
MLNX-15-060542 _v2.2.1 | October 2023

NVIDIA DOCA Core

Programming Guide

NVIDIA DOCA Core MLNX-15-060542 _v2.2.1 | ii

Table of Contents

Chapter 1. Introduction..1

Chapter 2. Prerequisites.. 3

Chapter 3. Architecture... 4
3.1. General..4

3.1.1. doca_error_t... 4

3.1.2. Generic Structures/Enum...5

3.2. DOCA Device..5

3.2.1. Local Device and Representor..5

3.2.1.1. DOCA Device Prerequisites..5

3.2.1.2. Topology... 6

3.2.1.3. Local Device and Representor Matching... 7

3.2.2. Expected Flow... 7

3.3. DOCA Memory Subsystem.. 9

3.3.1. Requirements and Considerations..9

3.3.2. doca_mmap..10

3.3.2.1. Local mmap..10

3.3.2.2. mmap from Export... 11

3.3.3. Buffers..12

3.3.3.1. Buffer Considerations... 12

3.3.3.2. Headroom..13

3.3.3.3. Dataroom...13

3.3.3.4. Tailroom..13

3.3.3.5. Buffer as Source..13

3.3.3.6. Buffer as Destination.. 13

3.3.3.7. Scatter/Gather List... 13

3.3.3.8. Buffer Use Cases...13

3.3.4. Inventories.. 14

3.3.4.1. Inventory Considerations... 14

3.3.4.2. Inventory Types.. 14

3.3.5. Example Flow...15

3.4. DOCA Execution Model...16

3.4.1. Requirements and Considerations...17

3.4.2. DOCA Context.. 18

3.4.3. DOCA WorkQ...19

3.4.4. Polling Mode.. 19

NVIDIA DOCA Core MLNX-15-060542 _v2.2.1 | iii

3.4.5. Event-driven Mode..20

3.4.6. DOCA Sync Event..22

3.4.6.1. Creating DOCA Sync Event... 22

3.4.6.2. Configuring DOCA Sync Event.. 23

3.4.6.3. DOCA Sync Event Operation Modes... 24

3.4.6.4. Exporting DOCA Sync Event to Another Execution Unit.. 24

3.4.6.5. DOCA Sync Event Data Path Operations.. 25

3.4.6.6. DOCA Sync Event Tear Down...27

3.4.6.7. DOCA Sync Event Sample... 27

3.4.6.8. DOCA Sync Event Limitations and Disclaimers..29

3.4.7. DOCA Graph Execution...30

3.4.7.1. Nodes..30

3.4.7.2. Using DOCA Graph... 30

3.4.7.3. DOCA Graph Limitations.. 31

3.4.7.4. DOCA Graph Sample..31

3.4.8. Job Error Handling..32

3.5. Object Life Cycle..32

3.6. RDMA Bridge...33

3.6.1. Requirements and Considerations...33

3.6.2. DOCA Core Objects to RDMA Core Objects Mapping...33

Chapter 4. Compatibility... 35

Chapter 5. API Backward Compatibility... 36
5.1. doca_buf..36

NVIDIA DOCA Core MLNX-15-060542 _v2.2.1 | iv

NVIDIA DOCA Core MLNX-15-060542 _v2.2.1 | 1

Chapter 1. Introduction

DOCA Core objects provide a unified and holistic interface for application developers
to interact with various DOCA libraries. The DOCA Core API and objects bring a
standardized flow and building blocks for applications to build upon while hiding the
internal details of dealing with hardware and other software components. DOCA Core is
designed to give the right level of abstraction while maintaining performance.

DOCA Core has the same API (header files) for both DPU and CPU installations, but
specific API calls may return DOCA_ERROR_NOT_SUPPORTED if the API is not implemented
for that processor. However, this is not the case for Windows and Linux as DOCA Core
does have API differences between Windows and Linux installations.

DOCA Core exposes C-language API to application writers and users must include
the right header file to use according to the DOCA Core facilities needed for their
application.

DOCA Core can be divided into the following software modules:

DOCA Core Module Description

General ‣ DOCA Core enumerations and basic
structures

‣ Header files – doca_error.h, doca_types.h

Device handling ‣ Queries device information (host-side and
DPU) and device capabilities (e.g., device's
PCIe BDF address)

‣ On DPU

‣ Gets local DPU devices

‣ Gets representors list (representing
host local devices)

‣ On host

‣ Gets local devices

‣ Queries device capabilities and library
capabilities

‣ Opens and uses the selected device
representor

Introduction

NVIDIA DOCA Core MLNX-15-060542 _v2.2.1 | 2

DOCA Core Module Description
‣ Relevant entities – doca_devinfo,

doca_devinfo_rep, doca_dev,
doca_dev_rep

‣ Header files – doca_dev.h

Note: There is a symmetry between
device entities on host and its
representor (on the DPU). The
convention of adding rep to the API or
the object hints that it is representor-
specific.

Memory management ‣ Handles optimized memory pools to be
used by applications and enables sharing
resources between DOCA libraries (while
hiding hardware-related technicalities)

‣ Data buffer services (e.g., linked list of
buffers to support scatter-gather list)

‣ Maps host memory to the DPU for direct
access

‣ Relevant entities – doca_buf, doca_mmap,
doca_buf_inventory, doca_buf_array,
doca_bufpool

‣ Header files – doca_buf.h,
doca_buf_inventory.h, doca_mmap.h,
doca_buf_array.h, doca_bufpool

Progress engine and job execution ‣ Enables submitting jobs to DOCA libraries
and track job progress (supports both
polling mode and event-driven mode)

‣ Relevant entities – doca_ctx, doca_job,
doca_event, doca_event_handle_t,
doca_workq

‣ Header files – doca_ctx.h

Sync events ‣ Sync events are used to synchronize
different processors (e.g., synchronize the
DPU and host)

‣ Header files – doca_dpa_sync_event.h,
doca_sync_event.h

The following sections describe DOCA Core's architecture and sub-systems along with
some basic flows that help users get started using DOCA Core.

NVIDIA DOCA Core MLNX-15-060542 _v2.2.1 | 3

Chapter 2. Prerequisites

DOCA Core objects are supported on the DPU target and the host machine. Both must
meet the following prerequisites:

‣ DOCA version 2.0.2 or greater

‣ BlueField software 4.0.2 or greater

‣ BlueField-3 firmware version 32.37.1000 and higher

‣ BlueField-2 firmware version 24.37.1000 and higher

NVIDIA DOCA Core MLNX-15-060542 _v2.2.1 | 4

Chapter 3. Architecture

The following sections describe the architecture for the various DOCA Core software
modules. Please refer to NVIDIA DOCA Libraries API Reference Manual for DOCA header
documentation.

3.1. General
All core objects adhere to same flow that later helps in doing no allocations in the fast
path.

The flow is as follows:

 1. Create the object instance (e.g., doca_mmap_create).
 2. Configure the instance (e.g., doca_mmap_set_memory_range).
 3. Start the instance (e.g., doca_mmap_start).

After the instance is started, it adheres to zero allocations and can be used safely
in the data path. After the instance is complete, it must be stopped and destroyed
(doca_mmap_stop, doca_mmap_destroy).

There are core objects that can be reconfigured and restarted again (i.e., create →
configure → start → stop → configure → start). Please read the header file to see if
specific objects support this option.

