-15-060489 _v2.2.0 | 1

Chapter 1. Introduction

Important: No updates were made to the DOCA RegEx library in DOCA 2.2. Please refer to
DOCA 2.5 for a note regarding future RegEx updates.

DOCA RegEx is a library that provides RegEx pattern matching to DOCA applications.
It provides access to the regular expression processor (RXP) , a high-performance,
hardware-accelerated RegEx engine available on the NVIDIA® BlueField® DPUs, and can
utilize software-based engines when required.

Using DOCA RegEx, developers can easily execute complex regular expression operations
in an optimized, hardware-accelerated way.

This document is intended for software developers wishing to accelerate their regular
expressions operations.

NVIDIA DOCA RegEx MLNX-15-060489 _v2.2.0 | 2

Chapter 2. Prerequisites

DOCA RegEx-based applications can run either on the host machine or on the DPU
target.

The RegEx engine is enabled by default on the DPU. However, to enable RegEx offloading
on the host, run:
host> sudo /etc/init.d/openibd stop
host> sudo echo 1024 > /sys/kernel/mm/hugepages/hugepages-2048kB/nr_hugepages

Then enable host access to the RegEx engine on the DPU:
dpu> echo 1 > /sys/bus/pci/devices/0000\:03\:00.0/regex/pf/regex_en

NVIDIA DOCA RegEx MLNX-15-060489 _v2.2.0 | 3

Chapter 3. Architecture

DOCA RegEx provides a flexible API for programming regular expression databases,
enqueuing jobs and dequeuing results. The API operates asynchronously allowing many
pattern matching operations to be executed in parallel.

3.1. Rule Compilation
Regular expressions can be provided as:

‣ A "compiled" rules file where the external RXPC (RXP compiler) is used to generate a
compiled data file; or

‣ An "uncompiled" where the DOCA Regex library compiles the supplied regular
expressions when initialized

The external compiler is termed "RXPC" (RXP compiler) and generates RXP object format
(ROF) binary files that represent the compiled regular expressions. For more information
on RXPC, please refer to chapter "RXP Compiler Utility" in the NVIDIA RXP Compiler Tool
Guide.

When uncompiled rules are provided, the library utilizes a set of default options during
compilation. For complete control and optimization, it is recommend you use compile
rules with custom compiler options.

3.2. RegEx Implementations
The library itself is designed to support multiple RegEx engine implementations.
Currently, only hardware devices are supported. Software devices will be introduced in
the future.

3.3. Huge Job Emulation
The library includes a facility to accept job lengths that are greater than the maximum
size supported by an engine. The library fragments incoming jobs into smaller fragments
and processes them sequentially looking for potential matches. The "huge job emulation"
mechanism takes data from the end of the previous fragment and appends it to the

http://docs.nvidia.com/doca/sdk/pdf/rxp-compiler.pdf
http://docs.nvidia.com/doca/sdk/pdf/rxp-compiler.pdf

Architecture

NVIDIA DOCA RegEx MLNX-15-060489 _v2.2.0 | 4

start of the next fragment (the "size" of the overlap) to find additional matches. See the
doca_regex_property_huge_job_emulation_overlap_set API call for more information.

NVIDIA DOCA RegEx MLNX-15-060489 _v2.2.0 | 5

Chapter 4. API

This section details the specific enumerated types, structures, and API operations
related to the DOCA RegEx library.

Note: The pkg-config (*.pc file) for the RegEx library is included in DOCA's regular
definitions (i.e., doca).

4.1. Enumerated Types

4.1.1. doca_regex_job_types
This enumerated type provides the available job types for RegEx operations.
enum doca_regex_job_types {
 /** Default RegEx search mode */
 DOCA_REGEX_JOB_SEARCH = DOCA_ACTION_REGEX_FIRST + 1,
};

4.1.2. doca_regex_search_job_flags
This enumerated type provides the flags which are applicable to RegEx jobs.
enum doca_regex_search_job_flags {
 DOCA_REGEX_SEARCH_JOB_FLAG_HIGHEST_PRIORITY_MATCH = 1 << 1,
 DOCA_REGEX_SEARCH_JOB_FLAG_STOP_ON_ANY_MATCH = 1 << 2,
};
DOCA_REGEX_SEARCH_JOB_FLAG_HIGHEST_PRIORITY_MATCH

When a RegEx job is submitted for searching, a number of regular expressions can be
tested for in parallel. This flag results in only the match with the lowest rule ID being
returned.

