
MLNX-15-060545 _v2.2.1    |    October   2023

NVIDIA DOCA Comm Channel

Programming Guide



NVIDIA DOCA Comm Channel MLNX-15-060545 _v2.2.1   |   ii

Table of Contents

Chapter 1.  Introduction..........................................................................................................................1

Chapter 2. Prerequisites........................................................................................................................ 2

Chapter 3. API............................................................................................................................................ 3
3.1. Objects............................................................................................................................................................3

3.1.1. struct doca_comm_channel_ep_t...............................................................................................3

3.1.2. struct doca_comm_channel_addr_t.......................................................................................... 3

3.2. Querying Device Capabilities................................................................................................................ 3

3.2.1. doca_comm_channel_get_max_service_name_len().......................................................... 3

3.2.2. doca_comm_channel_get_max_message_size()...................................................................4

3.2.3. doca_comm_channel_get_max_send_queue_size()............................................................ 4

3.2.4. doca_comm_channel_get_max_recv_queue_size()..............................................................4

3.2.5. doca_comm_channel_get_service_max_num_connections()......................................... 5

3.3. Creating and Configuring Endpoint................................................................................................... 5

3.3.1. doca_comm_channel_ep_create()...............................................................................................5

3.3.2. doca_comm_channel_ep_set_*() and doca_comm_channel_ep_get_*().....................5

3.3.2.1. Mandatory Properties.............................................................................................................. 6

3.3.2.2. Optional Properties................................................................................................................... 6

3.4. Establishing Connection over Endpoint........................................................................................... 8

3.4.1. doca_comm_channel_ep_listen().................................................................................................8

3.4.2. doca_comm_channel_ep_connect()........................................................................................... 8

3.5. Event Channel..............................................................................................................................................9

3.5.1. doca_comm_channel_ep_get_event_channel().....................................................................9

3.5.2. doca_comm_channel_ep_event_handle_arm_send()....................................................... 10

3.5.3. doca_comm_channel_ep_event_handle_arm_recv()........................................................ 10

3.6. doca_comm_channel_ep_sendto()...................................................................................................10

3.7. doca_comm_channel_ep_recvfrom................................................................................................. 11

3.8. Information Regarding Each Connection...................................................................................... 12

3.8.1.  doca_comm_channel_peer_addr_set_user_data() and
doca_comm_channel_peer_addr_get_user_data().................................................................. 12

3.8.2. Querying Statistics for Connection.........................................................................................13

3.8.2.1. doca_comm_channel_peer_addr_update_info().........................................................13

3.8.2.2. doca_comm_channel_peer_addr_get_send_messages()....................................... 13

3.8.2.3. doca_comm_channel_peer_addr_get_send_bytes().................................................14

3.8.2.4. doca_comm_channel_peer_addr_get_recv_messages().........................................14

3.8.2.5. doca_comm_channel_peer_addr_get_recv_bytes()..................................................14



NVIDIA DOCA Comm Channel MLNX-15-060545 _v2.2.1   |   iii

3.8.2.6. doca_comm_channel_peer_addr_get_send_in_flight_messages().................... 15

3.9. Service State and Events.....................................................................................................................15

3.9.1. doca_comm_channel_ep_get_service_event_channel()................................................. 15

3.9.2. doca_comm_channel_ep_update_service_state_info()...................................................16

3.9.3. doca_comm_channel_ep_get_peer_addr_list()...................................................................16

3.9.4. doca_comm_channel_ep_get_pending_connections...................................................... 17

3.10. doca_comm_channel_ep_disconnect()........................................................................................18

3.11. doca_comm_channel_ep_destroy..................................................................................................18

Chapter 4. Limitations......................................................................................................................... 19
4.1. Endpoint Properties................................................................................................................................19

4.2. Multi-client................................................................................................................................................. 19

4.3. Multiple Services..................................................................................................................................... 19

4.4. Threads.........................................................................................................................................................20

Chapter 5. Usage....................................................................................................................................21
5.1. Objects......................................................................................................................................................... 21

5.1.1. Endpoint.............................................................................................................................................. 21

5.1.2. Peer_address..................................................................................................................................... 21

5.2. Endpoint Initialization............................................................................................................................ 21

5.3. Connection Flow...................................................................................................................................... 22

5.4. Data Transfer Flow..................................................................................................................................23

5.5. Event Channel and Event Handling................................................................................................. 23

5.6. Connection Errors................................................................................................................................... 24

5.7. Connection Statistics............................................................................................................................ 24

5.8. Service State and Connections.........................................................................................................25

5.9. Disconnection Flow.................................................................................................................................25

5.10. Endpoint Destruction..........................................................................................................................25

Chapter 6. DOCA Comm Channel Samples................................................................................ 26
6.1. Running the Sample...............................................................................................................................26

6.2. Samples........................................................................................................................................................27

6.2.1. CC Server............................................................................................................................................ 27

6.2.2. CC Client..............................................................................................................................................27



NVIDIA DOCA Comm Channel MLNX-15-060545 _v2.2.1   |   iv



NVIDIA DOCA Comm Channel MLNX-15-060545 _v2.2.1   |   1

Chapter 1. Introduction

The DOCA Comm Channel provides a secure, network-independent communication
channel between the host and the DPU.

The communication channel allows the host to control services on the DPU or to activate
certain offloads.

The DOCA Comm Channel is reliable, message-based, and supports connecting multiple
clients to a single service. The API allows communication between a client using any PF/
VF/SF on the host to a service on the DPU.



NVIDIA DOCA Comm Channel MLNX-15-060545 _v2.2.1   |   2

Chapter 2. Prerequisites

The CC service can only run on the DPU while the client can only run on a host connected
to the DPU.

Refer to NVIDIA DOCA Release Notes for the supported versions of firmware, OS, and
MLNX_OFED.

http://docs.nvidia.com/doca/sdk/pdf/release-notes.pdf


NVIDIA DOCA Comm Channel MLNX-15-060545 _v2.2.1   |   3

Chapter 3. API

3.1.  Objects

3.1.1.  struct doca_comm_channel_ep_t
Represents a Comm Channel endpoint either on the client or service side. The endpoint
is needed for every other Comm Channel API function.
struct doca_comm_channel_ep_t;

3.1.2.  struct doca_comm_channel_addr_t
Also referred to as peer_address, represents a connection and can be used to
identify the source of a received message. It. It is required to send a message using
doca_comm_channel_ep_sendto().

3.2.  Querying Device Capabilities
Querying the device capabilities allows users to know the derived Comm Channel
limitation (see section Limitations for more information) and to set the properties of an
endpoint accordingly.

The capabilities under this section, apart from maximal service name length, may vary
between different devices. To select the device you wish to establish a connection upon,
you may query each of the devices for its capabilities.

