
MLNX-15-060466 _v2.2.1 | October 2023

NVIDIA DOCA DPI

Programming Guide

NVIDIA DOCA DPI MLNX-15-060466 _v2.2.1 | ii

Table of Contents

Chapter 1. Introduction..1

Chapter 2. Prerequisites.. 2

Chapter 3. Architecture... 3
3.1. Signature Database...3

3.2. DPI Queue..4

Chapter 4. API.. 5
4.1. Initialization and Configuration..5

4.2. Signature Loading..7

4.3. DPI Queue Creation...7

4.4. Flow Life Cycle and Packet Processing.. 7

4.5. Teardown..9

Chapter 5. DOCA DPI Samples.. 10
5.1. Sample Prerequisites... 10

5.2. Running the Sample...10

5.3. Samples..11

5.3.1. DPI Scan.. 11

NVIDIA DOCA DPI MLNX-15-060466 _v2.2.1 | 1

Chapter 1. Introduction

Important: No updates were made to the DOCA DPI library in DOCA 2.2. Please refer to
DOCA 2.5 for a note regarding future DPI updates.

Deep packet inspection (DPI) is a method of examining the full content of data packets
as they traverse a monitored network checkpoint.

DPI provides a more robust mechanism for enforcing network packet filtering as it can
be used to identify and block a range of complex threats hiding in network data streams
more accurately. This includes:

‣ Malicious applications

‣ Malware data exfiltration attempts

‣ Content policy violations

‣ Application recognition

‣ Load balancing

The DOCA DPI library supports inspection of the following protocols:

‣ HTTP 2.0/1.1/1.0

‣ TLS/SSL client hello and certificate messages

‣ DNS

TCP/UDP stream-based signatures may detect applications on other protocols.

NVIDIA DOCA DPI MLNX-15-060466 _v2.2.1 | 2

Chapter 2. Prerequisites

DPI-based applications can run either on the host machine, or on the NVIDIA® BlueField®

DPU target. Since the DPI leverages the Regular Expressions (RegEx) Engine, users must
make sure it is enabled.

The RegEx engine is enabled by default on the DPU. To use DPI directly on the host, run:
host> sudo /etc/init.d/openibd stop
dpu> echo 1 > /sys/class/net/p0/smart_nic/pf/regex_en
dpu> cat /sys/kernel/mm/hugepages/hugepages-2048kB/nr_hugepages
400
Make sure to allocate 200 additional hugepages
dpu> sudo echo 600 > /sys/kernel/mm/hugepages/hugepages-2048kB/nr_hugepages
dpu> systemctl start mlx-regex
Verify the service is properly running
dpu> systemctl status mlx-regex
host> sudo /etc/init.d/openibd start

Note: Commands with the host prompt must be run on the host. Commands with the dpu
prompt must be run on BlueField (Arm).

NVIDIA DOCA DPI MLNX-15-060466 _v2.2.1 | 3

Chapter 3. Architecture

The following diagram shows how the DPI library receives for processing a compiled
signatures files and a stream of "in-order" and non-fragmented packets, and returns
matches per flow.

3.1. Signature Database
The signature database is compiled into a CDO file by the DPI compiler. The CDO file
includes:

‣ Compiled RegEx engine rules

‣ Other signature information

The application may load a new database while the DPI is processing packets.

For more information on the DPI compiler, please refer to the NVIDIA DOCA DPI Compiler
document.

Note: Programs using DOCA DPI library version 2.0 and above must use CDO files
generated by DOCA DPI Compiler version 2.0 and above.

http://docs.nvidia.com/doca/sdk/pdf/dpi-compiler.pdf

Architecture

NVIDIA DOCA DPI MLNX-15-060466 _v2.2.1 | 4

3.2. DPI Queue
A DPI queue, implemented as a doca_workq, is designed to be used by a worker thread.
The DPI queue holds the flow's state. Therefore, all packets from both directions of the
flow must be submitted to the same DPI queue in-order. Each packet must be injected
as a doca_buf along with a flow context and a direction.

A flow direction is usually represented by a 5-tuple, but it can also be a 3-tuple for other
protocols.

Note: From the application's side, the connection tracking (CT) logic must handle out-
of-order packets as well as fragmented packets. Once a connection has timed out or
terminated, the application must notify the DPI library as well.