DOCA_REGEX_SEARCH_JOB_FLAG_STOP_ON_ANY_MATCH
BlueField-3 only. If this option is set on a RegEx job, the engine stops and returns the
first RegEx match detected in the input data.

4.1.3. doca_regex_status_flag
This enumerated type provides flags that indicate the status of a job response.
enum doca_regex_status_flag {
 DOCA_REGEX_STATUS_SEARCH_FAILED = 1,
};

API

NVIDIA DOCA RegEx MLNX-15-060489 _v2.2.0 | 6

DOCA_REGEX_STATUS_SEARCH_FAILED
This is a general failure indication for any RegEx job.

4.2. Structures

4.2.1. doca_regex_job_search
This structure contains information required when sending a job to the RegEx engine.
struct doca_regex_job_search {
 struct doca_job base;
 uint16_t rule_group_ids[4];
 struct doca_buf const *buffer;
 struct doca_regex_search_result *result;
 uint8_t allow_batching;
};
base

Common DOCA job data.
rule_group_ids

An array of IDs which can be used to select which groups of rules are used to process
this job. Set each value to a non-zero value to enable group selection, or to 0 to ignore
it.

buffer
A doca_buf representing the data to be scanned for RegEx matches.

result
Pointer to where the job response is stored. The caller must ensure this pointer is valid
when submitting a job and it must remain valid until a response for the job has been
retrieved from the engine.

allow_batching
Setting this field to 1 allows the RegEx device to aggregate jobs into batches if this
is the optimal method for the supplied data. Batching can improve throughput at the
cost of latency. Set this field to 0 to force this job to begin executing immediately.
This also forces any previously enqueued jobs that have been batched and not yet
dispatched to begin processing.

4.2.2. doca_regex_search_result
This structure contains result information from a previous RegEx search.
struct doca_regex_search_result {
 uint64_t status_flags;
 uint32_t detected_matches;
 uint32_t num_matches;
 struct doca_regex_match *matches;
 struct doca_regex_mempool *matches_mempool;
};
status_flags

This field indicates any status flags that have been set as a result of the RegEx
operation. See doca_regex_status_flag enumerated type for more information.

detected_matches
The total matches that have been detected by the RegEx operation.

API

NVIDIA DOCA RegEx MLNX-15-060489 _v2.2.0 | 7

num_matches
The actual number of matches returned.

matches
A linked list of doca_regex_match elements. The linked list is num_matches long.

matches_mempool
The memory pool that owns the matches.

4.2.3. doca-regex
This is an opaque structure used to represent a RegEx instance and is used with API
calls.
struct doca_regex ;

4.3. Instance Construction/Destruction
This section details API calls related to the creation and destruction of DOCA RegEx
instances.

4.3.1. doca_regex_create
Creates a DOCA RegEx instance.
doca_error_t doca_regex_create(struct doca_regex **regex);
regex [out]

A pointer to be populated with the address of the newly created RegEx context.
Returns

‣ doca_error_t return code with DOCA_SUCCESS if successful

‣ DOCA_ERROR_INVALID_VALUE – indicates an invalid input to the API call

‣ DOCA_ERROR_NO_MEMORY – indicates a failure to allocate memory for the instance

4.3.2. doca_regex_destroy
Destroys a previously created DOCA RegEx instance.
doca_error_t doca_regex_destroy(struct doca_regex *regex);
regex [out]

A pointer to be populated with the address of the newly created RegEx context.
Returns

‣ doca_error_t return code with DOCA_SUCCESS if successful

‣ DOCA_ERROR_INVALID_VALUE – indicates an invalid input to the API call

4.3.3. doca_regex_as_ctx
Converts a RegEx instance into a generic doca_ctx. See the NVIDIA DOCA Core
Programming Guide for more information on DOCA contexts.
struct doca_ctx *doca_regex_as_ctx(struct doca_regex *regex);

http://docs.nvidia.com/doca/sdk/pdf/doca-core-programming-guide.pdf
http://docs.nvidia.com/doca/sdk/pdf/doca-core-programming-guide.pdf

API

NVIDIA DOCA RegEx MLNX-15-060489 _v2.2.0 | 8

regex [in]
The RegEx instance to convert.