3.1.1. doca_error_t
All DOCA APIs return the status in the form of doca_error.
typedef enum doca_error {
 DOCA_SUCCESS,
 DOCA_ERROR_UNKNOWN,
 DOCA_ERROR_NOT_PERMITTED, /**< Operation not permitted */
 DOCA_ERROR_IN_USE, /**< Resource already in use */
 DOCA_ERROR_NOT_SUPPORTED, /**< Operation not supported */
 DOCA_ERROR_AGAIN, /**< Resource temporarily unavailable, try again
 */
 DOCA_ERROR_INVALID_VALUE, /**< Invalid input */
 DOCA_ERROR_NO_MEMORY, /**< Memory allocation failure */
 DOCA_ERROR_INITIALIZATION, /**< Resource initialization failure */
 DOCA_ERROR_TIME_OUT, /**< Timer expired waiting for resource */
 DOCA_ERROR_SHUTDOWN, /**< Shut down in process or completed */
 DOCA_ERROR_CONNECTION_RESET, /**< Connection reset by peer */
 DOCA_ERROR_CONNECTION_ABORTED, /**< Connection aborted */
 DOCA_ERROR_CONNECTION_INPROGRESS, /**< Connection in progress */

http://docs.nvidia.com/doca/sdk/pdf/doca-libraries-api.pdf

Architecture

NVIDIA DOCA Core MLNX-15-060542 _v2.2.1 | 5

 DOCA_ERROR_NOT_CONNECTED, /**< Not Connected */
 DOCA_ERROR_NO_LOCK, /**< Unable to acquire required lock */
 DOCA_ERROR_NOT_FOUND, /**< Resource Not Found */
 DOCA_ERROR_IO_FAILED, /**< Input/Output Operation Failed */
 DOCA_ERROR_BAD_STATE, /**< Bad State */
 DOCA_ERROR_UNSUPPORTED_VERSION, /**< Unsupported version */
 DOCA_ERROR_OPERATING_SYSTEM, /**< Operating system call failure */
 DOCA_ERROR_DRIVER, /**< DOCA Driver call failure */
 DOCA_ERROR_UNEXPECTED, /**< An unexpected scenario was detected */
 DOCA_ERROR_ALREADY_EXIST, /**< Resource already exist */
 DOCA_ERROR_FULL, /**< No more space in resource */
 DOCA_ERROR_EMPTY, /**< No entry is available in resource */
 DOCA_ERROR_IN_PROGRESS, /**< Operation is in progress */
} doca_error_t;

See doca_error.h for more.

3.1.2. Generic Structures/Enum
The following types are common across all DOCA APIs.
union doca_data {
 void *ptr;
 uint64_t u64;
};

enum doca_access_flags {
 DOCA_ACCESS_LOCAL_READ_ONLY = 0,
 DOCA_ACCESS_LOCAL_READ_WRITE = (1 << 0),
 DOCA_ACCESS_RDMA_READ = (1 << 1),
 DOCA_ACCESS_RDMA_WRITE = (1 << 2),
 DOCA_ACCESS_RDMA_ATOMIC = (1 << 3),
 DOCA_ACCESS_DPU_READ_ONLY = (1 << 4),
 DOCA_ACCESS_DPU_READ_WRITE = (1 << 5),
};

enum doca_pci_func_type {
 DOCA_PCI_FUNC_PF = 0, /* physical function */
 DOCA_PCI_FUNC_VF, /* virtual function */
 DOCA_PCI_FUNC_SF, /* sub function */
};

For more see doca_types.h.

3.2. DOCA Device

3.2.1. Local Device and Representor

3.2.1.1. DOCA Device Prerequisites
For the representors model, BlueField must be operated in DPU mode. For details, see
DPU Modes of Operation.

http://docs.nvidia.com/doca/sdk/pdf/modes-of-operation.pdf

Architecture

NVIDIA DOCA Core MLNX-15-060542 _v2.2.1 | 6

3.2.1.2. Topology
The DOCA device represents an available processing unit backed by hardware or
software implementation. The DOCA device exposes its properties to help an application
in choosing the right device(s). DOCA Core supports two device types:

‣ Local device – this is an actual device exposed in the local system (DPU or host) and
can perform DOCA library processing jobs

‣ Representor device – this is a representation of a local device. The local device is
usually on the host (except for SFs) and the representor is always on the DPU side (a
proxy on the DPU for the host-side device).

The following figure provides an example topology:

The diagram shows a DPU (on the right side of the figure) connected to a host (on the
left side of the figure). The host topology consists of two physical functions (PF0 and
PF1). Furthermore, PF0 has two child virtual functions, VF0 and VF1. PF1 has only one
VF associated with it, VF0. Using the DOCA SDK API, the user gets these five devices as
local devices on the host.

Architecture

NVIDIA DOCA Core MLNX-15-060542 _v2.2.1 | 7

The DPU side has a representor-device per each host function in a 1-to-1 relation
(e.g., hpf0 is the representor device for the host's pf0 device and so on) as well as a
representor for each SF function such that both the SF and its representor reside in the
DPU.

If the user queries local devices on the DPU side (not representor devices), they get the
two (in this example) DPU PFs, p0 and p1. These two DPU local devices are the parent
devices for:

‣ 7 representor devices –

‣ 5 representor devices shown as arrows to/from the host (devices with the prefix
hpf*) in the diagram

‣ 2 representor devices for the SF devices, pf0sf0 and pf1sf0

‣ 2 local SF devices (not the SF representors), p0s0 and p1s0

In the diagram, the topology is split into 2 parts (see dotted line), each part is
represented by a DPU physical device, p0 and p1, each of which is responsible
for creating all other local devices (host PFs, host VFs, and DPU SFs). As such,
the DPU physical device can be referred to as the parent device of the other
devices and would have access to the representor of every other function (via
doca_devinfo_rep_list_create).

3.2.1.3. Local Device and Representor Matching
Based on the diagram in section Local Device and Representor, the mmap export APIs
can be used as follows:

Device to Select on
Host When Using
doca_mmap_export_dpu() DPU Matching Representor

Device to Select on
DPU When Using
doca_mmap_create_from_export()

pf0 – 0b:00.0 hpf0 – 0b:00.0

pf0vf0 – 0b:00.2 hpf0vf0 – 0b:00.2

pf0vf1 – 0b:00.3 hpf0vf1 – 0b:00.3

p0 – 03:00.0

pf1 – 0b:00.1 hpf1 – 0b:00.1

pf1vf0 – 0b:00.4 hpf1vf0 – 0b:00.4

p1 – 03:00.1

3.2.2. Expected Flow
To work with DOCA libraries or DOCA Core objects, the application must open and use a
representor device on the DPU. Before it can open the representor device and use it, the
application needs tools to allow it to select the appropriate representor device with the
necessary capabilities. The DOCA Core API provides a wide range of device capabilities
to help the application select the right device pair (device and its DPU representor). The
flow is as follows:

 1. List all representor devices on DPU.
 2. Select one with the required capabilities.
 3. Open this representor and use it.

Architecture

NVIDIA DOCA Core MLNX-15-060542 _v2.2.1 | 8

As mentioned previously, the DOCA Core API can identify devices and their representors
that have a unique property (e.g., the BDF address, the same BDF for the device and its
DPU representor).

 1. The application "knows" which device it wants to use (e.g., by its PCIe BDF address).
On the host, it can be done using DOCA Core API or OS services.

 2. On the DPU side, the application gets a list of device representors for a specific DPU
local device.

 3. Select a specific doca_devinfo_rep to work with according to one of its properties.
This example looks for a specific PCIe address.

 4. Once the doca_devinfo_rep that suites the user's needs is found, open
doca_dev_rep.

 5. After the user opens the right device representor, they can close the doca_devinfo
list and continue working with doca_dev_rep. The application eventually must close
doca_dev too.

Note: Regarding representor device property caching, the function
doca_devinfo_rep_list_create provides a snapshot of the DOCA representor device
properties when it is called. If any representor's properties are changed dynamically
(e.g., BDF address changes after bus reset), the device properties that the function
returns would not reflect this change. One should create the list again to get the updated
properties of the representors.

Architecture

NVIDIA DOCA Core MLNX-15-060542 _v2.2.1 | 9

3.3. DOCA Memory Subsystem
DOCA memory subsystem is designed to optimize performance while keeping a minimal
memory footprint (to facilitate scalability) as main design goal.

DOCA memory is has the following main components:

‣ doca_buf – this is the data buffer descriptor.That is, it is not the actual data buffer,
rather it is a descriptor that holds metadata on the "pointed" data buffer.

‣ doca_mmap – this is the data buffers pool which doca_buf points at. The application
provides the memory as a single memory region as well as permissions for certain
devices to access it.

As the doca_mmap serves as the memory pool for data buffers, there is also an entity
called doca_buf_inventorywhich serves as a pool of doca_buf with same characteristics
(see more under #unique_15). As all DOCA entities, memory subsystem objects are
opaque and can be instantiated by DOCA SDK only.

The following diagram shows the various modules within the DOCA memory subsystem:

In the diagram, you may see two doca_buf_inventorys. Each doca_buf points to a
portion of the memory buffer which is part of a doca_mmap. The mmap is populated with
a 1 continuous memory buffer memrange and is mapped to 2 devices, dev1 and dev2.