3.2.1.  doca_comm_channel_get_max_service_name_len()
As each connection requires a name, users must know the maximal length of the
name and may use this function to query it. This length includes the null-terminating
character, and any name longer than this length is not accepted when trying to establish
a connection with Comm Channel.
doca_error_t doca_comm_channel_get_max_service_name_len(uint32_t
 *max_service_name_len);



API

NVIDIA DOCA Comm Channel MLNX-15-060545 _v2.2.1   |   4

max_service_name_len [out]
Pointer to a parameter that holds the max service name length on success.

Returns
doca_error_t value. DOCA_SUCCESS if successful, or an error value upon failure.
Possible error values are documented in the header file.

3.2.2.  doca_comm_channel_get_max_message_size()
Each connection has an upper limit for messages size. This function returns the
maximal value that can be set for this property, for a given device. This limitation
is important when trying to set the max message size for an endpoint with
doca_comm_channel_ep_set_max_msg_size().
doca_error_t doca_comm_channel_get_max_message_size(struct doca_devinfo *devinfo,
 uint32_t *max_message_size);
devinfo [in]

Pointer to a doca_devinfo which should be queried for this capability.
max_message_size [out]

Pointer to a parameter that on success holds the maximal value that can be set for
max message size when communicating on the provided devinfo.

Returns
doca_error_t value. DOCA_SUCCESS  if successful, or an error value upon failure.
Possible error values are documented in the header file.

3.2.3.  doca_comm_channel_get_max_send_queue_size()
Returns the maximum send queue size that can be set for a given device. This value
describes the maximum possible amount of outgoing in-flight messages for a
connection. This limitation is important when trying to set the max message size for an
endpoint with doca_comm_channel_ep_set_send_queue_size().
doca_error_t doca_comm_channel_get_max_send_queue_size(struct doca_devinfo *devinfo,
 uint32_t *max_send_queue_size);
devinfo [in]

Pointer to a doca_devinfo which should be queried for this capability.
max_message_size [out]

Pointer to a parameter that on success holds the maximal value that can be set for
max message size when communicating on the provided devinfo.

Returns
doca_error_t value. DOCA_SUCCESS  if successful, or an error value upon failure.
Possible error values are documented in the header file.

3.2.4.  doca_comm_channel_get_max_recv_queue_size()
Returns the maximum receive queue size that can be set for a given device. This
value describes the maximum possible amount of incoming in-flight messages for a
connection. This limitation is important when trying to set the max message size for an
endpoint with doca_comm_channel_ep_set_send_queue_size().
doca_error_t doca_comm_channel_get_max_recv_queue_size(struct doca_devinfo *devinfo,
 uint32_t *max_recv_queue_size);



API

NVIDIA DOCA Comm Channel MLNX-15-060545 _v2.2.1   |   5

devinfo [in]
Pointer to a doca_devinfo which should be queried for this capability.

max_message_size [out]
Pointer to a parameter that on success holds the maximal value that can be set for
max message size when communicating on the provided devinfo.

Returns
doca_error_t value. DOCA_SUCCESS  if successful, or an error value upon failure.
Possible error values are documented in the header file.

3.2.5.  doca_comm_channel_get_service_max_num_connections()
Returns the maximum amount of connections a service on the DPU can maintain for
a given device. If the maximum amount returned is zero, the number of connections is
unlimited.
doca_error_t doca_comm_channel_get_service_max_num_connections(struct doca_devinfo
 *devinfo, uint32_t *max_num_connections);
devinfo [in]

Pointer to a doca_devinfo which should be queried for this capability.
max_num_connections [out]

Pointer to a parameter that on success holds the maximal value that can be set for
max message size when communicating on the provided devinfo.

Returns
doca_error_t value. DOCA_SUCCESS  if successful, or an error value upon failure.
Possible error values are documented in the header file.

3.3.  Creating and Configuring Endpoint

3.3.1.  doca_comm_channel_ep_create()
This function is used to create and initialize the endpoint used for all Comm Channel
functions.
doca_error_t doca_comm_channel_ep_create(struct doca_comm_channel_ep_t **ep);
ep [out]

Pointer to the created endpoint object.
Returns

doca_error_t value. DOCA_SUCCESS  if successful, or an error value upon failure.
Possible error values are documented in the header file.

3.3.2.  doca_comm_channel_ep_set_*() and
doca_comm_channel_ep_get_*()

Use doca_comm_channel_ep_set_*() functions to set the properties of the endpoint
and corresponding doca_comm_channel_ep_get_*() functions to retrieve the current
properties of the endpoint.



API

NVIDIA DOCA Comm Channel MLNX-15-060545 _v2.2.1   |   6

3.3.2.1.  Mandatory Properties
To use the endpoint, the following properties must be set before calling
doca_comm_channel_ep_listen() and doca_comm_channel_ep_connect().

3.3.2.1.1.  doca_comm_channel_ep_set_device()
This function sets the local device through which the communication should be
established.
doca_error_t doca_comm_channel_ep_set_device(struct doca_comm_channel_ep_t
 *local_ep, struct doca_dev *device);
local_ep [in]

Pointer to the endpoint for which the property should be set.
device [in]

The doca_dev object which should be used for communication.
Returns

doca_error_t value. DOCA_SUCCESS  if successful, or an error value upon failure.
Possible error values are documented in the header file.

3.3.2.1.2.  doca_comm_channel_ep_set_device_rep()
This function sets the device representor through which the communication should be
established on the service side.
doca_error_t doca_comm_channel_ep_set_device_rep(struct doca_comm_channel_ep_t
 *local_ep, struct doca_dev_rep *device_rep);
local_ep [in]

Pointer to the endpoint for which the property should be set.
device_rep [in]

The doca_dev_rep object which should be used for communication
Returns

doca_error_t value. DOCA_SUCCESS  if successful, or an error value upon failure.
Possible error values are documented in the header file.

3.3.2.2.  Optional Properties
The following properties have a default value and may be set as long as the EP is not yet
active.

3.3.2.2.1.  doca_comm_channel_ep_set_max_msg_size()
This function sets an upper limit to the size of the messages the application wishes to
handle in this EP while communicating with a given endpoint. The actual max_msg_size
may be increased by this function. If this property was not set by the user, a default value
is used and may be queried using doca_comm_channel_ep_get_max_msg_size() function.
doca_error_t doca_comm_channel_ep_set_max_msg_size(struct doca_comm_channel_ep_t
 *local_ep, uint16_t max_msg_size);
local_ep [in]

Pointer to a parameter that holds the max service name length on success.
max_msg_size [in]

The preferred maximal message size.