Note: Must remain valid until after the context is no longer required.

Returns
doca_ctx object on success; otherwise NULL.

4.4. Device Query API
This section details API calls that can be used to query a DOCA device regarding its
RegEx functionality.

4.4.1. doca_regex_is_supported
Validates whether a DOCA device supports RegEx.
doca_error_t doca_regex_is_supported(struct doca_devinfo const *devinfo);
devinfo [in]

The device to check.
Returns

‣ DOCA_SUCCESS – device can be used with doca_regex

‣ DOCA_ERROR_INVALID_VALUE – received invalid input; the devinfo is not correct

‣ DOCA_ERROR_NOT_SUPPORTED – device cannot be used with doca_regex

4.4.2. doca_regex_get_hardware_supported
Validates whether a DOCA device supports hardware accelerated RegEx operations.
doca_error_t doca_regex_get_hardware_supported(struct doca_devinfo const *devinfo);
devinfo [in]

The device to check.
Returns

‣ DOCA_SUCCESS – hardware accelerated RegEx offloading is supported

‣ DOCA_ERROR_INVALID_VALUE – received invalid input; the devinfo is not correct

‣ DOCA_ERROR_NOT_SUPPORTED – device cannot hardware accelerate RegEx

4.4.3. doca_regex_get_maximum_job_size
Returns the maximum accepted job size for the selected device.
doca_error_t doca_regex_get_maximum_job_size(struct doca_devinfo const *devinfo,
 uint64_t *max_job_len);
devinfo [in]

The device to check.
max_job_len [out]

The maximum job size in bytes.

API

NVIDIA DOCA RegEx MLNX-15-060489 _v2.2.0 | 9

Returns

‣ DOCA_SUCCESS – max_job_len is populated correctly

‣ DOCA_ERROR_INVALID_VALUE – received invalid input; the devinfo is not correct

‣ DOCA_ERROR_NOT_SUPPORTED – device does not support RegEx

4.4.4. doca_regex_get_maximum_non_huge_job_size
Determines the maximum job size supported by this device without requiring the huge
job emulation feature.
doca_error_t doca_regex_get_maximum_non_huge_job_size(struct doca_devinfo const
 *devinfo, uint64_t *max_job_len);
devinfo [in]

The device to check.
max_job_len [out]

The maximum job size in bytes.
Returns

‣ DOCA_SUCCESS – max_job_len is populated correctly

‣ DOCA_ERROR_INVALID_VALUE – received invalid input; the devinfo is not correct

‣ DOCA_ERROR_NOT_SUPPORTED – device does not support RegEx

4.4.5. doca_regex_job_get_supported
Determines if a given job type is supported for a given device.
doca_error_t doca_regex_job_get_supported(struct doca_devinfo const *devinfo, enum
 doca_regex_job_types job_type);
devinfo [in]

The device to check.
job_type [in]

Job type to validate.
Returns

‣ DOCA_SUCCESS – job type is supported by device

‣ DOCA_ERROR_INVALID_VALUE – received invalid input; the devinfo is not correct

‣ DOCA_ERROR_NOT_SUPPORTED – job type is not supported by device

4.4.6. doca_regex_search_job_flag_get_highest_priority_match_supported
Determines if highest priority match is supported for a given device when submitting
doca_regex_job_search jobs.
doca_error_t doca_regex_search_job_flag_get_highest_priority_match_supported(struct
 doca_devinfo const *devinfo);
devinfo [in]

The device to check.
Returns

‣ DOCA_SUCCESS – job type is supported by device

API

NVIDIA DOCA RegEx MLNX-15-060489 _v2.2.0 | 10

‣ DOCA_ERROR_INVALID_VALUE – received invalid input; the devinfo is not correct

‣ DOCA_ERROR_NOT_SUPPORTED – job type is not supported by device

4.4.7. doca_regex_search_job_flag_get_stop_on_any_match_supported
Determines if "stop on any" match is supported for a given device when submitting
doca_regex_job_search jobs.
doca_error_t doca_regex_search_job_flag_get_stop_on_any_match_supported(struct
 doca_devinfo const *devinfo);
devinfo [in]