3.3.1. Requirements and Considerations
‣ The DOCA memory subsystem mandates the usage of pools as opposed to dynamic

allocation

Architecture

NVIDIA DOCA Core MLNX-15-060542 _v2.2.1 | 10

‣ Pool for doca_buf→ doca_buf_inventory

‣ Pool for data memory → doca_mmap

‣ The memory buffer in the mmap can be mapped to one device or more

‣ Devices in the mmap are restricted by access permissions defining how they can
access the memory buffer

‣ doca_buf points to a specific memory buffer (or part of it) and holds the metadata
for that buffer

‣ The internals of mapping and working with the device (e.g., memory registrations) is
hidden from the application

‣ As best practice, the application should start the doca_mmap in the initialization phase
as the start operation is time consuming. doca_mmap should not be started as part of
the data path unless necessary.

‣ The host-mapped memory buffer can be accessed by DPU

3.3.2. doca_mmap
doca_mmap is more than just a data buffer as it hides a lot of details (e.g., RDMA
technicalities, device handling, etc.) from the application developer while giving the
right level of abstraction to the software using it. doca_mmapis the best way to share
memory between the host and the DPU so the DPU can have direct access to the host-
side memory.

DOCA SDK supports several types of mmap that help with different use cases: local
mmap and mmap from export.

3.3.2.1. Local mmap
This is the basic type of mmap which maps local buffers to the local device(s).

 1. The application creates the doca_mmap.
 2. The application sets the memory range of the mmap using doca_mmap_set_memrange.

The memory range is memory that the application allocates and manages (usually
holding the pool of data sent to the device's processing units).

 3. The application adds devices, granting the devices access to the memory region.
 4. The application can specify the access permission for the devices to that memory

range using doca_mmap_set_permissions.

‣ If the mmap is used only locally, then DOCA_ACCESS_LOCAL_* must be specified

‣ If the mmap is shared with the DPU (see step 6), then DOCA_ACCESS_DPU_* must
be specified

‣ If the mmap is shared with a remote RDMA target, then DOCA_ACCESS_RDMA_*
must be specified

 5. The application starts the mmap.

Note: From this point no more changes can be made to the mmap.

Architecture

NVIDIA DOCA Core MLNX-15-060542 _v2.2.1 | 11

 6. To share the mmap with the DPU or the RDMA remote target, call
doca_mmap_export_dpu or doca_mmap_export_rdma respectively. If appropriate access
has not been provided, the export fails.

 7. The generated blob from previous step can be shared out of band using a socket.
If sharing with a DPU, it is recommended to use the DOCA Comm Channel. See the
DMA Copy application for the exact flow.

3.3.2.2. mmap from Export
This mmap is used to access the host memory (from the DPU) or the remote RDMA
target's memory.

 1. The application receives a blob from the other side. The blob contains data returned
from step 6 in the former bullet.

 2. The application calls doca_mmap_create_from_export and receives a new mmap that
represents memory defined by the other side.

Now the application can create doca_buf to point to this imported mmap and have direct
access to the other machine's memory.

Note: The DPU can access memory exported to the DPU if the exporter is a host on the
same machine. Or it can access memory exported through RDMA which can be on the
same machine, a remote host, or on a remote DPU.

Note: The host can only access memory exported through RDMA. This can be memory on
a remote host, remote DPU, or DPU on same machine.

http://docs.nvidia.com/doca/sdk/pdf/dma-copy.pdf

Architecture

NVIDIA DOCA Core MLNX-15-060542 _v2.2.1 | 12

3.3.3. Buffers
The DOCA buffer object is used to reference memory that is accessible by the DPU
hardware. The buffer can be utilized across different DPU accelerators. The buffer may
reference CPU, GPU, host, or even RDMA memory. However, this is abstracted so once a
buffer is created, it can be handled in a similar way regardless of how it was created.

This section covers usage of the DOCA buffer after it is allocated.

The DOCA buffer has an address and length describing a memory region. Each buffer
can also point to data within the region using the data address and data length. This
distinguishes 3 sections of the buffer: The headroom, the dataroom, and the tailroom.

‣ Headroom – memory region starting from the buffer's address up to the buffer's
data address

‣ Dataroom – memory region starting from the buffer's data address with a length
indicated by the buffer's data length

‣ Tailroom – memory region starting from the end of the dataroom to the end of the
buffer

‣ Buffer length – the total length of the headroom, the dataroom, and the tailroom

3.3.3.1. Buffer Considerations
‣ There are multiple ways to create the buffer, but once created it behaves the same

way (see Inventories)

‣ The buffer may reference memory that is not accessible by the CPU (e.g., RDMA
memory)

‣ The buffer is a thread-unsafe object

‣ The buffer can be used to represent non-continuous memory regions (scatter/gather
list)

Architecture

NVIDIA DOCA Core MLNX-15-060542 _v2.2.1 | 13

‣ The buffer does not own nor manage the data it references. Freeing a buffer does not
affect the underlying memory.

3.3.3.2. Headroom
The headroom is considered user space. For example, this can be used by the user to
hold relevant information regarding the buffer or data coupled with the data in the
buffer's dataroom.

This section is ignored and remains untouched by DOCA libraries in all operations.

3.3.3.3. Dataroom
The dataroom is the content of the buffer, holding either data on which the user
may want to perform different operations using DOCA libraries or the result of such
operations.

3.3.3.4. Tailroom
The tailroom is considered as free writing space in the buffer by DOCA libraries (i.e., a
memory region that may be written over in different operations where the buffer is used
as output).

3.3.3.5. Buffer as Source
When using doca_buf as a source buffer, the source data is considered as the data
section only (the dataroom).

3.3.3.6. Buffer as Destination
When using doca_buf as a destination buffer, data is written to the tailroom (i.e.,
appended after existing data, if any).

When DOCA libraries append data to the buffer, the data length is increased accordingly.

3.3.3.7. Scatter/Gather List
To execute operations on non-continues memory regions, one may chain buffers to one
another. In this case, DOCA libraries treat the memory regions of all the chained buffer
as one continuous memory region (if this option is supported).

‣ When using the buffer list as source, the data of each buffer (in the dataroom) is
gathered and used as continuous data for the given operation.

‣ When using the buffer list as destination, data is scattered in the tailroom of the
buffers in the list until it is all written (some buffers may not be written to).

3.3.3.8. Buffer Use Cases
The DOCA buffer is widely used by the DOCA acceleration libraries (e.g., DMA, compress,
SHA). In these instances, the buffer can be provided as a source or as a destination.

Architecture

NVIDIA DOCA Core MLNX-15-060542 _v2.2.1 | 14

Buffer use case considerations:

‣ If the application wishes to use a linked list buffer and concatenate several
doca_bufs to a scatter/gather list, the application is expected to ensure the library
indeed supports a linked list buffer. For example, to check linked-list support for
DMA, the application may call doca_dma_get_max_list_buf_num_elem.

‣ Operations made on the buffer's data are not atomic unless stated otherwise

‣ Once a buffer has been passed to the library as part of the job, ownership of the
buffer moves to the library until that job is complete

Note: When using doca_buf as an input to some processing library (e.g., doca_dma),
doca_buf must remain valid and unmodified until processing is complete.

‣ Writing to an in-flight buffer may result in anomalous behavior. Similarly, there are no
guarantees for data validity when reading from an in-flight buffer.

3.3.4. Inventories
The inventory is the object responsible for allocating DOCA buffers. The most basic
inventory allows allocations to be done without having to allocate any system memory.
Other inventories involve enforcing that buffer addresses do not overlap.

3.3.4.1. Inventory Considerations
‣ All inventories adhere to zero allocation after start.

‣ Allocation of a DOCA buffer requires a data source and an inventory.

‣ The data source defines where the data resides, what can access it, and with what
permissions.

‣ The data source must be created by the application. For creation of mmaps see
(doca_mmap).

‣ The inventory describes the allocation pattern of the buffers, such as random access
or pool, variable-size or fixed-size buffers, continuous or non-continuous memory.

‣ Some inventories require providing the data source (doca_mmap) when allocating the
buffers, others require it on creation of the inventory.

