
MLNX-15-060464 _v2.2.1 | October 2023

NVIDIA DOCA IPS

Application Guide

NVIDIA DOCA IPS MLNX-15-060464 _v2.2.1 | ii

Table of Contents

Chapter 1. Introduction..1

Chapter 2. System Design..2

Chapter 3. Application Architecture...5

Chapter 4. DOCA Libraries..6

Chapter 5. Configuration Flow.. 7

Chapter 6. Running the Application... 9

Chapter 7. Arg Parser DOCA Flags...12

Chapter 8. Deploying Containerized Application..14

Chapter 9. Managing gRPC-Enabled Application from Host...15

Chapter 10. References...17

NVIDIA DOCA IPS MLNX-15-060464 _v2.2.1 | 1

Chapter 1. Introduction

Important: No updates were made to the DOCA IPS application in DOCA 2.2. Please refer
to DOCA 2.5 for a note regarding future updates.

Intrusion prevention system (IPS) is an application that monitors a network for malicious
activity or policy violations.

IPS uses the deep packet inspection (DPI) engine to scan network flow for malicious
content based on predefined Suricata signatures. Packets that are deemed malicious are
dropped and a corresponding message is printed.

IPS supports NetFlow protocol for sending data from the DPU to remote NetFlow
collector for further analysis.

Connection tracking is also supported for tracking all network connections or flows
which helps the identification of all the packets that make up a flow for better handling
of the network traffic.

This document describes how to build and run the IPS application both on the host and
on the DPU.

NVIDIA DOCA IPS MLNX-15-060464 _v2.2.1 | 2

Chapter 2. System Design

The IPS application is designed to run as "bump-on-the-wire" on the BlueField instance,
it intercepts the traffic coming from the wire, and passes it to peer port.

System Design

NVIDIA DOCA IPS MLNX-15-060464 _v2.2.1 | 3

System Design

NVIDIA DOCA IPS MLNX-15-060464 _v2.2.1 | 4

NVIDIA DOCA IPS MLNX-15-060464 _v2.2.1 | 5

Chapter 3. Application Architecture

IPS runs on top of DPDK-based stateful flow tracking (SFT) to identify the flow that each
packet belongs to, then uses DPI to process L7 classification.

 1. Signatures are compiled by DPI compiler and then loaded to DPI engine. See DOCA
DPI Compiler for more information.

 2. Ingress traffic is identified using the stateful table module which utilizes the
connection tracking hardware offloads.

 3. Traffic is scanned against DPI-engine-compiled signature DB.
 4. Post-processing is performed for match decision.
 5. Matched flows are identified and drop actions can be offloaded to the hardware to

increase performance as no further inspection is needed.
 6. Flow termination is done by a configurable aging timer set in the SFT to 60 seconds.

When a flow is offloaded, it cannot be tracked and destroyed.

https://docs.nvidia.com/doca/sdk/dpi-compiler/index.html
https://docs.nvidia.com/doca/sdk/dpi-compiler/index.html

NVIDIA DOCA IPS MLNX-15-060464 _v2.2.1 | 6

Chapter 4. DOCA Libraries

This application leverages the following DOCA libraries:

‣ DOCA DPI Library

‣ DOCA Telemetry Library

http://docs.nvidia.com/doca/sdk/pdf/dpi-programming-guide.pdf
http://docs.nvidia.com/doca/sdk/pdf/telemetry-programming-guide.pdf

NVIDIA DOCA IPS MLNX-15-060464 _v2.2.1 | 7

Chapter 5. Configuration Flow

 1. Parse application argument.

 a). Initialize Arg Parser resources and register DOCA general parameters.
doca_argp_init();

 b). Register application parameters.
register_ips_params();

 c). Parse the arguments.
doca_argp_start();

 i. Parse DPDK flags and invoke handler for calling the rte_eal_init() function
 ii. Parsing app parameters.

 2. DPDK initialization.
dpdk_init();

Calls rte_eal_init() to initialize EAL resources with the provided EAL flags.
 3. DPDK port initialization and start.

dpdk_queues_and_ports_init();

 a). Initialize SFT.
 b). Initialize DPDK ports, including mempool allocation.

 4. Initialize IPS application resources including DPI engine and NetFlow.
ips_init();

 5. Configure DPI packet processing.
ips_worker_lcores_run();

 a). Configure DPI enqueue packets.
 b). Send jobs to RegEx engine.
 c). Configure DPI dequeue packets.

 6. If Netflow is enabled.
send_netflow_record();

 7. IPS destroy.
ips_destroy();

 a). Stop and free DPI resources.
 b). Destroy netflow resources.
 c). Stop SFT.
 d). Free IPS resources.