The device to check.
Returns

‣ DOCA_SUCCESS – job type is supported by device

‣ DOCA_ERROR_INVALID_VALUE – received invalid input; the devinfo is not correct

‣ DOCA_ERROR_NOT_SUPPORTED – job type is not supported by device

4.5. Programming RegEx
The RegEx engine must be programmed prior to submitting doca_regex_job_search
jobs.

While the RXP engines are programmed using a compiled rules database, doca_regex
supports programming using either compiled or uncompiled rules. For uncompiled
rules doca_regex compiles them internally (using a default configuration) to generate
a compiled database rules file. For a finer control over the compilation process (e.g., to
optimize or alter the default compiler configuration and behavior), use the external RXP
Compiler (rxpc) and provide the compiled database to the relevant API calls.

Note: Calling doca_regex_set_hardware_xxxx_rules can occur before or after starting
doca_regex but the device must be programmed before enqueuing jobs.

4.5.1. Reprogramming Guidelines
While doca_regex supports on-the-fly reprogramming of the RXP hardware devices,
care should be given to ensure the reprogramming action does not interrupt or produce
undesired results.

The BlueField DPU series provides two instances of the RXP hardware engine and
(re)programming is commenced serially to provide uninterrupted regular expression
processing (i.e., zero downtime). This process produces some caveats that must be
understood to prevent undesired behavior.

As most reprogramming events typically last only a few milliseconds, it is recommended
that, prior to calling the (re)programming APIs, all results from doca_regex are ignored
until the API's call return. However, if you want uninterrupted processing of regular
expressions, either:

https://confluence.nvidia.com/display/NMAR/NVIDIA+RXP+Compiler+User+Guide
https://confluence.nvidia.com/display/NMAR/NVIDIA+RXP+Compiler+User+Guide

API

NVIDIA DOCA RegEx MLNX-15-060489 _v2.2.0 | 11

‣ Ensure that the new rules being programmed contain all the old rules, and you are
simply adding more rules (with new rule IDs and subsets); or

‣ Understand that any rules that are existed in the old database (i.e., using the same
rule ID) but are now different in the new database, will return incorrect matches until
the API returns, and that any new rules not existing in the old database (i.e. they are
using a new rule ID in the new database), will be valid immediately

As previously stated, when the (re)programming APIs return, the regular expression
matches will wholly reflect the rules present in the new reprogrammed rules database.

4.5.2. doca_regex_set_hardware_compiled_rules
This function specifies the compiled rules data to be used by the RegEx engine.
doca_error_t doca_regex_set_hardware_compiled_rules(struct doca_regex
 *regex, void const *rules_data, size_t rules_data_size);
regex [in]

The DOCA RegEx instance.
rules_data [in]

A pointer to a buffer of pre-compiled binary rules data.
rules_data_size [in]

The size of the binary rules data in bytes.
Returns

‣ DOCA_SUCCESS – the RegEx instance accepted the supplied rules data

‣ DOCA_ERROR_INVALID_VALUE – one or more input fields are invalid

‣ DOCA_ERROR_NO_LOCK – unable to gain exclusive control of RegEx instance

‣ DOCA_ERROR_IN_USE – RegEx instance is currently started and in-use

‣ DOCA_ERROR_NO_MEMORY – unable to allocate memory to store a copy of the rules

Note: The caller retains ownership of the data pointed to by rules_data and is responsible
for freeing it when they no longer require it. The engine will make a copy of this data for
its own purposes.

Note: This API call is mutually exclusive with the uncompiled rules API call
(doca_regex_set_hardware_uncompiled_rules).

4.5.3. doca_regex_get_hardware_compiled_rules
This function gets the compiled rules data that is currently in use by the RegEx engine.
doca_error_t doca_regex_get_hardware_compiled_rules(struct doca_regex
 *regex, void const *rules_data, size_t rules_data_size);
regex [in]

The DOCA RegEx instance.
rules_data [out]

Values to populate with a pointer to an array of bytes containing the compiled rules in
used by the RegEx engine.

API

NVIDIA DOCA RegEx MLNX-15-060489 _v2.2.0 | 12

rules_data_size [out]
The size, in bytes, of the memory pointed to by the rules_data field (assuming data !=
NULL).