‣ All inventory types are thread-unsafe.

3.3.4.2. Inventory Types
Inventory Type Characteristics When to Use Notes

doca_buf_inventory Multiple mmaps,
flexible address,
flexible buffer size.

When multiple sizes or
mmaps are used.

Most common use
case.

doca_buf_array Single mmap, fixed
buffer size. User
receives an array of

Use for creating DOCA
buffers on GPU.

doca_buf_arr is
configured on the CPU
and created on the
GPU.

Architecture

NVIDIA DOCA Core MLNX-15-060542 _v2.2.1 | 15

Inventory Type Characteristics When to Use Notes
pointers to DOCA
buffers.

doca_bufpool Single mmap, fixed
buffer size, address
not controlled by the
user.

Use as a pool of
buffers of the same
characteristics when
buffer address is not
important.

Slightly faster than
doca_buf_inventory.

3.3.5. Example Flow
The following is a simplified example of the steps expected for exporting the host mmap
to the DPU to be used by DOCA for direct access to the host memory (e.g., for DMA):

 1. Create mmap on the host (see section Local Device and Representor Matching for
information on how to choose the doca_dev to add to mmap if exporting to DPU).
This example adds a single doca_dev to the mmap and exports it so the DPU/RDMA
endpoint can use it.

 2. Import to the DPU/RDMA endpoint (e.g., use the mmap descriptor output parameter

as input to doca_mmap_create_from_export).

Architecture

NVIDIA DOCA Core MLNX-15-060542 _v2.2.1 | 16

3.4. DOCA Execution Model
In DOCA, the workload involves transforming source data to destination data. The basic
transformation is a DMA operation on the data which simply copies data from one
memory location to another. Other operations involve calculating the SHA value of the
source data and writing it to the destination.

The workload can be broken into 3 steps:

 1. Read source data (doca_buf see memory subsystem).
 2. Apply an operation on the read data (handled by a dedicated hardware accelerator).
 3. Write the result of the operation to the destination (doca_buf see memory

subsystem).

Each such operation is referred to as a job (doca_job).

Jobs describe operations that an application would like to submit to DOCA (hardware or
DPU). To do so, the application requires a means of communicating with the hardware/
DPU. This is where the doca_workq comes into play. The WorkQ is a per-thread object
used to queue jobs to offload to DOCA and eventually receive their completion status.

doca_workq introduces three main operations:

Architecture

NVIDIA DOCA Core MLNX-15-060542 _v2.2.1 | 17

 1. Submission of jobs.
 2. Checking progress/status of submitted jobs.
 3. Querying job completion status.

A workload can be split into many different jobs that can be executed on different
threads; each thread represented by a different WorkQ. Each job must be associated to
some context, where the context defines the type of job to be done.

A context can be obtained from some libraries within the DOCA SDK. For example,
to submit DMA jobs, a DMA context can be acquired from doca_dma.h, whereas SHA
context can be obtained using doca_sha.h. Each such context may allow submission of
several job types.

A job is considered asynchronous in that once an application submits a job, the DOCA
execution engine (hardware or DPU) would start processing it, and the application can
continue to do some other processing until the hardware finishes. To keep track of which
job has finished, there are two modes of operation: polling mode and event-driven mode.

3.4.1. Requirements and Considerations
‣ The job submission/execution flow/API is optimized for performance (latency)

‣ DOCA does not manage internal (operating system) threads. Rather, progress is
managed by application resources (calling DOCA API in polling mode or waiting on
DOCA event in event-driven mode).

‣ The basic object for executing the task is a doca_job. Each job is mapped to a
specific DOCA library context.

‣ doca_workq represents a logical thread of execution for the application and jobs
submitted to WorkQ

Note: WorkQ is not thread safe and it is expected that each WorkQ is managed by a
single application thread (to submit a job and manage the progress engine).

‣ Execution-related elements (e.g., doca_workq, doca_ctx) are opaque and the
application performs minimal initialization/configuration before using these elements

‣ A job submitted to WorkQ can fail (even after the submission succeeds). In some
cases, it is possible to recover from the error. In other cases, the only option is to
reinitialize the relevant objects.

‣ WorkQ does not guarantee order (i.e., jobs submitted in certain order might finish
out-of-order). If the application requires order, it must impose it (e.g., submit a
dependent job once the previous job is done).

‣ A WorkQ can either work in polling mode or event-driven mode, but not in both at
same time

‣ Not all DOCA contexts support event-driven mode (i.e., can be added to a WorkQ
that supports event-driven mode). The following API can query whether a context
supports event-driven mode or not:
doca_ctx_get_event_driven_supported(struct doca_ctx*, uint8)

Architecture

NVIDIA DOCA Core MLNX-15-060542 _v2.2.1 | 18

3.4.2. DOCA Context
doca_ctx represents an instance of a specific DOCA library (e.g., DMA, SHA). Before
submitting jobs to the WorkQ for execution, the job must be associated to a specific
context that executes the job. The application is expected to associate (i.e., add) WorkQ
with that context. Adding a WorkQ to a context allows submitting a job to the WorkQ
using that context. Context represents a set of configurations including the job type
and the device that runs it such that each job submitted to the WorkQ is associated
with a context that has already been added. The following diagram shows the high-level
(domain model) relations between various DOCA Core entities.

 1. doca_job is associated to a relevant doca_ctx that executes the job (with the help of
the relevant doca_dev).

 2. doca_job, after it is initialized, is submitted to doca_workq for execution.
 3. doca_ctxs are added to the doca_workq. once a doca_job is queued to doca_workq, it

is submitted to the doca_ctx that is associated with that job type in this WorkQ.

The following diagram describes the initialization sequence of a context:

Architecture

NVIDIA DOCA Core MLNX-15-060542 _v2.2.1 | 19

After the context is started, it can be used to enable the submission of jobs to a WorkQ
based on the types of jobs that the context supports. See DOCA WorkQ for more
information.

Context is a thread-safe object. Some contexts can be used across multiple WorkQs
while others can only be added only to a single WorkQ. Please refer to documentation of
the specific context for specific information per context (e.g., doca_dma).

3.4.3. DOCA WorkQ
doca_workq is a logical representation of DOCA thread of execution (non-thread-safe).
WorkQ is used to submit jobs to the relevant context/library (hardware offload most of
the time) and query the job's completion status. To start submitting jobs, however, the
WorkQ must be configured to accept that type of job. Each WorkQ can be configured to
accept any number of job types depending on how it initialized.

The following diagram describes the initialization flow of the WorkQ:

After the WorkQ has been created and added to a context, it can start accepting jobs
that the context defines. Refer to the context documentation to find details such as
whether the context supports adding multiple doca_workqs to the same context and
what jobs can be submitted using the context.

Please note that the WorkQ can be added to multiple contexts. Such contexts can be
of the same type or of different types. This allows submitting different job types to the
same WorkQ and waiting for any of them to finish from the same place/thread.

3.4.4. Polling Mode
In this mode, the application submits a job and then does busy-wait to find out when the
job has completed. Polling mode is enabled by default.

The following diagram demonstrates this sequence:

Architecture

NVIDIA DOCA Core MLNX-15-060542 _v2.2.1 | 20

 1. The application submits all jobs (one or more) and tracks the number of completed
jobs to know if all jobs are done.

 2. The application waits for a job to finish.

 a). If doca_workq_progress_retrieve() returns DOCA_ERROR_AGAIN, it means that
jobs are still running (i.e. no result).

 b). Once a job is done, DOCA_SUCCESS is returned from
doca_workq_progress_retrieve().

 c). If another status is returned, that means an error has occurred (see section Job
Error Handling).

 3. Once a job has finished, the counter for tracking the number of finished jobs is
updated.

Note: In this mode the application is always using the CPU even when it is doing nothing
(during busy-wait).

3.4.5. Event-driven Mode
In this mode, the application submits a job and then waits for a signal to be received
before querying the status.

The following diagram shows this sequence:

Architecture

NVIDIA DOCA Core MLNX-15-060542 _v2.2.1 | 21

 1. The application enables event-driven mode of the WorkQ. If this step fails
(DOCA_ERROR_NOT_SUPPORTED), it means that one or more of the contexts associated
with the WorkQ (via doca_ctx_workq_add) do not support this mode. To find out if
a context supports this event-driven mode, refer to the context documentation.
Alternatively, the API doca_ctx_get_event_driven_supported() can be called during
runtime.