API

NVIDIA DOCA Comm Channel MLNX-15-060545 _v2.2.1   |   7

Returns
doca_error_t value:

‣ DOCA_SUCCESS if successful

‣ DOCA_ERROR_INVALID_VALUE if a null pointer to the endpoint is given or if
max_msg_size is equal to 0 or above the maximal value possible for this property

3.3.2.2.2.  doca_comm_channel_ep_set_send_queue_size()
This function sets the send queue size used when communicating with a given endpoint.
The actual send_queue_size may be increased by this function. If this property
has not been set by the user, a default value is used and may be queried using the
doca_comm_channel_ep_get_send_queue_size() function.
doca_error_t doca_comm_channel_ep_set_send_queue_size(struct doca_comm_channel_ep_t
 *local_ep, uint16_t send_queue_size);
local_ep [in]

Pointer to a parameter that holds the max service name length on success.
max_msg_size [in]

The preferred maximal message size.
Returns

doca_error_t value:

‣ DOCA_SUCCESS if successful

‣ DOCA_ERROR_INVALID_VALUE if a null pointer to the endpoint is given or if
max_msg_size is equal to 0 or above the maximal value possible for this property

‣ The rest of the error values that may be returned are documented in the header
file

3.3.2.2.3.  doca_comm_channel_ep_set_recv_queue_size()
This function sets the receive queue size used when communicating with a given
endpoint. The actual recv_queue_size may be increased by this function. If this property
has not been set by the user, a default value is used which may be queried using
doca_comm_channel_ep_get_recv_queue_size() function.
doca_error_t doca_comm_channel_ep_set_recv_queue_size(struct doca_comm_channel_ep_t
 *local_ep, uint16_t rcv_queue_size);
local_ep [in]

Pointer to a parameter that holds the max service name length on success.
max_msg_size [in]

The preferred maximal message size.
Returns

doca_error_t value:

‣ DOCA_SUCCESS if successful

‣ DOCA_ERROR_INVALID_VALUE if a null pointer to the endpoint is given or if
rcv_queue_size is equal to 0 or above the maximal value possible for this property

‣ The rest of the error values that may be returned are documented in the header
file



API

NVIDIA DOCA Comm Channel MLNX-15-060545 _v2.2.1   |   8

3.4.  Establishing Connection over
Endpoint

The Comm Channel connection is established between endpoints, one on the host and
the other on the DPU.

For a client, each connection requires its own EP. On the DPU side, all of the clients with
the same service name on a specific representor are connected to a single EP, through
which the connections are managed.

The following functions are relevant for the endpoint.

3.4.1.  doca_comm_channel_ep_listen()
Used to listen on service endpoint, this function can only be called on the
DPU. The service listens on the DOCA device representor provided using
doca_comm_channel_ep_set_device_rep().

Calling listen allows clients to connect to the service.
doca_error_t doca_comm_channel_ep_listen(struct doca_comm_channel_ep_t
 *local_ep, const char *name);
local_ep

Pointer to an endpoint to listen on.
name [in]

The name for the service to listen on. Clients must provide the same name to connect
to the service.

Returns
doca_error_t value:

‣ DOCA_SUCCESS if successful.

‣ DOCA_ERROR_BAD_STATE if mandatory properties (doca_dev and doca_dev_rep)
were not set.

‣ DOCA_ERROR_NOT_PERMITTED if called on the host and not on the DPU.

‣ The rest of the error values that may be returned are documented in the header
file.

3.4.2.  doca_comm_channel_ep_connect()
Used to create a connection between a client and a service. This function can only be
called on the host.
doca_error_t doca_comm_channel_ep_connect(struct doca_comm_channel_ep_t *local_ep,
      const char *name, struct doca_comm_channel_addr_t **peer_addr);
local_ep [in]

A pointer to an endpoint to connect from.
name [in]

The name of the service that the client connects to. Must be the same name the
service listens on.



API

NVIDIA DOCA Comm Channel MLNX-15-060545 _v2.2.1   |   9

peer_addr [out]
Contains the pointer to the new connection.

Returns
doca_error_t value:

‣ DOCA_SUCCESS if successful.

‣ DOCA_ERROR_BAD_STATE if mandatory property (doca_dev) was not set.

‣ DOCA_ERROR_NOT_PERMITTED if called on the host and not on the DPU.

‣ The rest of the error values that may be returned are documented in the header
file.

3.5.  Event Channel
Getting notifications for messages sent and received through an EP is managed by the
event channel, using the functions listed here.

3.5.1.  doca_comm_channel_ep_get_event_channel()
After a connection is established through the EP, this function extracts send/receive
handles which can be used to get an interrupt when a new event happens using epoll()
or a similar function.

‣ A send event happens when at least one in-flight message processing ends

‣ A receive event happens when a new incoming message is received

Users may decide to extract only one of the handles and send a NULL parameter for the
other.

The event channels are owned by the endpoint and they are released when
doca_comm_channel_ep_destroy() is called.
doca_error_t doca_comm_channel_ep_get_event_channel(struct doca_comm_channel_ep_t
 *local_ep,
                                                    doca_event_channel_t
 *send_event_channel, doca_event_channel_t *recv_event_channel);
local_ep [in]

Pointer to the endpoint for which a handle should be returned.
send_event_channel [out]

Pointer that holds a handle for sent messages if successful.
recv_event_channel [out]

Pointer that holds a handle for received messages if successful.
Returns

doca_error_t value:

‣ DOCA_SUCCESS if successful.

‣ DOCA_ERROR_BAD_STATE if no connection has been established (i.e.,
doca_comm_channel_ep_listen() or doca_comm_channel_ep_connect() has not
been called beforehand).



API

NVIDIA DOCA Comm Channel MLNX-15-060545 _v2.2.1   |   10

‣ The rest of the error values that may be returned are documented in the header
file.

3.5.2.  doca_comm_channel_ep_event_handle_arm_send()
After an interrupt caused by an event on the handle for sent messages, the handle
should be re-armed to enable interrupts on it:
doca_error_t doca_comm_channel_ep_event_handle_arm_send(struct
 doca_comm_channel_ep_t *local_ep);
local_ep [in]

Pointer to the endpoint from which the handle has been extracted.
Returns

doca_error_t value:

‣ DOCA_SUCCESS if successful.

‣ The rest of the error values that may be returned are documented in the header
file.

3.5.3.  doca_comm_channel_ep_event_handle_arm_recv()
After an interrupt caused by an event on the handle for received messages, the handle
should be re-armed to enable interrupts on it:
doca_error_t doca_comm_channel_ep_event_handle_arm_recv(struct
 doca_comm_channel_ep_t *local_ep);
local_ep [in]

Pointer to the endpoint from which the handle has been extracted.
Returns

doca_error_t value:

‣ DOCA_SUCCESS if successful.

‣ The rest of the error values that may be returned are documented in the header
file.

3.6.  doca_comm_channel_ep_sendto()
Used to send a message from one side to the other. This function runs in blocking or
non-blocking mode. Refer to chapter Usage for more details.
doca_error_t doca_comm_channel_ep_sendto(struct doca_comm_channel_ep_t
 *local_ep, const void *msg
                 size_t len, int flags, struct doca_comm_channel_addr_t
 *peer_addr); 
local_ep [in]

Pointer to an endpoint to send the message from.
msg [in]

Pointer to the buffer that contains the data to be sent.
len [in]

Length of data to be sent.
flags [in]

Currently, only DOCA_CC_MSG_FLAG_NONE is valid.



