
MLNX-15-060590 _v2.2.0 | October 2023

NVIDIA DOCA YARA Inspection
Application Guide

Application Guide

NVIDIA DOCA YARA Inspection Application Guide MLNX-15-060590 _v2.2.0 | ii

Table of Contents

Chapter 1. Introduction..1

Chapter 2. System Design..2

Chapter 3. Application Architecture...5

Chapter 4. DOCA Libraries..7

Chapter 5. Configuration Flow.. 8

Chapter 6. Dependencies... 10

Chapter 7. Running the Application...11

Chapter 8. Arg Parser DOCA Flags...14

Chapter 9. References... 17

NVIDIA DOCA YARA Inspection Application Guide MLNX-15-060590 _v2.2.0 | 1

Chapter 1. Introduction

YARA inspection monitors all processes in the host system for specific YARA rules using
the DOCA App Shield library.

This security capability helps identify malware detection patterns in host processes from
an independent and trusted DPU. This is an innovative intrusion detection system (IDS)
as it is designed to run independently on the DPU's Arm cores without hindering the
host.

This DOCA App Shield based application provides the capability to read, analyze, and
authenticate the host (bare metal/VM) memory directly from the DPU.

Using the library, this application scans host processes and looks for pre-defined
YARA rules. After every scan iteration, the application indicates if any of the rules
matched. Once there is a match, the application reports which rules were detected in
which process. The reports are both printed to the console and exported to the DOCA
Telemetry Service (DTS) using inter-process communication (IPC).

This guide describes how to build YARA inspection using the DOCA App Shield library
which leverages DPU abilities such as hardware-based DMA, integrity, and more.

Note: As the DOCA App Shield library only supports the YARA API for Windows hosts, this
application can only be used to inspect Windows hosts.

NVIDIA DOCA YARA Inspection Application Guide MLNX-15-060590 _v2.2.0 | 2

Chapter 2. System Design

The host's involvement is limited to generating the required ZIP and JSON files to pass
to the DPU. This is done before the app is triggered, when the host is still in a "safe"
state.

Generating the needed files can be done by running DOCA App Shield's
doca_apsh_config.py tool on the host. See NVIDIA DOCA App Shield Programming
Guide for more info.

http://docs.nvidia.com/doca/sdk/pdf/app-shield-programming-guide.pdf
http://docs.nvidia.com/doca/sdk/pdf/app-shield-programming-guide.pdf

System Design

NVIDIA DOCA YARA Inspection Application Guide MLNX-15-060590 _v2.2.0 | 3

System Design

NVIDIA DOCA YARA Inspection Application Guide MLNX-15-060590 _v2.2.0 | 4

NVIDIA DOCA YARA Inspection Application Guide MLNX-15-060590 _v2.2.0 | 5

Chapter 3. Application Architecture

The user creates the ZIP and JSON files using the DOCA tool doca_apsh_config.py and
copies them to the DPU.

The application can report YARA rules detection to the:

‣ File

‣ Terminal

‣ DTS

 1. The files are generated by running doca_apsh_config.py on the host against the
process at time zero.

 2. The following steps recur at regular time intervals:

 a). The YARA inspection app requests a list of all apps from the DOCA App Shield
library.

 b). The app loops over all processes and checks for YARA rules match using the
DOCA App Shield library.

 c). If YARA rules are found (1 or more), the YARA attestation app reports results with
a timestamp and details about the process and rules to:

Application Architecture

NVIDIA DOCA YARA Inspection Application Guide MLNX-15-060590 _v2.2.0 | 6

‣ Local telemetry files – a folder and files representing the data a real DTS would
have received

Note: These files are used for the purpose of this example only as normally this
data is not exported into user-readable files.

‣ DOCA log

‣ DTS IPC interface (even if no DTS is active)

 3. The App Shield agent exits on first YARA rule detection.

NVIDIA DOCA YARA Inspection Application Guide MLNX-15-060590 _v2.2.0 | 7

Chapter 4. DOCA Libraries

This application leverages following DOCA libraries:

‣ DOCA App Shield library

‣ DOCA Telemetry library

http://docs.nvidia.com/doca/sdk/pdf/app-shield-programming-guide.pdf
http://docs.nvidia.com/doca/sdk/pdf/telemetry-programming-guide.pdf

NVIDIA DOCA YARA Inspection Application Guide MLNX-15-060590 _v2.2.0 | 8

Chapter 5. Configuration Flow

 1. Parse application argument.

 a). Initialize arg parser resources and register DOCA general parameters.
doca_argp_init();

 b). Register application parameters.
register_apsh_params();

 c). Parse app flags.
doca_argp_start();

 2. Initialize DOCA App Shield lib context.

 a). Create lib context.
doca_apsh_create();

 b). Set DMA device for lib.
open_doca_device_with_ibdev_name();
doca_apsh_dma_dev_set();

 c). Start the context.
doca_apsh_start();
apsh_system_init();