 2. The application gets an event handle from the doca_workq representing a Linux file
descriptor which is used to signal the application that some work has finished.

 3. The application then arms the WorkQ.

Note: This must be done every time an application is interested in receiving a signal
from the WorkQ.

 4. The application submits a job to the WorkQ.
 5. The application waits (e.g., Linux epoll/select) for a signal to be received on the workq-

fd.
 6. The application clears the received events, notifying the WorkQ that a signal has

been received and allowing it to do some event handling.
 7. The application attempts to retrieve a result from the WorkQ.

Note: There is no guarantee that the call to doca_workq_progress_retrieve would
return a job completion event, but the WorkQ can continue the job.

 8. Increment the number of finished jobs if successful or handle error.

Architecture

NVIDIA DOCA Core MLNX-15-060542 _v2.2.1 | 22

 9. Arm the WorkQ to receive the next signal.
 10.Repeat steps 5-9 until all jobs are finished.

3.4.6. DOCA Sync Event

Important: DOCA Sync Event does not currently support DPA or GPU related features (see
DOCA Sync Event Limitations and Disclaimers for more limitations).

DOCA Sync Event is a software synchronization mechanism for parallel execution across
the CPU and DPU. The sync event holds a 64-bit counter which can be updated, read, and
waited upon from any of these units to achieve synchronization between executions on
them.

DOCA Sync Event defines a subscriber and publisher:

‣ Publisher – the entity which updates (sets or increments) the event value

‣ Subscriber – the entity which gets and waits upon the sync event

Each DOCA Sync Event is configured with a single publisher location and a single
subscriber location which can be the CPU or DPU.

The sync event control path happens on the CPU (either host CPU or DPU CPU) through
the DOCA Sync Event CPU handle. It is possible to retrieve different execution-unit-
specific handles (DPU/DPA/GPU handles) by exporting the sync event instance through
the CPU handle. Each sync event handle refers to the DOCA Sync Event instance from
which it is retrieved. By using the execution-unit-specific handle, the associated sync
event instance can be operated from that execution unit.

In a basic scenario, synchronization is achieved by updating the sync event from one
execution and waiting upon the sync event from another execution unit.

3.4.6.1. Creating DOCA Sync Event

Important: DOCA Sync Event does not currently support DPA or GPU related features (see
DOCA Sync Event Limitations and Disclaimers for more limitations).

DOCA Sync Event exposes different types of handles per execution unit:

‣ CPU (host/DPU) handle type, struct doca_sync_event

‣ DPU handle type, struct doca_sync_event

‣ DPA handle type, doca_dpa_dev_sync_event_t

‣ GPU handle type, doca_gpu_dev_sync_event_t

Each one of the handle types above has its own dedicated API for creation.

Any DOCA Sync Event creation starts with creating CPU handle by calling
doca_sync_event_create API.

DPU, DPA, and GPU handle creation is part of the DOCA Sync Event export flow, as
illustrated in the following diagram:

Architecture

NVIDIA DOCA Core MLNX-15-060542 _v2.2.1 | 23

3.4.6.2. Configuring DOCA Sync Event

Important: DOCA Sync Event does not currently support GPU-related features (see DOCA
Sync Event Limitations and Disclaimers for more limitations).

Once the DOCA Sync Event (CPU handle) is created, it must be configured by providing
the runtime hints on the publisher and subscriber locations.

Both the subscriber and publisher locations must be configured using the following APIs:

‣ doca_sync_event_publisher_add_location_<cpu|dpa|gpu>

‣ doca_sync_event_subscriber_add_location_<cpu|dpa|gpu>

Architecture

NVIDIA DOCA Core MLNX-15-060542 _v2.2.1 | 24

Another optional configuration, allowed for CPU-DPU sync events only is to provide an
8-byte host buffer to be used as the backing memory of the sync event. If set, it is the
user responsibility to handle the memory (i.e., preserve the memory allocated during all
DOCA Sync Event lifecycle and free it after DOCA Sync Event destruction).

3.4.6.3. DOCA Sync Event Operation Modes
After creating a CPU handle and configuring it, the next step is to start the sync event.

DOCA Sync Event exposes two different APIs for starting it depending on the desired
operation mode, synchronous or asynchronous.

Note: Once started, sync event operation mode cannot be changed.

3.4.6.3.1. Synchronous Mode
Start the sync event to operate in synchronous mode by calling doca_sync_event_start.

In synchronous operation mode, each data path operation (get, update, wait) blocks the
calling thread from continuing until the operation is done.

Note: An operation is considered done if the requested change fails and the exact error
can be reported or if the requested change has been taken effect.

3.4.6.3.2. Asynchronous Mode
To start the sync event to operate in asynchronous mode, convert the sync event
instance to doca_ctx by calling doca_sync_event_as_ctx. Then use DOCA CTX API to
start the sync event and DOCA WorkQ API to submit operation jobs on the sync event
(see DOCA WorkQ for more details).

3.4.6.4. Exporting DOCA Sync Event to Another
Execution Unit

Important: DOCA Sync Event does not currently support DPA or GPU related features (see
DOCA Sync Event Limitations and Disclaimers for more limitations).

To use a sync event from an execution unit other than CPU, it should be exported to get
a handle for the specific execution unit:

‣ DPA – doca_sync_event_export_to_dpa returns DOCA Sync Event DPA handle
(doca_dpa_dev_sync_event_t) which later can be passed to the DPA Sync Event data
path APIs from the DPA kernel.

‣ GPU – doca_sync_event_export_to_gpu returns DOCA Sync Event GPU handle
(doca_gpu_dev_sync_event_t) which later can be passed to the GPU Sync Event data
path APIs for the CUDA kernel.

Architecture

NVIDIA DOCA Core MLNX-15-060542 _v2.2.1 | 25

‣ DPU – doca_sync_event_export_to_dpu returns opaque which later can be
used from the DPU CPU to instantiate a DOCA Sync Event DPU handle (struct
doca_sync_event) using the doca_sync_event_create_from_export function.

Note: Users must verify the DPU sync event creation is supported from the DPU by using
doca_sync_event_get_create_from_export_supported.

Note: Once created from an export, the sync event DPU handle struct doca_sync_event
cannot be configured but must be started before it is used.

Note: Prior to calling any export function, users must first verify
it is supported by calling the corresponding export capability
getter: doca_sync_event_get_export_to_dpa_supported,
doca_sync_event_get_export_to_gpu_supported, or
doca_sync_event_get_export_to_dpu_supported.

3.4.6.5. DOCA Sync Event Data Path Operations
The DOCA Sync Event synchronization mechanism is achieved by using exposed data
path operations. The API exposes a function for "writing" to the sync event and for
"reading" the sync event.

The synchronous API is a set of functions which can be called directly by the user,
while the asynchronous API is exposed by defining a corresponding doca_job type
for each synchronous function to be submitted on a DOCA WorkQ in addition to a
doca_sync_event_result type that can be retrieved from the DOCA WorkQ (see DOCA
WorkQ and DOCA Context for more additional information).

Note: Prior to asynchronous job submission, users must check if the job is supported
using doca_error_t doca_sync_event_job_get_supported.

The following subsections describe the DOCA Sync Event data path operation with
respect to these two operation modes.

3.4.6.5.1. Publishing on DOCA Sync Event

3.4.6.5.1.1. Setting DOCA Sync Event Value

Users can set DOCA Sync Event to a 64-bit value:

‣ Synchronously by calling doca_sync_event_update_set

‣ Asynchronously by submitting doca_sync_event_job_update_set job

3.4.6.5.1.2. Adding to DOCA Sync Event Value

Users can atomically increment the value of a DOCA Sync Event:

‣ Synchronously by calling doca_sync_event_update_add

‣ Asynchronously by submitting doca_sync_event_job_update_add job

Architecture

NVIDIA DOCA Core MLNX-15-060542 _v2.2.1 | 26

3.4.6.5.2. Subscribing on DOCA Sync Event

3.4.6.5.2.1. Getting DOCA Sync Event Value

Users can get the value of a DOCA Sync Event:

‣ Synchronously by calling doca_sync_event_get

‣ Asynchronously by submitting doca_sync_event_job_get job

3.4.6.5.2.2. Waiting on DOCA Sync Event

Waiting for an event is the main operation for achieving synchronization between
different execution units.

