
MLNX-15-060508 _v2.2.1 | October 2023

NVIDIA DOCA App Shield

Programming Guide

NVIDIA DOCA App Shield MLNX-15-060508 _v2.2.1 | ii

Table of Contents

Chapter 1. Introduction..1

Chapter 2. Prerequisites.. 2

Chapter 3. Dependencies..3

Chapter 4. API.. 4
4.1. doca_apsh_dma_dev_set.. 4

4.2. doca_apsh_regex_dev_set..4

4.3. Capabilities Per System.. 5

Chapter 5. App Shield Initialization and Teardown.. 11
5.1. doca_apsh_ctx.. 11

5.2. doca_apsh_system..12

5.3. doca_apsh_config.py Tool..13

Chapter 6. DOCA App Shield Samples..15
6.1. Sample Prerequisites... 15

6.2. Running the Sample...15

6.3. Samples..16

6.3.1. Apsh Libs Get..16

6.3.2. Apsh Modules Get.. 16

6.3.3. Apsh Pslist..17

6.3.4. Apsh Threads Get... 18

6.3.5. Apsh Vads Get.. 18

6.3.6. Apsh Envars Get.. 19

6.3.7. Apsh Privileges Get.. 20

NVIDIA DOCA App Shield MLNX-15-060508 _v2.2.1 | 1

Chapter 1. Introduction

DOCA App Shield API offers a solution for strong intrusion detection capabilities
using the DPU services to collect and analyze data from the host's (or a VM on the
host) memory in real time. This solution provides intrusion detection and forensics
investigation in a way that is:

‣ Robust against attacks on a host machine

‣ Able to detect a wide range of attacks (including zero-day attacks)

‣ Least disruptive to the execution of host application (where current detection
solutions hinder the performance of host applications)

‣ Transparent to the host, such that the host does not need to install anything (other
than providing some files obtained from the tool)

App Shield uses a DMA device to access the host's memory and analyze it. It also uses a
RegEx device to scan the host's memory for regular expressions and signatures.

The App Shield API provides multiple functions that help with gathering data extracted
from system's memory (e.g., processes list, modules list, connections). This data helps
with detecting attacks on critical services or processes in a system (e.g., services that
enforce integrity or privacy of the execution of different applications).

NVIDIA DOCA App Shield MLNX-15-060508 _v2.2.1 | 2

Chapter 2. Prerequisites

 1. Make sure to run App Shield from the DPU as a root user.
 2. If you are adding a RegEx device to App Shield, make sure to meet DOCA RegEx

requirements which can be found in the NVIDIA DOCA RegEx Programming Guide.

http://docs.nvidia.com/doca/sdk/pdf/regex-programming-guide.pdf

NVIDIA DOCA App Shield MLNX-15-060508 _v2.2.1 | 3

Chapter 3. Dependencies

The library requires firmware version 24.32.1010 or higher.

NVIDIA DOCA App Shield MLNX-15-060508 _v2.2.1 | 4

Chapter 4. API

For the library API reference, refer to the DOCA APSH API documentation in the NVIDIA
DOCA Libraries API Reference Manual.

Note: The pkg-config (*.pc file) for the APSH library is included in DOCA's regular
definitions (i.e., doca).

The following sections provide additional details about the library API.

4.1. doca_apsh_dma_dev_set
To attach a DOCA DMA device to App Shield, calling this function is mandatory and must
be done before calling doca_apsh_start.
doca_apsh_dma_dev_set(doca_apsh_ctx, doca_dev)

Where:

‣ doca_apsh_ctx [in] – App Shield opaque context struct

‣ doca_dev [in] – struct for DOCA device with DMA capabilities

4.2. doca_apsh_regex_dev_set
To attach a RegEx DOCA device to App Shield, calling this function is not mandatory
(unless the user wants to use the netscan capability). If the user wants to call the
function, it must be done before calling doca_apsh_start.
doca_apsh_regex_dev_set(doca_apsh_ctx, doca_dev)

Where:

‣ doca_apsh_ctx [in] – App Shield opaque context struct

‣ doca_dev [in] – struct for DOCA Device with RegEx capabilities

http://docs.nvidia.com/doca/sdk/pdf/doca-libraries-api.pdf
http://docs.nvidia.com/doca/sdk/pdf/doca-libraries-api.pdf

API

NVIDIA DOCA App Shield MLNX-15-060508 _v2.2.1 | 5

4.3. Capabilities Per System
For each initialized system, App Shield retrieves an array of the requested object
according to the getter's name:

Function Name
Functions
Information Functions Signature Return Type

Get modules Returns an array with
information about
the system modules
(drivers) loaded into
the kernel of the OS.

