
MLNX-15-060519 _v2.2.1 | October 2023

NVIDIA DOCA Host-based Networking
Service

Guide

NVIDIA DOCA Host-based Networking Service MLNX-15-060519 _v2.2.1 | ii

Table of Contents

Chapter 1. Release Notes..1

Chapter 2. HBN Overview... 2

Chapter 3. Service Deployment..4
3.1. Preparing DPU for HBN Deployment.. 4

3.1.1. Service Function Chaining..4

3.1.2. Enabling SFC for HBN Deployment..5

3.1.2.1. Deployment from BFB... 5

3.1.2.2. Deployment from PXE... 5

3.2. HBN Service Container Deployment..6

3.3. HBN Default Deployment Configuration... 6

3.4. HBN Deployment Considerations... 7

3.4.1. SF Interface State Tracking.. 7

3.4.2. SF Interface MTU...8

3.4.3. Connecting to Services on DPU..8

3.4.4. Disabling DPU Uplinks..8

Chapter 4. Configuration.. 10
4.1. General Network Configuration.. 10

4.1.1. Flat Files Configuration...10

4.2. NVUE Configuration... 10

4.2.1. NVUE Service...10

4.2.2. NVUE REST API...10

4.2.3. NVUE CLI... 11

4.2.4. NVUE Startup Configuration File..11

4.2.5. NVUE User Credentials... 12

4.2.6. NVUE Interface Classification.. 12

4.3. Configuration Persistence... 12

4.4. SR-IOV Support.. 13

4.4.1. Creating VFs on Host Server..13

4.4.2. Automatic Creation of VF Representors on DPU.. 13

4.5. Management VRF..14

4.5.1. MGMT VRF on Host DPU...14

4.5.2. MGMT VRF in HBN Container..15

4.5.3. Existing Services in MGMT VRF on Host DPU..15

4.5.4. Running New Service in MGMT VRF... 15

4.6. HBN Configuration Examples...16

NVIDIA DOCA Host-based Networking Service MLNX-15-060519 _v2.2.1 | iii

4.6.1. HBN Default Configuration... 16

4.6.2. Native Routing with BGP and ECMP...16

4.6.2.1. ECMP Configuration...16

4.6.2.2. BGP Peering with Host... 18

4.6.3. L2 EVPN with BGP and ECMP... 21

4.6.3.1. Single VXLAN Device... 21

4.6.4. Access Control Lists.. 26

4.6.4.1. ACL Ordering... 26

4.6.4.2. Stateless ACLs..26

4.6.4.3. Stateful ACLs.. 29

4.6.5. DHCP Relay on HBN...32

4.6.5.1. Configuration...32

4.6.5.2. DHCP Relay and VRF Considerations..35

Chapter 5. Troubleshooting... 36
5.1. HBN Container Does Not Start...36

5.2. HBN Container Stuck in init-sfs... 36

5.3. BGP Session not Establishing..36

5.4. Generating Support Dump..36

5.5. SFC Troubleshooting..37

5.6. General nl2doca Troubleshooting...37

5.7. nl2doca Offload Troubleshooting...37

5.8. NVUE Troubleshooting.. 40

Chapter 6. HBN Service Release Notes..41
6.1. Changes and New Features..41

6.2. Supported Platforms and Interoperability..41

6.2.1. Supported BlueField Platforms... 42

6.2.2. Supported BlueField OS... 42

6.2.3. Verified Scalability Limits...42

6.3. Known Issues.. 43

6.4. Bug Fixes...47

NVIDIA DOCA Host-based Networking Service MLNX-15-060519 _v2.2.1 | iv

NVIDIA DOCA Host-based Networking Service MLNX-15-060519 _v2.2.1 | 1

Chapter 1. Release Notes

For the release notes of HBN 1.5.0, please refer to HBN Service Release Notes.

NVIDIA DOCA Host-based Networking Service MLNX-15-060519 _v2.2.1 | 2

Chapter 2. HBN Overview

Host-based networking (HBN) is a DOCA service that enables the network architect to
design a network purely on L3 protocols, enabling routing to run on the server-side of
the network by using the DPU as a BGP router. The EVPN extension of BGP, supported by
HBN, extends the L3 underlay network to multi-tenant environments with overlay L2 and
L3 isolated networks.

The HBN solution packages a set of network functions inside a container which, itself,
is packaged as a service pod to be run on the DPU. At the core of HBN is the Linux
networking DPU acceleration driver. Netlink to DOCA daemon, or nl2docad, implements
the DPU acceleration driver. nl2docad seamlessly accelerates Linux networking using
DPU hardware programming APIs.

The driver mirrors the Linux kernel routing and bridging tables into the DPU hardware
by discovering the configured Linux networking objects using the Linux Netlink API.
Dynamic network flows, as learned by the Linux kernel networking stack, are also
programmed by the driver into DPU hardware by listening to Linux kernel networking
events.

The following diagram captures an overview of HBN and the interactions between
various components of HBN.

HBN Overview

NVIDIA DOCA Host-based Networking Service MLNX-15-060519 _v2.2.1 | 3

‣ ifupdown2 is the interface manager which pushes all the interface related states to
kernel

‣ The routing stack is implemented in FRR and pushes all the control states (EVPN
MACs and routes) to kernel via netlink

‣ Kernel maintains the whole network state and relays the information using netlink.
The kernel is also involved in the punt path and handling traffic that does not match
any rules in the eSwitch.

‣ nl2docad listens for the network state via netlink and invokes the DOCA interface
to accelerate the flows in the DPU HW tables. nl2docad also offloads these flows to
eSwitch.

NVIDIA DOCA Host-based Networking Service MLNX-15-060519 _v2.2.1 | 4

Chapter 3. Service Deployment

3.1. Preparing DPU for HBN
Deployment

HBN requires service function chaining (SFC) to be activated on the DPU before running
the HBN service container. SFC allows for additional services/containers to be chained to
HBN and provides additional data manipulation capabilities.

The following subsections provide additional information about SFC and instructions on
enabling it during DPU BFB installation.

3.1.1. Service Function Chaining
The diagram below shows the fully detailed default configuration for HBN with service
function chaining (SFC).

In this setup, the HBN container is configured to use sub-function ports (SFs) instead of
the actual uplinks, PFs and VFs. To illustrate, for example:

‣ Uplinks – use p0_sf instead of p0

‣ PF – use pf0hpf_sf instead of pf0hpf

‣ VF – use pf0vf0_sf instead of pf0vf0

The indirection layer between the SF and the actual ports is managed via a br-sfc OVS
bridge automatically configured when the BFB image is installed on the DPU with HBN
enabled. This indirection layer allows other services to be chained to existing SFs and
provide additional functionality to transit traffic.

Service Deployment

NVIDIA DOCA Host-based Networking Service MLNX-15-060519 _v2.2.1 | 5

3.1.2. Enabling SFC for HBN Deployment

3.1.2.1. Deployment from BFB
DPU installation should follow the NVIDIA DOCA Installation Guide for Linux.

 1. Make sure link type is set to ETH in step 5 of the "Installing Software on Host"
section in the NVIDIA DOCA Installation Guide for Linux.

 2. Add the following parameters to the bf.cfg configuration file:
ENABLE_SFC_HBN=yes
NUM_VFs_PHYS_PORT0=12 # <num VFs supported by HBN on Physical Port 0> (valid
 range: 0-127) Default 14
NUM_VFs_PHYS_PORT1=2 # <num VFs supported by HBN on Physical Port 1> (valid
 range: 0-127) Default 0

 3. Then run:
bfb-install -c bf.cfg -r rshim0 -b <BFB-image>

3.1.2.2. Deployment from PXE
To enable HBN SFC using a PXE installation environment with BFB content, use the
following configuration for PXE:
bfnet=<IFNAME>:<IPADDR>:<NETMASK> or <IFNAME>:dhcp
bfks=<URL of the kickstart script>

The kickstart script (bash) should include the following lines:
cat >> /etc/bf.cfg << EOF
ENABLE_SFC_HBN=yes
NUM_VFs_PHYS_PORT0=12 # <num VFs supported by HBN on Physical Port 0> (valid range:
 0-127) Default 14
NUM_VFs_PHYS_PORT1=2 # <num VFs supported by HBN on Physical Port 1> (valid range:
 0-127) Default 0
EOF

http://docs.nvidia.com/doca/sdk/pdf/installation-guide-for-linux.pdf
http://docs.nvidia.com/doca/sdk/pdf/installation-guide-for-linux.pdf

Service Deployment

NVIDIA DOCA Host-based Networking Service MLNX-15-060519 _v2.2.1 | 6

/etc/bf.cfg will be sourced by the BFB install.sh script.

Note: It is recommended to verify the accuracy of the DPU's clock post-installation. This
can be done using the following command:
$ date
Please refer to the known issues listed in the NVIDIA DOCA Release Notes for more
information.

3.2. HBN Service Container Deployment
HBN service is available on NGC, NVIDIA's container catalog. Service-specific
configuration steps and deployment instructions can be found under the service's
container page. Make sure to follow the instructions in the NGC page to verify that the
container is running properly.

For information about the deployment of DOCA containers on top of the BlueField DPU,
refer to NVIDIA DOCA Container Deployment Guide.

3.3. HBN Default Deployment
Configuration

DOCA HBN Service comes with four types of configurable interfaces:

‣ Two uplinks (p0_sf, p1_sf)

‣ Two PF port representors (pf0hpf_sf, pf1hpf_sf)

‣ User-defined number of VFs (i.e., pf0vf0_sf, pf0vf1_sf, …, pf1vf0_sf, pf1vf1_sf, …)

‣ One interface to connect to services running on the DPU, outside of the HBN
container (pf0dpu1_sf)

The *_sf suffix indicates that these are sub-functions and are different from the
physical uplinks (i.e., PFs, VFs). They can be viewed as virtual interfaces from a virtualized
DPU.

Each of these interfaces is connected outside the HBN container to the corresponding
physical interface, see section Service Function Chaining (SFC) for more details.

The HBN container runs as an isolated namespace and does not see any interfaces
outside the container (oob_net0, real uplinks and PFs, *_sf_r representors).

http://docs.nvidia.com/doca/sdk/pdf/release-notes.pdf
https://catalog.ngc.nvidia.com/orgs/nvidia/teams/doca/containers/doca_hbn
http://docs.nvidia.com/doca/sdk/pdf/container-deployment.pdf

Service Deployment

NVIDIA DOCA Host-based Networking Service MLNX-15-060519 _v2.2.1 | 7

pf0dpu1_sf is a special interface for HBN to connect to services running on the DPU.
Its counterpart pf0dpu0_sf is located outside the HBN container. See Connecting to
Services on DPU for deployment considerations when using the dpu1_sf interface in
HBN.

eth0 is equivalent to the oob_net0 interface in the HBN container. It is part of the
management VRF of the container. It is not configurable via NVUE and does not need
any configuration from the user. See TBD for more details on this interface and the
management VRF.

3.4. HBN Deployment Considerations

3.4.1. SF Interface State Tracking
When HBN is deployed with SFC, the interface state of the following network devices is
propagated to their corresponding SFs:

Service Deployment

NVIDIA DOCA Host-based Networking Service MLNX-15-060519 _v2.2.1 | 8

‣ Uplinks – p0, p1

‣ PFs – pf0hpf, pf1hpf

‣ VFs – pf0vfX, pf1vfX where X is the VF number

For example, if the p0 uplink cable gets disconnected:

‣ p0 transitions to DOWN state with NO-CARRIER (default behavior on Linux); and

‣ p0 state is propagated to p0_sf whose state also becomes DOWN with NO-CARRIER

After p0 connection is reestablished:

‣ p0 transitions to UP state; and

‣ p0 state is propagated to p0_sf whose state becomes UP

Interface state propagation only happens in the uplink/PF/VF-to-SF direction.

A daemon called sfc-state-propagation runs on the DPU, outside of the HBN
container, to sync the state. The daemon listens to netlink notifications for interfaces
and transfers the state to SFs.

3.4.2. SF Interface MTU
In the HBN container, the MTUs of all interfaces are set to 9216 by default. The MTU of
specific interfaces can be overridden using flat-files configuration or NVUE.

On the DPU side (i.e., outside of the HBN container), the MTU of the uplinks, PFs, and
VFs interfaces are also set to 9216. This can be changed by modifying /etc/systemd/
network/30-hbn-mtu.network or by adding a new configuration file in the /etc/
systemd/network for specific directories.

To reload this configuration, execute systemctl restart systemd-networkd.

3.4.3. Connecting to Services on DPU
pf0dpu1_sf can be used by HBN to connect to services running on the DPU. Its
counterpart, pf0dpu0_sf, is located outside the HBN container.

Traffic between the DPU and the outside world is not hardware-accelerated in the
HBN container when using a native L3 connection over pf0dpu0_sf/pf0dpu1_sf. To get
hardware-acceleration, configure pf0dpu1_sf in the HBN container with bridge-access
over an SVI.

3.4.4. Disabling DPU Uplinks
The uplink ports must be always kept administratively up for proper operation of HBN.
Otherwise, the NVIDIA® ConnectX® firmware would bring down the corresponding
representor port which would cause data forwarding to stop.

Note: Change in operational status of uplink (e.g., carrier down) would result in traffic
being switched to the other uplink.