Configuration Flow

NVIDIA DOCA IPS MLNX-15-060464 _v2.2.1 | 8

 8. DPDK ports and queues destruction.
dpdk_queues_and_ports_fini();

 9. DPDK finish.
dpdk_fini();

Calls rte_eal_destroy() to destroy initialized EAL resources.
 10.Arg parser destroy.

doca_argp_destroy();

NVIDIA DOCA IPS MLNX-15-060464 _v2.2.1 | 9

Chapter 6. Running the Application

 1. Refer to the following documents:

‣ NVIDIA DOCA Installation Guide for Linux for details on how to install BlueField-
related software.

‣ NVIDIA DOCA Troubleshooting Guide for any issue you may encounter with the
installation, compilation, or execution of DOCA applications.

‣ NVIDIA DOCA Applications Overview for additional compilation instructions and
development tips for the DOCA applications.

 2. The IPS application binary is located under /opt/mellanox/doca/applications/ips/
bin/doca_ips. To build all the applications, run:
cd /opt/mellanox/doca/applications/
meson build
ninja -C build

 3. To build the IPS application only:

 a). Edit the following flags in /opt/mellanox/doca/applications/
meson_options.txt:

‣ Set enable_all_applications to false

‣ Set enable_ips to true

 b). Run the commands in step 2.

Note: doca_ips is created under ./build/ips/src/.

Application usage:
Usage: doca_ips [DPDK Flags] -- [DOCA Flags] [Program Flags]

DOCA Flags:
 -h, --help Print a help synopsis
 -v, --version Print program version information
 -l, --log-level Set the log level for the program
 <CRITICAL=20, ERROR=30, WARNING=40, INFO=50, DEBUG=60>

Program Flags:
 -p, --print-match Prints FID when matched in DPI engine
 -n, --netflow <source_id> Collect netflow statistics and set
 source_id if value is set
 -o, --output-csv <path> Path to the output of the CSV file
 -c, --cdo <path> Path to CDO file compiled from a valid PDD
 -f, --fragmented Enables processing fragmented packets

http://docs.nvidia.com/doca/sdk/pdf/installation-guide-for-linux.pdf
http://docs.nvidia.com/doca/sdk/pdf/troubleshooting.pdf
http://docs.nvidia.com/doca/sdk/pdf/applications-overview.pdf

Running the Application

NVIDIA DOCA IPS MLNX-15-060464 _v2.2.1 | 10

 -a, --pci-addr DOCA DPI device PCI address

Note: For additional information on available flags for DPDK, use -h before the --
separator:
/opt/mellanox/doca/applications/ips/bin/doca_ips -h

Note: For additional information on the application, use -h after the -- separator:
/opt/mellanox/doca/applications/ips/bin/doca_ips -- -h

 4. Running the application on BlueField:

‣ Pre-run setup.

 a). The IPS example is based on DPDK libraries. Therefore, the user is required to
provide DPDK flags and allocate huge pages. Run:
sudo echo 2048 > /sys/kernel/mm/hugepages/hugepages-2048kB/nr_hugepages

 b). Make sure the RegEx engine is active:
systemctl status mlx-regex

If the status is inactive (Active: failed), run:
systemctl start mlx-regex

‣ CLI example for running the app:

Note: Make sure to compile signature before running the application. For more
information, please refer to NVIDIA DOCA DPI Compiler.

/opt/mellanox/doca/applications/ips/bin/doca_ips -a 0000:03:00.0,class=regex -
a auxiliary:mlx5_core.sf.4,sft_en=1 -a auxiliary:mlx5_core.sf.5,sft_en=1 -- --
cdo /root/ips.cdo -p -n

Note: The SFT supports a maximum of 64 queues. Therefore, the application
cannot be run with more than 64 cores. To limit the number of cores, run:
/opt/mellanox/doca/applications/ips/bin/doca_ips -a
 0000:03:00.0,class=regex -a auxiliary:mlx5_core.sf.4,sft_en=1 -a
 auxiliary:mlx5_core.sf.5,sft_en=1 -l 0-64 -- --cdo /root/ips.cdo -p -n

This limits the application to use 65 cores (core-0 to core-64). That is 1 core for
the main thread and 64 cores to serve as workers.

Note: The flags -a 0000:03:00.0,class=regex -a
auxiliary:mlx5_core.sf.4,sft_en=1 -a auxiliary:mlx5_core.sf.5,sft_en=1
are necessary for proper usage of the application. Modifying these flags results in
unexpected behavior as only 2 ports are supported. The SF numbers are arbitrary
and configurable. The RegEx device, however, is not and must be initiated on port
0.

Note: Sub-functions must be enabled according to Scalable Function Setup Guide.

