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Chapter 1. Introdution

Allreduce is a collective operation which allows collecting data from different processing
units to combine them into a global result by a chosen operator. In turn, the result is
distributed back to all processing units.

Allreduce operates in stages. Firstly, each participant scatters its vector. Secondly,
each participant gathers the vectors of the other participants. Lastly, each participant
performs their chosen operation between all the gathered vectors. Using a sequence of
different allreduce operations with different participants, very complex computations
can be spread among many computation units.

Allreduce is widely used by parallel applications in high-performance computing (HPC)
related to scientific simulations and data analysis, including machine learning calculation
and the training phase of neural networks in deep learning.

Due to the massive growth of deep learning models and the complexity of scientific
simulation tasks that utilize a network, effective implementation of allreduce is essential
for minimizing communication time.

This document describes how to implement allreduce using the UCX communication
framework, which leverages NVIDIA® BlueField® DPU by providing low-latency and high-
bandwidth utilization of its network engine.

This document describes the following types of allreduce:

‣ Offloaded client – processes running on the host which only submit allreduce
operation requests to a daemon running on the DPU. The daemon runs on the DPU
and performs the allreduce algorithm on behalf of its on-host-clients (offloaded-
client).

‣ Non-offloaded client – processes running on the host which execute the allreduce
algorithm by themselves
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Chapter 2. System Design

The application is designed to measure three metrics:

‣ Communication time taken by offloaded and non-offloaded allreduce operations

‣ Computation time taken by matrix multiplications which are done by clients until the
allreduce operation is completed

‣ The overlap of the two previous metrics. The percentage of the total runtime during
which both the allreduce and the matrix multiplications were done in parallel.
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The allreduce implementation is divided into two different types of processes: clients
and daemons. Clients are responsible for allocating vectors filled with data and initiating
allreduce operations by sending a request with a vector to their daemon. Daemons are
responsible for gathering vectors from all connected clients and daemons, applying a
chosen operator on all received buffers, and then scattering the reduced result vector
back to the clients.

‣ Offloaded mode
 

 

‣ Non-offloaded mode
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Chapter 3. Application Architecture

DOCA's allreduce implementation uses Unified Communication X (UCX) to support
data exchange between endpoints. It utilizes UCX's sockaddr-based connection
establishment and the UCX Active Messages (AM) API for communications.

‣ Offloaded mode
 

 

‣ Non-offloaded mode
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 1. Connections between processes are established by UCX using IP addresses and ports
of peers.

 2. Allreduce vectors are sent from clients to daemons in offloaded mode, or from clients
to clients in non-offloaded mode.

 3. Reduce operations on vectors are done using received vectors from other daemons in
offloaded mode, or other clients in non-offloaded mode.

 4. Vectors with allreduce results are received by clients from daemons in offloaded
mode, or are already stored in clients after completing all exchanges in non-offloaded
mode.

 5. After completing all allreduce operations, connections between clients are destroyed.
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Chapter 4. DOCA Libraries

This application leverages the UCX framework DOCA driver.
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Chapter 5. Configuration Flow

 1. Parse application argument.

 a). Initialize arg parser resources and register DOCA general parameters.
doca_argp_init();

 b). Register UCX allreduce application parameters.
register_allreduce_params();

 c). Parse all registered parameters.
doca_argp_start();

 2. UCX initialization.

 a). Initialize hash table of connections.
allreduce_ucx_init();

 b). Create UCP context.
ucp_init();

 c). Create UCP worker.
ucp_worker_create();

 d). Set AM handler for receiving connection check packets.
ucp_worker_set_am_recv_handler();

 3. Initialization of the allreduce connectivity.
communication_init();

 a). Initialize hash table of allreduce super requests.
 b). Set "receive callback" for handshake messages.
 c). If daemon or non-offloaded client:

 i. Set AM handler for receiving allreduce requests from clients.
allreduce_ucx_am_set_recv_handler();

 ii. Initialize UCX listening function. This creates a UCP listener.
allreduce_ucx_listen();

 d). Initialize all connections.
connections_init();

 i. Go over all destination addresses and connect to each peer.
 ii. Repeat until a successful send occurs (to check connectivity).

ucp_am_send_nbx();
allreduce_ucx_request_wait();

 iii. Insert the connection to the hash table of connections.
allreduce_outgoing_handshake();
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 e). Scatter handshake message to peers/daemon to make sure they all have the
same -s, -i, -b, and -d flags.