Service Deployment

NVIDIA DOCA Host-based Networking Service MLNX-15-060519 _v2.2.1 | 9

When using ECMP failover on the two uplink SFs, locally disabling one uplink does not
result in traffic switching to the second uplink. Disabling local link in this case means to
set one uplink admin DOWN directly on the DPU.

To test ECMP failover scenarios correctly, the uplink must be disabled from its remote
counterpart (i.e., execute admin DOWN on the remote system's link which is connected
to the uplink).

NVIDIA DOCA Host-based Networking Service MLNX-15-060519 _v2.2.1 | 10

Chapter 4. Configuration

4.1. General Network Configuration

4.1.1. Flat Files Configuration
Add network interfaces and FRR configuration files on the DPU to achieve the desired
configuration:

‣ /etc/network/interfaces

Note: Refer to NVIDIA® Cumulus® Linux documentation for more information.

‣ /etc/frr/frr.conf; /etc/frr/daemons

Note: Refer to NVIDIA® Cumulus® Linux documentation for more information.

4.2. NVUE Configuration
This chapter assumes familiarity with NVIDIA user experience (NVUE) Cumulus Linux
documentation. The following subsections, only expand on DPU-specific aspects of
NVUE.

4.2.1. NVUE Service
HBN installs NVUE by default and enables NVUE service at boot.

4.2.2. NVUE REST API
HBN enables REST API by default.

Users may run the cURL commands from the command line. Use the default HBN
username nvidia and password nvidia.

https://docs.nvidia.com/networking-ethernet-software/cumulus-linux/Layer-3/FRRouting/
https://docs.nvidia.com/networking-ethernet-software/cumulus-linux/Layer-3/FRRouting/
https://docs.nvidia.com/networking-ethernet-software/cumulus-linux/System-Configuration/NVIDIA-User-Experience-NVUE/
https://docs.nvidia.com/networking-ethernet-software/cumulus-linux/System-Configuration/NVIDIA-User-Experience-NVUE/

Configuration

NVIDIA DOCA Host-based Networking Service MLNX-15-060519 _v2.2.1 | 11

To change the default password of the nvidia user or add additional users for NVUE
access, refer to NVUE User Credentials.

REST API example:
curl -u 'nvidia:nvidia' --insecure https://10.188.108.58:8765/nvue_v1/interface/p0
{
 "ip": {
 "address": {
 "30.0.0.1/24": {}
 }
 },
 "link": {
 "auto-negotiate": "on",
 "duplex": "full",
 "fec": "auto",
 "mac": "b8:ce:f6:a8:83:9a",
 "mtu": 9216,
 "speed": "100G",
 "state": {
 "up": {}
 },
 "stats": {
 "carrier-transitions": 13,
 "in-bytes": 0,
 "in-drops": 0,
 "in-errors": 0,
 "in-pkts": 0,
 "out-bytes": 14111,
 "out-drops": 0,
 "out-errors": 0,
 "out-pkts": 161
 }
 },
 "pluggable": {
 "identifier": "QSFP28",
 "vendor-name": "Mellanox",
 "vendor-pn": "MCP1600-C00AE30N",
 "vendor-rev": "A4",
 "vendor-sn": "MT2105VB02844"
 },
 "type": "swp"
}

Note: For information about using the NVUE REST API, refer to the NVUE API
documentation.

4.2.3. NVUE CLI
For information about using the NVUE CLI, refer to the NVUE CLI documentation.

4.2.4. NVUE Startup Configuration File
When the network configuration is saved using NVUE, HBN writes the configuration to
the /etc/nvue.d/startup.yaml file.

Startup configuration is applied by following the supervisor daemon at boot time. nvued-
startup will appear in EXITED state after applying the startup configuration.
supervisorctl status nvued-startup

https://docs.nvidia.com/networking-ethernet-software/cumulus-linux/api/index.html
https://docs.nvidia.com/networking-ethernet-software/cumulus-linux/api/index.html
https://docs.nvidia.com/networking-ethernet-software/cumulus-linux/System-Configuration/NVIDIA-User-Experience-NVUE/#nvue-cli

Configuration

NVIDIA DOCA Host-based Networking Service MLNX-15-060519 _v2.2.1 | 12

nvued-startup EXITED Apr 17 10:04 AM

Note: nv config apply startup applies the yaml configuration saved at /etc/nvue.d/.

Note: nv config save saves the running configuration to /etc/nvue.d/startup.yaml.

4.2.5. NVUE User Credentials
NVUE user credentials can be added post installation. This functionality is enabled by
the HBN startup script by using the –-username and –-password script switches. For
example:
./hbn-dpu-setup.sh -u newuser -p newpassword

After executing this script, respawn the container or start the decrypt-user-add script:
supervisorctl start decrypt-user-add
decrypt-user-add: started

The script creates a user on the HBN container:
cat /etc/passwd | grep newuser
newuser:x:1001:1001::/home/newuser:/bin/bash

4.2.6. NVUE Interface Classification
Interface Interface Type NVUE Type Comment

p0_sf Uplink representor swp Use type swp

p1_sf Uplink representor swp Use type swp

lo Loopback loopback Tested with NVUE

pf0hpf_sf Host representor swp Use type swp

pf1hpf_sf Host representor swp Use type swp

pf0vfx_sf (where x is
0 to 255)

VF representor swp Use type swp

pf1vfx_sf (where x is
0 to 255)

VF representor swp Use type swp

4.3. Configuration Persistence
The following directories are mounted from the host DPU to the HBN container and are
persistent across HBN restarts and DPU reboots:

Host DPU Mount Point HBN Container Mount Point

Configuration Files Mount Pints

/var/lib/hbn/etc/network/ /etc/network/

/var/lib/hbn/etc/frr/ /etc/frr/

/var/lib/hbn/etc/nvue.d/ /etc/nvue.d/

/var/lib/hbn/etc/supervisor/conf.d/ /etc/supervisor/conf.d/

Configuration

NVIDIA DOCA Host-based Networking Service MLNX-15-060519 _v2.2.1 | 13

Host DPU Mount Point HBN Container Mount Point
/var/lib/hbn/var/lib/nvue/ /var/lib/nvue/

Support and Log Files Mount Points

/var/lib/hbn/var/support/ /var/support/

/var/log/doca/hbn/ /var/log/hbn/

4.4. SR-IOV Support

4.4.1. Creating VFs on Host Server
The first step to use SR-IOV is to create VFs on the host server. VFs can be created using
the following command:
echo N > /sys/class/net/<host-rep>/device/sriov_numvfs

Where:

‣ <host-rep> is one of the two host representors (e.g., ens1f0 or ens1f1)

‣ 0≤N≤16 is the desired total number of VFs

‣ Set N=0 to delete all the VFs on 0≤N≤16

‣ N=16 is the maximum number of VFs supported on HBN across all representors

4.4.2. Automatic Creation of VF Representors on
DPU

VFs created on the host must have corresponding SF representors on the DPU side. For
example:

‣ ens1f0vf0 is the first VF from the first host representor; this interface is created on
the host server

‣ pf0vf0 is the corresponding VF representor to ens1f0vf0; this interface is on the
DPU and automatically created at the same time as en1sf0vf0 is created

‣ pf0vf0_sf is the corresponding SF for pf0vf0 which is used by HBN

The creation of the SF representor for VFs is done ahead of time when installing the BFB,
see section Enabling SFC for HBN Deployment to see how to select how many SFs to
create ahead of time.

The SF representors for VFs (i.e., pfXvfY) are pre-mapped to work with the corresponding
VF representors when these are created with the command from section Creating VFs on
Host Server.

Configuration

NVIDIA DOCA Host-based Networking Service MLNX-15-060519 _v2.2.1 | 14

4.5. Management VRF
Two management VRFs are setup for HBN with SFC:

‣ The first management VRF is outside the HBN container on the DPU. This VRF
provides separation between out-of-band (OOB) traffic (via oob_net0 or tmfifo_net0)
and data-plane traffic via uplinks and PFs.

‣ The second management VRF is inside the HBN container and provides similar
separation. The OOB traffic (via eth0) is isolated from the traffic via the *_sf
interfaces.

4.5.1. MGMT VRF on Host DPU
The management (mgmt) VRF is enabled by default when the DPU is deployed with SFC
(see Enabling SFC for HBN Deployment). The mgmt VRF provides separation between the
out-of-band management network and the in-band data plane network.

The uplinks and PFs/SFs/VFs use the default routing table while the oob_net0 (out-of-
band Ethernet port) and the tmifo_net0 netdevices use the mgmt VRF to route their
packets.

When logging in either via SSH or the console, the shell is by default in mgmt VRF
context. This is indicated by a mgmtadded to the shell prompt:
root@bf2:mgmt:/home/ubuntu#

When logging into the HBN container with crictl, the HBN shell will be in the default
VRF. Users must switch to mgmt VRF manually if out-of-band access is required. Use ip
vrf exec to do so.
root@bf2:mgmt:/home/ubuntu# ip vrf exec mgmt bash

The user must run ip vrf exec mgmt to perform other operations (e.g., apt-get update).

Network devices belonging to the mgmt VRF can be listed with the vrf utility:
root@bf2:mgmt:/home/ubuntu# vrf link list

VRF: mgmt

tmfifo_net0 UP 00:1a:ca:ff:ff:03 <BROADCAST,MULTICAST,UP,LOWER_UP>
oob_net0 UP 08:c0:eb:c0:5a:32 <BROADCAST,MULTICAST,UP,LOWER_UP>

root@bf2:mgmt:/home/ubuntu# vrf help
vrf <OPTS>

VRF domains:
 vrf list

Links associated with VRF domains:
 vrf link list [<vrf-name>]

Tasks and VRF domain asociation:
 vrf task exec <vrf-name> <command>
 vrf task list [<vrf-name>]
 vrf task identify <pid>

 NOTE: This command affects only AF_INET and AF_INET6 sockets opened by the
 command that gets exec'ed. Specifically, it has *no* impact on netlink

Configuration

NVIDIA DOCA Host-based Networking Service MLNX-15-060519 _v2.2.1 | 15

 sockets (e.g., ip command).

To show the routing table for the default VRF, run:
root@bf2:mgmt:/home/ubuntu# ip route show

To show the routing table for the mgmt VRF, run:
root@bf2:mgmt:/home/ubuntu# ip route show vrf mgmt

4.5.2. MGMT VRF in HBN Container
Inside the HBN container, a separate mgmt VRF is present. Similar commands as those
listed under MGMT VRF on Host DPU can be used to query management routes.

The *_sf interfaces use the default routing table while the eth0 (OOB) uses the mgmt
VRF to route out-of-band packets out of the container. The OOB traffic gets NATed
through the DPU oob_net0 interface, ultimately using the DPU OOB's IP address.

When logging into the HBN container via crictl, the shell enters the default VRF
context by default. Switching to the mgmt VRF can be done using the command ip vrf
exec mgmt <cmd>.

4.5.3. Existing Services in MGMT VRF on Host
DPU

On the host DPU, outside the HBN container, a set of existing services run in the mgmt
VRF context as they need OOB network access:

‣ containerd

‣ kubelet

‣ ssh

‣ docker

These services can be restarted and queried for their status using the command
systemctl while adding @mgmt to the original service name. For example:

‣ To restart containerd:
root@bf2:mgmt:/home/ubuntu# systemctl restart containerd@mgmt

‣ To query containerd status:
root@bf2:mgmt:/home/ubuntu# systemctl status containerd@mgmt

Note: The original version of these services (without @mgmt) are not used and must not be
started.

4.5.4. Running New Service in MGMT VRF
If a service needs OOB access to run, it can be added to the set of services running in
mgmt VRF context. Adding such a service is only possible on the host DPU (i.e., outside
the HBN container).

To add a service to the set of MGMT VRF services:

Configuration

NVIDIA DOCA Host-based Networking Service MLNX-15-060519 _v2.2.1 | 16

 1. Add it to /etc/vrf/systemd.conf (if it is not present already). For example, NTP is
already listed in this file.

 2. Run the following:
root@bf2:mgmt:/home/ubuntu# systemctl daemon-reload

 3. Stop and disable to the non-VRF version of the service to be able to start the mgmt
VRF one:
root@bf2:mgmt:/home/ubuntu# systemctl stop ntp
root@bf2:mgmt:/home/ubuntu# systemctl disable ntp
root@bf2:mgmt:/home/ubuntu# systemctl enable ntp@mgmt
root@bf2:mgmt:/home/ubuntu# systemctl start ntp@mgmt

4.6. HBN Configuration Examples

4.6.1. HBN Default Configuration
After a fresh HBN installation, the default /etc/network/interfaces file would contain
only the declaration of the two uplink SFs and a default bridge to which interfaces can be
added manually or via NVUE.
auto p0_sf
iface p0_sf

auto p1_sf
iface p1_sf

auto br_default
iface br_default
 bridge-vlan-aware yes

FRR configuration files would also be present under /etc/frr/ but no configuration
would be enabled.

4.6.2. Native Routing with BGP and ECMP
HBN supports unicast routing with BGP and ECMP for IPv4 and IPv6 traffic. ECMP is
achieved by distributing traffic using IP hash calculation based on five tuples (i.e., source
IP, destination IP, protocol type, source port, and destination port).