 5. Running the application on the host, CLI example:
cd /opt/mellanox/doca/applications/ips/

http://docs.nvidia.com/doca/sdk/pdf/dpi-compiler.pdf
http://docs.nvidia.com/doca/sdk/pdf/scalable-functions.pdf

Running the Application

NVIDIA DOCA IPS MLNX-15-060464 _v2.2.1 | 11

./doca_ips -a 0000:21:00.0,class=regex -a 0000:21:00.3 -a 0000:21:00.4 -- --cdo ~/
ips.cdo

Note: Refer to section "Running DOCA Application on Host" in NVIDIA DOCA Virtual
Functions User Guide.

 6. To run doca_ips using a JSON file:
doca_ips --json [json_file]

For example:
cd /opt/mellanox/doca/applications/ips/bin
./doca_ips --json ips_params.json

NetFlow collector UI example:

The NetFlow module uses the DOCA's Telemetry NetFlow library to export NetFlow
packets in the NetFlow v9 format. The usage of telemetry is hardcoded to send packets
to a collector set on the host connected to the Bluefield device through the RShim
interface, 192.168.100.2:2055.

It is recommended to use the DOCA telemetry service as an aggregator service to export
records instead of exporting directly from the client side which requires enabling IPC.

Refer to the NVIDIA DOCA Telemetry Service Guide for more information.

http://docs.nvidia.com/doca/sdk/pdf/virtual-functions.pdf
http://docs.nvidia.com/doca/sdk/pdf/virtual-functions.pdf
http://docs.nvidia.com/doca/sdk/pdf/doca-telemetry-service.pdf

NVIDIA DOCA IPS MLNX-15-060464 _v2.2.1 | 12

Chapter 7. Arg Parser DOCA Flags

Refer to NVIDIA DOCA Arg Parser Programming Guide for more information.

Flag Type Short Flag
Long Flag/
JSON Key Description JSON Content

a devices Adds a PCIe
device into the
list of devices to
probe

"devices":
[

 {"device": "regex", "id": "0000:03:00.0"},

 {"device": "sf", "id": "4","sft":
 true},

 {"device": "sf", "id": "5","sft":
 true},
]

DPDK flags

l core-list Lists cores to run
on

"core-
list": "0-4"

l log-level Sets the log
level for the
application:

‣ CRITICAL=20

‣ ERROR=30

‣ WARNING=40

‣ INFO=50

‣ DEBUG=60

"log-level":
 60

v version Print program
version
information

N/A

General flags

h help Prints a help
synopsis

N/A

p print-match Prints FID when
matched in DPI
engine

"print-match":
 true

Program flags

n netflow Exports data
from BlueField
to remote DTS,
IP is set to
192.168.100.2

"netflow": 0

http://docs.nvidia.com/doca/sdk/pdf/arg-parser-programming-guide.pdf

Arg Parser DOCA Flags

NVIDIA DOCA IPS MLNX-15-060464 _v2.2.1 | 13

Flag Type Short Flag
Long Flag/
JSON Key Description JSON Content

which is the
host's IP using
the RShim
interface. Also
sets source_id
to be written
to the NetFlow
packet.

o output-csv Path to the
output of the
CSV file

"output-
csv": "/tmp/
 ips_stats.csv"

c cdo Path to CDO file
compiled from a
valid PDD

Note:
This
flag is
mandatory.

"cdo": "/tmp/
ips.cdo"

f fragmented Enables
processing
fragmented
packets

"fragmented":
 false

NVIDIA DOCA IPS MLNX-15-060464 _v2.2.1 | 14

Chapter 8. Deploying Containerized
Application

The IPS example supports a container-based deployment. Refer to the NVIDIA DOCA
Container Deployment Guide for more information.

Application-specific configuration steps may be found on NGC under the application's
container page.

http://docs.nvidia.com/doca/sdk/pdf/container-deployment.pdf
http://docs.nvidia.com/doca/sdk/pdf/container-deployment.pdf
https://catalog.ngc.nvidia.com/orgs/nvidia/teams/doca/containers/doca_ips

NVIDIA DOCA IPS MLNX-15-060464 _v2.2.1 | 15

Chapter 9. Managing gRPC-Enabled
Application from Host

For instructions on running the gRPC application server on BlueField, refer to NVIDIA
DOCA gRPC Infrastructure User Guide.