NVIDIA DOCA DPI MLNX-15-060466 _v2.2.1 | 5

Chapter 4. API

For the library API reference, refer to DPI API documentation in NVIDIA DOCA Libraries
API Reference Manual.

Note: The pkg-config (*.pc file) for the DPI library library is included in DOCA's regular
definitions (i.e., doca).

The DPI library is based on DOCA core objects and follows the standard execution model.

The following sections provide additional details about the library API and they indicate
the order of operations.

4.1. Initialization and Configuration
A doca_dpi instance should be created with the following function:
doca_error_t doca_dpi_create(struct doca_dpi **dpi);

The following helper function can be used to map the doca_dpi instance to generic
doca_ctx:
struct doca_ctx *doca_dpi_as_ctx(struct doca_dpi *dpi);

With the doca_ctx, standard DOCA core functions can be utilized to add a device to be
used with DPI (doca_ctx_dev_add()) and to start the DPI context (doca_ctx_start()).

Note: Adding a device to a doca_dpi instance prior to starting is mandatory. The API calls
doca_dpi_is_supported(), and doca_dpi_job_get_supported() can be used to check
the compatibility of a given DOCA device.

Prior to starting the context, the following API calls can be used to configure the DPI
library:

API Call Notes

doca_dpi_set_per_workq_packet_pool_size() DPI workqs can clone and hold references
to buffers even after they are returned to
the application which allows cross-packet
signatures to be detected within a flow when
more packets arrive. This function sets the
maximum number of such references that can
be held per DPI workq.

http://docs.nvidia.com/doca/sdk/pdf/doca-libraries-api.pdf
http://docs.nvidia.com/doca/sdk/pdf/doca-libraries-api.pdf

API

NVIDIA DOCA DPI MLNX-15-060466 _v2.2.1 | 6

API Call Notes
It is important that the application selects
an appropriate value for the packet pool size.
If the value is too low then buffer cloning
may fail, leading to enqueue returning a
DOCA_ERROR_NO_MEMORY error. However, setting
a value too high may cause undesired behavior.

For example, if the application is reading
packets from a descriptor pool of size N,
having a packet pool value greater than N
could lead to situations where DPI holds clone
references to all descriptors and none are
released potentially causing stalemate.

It is recommended that the application
accounts for this and sets a value smaller than
the total potential input buffers. If memory
errors are returned on enqueue then the
application should free descriptors by timing
out old flows.

doca_dpi_set_per_workq_max_flows() Each DPI workq can hold contexts for a given
number of active flows at once. This value
defaults to 10,000 but can be configured via
this API call if the user suspects the value is
too low or if they want to reduce pre-allocated
memory overheads by setting a lower value.

doca_dpi_set_max_sig_match_len() This function sets the maximum length
signature match in bytes that the DPI library
guarantees to find. The DPI library may return
matches longer than this value but may miss
some of them. It guarantees to find any
matches of the given length or smaller within a
flow. This defaults to 5000.

The value selected here should be
considered alongside the value set in
doca_dpi_set_per_workq_packet_pool_size().
If a large value is used then more packets
within a flow must be cloned and stored for
longer, using more entries from the packet
pool. For example, if a flow has received 4
packets of 1500 bytes and the max signature
value is set to 10,000, then DPI must hold all
4 packets until further packets arrive as a
signature of 10,000 bytes could start in the
first packet and complete in packets not yet
received (only 6000 bytes currently examined).
However, if the max signature length is set to
1000 bytes, then DPI must only store the latest
packet as no match of 1000 can start prior to
the latest packet and not have already been
detected.

API

NVIDIA DOCA DPI MLNX-15-060466 _v2.2.1 | 7

API Call Notes
doca_dpi_set_in_order_mode() DPI uses a hardware-accelerated pattern

matcher which can process data in parallel.
Therefore, it is possible that some packets
or buffers are processed quicker than others
and that results are received in a different
order than they are sent. If the application
must receive results to jobs in the same order
that they were sent, then the user can call
this function to enforce in-order processing.
This value is turned off by default as enabling
in-order processing may negatively impact
performance.

4.2. Signature Loading
Before enqueueing packets for processing, the DPI library must be loaded with
signatures by the main thread.

Signature loading can take place during the configuration of the doca_dpi instance or
after it has been started using the following function:
doca_error_t doca_dpi_set_signatures(struct doca_dpi *dpi, const char *cdo_file);

The function can be used during runtime to update the currently loaded signatures. The
DPI context does not need to be stopped for this to happen.

