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Chapter 1. Introduction

DOCA IPsec provides an API to create the security association (SA) object required for
flow encryption and decryption hardware acceleration.

Using DOCA IPsec can accelerate various IPsec actions in hardware such as:

‣ IPsec Crypto Offload – accelerate ciphering (encryption and decryption) only

‣ IPsec Full Offload – accelerate all IPsec actions (i.e., encap/decap, ciphering, and
replay protection so sequence numbers are done in the NIC hardware)

‣ Partial – doing some IPsec actions in hardware and others in software

‣ Transparent IPsec – a variant of IPsec full offload, data-path endpoint is not aware of
IPsec (only available in BlueField)

For more information about flow encryption and decryption, please refer to the NVIDIA
DOCA Flow Programming Guide.

This document is intended for software developers wishing to accelerate their
application's flow encryption and decryption operations.

http://docs.nvidia.com/doca/sdk/pdf/flow-programming-guide.pdf
http://docs.nvidia.com/doca/sdk/pdf/flow-programming-guide.pdf
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Chapter 2. Prerequisites

DOCA IPsec-based applications can run either on the host machine or on the NVIDIA®

BlueField® DPU target.

Confirm that your BlueField DPU is crypto-enabled:
mlxfwmanager | grep Crypto # expected "Crypto Enabled;"

Note: Make sure IPsec is supported using the doca_ipsec_job_get_supported function.
IPsec is supported in the DPU or on host when DPU is in NIC mode only.

If a hardware sequence number or hardware antireplay are used, IPsec
support is enabled using doca_ipsec_sequence_number_get_supported and
doca_ipsec_antireplay_get_supported respectively.
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Chapter 3. Architecture

DOCA IPsec relies heavily on the underlying DOCA core architecture for its operation.

After initialization, a DOCA IPsec operation is requested by submitting an IPsec job on
the relevant work queue. The DOCA IPsec library then calls a progress retrieve action to
post a completion event on the work queue.
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Chapter 4. API

This section details the specific structures and operations related to the DOCA IPsec
library for general initialization, setup, and clean-up.

The API for DOCA IPsec consists of the main DOCA IPsec job structure that is passed to
the work queue to instruct the library on source attributes and SA output.

As with other libraries, the DOCA IPsec job contains the standard doca_job base field
that should be set as follows:

‣ To create a job:
/* Construct IPsec job */ 
{
    .base = (struct doca_job){
        .type = DOCA_IPSEC_JOB_SA_CREATE, 
        .flags = DOCA_JOB_FLAGS_NONE,
        .ctx = state.ctx
      },
      .sa_attrs = sa_attrs,
};

SA attributes:
struct doca_ipsec_sa_attrs {
 struct doca_encryption_key key;                 /**< IPSec encryption key */
 enum doca_ipsec_icv_length icv_length;          /**< Authentication Tag length
 */
 struct doca_ipsec_sa_attr_sn sn_attr;           /**< sn attributes */
 enum doca_ipsec_direction direction;            /**< egress/ingress */
 union {                                         /**< egress/ingress attr */
           struct doca_ipsec_sa_attr_egress egress;    /**< egress attr */
           struct doca_ipsec_sa_attr_ingress ingress;  /**< ingress attr */
    };
    struct doca_ipsec_sa_event_attrs event;            /**< Reserve future use -
 ipsec events flags */
};

struct doca_ipsec_sa_attr_sn {
 uint32_t esn_overlap; /**< new/old indication of the High sequence number MSB -
 when set is old */
 uint32_t esn_enable;  /**< when set esn is enabled */
 uint64_t sn_initial;  /**< set the initial sequence number */
};

struct doca_ipsec_sa_attr_egress {
    uint32_t sn_inc_enable; /**< when set sn increment offloaded */
};

struct doca_ipsec_sa_attr_ingress {
    uint32_t antireplay_enable;
    /**< when enabled activates anti-replay protection window. */
    enum doca_ipsec_replay_win_size replay_win_sz;
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    /**< Anti replay window size to enable sequence replay attack handling. */
};

struct doca_ipsec_sa_event_attrs {
    uint32_t remove_flow_packet_count;
    /**< Packet counter, Decrements for every packet passing through the SA.
     * Event are triggered occurs when the counter reaches soft- lifetime and
 hard-lifetime (0).
     * When counter reaches hard-lifetime, all passing packets will return a
 relevant Syndrome.
     */
    uint32_t remove_flow_soft_lifetime;
    /**< Soft Lifetime threshold value.
     * When remove_flow_packet_count reaches this value a soft lifetime event is
 triggered (if armed).
     * See remove_flow_packet_count field in this struct fro more details.
     */
 uint32_t soft_lifetime_arm;
 /**< 1 when armed/to arm 0 otherwise. */
 uint32_t hard_lifetime_arm;
 /**< 1 when armed/to arm 0 otherwise. */
 uint32_t remove_flow_enable;
 /**< 1 when remove flow enabled/to enable; 0 otherwise. */
 uint32_t esn_overlap_event_arm;
 /**< 1 when armed/to arm 0 otherwise. */
};