 3. Initialize DOCA App Shield lib system context handler.

 a). Get the representor of the remote PCIe function exposed to the system.
open_doca_device_rep_with_vuid();

 b). Create and start the system context handler.
doca_apsh_system_create();
doca_apsh_sys_os_symbol_map_set();
doca_apsh_sys_mem_region_set();
doca_apsh_sys_dev_set();
doca_apsh_sys_os_type_set();
doca_apsh_system_start();

 4. Telemetry initialization.
telemetry_start();

 a). Initialize a new telemetry schema.
 b). Register YARA type event.
 c). Set up output to file (in addition to default IPC).
 d). Start the telemetry schema.
 e). Initialize and start a new DTS source with the gethostname() name as source ID.

 5. Loop until YARA rule is matched.

Configuration Flow

NVIDIA DOCA YARA Inspection Application Guide MLNX-15-060590 _v2.2.0 | 9

 a). Get all processes from the host.
doca_apsh_processes_get();

 b). Check for YARA rule identification and send a DTS event if there is a match.
doca_apsh_yara_get();
if (yara_matches_size != 0) {
 /* event fill logic
 doca_telemetry_source_report();
DOCA_LOG_INFO();
sleep();

 6. Telemetry destroy.
telemetry_destroy();

 7. YARA inspection clean-up.
doca_apsh_system_destroy();
doca_apsh_destroy();
doca_dev_close();
doca_dev_rep_close();

 8. Arg parser destroy.
doca_argp_destroy();

NVIDIA DOCA YARA Inspection Application Guide MLNX-15-060590 _v2.2.0 | 10

Chapter 6. Dependencies

‣ Firmware version 24.32.1010 or greater

‣ BFB Ubuntu 22.04 only

‣ Supported only for Windows hosts

NVIDIA DOCA YARA Inspection Application Guide MLNX-15-060590 _v2.2.0 | 11

Chapter 7. Running the Application

 1. Refer to the following documents:

‣ NVIDIA DOCA Installation Guide for Linux for details on how to install BlueField-
related software.

‣ NVIDIA DOCA Troubleshooting Guide for any issue you may encounter with the
installation, compilation, or execution of DOCA applications.

‣ NVIDIA DOCA Applications Overview for additional compilation instructions and
development tips of DOCA applications.

 2. The App Shield Agent binary is located under /opt/mellanox/doca/applications/
yara_inspection/bin/doca_yara_inspection. To build the applications together,
run:
cd /opt/mellanox/doca/applications/
meson build
ninja -C build

 3. To build only the App Shield Agent application:

 a). Edit the following flags in /opt/mellanox/doca/applications/
meson_options.txt:

‣ Set enable_all_applications to false

‣ Set enable_yara_inspection to true

 b). Run the commands in step 2.

Note: doca_yara_inspection is created under ./build/yara_inspection/src/.

Application usage:
Usage: doca_yara_inspection [DOCA Flags] [Program Flags]

DOCA Flags:
 -h, --help Print a help synopsis
 -v, --version Print program version information
 -l, --log-level Set the log level for the program
 <CRITICAL=20, ERROR=30, WARNING=40, INFO=50, DEBUG=60>

Program Flags:
 -m, --memr <path> System memory regions map
 -f, --vuid VUID of the System device
 -d, --dma DMA device name
 -o, --osym <path> System OS symbol map path

http://docs.nvidia.com/doca/sdk/pdf/installation-guide-for-linux.pdf
http://docs.nvidia.com/doca/sdk/pdf/troubleshooting.pdf
http://docs.nvidia.com/doca/sdk/pdf/applications-overview.pdf

Running the Application

NVIDIA DOCA YARA Inspection Application Guide MLNX-15-060590 _v2.2.0 | 12

 -t, --time <seconds> Scan time interval in seconds

Note: For additional information on the application, use the -h flag:
/opt/mellanox/doca/applications/yara_inspection/bin/doca_yara_inspection -
h

 4. The following steps must be done only once.

 a). Configure the BlueField's firmware.

 i. On the BlueField system, configure the PF base address register and NVME
emulation. Run:
dpu> mlxconfig -d /dev/mst/mt41686_pciconf0 s PF_BAR2_SIZE=2
 PF_BAR2_ENABLE=1 NVME_EMULATION_ENABLE=1

 ii. Perform a cold boot from the host. Run:
host> ipmitool power cycle

Note: These configurations can be checked using the following command:
dpu> mlxconfig -d /dev/mst/mt41686_pciconf0 q | grep -E "NVME|BAR"

 b). Perform IOMMU passthrough. This stage is only necessary in cases where IOMMU
is not enabled by default (e.g., when the host is using an AMD CPU).