Returns

‣ DOCA_SUCCESS – the RegEx instance accepted the supplied rules data

‣ DOCA_ERROR_INVALID_VALUE – one or more input fields are invalid

‣ DOCA_ERROR_NO_MEMORY – unable to allocate memory to store a copy of the rules

Note: The caller is responsible for the memory pointed to by rules_data field and
therefore must free it when they no longer require it.

4.5.4. doca_regex_set_hardware_uncompiled_rules
This function specifies the compiled rules data to be used by the RegEx engine.
doca_error_t doca_regex_set_hardware_uncompiled_rules(struct doca_regex
 *regex, void const *rules_data, size_t rules_data_size);
regex [in]

The DOCA RegEx instance.
rules_data [out]

Values to populate with a pointer to an array of bytes containing the compiled rules in
used by the RegEx engine.

rules_data_size [out]
The size, in bytes, of the memory pointed to by the rules_data field (assuming data !=
NULL).

Returns

‣ DOCA_SUCCESS – the RegEx instance accepted the supplied rules data

‣ DOCA_ERROR_INVALID_VALUE – one or more input fields are invalid

‣ DOCA_ERROR_NO_MEMORY – unable to allocate memory to store a copy of the rules

Note: The caller is responsible for the memory pointed to by rules_data field and
therefore must free it when they no longer require it.

Note: This API call is mutually exclusive with the compiled rules API call
(doca_regex_set_hardware_compiled_rules).

4.5.5. doca_regex_get_hardware_uncompiled_rules
This function gets the uncompiled rules data that is currently in use by the RegEx
engine.
doca_error_t doca_regex_get_hardware_uncompiled_rules(struct doca_regex
 *regex, void const *rules_data, size_t rules_data_size);
regex [in]

The DOCA RegEx instance.

API

NVIDIA DOCA RegEx MLNX-15-060489 _v2.2.0 | 13

rules_data [out]
Values to populate with a pointer to an array of bytes containing the compiled rules in
used by the RegEx engine.

rules_data_size [out]
The size, in bytes, of the memory pointed to by the rules_data field (assuming data !=
NULL).

Returns

‣ DOCA_SUCCESS – the RegEx instance accepted the supplied rules data

‣ DOCA_ERROR_INVALID_VALUE – one or more input fields are invalid

‣ DOCA_ERROR_NO_MEMORY – unable to allocate memory to store a copy of the rules

Note: The caller is responsible for the memory pointed to by rules_data field and
therefore must free it when they no longer require it.

4.6. DOCA RegEx Setup
This section details the API calls required to setup DOCA RegEx with memory to store
received matches, adjust the number of queue pairs, etc.

4.6.1. doca_regex_set_workq_matches_memory_pool_size
Each work queue attached to the RegEx instance gets a pool allocator for matches. Set
this value to set the maximum number of matches that can be stored for a given work
queue.
doca_error_t doca_regex_set_workq_matches_memory_pool_size(struct doca_regex *regex,
 uint32_t pool_size);
regex [in]

The DOCA RegEx instance.
pool_size [in]

The number of items to have available to each work queue.
Returns

‣ DOCA_SUCCESS – the RegEx instance accepted the supplied rules data

‣ DOCA_ERROR_INVALID_VALUE – one or more input fields are invalid

‣ DOCA_ERROR_NO_MEMORY – unable to allocate memory to store a copy of the rules

‣ DOCA_ERROR_IN_USE – RegEx instance is currently started and in-use

Note: The range of valid values for this property depend upon the device in use.
This means that acceptance of a value through this API does not ensure the value is
acceptable. This is validated as part of starting the context.

API

NVIDIA DOCA RegEx MLNX-15-060489 _v2.2.0 | 14

4.6.2. doca_regex_get_workq_matches_memory_pool_size
This function gets the uncompiled rules data that is currently in use by the RegEx
engine.
doca_error_t doca_regex_set_workq_matches_memory_pool_size(struct doca_regex *regex,
 uint32_t pool_size);
regex [in]

The DOCA RegEx instance.
pool_size [out]

The number of items to have available in each work queue.
Returns

‣ DOCA_SUCCESS – the RegEx instance accepted the supplied rules data

‣ DOCA_ERROR_INVALID_VALUE – one or more input fields are invalid

4.7. Configuration Options
DOCA RegEx has options that alter its mode of operation and control certain features.
This section details those API calls and their related impact.