 4. Daemon: Start UCX progress.
daemon_run();

 a). Set AM handler to receive allreduce requests from clients.
allreduce_ucx_am_set_recv_handler();

 b). Perform UCP worker progress.
while (running)
    allreduce_ucx_progress();

 c). Callbacks are invoked by incoming/outgoing messages by calling
allreduce_ucx_progress.

 5. Client:
client_run();

 a). Allocate buffers to store allreduce initial data and results.
allreduce_vectors_init();

 b). Set an AM handler for receiving allreduce results.
allreduce_ucx_am_set_recv_handler();

 c). Perform allreduce barrier. Check that all daemons and clients are active.
allreduce_barrier();

 i. Submit a batch of allreduce operations with 0 byte.
 ii. Wait for completions.

 d). Reset metrics and vectors.
allreduce_metrics_init();

 i. Submit some batches and calculate estimated network time.
 ii. Allocate matrices to multiply.
 iii. Estimate how many matrix multiplications could have been performed instead

of networking (same time window).
 iv. Calculate the actual computation time of these matrix multiplications.

 e). Reset vectors.
 f). Submit a batch of allreduce operations to daemon/peer (depends on mode).
 g). Perform matrix multiplications during a time period which is approximately equal

to doing a single batch of allreduce operations and calculate the actual time cost.
 h). Wait for the allreduce operation to complete and calculate time cost.
 i). Update metrics.

Do num-batches (flag) times:
e.    allreduce_vectors_reset();
f.    allreduce_batch_submit();
g.    cpu_exploit();
h.    allreduce_batch_wait();
i.    allreduce_metrics_calculate();

 j). Print summary of allreduce benchmarking.
 6. Arg parser destroy.

doca_argp_destroy();

 7. Communication destroy.
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 a). Clean up connections.
allreduce_ucx_disconnect();

 i. Remove the connection from the hash table of the connections.
 ii. Close inner UCP endpoint.

ucp_ep_close_nbx();

 iii. Wait for the completion of the UCP endpoint closure.
 iv. Destroy connection.
 v. Free connections array.

 b). Destroy the hash table of the allreduce super requests.
 8. Destroy UCX context.

 a). Destroy the hash table of the connections.
g_hash_table_destroy();

 b). If the UCP listener was created, destroy it.
ucp_listener_destroy();

 c). Destroy UCP worker.
ucp_worker_destroy();

 d). Destroy UCP context.
ucp_cleanup();
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Chapter 6. Running the Application

 1. Refer to the following documents:

‣ NVIDIA DOCA Installation Guide for Linux for details on how to install BlueField-
related software.

‣ NVIDIA DOCA Troubleshooting Guide for any issue you may encounter with the
installation, compilation, or execution of DOCA applications.

‣ NVIDIA DOCA Applications Overview for additional compilation instructions and
development tips of DOCA applications.

 2. The allreduce binary is located under /opt/mellanox/doca/applications/
allreduce/bin/doca_allreduce. To build all the applications together, run:
cd /opt/mellanox/doca/applications/
meson build
ninja -C build

 3. To build only the allreduce application:

 a). Edit the following flags in /opt/mellanox/doca/applications/
meson_options.txt:

‣ Set enable_all_applications to false

‣ Set enable_allreduce to true

 b). Run the commands in step 2.

Note: doca_allreduce is created under ./build/allreduce/src/.

Application usage:
Usage: doca_allreduce [DOCA Flags] [Program Flags]
 
DOCA Flags:
  -h, --help                        Print a help synopsis
  -v, --version                     Print program version information
  -l, --log-level                   Set the log level for the program
 <CRITICAL=20, ERROR=30, WARNING=40, INFO=50, DEBUG=60>
 
Program Flags:
  -r, --role                        Run DOCA UCX allreduce process as: "client"
 or "daemon"
  -m, --mode <allreduce_mode>       Set allreduce mode: "offloaded", "non-
offloaded" (valid for client only)
  -p, --port <port>                 Set default destination port of daemons/
clients, used for IPs without a port (see '-a' flag)
  -t, --listen-port <listen_port>   Set listening port of daemon or client

http://docs.nvidia.com/doca/sdk/pdf/installation-guide-for-linux.pdf
http://docs.nvidia.com/doca/sdk/pdf/troubleshooting.pdf
http://docs.nvidia.com/doca/sdk/pdf/applications-overview.pdf
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  -c, --num-clients <num_clients>   Set the number of clients which participate
 in allreduce operations (valid for daemon only)
  -s, --size <size>                 Set size of vector to do allreduce for
  -d, --datatype <datatype>         Set datatype
 ("byte", "int", "float", "double") of vector elements to do allreduce for
  -o, --operation <operation>       Set operation ("sum", "prod") to do between
 allreduce vectors
  -b, --batch-size <batch_size>     Set the number of allreduce operations
 submitted simultaneously (used for handshakes by daemons)
  -i, --num-batches <num_batches>   Set the number of batches of allreduce
 operations (used for handshakes by daemons)
  -a, --address <ip_address>        Set comma-separated list of destination IPv4/
IPv6 addresses and ports optionally (<ip_addr>:[<port>]) of daemons or clients