Note: Skip this step if you are not sure whether you need it. Return to it only if
DMA fails with a message in dmesg similar to the following:
host> dmesg
[3839.822897] mlx5_core 0000:81:00.0: AMD-Vi: Event logged
 [IO_PAGE_FAULT domain=0x0047 address=0x2a0aff8 flags=0x0000]

 i. Locate your OS's grub file (most likely /boot/grub/grub.conf, /boot/grub2/
grub.cfg, or /etc/default/grub) and open it for editing. Run:
host> vim /etc/default/grub

 ii. Search for the line defining GRUB_CMDLINE_LINUX_DEFAULT and add the
argument iommu=pt. For example:
GRUB_CMDLINE_LINUX_DEFAULT="iommu=pt <intel/amd>_iommu=on"

 iii. Run:

‣ For Ubuntu:
host> sudo update-grub
host> ipmitool power cycle

‣ For CentOS:
host> grub2-mkconfig -o /boot/grub2/grub.cfg
host> ipmitool power cycle

 c). For Windows targets only, turn off Hyper-V capability
 5. Running the application on BlueField:

‣ Pre-run setup:

 a). The DOCA App Shield library uses huge pages for DMA buffers. Therefore, the
user must allocate 42 huge pages. Run:
dpu> nr_huge=$(cat /sys/devices/system/node/node0/hugepages/
hugepages-2048kB/nr_hugepages)
 nr_huge=$((42+$nr_huge))

Running the Application

NVIDIA DOCA YARA Inspection Application Guide MLNX-15-060590 _v2.2.0 | 13

 sudo echo $nr_huge > /sys/devices/system/node/node0/hugepages/
hugepages-2048kB/nr_hugepages

 b). Create the ZIP and JSON files. Run:

Note: If the kernel and process .exe have not changed, there no need to redo
this step.

target-system> cd /opt/mellanox/doca/tools/
target-system> python3 doca_apsh_config.py <pid-of-process-to-monitor> --
os <windows/linux> --path <path to dwarf2json executable or pdbparse-to-
json.py>
target-system> cp /opt/mellanox/doca/tools/*.* <shared-folder-with-
baremetal>
dpu> scp <shared-folder-with-baremetal>/* <path-to-app-shield-binary>

If the target system does not have DOCA installed, the script can be copied
from the BlueField.

The required dwaf2json and pdbparse-to-json.py are not provided with
DOCA. Follow the NVIDIA DOCA App Shield Programming Guide for more
information.

‣ CLI example for running the app:
dpu> /opt/mellanox/doca/applications/yara_inspection/bin/doca_yara_inspection
 -m mem_regions.json -o symbols.json -f MT2125X03335MLNXS0D0F0VF1 -d mlx5_0 -
t 3

http://docs.nvidia.com/doca/sdk/pdf/app-shield-programming-guide.pdf

NVIDIA DOCA YARA Inspection Application Guide MLNX-15-060590 _v2.2.0 | 14

Chapter 8. Arg Parser DOCA Flags

Refer to NVIDIA DOCA Arg Parser Programming Guide for more information.

Flag Type Short Flag
Long Flag/JSON
Key Description

l log-level Set the log level for
the application:

‣ CRITICAL=20

‣ ERROR=30

‣ WARNING=40

‣ INFO=50

‣ DEBUG=60

v version Print program version
information

General flags

h help Print a help synopsis

m memr Path to the
pre-generated
mem_regions.json file
transfered from the
host

Program flags

f pcif System PCIe function
vendor unique
identifier (VUID) of the
VF/PF exposed to the
target system. Used
for DMA operations.

To obtain this
argument, run:
target-system>
 lspci -vv |
 grep "\[VU\]
 Vendor specific:"
Example output:
[VU] Vendor
 specific:
 MT2125X03335MLNXS0D0F0

http://docs.nvidia.com/doca/sdk/pdf/arg-parser-programming-guide.pdf

Arg Parser DOCA Flags

NVIDIA DOCA YARA Inspection Application Guide MLNX-15-060590 _v2.2.0 | 15

Flag Type Short Flag
Long Flag/JSON
Key Description

[VU] Vendor
 specific:
 MT2125X03335MLNXS0D0F1

Two VUIDs are
printed for each DPU
connected to the
target system. The
first is of the DPU on
pf0 and the second
is of the DPU on port
pf1.

Note: Running
this command
on the DPU
outputs
VUIDs with an
additional "EC"
string in the
middle. You
must remove
the "EC" to
arrive at the
correct VUID.

The VUID of a VF
allocated on PF0/1 is
the VUID of the PF
with an additional
suffix, VF<vf-number>,
where vf-number is
the VF index +1.