4.6.2.1. ECMP Configuration
ECMP is implemented any time routes have multiple paths over uplinks or host ports. For
example, 20.20.20.0/24 has 2 paths using both uplinks, so a path is selected based on a
5-tuple hash of IP packets.
20.20.20.0/24 proto bgp metric 20
 nexthop via 169.254.0.1 dev p0_sf weight 1 onlink <<<<< via uplink p0_sf
 nexthop via 169.254.0.1 dev p1_sf weight 1 onlink <<<<< via uplink p1_sf

HBN supports up to 16 paths for ECMP.

Configuration

NVIDIA DOCA Host-based Networking Service MLNX-15-060519 _v2.2.1 | 17

4.6.2.1.1. Sample NVUE Configuration
nv set interface lo ip address 10.10.10.1/32
nv set interface lo ip address 2010:10:10::1/128
nv set interface vlan100 type svi
nv set interface vlan100 vlan 100
nv set interface vlan100 base-interface br_default
nv set interface vlan100 ip address 2030:30:30::1/64
nv set interface vlan100 ip address 30.30.30.1/24
nv set bridge domain br_default vlan 100
nv set interface pf0hpf_sf,pf1hpf_sf bridge domain br_default
nv set vrf default router bgp router-id 10.10.10.1
nv set vrf default router bgp autonomous-system 65501
nv set vrf default router bgp path-selection multipath aspath-ignore on
nv set vrf default router bgp address-family ipv4-unicast enable on
nv set vrf default router bgp address-family ipv4-unicast redistribute connected
 enable on
nv set vrf default router bgp address-family ipv6-unicast enable on
nv set vrf default router bgp address-family ipv6-unicast redistribute connected
 enable on
nv set vrf default router bgp neighbor p0_sf remote-as external
nv set vrf default router bgp neighbor p0_sf type unnumbered
nv set vrf default router bgp neighbor p0_sf address-family ipv4-unicast enable on
nv set vrf default router bgp neighbor p0_sf address-family ipv6-unicast enable on
nv set vrf default router bgp neighbor p1_sf remote-as external
nv set vrf default router bgp neighbor p1_sf type unnumbered
nv set vrf default router bgp neighbor p1_sf address-family ipv4-unicast enable on
nv set vrf default router bgp neighbor p1_sf address-family ipv6-unicast enable on

4.6.2.1.2. Sample Flat Files Configuration
Example /etc/network/interfaces configuration:
auto lo
iface lo inet loopback
 address 10.10.10.1/32
 address 2010:10:10::1/128

auto p0_sf
iface p0_sf

auto p1_sf
iface p1_sf

auto pf0hpf_sf
iface pf0hpf_sf
 bridge-access 200

auto pf1hpf_sf
iface pf1hpf_sf
 bridge-access 200

auto vlan100
iface vlan100
 address 2030:30:30::1/64
 address 30.30.30.1/24
 vlan-raw-device br_default
 vlan-id 100

auto br_default
iface br_default
 bridge-ports pf0hpf_sf pf1hpf_sf
 bridge-vlan-aware yes
 bridge-vids 100
 bridge-pvid 1

Configuration

NVIDIA DOCA Host-based Networking Service MLNX-15-060519 _v2.2.1 | 18

Example /etc/frr/daemons configuration:
bgpd=yes
vtysh_enable=yes

FRR Config file @ /etc/frr/frr.conf -
!
frr version 7.5+cl5.3.0u0
frr defaults datacenter
hostname BLUEFIELD2
log syslog informational
no zebra nexthop kernel enable
!
router bgp 65501
 bgp router-id 10.10.10.1
 bgp bestpath as-path multipath-relax
 neighbor p0_sf interface remote-as external
 neighbor p0_sf advertisement-interval 0
 neighbor p0_sf timers 3 9
 neighbor p0_sf timers connect 10
 neighbor p1_sf interface remote-as external
 neighbor p1_sf advertisement-interval 0
 neighbor p1_sf timers 3 9
 neighbor p1_sf timers connect 10
 !
 address-family ipv4 unicast
 redistribute connected
 maximum-paths 64
 maximum-paths ibgp 64
 exit-address-family
 !
 address-family ipv6 unicast
 redistribute connected
 neighbor p0_sf activate
 neighbor p1_sf activate
 maximum-paths 64
 maximum-paths ibgp 64
 exit-address-family
!
line vty
!
end

4.6.2.2. BGP Peering with Host
HBN supports the ability to establish a BGP session between the host and DPU and allow
the host to announce arbitrary route prefixes through the DPU into the underlay fabric.
The host can use any standard BGP protocol stack implementation to establish BGP
peering with HBN.

Note: Traffic to and from endpoints on the host gets offloaded.

Note: Both IPv4 and IPv6 unicast AFI/SAFI are supported.

It is possible to apply route filtering for these prefixes to limit the potential security
impact in this configuration.

Configuration

NVIDIA DOCA Host-based Networking Service MLNX-15-060519 _v2.2.1 | 19

4.6.2.2.1. Sample NVUE Configuration
The following code block shows configuration to peer to host at 45.3.0.4 and
2001:cafe:1ead::4. The BGP session can be established using IPv4 or IPv6 address.

Note: Either of these sessions can support IPv4 unicast and IPv6 unicast AFI/SAFI.

NVUE configuration for peering with host:
nv set vrf default router bgp autonomous-system 63642
nv set vrf default router bgp enable on
nv set vrf default router bgp neighbor 45.3.0.4 nexthop-connected-check off
nv set vrf default router bgp neighbor 45.3.0.4 peer-group dpu_host
nv set vrf default router bgp neighbor 45.3.0.4 type numbered
nv set vrf default router bgp neighbor 2001:cafe:1ead::4 nexthop-connected-check off
nv set vrf default router bgp neighbor 2001:cafe:1ead::4 peer-group dpu_host
nv set vrf default router bgp neighbor 2001:cafe:1ead::4 type numbered
nv set vrf default router bgp peer-group dpu_host address-family ipv4-unicast enable
 on
nv set vrf default router bgp peer-group dpu_host address-family ipv6-unicast enable
 on
nv set vrf default router bgp peer-group dpu_host remote-as external

4.6.2.2.2. Sample Flat Files Configuration
The following block shows configuration to peer to host at 45.3.0.4 and
2001:cafe:1ead::4. The BGP session can be established using IPv4 or IPv6 address.

frr.conf file:
router bgp 63642
 bgp router-id 27.0.0.4
 bgp bestpath as-path multipath-relax
 neighbor dpu_host peer-group
 neighbor dpu_host remote-as external
 neighbor dpu_host bfd 3 1000 1000
 neighbor dpu_host advertisement-interval 0
 neighbor dpu_host timers 3 9
 neighbor dpu_host timers connect 10
 neighbor dpu_host disable-connected-check
 neighbor fabric peer-group
 neighbor fabric remote-as external
 neighbor fabric advertisement-interval 0
 neighbor fabric timers 3 9
 neighbor fabric timers connect 10
 neighbor 45.3.0.4 peer-group dpu_host
 neighbor 2001:cafe:1ead::4 peer-group dpu_host
 neighbor p0_sf interface peer-group fabric
 neighbor p1_sf interface peer-group fabric
 !
 address-family ipv4 unicast
 neighbor dpu_host activate
 !
 address-family ipv6 unicast
 neighbor dpu_host activate

4.6.2.2.3. Sample Configuration on Host Running FRR
Any BGP implementation can be used on the host to peer to HBN and advertise
endpoints. The following is an example using FRR BGP.

Configuration

NVIDIA DOCA Host-based Networking Service MLNX-15-060519 _v2.2.1 | 20

‣ Sample FRR configuration on the host:
bf2-s12# sh run
Building configuration...

Current configuration:
!
frr version 7.2.1
frr defaults traditional
hostname bf2-s12
no ip forwarding
no ipv6 forwarding
!
router bgp 1000008
!
router bgp 1000008 vrf v_200_2000
 neighbor 45.3.0.2 remote-as external
 neighbor 2001:cafe:1ead::2 remote-as external
 !
 address-family ipv4 unicast
 redistribute connected
 exit-address-family
 !
 address-family ipv6 unicast
 redistribute connected
 neighbor 45.3.0.2 activate
 neighbor 2001:cafe:1ead::2 activate
 exit-address-family
!
line vty
!
end

‣ Sample FRR configuration on host:
bf2-s12# sh run
Building configuration...

Current configuration:
!
frr version 7.2.1
frr defaults traditional
hostname bf2-s12
no ip forwarding
no ipv6 forwarding
!
router bgp 1000008
!
router bgp 1000008 vrf v_200_2000
 neighbor 45.3.0.2 remote-as external
 neighbor 2001:cafe:1ead::2 remote-as external
 !
 address-family ipv4 unicast
 redistribute connected
 exit-address-family
 !
 address-family ipv6 unicast
 redistribute connected
 neighbor 45.3.0.2 activate
 neighbor 2001:cafe:1ead::2 activate
 exit-address-family
!
line vty
!
end

‣ Sample interface configuration on the host:
root@bf2-s12:/home/cumulus# ifquery -a
auto lo

Configuration

NVIDIA DOCA Host-based Networking Service MLNX-15-060519 _v2.2.1 | 21

iface lo inet loopback
 address 27.0.0.7/32
 address 2001:c15c:d06:f00d::7/128
auto v_200_2000
iface v_200_2000
 address 60.1.0.1
 address 60.1.0.2
 address 60.1.0.3
 address 2001:60:1::1
 address 2001:60:1::2
 address 2001:60:1::3
 vrf-table auto
auto ens1f0np0
iface ens1f0np0
 address 45.3.0.4/24
 address 2001:cafe:1ead::4/64
 gateway 45.3.0.1
 gateway 2001:cafe:1ead::1
 vrf v_200_2000
 hwaddress 00:03:00:08:00:12
 mtu 9162

4.6.3. L2 EVPN with BGP and ECMP
HBN supports VXLAN with EVPN control plane for intra-subnet bridging (L2) services for
IPv4 and IPv6 traffic in the overlay.

For the underlay, only IPv4 or BGP unnumbered configuration is supported.

The following is a sample config which has L2-VNIs (vx-2000, vx-2001) for EVPN bridging.

4.6.3.1. Single VXLAN Device
With a single VXLAN device, a set of VNIs represents a single device model. The single
VXLAN device has a set of attributes that belong to the VXLAN construct. Individual
VNIs include VLAN-to-VNI mapping which allows users to specify which VLANs are
associated with which VNIs. A single VXLAN device simplifies the configuration and
reduces the overhead by replacing multiple traditional VXLAN devices with a single
VXLAN device.

Users may configure a single VXLAN device automatically with NVUE, or manually by
editing the /etc/network/interfaces file. When users configure a single VXLAN device
with NVUE, NVUE creates a unique name for the device in the following format using the
bridge name as the hash key: vxlan<id>.

This example configuration performs the following steps:

 1. Creates a single VXLAN device (vxlan21).
 2. Maps VLAN 10 to VNI 10 and VLAN 20 to VNI 20.
 3. Adds the VXLAN device to the default bridge.

cumulus@leaf01:~$ nv set bridge domain bridge vlan 10 vni 10
cumulus@leaf01:~$ nv set bridge domain bridge vlan 20 vni 20
cumulus@leaf01:~$ nv set nve vxlan source address 10.10.10.1
cumulus@leaf01:~$ nv config apply

Alternately, users may edit the file /etc/network/interfaces as follows, then run the
ifreload -a command to apply the SVD configuration.
auto lo

Configuration

NVIDIA DOCA Host-based Networking Service MLNX-15-060519 _v2.2.1 | 22

iface lo inet loopback
 vxlan-local-tunnelip 10.10.10.1

auto vxlan21
iface vxlan21
 bridge-vlan-vni-map 10=10 20=20
 bridge-learning off

auto bridge
iface bridge
 bridge-vlan-aware yes
 bridge-ports vxlan21 pf0hpf_sf pf1hpf_sf
 bridge-vids 10 20
 bridge-pvid 1

Note: Users may not use a combination of single and traditional VXLAN devices.