doca_error_t
 doca_apsh_modules_get(struct
 doca_apsh_system
 *system, struct
 doca_apsh_module
 ***modules, int
 *modules_size);

‣ Array of struct
doca_apsh_module

‣ int: Size of the
returned array

‣ doca_error status

Get processes Returns an array with
information about
each process running
on the system.

doca_error_t
 doca_apsh_processes_get(struct
 doca_apsh_system
 *system, struct
 doca_apsh_procces
 ***processes, int
 *processes_size);

‣ Array of struct
doca_apsh_process

‣ int: Size of the
returned array

‣ doca_error status

Get library For a specified
process, this function
returns an array with
information about
each library loaded
into this process.

doca_error_t
 doca_apsh_libs_get(struct
 doca_apsh_process
 *process, struct
 doca_apsh_lib
 ***libs, int
 *libs_size);

‣ Array of struct
doca_apsh_lib

‣ int: Size of the
returned array

‣ doca_error status

Get threads For a specified
process, this function
returns an array with
information about
each thread running
within this process.

doca_error_t
 doca_apsh_threads_get(struct
 doca_apsh_process
 *process, struct
 doca_apsh_thread
 ***threads, int
 *threads_size);

‣ Array of struct
doca_apsh_thread

‣ int: Size of the
returned array

‣ doca_error status

Get virtual memory
areas/virtual address
description

For a specified
process, this function
returns an array
with information
about each virtual
memory area within
this process.

doca_error_t
 doca_apsh_vads_get(struct
 doca_apsh_process
 *process, struct
 doca_apsh_vad
 ***vads, int
 *vads_size);

‣ Array of struct
doca_apsh_vma

‣ int: Size of the
returned array

‣ doca_error status

Get privileges For a specified
process, this function
returns an array with
information about
each possible privilege

doca_error_t
 doca_apsh_privileges_get(struct
 doca_apsh_process
 *process, struct
 doca_apsh_privilege
 ***privileges, int
 *privileges_size);

‣ Array of struct
doca_apsh_privilege

‣ int: Size of the
returned array

‣ doca_error status

API

NVIDIA DOCA App Shield MLNX-15-060508 _v2.2.1 | 6

Function Name
Functions
Information Functions Signature Return Type
for this process, as
described here.

Note: Available
on a Windows
host only.

Get environment
variables

For a specified
process, this function
returns an array with
information about
each environment
variable within this
process.

Note: Available
on a Windows
host only.

doca_error_t
 doca_apsh_envars_get(struct
 doca_apsh_process
 *process, struct
 doca_apsh_envar
 ***envars, int
 *envars_size);

‣ Array of struct
doca_apsh_envar

‣ int: Size of the
returned array

‣ doca_error status

Get handles For a specified
process, this function
returns an array with
information about
each handle this
process holds.

Note: Available
on a Windows
host only.

doca_error_t
 doca_apsh_handles_get(struct
 doca_apsh_process
 *process, struct
 doca_apsh_handle
 ***handles, int
 *handles_size);

‣ Array of struct
doca_apsh_handle

‣ int: Size of the
returned array

‣ doca_error status

Get LDR modules For a specified
process, this function
returns an array with
information about
each loaded module
within this process.

Note: Available
on a Windows
host only.

doca_error_t
 doca_apsh_ldrmodules_get(struct
 doca_apsh_process
 *process, struct
 doca_apsh_ldrmodule
 ***ldrmodules, int
 *ldrmodules_size);

‣ Array of struct
doca_apsh_ldrmodule

‣ int: Size of the
returned array

‣ doca_error status

Process attestation For a specified
process, this function
attests the memory
pages of the process
according to a
precomputed golden

doca_error_t
 doca_apsh_attestation_get(struct
 doca_apsh_process
 *process, const char
 *exec_hash_map_path, struct
 doca_apsh_attestation
 ***attestation, int
 *
 attestation_size);

‣ Array of struct
doca_apsh_attestation

‣ int – size of the
returned array

‣ doca_error status

https://docs.microsoft.com/en-us/windows/win32/secauthz/privilege-constants

API

NVIDIA DOCA App Shield MLNX-15-060508 _v2.2.1 | 7

Function Name
Functions
Information Functions Signature Return Type
hash file given as an
input.

Note: Single-
threaded
processes are
supported at
beta level.

Attestation refresh Refreshes a single
attestation handler of
a process with a new
snapshot.

doca_error_t
 doca_apsh_attst_refresh(struct
 doca_apsh_attestation
 ***attestation, int
 *
 attestation_size);

‣ Array of struct
doca_apsh_attestation

‣ int – size of the
returned array

‣ doca_error status

Get NetScan This function
scans the system's
physical memory and
returns an array with
information about
each socket that
resides in the memory.