4.3. DPI Queue Creation
DPI queues are implemented as DOCA workqs. It is recommended that one queue is used
per worker core in the application.

Workqs should be created after the doca_ctx instance is started and should be added
to the doca_dpi instance using the standard DOCA core calls doca_workq_create() and
doca_ctx_workq_add().

4.4. Flow Life Cycle and Packet
Processing

 1. Once a new flow is detected by the connection tracking software, the user should
notify the DPI library using the following function:
doca_error_t doca_dpi_flow_create(struct doca_dpi *dpi, struct doca_workq *workq,
 const struct doca_dpi_parsing_info
 *parsing_info,
 struct doca_dpi_flow_ctx **flow_ctx);

The user must inform DPI which doca_workq the flow should be created on.
The extracted L3 and L4 information should also be passed in a populated

API

NVIDIA DOCA DPI MLNX-15-060466 _v2.2.1 | 8

doca_dpi_parsing_info struct. The function gives the calling application an opaque
pointer to a flow context.

 2. Every incoming packet classified for this flow should be packaged into a
doca_dpi_job and enqueued to the same workq the flow is created on by using the
standard DOCA workq function doca_workq_submit().

Packets or job buffers must be represented as type doca_buf which is a
standard format for passing data to DOCA libs. DOCA provides libraries (e.g.,
doca_dpdk_bridge) which allow the conversion of packet acquisition formats such as
DPDK's mbuf to doca_buf.

A doca_dpi_job format is as follows:
struct doca_dpi_job {
 struct doca_job base;
 const struct doca_buf *pkt;
 bool initiator;
 uint32_t payload_offset;
 struct doca_dpi_flow_ctx *flow_ctx;
 struct doca_dpi_result *result;
};

A standard doca_job struct should begin the job followed by a pointer to the
doca_buf representing the packet, an indicator of the direction of the packet within
the flow, any offset of the payload within the doca_buf, and the flow context pointer
for the given flow (previously generated with doca_dpi_flow_create()).

The final field is a pointer to a doca_dpi_result struct. This memory must be held
by the calling application and maintained until the job response is dequeued. It is this
memory location that holds the job result information at dequeue time.

Note: It is user responsibility to ensure that the L3 and L4 information of the
enqueued packet matches that of the parsing info of the respective flow (the
direction can be different).

Note: For every doca_buf injected, the user is not allowed to free the doca_buf until
the doca_buf is dequeued.

 3. To poll the results, the application must call the DOCA core workq function
doca_workq_progress_retrieve().

On success, the function returns a doca_event popped from the associated workq,
and the doca_dpi_result result field for that job is populated. A pointer to this result
data can be accessed from the result field in the event struct.

There is also a user_data field available in the doca_job struct of the enqueue job
that is returned in the doca_event if the application must sync further information
between the enqueue and dequeue.

The result data will be in the following format:
struct doca_dpi_result {
 const struct doca_buf *pkt;
 bool matched;
 struct doca_dpi_sig_info info;
 int status_flags;
}

API

NVIDIA DOCA DPI MLNX-15-060466 _v2.2.1 | 9

The result passes back a pointer to the packet that triggered the job, whether or
not the packet has a match (based on the entire flow), signature information on the
highest priority match, and status flags indicating the status of the flow and if the
match detected is new or had previously been detected in the flow.

Note: The returning of the doca_buf in the result does not guarantee that the DPI
library is finished with it. The DPI library may still hold a clone of the buffer which
increases ref counters and may prevent it from being properly released by the
application.

 4. When the connection tracking software detects that the flow is terminated
or aged-out, the application should notify the DPI library by calling
doca_dpi_flow_destroy(). This function only requires the flows associated
doca_dpi_flow_ctx as a parameter. Calling this function releases all resources held
by the flow including any cloned buffer references.

4.5. Teardown
When the application is finished with the DPI library it should follow the standard DOCA
core template to end a run.

The workqs must be removed from the context and destroyed using
doca_ctx_workq_rm() and doca_workq_destroy().

Following this, the DOCA context can be stopped with doca_ctx_stop() and the DPI
instance removed with doca_dpi_destroy().