4.6.3.1.1. Sample NVUE Configuration on DPU
The following is a sample NVUE configuration which has L2-VNIs (2000, 2001) for EVPN
bridging on DPU.
nv set bridge domain br_default encap 802.1Q
nv set bridge domain br_default type vlan-aware
nv set bridge domain br_default vlan 200 vni 2000 flooding enable auto
nv set bridge domain br_default vlan 200 vni 2000 mac-learning off
nv set bridge domain br_default vlan 201 vni 2001 flooding enable auto
nv set bridge domain br_default vlan 201 vni 2001 mac-learning off

nv set evpn enable on
nv set nve vxlan arp-nd-suppress on
nv set nve vxlan enable on
nv set nve vxlan mac-learning off
nv set nve vxlan source address 27.0.0.4
nv set router bgp enable on
nv set system global anycast-mac 44:38:39:42:42:07
nv set vrf default router bgp address-family ipv4-unicast enable on
nv set vrf default router bgp address-family ipv4-unicast redistribute connected
 enable on

nv set vrf default router bgp address-family l2vpn-evpn enable on
nv set vrf default router bgp autonomous-system 63642
nv set vrf default router bgp enable on
nv set vrf default router bgp neighbor p0_sf peer-group fabric
nv set vrf default router bgp neighbor p0_sf type unnumbered
nv set vrf default router bgp neighbor p1_sf peer-group fabric
nv set vrf default router bgp neighbor p1_sf type unnumbered
nv set vrf default router bgp path-selection multipath aspath-ignore on
nv set vrf default router bgp peer-group fabric address-family ipv4-unicast enable
 on
nv set vrf default router bgp peer-group fabric address-family ipv4-unicast policy
 outbound route-map MY_ORIGIN_ASPATH_ONLY
nv set vrf default router bgp peer-group fabric address-family ipv6-unicast enable
 on
nv set vrf default router bgp peer-group fabric address-family ipv6-unicast policy
 outbound route-map MY_ORIGIN_ASPATH_ONLY
nv set vrf default router bgp peer-group fabric address-family l2vpn-evpn add-path-
tx off
nv set vrf default router bgp peer-group fabric address-family l2vpn-evpn enable on
nv set vrf default router bgp peer-group fabric remote-as external
nv set vrf default router bgp router-id 27.0.0.4

nv set interface lo ip address 2001:c15c:d06:f00d::4/128
nv set interface lo ip address 27.0.0.4/32
nv set interface lo type loopback

Configuration

NVIDIA DOCA Host-based Networking Service MLNX-15-060519 _v2.2.1 | 23

nv set interface p0_sf,p1_sf,pf0hpf_sf,pf1hpf_sf type swp
nv set interface pf0hpf_sf bridge domain br_default access 200
nv set interface pf1hpf_sf bridge domain br_default access 201

nv set interface vlan200-201 base-interface br_default
nv set interface vlan200-201 ip ipv4 forward on
nv set interface vlan200-201 ip ipv6 forward on
nv set interface vlan200-201 ip vrr enable on
nv set interface vlan200-201 ip vrr state up
nv set interface vlan200-201 link mtu 9050
nv set interface vlan200-201 type svi
nv set interface vlan200 ip address 2001:cafe:1ead::3/64
nv set interface vlan200 ip address 45.3.0.2/24
nv set interface vlan200 ip vrr address 2001:cafe:1ead::1/64
nv set interface vlan200 ip vrr address 45.3.0.1/24
nv set interface vlan200 vlan 200
nv set interface vlan201 ip address 2001:cafe:1ead:1::3/64
nv set interface vlan201 ip address 45.3.1.2/24
nv set interface vlan201 ip vrr address 2001:cafe:1ead:1::1/64
nv set interface vlan201 ip vrr address 45.3.1.1/24
nv set interface vlan201 vlan 201

4.6.3.1.2. Sample Flat Files Configuration on HBN
The following is a sample flat files configuration which has L2-VNIs (vx-2000, vx-2001)
for EVPN bridging on DPU.

This file is located at /etc/network/interfaces:
auto lo
iface lo inet loopback
 address 2001:c15c:d06:f00d::4/128
 address 27.0.0.4/32
 vxlan-local-tunnelip 27.0.0.4

auto p0_sf
iface p0_sf

auto p1_sf
iface p1_sf

auto pf0hpf_sf
iface pf0hpf_sf
 bridge-access 200

auto pf1hpf_sf
iface pf1hpf_sf
 bridge-access 201

auto vlan200
iface vlan200
 address 2001:cafe:1ead::3/64
 address 45.3.0.2/24
 mtu 9050
 address-virtual 00:00:5e:00:01:01 2001:cafe:1ead::1/64 45.3.0.1/24
 vlan-raw-device br_default
 vlan-id 200

auto vlan201
iface vlan201
 address 2001:cafe:1ead:1::3/64
 address 45.3.1.2/24
 mtu 9050
 address-virtual 00:00:5e:00:01:01 2001:cafe:1ead:1::1/64 45.3.1.1/24
 vlan-raw-device br_default
 vlan-id 201

Configuration

NVIDIA DOCA Host-based Networking Service MLNX-15-060519 _v2.2.1 | 24

auto vxlan48
iface vxlan48
 bridge-vlan-vni-map 200=2000 201=2001
217=2017
 bridge-learning off

auto br_default
iface br_default
 bridge-ports pf0hpf_sf pf1hpf_sf vxlan48
 bridge-vlan-aware yes
 bridge-vids 200 201
 bridge-pvid 1

This file tells the frr package which daemon to start and is located at /etc/frr/
daemons:
bgpd=yes
ospfd=no
ospf6d=no
isisd=no
pimd=no
ldpd=no
pbrd=no
vrrpd=no
fabricd=no
nhrpd=no
eigrpd=no
babeld=no
sharpd=no
fabricd=no
ripngd=no
ripd=no

vtysh_enable=yes
zebra_options=" -M cumulus_mlag -M snmp -A 127.0.0.1 -s 90000000"
bgpd_options=" -M snmp -A 127.0.0.1"
ospfd_options=" -M snmp -A 127.0.0.1"
ospf6d_options=" -M snmp -A ::1"
ripd_options=" -A 127.0.0.1"
ripngd_options=" -A ::1"
isisd_options=" -A 127.0.0.1"
pimd_options=" -A 127.0.0.1"
ldpd_options=" -A 127.0.0.1"
nhrpd_options=" -A 127.0.0.1"
eigrpd_options=" -A 127.0.0.1"
babeld_options=" -A 127.0.0.1"
sharpd_options=" -A 127.0.0.1"
pbrd_options=" -A 127.0.0.1"
staticd_options="-A 127.0.0.1"
fabricd_options="-A 127.0.0.1"
vrrpd_options=" -A 127.0.0.1"

frr_profile="datacenter"

This file is located at /etc/frr/frr.conf:
!---- Cumulus Defaults ----
frr defaults datacenter
log syslog informational
no zebra nexthop kernel enable
vrf default
outer bgp 63642 vrf default
bgp router-id 27.0.0.4
bgp bestpath as-path multipath-relax
timers bgp 3 9
bgp deterministic-med
! Neighbors
neighbor fabric peer-group
neighbor fabric remote-as external

Configuration

NVIDIA DOCA Host-based Networking Service MLNX-15-060519 _v2.2.1 | 25

neighbor fabric timers 3 9
neighbor fabric timers connect 10
neighbor fabric advertisement-interval 0
neighbor p0_sf interface peer-group fabric
neighbor p1_sf interface peer-group fabric
address-family ipv4 unicast
maximum-paths ibgp 64
maximum-paths 64
distance bgp 20 200 200
neighbor fabric activate
exit-address-family
address-family ipv6 unicast
maximum-paths ibgp 64
maximum-paths 64
distance bgp 20 200 200
neighbor fabric activate
exit-address-family
address-family l2vpn evpn
advertise-all-vni
neighbor fabric activate
exit-address-family

4.6.3.1.3. Sample Switch Configuration for EVPN
The following is a sample NVUE config for underlay switches (NVIDIA® Spectrum® with
Cumulus Linux) for EVPN use case.

It assumes that the uplinks on DPUs are connected to ports swp1-4 on the switch.
nv set evpn enable on
nv set router bgp enable on

nv set vrf default router bgp address-family ipv4-unicast enable on
nv set vrf default router bgp address-family ipv4-unicast redistribute connected
 enable on

nv set vrf default router bgp address-family l2vpn-evpn enable on
nv set vrf default router bgp autonomous-system 63640
nv set vrf default router bgp enable on
nv set vrf default router bgp neighbor swp1 peer-group fabric
nv set vrf default router bgp neighbor swp1 type unnumbered
nv set vrf default router bgp neighbor swp2 peer-group fabric
nv set vrf default router bgp neighbor swp2 type unnumbered
nv set vrf default router bgp neighbor swp3 peer-group fabric
nv set vrf default router bgp neighbor swp3 type unnumbered
nv set vrf default router bgp neighbor swp4 peer-group fabric
nv set vrf default router bgp neighbor swp4 type unnumbered
nv set vrf default router bgp path-selection multipath aspath-ignore on
nv set vrf default router bgp peer-group fabric address-family ipv4-unicast enable
 on
nv set vrf default router bgp peer-group fabric address-family ipv6-unicast enable
 on
nv set vrf default router bgp peer-group fabric address-family l2vpn-evpn add-path-
tx off
nv set vrf default router bgp peer-group fabric address-family l2vpn-evpn enable on
nv set vrf default router bgp peer-group fabric remote-as external
nv set vrf default router bgp router-id 27.0.0.10

nv set interface lo ip address 2001:c15c:d06:f00d::10/128
nv set interface lo ip address 27.0.0.10/32
nv set interface lo type loopback
nv set interface swp1,swp2,swp3,swp4 type swp

Configuration

NVIDIA DOCA Host-based Networking Service MLNX-15-060519 _v2.2.1 | 26

4.6.4. Access Control Lists
Access Control Lists (ACLs) are a set of rules that are used to filter network traffic.
These rules are used to specify the traffic flows that must be permitted or blocked at
networking device interfaces. There are two types of ACLs:

‣ Stateless ACLs – rules that are applied to individual packets. They inspect each
packet individually and permit/block the packets based on the packet header
information and the match criteria specified by the rule.

‣ Stateful ACLs – rules that are applied to traffic sessions/connections. They inspect
each packet with respect to the state of the session/connection to which the packet
belongs to determine whether to permit/block the packet.

4.6.4.1. ACL Ordering
ACL ordering ensures that the order in which ACLs are executed in DPU hardware is the
same as the order in which the ACLs are configured. In general, IPv4 ACLs should be
configured before IPv6 ACLs which in turn should be configured before L2 ACLs. ACLs
should be configured in the following order:

 1. IPv4 header match fields + UDP header match fields
 2. IPv4 header match fields + TCP header match fields
 3. IPv4 header match fields + ICMP header match fields
 4. IPv4 header match fields
 5. IPv6 header match fields + UDP header match fields
 6. IPv6 header match fields + TCP header match fields
 7. IPv6 header match fields + ICMP header match fields
 8. IPv6 header match fields
 9. Ethernet header match fields

4.6.4.2. Stateless ACLs
HBN supports configuration of stateless ACLs for IPv4 packets, IPv6 packets, and
Ethernet frames. The following examples depict how stateless ACLs are configured for
each case, with NVUE and with flat files (cl-acltool).

4.6.4.2.1. NVUE Examples for Stateless ACLs
NVUE IPv4 ACLs Example

The following is an example of an ingress IPv4 ACL that permits DHCP request packets
ingressing on the pf0hpf_sf port towards the DHCP server:
root@hbn01-host01:~# nv set acl acl1_ingress type ipv4
root@hbn01-host01:~# nv set acl acl1_ingress rule 100 match ip protocol udp
root@hbn01-host01:~# nv set acl acl1_ingress rule 100 match ip dest-port 67
root@hbn01-host01:~# nv set acl acl1_ingress rule 100 match ip source-port 68
root@hbn01-host01:~# nv set acl acl1_ingress rule 100 action permit

Configuration

NVIDIA DOCA Host-based Networking Service MLNX-15-060519 _v2.2.1 | 27

Bind the ingress IPv4 ACL to host representor port pf0hpf_sf of the DPU in the inbound
direction:
root@hbn01-host01:~# nv set interface pf0hpf_sf acl acl1_ingress inbound
root@hbn01-host01:~# nv config apply

The following is an example of an egress IPv4 ACL that permits DHCP reply packets
egressing out of the pf0hpf_sf port towards the DHCP client:
root@hbn01-host01:~# nv set acl acl2_egress type ipv4
root@hbn01-host01:~# nv set acl acl2_egress rule 200 match ip protocol udp
root@hbn01-host01:~# nv set acl acl2_egress rule 200 match ip dest-port 68
root@hbn01-host01:~# nv set acl acl2_egress rule 200 match ip source-port 67
root@hbn01-host01:~# nv set acl acl2_egress rule 200 action permit

Bind the egress IPv4 ACL to host representor port pf0hpf_sf of the DPU in the
outbound direction:
root@hbn01-host01:~# nv set interface pf0hpf_sf acl acl2_egress outbound
root@hbn01-host01:~# nv config apply

NVUE IPv6 ACLs Example

The following is an example of an ingress IPv6 ACL that permits traffic with matching
dest-ip and protocol tcp ingress on port pf0hpf_sf:
root@hbn01-host01:~# nv set acl acl5_ingress type ipv6
root@hbn01-host01:~# nv set acl acl5_ingress rule 100 match ip protocol tcp
root@hbn01-host01:~# nv set acl acl5_ingress rule 100 match ip dest-ip 48:2034::80:9
root@hbn01-host01:~# nv set acl acl5_ingress rule 100 action permit

Bind the ingress IPv6 ACL to host representor port pf0hpf_sf of the DPU in the inbound
direction:
root@hbn01-host01:~# nv set interface pf0hpf_sf acl acl5_ingress inbound
root@hbn01-host01:~# nv config apply

The following is an example of an egress IPv6 ACL that permits traffic with matching
source-ip and protocol tcp egressing out of port pf0hpf_sf:
root@hbn01-host01:~# nv set acl acl6_egress type ipv6
root@hbn01-host01:~# nv set acl acl6_egress rule 101 match ip protocol tcp
root@hbn01-host01:~# nv set acl acl6_egress rule 101 match ip source-ip
 48:2034::80:9
root@hbn01-host01:~# nv set acl acl6_egress rule 101 action permit