Note: Only
available on
hosts with
one of the
following
Windows 10
OS builds:

Arch
Build
No.

10240

10586

14393

15063

17134

x86

19041

15063

16299

17134

17763

x64

18362

doca_error_t
 doca_apsh_netscan_get(struct
 doca_apsh_system
 *system, struct
 doca_apsh_netscan
 ***connections, int
 *connections_size);

‣ Array of struct
doca_apsh_netscan

‣ int – size of the
returned array

‣ doca_error status

API

NVIDIA DOCA App Shield MLNX-15-060508 _v2.2.1 | 8

Function Name
Functions
Information Functions Signature Return Type

Arch
Build
No.

18363

19041

Note: This
feature is
currently
supported at
beta level.

Get process
parameters

For a specified
process, this function
returns a struct object
(not an array) with
information about the
process' parameters
(ones not included in
the "get processes"
capability).

Note: Available
on a Windows
host only.

Note: This
feature is
currently
supported at
beta level.

doca_error_t
 doca_apsh_process_parameters_get(struct
 doca_apsh_process
 *process, struct
 doca_apsh_process_parameters
 **process_parameters);

‣ An object
of struct
doca_apsh_process_paramters

‣ doca_error status

Get SIDs For a specified
process, this function
returns an array with
information about
each SID (security
identifier) included in
the process's security
context.

Note: Available
on a Windows
host only.

doca_error_t
 doca_apsh_sids_get(struct
 doca_apsh_process
 *process, struct
 doca_apsh_sid
 ***sids, int
 *sids_size);

‣ An object of
struct doca_apsh_sid

‣ int – size of the
returned array

‣ doca_error status

Perform Yara scan For a specified
process, this function

doca_error_t
 doca_apsh_yara_get(struct

API

NVIDIA DOCA App Shield MLNX-15-060508 _v2.2.1 | 9

Function Name
Functions
Information Functions Signature Return Type
returns an array with
information about
each Yara rule match
found in the process'
memory.

Note: Available
on a Windows
host and
Ubuntu 22.04
DPU.

 doca_apsh_process
 *process,
enum
 doca_apsh_yara_rule
 *yara_rules_arr,
 uint32_t
 yara_rules_arr_size,
uint64_t
 scan_type, struct
 doca_apsh_yara
 ***yara_matches, int
 *yara_matches_size);

Note: To
get a better
understanding
of the
arguments,
refer to
documentation
in
doca_apsh.h.

The following attribute getters return a specific attribute of an object, obtained from
the array returned from the getter functions listed above, depending on the requested
attribute:
doca_apsh_process_info_get(struct doca_apsh_proccess *process, enum
 doca_apsh_process_attr attr);
doca_apsh_module_info_get(struct doca_apsh_module *module, enum
 doca_apsh_module_attr attr);
doca_apsh_lib_info_get(struct doca_apsh_lib *lib, enum doca_apsh_lib_attr attr);
doca_apsh_thread_info_get(struct doca_apsh_thread *thread, enum doca_apsh_lib_attr
 attr);
doca_apsh_vad_info_get(struct doca_apsh_vad *vad, enum doca_apsh_vad_attr attr);
doca_apsh_privilege_info_get(struct doca_apsh_privilege *privilege, enum
 doca_apsh_privilege_attr attr);
doca_apsh_envar_info_get(struct doca_apsh_envar *envar, enum doca_apsh_envar_attr
 attr);
doca_apsh_handle_info_get(struct doca_apsh_handle *handle, enum
 doca_apsh_handle_attr attr);
doca_apsh_ldrmodule_info_get(struct doca_apsh_ldrmodule *ldrmodule, enum
 doca_apsh_ldrmodule_attr attr);
doca_apsh_attst_info_get(struct doca_apsh_attestation *attestation, enum
 doca_apsh_attestation_attr attr);
doca_apsh_netscan_info_get(struct doca_apsh_netscan *connection, enum
 doca_apsh_netscan_attr attr)
doca_apsh_process_parameters_info_get(struct doca_apsh_process_parameters
 *process_parameters, enum doca_apsh_process_parameters_attr attr);
doca_apsh_sid_info_get(struct doca_apsh_sid *sid, enum doca_apsh_sid_attr attr);
doca_error_t doca_apsh_yara_get(struct doca_apsh_process *process, enum
 doca_apsh_yara_rule *yara_rules_arr, uint32_t yara_rules_arr_size, uint64_t
 scan_type, struct doca_apsh_yara ***yara_matches, int *yara_matches_size);

The return type of the attribute getter can be found in doca_apsh_attr.h.