4.7.1. doca_regex_set_huge_job_emulation_overlap_size
This API call enables the Huge Job Emulation functionality of the DOCA RegEx instance,
allowing it to find matches in data that exceeds the maximum job length of a particular
RegEx device. For example, the BlueField RXP hardware device has a maximum job size of
16KB.

This function is provided with a size parameter that indicates the size of overlap to use
in the Huge Job Emulation algorithm. This algorithm breaks up the incoming job data
into fragments. Therefore, the overlap size causes data from the previous fragment to be
prepended to the start of the next fragment.

As this overlap impacts performance (job data may get searched multiple times) the
overlap size should be kept to a minimum value that still guarantees that matches are
found.
doca_error_t doca_regex_set_huge_job_emulation_overlap_size(struct doca_regex
 *regex, uint16_t nb_overlap_bytes);

regex [in]
The DOCA RegEx instance.

nb_overlap_bytes [in]
The number of items to have available to each work queue.

Returns

‣ DOCA_SUCCESS – the RegEx instance accepted the supplied rules data

‣ DOCA_ERROR_INVALID_VALUE – one or more input fields were invalid

‣ DOCA_ERROR_NO_LOCK – unable to gain exclusive control of RegEx instance

‣ DOCA_ERROR_IN_USE – RegEx instance is currently started and in-use

API

NVIDIA DOCA RegEx MLNX-15-060489 _v2.2.0 | 15

4.7.2. doca_regex_get_huge_job_emulation_overlap_size
Gets the size of overlap to use when a job exceeds a devices maximum search size.
doca_error_t doca_regex_get_huge_job_emulation_overlap_size(struct doca_regex const
 *regex, uint16_t *nb_overlap_bytes);

regex [in]
The DOCA RegEx instance.

nb_overlap_bytes [out]
The number of bytes to overlap.

Returns

‣ DOCA_SUCCESS – the RegEx instance accepted the supplied rules data

‣ DOCA_ERROR_INVALID_VALUE – one or more input fields were invalid

4.7.3. doca_regex_set_in_order_responses_enabled
Configure doca_regex to ensure the ordering of responses or matches is kept in the
same order that jobs are sent. This option must be set prior to starting the DOCA RegEx
instance.

As the RXP hardware processes RegEx jobs in parallel, results can be returned out of
order. If your application expects to see results flow back in the same order they are
submitted, use this API call to enable in-order responses.
doca_error_t doca_regex_set_in_order_responses_enabled(struct doca_regex const
 *regex, bool enabled) ;

regex [in]
The DOCA RegEx instance.

enabled [in]
Boolean value indicating if results should be returned in-order.

Returns

‣ DOCA_SUCCESS – the RegEx instance accepted the supplied rules data

‣ DOCA_ERROR_INVALID_VALUE – one or more input fields were invalid

‣ DOCA_ERROR_NO_LOCK – unable to gain exclusive lock of the Regex instance

‣ DOCA_ERROR_IN_USE – RegEx instance was in-use

NVIDIA DOCA RegEx MLNX-15-060489 _v2.2.0 | 16

Chapter 5. DOCA RegEx Samples

This document describes RegEx samples based on the DOCA RegEx library. These
samples illustrate how to use the DOCA RegEx API to configure, send, and receive data
buffers to and from the BlueField RegEx engine.

Processing the data to detect matches requires compilation of regular expressions rules
file. The compiled file, .ROF2, is loaded to the RegEx engine using DOCA RegEx APIs.

5.1. Sample Prerequisites
Developing an application that leverages the RegEx engine requires pre-run setup:

 1. Allocate hugepages:
echo 2048 > /sys/kernel/mm/hugepages/hugepages-2048kB/nr_hugepages

 2. Make sure the RegEx engine is active:
systemctl status mlx-regex

If the status is inactive (Active: failed), run:
systemctl start mlx-regex

To run the application, the RegEx compiled rule file (.rof2.binary) must be supplied
with it. To compile the sample rules file, run:
cd /opt/mellanox/doca/samples/doca_regex/<sample_name>/
rxpc -V bf2 -f <rules_file_name>.txt -p 0.01 -o /tmp/sample_regex_rules

Note: For more information, refer to NVIDIA RXP Compiler Tool Guide.