For example, for the
output in the example
above:

‣ PF0 VUID =
MT2125X03335MLNXS0D0F0

‣ PF1 VUID =
MT2125X03335MLNXS0D0F1

‣ VUID of VF0
on PF0 =
MT2125X03335MLNXS0D0F0VF1

VUIDs are persistent
even on reset.

d dma DMA device name to
use

o osym Path to the
pre-generated

Arg Parser DOCA Flags

NVIDIA DOCA YARA Inspection Application Guide MLNX-15-060590 _v2.2.0 | 16

Flag Type Short Flag
Long Flag/JSON
Key Description

symbols.json file
transferred from the
host

t time Number of seconds to
sleep between scans

NVIDIA DOCA YARA Inspection Application Guide MLNX-15-060590 _v2.2.0 | 17

Chapter 9. References

‣ /opt/mellanox/doca/applications/yara_inspection/src

Notice

This document is provided for information purposes only and shall not be regarded as a warranty of a certain functionality, condition, or quality of a product.
NVIDIA Corporation nor any of its direct or indirect subsidiaries and affiliates (collectively: “NVIDIA”) make no representations or warranties, expressed or
implied, as to the accuracy or completeness of the information contained in this document and assume no responsibility for any errors contained herein.
NVIDIA shall have no liability for the consequences or use of such information or for any infringement of patents or other rights of third parties that may
result from its use. This document is not a commitment to develop, release, or deliver any Material (defined below), code, or functionality.

NVIDIA reserves the right to make corrections, modifications, enhancements, improvements, and any other changes to this document, at any time without
notice.

Customer should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the time of order acknowledgement, unless otherwise
agreed in an individual sales agreement signed by authorized representatives of NVIDIA and customer (“Terms of Sale”). NVIDIA hereby expressly objects
to applying any customer general terms and conditions with regards to the purchase of the NVIDIA product referenced in this document. No contractual
obligations are formed either directly or indirectly by this document.

NVIDIA products are not designed, authorized, or warranted to be suitable for use in medical, military, aircraft, space, or life support equipment, nor in
applications where failure or malfunction of the NVIDIA product can reasonably be expected to result in personal injury, death, or property or environmental
damage. NVIDIA accepts no liability for inclusion and/or use of NVIDIA products in such equipment or applications and therefore such inclusion and/or use
is at customer’s own risk.

NVIDIA makes no representation or warranty that products based on this document will be suitable for any specified use. Testing of all parameters of each
product is not necessarily performed by NVIDIA. It is customer’s sole responsibility to evaluate and determine the applicability of any information contained
in this document, ensure the product is suitable and fit for the application planned by customer, and perform the necessary testing for the application in
order to avoid a default of the application or the product. Weaknesses in customer’s product designs may affect the quality and reliability of the NVIDIA
product and may result in additional or different conditions and/or requirements beyond those contained in this document. NVIDIA accepts no liability
related to any default, damage, costs, or problem which may be based on or attributable to: (i) the use of the NVIDIA product in any manner that is contrary
to this document or (ii) customer product designs.

No license, either expressed or implied, is granted under any NVIDIA patent right, copyright, or other NVIDIA intellectual property right under this document.
Information published by NVIDIA regarding third-party products or services does not constitute a license from NVIDIA to use such products or services or
a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property rights
of the third party, or a license from NVIDIA under the patents or other intellectual property rights of NVIDIA.

Reproduction of information in this document is permissible only if approved in advance by NVIDIA in writing, reproduced without alteration and in full
compliance with all applicable export laws and regulations, and accompanied by all associated conditions, limitations, and notices.

THIS DOCUMENT AND ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS
(TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR
OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND
FITNESS FOR A PARTICULAR PURPOSE. TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL NVIDIA BE LIABLE FOR ANY DAMAGES, INCLUDING
WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF
THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF NVIDIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
Notwithstanding any damages that customer might incur for any reason whatsoever, NVIDIA’s aggregate and cumulative liability towards customer for the
products described herein shall be limited in accordance with the Terms of Sale for the product.

Trademarks

NVIDIA, the NVIDIA logo, and Mellanox are trademarks and/or registered trademarks of Mellanox Technologies Ltd. and/or NVIDIA Corporation in the
U.S. and in other countries. The registered trademark Linux® is used pursuant to a sublicense from the Linux Foundation, the exclusive licensee of Linus
Torvalds, owner of the mark on a world¬wide basis. Other company and product names may be trademarks of the respective companies with which they
are associated.

Copyright

© 2023 NVIDIA Corporation & affiliates. All rights reserved.

NVIDIA Corporation | 2788 San Tomas Expressway, Santa Clara, CA 95051
http://www.nvidia.com

http://www.nvidia.com

	Table of Contents
	Introduction
	System Design
	Application Architecture
	DOCA Libraries
	Configuration Flow
	Dependencies
	Running the Application
	Arg Parser DOCA Flags
	References