Bind the egress IPv6 ACL to host representor port pf0hpf_sf of the DPU in the
outbound direction:
root@hbn01-host01:~# nv set interface pf0hpf_sf acl acl6_egress outbound
root@hbn01-host01:~# nv config apply

NVUE L2 ACLs Example

The following is an example of an ingress MAC ACL that permits traffic with matching
source-mac and dest-mac ingressing to port pf0hpf_sf:
root@hbn01-host01:~# nv set acl acl3_ingress type mac
root@hbn01-host01:~# nv set acl acl3_ingress rule 1 match mac source-mac
 00:00:00:00:00:0a
root@hbn01-host01:~# nv set acl acl3_ingress rule 1 match mac dest-mac
 00:00:00:00:00:0b
root@hbn01-host01:~# nv set interface pf0hpf_sf acl acl3_ingress inbound

Bind the ingress MAC ACL to host representor port pf0hpf_sf of the DPU in the inbound
direction:
root@hbn01-host01:~# nv set interface pf0hpf_sf acl acl3_ingress inbound
root@hbn01-host01:~# nv config apply

Configuration

NVIDIA DOCA Host-based Networking Service MLNX-15-060519 _v2.2.1 | 28

The following is an example of an egress MAC ACL that permits traffic with matching
source-mac and dest-mac egressing out of port pf0hpf_sf:
root@hbn01-host01:~# nv set acl acl4_egress type mac
root@hbn01-host01:~# nv set acl acl4_egress rule 2 match mac source-mac
 00:00:00:00:00:0b
root@hbn01-host01:~# nv set acl acl4_egress rule 2 match mac dest-mac
 00:00:00:00:00:0a
root@hbn01-host01:~# nv set acl acl4_egress rule 2 action permit

Bind the egress MAC ACL to host representor port pf0hpf_sf of the DPU in the
outbound direction:
root@hbn01-host01:~# nv set interface pf0hpf_sf acl acl4_egress outbound
root@hbn01-host01:~# nv config apply

4.6.4.2.2. Flat Files (cl-acltool) Examples for Stateless ACLs
For the same examples cited above, the following are the corresponding ACL rules which
must be configured under /etc/cumulus/acl/policy.d/<rule_name.rules> followed by
invoking cl-acltool -i. The rules in /etc/cumulus/acl/policy.d/<rule_name.rules>
are configured using Linux iptables/ip6tables/ebtables.

Flat Files IPv4 ACLs Example

The following example configures an ingress IPv4 ACL rule matching with DHCP request
under /etc/cumulus/acl/policy.d/<rule_name.rules> with the ingress interface as
the host representor of the DPU followed by invoking cl-acltool -i:
[iptables]
ACL acl1_ingress in dir inbound on interface pf0hpf_sf
-t filter -A FORWARD -i pf1vf1_sf -p udp --sport 68 --dport 67 -j ACCEPT

The following example configures an egress IPv4 ACL rule matching with DHCP reply
under /etc/cumulus/acl/policy.d/<rule_name.rules> with the egress interface as
the host representor of the DPU followed by invoking cl-acltool -i:
[iptables]
ACL acl2_egress in dir outbound on interface pf0hpf_sf
-t filter -A FORWARD -o pf0hpf_sf -p udp --sport 67 --dport 68 -j ACCEPT

Flat File IPv6 ACLs Example

The following example configures an ingress IPv6 ACL rule matching with dest-ip and
tcp protocol under /etc/cumulus/acl/policy.d/<rule_name.rules> with the ingress
interface as the host representor of the DPU followed by invoking cl-acltool -i:
[ip6tables]
ACL acl5_ingress in dir inbound on interface pf0hpf_sf
-t filter -A FORWARD -i pf0hpf_sf -d 48:2034::80:9 -p tcp -j ACCEPT

The following example configures an egress IPv6 ACL rule matching with source-ip and
tcp protocol under /etc/cumulus/acl/policy.d/<rule_name.rules> with the egress
interface as the host representor of the DPU followed by invoking cl-acltool -i:
[ip6tables]
ACL acl6_egress in dir outbound on interface pf0hpf_sf
-t filter -A FORWARD -o pf0hpf_sf -s 48:2034::80:9 -p tcp -j ACCEPT

Flat Files L2 ACLs Example

Configuration

NVIDIA DOCA Host-based Networking Service MLNX-15-060519 _v2.2.1 | 29

The following example configures an ingress MAC ACL rule matching with source-mac
and dest-mac under /etc/cumulus/acl/policy.d/<rule_name.rules> with the ingress
interface as the host representor of the DPU followed by invoking cl-acltool -i:
[ebtables]
ACL acl3_ingress in dir inbound on interface pf0hpf_sf
-t filter -A FORWARD -i pf0hpf_sf -s 00:00:00:00:00:0a/ff:ff:ff:ff:ff:ff -d
 00:00:00:00:00:0b/ff:ff:ff:ff:ff:ff -j ACCEPT

The following example configures an egress MAC ACL rule matching with source-mac
and dest-mac under /etc/cumulus/acl/policy.d/<rule_name.rules> with egress
interface as host representor of DPU followed by invoking cl-acltool -i:
[ebtables]
ACL acl4_egress in dir outbound on interface pf0hpf_sf
-t filter -A FORWARD -o pf0hpf_sf -s 00:00:00:00:00:0b/ff:ff:ff:ff:ff:ff -d
 00:00:00:00:00:0a/ff:ff:ff:ff:ff:ff -j ACCEPT

4.6.4.3. Stateful ACLs
Stateful ACLs facilitate monitoring and tracking traffic flows to enforce per-flow traffic
filtering (unlike stateless ACLs which filter traffic on a per-packet basis). HBN supports
stateful ACLs using reflexive ACL mechanism. Reflexive ACL mechanism is used to
permit initiation of connections from within the network to outside the network and
allow only replies to the initiated connections from outside the network.

HBN supports stateful ACL configuration for IPv4 traffic.

Stateful ACLs can be applied for routed traffic (north-south traffic) or bridged traffic
(east-west traffic). Stateful ACLs applied for routed traffic are called "L3 stateful ACLs"
and for bridged traffic are called "L2 stateful ACLs". Currently, NVUE-based configuration
is supported only for L3 stateful ACLs (L2 stateful ACLs must be configured using flat-
file configuration).

Stateful ACLs in HBN are disabled by default. To enable stateful ACL functionality, use
the following NVUE commands:
root@hbn03-host00:~# nv set system reflexive-acl enable
root@hbn03-host00:~# nv config apply

If using flat-file configuration (and not NVUE), edit the file /etc/cumulus/nl2docad.d/
acl.conf and set the knob rflx.reflexive_acl_enable to TRUE. To apply this change,
execute:
root@hbn03-host00:~# supervisorctl start nl2doca-reload

4.6.4.3.1. NVUE Examples for L3 Stateful ACLs
The following is an example of allowing HTTP (TCP) connection originated by the
host where the DPU is hosted to an HTTP server (with the IP address 11.11.11.11)
on an external network. Two sets of ACLs matching with CONNTRACK state must be
configured for a CONNTRACK entry to be established in the kernel which would be
offloaded to hardware:

‣ Configure an ACL rule matching TCP/HTTP connection/flow details with CONNTRACK
state of NEW, ESTABLISHED and bind it to the host representor of the DPU and the
associated VLAN's SVI in the inbound direction.

Configuration

NVIDIA DOCA Host-based Networking Service MLNX-15-060519 _v2.2.1 | 30

‣ Configure an ACL rule matching TCP/HTTP connection/flow details with CONNTRACK
state of ESTABLISHED and bind it to the host representor of the DPU and the
associated VLAN's SVI in the outbound direction.

In this example, the host representor on the DPU is pf0hpf_sf and it is part of VLAN 101
(SVI interface is vlan101).

 1. Configure the ingress ACL rule:
root@hbn03-host00:~# nv set acl allow_tcp_conn_from_host rule 11 action permit
root@hbn03-host00:~# nv set acl allow_tcp_conn_from_host rule 11 match conntrack
 new
root@hbn03-host00:~# nv set acl allow_tcp_conn_from_host rule 11 match conntrack
 established
root@hbn03-host00:~# nv set acl allow_tcp_conn_from_host rule 11 match ip dest-ip
 11.11.11.11/32
root@hbn03-host00:~# nv set acl allow_tcp_conn_from_host rule 11 match ip dest-
port 80
root@hbn03-host00:~# nv set acl allow_tcp_conn_from_host rule 11 match ip
 protocol tcp
root@hbn03-host00:~# nv set acl allow_tcp_conn_from_host type ipv4

 2. Bind this ACL to the host representor of the DPU and the associated VLAN's SVI
interface in the inbound direction:
root@hbn03-host00:~# nv set interface pf0hpf_sf,vlan101 acl
 allow_tcp_conn_from_host inbound
root@hbn03-host00:~# nv config apply

 3. Configure the egress ACL rule:
root@hbn03-host00:~# nv set acl allow_tcp_resp_from_server rule 21 action permit
root@hbn03-host00:~# nv set acl allow_tcp_resp_from_server rule 21 match
 conntrack established
root@hbn03-host00:~# nv set acl allow_tcp_resp_from_server rule 21 match ip
 protocol tcp
root@hbn03-host00:~# nv set acl allow_tcp_resp_from_server type ipv4
root@hbn03-host00:~# nv config apply

 4. Bind this ACL to the host representor of the DPU and the associated VLAN's SVI
interface in the outbound direction:
root@hbn03-host00:~# nv set interface pf0hpf_sf,vlan101 acl
 allow_tcp_resp_from_server outbound
root@hbn03-host00:~# nv config apply

Note: If virtual router redundancy (VRR) is set, L3 stateful ACLs must be bound to all the
related SVI interfaces. For example, if VRR is configured on SVI vlan101 as follows in the /
etc/network/interfaces file:

With this configuration, two SVI interfaces, vlan101 and vlan101-v0 would be created in
the system:

In this case, stateful ACLs must be bound to both SVI interfaces (vlan101 and vlan101-
v0). In the stateful ACL described in the current section, the binding would be:
root@hbn03-host00:~# nv set interface pf0hpf_sf,vlan101,vlan101-v0 acl
 allow_tcp_conn_from_host inbound
root@hbn03-host00:~# nv set interface pf0hpf_sf,vlan101,vlan101-v0 acl
 allow_tcp_resp_from_server outbound
root@hbn03-host00:~# nv config apply

Configuration

NVIDIA DOCA Host-based Networking Service MLNX-15-060519 _v2.2.1 | 31

4.6.4.3.2. Flat Files (cl-acltool) Examples for L3 Stateful ACLs
For the example described under section NVUE Examples for L3 Stateful ACLs, the
following are the corresponding ACL rules which must be configured under /etc/
cumulus/acl/policy.d/<rule_name.rules> followed by invoking cl-acltool -i to
install the rules in DPU hardware.

 1. Configure an ingress ACL rule matching with TCP flow details and CONNTRACK state
of NEW, ESTABLISHED under /etc/cumulus/acl/policy.d/stateful_acl.rules
with the ingress interface as the host representor of the DPU and the associated
VLAN's SVI followed by invoking cl-acltool -i:
[iptables]
ACL allow_tcp_conn_from_host in dir inbound on interface pf1vf7_sf
-t mangle -A PREROUTING -p tcp -d 11.11.11.11/32 --dport 80 -m conntrack --
ctstate EST,NEW -m connmark ! --mark 9998 -j CONNMARK --set-mark 9999
-t filter -A FORWARD -i pf1vf7_sf -p tcp -d 11.11.11.11/32 --dport 80 -m
 conntrack --ctstate EST,NEW -j ACCEPT

ACL allow_tcp_conn_from_host in dir inbound on interface vlan118
-t filter -A FORWARD -i vlan118 -p tcp –d 11.11.11.11/32--dport 80 -m conntrack
 --ctstate EST,NEW -j ACCEPT

Note: A mangle table rule must be configured with CONNMARK action. The
CONNMARK values (-j CONNMARK --set-mark <value>) for ingress ACL rules are
protocol dependent: 9999 for TCP, 9997 for UDP, and 9995 for ICMP.

 2. Configure an egress ACL rule matching with TCP and CONNTRACK state of
ESTABLISHED, RELATED under /etc/cumulus/acl/policy.d/stateful_acl.rules
file with the egress interface as the host representor of the DPU and the associated
VLAN's SVI followed by invoking cl-acltool -i:
ACL allow_tcp_resp_from_server in dir outbound on interface pf1vf7_sf
-t mangle -A PREROUTING -p tcp -s 11.11.11.11/32 --sport 80 -m conntrack --
ctstate EST -j CONNMARK --set-mark 9998
-t filter -A FORWARD -o pf1vf7_sf -p tcp -m conntrack --ctstate EST,REL -j ACCEPT

ACL allow_tcp_resp_from_server in dir outbound on interface vlan118
-t filter -A FORWARD -o vlan118 -p tcp -m conntrack --ctstate EST,REL -j ACCEPT

Note: A mangle table rule must be configured with CONNMARK action. The
CONNMARK values (-j CONNMARK --set-mark <value>) for egress ACL rules are
protocol dependent: 9998 for TCP, 9996 for UDP, and 9994 for ICMP.