API

NVIDIA DOCA Comm Channel MLNX-15-060545 _v2.2.1   |   11

peer_addr [in]
Peer address to send the message to (see also struct struct
doca_comm_channel_addr_t) that has been returned by
doca_comm_channel_ep_connect() or doca_comm_channel_rp_recvfrom().

Returns
doca_error_t value:

‣ DOCA_SUCCESS if successful.

‣ DOCA_ERROR_AGAIN if the send queue is full and this function should be called
again.

‣ DOCA_ERROR_CONNECTION_RESET if the provided peer_addr experienced an error
and must be disconnected.

‣ The rest of the error values that may be returned are documented in the header
file.

3.7.  doca_comm_channel_ep_recvfrom
Used to receive a packet of data on either the service or the host. This function runs in
non-blocking mode. Refer to chapter Usage for more details.
doca_error_t doca_comm_channel_ep_recvfrom(struct doca_comm_channel_ep_t
 *local_ep, void *msg, 
                                           size_t *len, int flags, struct
 doca_comm_channel_addr_t **peer_addr);
local_ep [in]

Pointer to an endpoint to receive the message on.
msg [out]

Pointer to a buffer that message should be written to.
len [in/out]

The input is the length of the given message buffer (msg). The output is the actual
length of the received message.

flags [in]
DOCA_CC_MSG_FLAG_NONE.

peer_addr [out]
Handle to peer_addr that represents the connection the message arrived from.

Returns
doca_error_t value:

‣ DOCA_SUCCESS if successful.

‣ DOCA_ERROR_AGAIN if no message is received.

‣ DOCA_ERROR_CONNECTION_RESET if the message received is from a peer_addr that
has an error.

‣ The rest of the error values that may be returned are documented in the header
file.



API

NVIDIA DOCA Comm Channel MLNX-15-060545 _v2.2.1   |   12

3.8.  Information Regarding Each
Connection

Each connection established over the EP is represented by a doca_comm_channel_addr_t
structure, which can also be referred to as a peer_addr. This structure is returned
by either doca_comm_channel_ep_connect() when a connection is established or by
doca_comm_channel_ep_recvfrom() to identify the connection from which the message
has been received.

3.8.1.  doca_comm_channel_peer_addr_set_user_data()
and
doca_comm_channel_peer_addr_get_user_data()

Using doca_comm_channel_peer_addr_set_user_data(), users may
give each connection a context, similar to an ID, to identify it later, using
doca_comm_channel_peer_addr_get_user_data(). If a context is not set for a
peer_addr, it is given the default value "0".
doca_error_t doca_comm_channel_ep_recvfrom(struct doca_comm_channel_ep_t
 *local_ep, void *msg, 
                                           size_t *len, int flags, struct
 doca_comm_channel_addr_t **peer_addr);
peer_addr [in]

Pointer to doca_comm_channel_addr_t structure representing the connection.
user_context [in]

Context that should be set for the connection.
Returns

doca_error_t value:

‣ DOCA_SUCCESS if successful.

‣ DOCA_ERROR_INVALID_VALUE if peer_address is NULL.

doca_error_t doca_comm_channel_peer_addr_get_user_data(struct
 doca_comm_channel_addr_t *peer_addr, uint64_t *user_context);
peer_addr [in]

Pointer to doca_comm_channel_addr_t structure representing the connection.
user_context [out]

Pointer to a parameter that holds the context if successful.
Returns

doca_error_t value:

‣ DOCA_SUCCESS if successful.

‣ DOCA_ERROR_INVALID_VALUE if the parameters is NULL.



API

NVIDIA DOCA Comm Channel MLNX-15-060545 _v2.2.1   |   13

3.8.2.  Querying Statistics for Connection
Using the peer_addr, users may gather and query the following statistics:

‣ The number of messages sent

‣ The number of bytes sent

‣ The number of messages received

‣ The number of bytes received

‣ The number of outgoing messages yet to be sent

3.8.2.1.  doca_comm_channel_peer_addr_update_info()
Takes a snapshot with the current statistics of the connection. This function should be
called prior to any statistics querying function. It is also used to check the connection
status. See Connection Flow for more.
doca_error_t doca_comm_channel_peer_addr_update_info(struct doca_comm_channel_addr_t
 *peer_addr);
peer_addr [in]

Pointer to doca_comm_channel_addr_t structure representing the connection.
Returns

doca_error_t value:

‣ DOCA_SUCCESS if successful.

‣ DOCA_ERROR_CONNECTION_INPROGRESS if the connection has yet to be established

‣ DOCA_ERROR_CONNECTION_ABORTED if the connection is in an error state

‣ The rest of the error values that may be returned are documented in the header
file

3.8.2.2.  doca_comm_channel_peer_addr_get_send_messages()
This function returns the total number of messages sent to a given peer_addr as
measured when doca_comm_channel_peer_addr_update_info() has been last called.
doca_error_t doca_comm_channel_peer_addr_get_send_messages(const struct
 doca_comm_channel_addr_t *peer_addr, uint64_t *send_messages);
peer_addr [in]

Pointer to doca_comm_channel_addr_t structure representing the connection.
send_messages [out]

Pointer to a parameter that holds the number of messages sent through the
peer_addr on success.

Returns
doca_error_t value:

‣ DOCA_SUCCESS if successful.

‣ The rest of the error values that may be returned are documented in the header
file



API

NVIDIA DOCA Comm Channel MLNX-15-060545 _v2.2.1   |   14

3.8.2.3.  doca_comm_channel_peer_addr_get_send_bytes()
This function returns the total number of bytes sent to a given peer_addr as measured
when doca_comm_channel_peer_addr_update_info() has been last called.
doca_error_t doca_comm_channel_peer_addr_get_send_bytes(const struct
 doca_comm_channel_addr_t *peer_addr, uint64_t *send_bytes);
peer_addr [in]

Pointer to doca_comm_channel_addr_t structure representing the connection.
send_bytes [out]

Pointer to a parameter that holds the number of bytes sent through the peer_addr on
success.

Returns
doca_error_t value:

‣ DOCA_SUCCESS if successful.

‣ The rest of the error values that may be returned are documented in the header
file

3.8.2.4.  doca_comm_channel_peer_addr_get_recv_messages()
This function return the total number of messages received from a given peer_addr as
measured when doca_comm_channel_peer_addr_update_info() has been last called.
doca_error_t doca_comm_channel_peer_addr_get_recv_messages(const struct
 doca_comm_channel_addr_t *peer_addr, uint64_t *recv_messages);
peer_addr [in]

Pointer to doca_comm_channel_addr_t structure representing the connection.
recv_messages [out]

pointer to a parameter that holds the number of messages received from the
peer_addr on success.

Returns
doca_error_t value:

‣ DOCA_SUCCESS if successful.

