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Chapter 1. Introduction

YARA inspection monitors all processes in the host system for specific YARA rules using
the DOCA App Shield library.

This security capability helps identify malware detection patterns in host processes from
an independent and trusted DPU. This is an innovative intrusion detection system (IDS)
as it is designed to run independently on the DPU's Arm cores without hindering the
host.

This DOCA App Shield based application provides the capability to read, analyze, and
authenticate the host (bare metal/VM) memory directly from the DPU.

Using the library, this application scans host processes and looks for pre-defined
YARA rules. After every scan iteration, the application indicates if any of the rules
matched. Once there is a match, the application reports which rules were detected in
which process. The reports are both printed to the console and exported to the DOCA
Telemetry Service (DTS) using inter-process communication (IPC).

This guide describes how to build YARA inspection using the DOCA App Shield library
which leverages DPU abilities such as hardware-based DMA, integrity, and more.

Note: As the DOCA App Shield library only supports the YARA API for Windows hosts, this
application can only be used to inspect Windows hosts.
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Chapter 2. System Design

The host's involvement is limited to generating the required ZIP and JSON files to pass
to the DPU. This is done before the app is triggered, when the host is still in a "safe"
state.

Generating the needed files can be done by running DOCA App Shield's
doca_apsh_config.py tool on the host. See NVIDIA DOCA App Shield Programming
Guide for more info.

 

http://docs.nvidia.com/doca/sdk/pdf/app-shield-programming-guide.pdf
http://docs.nvidia.com/doca/sdk/pdf/app-shield-programming-guide.pdf
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Chapter 3. Application Architecture

The user creates the ZIP and JSON files using the DOCA tool doca_apsh_config.py and
copies them to the DPU.

The application can report YARA rules detection to the:

‣ File

‣ Terminal

‣ DTS

 

 

 1. The files are generated by running doca_apsh_config.py on the host against the
process at time zero.

 2. The following steps recur at regular time intervals:

 a). The YARA inspection app requests a list of all apps from the DOCA App Shield
library.

 b). The app loops over all processes and checks for YARA rules match using the
DOCA App Shield library.

 c). If YARA rules are found (1 or more), the YARA attestation app reports results with
a timestamp and details about the process and rules to:
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‣ Local telemetry files – a folder and files representing the data a real DTS would
have received

Note: These files are used for the purpose of this example only as normally this
data is not exported into user-readable files.

‣ DOCA log

‣ DTS IPC interface (even if no DTS is active)

 3. The App Shield agent exits on first YARA rule detection.
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Chapter 4. DOCA Libraries

This application leverages following DOCA libraries:

‣ DOCA App Shield library

‣ DOCA Telemetry library

http://docs.nvidia.com/doca/sdk/pdf/app-shield-programming-guide.pdf
http://docs.nvidia.com/doca/sdk/pdf/telemetry-programming-guide.pdf
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Chapter 5. Configuration Flow

 1. Parse application argument.

 a). Initialize arg parser resources and register DOCA general parameters.
doca_argp_init();

 b). Register application parameters.
register_apsh_params();

 c). Parse app flags.
doca_argp_start();

 2. Initialize DOCA App Shield lib context.

 a). Create lib context.
doca_apsh_create();

 b). Set DMA device for lib.
open_doca_device_with_ibdev_name();
doca_apsh_dma_dev_set();

 c). Start the context.
doca_apsh_start();
apsh_system_init();

 3. Initialize DOCA App Shield lib system context handler.

 a). Get the representor of the remote PCIe function exposed to the system.
open_doca_device_rep_with_vuid();

 b). Create and start the system context handler.
doca_apsh_system_create();
doca_apsh_sys_os_symbol_map_set();
doca_apsh_sys_mem_region_set();
doca_apsh_sys_dev_set();
doca_apsh_sys_os_type_set();
doca_apsh_system_start();

 4. Telemetry initialization.
telemetry_start();

 a). Initialize a new telemetry schema.
 b). Register YARA type event.
 c). Set up output to file (in addition to default IPC).
 d). Start the telemetry schema.
 e). Initialize and start a new DTS source with the gethostname() name as source ID.