4.6.4.3.3. Flat Files (cl-acltool) Examples for L2 Stateful ACLs
For the example described under section NVUE Examples for L3 Stateful ACLs (HTTP
server at IP address 192.168.5.5 accessible over bridged network), the following are the
corresponding ACL rules which must be configured under /etc/cumulus/acl/policy.d/
<rule_name.rules> followed by invoking cl-acltool-i.

 1. Configure an ingress ACL rule matching with TCP flow details and CONNTRACK state
of NEW, ESTABLISHED under /etc/cumulus/acl/policy.d/stateful_acl.rules

Configuration

NVIDIA DOCA Host-based Networking Service MLNX-15-060519 _v2.2.1 | 32

with the ingress interface as the host representor of the DPU and the associated
VLAN's SVI followed by invoking cl-acltool -i:
[iptables]
ACL allow_tcp_conn_from_host in dir inbound on interface pf1vf7_sf
-t mangle -A PREROUTING -p tcp -d 192.168.5.5/32 --dport 80 -m conntrack --
ctstate EST,NEW -m connmark ! --mark 9998 -j CONNMARK --set-mark 9999
-t filter -A FORWARD -m physdev --physdev-in pf1vf7_sf -p tcp -d 192.168.5.5/32
 --dport 80 -m conntrack --ctstate EST,NEW -j ACCEPT

ACL allow_tcp_conn_from_host in dir inbound on interface vlan118
-t filter -A FORWARD -i vlan118 -p tcp –d 192.168.5.5/32--dport 80 -m conntrack
 --ctstate EST,NEW -j ACCEPT

Note: A mangle table rule must be configured with CONNMARK action. The
CONNMARK values (-j CONNMARK --set-mark <value>) for ingress ACL rules are
protocol dependent: 9999 for TCP, 9997 for UDP, and 9995 for ICMP.

 2. Configure an egress ACL rule matching with TCP and CONNTRACK state of
ESTABLISHED, RELATED under /etc/cumulus/acl/policy.d/stateful_acl.rules
file with the egress interface as the host representor of the DPU and the associated
VLAN's SVI followed by invoking cl-acltool -i:
[iptables]
ACL allow_tcp_resp_from_server in dir outbound on interface pf1vf7_sf
-t mangle -A PREROUTING -p tcp -s 192.168.5.5/32 --sport 80 -m conntrack --
ctstate EST -j CONNMARK --set-mark 9998
-t filter -A FORWARD -m physdev --physdev-out pf1vf7_sf -p tcp -m conntrack --
ctstate EST,REL -j ACCEPT

ACL allow_tcp_resp_from_server in dir outbound on interface vlan118
-t filter -A FORWARD -o vlan118 -p tcp -m conntrack --ctstate EST,REL -j ACCEPT

Note: A mangle table rule must be configured with CONNMARK action. The
CONNMARK values (-j CONNMARK --set-mark <value>) for egress ACL rules are
protocol dependent: 9998 for TCP, 9996 for UDP, and 9994 for ICMP.

4.6.5. DHCP Relay on HBN
DHCP is a client server protocol that automatically provides IP hosts with IP addresses
and other related configuration information. A DHCP relay (agent) is a host that forwards
DHCP packets between clients and servers. DHCP relays forward requests and replies
between clients and servers that are not on the same physical subnet.

DHCP relay can be configured using either flat file (supervisord configuration) or through
NVUE.

4.6.5.1. Configuration
HBN is a non-systemd based container. Therefore, the DHCP relay must be configured as
explained in the following subsections.

Configuration

NVIDIA DOCA Host-based Networking Service MLNX-15-060519 _v2.2.1 | 33

4.6.5.1.1. Flat File Configuration (Supervisord)
The HBN initialization script installs default configuration files on the DPU in /var/lib/
hbn/etc/supervisor/conf.d/. The DPU directory is mounted to /etc/supervisor/
conf.d which achieves configuration persistence.

By default, DHCP relay is disabled. Default configuration applies to one instance of
DHCPv4 relay and DHCPv6 relay in the default VRF.

4.6.5.1.2. NVUE Configuration
The user can use NVUE to configure and maintain DHCPv4 and DHCPv6 relays with CLI
and REST API. NVUE generates all the required configurations and maintains the relay
service.

4.6.5.1.3. DHCPv4 Relay Configuration
NVUE Example

The following configuration starts a relay service which listens for the DHCP messages
on p0_sf, p1_sf, and vlan482 and relays the requests to DHCP server 10.89.0.1 with
gateway-interface as lo.
nv set service dhcp-relay default gateway-interface lo
nv set service dhcp-relay default interface p0_sf
nv set service dhcp-relay default interface p1_sf
nv set service dhcp-relay default interface vlan482 downstream
nv set service dhcp-relay default server 10.89.0.1

Flat Files Example
[program: isc-dhcp-relay-default]
command = /usr/sbin/dhcrelay --nl -d -i p0_sf -i p1_sf -id vlan482 -U lo 10.89.0.1
autostart = true
autorestart = unexpected
startsecs = 3
startretries = 3
exitcodes = 0
stopsignal = TERM
stopwaitsecs = 3

Where:

Option Description

-i Network interface to listen on for requests and
replies

-iu Upstream network interface

-id Downstream network interface

-U [address]%%ifname Gateway IP address interface. Use %% for IP%
%ifname. % is used as an escape character.

--loglevel-debug Debug logging. Location: /var/log/syslog.

-a Append an agent option field to each request
before forwarding it to the server with default
values for circuit-id and remote-id

Configuration

NVIDIA DOCA Host-based Networking Service MLNX-15-060519 _v2.2.1 | 34

Option Description

-r remote-id Set a custom remote ID string (max of 255
chars). To use this option, you must also enable
the -a option.

--use-pif-circuit-id Set the underlying physical interface which
receives the packet as the circuit-id. To use
this option you must also enable the -a option.

4.6.5.1.4. DHCPv4 Relay Option 82
NVUE Example

The following NVUE command is used to enable option 82 insertion in DHCP packets
with default values:
nv set service dhcp-relay default agent enable on

To provide a custom remote-id (e.g., host10) using NVUE:
nv set service dhcp-relay default agent remote-id host10

To use the underlying physical interface on which the request is received as circuit-id
using NVUE:
nv set service dhcp-relay default agent use-pif-circuit-id enable on

Flat Files Example
[program: isc-dhcp-relay-default]
command = /usr/sbin/dhcrelay --nl -d -i p0_sf -i p1_sf -id vlan482 -U lo -a --
use-pif-circuit-id -r host10 10.89.0.1
autostart = true
autorestart = unexpected
startsecs = 3
startretries = 3
exitcodes = 0
stopsignal = TERM
stopwaitsecs = 3

4.6.5.1.5. DHCPv6 Relay Configuration
NVUE Example

The following NVUE command starts the DHCPv6 Relay service which listens for DHCPv6
requests on vlan482 and sends relayed DHCPv6 requests towards p0_sf and p1_sf.
nv set service dhcp-relay6 default interface downstream vlan482
nv set service dhcp-relay6 default interface upstream p0_sf
nv set service dhcp-relay6 default interface upstream p1_sf

Flat Files Example
[program: isc-dhcp-relay6-default]
command = /usr/sbin/dhcrelay --nl -6 -d -l vlan482 -u p0_sf -u p1_sf
autostart = true
autorestart = unexpected
startsecs = 3
startretries = 3
exitcodes = 0
stopsignal = TERM
stopwaitsecs = 3

Where:

Configuration

NVIDIA DOCA Host-based Networking Service MLNX-15-060519 _v2.2.1 | 35

Option Description

-l Downstream interface. Use %% for IP%%ifname.
% is used as escape character.

-u Upstream interface. Use %% for IP%%ifname. % is
used as escape character.

-6 IPv6

--loglevel-debug Debug logging located at /var/log/syslog.

4.6.5.2. DHCP Relay and VRF Considerations
DHCP relay can be spawned inside a VRF context to handle the DHCP requests in that
VRF. There can only be 1 instance each of DHCPv4 relay and DHCPv6 relay per VRF. To
achieve that, the user can follow these guidelines:

‣ DHCPv4 on default VRF:
/usr/sbin/dhcrelay --nl -i <interface> -U [address]%%<interface> <server_ip>

‣ DHCPv4 on VRF:
/usr/sbin/ip vrf exec <vrf> /usr/sbin/dhcrelay –-nl -i <interface> -U [address]%
%<interface> <server_ip>

‣ DHCPv6 on default VRF:
/usr/sbin/dhcrelay --nl -6 -l <interface> -u <interface>

‣ DHCPv6 on VRF:
/usr/sbin/ip vrf exec <vrf> /usr/sbin/dhcrelay --nl -6 -l p0 -u p1

NVIDIA DOCA Host-based Networking Service MLNX-15-060519 _v2.2.1 | 36

Chapter 5. Troubleshooting

5.1. HBN Container Does Not Start
If the container is not starting and is not appearing in crictl ps output, check
kubelet@mgmt logs with the following:
journalctl _SYSTEMD_UNIT=kubelet@mgmt.service

If the following message appears in the logs, try rebooting the DPU to free up the huge
pages resources:
"Failed to admit pod, unexpected error while attempting to recover from admission
 failure" pod="default/doca-app-hbn-hbn-01-00" err="preemption: error finding a
 set of pods to preempt: no set of running pods found to reclaim resources: [(res:
 hugepages-2Mi, q: 1073741824),]"

5.2. HBN Container Stuck in init-sfs
The HBN container starts as init-sfs and should transition to doca-hbn within 2
minutes as can be seen using crictl ps. But sometimes it may remain as init-sfs.

This can happen if interface p0_sf is missing. Run the command ip br link show
dev p0_sf in the DPU and inside the container to check if p0_sf is present or not. If its
missing, make sure the firmware is upgraded to the latest version. The host must be
power cycled for the new firmware to take effect.

5.3. BGP Session not Establishing
One of the main causes of a BGP session not getting established is a mismatch in MTU
configuration. Make sure the MTU on all interfaces is the same. For example, if BGP is
failing on p0, check the MTU for p0, p0_sf_r, p0_sf, and the remote peer of p0.

5.4. Generating Support Dump
HBN support dump can be generated using the cl-support command:
root@bf2:/tmp# cl-support

Troubleshooting

NVIDIA DOCA Host-based Networking Service MLNX-15-060519 _v2.2.1 | 37

Please send /var/support/cl_support_bf2-s02-1-ipmi_20221025_180508.txz to Cumulus
 support

The generated dump would be available in /var/support in the HBN container and would
contain any process core dump as well as log files.

The /var/support directory is also mounted on the host DPU at /var/lib/hbn/var/
support.

5.5. SFC Troubleshooting
To troubleshoot flows going through SFC interfaces, the first step is to disable the
nl2doca service in the HBN container:
root@bf2:/tmp# supervisorctl stop nl2doca
nl2doca: stopped

Stopping nl2doca effectively stops hardware offloading and switches to software
forwarding. All packets would appear on tcpdump capture on the DPU interfaces.

tcpdump can be performed on SF interfaces as well as VLAN, VXLAN, and uplinks to
determine where a packet gets dropped or which flow a packet is taking.

5.6. General nl2doca Troubleshooting
The following steps can be used to make sure the nl2doca daemon is up and running:

 1. Make sure there are no errors in the nl2doca log file at /var/log/hbn/nl2docad.log.
 2. To check the status of the nl2doca daemon under supervisor, run:

supervisorctl status nl2doca

 3. Use ps to check that the actual nl2doca process is running:
ps -eaf | grep nl2doca
root 18 1 0 06:31 ? 00:00:00 /bin/bash /usr/bin/nl2doca-
docker-start
root 1437 18 0 06:31 ? 00:05:49 /usr/sbin/nl2docad

 4. The core file should be in /var/support/core/.
 5. Check if the /cumulus/nl2docad/run/stats/punt is accessible. Otherwise, nl2doca

may be stuck and should be restarted:
supervisorctl restart nl2doca

5.7. nl2doca Offload Troubleshooting
If a certain traffic flow does not work as expected, disable nl2doca (i.e., disable hardware
offloading):
supervisorctl stop nl2doca

With hardware offloading disabled, you can confirm it is an offloading issue if the traffic
starts working. If it is not an offloading issue, use tcpdump on various interfaces to see
where the packet gets dropped.

Troubleshooting

NVIDIA DOCA Host-based Networking Service MLNX-15-060519 _v2.2.1 | 38

Offloaded entries can be checked in following files, which contain the programming
status of every IP prefix and MAC address known to system.

‣ Bridge entries are available in the file /cumulus/nl2docad/run/software-tables/17
. It includes all the MAC addresses in the system including local and remote MAC
addresses.

Example format:
- flow-entry: 0xaaab0cef4190
 flow-pattern:
 fid: 112
 dst mac: 00:00:5e:00:01:01
 flow-actions:
 SET VRF: 2
 DIR: DIR_ANY
 OUTPUT-PD-PORT: 0(TO_RTR_INTF)
 STATS:
 pkts: 1719
 bytes: 191286

‣ Router entries are available in the file /cumulus/nl2docad/run/software-tables/18.
It includes all the IP addresses in the system.

Example format:
- flow-entry: 0xaaab0e033bb0
 flow-pattern:
 IPV4: LPM
 VRF: 3
 ip dst: 60.1.1.21/32
 flow-actions :
 DIR: DIR_ANY
 OUTPUT PD PORT: 3(PUNT_INTF)
 STATS:
 pkts: 0
 bytes: 0

‣ ECMP entries are available in the file /cumulus/nl2docad/run/software-tables/19.
It includes all the next hops in the system.