‣ The rest of the error values that may be returned are documented in the header
file

3.8.2.5.  doca_comm_channel_peer_addr_get_recv_bytes()
This function will return the total number of bytes received from a given peer_addr as
measured when doca_comm_channel_peer_addr_update_info() has been last called.
doca_error_t doca_comm_channel_peer_addr_get_recv_bytes(const struct
 doca_comm_channel_addr_t *peer_addr, uint64_t *recv_bytes);
peer_addr [in]

Pointer to doca_comm_channel_addr_t structure representing the connection.
recv_messages [out]

Pointer to a parameter that holds the number of bytes sent through the peer_addr on
success.

Returns
doca_error_t value:



API

NVIDIA DOCA Comm Channel MLNX-15-060545 _v2.2.1   |   15

‣ DOCA_SUCCESS if successful.

‣ The rest of the error values that may be returned are documented in the header
file

3.8.2.6.  doca_comm_channel_peer_addr_get_send_in_flight_messages()
This function will return the total number of bytes received from a given peer_addr as
measured when doca_comm_channel_peer_addr_update_info() has been last called.
doca_error_t doca_comm_channel_peer_addr_get_send_in_flight_messages(const struct
 doca_comm_channel_addr_t *peer_addr,
               uint64_t *send_in_flight_messages);
peer_addr [in]

Pointer to doca_comm_channel_addr_t structure representing the connection.
send_in_flight_messages [out]

Pointer to a parameter that holds the number of in-flight messages to the peer_addr
on success.

Returns
doca_error_t value:

‣ DOCA_SUCCESS if successful.

‣ The rest of the error values that may be returned are documented in the header
file

3.9.  Service State and Events
The service state and events API provides information about the state of the service
including current connected clients, pending connections, and service state. All the
functions in this section are relevant and can be run on the service side only.

3.9.1.  doca_comm_channel_ep_get_service_event_channel()
After a service is created and starts listening, this function extracts a handle which can
be used to get an interrupt when a new service event happens using epoll() or a similar
function.

The currently supported events are service failure, new client connection,
and client disconnection. After an event is triggered, the application can call
doca_comm_channel_ep_update_service_state_info() and the following getter functions
to query the service state and connections.

The service event channel is armed automatically when calling
doca_comm_channel_ep_update_service_state_info().
doca_error_t doca_comm_channel_ep_get_service_event_channel(struct
 doca_comm_channel_ep_t *local_ep,
                                doca_event_channel_t *service_event_channel);
local_ep [in]

Pointer to the service endpoint that should be queried.



API

NVIDIA DOCA Comm Channel MLNX-15-060545 _v2.2.1   |   16

service_event_channel [out]

Event handle for service events.
Returns

doca_error_t value:

‣ DOCA_SUCCESS if successful.

‣ The rest of the error values that may be returned are documented in the header
file

3.9.2.  doca_comm_channel_ep_update_service_state_info()

Tip: This function should be called prior to calling service status get functions.

Takes a snapshot of the current state of the service. The return value may indicate the
service state. If the service is in error state, then it is non-recoverable and the endpoint
must be destroyed.

Note: Calling this function invalidates any array received using
doca_comm_channel_ep_get_peer_addr_list()

doca_error_t doca_comm_channel_ep_update_service_state_info(struct
 doca_comm_channel_ep_t *local_ep);
local_ep [in]

Pointer to the service endpoint that should be queried.
Returns

doca_error_t value:

‣ DOCA_SUCCESS if successful.

‣ The rest of the error values that may be returned are documented in the header
file

3.9.3.  doca_comm_channel_ep_get_peer_addr_list()
This function returns the list of connected peer_addrs as present when
doca_comm_channel_ep_update_service_state_info() was last called.

This list includes only active peer_addrs which have not been disconnected from the
client side or the service side.

The output array is only valid until
doca_comm_channel_ep_update_service_state_info() is called again.
doca_error_t doca_comm_channel_ep_get_peer_addr_list(const struct
 doca_comm_channel_ep_t *local_ep,
                                                     struct doca_comm_channel_addr_t
 ***peer_addr_array,
                                                     uint32_t *peer_addr_array_len);



API

NVIDIA DOCA Comm Channel MLNX-15-060545 _v2.2.1   |   17

local_ep [in]

Pointer to the service endpoint that should be queried.
peer_addr_array [out]

Pointer to array of peer addresses.
peer_addr_array_len [out]

The number of entries in peer_addr_array.
Returns

doca_error_t value:

‣ DOCA_SUCCESS if successful.

‣ The rest of the error values that may be returned are documented in the header
file

3.9.4.  doca_comm_channel_ep_get_pending_connections
This function returns the list of pending connections as present when
doca_comm_channel_ep_update_service_state_info() was last called. Pending
connections are connections that were initiated by the client side but not complete from
the service side.

If a pending connection exists, the application is expected to call
doca_comm_channel_ep_recvfrom() to complete the connection. See Connection Flow for
more.

The output array is only valid until
doca_comm_channel_ep_update_service_state_info() is called again.
doca_error_t doca_comm_channel_ep_get_pending_connections(const struct
 doca_comm_channel_ep_t *local_ep,
                                                          uint32_t
 *pending_connections);
local_ep [in]

Pointer to the service endpoint that should be queried.
pending_connections [out]

The number of pending connections.
Returns

doca_error_t value:

‣ DOCA_SUCCESS if successful.

‣ The rest of the error values that may be returned are documented in the header
file



API

NVIDIA DOCA Comm Channel MLNX-15-060545 _v2.2.1   |   18

3.10.  doca_comm_channel_ep_disconnect()
Disconnects an endpoint from a specific peer_address. The disconnection is one-sided
and the other side is unaware of it. New connections can be created afterwards. Refer to
Usage for more details.
doca_error_t doca_comm_channel_ep_disconnect(struct doca_comm_channel_ep_t
 *local_ep, struct doca_comm_channel_addr_t *peer_addr);
local_ep [in]

Pointer to the endpoint that should be disconnected.
peer_addr [in]

The connection from which the endpoint should be disconnected.
Returns

doca_error_t value:

‣ DOCA_SUCCESS if successful.

‣ DOCA_ERROR_NOT_CONNECTED if there is no connection between the endpoint and
the peer address

3.11.  doca_comm_channel_ep_destroy
Disconnects all connections of the endpoint, destroys the endpoint object, and frees all
related resources.
doca_error_t doca_comm_channel_ep_destroy(struct doca_comm_channel_ep_t *ep);
local_ep [in]

Endpoint to destroy.
Returns

doca_error_t value:

‣ DOCA_SUCCESS if successful.

‣ The rest of the error values that may be returned are documented in the header
file



NVIDIA DOCA Comm Channel MLNX-15-060545 _v2.2.1   |   19

Chapter 4. Limitations

4.1.  Endpoint Properties
The maximal values of all endpoint properties can be queried using the proper get
functions (see Querying Device Capabilities). The max_message_size, send_queue_size,
and recv_queue_size attributes may be increased internally. The updated property value
can be queried with the proper get functions.

