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Chapter 1. Introduction

Important: No updates were made to the DOCA IPS application in DOCA 2.2. Please refer
to DOCA 2.5 for a note regarding future updates.

Intrusion prevention system (IPS) is an application that monitors a network for malicious
activity or policy violations.

IPS uses the deep packet inspection (DPI) engine to scan network flow for malicious
content based on predefined Suricata signatures. Packets that are deemed malicious are
dropped and a corresponding message is printed.

IPS supports NetFlow protocol for sending data from the DPU to remote NetFlow
collector for further analysis.

Connection tracking is also supported for tracking all network connections or flows
which helps the identification of all the packets that make up a flow for better handling
of the network traffic.

This document describes how to build and run the IPS application both on the host and
on the DPU.
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Chapter 2. System Design

The IPS application is designed to run as "bump-on-the-wire" on the BlueField instance,
it intercepts the traffic coming from the wire, and passes it to peer port.
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Chapter 3. Application Architecture

IPS runs on top of DPDK-based stateful flow tracking (SFT) to identify the flow that each
packet belongs to, then uses DPI to process L7 classification.
 

 

 1. Signatures are compiled by DPI compiler and then loaded to DPI engine. See DOCA
DPI Compiler for more information.

 2. Ingress traffic is identified using the stateful table module which utilizes the
connection tracking hardware offloads.

 3. Traffic is scanned against DPI-engine-compiled signature DB.
 4. Post-processing is performed for match decision.
 5. Matched flows are identified and drop actions can be offloaded to the hardware to

increase performance as no further inspection is needed.
 6. Flow termination is done by a configurable aging timer set in the SFT to 60 seconds.

When a flow is offloaded, it cannot be tracked and destroyed.

https://docs.nvidia.com/doca/sdk/dpi-compiler/index.html
https://docs.nvidia.com/doca/sdk/dpi-compiler/index.html
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Chapter 4. DOCA Libraries

This application leverages the following DOCA libraries:

‣ DOCA DPI Library

‣ DOCA Telemetry Library

http://docs.nvidia.com/doca/sdk/pdf/dpi-programming-guide.pdf
http://docs.nvidia.com/doca/sdk/pdf/telemetry-programming-guide.pdf
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Chapter 5. Configuration Flow

 1. Parse application argument.

 a). Initialize Arg Parser resources and register DOCA general parameters.
doca_argp_init();

 b). Register application parameters.
register_ips_params();

 c). Parse the arguments.
doca_argp_start();

 i. Parse DPDK flags and invoke handler for calling the rte_eal_init() function
 ii. Parsing app parameters.

 2. DPDK initialization.
dpdk_init();

Calls rte_eal_init() to initialize EAL resources with the provided EAL flags.
 3. DPDK port initialization and start.

dpdk_queues_and_ports_init();

 a). Initialize SFT.
 b). Initialize DPDK ports, including mempool allocation.

 4. Initialize IPS application resources including DPI engine and NetFlow.
ips_init();

 5. Configure DPI packet processing.
ips_worker_lcores_run();

 a). Configure DPI enqueue packets.
 b). Send jobs to RegEx engine.
 c). Configure DPI dequeue packets.

 6. If Netflow is enabled.
send_netflow_record();

 7. IPS destroy.
ips_destroy();

 a). Stop and free DPI resources.
 b). Destroy netflow resources.
 c). Stop SFT.
 d). Free IPS resources.
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 8. DPDK ports and queues destruction.
dpdk_queues_and_ports_fini();

 9. DPDK finish.
dpdk_fini();

Calls rte_eal_destroy() to destroy initialized EAL resources.
 10.Arg parser destroy.

doca_argp_destroy();
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Chapter 6. Running the Application

 1. Refer to the following documents:

‣ NVIDIA DOCA Installation Guide for Linux for details on how to install BlueField-
related software.

‣ NVIDIA DOCA Troubleshooting Guide for any issue you may encounter with the
installation, compilation, or execution of DOCA applications.

‣ NVIDIA DOCA Applications Overview for additional compilation instructions and
development tips for the DOCA applications.