Usage example:
const uint pid = doca_apsh_process_info_get(processes[i], DOCA_APSH_PROCESS_PID);

API

NVIDIA DOCA App Shield MLNX-15-060508 _v2.2.1 | 10

const char *proc_name = doca_apsh_process_info_get(processes[i],
 DOCA_APSH_PROCESS_COMM);

NVIDIA DOCA App Shield MLNX-15-060508 _v2.2.1 | 11

Chapter 5. App Shield Initialization
and Teardown

There are different structures in App Shield that must be used for a BlueField client to
be able to introspect into a system running on the host side, whether it is a bare-metal
machine or a virtual machine.

5.1. doca_apsh_ctx
doca_apsh_ctx is the basic struct used by App Shield which defines the DMA and RegEx
devices used to perform the memory forensics techniques required to run App Shield.

Note: The same doca_apsh_ctx struct may be used to run multiple App Shield instances
over different systems (e.g., two different VMs on the host).

 1. To acquire an instance of the doca_apsh_ctx struct, use the following function:
struct doca_apsh_ctx *doca_apsh_create(void);

 2. To configure the doca_apsh_ctx instance with DMA and RegEx (optional) devices to
use:
doca_error_t doca_apsh_dma_dev_set(struct doca_apsh_ctx *ctx, struct doca_dev
 *dma_dev);
doca_error_t doca_apsh_regex_dev_set(struct doca_apsh_ctx *ctx, struct doca_dev
 *regex_dev);

Note: Setting a RegEx device is only mandatory if the user wants to use the Netscan
capability.

 3. To start the doca_apsh_ctx instance, call the following function:
doca_error_t doca_apsh_start(struct doca_apsh_ctx *ctx);

 4. To destroy the doca_apsh_ctx instance when it is no longer needed, call:
void doca_apsh_destroy(struct doca_apsh_ctx *ctx);

App Shield Initialization and Teardown

NVIDIA DOCA App Shield MLNX-15-060508 _v2.2.1 | 12

5.2. doca_apsh_system
The doca_apsh_system struct is built on the doca_apsh_ctx instance. This struct is
created per system running App Shield. doca_apsh_system defines multiple attributes
used by App Shield to perform memory analysis over the specific system successfully.

 1. To acquire an instance of the doca_apsh_system struct, use the following function:
 2. To configure different attributes for the system instance:

‣ OS type – specifies the system's OS type.
doca_error_t doca_apsh_sys_os_type_set(struct doca_apsh_system *ctx, enum
 doca_apsh_system_os os_type);

Note: Currently supported types: Windows or Linux.

‣ System representor – specifies the representor of the device connected to
the system for App Shield to run on (which can be a representor of VF/PF).
For information on querying the DOCA device, refer to the NVIDIA DOCA Core
Programming Guide.

After acquiring the DOCA device, use the following function to configure it into
the system instance:
doca_error_t doca_apsh_sys_dev_set(struct doca_apsh_system *system, struct
 doca_dev_rep *dev);

‣ System symbols map – includes information about the OS that App Shield is
attempting to run on (e.g., Window 10 Build 18363) and the size and fields of the
OS structures, which helps App Shield with the memory forensic techniques it
uses to access and analyze these structures in the system's memory. This can be
obtained by running the doca_apsh_config.py on the system machine.

After obtaining it, run:
doca_error_t doca_apsh_sys_os_symbol_map_set(struct doca_apsh_system
 *system, const char *system_os_symbol_map_path);

‣ Memory regions – includes the physical addresses of the memory regions which
are mapped for system memory RAM. This is needed to prevent App Shield from
accessing other memory regions, such as memory mapped I/O regions. This can
be obtained by running the doca_apsh_config.py tool on the system machine.

After obtaining it, run:
doca_error_t doca_apsh_sys_mem_region_set(struct doca_apsh_system
 *system, const char *system_mem_region_path);

‣ KPGD file (optional and relevant only for Linux OS) – contains the KPGD physical
address and the virtual address of init_task. This information is required since
App Shield extracts data from the kernel struct in the physical memory. Thus, the
kernel page directory table must translate the virtual addresses of these structs.
This can be obtained by running the doca_apsh_config.py tool on the system
machine with the flag find_kpgd=1. Since setting this attribute is optional, App
Shield can work without it, but providing it speeds up App Shield's initialization
process.

http://docs.nvidia.com/doca/sdk/pdf/doca-core-programming-guide.pdf
http://docs.nvidia.com/doca/sdk/pdf/doca-core-programming-guide.pdf

App Shield Initialization and Teardown

NVIDIA DOCA App Shield MLNX-15-060508 _v2.2.1 | 13

After obtaining it, run:
doca_error_t doca_apsh_sys_kpgd_file_set(struct doca_apsh_system
 *system, const char *system_kpgd_file_path);

 3. To start the doca_apsh_system:
doca_error_t doca_apsh_system_start(struct doca_apsh_system *system);

 4. To destroy the doca_apsh_system instance when it is no longer needed, call:
void doca_apsh_system_destroy(struct doca_apsh_system *system);

5.3. doca_apsh_config.py Tool
The doca_apsh_config.py tool is a python3 script which can be used to obtain all the
attributes needed to run doca_apsh_system instance.