See the following table and doca_comm_channel_ep_set_*() and
doca_comm_channel_ep_get_*() for more details.

Property Get Function

Message size doca_comm_channel_get_max_message_size()

Send queue size doca_comm_channel_get_max_send_queue_size()

Receive queue size doca_comm_channel_get_max_recv_queue_size()

Service name length doca_comm_channel_get_max_service_name_len()

4.2.  Multi-client
A single service on the DPU can serve multiple clients but a client can only connect to a
single service.

The maximal number of clients connected to a single service can be queried using
doca_comm_channel_get_service_max_num_connections().

4.3.  Multiple Services
Multiple endpoints can be created on the same DPU but different services listening
on the same representor must have different names. Services listening on different
representors can have the same name.



Limitations

NVIDIA DOCA Comm Channel MLNX-15-060545 _v2.2.1   |   20

4.4.  Threads
The DOCA Comm Channel is not thread-safe. Using a single endpoint over multiple
threads is possible only with the use of locks to prevent parallel usage of the same
resources. Different endpoints can be used over different threads with no restriction as
each endpoint has its own resources.



NVIDIA DOCA Comm Channel MLNX-15-060545 _v2.2.1   |   21

Chapter 5. Usage

5.1.  Objects
While working with DOCA Comm Channel, one must maintain two objects:

‣ struct doca_comm_channel_ep_t, referred to as "endpoint"

‣ struct doca_comm_channel_addr_t, referred to as "peer_address"

5.1.1.  Endpoint
The endpoint object represents the endpoint of the Comm Channel, either on the client
or service side. The endpoint is created by calling the doca_comm_channel_ep_create()
function. It is required for every other Comm Channel function.

5.1.2.  Peer_address
The peer_address structure represents a connection. It is created when a new
connection is made (i.e., client calls doca_comm_channel_ep_connect() or a service
receives a connection through doca_comm_channel_ep_recvfrom()). Refer to section
Connection Flow for more details on connections.

The peer_address structure can be used to identify the source of a received message
and is necessary to send a message using doca_comm_channel_ep_sendto().
peer_address has an identifier, user_data, which can be set by the user
using doca_comm_channel_peer_addr_user_data_set() and retrieved using
doca_comm_channel_peer_addr_user_data_get(). The default value for user_data is 0.
The user_data field can be used to identify the peer_address object.

5.2.  Endpoint Initialization
To start using the DOCA Comm Channel, the user must create an endpoint object using
the doca_comm_channel_ep_create() function. After creating the endpoint object,
the user must set the mandatory endpoint properties: doca_dev for client and service,
doca_dev_rep for service only. The user may also set the optional endpoint properties.



Usage

NVIDIA DOCA Comm Channel MLNX-15-060545 _v2.2.1   |   22

For further information about endpoint initialization, refer to Establishing Connection
over Endpoint.

5.3.  Connection Flow
The following diagram illustrates the process of establishing a connection between the
host and a service.
 

 

 1. After initializing the endpoint on the service side, one should call
doca_comm_channel_ep_listen() with a legal service name (see Limitations) to start
listening.

 2. After the service starts listening and the client endpoint is created, the client calls
doca_comm_channel_ep_connect() with the same service name used for listening.

As part of the connect function, the client starts a handshake protocol with the server,
which then waits until the service completes the handshake. If connect is called before
the service is listening or the handshake process fails, then the connect function fails.

From the connect function, the client receives a peer_addr object representing the new
connection to the service:

 1. To check whether the connection is complete or not, the client must call
doca_comm_channel_peer_addr_update_info() with the new peer_addr. Depending
on the function return code, the client would know whether the connection is
complete (DOCA_SUCCESS), rejected (DOCA_ERROR_CONNECTION_ABORTED) or still in
progress (DOCA_ERROR_CONNECTION_INPROGRESS).

 2. The service receiving new connections is done using
doca_comm_channel_ep_recvfrom(). No indication is given that a new connection is
made. The server keeps waiting to receive packets. If the handshake fails or is done
for an existing client, then the receive function fails.

For more information, see section doca_comm_channel_ep_listen().



Usage

NVIDIA DOCA Comm Channel MLNX-15-060545 _v2.2.1   |   23

5.4.  Data Transfer Flow
After a connection is established between client and service, both sides
can send and receive data using the doca_comm_channel_ep_sendto() and
doca_comm_channel_ep_recvfrom() functions, respectively.

If multiple clients are connected to the same service, then the doca_comm_channel_ep_
recvfrom() function reads the messages in the order of their arrival, regardless of their
source.

To send a message, the endpoint must obtain the target's peer_address object.
This restriction necessitates the client to start the communication (not including
the handshake), by sending the first message, for the server to obtain the client's
peer_address object and send data back.

The doca_comm_channel_ep_sendto() function adds the message to an internal
send queue where it is processed asynchronously. This means that even if the
doca_comm_channel_ep_sendto() function returns with DOCA_SUCCESS, the message
itself may fail to send (e.g., if the other side has been disconnected). If a message fails to
send, the relevant peer_address moves to error_state. See Connection Errors for more.

For more information, see doca_comm_channel_ep_sendto().

5.5.  Event Channel and Event Handling
When trying to send or receive messages, the application may face a situation where the
resources are not ready—send queue full or no new messages received. In this case, the
Comm Channel returns DOCA_ERROR_AGAIN for the call. This return value indicates that
the function must be called again later in order to complete. To know when to call the
send/receive function again, the application can use two approaches:

‣ Active polling – that is, to use a loop to call the send/receive functions immediately or
after a certain time until the DOCA_SUCCESS return code is received

‣ Using CC event channel to know when to call the send/receive function again

The CC event channel is a mechanism that enables getting an event when a new
CC event happens. It is divided to send and receive event channels which can be
retrieved using doca_comm_channel_ep_get_event_channel(). After retrieving the
event channels, the application can use poll in Linux or GetQueuedCompletionStatus
in Windows to sleep and wait for events.

When first using the event channels and after each event is received using the event
channel, it must be armed using doca_comm_channel_ep_event_handle_arm_send()
or doca_comm_channel_ep_event_handle_arm_recv() to receive more events.

For more information, see Event Channel.



Usage

NVIDIA DOCA Comm Channel MLNX-15-060545 _v2.2.1   |   24

5.6.  Connection Errors
In certain cases, for example if a remote peer disconnects and the local endpoint
tries sending a message, a peer_addr can move to error state. In such cases, no new
messages can be sent to or received from the certain peer_addr.

The Comm Channel indicates a peer_addr is in an error state by returning
DOCA_ERROR_CONNECTION_RESET on doca_comm_channel_ep_sendto() if trying to
send a message to an errored peer_addr or on doca_comm_channel_ep_recvfrom()
when receiving a message from a peer_addr marked as errored, or when calling
doca_comm_channel_peer_addr_update_info().

When a peer_addr is in an error state, it is the application's responsibility to disconnect
the said peer_addr using doca_comm_channel_ep_disconnect().