Example format:
- ECMP: 22
 ref-count: 18
 entries:
 - { index: 0, fid: 4059, src mac: '00:01:00:00:1e:01', dst
 mac: '00:01:00:00:04:08' }
 - { index: 1, fid: 4059, src mac: '00:01:00:00:1e:01', dst
 mac: '00:01:00:00:04:08' }
 - { index: 2, fid: 4059, src mac: '00:01:00:00:1e:01', dst
 mac: '00:01:00:00:04:08' }
 - { index: 3, fid: 4059, src mac: '00:01:00:00:1e:01', dst
 mac: '00:01:00:00:04:08’ }
…
 - { index: 15, fid: 4059, src mac: '00:01:00:00:1e:01', dst
 mac: '00:01:00:00:04:08' }

To check counters for packets going to the kernel, run:
cat /cumulus/nl2docad/run/stats/punt

For example, to check L2 EVPN ENCAP flows for remote MAC 8a:88:d0:b1:92:b1 on
port pf0vf0_sf, the basic offload flow should look as follows: RxPort (pf0vf0_sf) -> BR
(Overlay) -> RTR (Underlay) -> BR (Underlay) -> TxPort (one of the uplink p0_sf or p1_sf
based on ECMP hash).

Troubleshooting

NVIDIA DOCA Host-based Networking Service MLNX-15-060519 _v2.2.1 | 39

Step-by-step procedure:

 1. Navigate to the interface file /cumulus/nl2docad/run/software-tables/20.
 2. Check for the RxPort (pf0vf0_sf):

Interface: pf0vf0_sf
 PD PORT: 6
 Bridge-id: 61
 Untagged FID: 112

FID 112 is given to the receive port.
 3. Check the bridge table file /cumulus/nl2docad/run/software-tables/17 with

destination MAC 8a:88:d0:b1:92:b1 and FID 112:
flow-pattern:
 fid: 112
 dst mac: 8a:88:d0:b1:92:b1
 flow-actions:
 VXLAN ENCAP:
 ENCAP dst ip: 6.0.0.26
 ENCAP vni id: 1000112
 SET VRF: 0
 DIR: DIR_TO_NET
 OUTPUT-PD-PORT: 0(TO_RTR_INTF)
 STATS:
 pkts: 100
 bytes: 10200

 4. Check the router table file /cumulus/nl2docad/run/software-tables/18 with
destination IP 6.0.0.26 and VRF 0:
flow-pattern:
 IPV4: LPM
 VRF: 0
 ip dst: 6.0.0.26/32
 flow-actions :
 ECMP: 1
 DIR: DIR_TO_NET
 OUTPUT PD PORT: 2(TO_BR_INTF)
 STATS:
 pkts: 300
 bytes: 44400

 5. Check the ECMP table file /cumulus/nl2docad/run/software-tables/19 with ECMP
1:
- ECMP: 1
 create-ts: 05/24/23 19:11:05.545
 pgm-us: 15589
 ref-count: 7
 entries:
 - { index: 0, fid: 4100, src mac: 'b8:ce:f6:99:49:6a', dst
 mac: '00:02:00:00:00:2f' }
 - { index: 1, fid: 4115, src mac: 'b8:ce:f6:99:49:6b', dst
 mac: '00:02:00:00:00:33' }

 6. The ECMP hash calculation picks one of these paths for next-hop rewrite. Check
bridge table file for them (fid=4100, dst mac: 00:02:00:00:00:2f or fid=4115,
dst mac: 00:02:00:00:00:33):
flow-pattern:
 fid: 4100
 dst mac: 00:02:00:00:00:2f
 flow-actions:
 DIR: DIR_TO_NET
 OUTPUT-PD-PORT: 36(p0_sf)
 STATS:
 pkts: 1099

Troubleshooting

NVIDIA DOCA Host-based Networking Service MLNX-15-060519 _v2.2.1 | 40

 bytes: 162652

This will show the packet going out on the uplink.

5.8. NVUE Troubleshooting
To check the status of the NVUE daemon, run:
supervisorctl status nvued

To restart the NVUE daemon, run:
supervisorctl restart nvued

NVIDIA DOCA Host-based Networking Service MLNX-15-060519 _v2.2.1 | 41

Chapter 6. HBN Service Release
Notes

The following subsections provide information on HBN service new features,
interoperability, known issues, and bug fixes.

6.1. Changes and New Features
HBN 1.5.0 offers the following new features and updates:

‣ Improved packet forwarding performance with new HW offload architecture (based
on DOCA Flow)

‣ Added support for RoCE (on DPU and host-facing interfaces)

‣ Added initial QoS support for RoCE over VXLAN, propagating DSCP/ECN values for
encapsulated packets

‣ Added support for hash-based equal-cost multipath (ECMP) routing

‣ Added support for per-rule fixed ordering for stateful and stateless ACLs

‣ Added support for shared CPU policer for CPU traffic (CoPP)

‣ Added full longest-prefix match (LPM) matching support for IPv4 and IPv6

In earlier HBN releases, LPM was partially supported in the form of three priorities
with host routes being highest and default routes lowest and everything else coming
in between.

‣ Added support for ECMP over both host and uplink ports and for both native routing
and L2 EVPN. The path is chosen with a hash calculation based on five tuples (i.e.,
source IP, destination IP, protocol type, source port and destination port). HBN
supports up to 16-way ECMP path. For IPv6 only, due to hardware limitations, upper
64 bits (i.e., 64 MSB) are used for hash calculations.

6.2. Supported Platforms and
Interoperability

HBN Service Release Notes

NVIDIA DOCA Host-based Networking Service MLNX-15-060519 _v2.2.1 | 42

6.2.1. Supported BlueField Platforms
HBN 1.5.0 has been tested on the following DPUs:

‣ BlueField-2 DPU Platforms:

‣ BlueField-2 P-Series DPU 100GbE Dual-Port QSFP56; integrated BMC; PCIe
Gen4 x16; Secure Boot Enabled; Crypto Enabled; 32GB on-board DDR; 1GbE OOB
management; FHHL

‣ BlueField-2 P-Series DPU 25GbE Dual-Port SFP56; integrated BMC; PCIe Gen4
x8; Secure Boot Enabled; Crypto Enabled; 32GB on-board DDR; 1GbE OOB
management; FHHL

‣ BlueField-2 P-Series DPU 25GbE Dual-Port SFP56; integrated BMC; PCIe Gen4
x8; Secure Boot Enabled; Crypto Enabled; 16GB on-board DDR; 1GbE OOB
management; FHHL

‣ BlueField-2 P-Series DPU 25GbE Dual-Port SFP56; PCIe Gen4 x8; Crypto Enabled;
16GB on-board DDR; 1GbE OOB management; HHHL

‣ BlueField-3 DPU Platforms:

‣ BlueField-3 B3220 P-Series FHHL DPU; 200GbE (default mode)/NDR200 IB; Dual-
port QSFP112; PCIe Gen5.0 x16 with x16 PCIe extension option; 16 Arm cores;
32GB on-board DDR; integrated BMC; Crypto Enabled

‣ BlueField-3 B3210 P-Series FHHL DPU; 100GbE (default mode)/HDR100 IB; Dual-
port QSFP112; PCIe Gen5.0 x16 with x16 PCIe extension option; 16 Arm cores;
32GB on-board DDR; integrated BMC; Crypto Enabled

Note: Single-port DPU platforms are currently not supported with HBN.

6.2.2. Supported BlueField OS
HBN 1.4.0 supports DOCA 2.0.2 (BSP 4.0.3) on Ubuntu 22.04.

6.2.3. Verified Scalability Limits
HBN 1.5.0 has been tested to sustain the following maximum scalability limits:

Limit BlueField-2 BlueField-3 Comments

VTEP peers (DPUs per
control plane) in the
fabric

2k 2k Number of DPUs
(VTEPs) within a
single overlay fabric
(reachable in the
underlay)

VNIs/overlay networks
in the fabric

18 18 Total number of L2
VNIs in the fabric (max
VNIs = max VF + max
PF)

HBN Service Release Notes

NVIDIA DOCA Host-based Networking Service MLNX-15-060519 _v2.2.1 | 43

Limit BlueField-2 BlueField-3 Comments
DPUs per VNI/overlay
network

3, 2000 3, 2000 Total number of DPUs,
configured with the
same VNI3 real DPUs,
2000 emulated VTEPs

Tenants (L3 VNIs) per
server

8 8 Maximum number of
tenants on the same
host server

VM/pods per server 16 16 Maximum number
of IP addresses
advertised by EVPN in
DPU

Maximum number
of L3 LPM routes
(underlay)

256 256

Maximum number of
EVPN type-2 entries
(remote overlay MAC/
IP entries for compute
peers stored on a
single DPU)

16k 16k L2 EVPN neighbor
cache size 8k IPv4 +
8k IPv6

Maximum number of
EVPN type-5 entries
(remote overlay L3
LPM entries for
compute peers stored
on a single DPU)

128 128 L3 EVPN neighbor
cache size

VTEP table
convergence time

4-5 sec 4-5 sec Maximum time to
receive the data
from the EVPN peer
of all tenants and
populating the table
to hardware

Maximum number of
PFs

2 2 Total number of PFs
visible to the host

Maximum number of
VFs

16 16 Total number of VFs
created on the host

6.3. Known Issues
The following table lists the known issues and limitations for this release of HBN.

Reference Description

Description: The DOCA HBN container takes about 1 minute longer to spawn, as
compared to previous HBN release (1.4.0).

Workaround: N/A

3519324

Keyword: Container

HBN Service Release Notes

NVIDIA DOCA Host-based Networking Service MLNX-15-060519 _v2.2.1 | 44

Reference Description

Reported in HBN version: 1.5.0

Description: The output of the command nv show interface does not display
information about VRFs, VXLAN, and bridge.

Workaround: N/A

Keyword: Command output

3610971

Reported in HBN version: 1.5.0

Description: When the DPU boots up after issuing a "reboot" command from the
DPU itself, some host-side interfaces may remain down.

Workaround: N/A

Keyword: Reboot

3605486

Reported in HBN version: 1.5.0

Description: IPv6 stateless ACLs are not supported.

Workaround: N/A

Keyword: IPv6 ACL

3547103

Reported in HBN version: 1.5.0

Description: Service functions (*_sf) inside the HBN container are UP at container
start irrespective of their presence/absence in the /etc/network/interfaces file.
But once any of them are added to /e/n/i and later taken off from /e/n/i, they stay
DOWN unless added back to /e/n/i.

Workaround: N/A

Keyword: Service functions; status

3378928

Reported in HBN version: 1.5.0

Description: Statistics for hardware-offloaded traffic are not reflected on SFs
inside an HBN container.

Workaround: Look up the stats using ip -s link show on PFs outside of the HBN
container. PFs would show Tx/Rx stats for traffic that is hardware-accelerated in
the HBN container.

Keyword: Statistics; container

3339304

Reported in HBN version: 1.4.0

Description: NVUE show, config, and apply commands malfunction if the nvued and
nvued-startup services are not in the RUNNING and EXITED states respectively.

Workaround: N/A

Keyword: NVUE commands

3352003

Reported in HBN version: 1.3.0

Description: If interfaces on which BGP unnumbered peering is configured are not
defined in the /etc/network/interfaces configuration file, BGP peering does not
get established on them.

Workaround: N/A

Keyword: BGP

3354029

Reported in HBN version: 1.3.0

HBN Service Release Notes

NVIDIA DOCA Host-based Networking Service MLNX-15-060519 _v2.2.1 | 45

Reference Description

Description: If many interfaces are participating in EVPN/routing, it is possible for
the routing process to run out of memory.

Workaround: Have a maximum of 8 VF interfaces participating in routing/VXLAN.

Keyword: Routing; memory

3168683

Reported in HBN version: 1.2.0

Description: TC rules are programmed by OVS to map uplink and host representor
ports to HBN service. These rules are ageable and can result in packets needing to
get software forwarded periodically to refresh the rules.

Workaround: The timeout value can be adjusted by changing the OVS parameter
other_config : max-idle as documented here. The shipped default value is
10000ms (10s).

Keyword: SFC; aging

3219539

Reported in HBN version: 1.2.0

Description: The command nv show interface <intf> acl does not show correct
information if there are multiple ACLs bound to the interface.

Workaround: Use the command nv show interface <intf> to view the ACLs
bound to an interface.

Keyword: ACLs

3184745

Reported in HBN version: 1.2.0

Description: Deleting an NVUE user by removing their password file and restarting
the decrypt-user-add service on the HBN container does not work.

Workaround: Either respawn the container after deleting the file, or delete the
password file corresponding to the user by running userdel -r username.

Keyword: User deletion

3158934

Reported in HBN version: 1.2.0

Description: ECMP selection for the underlay path uses the ingress port and
identifies uplink ports via round robin. This may not result in uniform spread of the
traffic.

Workaround: N/A

Keyword: ECMP

3191433

Reported in HBN version: 1.2.0

Description: When a packet is encapsulated with a VXLAN header, it adds extra
bytes which may cause the packet to exceed the MTU of link. Typically, the packet
would be fragmented but its silently dropped and no fragmentation happens.