The following parameters are necessary to use the tool:

Parameter Description

pid (optional) The process ID of the process we want to run
attestation capability on

os (mandatory) The OS type of the machine (i.e., Linux or
Windows)

find_kpgd (optional) Relevant for Linux OS only, AS flag to enable/
disable creating kpgd_file.conf. Default 0.

files (mandatory) A list of files for the tool to create. File options:
hash, symbols, memregions, kpgd_file (only
relevant for Linux).

Note: Make sure that the value set is
appropriate for your setup.

path (mandatory) ‣ Linux – path to the dwarf2json executable.
Default ./dwarf2json. This file can be
obtained by compiling the following project
using Go.

‣ Windows – path to pdbparse-to-json.py.
Default ./pdbparse-to-json.py. This file
can be found here.

Note: Make sure that the value set is
appropriate for your setup.

The tool creates the following files:

‣ Symbol map – this file changes once the system kernel is updated or a kernel module
is installed. The file does not change on system reboot.

‣ Memory regions – this file changes when adding or removing hardware or drivers that
affect the system's memory map (e.g., when adding register addresses). The file does
not change on system reboot.

https://github.com/volatilityfoundation/dwarf2json
https://go.dev/doc/install
https://raw.githubusercontent.com/volatilityfoundation/volatility3/stable/development/pdbparse-to-json.py

App Shield Initialization and Teardown

NVIDIA DOCA App Shield MLNX-15-060508 _v2.2.1 | 14

‣ hash.zip – this file is required for attestation but is unnecessary for all other
capabilities. The ZIP file contains the required data to attest to a single process. The
file changes on library or executable update.

‣ kpgd_file.conf (relevant for Linux OS only) – helps with faster initialization of the
library. The file changes on system reboot.

NVIDIA DOCA App Shield MLNX-15-060508 _v2.2.1 | 15

Chapter 6. DOCA App Shield Samples

This section provides DOCA App Shield library sample implementations on top of
BlueField DPU.

6.1. Sample Prerequisites
Follow the prerequisites in Prerequisites then copy the generated JSON files,
symbols.json and mem_regions.json, to the /tmp/ directory.

6.2. Running the Sample
 1. Refer to the following documents:

‣ NVIDIA DOCA Installation Guide for Linux for details on how to install BlueField-
related software.

‣ NVIDIA DOCA Troubleshooting Guide for any issue you may encounter with the
installation, compilation, or execution of DOCA applications.

 2. To build a given sample:
cd /opt/mellanox/doca/samples/doca_apsh/<sample_name>
meson build
ninja -C build

Note: The binary doca_<sample_name> will be created under ./build/.

 3. Sample (e.g., apsh_libs_get) usage:
Usage: doca_apsh_libs_get [DOCA Flags] [Program Flags]

DOCA Flags:
 -h, --help Print a help synopsis
 -v, --version Print program version information
 -l, --log-level Set the log level for the program
 <CRITICAL=20, ERROR=30, WARNING=40, INFO=50, DEBUG=60>

Program Flags:
 -p, --pid Process ID of process to be analyzed
 -f, --vuid VUID of the System device
 -d, --dma DMA device name
 -s, --osty <windows|linux> System OS type
For additional information per sample, use the -h option:
./build/doca_<sample_name> -h

http://docs.nvidia.com/doca/sdk/pdf/installation-guide-for-linux.pdf
http://docs.nvidia.com/doca/sdk/pdf/troubleshooting.pdf

DOCA App Shield Samples

NVIDIA DOCA App Shield MLNX-15-060508 _v2.2.1 | 16

6.3. Samples

6.3.1. Apsh Libs Get
This sample illustrates how to properly initialize DOCA App Shield and use its API to get
the list of loadable libraries of a specific process.