To run the Python client of the gRPC-enabled application:
./doca_ips_gRPC_client.py -d/--debug <server address[:server port]>

http://docs.nvidia.com/doca/sdk/pdf/grpc-infrastructure.pdf
http://docs.nvidia.com/doca/sdk/pdf/grpc-infrastructure.pdf

Managing gRPC-Enabled Application from Host

NVIDIA DOCA IPS MLNX-15-060464 _v2.2.1 | 16

For example:
/opt/mellanox/doca/examples/ips/bin/grpc/client/doca_ips_gRPC_client.py
 192.168.104.2

NVIDIA DOCA IPS MLNX-15-060464 _v2.2.1 | 17

Chapter 10. References

‣ /opt/mellanox/doca/applications/ips/src

‣ /opt/mellanox/doca/applications/ips/src/grpc/ips.proto

‣ /opt/mellanox/doca/applications/ips/bin/ips_suricata_rules_example

Notice

This document is provided for information purposes only and shall not be regarded as a warranty of a certain functionality, condition, or quality of a product.
NVIDIA Corporation nor any of its direct or indirect subsidiaries and affiliates (collectively: “NVIDIA”) make no representations or warranties, expressed or
implied, as to the accuracy or completeness of the information contained in this document and assume no responsibility for any errors contained herein.
NVIDIA shall have no liability for the consequences or use of such information or for any infringement of patents or other rights of third parties that may
result from its use. This document is not a commitment to develop, release, or deliver any Material (defined below), code, or functionality.

NVIDIA reserves the right to make corrections, modifications, enhancements, improvements, and any other changes to this document, at any time without
notice.

Customer should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the time of order acknowledgement, unless otherwise
agreed in an individual sales agreement signed by authorized representatives of NVIDIA and customer (“Terms of Sale”). NVIDIA hereby expressly objects
to applying any customer general terms and conditions with regards to the purchase of the NVIDIA product referenced in this document. No contractual
obligations are formed either directly or indirectly by this document.

NVIDIA products are not designed, authorized, or warranted to be suitable for use in medical, military, aircraft, space, or life support equipment, nor in
applications where failure or malfunction of the NVIDIA product can reasonably be expected to result in personal injury, death, or property or environmental
damage. NVIDIA accepts no liability for inclusion and/or use of NVIDIA products in such equipment or applications and therefore such inclusion and/or use
is at customer’s own risk.

NVIDIA makes no representation or warranty that products based on this document will be suitable for any specified use. Testing of all parameters of each
product is not necessarily performed by NVIDIA. It is customer’s sole responsibility to evaluate and determine the applicability of any information contained
in this document, ensure the product is suitable and fit for the application planned by customer, and perform the necessary testing for the application in
order to avoid a default of the application or the product. Weaknesses in customer’s product designs may affect the quality and reliability of the NVIDIA
product and may result in additional or different conditions and/or requirements beyond those contained in this document. NVIDIA accepts no liability
related to any default, damage, costs, or problem which may be based on or attributable to: (i) the use of the NVIDIA product in any manner that is contrary
to this document or (ii) customer product designs.

No license, either expressed or implied, is granted under any NVIDIA patent right, copyright, or other NVIDIA intellectual property right under this document.
Information published by NVIDIA regarding third-party products or services does not constitute a license from NVIDIA to use such products or services or
a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property rights
of the third party, or a license from NVIDIA under the patents or other intellectual property rights of NVIDIA.

Reproduction of information in this document is permissible only if approved in advance by NVIDIA in writing, reproduced without alteration and in full
compliance with all applicable export laws and regulations, and accompanied by all associated conditions, limitations, and notices.

THIS DOCUMENT AND ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS
(TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR
OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND
FITNESS FOR A PARTICULAR PURPOSE. TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL NVIDIA BE LIABLE FOR ANY DAMAGES, INCLUDING
WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF
THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF NVIDIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
Notwithstanding any damages that customer might incur for any reason whatsoever, NVIDIA’s aggregate and cumulative liability towards customer for the
products described herein shall be limited in accordance with the Terms of Sale for the product.

Trademarks

NVIDIA, the NVIDIA logo, and Mellanox are trademarks and/or registered trademarks of Mellanox Technologies Ltd. and/or NVIDIA Corporation in the
U.S. and in other countries. The registered trademark Linux® is used pursuant to a sublicense from the Linux Foundation, the exclusive licensee of Linus
Torvalds, owner of the mark on a world¬wide basis. Other company and product names may be trademarks of the respective companies with which they
are associated.

Copyright

© 2023 NVIDIA Corporation & affiliates. All rights reserved.

NVIDIA Corporation | 2788 San Tomas Expressway, Santa Clara, CA 95051
http://www.nvidia.com

http://www.nvidia.com

	Table of Contents
	Introduction
	System Design
	Application Architecture
	DOCA Libraries
	Configuration Flow
	Running the Application
	Arg Parser DOCA Flags
	Deploying Containerized Application
	Managing gRPC-Enabled Application from Host
	References