Note: As stated previously, the DPI library may hold references to application-generated
buffers that it has cloned. Destroying a DPI workq releases the clones that are still present
on that workq. Therefore, it is advisable to remove and destroy the DPI workqs before
attempting to close or free the buffer generation utility.

For example, if doca_dpdk_bridge had been used to generate doca_bufs sent to DPI, then
you may not be able to release the bridge due to buffers still being in use if you attempt to
do it before removing the DPI workqs.

NVIDIA DOCA DPI MLNX-15-060466 _v2.2.1 | 10

Chapter 5. DOCA DPI Samples

This section provides DPI sample implementation on top of the BlueField DPU.

5.1. Sample Prerequisites
DPI-based applications can run either on the host machine or on the DPU target.

As DPI leverages the regular expressions (RegEx) engine, users must make sure it is
enabled:

 1. Allocate huge pages on the host side if running from x86:
sudo echo 2048 > /sys/kernel/mm/hugepages/hugepages-2048kB/nr_hugepages

 2. Make sure the RegEx engine is active on the DPU:
systemctl status mlx-regex

If the status is inactive (Active: failed), run:
systemctl start mlx-regex

 3. DPI compiler must be used since the RegEx engine accepts only .cdo files. The CDO
files are constructed by compiling a signature file written in Cta open-source format.

To compile the signature file, run the following:
doca_dpi_compiler -i <path to signature file> -o /tmp/signatures.cdo -f suricata

The .cdo file is created in the output path flagged as the -o input path of the
compiler.

5.2. Running the Sample
 1. Refer to the following documents:

‣ NVIDIA DOCA Installation Guide for Linux for details on how to install BlueField-
related software.

‣ NVIDIA DOCA Troubleshooting Guide for any issue you may encounter with the
installation, compilation, or execution of DOCA samples.

 2. To build a given sample:
cd /opt/mellanox/doca/samples/doca_dpi/<sample_name>
meson build

http://docs.nvidia.com/doca/sdk/pdf/installation-guide-for-linux.pdf
http://docs.nvidia.com/doca/sdk/pdf/troubleshooting.pdf

DOCA DPI Samples

NVIDIA DOCA DPI MLNX-15-060466 _v2.2.1 | 11

ninja -C build

Note: The binary doca_<sample_name> is created under ./build/.

 3. Sample (e.g., dpi_scan) usage:
Usage: doca_dpi_scan [DPDK Flags] -- [DOCA Flags] [Program Flags]
DOCA Flags:
 -h, --help Print a help synopsis
 -v, --version Print program version information
 -l, --log-level Set the log level for the program <CRITICAL=20,
 ERROR=30, WARNING=40, INFO=50, DEBUG=60>

Program Flags:
 -s, --sig-file Signatures file path
 -a, --pci-addr DOCA DPI device PCI address

 4. For additional information per sample, use the -h option after the -- separator:
./build/doca_<sample_name> -- -h

 5. DOCA DPI samples are based on DPDK libraries. Therefore, the user is required to
provide DPDK flags. The following is an example from an execution on the DPU:
./build/doca_dpi_scan -a auxiliary:mlx5_core.sf.4,sft_en=1 -- -s /tmp/
signatures.cdo -a 03:00.0

In contrast to DOCA DPI-based applications, the samples require only one network
port. This is because they parse the packets they received without forwarding them.

Note: When running on the DPU using the command above sub-functions must be
enabled according to the Scalable Function Setup Guide.

Note: When running on the host, virtual functions must be used according to the
instructions in the NVIDIA DOCA Virtual Functions User Guide.

5.3. Samples

5.3.1. DPI Scan
This sample illustrates how to use DPI programming interface on a single packet.

The sample logic includes:

 1. Initializing DOCA DPI.
 2. Loading the signature .cdo file into the RegEx engine.
 3. Creating DPI flow for the incoming packet.
 4. Inserting packet into DPI work queue.
 5. Polling packet from work queue when processing ends.
 6. Retrieving matched signature information if there is a match.
 7. Retrieving statistics information.
 8. Destroying DPI structures.