 5. Loop until YARA rule is matched.
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 a). Get all processes from the host.
doca_apsh_processes_get();

 b). Check for YARA rule identification and send a DTS event if there is a match.
doca_apsh_yara_get();
if (yara_matches_size != 0) {
    /* event fill logic
    doca_telemetry_source_report();
DOCA_LOG_INFO();
sleep();

 6. Telemetry destroy.
telemetry_destroy();

 7. YARA inspection clean-up.
doca_apsh_system_destroy();
doca_apsh_destroy();
doca_dev_close();
doca_dev_rep_close();

 8. Arg parser destroy.
doca_argp_destroy();
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Chapter 6. Dependencies

‣ Firmware version 24.32.1010 or greater

‣ BFB Ubuntu 22.04 only

‣ Supported only for Windows hosts



NVIDIA DOCA YARA Inspection Application Guide MLNX-15-060590 _v2.2.0   |   11

Chapter 7. Running the Application

 1. Refer to the following documents:

‣ NVIDIA DOCA Installation Guide for Linux for details on how to install BlueField-
related software.

‣ NVIDIA DOCA Troubleshooting Guide for any issue you may encounter with the
installation, compilation, or execution of DOCA applications.

‣ NVIDIA DOCA Applications Overview for additional compilation instructions and
development tips of DOCA applications.

 2. The App Shield Agent binary is located under /opt/mellanox/doca/applications/
yara_inspection/bin/doca_yara_inspection. To build the applications together,
run:
cd /opt/mellanox/doca/applications/
meson build 
ninja -C build

 3. To build only the App Shield Agent application:

 a). Edit the following flags in /opt/mellanox/doca/applications/
meson_options.txt:

‣ Set enable_all_applications to false

‣ Set enable_yara_inspection to true

 b). Run the commands in step 2.

Note: doca_yara_inspection is created under ./build/yara_inspection/src/.

Application usage:
Usage: doca_yara_inspection [DOCA Flags] [Program Flags]
 
DOCA Flags:
  -h, --help                        Print a help synopsis
  -v, --version                     Print program version information
  -l, --log-level                   Set the log level for the program
 <CRITICAL=20, ERROR=30, WARNING=40, INFO=50, DEBUG=60>
 
Program Flags:
  -m, --memr <path>                 System memory regions map
  -f, --vuid                        VUID of the System device
  -d, --dma                         DMA device name
  -o, --osym <path>                 System OS symbol map path

http://docs.nvidia.com/doca/sdk/pdf/installation-guide-for-linux.pdf
http://docs.nvidia.com/doca/sdk/pdf/troubleshooting.pdf
http://docs.nvidia.com/doca/sdk/pdf/applications-overview.pdf
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  -t, --time <seconds>              Scan time interval in seconds

Note: For additional information on the application, use the -h flag:
/opt/mellanox/doca/applications/yara_inspection/bin/doca_yara_inspection -
h

 4. The following steps must be done only once.

 a). Configure the BlueField's firmware.

 i. On the BlueField system, configure the PF base address register and NVME
emulation. Run:
dpu> mlxconfig -d /dev/mst/mt41686_pciconf0 s PF_BAR2_SIZE=2
 PF_BAR2_ENABLE=1 NVME_EMULATION_ENABLE=1 

 ii. Perform a cold boot from the host. Run:
host> ipmitool power cycle

Note: These configurations can be checked using the following command:
dpu> mlxconfig -d /dev/mst/mt41686_pciconf0 q | grep -E "NVME|BAR"

 b). Perform IOMMU passthrough. This stage is only necessary in cases where IOMMU
is not enabled by default (e.g., when the host is using an AMD CPU).

Note: Skip this step if you are not sure whether you need it. Return to it only if
DMA fails with a message in dmesg similar to the following:
host> dmesg
[ 3839.822897] mlx5_core 0000:81:00.0: AMD-Vi: Event logged
 [IO_PAGE_FAULT domain=0x0047 address=0x2a0aff8 flags=0x0000]

 i. Locate your OS's grub file (most likely /boot/grub/grub.conf, /boot/grub2/
grub.cfg, or /etc/default/grub) and open it for editing. Run:
host> vim /etc/default/grub

 ii. Search for the line defining GRUB_CMDLINE_LINUX_DEFAULT and add the
argument iommu=pt. For example:
GRUB_CMDLINE_LINUX_DEFAULT="iommu=pt <intel/amd>_iommu=on"

 iii. Run:

‣ For Ubuntu:
host> sudo update-grub
host> ipmitool power cycle

‣ For CentOS:
host> grub2-mkconfig -o /boot/grub2/grub.cfg
host> ipmitool power cycle

 c). For Windows targets only, turn off Hyper-V capability
 5. Running the application on BlueField:

‣ Pre-run setup:

 a). The DOCA App Shield library uses huge pages for DMA buffers. Therefore, the
user must allocate 42 huge pages. Run:
dpu> nr_huge=$(cat /sys/devices/system/node/node0/hugepages/
hugepages-2048kB/nr_hugepages)
     nr_huge=$((42+$nr_huge))
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     sudo echo $nr_huge > /sys/devices/system/node/node0/hugepages/
hugepages-2048kB/nr_hugepages

 b). Create the ZIP and JSON files. Run:

Note: If the kernel and process .exe have not changed, there no need to redo
this step.

target-system> cd /opt/mellanox/doca/tools/
target-system> python3 doca_apsh_config.py <pid-of-process-to-monitor> --
os <windows/linux> --path <path to dwarf2json executable  or pdbparse-to-
json.py>
target-system> cp /opt/mellanox/doca/tools/*.* <shared-folder-with-
baremetal>
dpu> scp <shared-folder-with-baremetal>/* <path-to-app-shield-binary>

If the target system does not have DOCA installed, the script can be copied
from the BlueField.

The required dwaf2json and pdbparse-to-json.py are not provided with
DOCA. Follow the NVIDIA DOCA App Shield Programming Guide for more
information.

‣ CLI example for running the app:
dpu> /opt/mellanox/doca/applications/yara_inspection/bin/doca_yara_inspection
 -m mem_regions.json -o symbols.json -f MT2125X03335MLNXS0D0F0VF1 -d mlx5_0 -
t 3 

http://docs.nvidia.com/doca/sdk/pdf/app-shield-programming-guide.pdf
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Chapter 8. Arg Parser DOCA Flags

Refer to NVIDIA DOCA Arg Parser Programming Guide for more information.

Flag Type Short Flag
Long Flag/JSON
Key Description

l log-level Set the log level for
the application:

‣ CRITICAL=20

‣ ERROR=30

‣ WARNING=40

‣ INFO=50

‣ DEBUG=60

v version Print program version
information

General flags

h help Print a help synopsis

m memr Path to the
pre-generated
mem_regions.json file
transfered from the
host

Program flags

f pcif System PCIe function
vendor unique
identifier (VUID) of the
VF/PF exposed to the
target system. Used
for DMA operations.

To obtain this
argument, run:
target-system>
 lspci -vv |
 grep "\[VU\]
 Vendor specific:"
Example output:
[VU] Vendor
 specific:
 MT2125X03335MLNXS0D0F0

http://docs.nvidia.com/doca/sdk/pdf/arg-parser-programming-guide.pdf
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Flag Type Short Flag
Long Flag/JSON
Key Description

[VU] Vendor
 specific:
 MT2125X03335MLNXS0D0F1 

Two VUIDs are
printed for each DPU
connected to the
target system. The
first is of the DPU on
pf0 and the second
is of the DPU on port
pf1.

Note: Running
this command
on the DPU
outputs
VUIDs with an
additional "EC"
string in the
middle. You
must remove
the "EC" to
arrive at the
correct VUID.

The VUID of a VF
allocated on PF0/1 is
the VUID of the PF
with an additional
suffix, VF<vf-number>,
where vf-number is
the VF index +1.

For example, for the
output in the example
above:

‣ PF0 VUID =
MT2125X03335MLNXS0D0F0

‣ PF1 VUID =
MT2125X03335MLNXS0D0F1

‣ VUID of VF0
on PF0 =
MT2125X03335MLNXS0D0F0VF1

VUIDs are persistent
even on reset.

d dma DMA device name to
use

o osym Path to the
pre-generated
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Flag Type Short Flag
Long Flag/JSON
Key Description

symbols.json file
transferred from the
host

t time Number of seconds to
sleep between scans
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Chapter 9. References

‣ /opt/mellanox/doca/applications/yara_inspection/src
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