Users can wait until a sync event reaches some specified value in a variety of ways.

Synchronously

‣ doca_sync_event_wait_gt waits for the value of a DOCA Sync Event to be greater
than a specified value in a "polling busy wait" manner (100% processor utilization).
This API enables users to wait for a sync event in real time.

‣ doca_sync_event_wait_gt_yield waits for the value of a DOCA Sync Event to be
greater than a specified value in a "periodically busy wait" manner. After each polling
iteration, the calling thread relinquishes the CPU so a new thread gets to run. This
API allows a tradeoff between real-time polling to CPU starvation.

Note: This wait method is supported only from the CPU.

Asynchronously

DOCA Sync Event exposes an asynchronous wait method by defining a
doca_sync_event_job_wait job. Submitting doca_job on a doca_workq is an
asynchronous non-blocking API.

WARNING: Submitting a doca_sync_event_job_wait job is limited to a Sync Event with a
value in the range [0, 254] and is limited to a wait threshold in the range [0, 254]. Other
scenarios result in anomalous behavior.

Users can wait for wait job completion in the following methods:

‣ Blocking – get a doca_workq event handle to blocking wait on

‣ Polling – poll the wait job status by calling doca_workq_progress_retrieve

Refer to DOCA WorkQ and DOCA Context for more information.

Architecture

NVIDIA DOCA Core MLNX-15-060542 _v2.2.1 | 27

3.4.6.6. DOCA Sync Event Tear Down
Multiple sync event handles (for different execution units) associated with the same
DOCA Sync Event instance can live simultaneously, though the teardown flow is
performed only from the CPU on the CPU handle.

Note: Users must validate active handles associated with the CPU handle during the
teardown flow because DOCA Sync Event does not do that.

3.4.6.6.1. Stopping DOCA Sync Event
To stop a DOCA Sync Event:

‣ Synchronous – call doca_sync_event_stop on the CPU handle

‣ Asynchronous – stop the DOCA CTX associated with the DOCA Sync Event instance

Note: Stopping a DOCA Sync Event must be followed by destruction. Refer to Destroying
DOCA Sync Event for details.

3.4.6.6.2. Destroying DOCA Sync Event
Once stopped, a DOCA Sync Event instance can be destroyed by calling
doca_sync_event_destroy on the CPU handle.

Upon destruction, all the internal resources are released, allocated memory is freed,
associated doca_ctx (if it exists) is destroyed and any associated exported handles
(other than CPU handles) and their resources are also destroyed.

3.4.6.7. DOCA Sync Event Sample
This section provides DOCA Sync Event sample implementation on top of the BlueField
DPU.

The sample demonstrates how to share a sync event between the host and the DPU
while simultaneously interacting with the event from both the host and DPU sides using
different handles.

3.4.6.7.1. Running DOCA Sync Event Sample
 1. Refer to the following documents:

‣ NVIDIA DOCA Installation Guide for Linux for details on how to install BlueField-
related software.

‣ NVIDIA DOCA Troubleshooting Guide for any issue you may encounter with the
installation, compilation, or execution of DOCA samples.

 2. To build a given sample:
cd /opt/mellanox/doca/samples/doca_common/sync_event_<host|dpu>
meson build

http://docs.nvidia.com/doca/sdk/pdf/installation-guide-for-linux.pdf
http://docs.nvidia.com/doca/sdk/pdf/troubleshooting.pdf

Architecture

NVIDIA DOCA Core MLNX-15-060542 _v2.2.1 | 28

ninja -C build

Note: The binary doca_sync_event_<host|dpu> is created under ./build/.

 3. Sample (e.g., sync_event_dpu) usage:
Usage: doca_sync_event_dpu [DOCA Flags] [Program Flags]

DOCA Flags:
 -h, --help Print a help synopsis
 -v, --version Print program version information
 -l, --log-level Set the log level for the program
 <CRITICAL=20, ERROR=30, WARNING=40, INFO=50, DEBUG=60>

Program Flags:
 -d, --dev-pci-addr Device PCI address
 -r, --rep-pci-addr DPU representor PCI address
 --async Start DOCA Sync Event in asynchronous mode
 (synchronous mode by default)
 --qdepth DOCA WorkQ depth (for asynchronous mode)
 --atomic Update DOCA Sync Event using Add operation
 (Set operation by default)

Note: The flag --rep-pci-addr is relevant only for the DPU.

For additional information per sample, use the -h option:
./build/doca_sync_event_<host|dpu> -h

3.4.6.7.2. Samples

3.4.6.7.2.1. Sync Event DPU

Note: This sample should be run on the DPU before Sync Event Host.

This sample demonstrates creating a sync event from an export on the DPU which is
associated with a sync event on the host and interacting with the sync event to achieve
synchronization between the host and DPU. This sample should be run on the DPU.

The sample logic includes:

 1. Reading configuration files and saving their content into local buffers.
 2. Locating and opening DOCA devices and DOCA representors matching the given PCIe

addresses.
 3. Initializing DOCA Comm Channel.
 4. Receiving sync event blob through Comm Channel.
 5. Creating sync event from export.
 6. Starting the above sync event in the requested operation mode (synchronous or

asynchronous)
 7. Interacting with the sync event from the DPU:

 a). Waiting for signal from the host – synchronously or asynchronously (with busy
wait polling) according to user input.

 b). Signaling the sync event for the host – synchronously or asynchronously, using
set or atomic add, according to user input.

Architecture

NVIDIA DOCA Core MLNX-15-060542 _v2.2.1 | 29

 8. Cleaning all resources.

Reference:

‣ /opt/mellanox/doca/samples/doca_common/sync_event_dpu/
sync_event_dpu_sample.c

‣ /opt/mellanox/doca/samples/doca_common/sync_event_dpu/
sync_event_dpu_main.c

‣ /opt/mellanox/doca/samples/doca_common/sync_event_dpu/meson.build

3.4.6.7.2.2. Sync Event Host

Note: This sample should be run on the DPU before Sync Event DPU.

This sample demonstrates how to initialize a sync event on the host to be shared with
the DPU, how to export it to DPU, and how to interact with the sync event to achieve
synchronization between the host and DPU. This sample should be run on the host.

The sample logic includes:

 1. Reading configuration files and saving their content into local buffers.
 2. Locating and opening the DOCA device matching the given PCIe address.
 3. Creating and configuring the sync event to be shared with the DPU.
 4. Starting the above sync event in the requested operation mode (synchronous or

asynchronous).
 5. Initializing DOCA Comm Channel.
 6. Exporting the sync event and sending it through the Comm Channel.
 7. Interacting with the sync event from the host:

 a). Signaling the sync event for the DPU – synchronously or asynchronously, using
set or atomic add, according to user input.

 b). Waiting for a signal from the DPU – synchronously or asynchronously, with busy
wait polling, according to user input.

 8. Cleaning all resources.

Reference:

‣ /opt/mellanox/doca/samples/doca_common/sync_event_host/
sync_event_host_sample.c

‣ /opt/mellanox/doca/samples/doca_common/sync_event_host/
sync_event_host_main.c

‣ /opt/mellanox/doca/samples/doca_common/sync_event_host/meson.build

3.4.6.8. DOCA Sync Event Limitations and Disclaimers
‣ DOCA Sync Event API is considered thread-unsafe

‣ GPUs are not currently supported

Architecture

NVIDIA DOCA Core MLNX-15-060542 _v2.2.1 | 30

‣ Asynchronous wait (blocking/polling) is supported on NVIDIA® BlueField®-3 and
NVIDIA® ConnectX®-7 and newer

‣ Users may leverage doca_sync_event_job_get job to implement asynchronous wait
by asynchronously submitting the job on a DOCA WorkQ and comparing the result to
some threshold.

3.4.7. DOCA Graph Execution
DOCA Graph facilitates running a set of actions (jobs, user callbacks, graphs) in specific
order and dependencies. DOCA Graph runs on a DOCA work queue.

DOCA Graph creates graph instances that are submitted to the work queue
(doca_workq_graph_submit).