5.7.  Connection Statistics
The peer_addr object provides a statistics mechanism. To get the updated statistics, the
application should call doca_comm_channel_peer_addr_update_info() which saves a
snapshot of the current statistics.

After calling the update function, the application can query the following statistics which
return the data from that snapshot:

Statistic Function Returns

doca_comm_channel_peer_addr_get_send_messages()Number of messages sent to the specific
peer_addr

doca_comm_channel_peer_addr_get_send_bytes()Number of bytes sent to the specific
peer_addr

doca_comm_channel_peer_addr_get_recv_messages()Number of messages received from the
specific peer_addr

doca_comm_channel_peer_addr_get_recv_bytes()Number of bytes received from the specific
peer_addr

doca_comm_channel_peer_addr_get_send_in_flight_messages()Number of messages sent to the specific
peer_addr and without returning a
confirmation yet

The in-flight messages can be used to make sure all messages have been successfully
sent before disconnecting or destroying the endpoint.

For more information, see Querying Statistics for Connection.



Usage

NVIDIA DOCA Comm Channel MLNX-15-060545 _v2.2.1   |   25

5.8.  Service State and Connections
DOCA Comm Channel provides an API,
doca_comm_channel_ep_update_service_state_info(), to query for the service state
and connections which an application can call.

The service state is returned as the return value from the update function:

‣ If the return value is DOCA_SUCCESS the service state is operational

‣ If the return value is DOCA_ERROR_CONNECTION_RESET the service is down and cannot
be recovered, and the endpoint should be destroyed

After calling the update function, the application can query the following functions
which return the connection data from that snapshot:

Information Function Returns

doca_comm_channel_ep_get_peer_addr_list() Returns the list of connected peer_addrs

doca_comm_channel_ep_get_pending_connections()Number of pending connections waiting for
the service. If there are pending connections,
doca_comm_channel_ep_recvfrom() should be
called to handle them.

5.9.  Disconnection Flow
Disconnection can occur specifically by using doca_comm_channel_ep_disconnect() or
when destroying the whole endpoint.

Disconnection is one-sided, which means that the other side is unaware of the channel
being closed and experiences errors when sending data. It is up to the application to
synchronize the connection teardown.

Disconnection of a peer_addr destroys all of the resources related to it.

It is possible to perform another handshake and establish a new channel connection
after disconnection.

For more information, see doca_comm_channel_ep_disconnect().

5.10.  Endpoint Destruction
When calling doca_comm_channel_ep_destroy(), all resources related to the endpoint
are freed immediately which means that if there are any messages in the send queue
that have not been sent yet, they are aborted.

To make sure all messages have been successfully sent before disconnection, the
application can use the
doca_comm_channel_peer_addr_get_send_in_flight_messages() statistics function.
See Connection Statistics for more information.



NVIDIA DOCA Comm Channel MLNX-15-060545 _v2.2.1   |   26

Chapter 6. DOCA Comm Channel
Samples

This section provides Comm Channel sample implementation on top of the BlueField
DPU.

6.1.  Running the Sample
 1. Refer to the following documents:

‣ NVIDIA DOCA Installation Guide for Linux for details on how to install BlueField-
related software.

‣ NVIDIA DOCA Troubleshooting Guide for any issue you may encounter with the
installation, compilation, or execution of DOCA applications.

 2. To build a given sample:
cd /opt/mellanox/doca/samples/doca_comm_channel/<sample_name>
meson build
ninja -C build

Note: The binary doca_<sample_name> is created under ./build/.

 3. Sample (e.g., cc_server) usage:
Usage: doca_cc_server [DOCA Flags] [Program Flags]
DOCA Flags:
  -h, --help                    Print a help synopsis
  -v, --version                 Print program version information
  -l, --log-level               Set the log level for the program <CRITICAL=20,
 ERROR=30, WARNING=40, INFO=50, DEBUG=60>

Program Flags:   
  -p, --pci-addr                DOCA Comm Channel device PCI address
  -r, --rep-pci                 DOCA Comm Channel device representor PCI address
 (needed only on DPU)
  -t, --text                    Text to be sent to the other side of channel

Note: The flag --rep-pci is relevant only on the DPU.

 4. For additional information per sample, use the -h option:
./build/doca_<sample_name> -h

http://docs.nvidia.com/doca/sdk/pdf/installation-guide-for-linux.pdf
http://docs.nvidia.com/doca/sdk/pdf/troubleshooting.pdf


DOCA Comm Channel Samples

NVIDIA DOCA Comm Channel MLNX-15-060545 _v2.2.1   |   27

6.2.  Samples

6.2.1.  CC Server

Note: This sample should be run after CC Client.

This sample illustrate how to create a simple server on the DPU to communicate with a
client on the host.

The sample logic includes:

 1. Creating Comm Channel endpoint.
 2. Parsing PCIe address.
 3. Opening Comm Channel DOCA device based on the PCIe address.
 4. Opening Comm Channel DOCA device representor based on the PCIe address.
 5. Setting Comm Channel endpoint properties.
 6. Listening for new connections.
 7. Waiting until new message arrives.
 8. Sending the entered text message as a response.
 9. Closing connection and freeing resources.

Reference:

‣ /opt/mellanox/doca/samples/doca_comm_channel/cc_server/cc_server_sample.c

‣ /opt/mellanox/doca/samples/doca_comm_channel/cc_server/cc_server_main.c

‣ /opt/mellanox/doca/samples/doca_comm_channel/cc_server/meson.build

6.2.2.  CC Client

Note: This sample should be run after CC Server.

This sample illustrates how to create a simple client on the host to communicate with a
server on the DPU.

The sample logic includes:

 1. Creating Comm Channel endpoint.
 2. Parsing PCIe address.
 3. Opening Comm Channel DOCA device based on the PCIe address.
 4. Setting Comm Channel endpoint properties.
 5. Connecting current endpoint to server side.
 6. Sending the entered text message.



DOCA Comm Channel Samples

NVIDIA DOCA Comm Channel MLNX-15-060545 _v2.2.1   |   28

 7. Receiving server response.
 8. Closing connection and freeing resources.

Reference:

‣ /opt/mellanox/doca/samples/doca_comm_channel/cc_client/cc_client_sample.c

‣ /opt/mellanox/doca/samples/doca_comm_channel/cc_client/cc_client_main.c

‣ /opt/mellanox/doca/samples/doca_comm_channel/cc_client/meson.build



Notice

This document is provided for information purposes only and shall not be regarded as a warranty of a certain functionality, condition, or quality of a product.
NVIDIA Corporation nor any of its direct or indirect subsidiaries and affiliates (collectively: “NVIDIA”) make no representations or warranties, expressed or
implied, as to the accuracy or completeness of the information contained in this document and assume no responsibility for any errors contained herein.
NVIDIA shall have no liability for the consequences or use of such information or for any infringement of patents or other rights of third parties that may
result from its use. This document is not a commitment to develop, release, or deliver any Material (defined below), code, or functionality.