The sample logic includes:

 1. Opening DOCA device with DMA ability.
 2. Creating DOCA Apsh context.
 3. Setting and starting the Apsh context.
 4. Opening DOCA remote PCI device via given vendor unique identifier (VUID).
 5. Creating DOCA Apsh system handler.
 6. Setting fields and starting Apsh system handler.
 7. Getting the list of system process using Apsh API and searching for a specific

process with the given PID.
 8. Geting the list of process-loadable libraries using doca_apsh_libs_get Apsh API call.
 9. Querying the libraries for 3 selected fields using doca_apsh_lib_info_get Apsh API

call.
 10.Printing libraries' attributes to the terminal.
 11.Cleaning up.

References:

‣ /opt/mellanox/doca/samples/doca_apsh/apsh_libs_get/apsh_libs_get_sample.c

‣ /opt/mellanox/doca/samples/doca_apsh/apsh_libs_get/apsh_libs_get_main.c

‣ /opt/mellanox/doca/samples/doca_apsh/apsh_libs_get/meson.build

‣ /opt/mellanox/doca/samples/doca_apsh/apsh_common.c; /opt/mellanox/doca/
samples/doca_apsh/apsh_common.h

6.3.2. Apsh Modules Get
This sample illustrates how to properly initialize DOCA App Shield and use its API to get
the list of installed modules on a monitored system.

The sample logic includes:

 1. Opening DOCA device with DMA ability.
 2. Creating DOCA Apsh context.
 3. Setting and starting the Apsh context.
 4. Opening DOCA remote PCI device via given VUID.
 5. Creating DOCA Apsh system handler.

DOCA App Shield Samples

NVIDIA DOCA App Shield MLNX-15-060508 _v2.2.1 | 17

 6. Setting fields and start Apsh system handler.
 7. Getting the the list of system-installed modules using doca_apsh_modules_get Apsh

API call.
 8. Querying the names of modules using doca_apsh_module_info_get Apsh API call.
 9. Printing the attributes of up to 5 moduless attributes to the terminal.
 10.Cleaning up.

References:

‣ /opt/mellanox/doca/samples/doca_apsh/apsh_libs_get/apsh_libs_get_sample.c

‣ /opt/mellanox/doca/samples/doca_apsh/apsh_libs_get/apsh_libs_get_main.c

‣ /opt/mellanox/doca/samples/doca_apsh/apsh_libs_get/meson.build

‣ /opt/mellanox/doca/samples/doca_apsh/apsh_common.c; /opt/mellanox/doca/
samples/doca_apsh/apsh_common.h

6.3.3. Apsh Pslist
This sample illustrates how to properly initialize DOCA App Shield and use its API to get
the list of running processes on a monitored system.

The sample logic includes:

 1. Opening DOCA device with DMA ability.
 2. Creating DOCA Apsh context.
 3. Setting and starting the Apsh context.
 4. Opening DOCA remote PCI device via given VUID.
 5. Creating DOCA Apsh system handler.
 6. Setting fields and starting Apsh system handler.
 7. Getting the list of processes running on the system using doca_apsh_processes_get

Apsh API call.
 8. Querying the processes for 4 chosen attributes using doca_apsh_proc_info_get

Apsh API call.
 9. Printing the attributes of up to 5 processes to the terminal.
 10.Cleaning up.

References:

‣ /opt/mellanox/doca/samples/doca_apsh/apsh_pslist/apsh_pslist_sample.c

‣ /opt/mellanox/doca/samples/doca_apsh/apsh_pslist/apsh_pslist_main.c

‣ /opt/mellanox/doca/samples/doca_apsh/apsh_pslist/meson.build

‣ /opt/mellanox/doca/samples/doca_apsh/apsh_common.c; /opt/mellanox/doca/
samples/doca_apsh/apsh_common.h

DOCA App Shield Samples

NVIDIA DOCA App Shield MLNX-15-060508 _v2.2.1 | 18

6.3.4. Apsh Threads Get
This sample illustrates how to properly initialize DOCA App Shield and use its API to get
the list of threads of a specific process.

The sample logic includes:

 1. Opening DOCA device with DMA ability.
 2. Creating DOCA Apsh context.
 3. Setting and starting the Apsh context.
 4. Opening DOCA remote PCI device via given VUID.
 5. Creating DOCA Apsh system handler.
 6. Setting fields and starting Apsh system handler.
 7. Getting the list of system processes using Apsh API and searching for a specific

process with the given PID.
 8. Getting the list of process threads using doca_apsh_threads_get Apsh API call.
 9. Querying the threads for up to 3 selected fields using doca_apsh_thread_info_get

Apsh API call.
 10.Printing thread attributes to the terminal.
 11.Cleaning up.