3.4.7.1. Nodes
DOCA Graph is comprised of context, user, and sub-graph nodes. Each of these types
can be in any of the following positions in the network:

‣ Root nodes – a root node does not have a parent. The graph can have one or more
root nodes. All roots begin running when the graph instance is submitted.

‣ Edge nodes – an edge node is a node that does not have child nodes connected to it.
The graph instance is completed when all edge nodes are completed.

‣ Intermediate node – a node with parent and child nodes connected to it.

3.4.7.1.1. Context Node
A context node runs a specific DOCA job and uses a specific DOCA context (doca_ctx).
The context must be added to the work queue before the graph is started.

The job lifespan must be longer or equal to the life span of the graph instance.

3.4.7.1.2. User Node
A user node runs a user callback to facilitate performing actions during the run time of
the graph instance (e.g., adjust next node job data, compare results).

3.4.7.1.3. Sub-graph Node
A sub-graph node runs an instance of another graph.

3.4.7.2. Using DOCA Graph
 1. Create the graph using doca_graph_create.
 2. Create the graph nodes (e.g., doca_graph_ctx_node_create).
 3. Define dependencies using doca_graph_add_dependency.

Note: DOCA graph does not support circle dependencies (e.g., A => B => A).

 4. Start the graph using doca_graph_start.

Architecture

NVIDIA DOCA Core MLNX-15-060542 _v2.2.1 | 31

 5. Add the graph to a work queue using doca_graph_workq_add.
 6. Create the graph instance using doca_graph_instance_create.
 7. Set the nodes data (e.g., doca_graph_instance_set_ctx_node_data).
 8. Submit the graph instance to the work queue using doca_workq_graph_submit.
 9. Call doca_workq_progress_retrieve until it returns DOCA_SUCCESS:

‣ doca_workq_progress_retrieve returns DOCA_ERROR_AGAIN for every node and
returns DOCA_SUCCESS when the graph instance is completed

‣ doca_event::type == DOCA_GRAPH_JOB indicates that a graph instance is
completed

‣ doca_event::result::u64 contains the graph instance status (0 implies
DOCA_SUCCESS)

‣ Work queue can run graph instances and standalone jobs simultaneously

3.4.7.3. DOCA Graph Limitations
‣ DOCA Graph does not support circle dependencies.

‣ DOCA Graph must contain at least one context node. A graph containing a sub-graph
with at least one context node is a valid configuration.

3.4.7.4. DOCA Graph Sample
The graph sample is based on the DOCA SHA and DOCA DMA libraries. The sample
calculates a SHA value and copies a source buffer to a destination buffer in parallel.

The graph ends with a user callback node that prints the SHA value and compares the
source with the DMA destination.

3.4.7.4.1. Running DOCA Graph Sample
 1. Refer to the following documents:

‣ NVIDIA DOCA Installation Guide for Linux for details on how to install BlueField-
related software.

‣ NVIDIA DOCA Troubleshooting Guide for any issue you may encounter with the
installation, compilation, or execution of DOCA samples.

 2. To build a given sample:
cd /opt/mellanox/doca/samples/doca_common/graph/
meson build
ninja -C build

Note: The binary doca_sync_event_<host|dpu> is created under ./build/.

 3. Sample (e.g., doca_graph) usage:
./build/doca_graph

No parameters required.

http://docs.nvidia.com/doca/sdk/pdf/installation-guide-for-linux.pdf
http://docs.nvidia.com/doca/sdk/pdf/troubleshooting.pdf

Architecture

NVIDIA DOCA Core MLNX-15-060542 _v2.2.1 | 32

3.4.8. Job Error Handling
After a job is submitted successfully, consequent calls to
doca_workq_progress_retrieve may fail (i.e., return different status from DOCA_SUCCESS
or DOCA_ERROR_AGAIN). In this case, the error is split into 2 main categories:

 1. DOCA_ERROR_INVALID_VALUE

This means that some error has occurred within the WorkQ that is not related to
any submitted job. This can happen due to the application passing invalid arguments
or to some objects that have been previously provided (e.g., a doca_ctx that was
associated using doca_ctx_workq_add) getting corrupted. In this scenario, the output
parameter of type doca_event is not valid, and no more information is given about
the error.

 2. DOCA_ERROR_IO_FAILED

This means that a specific job has failed where the output variable of type
doca_event is valid and can be used to trace the exact job that failed. Additional
error code explaining the exact failure reason is given. To find the exact error, refer to
the documentation of the context that provides the job type (e.g., if the job is DMA
memcpy, then refer to doca_dma.h).

The following diagram shows how an application is expected to handle error from
doca_workq_progress_retrieve:

3.5. Object Life Cycle
Most DOCA Core objects share the same handling model in which:

Architecture

NVIDIA DOCA Core MLNX-15-060542 _v2.2.1 | 33

 1. The object is allocated by DOCA so it is opaque for the application (e.g.,
doca_buf_inventory_create, doca_mmap_create).

 2. The application initializes the object and sets the desired properties (e.g.,
doca_mmap_set_memrange).

 3. The object is started, and no configuration or attribute change is allowed (e.g.,
doca_buf_inventory_start, doca_mmap_start).

 4. The object is used.
 5. The object is stopped and deleted (e.g., doca_buf_inventory_stop →

doca_buf_inventory_destroy, doca_mmap_stop → doca_mmap_destroy).

The following procedure describes the mmap export mechanism between two machines
(remote machines or host-DPU):

 1. Memory is allocated on Machine1.
 2. Mmap is created and is provided memory from step 1.
 3. Mmap is exported to the Machine2 pinning the memory.
 4. On the Machine2, an imported mmap is created and holds a reference to actual

memory residing on Machine1.
 5. Imported mmap can be used by Machine2 to allocate buffers.
 6. Imported mmap is destroyed.
 7. Exported mmap is destroyed.
 8. Original memory is destroyed.

3.6. RDMA Bridge
The DOCA Core library provides building blocks for applications to use while abstracting
many details relying on the RDMA driver. While this takes away complexity, it adds
flexibility especially for applications already based on rdma-core. The RDMA bridge
allows interoperability between DOCA SDK and rdma-core such that existing applications
can convert DOCA-based objects to rdma-core-based objects.

3.6.1. Requirements and Considerations
‣ This library enables applications already using rdma-core to port their existing

application or extend it using DOCA SDK

‣ Bridge allows converting DOCA objects to equivalent rdma-core objects

3.6.2. DOCA Core Objects to RDMA Core Objects
Mapping

The RDMA bridge allows translating a DOCA Core object to a matching RDMA Core
object. The following table shows how the one object maps to the other.

Architecture

NVIDIA DOCA Core MLNX-15-060542 _v2.2.1 | 34

RDMA Core Object DOCA Equivalent
RDMA Object to
DOCA Object

DOCA Object to
RDMA Object

ibv_pd doca_dev doca_dev_open_from_pddoca_dev_get_pd

ibv_mr doca_buf – doca_buf_get_mkey

NVIDIA DOCA Core MLNX-15-060542 _v2.2.1 | 35

Chapter 4. Compatibility

An application that uses the hardware relies on a subset of features to be present for it
to be able to function. As such, it is customary to check if the subset of features exists.
The application may also need to identify the specific hardware resource to work with
based on specific properties. The same applies for an application that uses a DOCA
library.

It is up to the application to:

‣ Check which library's APIs are supported for a given doca_devinfo.

‣ Configure the library context through the dedicated API according to the library's
limitations.

‣ Check library's configuration limitations.

DOCA capabilities is a set of APIs (DOCA library level) with a common look and feel to
achieve this.

For example:

‣ A hotplug (of emulated PCIe functions) oriented application can check if a specific
DOCA device information structure enables hotplugging emulated devices, by calling:
doca_error_t doca_devinfo_get_is_hotplug_manager_supported(const struct
 doca_devinfo *devinfo, uint8_t *is_hotplug_manager);

‣ An application that works with DOCA memory map to be shared between the host
and DPU must export the doca_mmap from the host and import it from the DPU.
Before starting the workflow, the application can check if those operations are
supported for a given doca_devinfo using the following APIs:
doca_error_t doca_devinfo_get_is_mmap_export_dpu_supported(const struct
 doca_devinfo *devinfo, uint8_t *mmap_export);
 doca_error_t
 doca_devinfo_get_is_mmap_from_export_dpu_supported(const struct doca_devinfo
 *devinfo, uint8_t *from_export);

NVIDIA DOCA Core MLNX-15-060542 _v2.2.1 | 36

Chapter 5. API Backward
Compatibility

This section lists changes to the DOCA SDK which impacts backward compatibility.