 2. The IPS application binary is located under /opt/mellanox/doca/applications/ips/
bin/doca_ips. To build all the applications, run:
cd /opt/mellanox/doca/applications/
meson build 
ninja -C build

 3. To build the IPS application only:

 a). Edit the following flags in /opt/mellanox/doca/applications/
meson_options.txt:

‣ Set enable_all_applications to false

‣ Set enable_ips to true

 b). Run the commands in step 2.

Note: doca_ips is created under ./build/ips/src/.

Application usage:
Usage: doca_ips [DPDK Flags] -- [DOCA Flags] [Program Flags]
 
DOCA Flags:
  -h, --help                        Print a help synopsis
  -v, --version                     Print program version information
  -l, --log-level                   Set the log level for the program
 <CRITICAL=20, ERROR=30, WARNING=40, INFO=50, DEBUG=60>
 
Program Flags:
  -p, --print-match                 Prints FID when matched in DPI engine
  -n, --netflow <source_id>         Collect netflow statistics and set
 source_id if value is set
  -o, --output-csv <path>           Path to the output of the CSV file
  -c, --cdo <path>                  Path to CDO file compiled from a valid PDD
  -f, --fragmented                  Enables processing fragmented packets

http://docs.nvidia.com/doca/sdk/pdf/installation-guide-for-linux.pdf
http://docs.nvidia.com/doca/sdk/pdf/troubleshooting.pdf
http://docs.nvidia.com/doca/sdk/pdf/applications-overview.pdf
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  -a, --pci-addr                    DOCA DPI device PCI address

Note: For additional information on available flags for DPDK, use -h before the --
separator:
/opt/mellanox/doca/applications/ips/bin/doca_ips -h

Note: For additional information on the application, use -h after the -- separator:
/opt/mellanox/doca/applications/ips/bin/doca_ips -- -h

 4. Running the application on BlueField:

‣ Pre-run setup.

 a). The IPS example is based on DPDK libraries. Therefore, the user is required to
provide DPDK flags and allocate huge pages. Run:
sudo echo 2048 > /sys/kernel/mm/hugepages/hugepages-2048kB/nr_hugepages

 b). Make sure the RegEx engine is active:
systemctl status mlx-regex

If the status is inactive (Active: failed), run:
systemctl start mlx-regex

‣ CLI example for running the app:

Note: Make sure to compile signature before running the application. For more
information, please refer to NVIDIA DOCA DPI Compiler.

/opt/mellanox/doca/applications/ips/bin/doca_ips -a 0000:03:00.0,class=regex -
a auxiliary:mlx5_core.sf.4,sft_en=1 -a auxiliary:mlx5_core.sf.5,sft_en=1 -- --
cdo /root/ips.cdo -p -n

Note: The SFT supports a maximum of 64 queues. Therefore, the application
cannot be run with more than 64 cores. To limit the number of cores, run:
/opt/mellanox/doca/applications/ips/bin/doca_ips -a
 0000:03:00.0,class=regex -a auxiliary:mlx5_core.sf.4,sft_en=1 -a
 auxiliary:mlx5_core.sf.5,sft_en=1 -l 0-64 -- --cdo /root/ips.cdo -p -n

This limits the application to use 65 cores (core-0 to core-64). That is 1 core for
the main thread and 64 cores to serve as workers.

Note: The flags -a 0000:03:00.0,class=regex -a
auxiliary:mlx5_core.sf.4,sft_en=1 -a auxiliary:mlx5_core.sf.5,sft_en=1
are necessary for proper usage of the application. Modifying these flags results in
unexpected behavior as only 2 ports are supported. The SF numbers are arbitrary
and configurable. The RegEx device, however, is not and must be initiated on port
0.

Note: Sub-functions must be enabled according to Scalable Function Setup Guide.

 5. Running the application on the host, CLI example:
cd /opt/mellanox/doca/applications/ips/ 

http://docs.nvidia.com/doca/sdk/pdf/dpi-compiler.pdf
http://docs.nvidia.com/doca/sdk/pdf/scalable-functions.pdf
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./doca_ips -a 0000:21:00.0,class=regex -a 0000:21:00.3 -a 0000:21:00.4 -- --cdo ~/
ips.cdo

Note: Refer to section "Running DOCA Application on Host" in NVIDIA DOCA Virtual
Functions User Guide.