5.2. Running the Sample
 1. Refer to the following documents:

‣ NVIDIA DOCA Installation Guide for Linux for details on how to install BlueField-
related software.

‣ NVIDIA DOCA Troubleshooting Guide for any issue you may encounter with the
installation, compilation, or execution of DOCA samples.

 2. To build a given sample:
cd /opt/mellanox/doca/samples/doca_regex/<sample_name>
meson build

http://docs.nvidia.com/doca/sdk/pdf/rxp-compiler.pdf
http://docs.nvidia.com/doca/sdk/pdf/installation-guide-for-linux.pdf
http://docs.nvidia.com/doca/sdk/pdf/troubleshooting.pdf

DOCA RegEx Samples

NVIDIA DOCA RegEx MLNX-15-060489 _v2.2.0 | 17

ninja -C build

Note: The binary doca_<sample_name> will be created under ./build/.

 3. Sample (e.g., regex_scan) usage:
Usage: doca_regex_scan [DOCA Flags] [Program Flags]
DOCA Flags:
 -h, --help Print a help synopsis
 -v, --version Print program version information
 -l, --log-level Set the log level for the program
 <CRITICAL=20, ERROR=30, WARNING=40, INFO=50, DEBUG=60>

Program Flags:
 -p, --pci-addr <PCI-ADDRESS> RegEx device PCI address
 -r, --rules <path> Path to compiled rules file (rof2.binary)
 -d, --data <path> Path to data file
For additional information per sample, use the -h option:
./build/doca_<sample_name> -h

5.3. Samples

5.3.1. RegEx Scan
This sample illustrates how to scan data to find matches according to regular expression
patterns.

The sample logic includes:

 1. Accepting RegEx rules file path and data to scan.
 2. Configuring DOCA RegEx device (loading compiled rules, mempool allocation, etc.) to

enable RegEx engine to receive jobs.
 3. Splitting the user data to 6 chunks.
 4. Sending the chunks to RegEx engine, each chunk is a RegEx job.
 5. HW scanning data and returning a list of matches.
 6. Reporting the results.

References:

‣ /opt/mellanox/doca/samples/doca_regex/regex_scan/regex_scan_sample.c

‣ /opt/mellanox/doca/samples/doca_regex/regex_scan/regex_scan_main.c

‣ /opt/mellanox/doca/samples/doca_regex/regex_scan/meson.build

‣ /opt/mellanox/doca/samples/doca_regex/regex_scan/regex_rules.txt

‣ /opt/mellanox/doca/samples/doca_regex/regex_scan/data_to_scan.txt

Notice

This document is provided for information purposes only and shall not be regarded as a warranty of a certain functionality, condition, or quality of a product.
NVIDIA Corporation nor any of its direct or indirect subsidiaries and affiliates (collectively: “NVIDIA”) make no representations or warranties, expressed or
implied, as to the accuracy or completeness of the information contained in this document and assume no responsibility for any errors contained herein.
NVIDIA shall have no liability for the consequences or use of such information or for any infringement of patents or other rights of third parties that may
result from its use. This document is not a commitment to develop, release, or deliver any Material (defined below), code, or functionality.

NVIDIA reserves the right to make corrections, modifications, enhancements, improvements, and any other changes to this document, at any time without
notice.

Customer should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the time of order acknowledgement, unless otherwise
agreed in an individual sales agreement signed by authorized representatives of NVIDIA and customer (“Terms of Sale”). NVIDIA hereby expressly objects
to applying any customer general terms and conditions with regards to the purchase of the NVIDIA product referenced in this document. No contractual
obligations are formed either directly or indirectly by this document.

NVIDIA products are not designed, authorized, or warranted to be suitable for use in medical, military, aircraft, space, or life support equipment, nor in
applications where failure or malfunction of the NVIDIA product can reasonably be expected to result in personal injury, death, or property or environmental
damage. NVIDIA accepts no liability for inclusion and/or use of NVIDIA products in such equipment or applications and therefore such inclusion and/or use
is at customer’s own risk.