References:

‣ /opt/mellanox/doca/samples/doca_apsh/apsh_threads_get/
apsh_threads_get_sample.c

‣ /opt/mellanox/doca/samples/doca_apsh/apsh_threads_get/
apsh_threads_get_main.c

‣ /opt/mellanox/doca/samples/doca_apsh/apsh_threads_get/meson.build

‣ /opt/mellanox/doca/samples/doca_apsh/apsh_common.c; /opt/mellanox/doca/
samples/doca_apsh/apsh_common.h

6.3.5. Apsh Vads Get
This sample illustrates how to properly initialize DOCA App Shield and use its API to get
the list of virtual address descriptors (VADs) of a specific process.

The sample logic includes:

 1. Opening DOCA device with DMA ability.
 2. Creating DOCA Apsh context.
 3. Setting and start the Apsh context.
 4. Opening DOCA remote PCI device via given VUID.
 5. Creating DOCA Apsh system handler.
 6. Setting fields and starting Apsh system handler.
 7. Getting the list of system processes using Apsh API and searching for a specific

process with the given PID.

DOCA App Shield Samples

NVIDIA DOCA App Shield MLNX-15-060508 _v2.2.1 | 19

 8. Getting the list of process VADs using doca_apsh_vads_get Apsh API call.
 9. Querying the VADs for 3 selected fields using doca_apsh_vad_info_get Apsh API call.
 10.Printing the attributes of up to 5 VADs to the terminal.
 11.Cleaning up.

References:

‣ /opt/mellanox/doca/samples/doca_apsh/apsh_vads_get/apsh_vads_get_sample.c

‣ /opt/mellanox/doca/samples/doca_apsh/apsh_vads_get/apsh_vads_get_main.c

‣ /opt/mellanox/doca/samples/doca_apsh/apsh_vads_get/meson.build

‣ /opt/mellanox/doca/samples/doca_apsh/apsh_common.c; /opt/mellanox/doca/
samples/doca_apsh/apsh_common.h

6.3.6. Apsh Envars Get
This sample illustrates how to properly initialize DOCA App Shield and use its API to get
the list of environment variables of a specific process.

Note: This sample works only on target systems with Windows OS.

The sample logic includes:

 1. Opening DOCA device with DMA ability.
 2. Creating DOCA Apsh context.
 3. Setting and starting the Apsh context.
 4. Opening DOCA remote PCIe device via given VUID.
 5. Creating DOCA Apsh system handler.
 6. Setting fields and starting Apsh system handler.
 7. Getting the list of system processes using Apsh API and searching for a specific

process with the given PID.
 8. Getting the list of process envars using doca_apsh_envars_get Apsh API call.
 9. Querying the envars for 2 selected fields using doca_apsh_envar_info_get Apsh API

call.
 10.Printing the envars attributes to the terminal.
 11.Cleaning up.

References:

‣ /opt/mellanox/doca/samples/doca_apsh/apsh_envars_get/
apsh_envars_get_sample.c

‣ /opt/mellanox/doca/samples/doca_apsh/apsh_envars_get/
apsh_envars_get_main.c

‣ /opt/mellanox/doca/samples/doca_apsh/apsh_envars_get/meson.build

‣ /opt/mellanox/doca/samples/doca_apsh/apsh_common.c; /opt/mellanox/doca/
samples/doca_apsh/apsh_common.h

DOCA App Shield Samples

NVIDIA DOCA App Shield MLNX-15-060508 _v2.2.1 | 20

6.3.7. Apsh Privileges Get
This sample illustrates how to properly initialize DOCA App Shield and use its API to get
the list of privileges of a specific process.

Note: This sample works only on target systems with Windows OS.

The sample logic includes:

 1. Opening DOCA device with DMA ability.
 2. Creating DOCA Apsh context.
 3. Setting and starting the Apsh context.
 4. Opening DOCA remote PCIe device via given VUID.
 5. Creating DOCA Apsh system handler.
 6. Setting fields and starting Apsh system handler.
 7. Getting the list of system processes using Apsh API and searching for a specific

process with the given PID.
 8. Getting the list of process privileges using the doca_apsh_privileges_get Apsh API

call.
 9. Querying the privileges for 5 selected fields using the

doca_apsh_privilege_info_get Apsh API call.
 10.Printing the privileges attributes to the terminal.
 11.Cleaning up.