As with all WorkQ operations, the application must periodically poll the work queue
(via doca_workq_progress_retrieve API call). When the retrieve call returns with a
pointer to an SA object value (to indicate that the work queues event is valid), you can
then test that received event for success:
struct doca_ipsec_sa* sa = doca_ipsec_sa_from_result(&event);

‣ To destroy a job:

As with all WorkQ operations, the application must periodically poll the work queue
(via doca_workq_progress_retrieve API call). When the retrieve call returns with a
DOCA_SUCCESS value (to indicate the work queues event is valid), you can then test
that received event for success:
event.result.u64 == DOCA_SUCCESS
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Chapter 5. Usage

The following step-by-step guide goes through the various stages required to initialize,
execute, and clean-up DOCA IPsec API.

5.1.  Initialization Process
The DOCA IPsec API uses the DOCA core library to create the required objects for the
DOCA IPsec library operations. This section runs through this process in a logical order.
If you already have some of these operations in your DOCA application, you may skip or
modify them as needed.

5.1.1.  Opening DOCA Device
The first requirement is to open a DOCA device, normally your BlueField controller.
You should iterate all DOCA devices (via doca_devinfo_list_create) and select
one using some criteria (e.g., PCIe address). You may also use the function
doca_ipsec_job_get_supported to check if the device is suitable for the DOCA
IPsec job type you want to perform. Afterwards, the device should be opened using
doca_dev_open.

Note: If a hardware sequence number or hardware antireplay are used, IPsec
support is enabled using doca_ipsec_sequence_number_get_supported and
doca_ipsec_antireplay_get_supported respectively.

5.1.2.  Creating DOCA Core Objects
DOCA IPsec also requires the actual DOCA IPsec context to be created
(doca_ipsec_create).

5.1.3.  Initializing DOCA Core Objects
In this phase of initialization, the core objects are ready to be set up and started.
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5.1.3.1.  DOCA IPsec Context Initialization
The context created previously can have the device added (doca_ctx_dev_add), started
(doca_ctx_start), and work queue added (doca_ctx_workq_add).

5.1.4.  Constructing DOCA IPsec Attributes
Prior to building and submitting a DOCA IPsec operation, you must construct DOCA
IPsec attributes.

5.2.  IPsec Execution
The DOCA IPsec operation works with the DOCA core work queue. Therefore, you must
enqueue the operation and then poll for completion.

5.2.1.  Constructing and Executing DOCA IPsec
Operation

To begin the DOCA IPsec operation, you must enqueue a DOCA IPsec job on the
previously created work queue object. This involves creating the DOCA IPsec job (struct
doca_ipsec_sa_create_job) that is a composite of specific DOCA IPsec fields.

Finally, the doca_workq_submit API call is used to submit the DOCA IPsec operation to
the work queue.

5.2.2.  Waiting for Completion
To detect when the DOCA IPsec operation has completed, you should periodically poll the
work queue (via doca_workq_progress_retrieve).

When the API call indicates that a valid event has been received, you should detect the
success of the DOCA IPsec operation through the event.result.u64 field which would
be a pointer to the SA object upon creation, or DOCA_SUCCESS upon destruction. It should
be noted that other work queue operations (i.e., non-DOCA IPsec operations) present
their events differently. Refer to their respective guides for more information.

Upon completion, convert the event to an SA object (doca_ipsec_sa_from_result).
DOCA Flow requires the SA object for encryption and decryption.

To clean up the SA object, use the destroy SA job with the SA pointer.

5.2.3.  Clean-up
The main clean-up process is to remove the worker queue from the context
(doca_ctx_workq_rm), stop the context itself (doca_ctx_stop), and remove the device
from the context (doca_ctx_dev_rm).
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The final destruction of the objects can now occur. This can occur in any order, but
destruction must occur on the work queue (doca_workq_destroy), IPsec context
(doca_ipsec_destroy), and device closure (doca_dev_close).

Note: Destroying SA objects results in an error upon device closure.
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