5.1. doca_buf
Up to DOCA 2.0.2, the data length of the buffer is ignored when using the buffer
as an output parameter, and the new data was written over the data that was
there beforehand. From now on, new data is appended after existing data (if any)
whileupdating the data length accordingly.

Because of this change, it is recommended that a destination buffer is allocated without
a data section (data length 0), for ease of use.

In cases where the data length is 0 in a destination buffer, this change would go
unnoticed (as appending the data and writing to the data section has the same result).

Reusing buffers requires resetting the data length when wishing to write to the same
data address (instead of appending the data), overwriting the existing data. A new
function, doca_buf_reset_data_len(), has been added specifically for this need.

Notice

This document is provided for information purposes only and shall not be regarded as a warranty of a certain functionality, condition, or quality of a product.
NVIDIA Corporation nor any of its direct or indirect subsidiaries and affiliates (collectively: “NVIDIA”) make no representations or warranties, expressed or
implied, as to the accuracy or completeness of the information contained in this document and assume no responsibility for any errors contained herein.
NVIDIA shall have no liability for the consequences or use of such information or for any infringement of patents or other rights of third parties that may
result from its use. This document is not a commitment to develop, release, or deliver any Material (defined below), code, or functionality.

NVIDIA reserves the right to make corrections, modifications, enhancements, improvements, and any other changes to this document, at any time without
notice.

Customer should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the time of order acknowledgement, unless otherwise
agreed in an individual sales agreement signed by authorized representatives of NVIDIA and customer (“Terms of Sale”). NVIDIA hereby expressly objects
to applying any customer general terms and conditions with regards to the purchase of the NVIDIA product referenced in this document. No contractual
obligations are formed either directly or indirectly by this document.

NVIDIA products are not designed, authorized, or warranted to be suitable for use in medical, military, aircraft, space, or life support equipment, nor in
applications where failure or malfunction of the NVIDIA product can reasonably be expected to result in personal injury, death, or property or environmental
damage. NVIDIA accepts no liability for inclusion and/or use of NVIDIA products in such equipment or applications and therefore such inclusion and/or use
is at customer’s own risk.

NVIDIA makes no representation or warranty that products based on this document will be suitable for any specified use. Testing of all parameters of each
product is not necessarily performed by NVIDIA. It is customer’s sole responsibility to evaluate and determine the applicability of any information contained
in this document, ensure the product is suitable and fit for the application planned by customer, and perform the necessary testing for the application in
order to avoid a default of the application or the product. Weaknesses in customer’s product designs may affect the quality and reliability of the NVIDIA
product and may result in additional or different conditions and/or requirements beyond those contained in this document. NVIDIA accepts no liability
related to any default, damage, costs, or problem which may be based on or attributable to: (i) the use of the NVIDIA product in any manner that is contrary
to this document or (ii) customer product designs.

No license, either expressed or implied, is granted under any NVIDIA patent right, copyright, or other NVIDIA intellectual property right under this document.
Information published by NVIDIA regarding third-party products or services does not constitute a license from NVIDIA to use such products or services or
a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property rights
of the third party, or a license from NVIDIA under the patents or other intellectual property rights of NVIDIA.

Reproduction of information in this document is permissible only if approved in advance by NVIDIA in writing, reproduced without alteration and in full
compliance with all applicable export laws and regulations, and accompanied by all associated conditions, limitations, and notices.

THIS DOCUMENT AND ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS
(TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR
OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND
FITNESS FOR A PARTICULAR PURPOSE. TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL NVIDIA BE LIABLE FOR ANY DAMAGES, INCLUDING
WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF
THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF NVIDIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
Notwithstanding any damages that customer might incur for any reason whatsoever, NVIDIA’s aggregate and cumulative liability towards customer for the
products described herein shall be limited in accordance with the Terms of Sale for the product.

Trademarks

NVIDIA, the NVIDIA logo, and Mellanox are trademarks and/or registered trademarks of Mellanox Technologies Ltd. and/or NVIDIA Corporation in the
U.S. and in other countries. The registered trademark Linux® is used pursuant to a sublicense from the Linux Foundation, the exclusive licensee of Linus
Torvalds, owner of the mark on a world¬wide basis. Other company and product names may be trademarks of the respective companies with which they
are associated.

Copyright

© 2023 NVIDIA Corporation & affiliates. All rights reserved.

NVIDIA Corporation | 2788 San Tomas Expressway, Santa Clara, CA 95051
http://www.nvidia.com

http://www.nvidia.com

	Table of Contents
	Introduction
	Prerequisites
	Architecture
	3.1. General
	3.1.1. doca_error_t
	3.1.2. Generic Structures/Enum

	3.2. DOCA Device
	3.2.1. Local Device and Representor
	3.2.1.1. DOCA Device Prerequisites
	3.2.1.2. Topology
	3.2.1.3. Local Device and Representor Matching

	3.2.2. Expected Flow

	3.3. DOCA Memory Subsystem
	3.3.1. Requirements and Considerations
	3.3.2. doca_mmap
	3.3.2.1. Local mmap
	3.3.2.2. mmap from Export

	3.3.3. Buffers
	3.3.3.1. Buffer Considerations
	3.3.3.2. Headroom
	3.3.3.3. Dataroom
	3.3.3.4. Tailroom
	3.3.3.5. Buffer as Source
	3.3.3.6. Buffer as Destination
	3.3.3.7. Scatter/Gather List
	3.3.3.8. Buffer Use Cases

	3.3.4. Inventories
	3.3.4.1. Inventory Considerations
	3.3.4.2. Inventory Types

	3.3.5. Example Flow

	3.4. DOCA Execution Model
	3.4.1. Requirements and Considerations
	3.4.2. DOCA Context
	3.4.3. DOCA WorkQ
	3.4.4. Polling Mode
	3.4.5. Event-driven Mode
	3.4.6. DOCA Sync Event
	3.4.6.1. Creating DOCA Sync Event
	3.4.6.2. Configuring DOCA Sync Event
	3.4.6.3. DOCA Sync Event Operation Modes
	3.4.6.3.1. Synchronous Mode
	3.4.6.3.2. Asynchronous Mode

	3.4.6.4. Exporting DOCA Sync Event to Another Execution Unit
	3.4.6.5. DOCA Sync Event Data Path Operations
	3.4.6.5.1. Publishing on DOCA Sync Event
	3.4.6.5.1.1. Setting DOCA Sync Event Value
	3.4.6.5.1.2. Adding to DOCA Sync Event Value

	3.4.6.5.2. Subscribing on DOCA Sync Event
	3.4.6.5.2.1. Getting DOCA Sync Event Value
	3.4.6.5.2.2. Waiting on DOCA Sync Event

	3.4.6.6. DOCA Sync Event Tear Down
	3.4.6.6.1. Stopping DOCA Sync Event
	3.4.6.6.2. Destroying DOCA Sync Event

	3.4.6.7. DOCA Sync Event Sample
	3.4.6.7.1. Running DOCA Sync Event Sample
	3.4.6.7.2. Samples
	3.4.6.7.2.1. Sync Event DPU
	3.4.6.7.2.2. Sync Event Host

	3.4.6.8. DOCA Sync Event Limitations and Disclaimers

	3.4.7. DOCA Graph Execution
	3.4.7.1. Nodes
	3.4.7.1.1. Context Node
	3.4.7.1.2. User Node
	3.4.7.1.3. Sub-graph Node

	3.4.7.2. Using DOCA Graph
	3.4.7.3. DOCA Graph Limitations
	3.4.7.4. DOCA Graph Sample
	3.4.7.4.1. Running DOCA Graph Sample

	3.4.8. Job Error Handling

	3.5. Object Life Cycle
	3.6. RDMA Bridge
	3.6.1. Requirements and Considerations
	3.6.2. DOCA Core Objects to RDMA Core Objects Mapping

	Compatibility
	API Backward Compatibility
	5.1. doca_buf