NVIDIA reserves the right to make corrections, modifications, enhancements, improvements, and any other changes to this document, at any time without
notice.

Customer should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the time of order acknowledgement, unless otherwise
agreed in an individual sales agreement signed by authorized representatives of NVIDIA and customer (“Terms of Sale”). NVIDIA hereby expressly objects
to applying any customer general terms and conditions with regards to the purchase of the NVIDIA product referenced in this document. No contractual
obligations are formed either directly or indirectly by this document.

NVIDIA products are not designed, authorized, or warranted to be suitable for use in medical, military, aircraft, space, or life support equipment, nor in
applications where failure or malfunction of the NVIDIA product can reasonably be expected to result in personal injury, death, or property or environmental
damage. NVIDIA accepts no liability for inclusion and/or use of NVIDIA products in such equipment or applications and therefore such inclusion and/or use
is at customer’s own risk.

NVIDIA makes no representation or warranty that products based on this document will be suitable for any specified use. Testing of all parameters of each
product is not necessarily performed by NVIDIA. It is customer’s sole responsibility to evaluate and determine the applicability of any information contained
in this document, ensure the product is suitable and fit for the application planned by customer, and perform the necessary testing for the application in
order to avoid a default of the application or the product. Weaknesses in customer’s product designs may affect the quality and reliability of the NVIDIA
product and may result in additional or different conditions and/or requirements beyond those contained in this document. NVIDIA accepts no liability
related to any default, damage, costs, or problem which may be based on or attributable to: (i) the use of the NVIDIA product in any manner that is contrary
to this document or (ii) customer product designs.

No license, either expressed or implied, is granted under any NVIDIA patent right, copyright, or other NVIDIA intellectual property right under this document.
Information published by NVIDIA regarding third-party products or services does not constitute a license from NVIDIA to use such products or services or
a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property rights
of the third party, or a license from NVIDIA under the patents or other intellectual property rights of NVIDIA.

Reproduction of information in this document is permissible only if approved in advance by NVIDIA in writing, reproduced without alteration and in full
compliance with all applicable export laws and regulations, and accompanied by all associated conditions, limitations, and notices.

THIS DOCUMENT AND ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS
(TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR
OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND
FITNESS FOR A PARTICULAR PURPOSE. TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL NVIDIA BE LIABLE FOR ANY DAMAGES, INCLUDING
WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF
THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF NVIDIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
Notwithstanding any damages that customer might incur for any reason whatsoever, NVIDIA’s aggregate and cumulative liability towards customer for the
products described herein shall be limited in accordance with the Terms of Sale for the product.

Trademarks

NVIDIA, the NVIDIA logo, and Mellanox are trademarks and/or registered trademarks of Mellanox Technologies Ltd. and/or NVIDIA Corporation in the
U.S. and in other countries. The registered trademark Linux® is used pursuant to a sublicense from the Linux Foundation, the exclusive licensee of Linus
Torvalds, owner of the mark on a world¬wide basis. Other company and product names may be trademarks of the respective companies with which they
are associated.

Copyright

© 2023 NVIDIA Corporation & affiliates. All rights reserved.

NVIDIA Corporation  |  2788 San Tomas Expressway, Santa Clara, CA 95051
http://www.nvidia.com

http://www.nvidia.com

	Table of Contents
	Introduction
	Prerequisites
	API
	3.1. Objects
	3.1.1. struct doca_comm_channel_ep_t
	3.1.2. struct doca_comm_channel_addr_t

	3.2. Querying Device Capabilities
	3.2.1. doca_comm_channel_get_max_service_name_len()
	3.2.2. doca_comm_channel_get_max_message_size()
	3.2.3. doca_comm_channel_get_max_send_queue_size()
	3.2.4. doca_comm_channel_get_max_recv_queue_size()
	3.2.5. doca_comm_channel_get_service_max_num_connections()

	3.3. Creating and Configuring Endpoint
	3.3.1. doca_comm_channel_ep_create()
	3.3.2. doca_comm_channel_ep_set_*() and doca_comm_channel_ep_get_*()
	3.3.2.1. Mandatory Properties
	3.3.2.1.1. doca_comm_channel_ep_set_device()
	3.3.2.1.2. doca_comm_channel_ep_set_device_rep()

	3.3.2.2. Optional Properties
	3.3.2.2.1. doca_comm_channel_ep_set_max_msg_size()
	3.3.2.2.2. doca_comm_channel_ep_set_send_queue_size()
	3.3.2.2.3. doca_comm_channel_ep_set_recv_queue_size()



	3.4. Establishing Connection over Endpoint
	3.4.1. doca_comm_channel_ep_listen()
	3.4.2. doca_comm_channel_ep_connect()

	3.5. Event Channel
	3.5.1. doca_comm_channel_ep_get_event_channel()
	3.5.2. doca_comm_channel_ep_event_handle_arm_send()
	3.5.3. doca_comm_channel_ep_event_handle_arm_recv()

	3.6. doca_comm_channel_ep_sendto()
	3.7. doca_comm_channel_ep_recvfrom
	3.8. Information Regarding Each Connection
	3.8.1. doca_comm_channel_peer_addr_set_user_data() and doca_comm_channel_peer_addr_get_user_data()
	3.8.2. Querying Statistics for Connection
	3.8.2.1. doca_comm_channel_peer_addr_update_info()
	3.8.2.2. doca_comm_channel_peer_addr_get_send_messages()
	3.8.2.3. doca_comm_channel_peer_addr_get_send_bytes()
	3.8.2.4. doca_comm_channel_peer_addr_get_recv_messages()
	3.8.2.5. doca_comm_channel_peer_addr_get_recv_bytes()
	3.8.2.6. doca_comm_channel_peer_addr_get_send_in_flight_messages()


	3.9. Service State and Events
	3.9.1. doca_comm_channel_ep_get_service_event_channel()
	3.9.2. doca_comm_channel_ep_update_service_state_info()
	3.9.3. doca_comm_channel_ep_get_peer_addr_list()
	3.9.4. doca_comm_channel_ep_get_pending_connections

	3.10. doca_comm_channel_ep_disconnect()
	3.11. doca_comm_channel_ep_destroy

	Limitations
	4.1. Endpoint Properties
	4.2. Multi-client
	4.3. Multiple Services
	4.4. Threads

	Usage
	5.1. Objects
	5.1.1. Endpoint
	5.1.2. Peer_address

	5.2. Endpoint Initialization
	5.3. Connection Flow
	5.4. Data Transfer Flow
	5.5. Event Channel and Event Handling
	5.6. Connection Errors
	5.7. Connection Statistics
	5.8. Service State and Connections
	5.9. Disconnection Flow
	5.10. Endpoint Destruction

	DOCA Comm Channel Samples
	6.1. Running the Sample
	6.2. Samples
	6.2.1. CC Server
	6.2.2. CC Client