References:

‣ /opt/mellanox/doca/samples/doca_apsh/apsh_privileges_get/
apsh_privileges_get_sample.c

‣ /opt/mellanox/doca/samples/doca_apsh/apsh_privileges_get/
apsh_privileges_get_main.c

‣ /opt/mellanox/doca/samples/doca_apsh/apsh_privileges_get/meson.build

‣ /opt/mellanox/doca/samples/doca_apsh/apsh_common.c; /opt/mellanox/doca/
samples/doca_apsh/apsh_common.h

Notice

This document is provided for information purposes only and shall not be regarded as a warranty of a certain functionality, condition, or quality of a product.
NVIDIA Corporation nor any of its direct or indirect subsidiaries and affiliates (collectively: “NVIDIA”) make no representations or warranties, expressed or
implied, as to the accuracy or completeness of the information contained in this document and assume no responsibility for any errors contained herein.
NVIDIA shall have no liability for the consequences or use of such information or for any infringement of patents or other rights of third parties that may
result from its use. This document is not a commitment to develop, release, or deliver any Material (defined below), code, or functionality.

NVIDIA reserves the right to make corrections, modifications, enhancements, improvements, and any other changes to this document, at any time without
notice.

Customer should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the time of order acknowledgement, unless otherwise
agreed in an individual sales agreement signed by authorized representatives of NVIDIA and customer (“Terms of Sale”). NVIDIA hereby expressly objects
to applying any customer general terms and conditions with regards to the purchase of the NVIDIA product referenced in this document. No contractual
obligations are formed either directly or indirectly by this document.

NVIDIA products are not designed, authorized, or warranted to be suitable for use in medical, military, aircraft, space, or life support equipment, nor in
applications where failure or malfunction of the NVIDIA product can reasonably be expected to result in personal injury, death, or property or environmental
damage. NVIDIA accepts no liability for inclusion and/or use of NVIDIA products in such equipment or applications and therefore such inclusion and/or use
is at customer’s own risk.

NVIDIA makes no representation or warranty that products based on this document will be suitable for any specified use. Testing of all parameters of each
product is not necessarily performed by NVIDIA. It is customer’s sole responsibility to evaluate and determine the applicability of any information contained
in this document, ensure the product is suitable and fit for the application planned by customer, and perform the necessary testing for the application in
order to avoid a default of the application or the product. Weaknesses in customer’s product designs may affect the quality and reliability of the NVIDIA
product and may result in additional or different conditions and/or requirements beyond those contained in this document. NVIDIA accepts no liability
related to any default, damage, costs, or problem which may be based on or attributable to: (i) the use of the NVIDIA product in any manner that is contrary
to this document or (ii) customer product designs.

No license, either expressed or implied, is granted under any NVIDIA patent right, copyright, or other NVIDIA intellectual property right under this document.
Information published by NVIDIA regarding third-party products or services does not constitute a license from NVIDIA to use such products or services or
a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property rights
of the third party, or a license from NVIDIA under the patents or other intellectual property rights of NVIDIA.

Reproduction of information in this document is permissible only if approved in advance by NVIDIA in writing, reproduced without alteration and in full
compliance with all applicable export laws and regulations, and accompanied by all associated conditions, limitations, and notices.

THIS DOCUMENT AND ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS
(TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR
OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND
FITNESS FOR A PARTICULAR PURPOSE. TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL NVIDIA BE LIABLE FOR ANY DAMAGES, INCLUDING
WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF
THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF NVIDIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
Notwithstanding any damages that customer might incur for any reason whatsoever, NVIDIA’s aggregate and cumulative liability towards customer for the
products described herein shall be limited in accordance with the Terms of Sale for the product.

Trademarks

NVIDIA, the NVIDIA logo, and Mellanox are trademarks and/or registered trademarks of Mellanox Technologies Ltd. and/or NVIDIA Corporation in the
U.S. and in other countries. The registered trademark Linux® is used pursuant to a sublicense from the Linux Foundation, the exclusive licensee of Linus
Torvalds, owner of the mark on a world¬wide basis. Other company and product names may be trademarks of the respective companies with which they
are associated.

Copyright

© 2023 NVIDIA Corporation & affiliates. All rights reserved.

NVIDIA Corporation | 2788 San Tomas Expressway, Santa Clara, CA 95051
http://www.nvidia.com

http://www.nvidia.com

	Table of Contents
	Introduction
	Prerequisites
	Dependencies
	API
	4.1. doca_apsh_dma_dev_set
	4.2. doca_apsh_regex_dev_set
	4.3. Capabilities Per System

	App Shield Initialization and Teardown
	5.1. doca_apsh_ctx
	5.2. doca_apsh_system
	5.3. doca_apsh_config.py Tool

	DOCA App Shield Samples
	6.1. Sample Prerequisites
	6.2. Running the Sample
	6.3. Samples
	6.3.1. Apsh Libs Get
	6.3.2. Apsh Modules Get
	6.3.3. Apsh Pslist
	6.3.4. Apsh Threads Get
	6.3.5. Apsh Vads Get
	6.3.6. Apsh Envars Get
	6.3.7. Apsh Privileges Get