Reference:

http://docs.nvidia.com/doca/sdk/pdf/scalable-functions.pdf
http://docs.nvidia.com/doca/sdk/pdf/virtual-functions.pdf

DOCA DPI Samples

NVIDIA DOCA DPI MLNX-15-060466 _v2.2.1 | 12

‣ /opt/mellanox/doca/samples/doca_dpi/dpi_scan/dpi_scan.c

Notice

This document is provided for information purposes only and shall not be regarded as a warranty of a certain functionality, condition, or quality of a product.
NVIDIA Corporation nor any of its direct or indirect subsidiaries and affiliates (collectively: “NVIDIA”) make no representations or warranties, expressed or
implied, as to the accuracy or completeness of the information contained in this document and assume no responsibility for any errors contained herein.
NVIDIA shall have no liability for the consequences or use of such information or for any infringement of patents or other rights of third parties that may
result from its use. This document is not a commitment to develop, release, or deliver any Material (defined below), code, or functionality.

NVIDIA reserves the right to make corrections, modifications, enhancements, improvements, and any other changes to this document, at any time without
notice.

Customer should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the time of order acknowledgement, unless otherwise
agreed in an individual sales agreement signed by authorized representatives of NVIDIA and customer (“Terms of Sale”). NVIDIA hereby expressly objects
to applying any customer general terms and conditions with regards to the purchase of the NVIDIA product referenced in this document. No contractual
obligations are formed either directly or indirectly by this document.

NVIDIA products are not designed, authorized, or warranted to be suitable for use in medical, military, aircraft, space, or life support equipment, nor in
applications where failure or malfunction of the NVIDIA product can reasonably be expected to result in personal injury, death, or property or environmental
damage. NVIDIA accepts no liability for inclusion and/or use of NVIDIA products in such equipment or applications and therefore such inclusion and/or use
is at customer’s own risk.

NVIDIA makes no representation or warranty that products based on this document will be suitable for any specified use. Testing of all parameters of each
product is not necessarily performed by NVIDIA. It is customer’s sole responsibility to evaluate and determine the applicability of any information contained
in this document, ensure the product is suitable and fit for the application planned by customer, and perform the necessary testing for the application in
order to avoid a default of the application or the product. Weaknesses in customer’s product designs may affect the quality and reliability of the NVIDIA
product and may result in additional or different conditions and/or requirements beyond those contained in this document. NVIDIA accepts no liability
related to any default, damage, costs, or problem which may be based on or attributable to: (i) the use of the NVIDIA product in any manner that is contrary
to this document or (ii) customer product designs.

No license, either expressed or implied, is granted under any NVIDIA patent right, copyright, or other NVIDIA intellectual property right under this document.
Information published by NVIDIA regarding third-party products or services does not constitute a license from NVIDIA to use such products or services or
a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property rights
of the third party, or a license from NVIDIA under the patents or other intellectual property rights of NVIDIA.

Reproduction of information in this document is permissible only if approved in advance by NVIDIA in writing, reproduced without alteration and in full
compliance with all applicable export laws and regulations, and accompanied by all associated conditions, limitations, and notices.

THIS DOCUMENT AND ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS
(TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR
OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND
FITNESS FOR A PARTICULAR PURPOSE. TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL NVIDIA BE LIABLE FOR ANY DAMAGES, INCLUDING
WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF
THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF NVIDIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
Notwithstanding any damages that customer might incur for any reason whatsoever, NVIDIA’s aggregate and cumulative liability towards customer for the
products described herein shall be limited in accordance with the Terms of Sale for the product.

Trademarks

NVIDIA, the NVIDIA logo, and Mellanox are trademarks and/or registered trademarks of Mellanox Technologies Ltd. and/or NVIDIA Corporation in the
U.S. and in other countries. The registered trademark Linux® is used pursuant to a sublicense from the Linux Foundation, the exclusive licensee of Linus
Torvalds, owner of the mark on a world¬wide basis. Other company and product names may be trademarks of the respective companies with which they
are associated.

Copyright

© 2023 NVIDIA Corporation & affiliates. All rights reserved.

NVIDIA Corporation | 2788 San Tomas Expressway, Santa Clara, CA 95051
http://www.nvidia.com

http://www.nvidia.com

	Table of Contents
	Introduction
	Prerequisites
	Architecture
	3.1. Signature Database
	3.2. DPI Queue

	API
	4.1. Initialization and Configuration
	4.2. Signature Loading
	4.3. DPI Queue Creation
	4.4. Flow Life Cycle and Packet Processing
	4.5. Teardown

	DOCA DPI Samples
	5.1. Sample Prerequisites
	5.2. Running the Sample
	5.3. Samples
	5.3.1. DPI Scan