 4. Running the application on BlueField:

‣ All daemons should be deployed before clients. Only after connecting to their
peers are they able to handle clients.

‣ Pre-run setup:

UCX probes the system for any available net/IB devices and, by default, tries to
create a multi-device connection. This means that if some network devices are
available but provide an unreachable path from the daemon to the peer/client,
UCX may still use that path. A common case is that a daemon tries to connect to
a different BlueField using tmfifo_net0 which is connected to the host only. To fix
this issue, follow these steps:

 a). Use the UCX env variable UCX_NET_DEVICES to set usable devices. For example:
export UCX_NET_DEVICES=enp3s0f0s0,enp3s0f1s0
/opt/mellanox/doca/applications/allreduce/bin/doca_allreduce -r daemon -t
 34001 -c 1 -s 100 -o sum -d float -b 16 -i 16 

Or:
env UCX_NET_DEVICES=enp3s0f0s0,enp3s0f1s0 /opt/mellanox/doca/applications/
allreduce/bin/doca_allreduce -r daemon -t 34001 -c 1 -s 100 -o sum -d
 float -b 16 -i 16 

 b). Get the mlx device name and port of a SF to limit the UCX network interfaces
and allow IB. For example:
dpu> show_gids
DEV PORT INDEX GID     IPv4    VER DEV
--- ---- ----- ---     ------------        --- ---
mlx5_2 1 0     fe80:0000:0000:0000:0052:72ff:fe63:1651       v2 
 enp3s0f0s0
mlx5_3 1 0     fe80:0000:0000:0000:0032:6bff:fe13:f13a       v2 
 enp3s0f1s0

dpu> UCX_NET_DEVICES=enp3s0f0s0,enp3s0f1s0,mlx5_2:1,mlx5_3:1 /opt/
mellanox/doca/applications/allreduce/bin/doca_allreduce -r daemon -t 34001
 -c 1 -s 100 -o sum -d float -b 16 -i 16 

‣ CLI example for running a client:
/opt/mellanox/doca/applications/allreduce/bin/doca_allreduce -r client -m
 offloaded -t 34001 -a 10.21.211.3:35001 -s 65535 -i 16 -b 128 -o sum -d float

Note: The flags -s, -i, -b, and -d must be the same for all clients and daemons
participating in the allreduce operation.
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‣ CLI example for running a daemon:
/opt/mellanox/doca/applications/allreduce/bin/doca_allreduce -r daemon -t
 34001 -c 2 -a 10.21.211.3:35001,10.21.211.4:36001 -s 65535 -o sum -d float -
i 16 -b 128 

Note: The flag -a is necessary for communicating with other daemons. In case
of an offloaded client, the address must be that of the daemon which performs
the allreduce operations for them. In case of a daemon or non-offloaded clients,
the flag could be a single or multiple addresses of other daemons/non-offloaded
clients which exchange their local allreduce results.

Note: The flag -c must be specified for daemon processes only. It indicates how
many clients submit their allreduce operations to the daemon.

Note: The daemon listens to incoming connection requests on all available IPs, but
the actual communication after the initial "UCX handshake" does not necessarily
use the same device used for the connection establishment.

 5. Running the application on the host, CLI example:
/opt/mellanox/doca/applications/allreduce/bin/doca_allreduce -r client -m non-
offloaded -t 34001 -a 10.21.211.3:35001,10.21.211.4:36001 -s 65535 -i 16 -b 128 -
o sum -d float
/opt/mellanox/doca/applications/allreduce/bin/doca_allreduce -r client -m
 offloaded -p 34001 -a 192.168.100.2 -s 65535 -i 16 -b 128 -o sum -d float

Note: Refer to section "Running DOCA Application on Host" in NVIDIA DOCA Virtual
Functions User Guide.

http://docs.nvidia.com/doca/sdk/pdf/virtual-functions.pdf
http://docs.nvidia.com/doca/sdk/pdf/virtual-functions.pdf
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Chapter 7. Arg Parser DOCA Flags

Refer to NVIDIA DOCA Arg Parser Programming Guide for more information.