NVIDIA makes no representation or warranty that products based on this document will be suitable for any specified use. Testing of all parameters of each
product is not necessarily performed by NVIDIA. It is customer’s sole responsibility to evaluate and determine the applicability of any information contained
in this document, ensure the product is suitable and fit for the application planned by customer, and perform the necessary testing for the application in
order to avoid a default of the application or the product. Weaknesses in customer’s product designs may affect the quality and reliability of the NVIDIA
product and may result in additional or different conditions and/or requirements beyond those contained in this document. NVIDIA accepts no liability
related to any default, damage, costs, or problem which may be based on or attributable to: (i) the use of the NVIDIA product in any manner that is contrary
to this document or (ii) customer product designs.

No license, either expressed or implied, is granted under any NVIDIA patent right, copyright, or other NVIDIA intellectual property right under this document.
Information published by NVIDIA regarding third-party products or services does not constitute a license from NVIDIA to use such products or services or
a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property rights
of the third party, or a license from NVIDIA under the patents or other intellectual property rights of NVIDIA.

Reproduction of information in this document is permissible only if approved in advance by NVIDIA in writing, reproduced without alteration and in full
compliance with all applicable export laws and regulations, and accompanied by all associated conditions, limitations, and notices.

THIS DOCUMENT AND ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS
(TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR
OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND
FITNESS FOR A PARTICULAR PURPOSE. TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL NVIDIA BE LIABLE FOR ANY DAMAGES, INCLUDING
WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF
THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF NVIDIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
Notwithstanding any damages that customer might incur for any reason whatsoever, NVIDIA’s aggregate and cumulative liability towards customer for the
products described herein shall be limited in accordance with the Terms of Sale for the product.

Trademarks

NVIDIA, the NVIDIA logo, and Mellanox are trademarks and/or registered trademarks of Mellanox Technologies Ltd. and/or NVIDIA Corporation in the
U.S. and in other countries. The registered trademark Linux® is used pursuant to a sublicense from the Linux Foundation, the exclusive licensee of Linus
Torvalds, owner of the mark on a world¬wide basis. Other company and product names may be trademarks of the respective companies with which they
are associated.

Copyright

© 2023 NVIDIA Corporation & affiliates. All rights reserved.

NVIDIA Corporation | 2788 San Tomas Expressway, Santa Clara, CA 95051
http://www.nvidia.com

http://www.nvidia.com

	Table of Contents
	Introduction
	Prerequisites
	Architecture
	3.1. Rule Compilation
	3.2. RegEx Implementations
	3.3. Huge Job Emulation

	API
	4.1. Enumerated Types
	4.1.1. doca_regex_job_types
	4.1.2. doca_regex_search_job_flags
	4.1.3. doca_regex_status_flag

	4.2. Structures
	4.2.1. doca_regex_job_search
	4.2.2. doca_regex_search_result
	4.2.3. doca-regex

	4.3. Instance Construction/Destruction
	4.3.1. doca_regex_create
	4.3.2. doca_regex_destroy
	4.3.3. doca_regex_as_ctx

	4.4. Device Query API
	4.4.1. doca_regex_is_supported
	4.4.2. doca_regex_get_hardware_supported
	4.4.3. doca_regex_get_maximum_job_size
	4.4.4. doca_regex_get_maximum_non_huge_job_size
	4.4.5. doca_regex_job_get_supported
	4.4.6. doca_regex_search_job_flag_get_highest_priority_match_supported
	4.4.7. doca_regex_search_job_flag_get_stop_on_any_match_supported

	4.5. Programming RegEx
	4.5.1. Reprogramming Guidelines
	4.5.2. doca_regex_set_hardware_compiled_rules
	4.5.3. doca_regex_get_hardware_compiled_rules
	4.5.4. doca_regex_set_hardware_uncompiled_rules
	4.5.5. doca_regex_get_hardware_uncompiled_rules

	4.6. DOCA RegEx Setup
	4.6.1. doca_regex_set_workq_matches_memory_pool_size
	4.6.2. doca_regex_get_workq_matches_memory_pool_size

	4.7. Configuration Options
	4.7.1. doca_regex_set_huge_job_emulation_overlap_size
	4.7.2. doca_regex_get_huge_job_emulation_overlap_size
	4.7.3. doca_regex_set_in_order_responses_enabled

	DOCA RegEx Samples
	5.1. Sample Prerequisites
	5.2. Running the Sample
	5.3. Samples
	5.3.1. RegEx Scan