 6. To run doca_ips using a JSON file:
doca_ips --json [json_file]

For example:
cd /opt/mellanox/doca/applications/ips/bin
./doca_ips --json ips_params.json

NetFlow collector UI example:
 

 

The NetFlow module uses the DOCA's Telemetry NetFlow library to export NetFlow
packets in the NetFlow v9 format. The usage of telemetry is hardcoded to send packets
to a collector set on the host connected to the Bluefield device through the RShim
interface, 192.168.100.2:2055.

It is recommended to use the DOCA telemetry service as an aggregator service to export
records instead of exporting directly from the client side which requires enabling IPC.

Refer to the NVIDIA DOCA Telemetry Service Guide for more information.

http://docs.nvidia.com/doca/sdk/pdf/virtual-functions.pdf
http://docs.nvidia.com/doca/sdk/pdf/virtual-functions.pdf
http://docs.nvidia.com/doca/sdk/pdf/doca-telemetry-service.pdf
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Chapter 7. Arg Parser DOCA Flags

Refer to NVIDIA DOCA Arg Parser Programming Guide for more information.

Flag Type Short Flag
Long Flag/
JSON Key Description JSON Content

a devices Adds a PCIe
device into the
list of devices to
probe

"devices": 
[ 
   
 {"device": "regex", "id": "0000:03:00.0"}, 
   
 {"device": "sf", "id": "4","sft":
 true}, 
   
 {"device": "sf", "id": "5","sft":
 true}, 
]

DPDK flags

l core-list Lists cores to run
on

"core-
list": "0-4"

l log-level Sets the log
level for the
application:

‣ CRITICAL=20

‣ ERROR=30

‣ WARNING=40

‣ INFO=50

‣ DEBUG=60

"log-level":
 60 

v version Print program
version
information

N/A

General flags

h help Prints a help
synopsis

N/A

p print-match Prints FID when
matched in DPI
engine

"print-match":
 true

Program flags

n netflow Exports data
from BlueField
to remote DTS,
IP is set to
192.168.100.2

"netflow": 0 

http://docs.nvidia.com/doca/sdk/pdf/arg-parser-programming-guide.pdf
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Flag Type Short Flag
Long Flag/
JSON Key Description JSON Content

which is the
host's IP using
the RShim
interface. Also
sets source_id
to be written
to the NetFlow
packet.

o output-csv Path to the
output of the
CSV file

"output-
csv": "/tmp/
 ips_stats.csv"

c cdo Path to CDO file
compiled from a
valid PDD

Note:
This
flag is
mandatory.

"cdo": "/tmp/
ips.cdo"

f fragmented Enables
processing
fragmented
packets

"fragmented":
 false
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Chapter 8. Deploying Containerized
Application

The IPS example supports a container-based deployment. Refer to the NVIDIA DOCA
Container Deployment Guide for more information.

Application-specific configuration steps may be found on NGC under the application's
container page.

http://docs.nvidia.com/doca/sdk/pdf/container-deployment.pdf
http://docs.nvidia.com/doca/sdk/pdf/container-deployment.pdf
https://catalog.ngc.nvidia.com/orgs/nvidia/teams/doca/containers/doca_ips
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Chapter 9. Managing gRPC-Enabled
Application from Host

For instructions on running the gRPC application server on BlueField, refer to NVIDIA
DOCA gRPC Infrastructure User Guide.
 

 

To run the Python client of the gRPC-enabled application:
./doca_ips_gRPC_client.py -d/--debug <server address[:server port]>

http://docs.nvidia.com/doca/sdk/pdf/grpc-infrastructure.pdf
http://docs.nvidia.com/doca/sdk/pdf/grpc-infrastructure.pdf
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For example:
/opt/mellanox/doca/examples/ips/bin/grpc/client/doca_ips_gRPC_client.py
 192.168.104.2 
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Chapter 10. References

‣ /opt/mellanox/doca/applications/ips/src

‣ /opt/mellanox/doca/applications/ips/src/grpc/ips.proto

‣ /opt/mellanox/doca/applications/ips/bin/ips_suricata_rules_example
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