Flag Type Short Flag
Long Flag/JSON
Key Description

l log-level Set the log level for
the application:

‣ CRITICAL=20

‣ ERROR=30

‣ WARNING=40

‣ INFO=50

‣ DEBUG=60

v version Print program version
information

General flags

h help Print a help synopsis

r role Run DOCA UCX
allreduce process
as either client or
daemon

m mode Set allreduce mode.
Available types
options:

‣ offloaded

‣ non-offloaded
(valid for client
only)

p port Set default
destination port of
daemons/clients. Used
for IPs without a port
(see -a flag).

Program flags

c num-clients Set the number
of clients which

http://docs.nvidia.com/doca/sdk/pdf/arg-parser-programming-guide.pdf
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Flag Type Short Flag
Long Flag/JSON
Key Description

participate in allreduce
operations

Note: Valid for
daemon only.

s size Set size of vector to
perform allreduce for

d datatype Set datatype of
vector elements to do
allreduce for

‣ byte

‣ int

‣ float

‣ double

o operation Set operation to
perform between
allreduce vectors

b batch-size Set the number
of allreduce
operations submitted
simultaneously. Used
for handshakes by
daemons.

i num-batches Set the number of
batches of allreduce
operations. Used
for handshakes by
daemons.

t listen-port Set listening port of
daemon or client

a address Set comma-separated
list of destination
IPv4/IPv6 address and
ports optionally of
daemons or clients.
Format: <ip_addr>:
[<port>].
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Chapter 8. Running Application
on NVIDIA Converged
Accelerator

This section details the steps necessary to run DOCA Allreduce on NVIDIA converged
accelerator.

Allreduce running on the converged accelerator has the same logic as described in
previous sections except for the reducing of vectors. The reduce of incoming vectors
is performed on the GPU side in batches that include the vectors from all peers or all
clients. When the GPUDirect module is active, incoming vectors and outgoing vectors are
received/sent directly to/from the GPU.

To make use of the GPU's capabilities, make sure to perform the following:

 1. Refer to the NVIDIA DOCA Installation Guide for Linux for instructions on installing
NVIDIA driver for CUDA and a CUDA-repo on your setup.

 2. Create the sub-functions and configure the OVS according to Scalable Function
Setup Guide.

8.1.  Compiling and Running Application
on Converged Accelerator

Since there is no pre-compiled allreduce application binary provided that uses GPU
support, you must compile it and run it. All the sources needed for building, compiling,
and running the application with GPU support are found under /opt/mellanox/doca/
applications/allreduce/src.

To build and run the application:

 1. Setup CUDA paths:
export CPATH=/usr/local/cuda/targets/sbsa-linux/include:$CPATH
export LD_LIBRARY_PATH=/usr/local/nvidia/lib:/usr/local/nvidia/lib64:
$LD_LIBRARY_PATH
export PATH=/usr/local/nvidia/bin:/usr/local/cuda/bin:$PATH

 2. Reinstall UCX with CUDA support. Follow the UCX installation procedure with an
additional flag, --with-cuda=/usr/local/cuda/, passed to configure-release:
dpu# ./contrib/configure-release --with-cuda=/usr/local/cuda/

http://docs.nvidia.com/doca/sdk/pdf/installation-guide-for-linux.pdf
http://docs.nvidia.com/doca/sdk/pdf/scalable-functions.pdf
http://docs.nvidia.com/doca/sdk/pdf/scalable-functions.pdf
https://openucx.org/documentation/
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 3. To build the application with GPU support:

 a). Set the enable_gpu_support flag to true in /opt/mellanox/doca/applications/
meson_options.txt.

 b). Compile the application sources. Run:
cd /opt/mellanox/doca/applications/
meson build
ninja -C build

doca_allreduce_gpu is created under ./build/allreduce/src/ alongside the
regular doca_allreduce binary that is compiled without the GPU support.

 4. To run the application with GPU support, follow the steps in Running the Application.
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Chapter 9. References

‣ /opt/mellanox/doca/applications/allreduce/src/

‣ /opt/mellanox/doca/applications/allreduce/bin/
allreduce_client_params.json

‣ /opt/mellanox/doca/applications/allreduce/bin/
allreduce_daemon_params.json
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