Workaround: Make sure that the MTU on the uplink port is always 50 bytes more
than host ports so that even after adding VXLAN headers, ingress packets do not
exceed the MTU.

Keyword: MTU; VXLAN

3185003

Reported in HBN version: 1.2.0

3184905 Description: On VXLAN encapsulation, the DF flag is not propagated to the outer
header. Such a packet may be truncated when forwarded in the kernel, and it may
be dropped when hardware offloaded.

https://www.openvswitch.org/support/dist-docs/ovs-vswitchd.conf.db.5.html

HBN Service Release Notes

NVIDIA DOCA Host-based Networking Service MLNX-15-060519 _v2.2.1 | 46

Reference Description

Workaround: Make sure that the MTU on the uplink port is always 50 bytes more
than host ports so that even after adding VXLAN headers, ingress packets do not
exceed the MTU.

Keyword: VXLAN

Reported in HBN version: 1.2.0

Description: When stopping the container using the command crictl stop an
error may be reported because the command uses a timeout of 0 which is not
enough to stop all the processes in the HBN container.

Workaround: Pass a timeout value when stopping the HBN container by running:
crictl stop --timeout 60 <hbn-container>

Keyword: Timeout

3188688

Reported in HBN version: 1.2.0

Description: The same ACL rule cannot be applied in both the inbound and
outbound direction on a port.

Workaround: N/A

Keyword: ACLs

3129749

Reported in HBN version: 1.2.0

Description: The system's time zone cannot be modified using NVUE in the HBN
container.

Workaround: The timezone can be manually changed by symlinking the /etc/
localtime file to a binary time zone's identifier in the /usr/share/zoneinfo
directory. For example:
sudo ln -sf /usr/share/zoneinfo/GMT /etc/localtime

Keyword: Time zone; NVUE

3126560

Reported in HBN version: 1.2.0

Description: Auto-BGP functionality (where the ASN does not need to be
configured but is dynamically inferred by the system based on the system's role as
a leaf or spine device) is not supported on HBN.

Workaround: If BGP is configured and used on HBN, the BGP ASN must be
manually configured.

Keyword: BGP

3118204

Reported in HBN version: 1.2.0

Description: Since checksum calculation is offloaded to the hardware (not done by
the kernel), it is expected to see an incorrect checksum in the tcpdump for locally
generated, outgoing packets. BGP keepalives and updates are some of the packets
that show such incorrect checksum in tcpdump.

Workaround: N/A

Keyword: BGP

3233088

Reported in HBN version: 1.2.0

3049879 Description: When reloading (ifreload) an empty /etc/network/interfaces file,
the previously created interfaces are not deleted.

HBN Service Release Notes

NVIDIA DOCA Host-based Networking Service MLNX-15-060519 _v2.2.1 | 47

Reference Description

Workaround: To delete all previously created interfaces, at least one interface must
be present in /etc/network/interfaces. The following configuration can be used
as a safe "empty" file to delete all other virtual devices:
auto p0
iface p0
auto p1
iface p1

Keyword: Configuration file

Reported in HBN version: 1.3.0

Description: Due to disabled backend foundation units, some NVUE commands
return 500 INTERNAL SERVER ERROR/404 NOT FOUND. These commands are related
to features or subsystems which are not supported on HBN.

Workaround: N/A

Keyword: Unsupported NVUE commands

3017202

Reported in HBN version: 1.3.0

Description: MAC addresses are not learned in the hardware but only in software.
This may affect performance in pure L2 unicast traffic. This should not affect
performance of IPv4/IPv6 traffic or L2 control traffic (i.e., STP, LLDP).

Workaround: N/A

Keyword: MAC; L2

2821785

Reported in HBN version: 1.3.0

Description: NetworkManager and other services not directly related to HBN may
display the following message in syslog:
"netlink: read: too many netlink events. Need to resynchronize platform
 cache"
The message has no functional impact and may be ignored.

Workaround: N/A

Keyword: Error

2828838

Reported in HBN version: 1.3.0

6.4. Bug Fixes
The following table lists the known issues and limitations for this release of HBN.

Reference Description

Description: IPv6 OOB connectivity from the HBN container stops working if
the br-mgmt interface on the DPU goes down. When going down, the br-mgmt
interface loses its IPv6 address, which is used as the gateway address for the HBN
container. If the br-mgmt interface comes back up, its IPv6 address is not added
back and IPv6 OOB connectivity from the HBN container will not work.

3452914

Fixed in HBN version: 1.5.0

3191433 Description: ECMP selection for the underlay path uses the ingress port and
identifies uplink ports via round robin. This may not result in uniform spread of the
traffic.

HBN Service Release Notes

NVIDIA DOCA Host-based Networking Service MLNX-15-060519 _v2.2.1 | 48

Reference Description

Fixed in HBN version: 1.4.0

Description: When reloading (ifreload) an empty /etc/network/interfaces file,
the previously created interfaces are not deleted..

3049879

Fixed in HBN version: 1.4.0

Description: When an ACL is configured for IPv4 and L4 parameters (protocol tcp/
udp, source, and destination ports) match, the ACL also matches IPv6 traffic with
the specified L4 parameters.

3284607

Fixed in HBN version: 1.4.0

Description: Some DPUs experience an issue with the clock settings after installing
a BlueField OS in an HBN setting in which the date reverts back to "Thu Sep 8,
2022".

3282113

Fixed in HBN version: 1.4.0

Description: If interfaces on which BGP unnumbered peering is configured are not
defined in the /etc/network/interfaces configuration file, BGP peering does not
get established on them.

3354029

Fixed in HBN version: 1.4.0

Notice

This document is provided for information purposes only and shall not be regarded as a warranty of a certain functionality, condition, or quality of a product.
NVIDIA Corporation nor any of its direct or indirect subsidiaries and affiliates (collectively: “NVIDIA”) make no representations or warranties, expressed or
implied, as to the accuracy or completeness of the information contained in this document and assume no responsibility for any errors contained herein.
NVIDIA shall have no liability for the consequences or use of such information or for any infringement of patents or other rights of third parties that may
result from its use. This document is not a commitment to develop, release, or deliver any Material (defined below), code, or functionality.

NVIDIA reserves the right to make corrections, modifications, enhancements, improvements, and any other changes to this document, at any time without
notice.

Customer should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the time of order acknowledgement, unless otherwise
agreed in an individual sales agreement signed by authorized representatives of NVIDIA and customer (“Terms of Sale”). NVIDIA hereby expressly objects
to applying any customer general terms and conditions with regards to the purchase of the NVIDIA product referenced in this document. No contractual
obligations are formed either directly or indirectly by this document.

NVIDIA products are not designed, authorized, or warranted to be suitable for use in medical, military, aircraft, space, or life support equipment, nor in
applications where failure or malfunction of the NVIDIA product can reasonably be expected to result in personal injury, death, or property or environmental
damage. NVIDIA accepts no liability for inclusion and/or use of NVIDIA products in such equipment or applications and therefore such inclusion and/or use
is at customer’s own risk.

NVIDIA makes no representation or warranty that products based on this document will be suitable for any specified use. Testing of all parameters of each
product is not necessarily performed by NVIDIA. It is customer’s sole responsibility to evaluate and determine the applicability of any information contained
in this document, ensure the product is suitable and fit for the application planned by customer, and perform the necessary testing for the application in
order to avoid a default of the application or the product. Weaknesses in customer’s product designs may affect the quality and reliability of the NVIDIA
product and may result in additional or different conditions and/or requirements beyond those contained in this document. NVIDIA accepts no liability
related to any default, damage, costs, or problem which may be based on or attributable to: (i) the use of the NVIDIA product in any manner that is contrary
to this document or (ii) customer product designs.

No license, either expressed or implied, is granted under any NVIDIA patent right, copyright, or other NVIDIA intellectual property right under this document.
Information published by NVIDIA regarding third-party products or services does not constitute a license from NVIDIA to use such products or services or
a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property rights
of the third party, or a license from NVIDIA under the patents or other intellectual property rights of NVIDIA.

Reproduction of information in this document is permissible only if approved in advance by NVIDIA in writing, reproduced without alteration and in full
compliance with all applicable export laws and regulations, and accompanied by all associated conditions, limitations, and notices.

THIS DOCUMENT AND ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS
(TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR
OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND
FITNESS FOR A PARTICULAR PURPOSE. TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL NVIDIA BE LIABLE FOR ANY DAMAGES, INCLUDING
WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF
THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF NVIDIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
Notwithstanding any damages that customer might incur for any reason whatsoever, NVIDIA’s aggregate and cumulative liability towards customer for the
products described herein shall be limited in accordance with the Terms of Sale for the product.

Trademarks

NVIDIA, the NVIDIA logo, and Mellanox are trademarks and/or registered trademarks of Mellanox Technologies Ltd. and/or NVIDIA Corporation in the
U.S. and in other countries. The registered trademark Linux® is used pursuant to a sublicense from the Linux Foundation, the exclusive licensee of Linus
Torvalds, owner of the mark on a world¬wide basis. Other company and product names may be trademarks of the respective companies with which they
are associated.

Copyright

© 2023 NVIDIA Corporation & affiliates. All rights reserved.

NVIDIA Corporation | 2788 San Tomas Expressway, Santa Clara, CA 95051
http://www.nvidia.com

http://www.nvidia.com

	Table of Contents
	Release Notes
	HBN Overview
	Service Deployment
	3.1. Preparing DPU for HBN Deployment
	3.1.1. Service Function Chaining
	3.1.2. Enabling SFC for HBN Deployment
	3.1.2.1. Deployment from BFB
	3.1.2.2. Deployment from PXE

	3.2. HBN Service Container Deployment
	3.3. HBN Default Deployment Configuration
	3.4. HBN Deployment Considerations
	3.4.1. SF Interface State Tracking
	3.4.2. SF Interface MTU
	3.4.3. Connecting to Services on DPU
	3.4.4. Disabling DPU Uplinks

	Configuration
	4.1. General Network Configuration
	4.1.1. Flat Files Configuration

	4.2. NVUE Configuration
	4.2.1. NVUE Service
	4.2.2. NVUE REST API
	4.2.3. NVUE CLI
	4.2.4. NVUE Startup Configuration File
	4.2.5. NVUE User Credentials
	4.2.6. NVUE Interface Classification

	4.3. Configuration Persistence
	4.4. SR-IOV Support
	4.4.1. Creating VFs on Host Server
	4.4.2. Automatic Creation of VF Representors on DPU

	4.5. Management VRF
	4.5.1. MGMT VRF on Host DPU
	4.5.2. MGMT VRF in HBN Container
	4.5.3. Existing Services in MGMT VRF on Host DPU
	4.5.4. Running New Service in MGMT VRF

	4.6. HBN Configuration Examples
	4.6.1. HBN Default Configuration
	4.6.2. Native Routing with BGP and ECMP
	4.6.2.1. ECMP Configuration
	4.6.2.1.1. Sample NVUE Configuration
	4.6.2.1.2. Sample Flat Files Configuration

	4.6.2.2. BGP Peering with Host
	4.6.2.2.1. Sample NVUE Configuration
	4.6.2.2.2. Sample Flat Files Configuration
	4.6.2.2.3. Sample Configuration on Host Running FRR

	4.6.3. L2 EVPN with BGP and ECMP
	4.6.3.1. Single VXLAN Device
	4.6.3.1.1. Sample NVUE Configuration on DPU
	4.6.3.1.2. Sample Flat Files Configuration on HBN
	4.6.3.1.3. Sample Switch Configuration for EVPN

	4.6.4. Access Control Lists
	4.6.4.1. ACL Ordering
	4.6.4.2. Stateless ACLs
	4.6.4.2.1. NVUE Examples for Stateless ACLs
	4.6.4.2.2. Flat Files (cl-acltool) Examples for Stateless ACLs

	4.6.4.3. Stateful ACLs
	4.6.4.3.1. NVUE Examples for L3 Stateful ACLs
	4.6.4.3.2. Flat Files (cl-acltool) Examples for L3 Stateful ACLs
	4.6.4.3.3. Flat Files (cl-acltool) Examples for L2 Stateful ACLs

	4.6.5. DHCP Relay on HBN
	4.6.5.1. Configuration
	4.6.5.1.1. Flat File Configuration (Supervisord)
	4.6.5.1.2. NVUE Configuration
	4.6.5.1.3. DHCPv4 Relay Configuration
	4.6.5.1.4. DHCPv4 Relay Option 82
	4.6.5.1.5. DHCPv6 Relay Configuration

	4.6.5.2. DHCP Relay and VRF Considerations

	Troubleshooting
	5.1. HBN Container Does Not Start
	5.2. HBN Container Stuck in init-sfs
	5.3. BGP Session not Establishing
	5.4. Generating Support Dump
	5.5. SFC Troubleshooting
	5.6. General nl2doca Troubleshooting
	5.7. nl2doca Offload Troubleshooting
	5.8. NVUE Troubleshooting

	HBN Service Release Notes
	6.1. Changes and New Features
	6.2. Supported Platforms and Interoperability
	6.2.1. Supported BlueField Platforms
	6.2.2. Supported BlueField OS
	6.2.3. Verified Scalability Limits

	6.3. Known Issues
	6.4. Bug Fixes

